1
0
Fork 0
alistair23-linux/drivers/infiniband/hw/cxgb3/cxio_wr.h

803 lines
21 KiB
C
Raw Normal View History

/*
* Copyright (c) 2006 Chelsio, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef __CXIO_WR_H__
#define __CXIO_WR_H__
#include <asm/io.h>
#include <linux/pci.h>
#include <linux/timer.h>
#include "firmware_exports.h"
#define T3_MAX_SGE 4
#define T3_MAX_INLINE 64
#define T3_STAG0_PBL_SIZE (2 * T3_MAX_SGE << 3)
#define T3_STAG0_MAX_PBE_LEN (128 * 1024 * 1024)
#define T3_STAG0_PAGE_SHIFT 15
#define Q_EMPTY(rptr,wptr) ((rptr)==(wptr))
#define Q_FULL(rptr,wptr,size_log2) ( (((wptr)-(rptr))>>(size_log2)) && \
((rptr)!=(wptr)) )
#define Q_GENBIT(ptr,size_log2) (!(((ptr)>>size_log2)&0x1))
#define Q_FREECNT(rptr,wptr,size_log2) ((1UL<<size_log2)-((wptr)-(rptr)))
#define Q_COUNT(rptr,wptr) ((wptr)-(rptr))
#define Q_PTR2IDX(ptr,size_log2) (ptr & ((1UL<<size_log2)-1))
static inline void ring_doorbell(void __iomem *doorbell, u32 qpid)
{
writel(((1<<31) | qpid), doorbell);
}
#define SEQ32_GE(x,y) (!( (((u32) (x)) - ((u32) (y))) & 0x80000000 ))
enum t3_wr_flags {
T3_COMPLETION_FLAG = 0x01,
T3_NOTIFY_FLAG = 0x02,
T3_SOLICITED_EVENT_FLAG = 0x04,
T3_READ_FENCE_FLAG = 0x08,
T3_LOCAL_FENCE_FLAG = 0x10
} __packed;
enum t3_wr_opcode {
T3_WR_BP = FW_WROPCODE_RI_BYPASS,
T3_WR_SEND = FW_WROPCODE_RI_SEND,
T3_WR_WRITE = FW_WROPCODE_RI_RDMA_WRITE,
T3_WR_READ = FW_WROPCODE_RI_RDMA_READ,
T3_WR_INV_STAG = FW_WROPCODE_RI_LOCAL_INV,
T3_WR_BIND = FW_WROPCODE_RI_BIND_MW,
T3_WR_RCV = FW_WROPCODE_RI_RECEIVE,
T3_WR_INIT = FW_WROPCODE_RI_RDMA_INIT,
T3_WR_QP_MOD = FW_WROPCODE_RI_MODIFY_QP,
T3_WR_FASTREG = FW_WROPCODE_RI_FASTREGISTER_MR
} __packed;
enum t3_rdma_opcode {
T3_RDMA_WRITE, /* IETF RDMAP v1.0 ... */
T3_READ_REQ,
T3_READ_RESP,
T3_SEND,
T3_SEND_WITH_INV,
T3_SEND_WITH_SE,
T3_SEND_WITH_SE_INV,
T3_TERMINATE,
T3_RDMA_INIT, /* CHELSIO RI specific ... */
T3_BIND_MW,
T3_FAST_REGISTER,
T3_LOCAL_INV,
T3_QP_MOD,
T3_BYPASS,
T3_RDMA_READ_REQ_WITH_INV,
} __packed;
static inline enum t3_rdma_opcode wr2opcode(enum t3_wr_opcode wrop)
{
switch (wrop) {
case T3_WR_BP: return T3_BYPASS;
case T3_WR_SEND: return T3_SEND;
case T3_WR_WRITE: return T3_RDMA_WRITE;
case T3_WR_READ: return T3_READ_REQ;
case T3_WR_INV_STAG: return T3_LOCAL_INV;
case T3_WR_BIND: return T3_BIND_MW;
case T3_WR_INIT: return T3_RDMA_INIT;
case T3_WR_QP_MOD: return T3_QP_MOD;
case T3_WR_FASTREG: return T3_FAST_REGISTER;
default: break;
}
return -1;
}
/* Work request id */
union t3_wrid {
struct {
u32 hi;
u32 low;
} id0;
u64 id1;
};
#define WRID(wrid) (wrid.id1)
#define WRID_GEN(wrid) (wrid.id0.wr_gen)
#define WRID_IDX(wrid) (wrid.id0.wr_idx)
#define WRID_LO(wrid) (wrid.id0.wr_lo)
struct fw_riwrh {
__be32 op_seop_flags;
__be32 gen_tid_len;
};
#define S_FW_RIWR_OP 24
#define M_FW_RIWR_OP 0xff
#define V_FW_RIWR_OP(x) ((x) << S_FW_RIWR_OP)
#define G_FW_RIWR_OP(x) ((((x) >> S_FW_RIWR_OP)) & M_FW_RIWR_OP)
#define S_FW_RIWR_SOPEOP 22
#define M_FW_RIWR_SOPEOP 0x3
#define V_FW_RIWR_SOPEOP(x) ((x) << S_FW_RIWR_SOPEOP)
#define S_FW_RIWR_FLAGS 8
#define M_FW_RIWR_FLAGS 0x3fffff
#define V_FW_RIWR_FLAGS(x) ((x) << S_FW_RIWR_FLAGS)
#define G_FW_RIWR_FLAGS(x) ((((x) >> S_FW_RIWR_FLAGS)) & M_FW_RIWR_FLAGS)
#define S_FW_RIWR_TID 8
#define V_FW_RIWR_TID(x) ((x) << S_FW_RIWR_TID)
#define S_FW_RIWR_LEN 0
#define V_FW_RIWR_LEN(x) ((x) << S_FW_RIWR_LEN)
#define S_FW_RIWR_GEN 31
#define V_FW_RIWR_GEN(x) ((x) << S_FW_RIWR_GEN)
struct t3_sge {
__be32 stag;
__be32 len;
__be64 to;
};
/* If num_sgle is zero, flit 5+ contains immediate data.*/
struct t3_send_wr {
struct fw_riwrh wrh; /* 0 */
