1
0
Fork 0
alistair23-linux/drivers/net/ethernet/intel/i40e/i40e.h

1170 lines
36 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0 */
/* Copyright(c) 2013 - 2018 Intel Corporation. */
#ifndef _I40E_H_
#define _I40E_H_
#include <net/tcp.h>
#include <net/udp.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/aer.h>
#include <linux/netdevice.h>
#include <linux/ioport.h>
#include <linux/iommu.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/hashtable.h>
#include <linux/string.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/sctp.h>
#include <linux/pkt_sched.h>
#include <linux/ipv6.h>
#include <net/checksum.h>
#include <net/ip6_checksum.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/if_macvlan.h>
#include <linux/if_bridge.h>
#include <linux/clocksource.h>
#include <linux/net_tstamp.h>
#include <linux/ptp_clock_kernel.h>
i40e: Enable 'channel' mode in mqprio for TC configs The i40e driver is modified to enable the new mqprio hardware offload mode and factor the TCs and queue configuration by creating channel VSIs. In this mode, the priority to traffic class mapping and the user specified queue ranges are used to configure the traffic classes by setting the mode option to 'channel'. Example: map 0 0 0 0 1 2 2 3 queues 2@0 2@2 1@4 1@5\ hw 1 mode channel qdisc mqprio 8038: root tc 4 map 0 0 0 0 1 2 2 3 0 0 0 0 0 0 0 0 queues:(0:1) (2:3) (4:4) (5:5) mode:channel shaper:dcb The HW channels created are removed and all the queue configuration is set to default when the qdisc is detached from the root of the device. This patch also disables setting up channels via ethtool (ethtool -L) when the TCs are configured using mqprio scheduler. The patch also limits setting ethtool Rx flow hash indirection (ethtool -X eth0 equal N) to max queues configured via mqprio. The Rx flow hash indirection input through ethtool should be validated so that it is within in the queue range configured via tc/mqprio. The bound checking is achieved by reporting the current rss size to the kernel when queues are configured via mqprio. Example: map 0 0 0 1 0 2 3 0 queues 2@0 4@2 8@6 11@14\ hw 1 mode channel Cannot set RX flow hash configuration: Invalid argument Signed-off-by: Amritha Nambiar <amritha.nambiar@intel.com> Tested-by: Andrew Bowers <andrewx.bowers@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2017-09-07 05:00:22 -06:00
#include <net/pkt_cls.h>
i40e: Enable cloud filters via tc-flower This patch enables tc-flower based hardware offloads. tc flower filter provided by the kernel is configured as driver specific cloud filter. The patch implements functions and admin queue commands needed to support cloud filters in the driver and adds cloud filters to configure these tc-flower filters. The classification function of the filter is to direct matched packets to a traffic class. The hardware traffic class is set based on the the classid reserved in the range :ffe0 - :ffef. Match Dst MAC and route to TC0: prio 1 flower dst_mac 3c:fd:fe:a0:d6:70 skip_sw\ hw_tc 1 Match Dst IPv4,Dst Port and route to TC1: prio 2 flower dst_ip 192.168.3.5/32\ ip_proto udp dst_port 25 skip_sw\ hw_tc 2 Match Dst IPv6,Dst Port and route to TC1: prio 3 flower dst_ip fe8::200:1\ ip_proto udp dst_port 66 skip_sw\ hw_tc 2 Delete tc flower filter: Example: Flow Director Sideband is disabled while configuring cloud filters via tc-flower and until any cloud filter exists. Unsupported matches when cloud filters are added using enhanced big buffer cloud filter mode of underlying switch include: 1. source port and source IP 2. Combined MAC address and IP fields. 3. Not specifying L4 port These filter matches can however be used to redirect traffic to the main VSI (tc 0) which does not require the enhanced big buffer cloud filter support. Signed-off-by: Amritha Nambiar <amritha.nambiar@intel.com> Signed-off-by: Kiran Patil <kiran.patil@intel.com> Signed-off-by: Anjali Singhai Jain <anjali.singhai@intel.com> Signed-off-by: Jingjing Wu <jingjing.wu@intel.com> Acked-by: Shannon Nelson <shannon.nelson@oracle.com> Tested-by: Andrew Bowers <andrewx.bowers@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2017-10-27 03:36:01 -06:00