union t3_wrid wrid; /* 1 */
u8 rdmaop; /* 2 */
u8 reserved[3];
__be32 rem_stag;
__be32 plen; /* 3 */
__be32 num_sgle;
struct t3_sge sgl[T3_MAX_SGE]; /* 4+ */
};
#define T3_MAX_FASTREG_DEPTH 10
#define T3_MAX_FASTREG_FRAG 10
struct t3_fastreg_wr {
struct fw_riwrh wrh; /* 0 */
union t3_wrid wrid; /* 1 */
__be32 stag; /* 2 */
__be32 len;
__be32 va_base_hi; /* 3 */
__be32 va_base_lo_fbo;
__be32 page_type_perms; /* 4 */
__be32 reserved1;
__be64 pbl_addrs[0]; /* 5+ */
};
/*
* If a fastreg wr spans multiple wqes, then the 2nd fragment look like this.
*/
struct t3_pbl_frag {
struct fw_riwrh wrh; /* 0 */
__be64 pbl_addrs[14]; /* 1..14 */
};
#define S_FR_PAGE_COUNT 24
#define M_FR_PAGE_COUNT 0xff
#define V_FR_PAGE_COUNT(x) ((x) << S_FR_PAGE_COUNT)
#define G_FR_PAGE_COUNT(x) ((((x) >> S_FR_PAGE_COUNT)) & M_FR_PAGE_COUNT)
#define S_FR_PAGE_SIZE 16
#define M_FR_PAGE_SIZE 0x1f
#define V_FR_PAGE_SIZE(x) ((x) << S_FR_PAGE_SIZE)
#define G_FR_PAGE_SIZE(x) ((((x) >> S_FR_PAGE_SIZE)) & M_FR_PAGE_SIZE)
#define S_FR_TYPE 8
#define M_FR_TYPE 0x1
#define V_FR_TYPE(x) ((x) << S_FR_TYPE)
#define G_FR_TYPE(x) ((((x) >> S_FR_TYPE)) & M_FR_TYPE)
#define S_FR_PERMS 0
#define M_FR_PERMS 0xff
#define V_FR_PERMS(x) ((x) << S_FR_PERMS)
#define G_FR_PERMS(x) ((((x) >> S_FR_PERMS)) & M_FR_PERMS)
struct t3_local_inv_wr {
struct fw_riwrh wrh; /* 0 */
union t3_wrid wrid; /* 1 */
__be32 stag; /* 2 */
__be32 reserved;
};
struct t3_rdma_write_wr {
struct fw_riwrh wrh; /* 0 */
union t3_wrid wrid; /* 1 */
u8 rdmaop; /* 2 */
u8 reserved[3];
__be32 stag_sink;
__be64 to_sink; /* 3 */
__be32 plen; /* 4 */
__be32 num_sgle;
struct t3_sge sgl[T3_MAX_SGE]; /* 5+ */
};
struct t3_rdma_read_wr {
struct fw_riwrh wrh; /* 0 */
union t3_wrid wrid; /* 1 */
u8 rdmaop; /* 2 */
u8 local_inv;
u8 reserved[2];
__be32 rem_stag;
__be64 rem_to; /* 3 */
__be32 local_stag; /* 4 */
__be32 local_len;
__be64 local_to; /* 5 */
};
struct t3_bind_mw_wr {
struct fw_riwrh wrh; /* 0 */
union t3_wrid wrid; /* 1 */
u16 reserved; /* 2 */
u8 type;
u8 perms;
__be32 mr_stag;
__be32 mw_stag; /* 3 */
__be32 mw_len;
__be64 mw_va; /* 4 */
__be32 mr_pbl_addr; /* 5 */
u8 reserved2[3];
u8 mr_pagesz;
};
struct t3_receive_wr {
struct fw_riwrh wrh; /* 0 */
union t3_wrid wrid; /* 1 */
u8 pagesz[T3_MAX_SGE];
__be32 num_sgle; /* 2 */
struct t3_sge sgl[T3_MAX_SGE]; /* 3+ */
__be32 pbl_addr[T3_MAX_SGE];
};
struct t3_bypass_wr {
struct fw_riwrh wrh;
union t3_wrid wrid; /* 1 */
};
struct t3_modify_qp_wr {
struct fw_riwrh wrh; /* 0 */
union t3_wrid wrid; /* 1 */
__be32 flags; /* 2 */
__be32 quiesce; /* 2 */
__be32 max_ird; /* 3 */
__be32 max_ord; /* 3 */
__be64 sge_cmd; /* 4 */
__be64 ctx1; /* 5 */
__be64 ctx0; /* 6 */
};
enum t3_modify_qp_flags {
MODQP_QUIESCE = 0x01,
MODQP_MAX_IRD = 0x02,
MODQP_MAX_ORD = 0x04,
MODQP_WRITE_EC = 0x08,
MODQP_READ_EC = 0x10,
};
enum t3_mpa_attrs {
uP_RI_MPA_RX_MARKER_ENABLE = 0x1,
uP_RI_MPA_TX_MARKER_ENABLE = 0x2,
uP_RI_MPA_CRC_ENABLE = 0x4,
uP_RI_MPA_IETF_ENABLE = 0x8
} __packed;
enum t3_qp_caps {
uP_RI_QP_RDMA_READ_ENABLE = 0x01,
uP_RI_QP_RDMA_WRITE_ENABLE = 0x02,
uP_RI_QP_BIND_ENABLE = 0x04,
uP_RI_QP_FAST_REGISTER_ENABLE = 0x08,
uP_RI_QP_STAG0_ENABLE = 0x10
} __packed;