#include <net/tc_act/tc_gact.h>
#include <net/tc_act/tc_mirred.h>
#include <net/xdp_sock.h>
#include "i40e_type.h"
#include "i40e_prototype.h"
#include "i40e_client.h"
#include <linux/avf/virtchnl.h>
#include "i40e_virtchnl_pf.h"
#include "i40e_txrx.h"
#include "i40e_dcb.h"
/* Useful i40e defaults */
#define I40E_MAX_VEB 16
#define I40E_MAX_NUM_DESCRIPTORS 4096
#define I40E_MAX_CSR_SPACE (4 * 1024 * 1024 - 64 * 1024)
#define I40E_DEFAULT_NUM_DESCRIPTORS 512
#define I40E_REQ_DESCRIPTOR_MULTIPLE 32
#define I40E_MIN_NUM_DESCRIPTORS 64
#define I40E_MIN_MSIX 2
#define I40E_DEFAULT_NUM_VMDQ_VSI 8 /* max 256 VSIs */
#define I40E_MIN_VSI_ALLOC 83 /* LAN, ATR, FCOE, 64 VF */
/* max 16 qps */
#define i40e_default_queues_per_vmdq(pf) \
(((pf)->hw_features & I40E_HW_RSS_AQ_CAPABLE) ? 4 : 1)
#define I40E_DEFAULT_QUEUES_PER_VF 4
#define I40E_MAX_VF_QUEUES 16
#define I40E_DEFAULT_QUEUES_PER_TC 1 /* should be a power of 2 */
#define i40e_pf_get_max_q_per_tc(pf) \
(((pf)->hw_features & I40E_HW_128_QP_RSS_CAPABLE) ? 128 : 64)
#define I40E_FDIR_RING 0
#define I40E_FDIR_RING_COUNT 32
#define I40E_MAX_AQ_BUF_SIZE 4096
#define I40E_AQ_LEN 256
#define I40E_AQ_WORK_LIMIT 66 /* max number of VFs + a little */
#define I40E_MAX_USER_PRIORITY 8
#define I40E_DEFAULT_TRAFFIC_CLASS BIT(0)
#define I40E_DEFAULT_MSG_ENABLE 4
#define I40E_QUEUE_WAIT_RETRY_LIMIT 10
#define I40E_INT_NAME_STR_LEN (IFNAMSIZ + 16)
#define I40E_NVM_VERSION_LO_SHIFT 0
#define I40E_NVM_VERSION_LO_MASK (0xff << I40E_NVM_VERSION_LO_SHIFT)
#define I40E_NVM_VERSION_HI_SHIFT 12
#define I40E_NVM_VERSION_HI_MASK (0xf << I40E_NVM_VERSION_HI_SHIFT)
#define I40E_OEM_VER_BUILD_MASK 0xffff
#define I40E_OEM_VER_PATCH_MASK 0xff
#define I40E_OEM_VER_BUILD_SHIFT 8
#define I40E_OEM_VER_SHIFT 24
#define I40E_PHY_DEBUG_ALL \
(I40E_AQ_PHY_DEBUG_DISABLE_LINK_FW | \
I40E_AQ_PHY_DEBUG_DISABLE_ALL_LINK_FW)
#define I40E_OEM_EETRACK_ID 0xffffffff
#define I40E_OEM_GEN_SHIFT 24
#define I40E_OEM_SNAP_MASK 0x00ff0000
#define I40E_OEM_SNAP_SHIFT 16
#define I40E_OEM_RELEASE_MASK 0x0000ffff
/* The values in here are decimal coded as hex as is the case in the NVM map*/
#define I40E_CURRENT_NVM_VERSION_HI 0x2
#define I40E_CURRENT_NVM_VERSION_LO 0x40
#define I40E_RX_DESC(R, i) \
(&(((union i40e_32byte_rx_desc *)((R)->desc))[i]))
#define I40E_TX_DESC(R, i) \
(&(((struct i40e_tx_desc *)((R)->desc))[i]))
#define I40E_TX_CTXTDESC(R, i) \
(&(((struct i40e_tx_context_desc *)((R)->desc))[i]))
#define I40E_TX_FDIRDESC(R, i) \
(&(((struct i40e_filter_program_desc *)((R)->desc))[i]))
/* default to trying for four seconds */
#define I40E_TRY_LINK_TIMEOUT (4 * HZ)
/* BW rate limiting */
#define I40E_BW_CREDIT_DIVISOR 50 /* 50Mbps per BW credit */
#define I40E_BW_MBPS_DIVISOR 125000 /* rate / (1000000 / 8) Mbps */
#define I40E_MAX_BW_INACTIVE_ACCUM 4 /* accumulate 4 credits max */
/* driver state flags */
enum i40e_state_t {