RDMA/cxgb3: Support peer-2-peer connection setup Open MPI, Intel MPI and other applications don't respect the iWARP requirement that the client (active) side of the connection send the first RDMA message. This class of application connection setup is called peer-to-peer. Typically once the connection is setup, _both_ sides want to send data. This patch enables supporting peer-to-peer over the chelsio RNIC by enforcing this iWARP requirement in the driver itself as part of RDMA connection setup. Connection setup is extended, when the peer2peer module option is 1, such that the MPA initiator will send a 0B Read (the RTR) just after connection setup. The MPA responder will suspend SQ processing until the RTR message is received and reply-to. In the longer term, this will be handled in a standardized way by enhancing the MPA negotiation so peers can indicate whether they want/need the RTR and what type of RTR (0B read, 0B write, or 0B send) should be sent. This will be done by standardizing a few bits of the private data in order to negotiate all this. However this patch enables peer-to-peer applications now and allows most of the required firmware and driver changes to be done and tested now. Design: - Add a module option, peer2peer, to enable this mode. - New firmware support for peer-to-peer mode: - a new bit in the rdma_init WR to tell it to do peer-2-peer and what form of RTR message to send or expect. - process _all_ preposted recvs before moving the connection into rdma mode. - passive side: defer completing the rdma_init WR until all pre-posted recvs are processed. Suspend SQ processing until the RTR is received. - active side: expect and process the 0B read WR on offload TX queue. Defer completing the rdma_init WR until all pre-posted recvs are processed. Suspend SQ processing until the 0B read WR is processed from the offload TX queue. - If peer2peer is set, driver posts 0B read request on offload TX queue just after posting the rdma_init WR to the offload TX queue. - Add CQ poll logic to ignore unsolicitied read responses. Signed-off-by: Steve Wise <swise@opengridcomputing.com> Signed-off-by: Roland Dreier <rolandd@cisco.com>
2008-04-29 14:46:52 -06:00
enum rdma_init_rtr_types {
RTR_READ = 1,
RTR_WRITE = 2,
RTR_SEND = 3,
};
#define S_RTR_TYPE 2
#define M_RTR_TYPE 0x3
#define V_RTR_TYPE(x) ((x) << S_RTR_TYPE)
#define G_RTR_TYPE(x) ((((x) >> S_RTR_TYPE)) & M_RTR_TYPE)
#define S_CHAN 4
#define M_CHAN 0x3
#define V_CHAN(x) ((x) << S_CHAN)
#define G_CHAN(x) ((((x) >> S_CHAN)) & M_CHAN)
struct t3_rdma_init_attr {
u32 tid;
u32 qpid;
u32 pdid;
u32 scqid;
u32 rcqid;
u32 rq_addr;
u32 rq_size;
enum t3_mpa_attrs mpaattrs;
enum t3_qp_caps qpcaps;
u16 tcp_emss;
u32 ord;
u32 ird;
u64 qp_dma_addr;
u32 qp_dma_size;
RDMA/cxgb3: Support peer-2-peer connection setup Open MPI, Intel MPI and other applications don't respect the iWARP requirement that the client (active) side of the connection send the first RDMA message. This class of application connection setup is called peer-to-peer. Typically once the connection is setup, _both_ sides want to send data. This patch enables supporting peer-to-peer over the chelsio RNIC by enforcing this iWARP requirement in the driver itself as part of RDMA connection setup. Connection setup is extended, when the peer2peer module option is 1, such that the MPA initiator will send a 0B Read (the RTR) just after connection setup. The MPA responder will suspend SQ processing until the RTR message is received and reply-to. In the longer term, this will be handled in a standardized way by enhancing the MPA negotiation so peers can indicate whether they want/need the RTR and what type of RTR (0B read, 0B write, or 0B send) should be sent. This will be done by standardizing a few bits of the private data in order to negotiate all this. However this patch enables peer-to-peer applications now and allows most of the required firmware and driver changes to be done and tested now. Design: - Add a module option, peer2peer, to enable this mode. - New firmware support for peer-to-peer mode: - a new bit in the rdma_init WR to tell it to do peer-2-peer and what form of RTR message to send or expect. - process _all_ preposted recvs before moving the connection into rdma mode. - passive side: defer completing the rdma_init WR until all pre-posted recvs are processed. Suspend SQ processing until the RTR is received. - active side: expect and process the 0B read WR on offload TX queue. Defer completing the rdma_init WR until all pre-posted recvs are processed. Suspend SQ processing until the 0B read WR is processed from the offload TX queue. - If peer2peer is set, driver posts 0B read request on offload TX queue just after posting the rdma_init WR to the offload TX queue. - Add CQ poll logic to ignore unsolicitied read responses. Signed-off-by: Steve Wise <swise@opengridcomputing.com> Signed-off-by: Roland Dreier <rolandd@cisco.com>
2008-04-29 14:46:52 -06:00
enum rdma_init_rtr_types rtr_type;
u16 flags;
u16 rqe_count;
u32 irs;
u32 chan;
};
struct t3_rdma_init_wr {
struct fw_riwrh wrh; /* 0 */
union t3_wrid wrid; /* 1 */
__be32 qpid; /* 2 */
__be32 pdid;
__be32 scqid; /* 3 */
__be32 rcqid;
__be32 rq_addr; /* 4 */
__be32 rq_size;
u8 mpaattrs; /* 5 */
u8 qpcaps;
__be16 ulpdu_size;
RDMA/cxgb3: Support peer-2-peer connection setup Open MPI, Intel MPI and other applications don't respect the iWARP requirement that the client (active) side of the connection send the first RDMA message. This class of application connection setup is called peer-to-peer. Typically once the connection is setup, _both_ sides want to send data. This patch enables supporting peer-to-peer over the chelsio RNIC by enforcing this iWARP requirement in the driver itself as part of RDMA connection setup. Connection setup is extended, when the peer2peer module option is 1, such that the MPA initiator will send a 0B Read (the RTR) just after connection setup. The MPA responder will suspend SQ processing until the RTR message is received and reply-to. In the longer term, this will be handled in a standardized way by enhancing the MPA negotiation so peers can indicate whether they want/need the RTR and what type of RTR (0B read, 0B write, or 0B send) should be sent. This will be done by standardizing a few bits of the private data in order to negotiate all this. However this patch enables peer-to-peer applications now and allows most of the required firmware and driver changes to be done and tested now. Design: - Add a module option, peer2peer, to enable this mode. - New firmware support for peer-to-peer mode: - a new bit in the rdma_init WR to tell it to do peer-2-peer and what form of RTR message to send or expect. - process _all_ preposted recvs before moving the connection into rdma mode. - passive side: defer completing the rdma_init WR until all pre-posted recvs are processed. Suspend SQ processing until the RTR is received. - active side: expect and process the 0B read WR on offload TX queue. Defer completing the rdma_init WR until all pre-posted recvs are processed. Suspend SQ processing until the 0B read WR is processed from the offload TX queue. - If peer2peer is set, driver posts 0B read request on offload TX queue just after posting the rdma_init WR to the offload TX queue. - Add CQ poll logic to ignore unsolicitied read responses. Signed-off-by: Steve Wise <swise@opengridcomputing.com> Signed-off-by: Roland Dreier <rolandd@cisco.com>
2008-04-29 14:46:52 -06:00
__be16 flags_rtr_type;
__be16 rqe_count;
__be32 ord; /* 6 */
__be32 ird;
__be64 qp_dma_addr; /* 7 */
__be32 qp_dma_size; /* 8 */
__be32 irs;
};
struct t3_genbit {
u64 flit[15];
__be64 genbit;
};
struct t3_wq_in_err {
u64 flit[13];
u64 err;
};
enum rdma_init_wr_flags {
RDMA/cxgb3: Support peer-2-peer connection setup Open MPI, Intel MPI and other applications don't respect the iWARP requirement that the client (active) side of the connection send the first RDMA message. This class of application connection setup is called peer-to-peer. Typically once the connection is setup, _both_ sides want to send data. This patch enables supporting peer-to-peer over the chelsio RNIC by enforcing this iWARP requirement in the driver itself as part of RDMA connection setup. Connection setup is extended, when the peer2peer module option is 1, such that the MPA initiator will send a 0B Read (the RTR) just after connection setup. The MPA responder will suspend SQ processing until the RTR message is received and reply-to. In the longer term, this will be handled in a standardized way by enhancing the MPA negotiation so peers can indicate whether they want/need the RTR and what type of RTR (0B read, 0B write, or 0B send) should be sent. This will be done by standardizing a few bits of the private data in order to negotiate all this. However this patch enables peer-to-peer applications now and allows most of the required firmware and driver changes to be done and tested now. Design: - Add a module option, peer2peer, to enable this mode. - New firmware support for peer-to-peer mode: - a new bit in the rdma_init WR to tell it to do peer-2-peer and what form of RTR message to send or expect. - process _all_ preposted recvs before moving the connection into rdma mode. - passive side: defer completing the rdma_init WR until all pre-posted recvs are processed. Suspend SQ processing until the RTR is received. - active side: expect and process the 0B read WR on offload TX queue. Defer completing the rdma_init WR until all pre-posted recvs are processed. Suspend SQ processing until the 0B read WR is processed from the offload TX queue. - If peer2peer is set, driver posts 0B read request on offload TX queue just after posting the rdma_init WR to the offload TX queue. - Add CQ poll logic to ignore unsolicitied read responses. Signed-off-by: Steve Wise <swise@opengridcomputing.com> Signed-off-by: Roland Dreier <rolandd@cisco.com>
2008-04-29 14:46:52 -06:00
MPA_INITIATOR = (1<<0),
PRIV_QP = (1<<1),
};
union t3_wr {
struct t3_send_wr send;
struct t3_rdma_write_wr write;
struct t3_rdma_read_wr read;
struct t3_receive_wr recv;
struct t3_fastreg_wr fastreg;
struct t3_pbl_frag pbl_frag;
struct t3_local_inv_wr local_inv;
struct t3_bind_mw_wr bind;
struct t3_bypass_wr bypass;
struct t3_rdma_init_wr init;
struct t3_modify_qp_wr qp_mod;
struct t3_genbit genbit;
struct t3_wq_in_err wq_in_err;
__be64 flit[16];
};
#define T3_SQ_CQE_FLIT 13
#define T3_SQ_COOKIE_FLIT 14
#define T3_RQ_COOKIE_FLIT 13
#define T3_RQ_CQE_FLIT 14
static inline enum t3_wr_opcode fw_riwrh_opcode(struct fw_riwrh *wqe)
{
return G_FW_RIWR_OP(be32_to_cpu(wqe->op_seop_flags));
}
enum t3_wr_hdr_bits {
T3_EOP = 1,
T3_SOP = 2,
T3_SOPEOP = T3_EOP|T3_SOP,
};
static inline void build_fw_riwrh(struct fw_riwrh *wqe, enum t3_wr_opcode op,
enum t3_wr_flags flags, u8 genbit, u32 tid,
u8 len, u8 sopeop)
{
wqe->op_seop_flags = cpu_to_be32(V_FW_RIWR_OP(op) |
V_FW_RIWR_SOPEOP(sopeop) |
V_FW_RIWR_FLAGS(flags));
wmb();
wqe->gen_tid_len = cpu_to_be32(V_FW_RIWR_GEN(genbit) |
V_FW_RIWR_TID(tid) |
V_FW_RIWR_LEN(len));
/* 2nd gen bit... */
((union t3_wr *)wqe)->genbit.genbit = cpu_to_be64(genbit);
}
/*
* T3 ULP2_TX commands
*/
enum t3_utx_mem_op {
T3_UTX_MEM_READ = 2,
T3_UTX_MEM_WRITE = 3
};
/* T3 MC7 RDMA TPT entry format */
enum tpt_mem_type {
TPT_NON_SHARED_MR = 0x0,
TPT_SHARED_MR = 0x1,
TPT_MW = 0x2,
TPT_MW_RELAXED_PROTECTION = 0x3
};
enum tpt_addr_type {
TPT_ZBTO = 0,
TPT_VATO = 1
};
enum tpt_mem_perm {
TPT_MW_BIND = 0x10,
TPT_LOCAL_READ = 0x8,
TPT_LOCAL_WRITE = 0x4,
TPT_REMOTE_READ = 0x2,
TPT_REMOTE_WRITE = 0x1
};
struct tpt_entry {
__be32 valid_stag_pdid;
__be32 flags_pagesize_qpid;
__be32 rsvd_pbl_addr;
__be32 len;
__be32 va_hi;
__be32 va_low_or_fbo;
__be32 rsvd_bind_cnt_or_pstag;
__be32 rsvd_pbl_size;
};
#define S_TPT_VALID 31
#define V_TPT_VALID(x) ((x) << S_TPT_VALID)
#define F_TPT_VALID V_TPT_VALID(1U)
#define S_TPT_STAG_KEY 23
#define M_TPT_STAG_KEY 0xFF
#define V_TPT_STAG_KEY(x) ((x) << S_TPT_STAG_KEY)
#define G_TPT_STAG_KEY(x) (((x) >> S_TPT_STAG_KEY) & M_TPT_STAG_KEY)
#define S_TPT_STAG_STATE 22
#define V_TPT_STAG_STATE(x) ((x) << S_TPT_STAG_STATE)
#define F_TPT_STAG_STATE V_TPT_STAG_STATE(1U)
#define S_TPT_STAG_TYPE 20
#define M_TPT_STAG_TYPE 0x3
#define V_TPT_STAG_TYPE(x) ((x) << S_TPT_STAG_TYPE)
#define G_TPT_STAG_TYPE(x) (((x) >> S_TPT_STAG_TYPE) & M_TPT_STAG_TYPE)
#define S_TPT_PDID 0
#define M_TPT_PDID 0xFFFFF
#define V_TPT_PDID(x) ((x) << S_TPT_PDID)
#define G_TPT_PDID(x) (((x) >> S_TPT_PDID) & M_TPT_PDID)
#define S_TPT_PERM 28
#define M_TPT_PERM 0xF
#define V_TPT_PERM(x) ((x) << S_TPT_PERM)
#define G_TPT_PERM(x) (((x) >> S_TPT_PERM) & M_TPT_PERM)
#define S_TPT_REM_INV_DIS 27
#define V_TPT_REM_INV_DIS(x) ((x) << S_TPT_REM_INV_DIS)
#define F_TPT_REM_INV_DIS V_TPT_REM_INV_DIS(1U)
#define S_TPT_ADDR_TYPE 26
#define V_TPT_ADDR_TYPE(x) ((x) << S_TPT_ADDR_TYPE)
#define F_TPT_ADDR_TYPE V_TPT_ADDR_TYPE(1U)
#define S_TPT_MW_BIND_ENABLE 25
#define V_TPT_MW_BIND_ENABLE(x) ((x) << S_TPT_MW_BIND_ENABLE)
#define F_TPT_MW_BIND_ENABLE V_TPT_MW_BIND_ENABLE(1U)
#define S_TPT_PAGE_SIZE 20
#define M_TPT_PAGE_SIZE 0x1F
#define V_TPT_PAGE_SIZE(x) ((x) << S_TPT_PAGE_SIZE)
#define G_TPT_PAGE_SIZE(x) (((x) >> S_TPT_PAGE_SIZE) & M_TPT_PAGE_SIZE)
#define S_TPT_PBL_ADDR 0
#define M_TPT_PBL_ADDR 0x1FFFFFFF
#define V_TPT_PBL_ADDR(x) ((x) << S_TPT_PBL_ADDR)
#define G_TPT_PBL_ADDR(x) (((x) >> S_TPT_PBL_ADDR) & M_TPT_PBL_ADDR)
#define S_TPT_QPID 0
#define M_TPT_QPID 0xFFFFF
#define V_TPT_QPID(x) ((x) << S_TPT_QPID)
#define G_TPT_QPID(x) (((x) >> S_TPT_QPID) & M_TPT_QPID)
#define S_TPT_PSTAG 0
#define M_TPT_PSTAG 0xFFFFFF
#define V_TPT_PSTAG(x) ((x) << S_TPT_PSTAG)
#define G_TPT_PSTAG(x) (((x) >> S_TPT_PSTAG) & M_TPT_PSTAG)
#define S_TPT_PBL_SIZE 0
#define M_TPT_PBL_SIZE 0xFFFFF
#define V_TPT_PBL_SIZE(x) ((x) << S_TPT_PBL_SIZE)
#define G_TPT_PBL_SIZE(x) (((x) >> S_TPT_PBL_SIZE) & M_TPT_PBL_SIZE)
/*
* CQE defs
*/
struct t3_cqe {
__be32 header;
__be32 len;
union {
struct {
__be32 stag;
__be32 msn;
} rcqe;
struct {
u32 wrid_hi;
u32 wrid_low;
} scqe;
} u;
};
#define S_CQE_OOO 31
#define M_CQE_OOO 0x1
#define G_CQE_OOO(x) ((((x) >> S_CQE_OOO)) & M_CQE_OOO)
#define V_CEQ_OOO(x) ((x)<<S_CQE_OOO)
#define S_CQE_QPID 12
#define M_CQE_QPID 0x7FFFF
#define G_CQE_QPID(x) ((((x) >> S_CQE_QPID)) & M_CQE_QPID)
#define V_CQE_QPID(x) ((x)<<S_CQE_QPID)
#define S_CQE_SWCQE 11
#define M_CQE_SWCQE 0x1
#define G_CQE_SWCQE(x) ((((x) >> S_CQE_SWCQE)) & M_CQE_SWCQE)
#define V_CQE_SWCQE(x) ((x)<<S_CQE_SWCQE)
#define S_CQE_GENBIT 10
#define M_CQE_GENBIT 0x1
#define G_CQE_GENBIT(x) (((x) >> S_CQE_GENBIT) & M_CQE_GENBIT)
#define V_CQE_GENBIT(x) ((x)<<S_CQE_GENBIT)
#define S_CQE_STATUS 5
#define M_CQE_STATUS 0x1F
#define G_CQE_STATUS(x) ((((x) >> S_CQE_STATUS)) & M_CQE_STATUS)
#define V_CQE_STATUS(x) ((x)<<S_CQE_STATUS)
#define S_CQE_TYPE 4
#define M_CQE_TYPE 0x1
#define G_CQE_TYPE(x) ((((x) >> S_CQE_TYPE)) & M_CQE_TYPE)
#define V_CQE_TYPE(x) ((x)<<S_CQE_TYPE)
#define S_CQE_OPCODE 0
#define M_CQE_OPCODE 0xF
#define G_CQE_OPCODE(x) ((((x) >> S_CQE_OPCODE)) & M_CQE_OPCODE)
#define V_CQE_OPCODE(x) ((x)<<S_CQE_OPCODE)
#define SW_CQE(x) (G_CQE_SWCQE(be32_to_cpu((x).header)))
#define CQE_OOO(x) (G_CQE_OOO(be32_to_cpu((x).header)))
#define CQE_QPID(x) (G_CQE_QPID(be32_to_cpu((x).header)))
#define CQE_GENBIT(x) (G_CQE_GENBIT(be32_to_cpu((x).header)))
#define CQE_TYPE(x) (G_CQE_TYPE(be32_to_cpu((x).header)))
#define SQ_TYPE(x) (CQE_TYPE((x)))
#define RQ_TYPE(x) (!CQE_TYPE((x)))
#define CQE_STATUS(x) (G_CQE_STATUS(be32_to_cpu((x).header)))
#define CQE_OPCODE(x) (G_CQE_OPCODE(be32_to_cpu((x).header)))
#define CQE_SEND_OPCODE(x)( \
(G_CQE_OPCODE(be32_to_cpu((x).header)) == T3_SEND) || \
(G_CQE_OPCODE(be32_to_cpu((x).header)) == T3_SEND_WITH_SE) || \
(G_CQE_OPCODE(be32_to_cpu((x).header)) == T3_SEND_WITH_INV) || \
(G_CQE_OPCODE(be32_to_cpu((x).header)) == T3_SEND_WITH_SE_INV))
#define CQE_LEN(x) (be32_to_cpu((x).len))
/* used for RQ completion processing */
#define CQE_WRID_STAG(x) (be32_to_cpu((x).u.rcqe.stag))
#define CQE_WRID_MSN(x) (be32_to_cpu((x).u.rcqe.msn))
/* used for SQ completion processing */
#define CQE_WRID_SQ_WPTR(x) ((x).u.scqe.wrid_hi)
#define CQE_WRID_WPTR(x) ((x).u.scqe.wrid_low)
/* generic accessor macros */
#define CQE_WRID_HI(x) ((x).u.scqe.wrid_hi)
#define CQE_WRID_LOW(x) ((x).u.scqe.wrid_low)
#define TPT_ERR_SUCCESS 0x0
#define TPT_ERR_STAG 0x1 /* STAG invalid: either the */
/* STAG is offlimt, being 0, */
/* or STAG_key mismatch */
#define TPT_ERR_PDID 0x2 /* PDID mismatch */
#define TPT_ERR_QPID 0x3 /* QPID mismatch */
#define TPT_ERR_ACCESS 0x4 /* Invalid access right */
#define TPT_ERR_WRAP 0x5 /* Wrap error */
#define TPT_ERR_BOUND 0x6 /* base and bounds voilation */
#define TPT_ERR_INVALIDATE_SHARED_MR 0x7 /* attempt to invalidate a */
/* shared memory region */
#define TPT_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8 /* attempt to invalidate a */
/* shared memory region */
#define TPT_ERR_ECC 0x9 /* ECC error detected */
#define TPT_ERR_ECC_PSTAG 0xA /* ECC error detected when */
/* reading PSTAG for a MW */
/* Invalidate */
#define TPT_ERR_PBL_ADDR_BOUND 0xB /* pbl addr out of bounds: */
/* software error */
#define TPT_ERR_SWFLUSH 0xC /* SW FLUSHED */
#define TPT_ERR_CRC 0x10 /* CRC error */
#define TPT_ERR_MARKER 0x11 /* Marker error */
#define TPT_ERR_PDU_LEN_ERR 0x12 /* invalid PDU length */
#define TPT_ERR_OUT_OF_RQE 0x13 /* out of RQE */
#define TPT_ERR_DDP_VERSION 0x14 /* wrong DDP version */
#define TPT_ERR_RDMA_VERSION 0x15 /* wrong RDMA version */
#define TPT_ERR_OPCODE 0x16 /* invalid rdma opcode */
#define TPT_ERR_DDP_QUEUE_NUM 0x17 /* invalid ddp queue number */
#define TPT_ERR_MSN 0x18 /* MSN error */
#define TPT_ERR_TBIT 0x19 /* tag bit not set correctly */
#define TPT_ERR_MO 0x1A /* MO not 0 for TERMINATE */
/* or READ_REQ */
#define TPT_ERR_MSN_GAP 0x1B
#define TPT_ERR_MSN_RANGE 0x1C
#define TPT_ERR_IRD_OVERFLOW 0x1D
#define TPT_ERR_RQE_ADDR_BOUND 0x1E /* RQE addr out of bounds: */
/* software error */
#define TPT_ERR_INTERNAL_ERR 0x1F /* internal error (opcode */
/* mismatch) */
struct t3_swsq {
__u64 wr_id;
struct t3_cqe cqe;
__u32 sq_wptr;
__be32 read_len;
int opcode;
int complete;
int signaled;
};
struct t3_swrq {
__u64 wr_id;
__u32 pbl_addr;
};
/*
* A T3 WQ implements both the SQ and RQ.
*/
struct t3_wq {
union t3_wr *queue; /* DMA accessible memory */
dma_addr_t dma_addr; /* DMA address for HW */
DEFINE_DMA_UNMAP_ADDR(mapping); /* unmap kruft */
u32 error; /* 1 once we go to ERROR */
u32 qpid;
u32 wptr; /* idx to next available WR slot */
u32 size_log2; /* total wq size */
struct t3_swsq *sq; /* SW SQ */
struct t3_swsq *oldest_read; /* tracks oldest pending read */
u32 sq_wptr; /* sq_wptr - sq_rptr == count of */
u32 sq_rptr; /* pending wrs */
u32 sq_size_log2; /* sq size */
struct t3_swrq *rq; /* SW RQ (holds consumer wr_ids */
u32 rq_wptr; /* rq_wptr - rq_rptr == count of */
u32 rq_rptr; /* pending wrs */
struct t3_swrq *rq_oldest_wr; /* oldest wr on the SW RQ */
u32 rq_size_log2; /* rq size */
u32 rq_addr; /* rq adapter address */
void __iomem *doorbell; /* kernel db */
u64 udb; /* user db if any */
struct cxio_rdev *rdev;
};
struct t3_cq {
u32 cqid;
u32 rptr;
u32 wptr;
u32 size_log2;
dma_addr_t dma_addr;
DEFINE_DMA_UNMAP_ADDR(mapping);
struct t3_cqe *queue;
struct t3_cqe *sw_queue;
u32 sw_rptr;
u32 sw_wptr;
};
#define CQ_VLD_ENTRY(ptr,size_log2,cqe) (Q_GENBIT(ptr,size_log2) == \
CQE_GENBIT(*cqe))
struct t3_cq_status_page {
u32 cq_err;
};
static inline int cxio_cq_in_error(struct t3_cq *cq)
{
return ((struct t3_cq_status_page *)
&cq->queue[1 << cq->size_log2])->cq_err;
}
static inline void cxio_set_cq_in_error(struct t3_cq *cq)
{
((struct t3_cq_status_page *)
&cq->queue[1 << cq->size_log2])->cq_err = 1;
}
static inline void cxio_set_wq_in_error(struct t3_wq *wq)
{
wq->queue->wq_in_err.err |= 1;
}
static inline void cxio_disable_wq_db(struct t3_wq *wq)
{
wq->queue->wq_in_err.err |= 2;
}
static inline void cxio_enable_wq_db(struct t3_wq *wq)
{
wq->queue->wq_in_err.err &= ~2;
}
static inline int cxio_wq_db_enabled(struct t3_wq *wq)
{
return !(wq->queue->wq_in_err.err & 2);
}
static inline struct t3_cqe *cxio_next_hw_cqe(struct t3_cq *cq)
{
struct t3_cqe *cqe;
cqe = cq->queue + (Q_PTR2IDX(cq->rptr, cq->size_log2));
if (CQ_VLD_ENTRY(cq->rptr, cq->size_log2, cqe))
return cqe;
return NULL;
}
static inline struct t3_cqe *cxio_next_sw_cqe(struct t3_cq *cq)
{
struct t3_cqe *cqe;
if (!Q_EMPTY(cq->sw_rptr, cq->sw_wptr)) {
cqe = cq->sw_queue + (Q_PTR2IDX(cq->sw_rptr, cq->size_log2));
return cqe;
}
return NULL;
}
static inline struct t3_cqe *cxio_next_cqe(struct t3_cq *cq)
{
struct t3_cqe *cqe;
if (!Q_EMPTY(cq->sw_rptr, cq->sw_wptr)) {
cqe = cq->sw_queue + (Q_PTR2IDX(cq->sw_rptr, cq->size_log2));
return cqe;
}
cqe = cq->queue + (Q_PTR2IDX(cq->rptr, cq->size_log2));
if (CQ_VLD_ENTRY(cq->rptr, cq->size_log2, cqe))
return cqe;
return NULL;
}
#endif