__I40E_TESTING,
__I40E_CONFIG_BUSY,
__I40E_CONFIG_DONE,
__I40E_DOWN,
__I40E_SERVICE_SCHED,
__I40E_ADMINQ_EVENT_PENDING,
__I40E_MDD_EVENT_PENDING,
__I40E_VFLR_EVENT_PENDING,
__I40E_RESET_RECOVERY_PENDING,
__I40E_TIMEOUT_RECOVERY_PENDING,
i40e: use separate state bit for miscellaneous IRQ setup We currently (mis)use the __I40E_RECOVERY_PENDING bit to determine when we should actually request a new IRQ in i40e_setup_misc_vector(). This led to a design mistake where we open-coded the re-setup of the miscellaneous vector in i40e_resume() instead of using the function provided. If we did not open-code this and instead tried to use the i40e_setup_misc_vector() function, it would lead to never reallocating the IRQ. This would lead to a second i40e_suspend() call failing to free the vector due to a NULL pointer dereference. A future patch is going to re-work how the i40e_suspend() and i40e_resume() flows work to clear all IRQ vectors, which would require us to use i40e_setup_misc_vector() directly. Since during this time the __I40E_RECOVERY_PENDING bit is set, we'll never re-allocate the vector. Rather than leaving the open-coded setup in i40e_resume() lets just fix the problem properly in i40e_setup_misc_vector(). Introduce a new state bit which indicates when the IRQ has been assigned, which will be set when i40e_setup_misc_vector is first called. This ultimately resolves the issue of re-requesting the vector, without overloading the __I40E_RECOVERY_PENDING state. This ensures that the suspend/resume cycle can use the setup function instead of open-coding the re-request during resume. Additionally, since the only callers of i40e_stop_misc_vector also want to free it, move this code directly into the function to avoid duplication. Due to the new functionality, rename it to i40e_free_misc_vector(). This lets us drop the extra calls to free and re-enable the vector during i40e_suspend() and i40e_resume(). We don't need to call i40e_setup_misc_Vector() in i40e_resume() because it gets called by the i40e_rebuild() call. Signed-off-by: Jacob Keller <jacob.e.keller@intel.com> Tested-by: Andrew Bowers <andrewx.bowers@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2017-07-14 07:27:02 -06:00
__I40E_MISC_IRQ_REQUESTED,
__I40E_RESET_INTR_RECEIVED,
__I40E_REINIT_REQUESTED,
__I40E_PF_RESET_REQUESTED,
__I40E_PF_RESET_AND_REBUILD_REQUESTED,
__I40E_CORE_RESET_REQUESTED,
__I40E_GLOBAL_RESET_REQUESTED,
__I40E_EMP_RESET_INTR_RECEIVED,
__I40E_SUSPENDED,
__I40E_PTP_TX_IN_PROGRESS,
__I40E_BAD_EEPROM,
__I40E_DOWN_REQUESTED,
__I40E_FD_FLUSH_REQUESTED,
__I40E_FD_ATR_AUTO_DISABLED,
__I40E_FD_SB_AUTO_DISABLED,
__I40E_RESET_FAILED,
__I40E_PORT_SUSPENDED,
__I40E_VF_DISABLE,
__I40E_MACVLAN_SYNC_PENDING,
__I40E_UDP_FILTER_SYNC_PENDING,
__I40E_TEMP_LINK_POLLING,
__I40E_CLIENT_SERVICE_REQUESTED,
__I40E_CLIENT_L2_CHANGE,
__I40E_CLIENT_RESET,
__I40E_VIRTCHNL_OP_PENDING,
__I40E_RECOVERY_MODE,
__I40E_VF_RESETS_DISABLED, /* disable resets during i40e_remove */
/* This must be last as it determines the size of the BITMAP */
__I40E_STATE_SIZE__,
};
#define I40E_PF_RESET_FLAG BIT_ULL(__I40E_PF_RESET_REQUESTED)
#define I40E_PF_RESET_AND_REBUILD_FLAG \
BIT_ULL(__I40E_PF_RESET_AND_REBUILD_REQUESTED)
/* VSI state flags */
enum i40e_vsi_state_t {
__I40E_VSI_DOWN,
__I40E_VSI_NEEDS_RESTART,
__I40E_VSI_SYNCING_FILTERS,
__I40E_VSI_OVERFLOW_PROMISC,
__I40E_VSI_REINIT_REQUESTED,
__I40E_VSI_DOWN_REQUESTED,
/* This must be last as it determines the size of the BITMAP */
__I40E_VSI_STATE_SIZE__,
};
enum i40e_interrupt_policy {
I40E_INTERRUPT_BEST_CASE,
I40E_INTERRUPT_MEDIUM,
I40E_INTERRUPT_LOWEST
};
struct i40e_lump_tracking {
u16 num_entries;
u16 search_hint;
u16 list[0];
#define I40E_PILE_VALID_BIT 0x8000
#define I40E_IWARP_IRQ_PILE_ID (I40E_PILE_VALID_BIT - 2)
};
#define I40E_DEFAULT_ATR_SAMPLE_RATE 20
#define I40E_FDIR_MAX_RAW_PACKET_SIZE 512
#define I40E_FDIR_BUFFER_FULL_MARGIN 10
#define I40E_FDIR_BUFFER_HEAD_ROOM 32
#define I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR (I40E_FDIR_BUFFER_HEAD_ROOM * 4)
#define I40E_HKEY_ARRAY_SIZE ((I40E_PFQF_HKEY_MAX_INDEX + 1) * 4)
#define I40E_HLUT_ARRAY_SIZE ((I40E_PFQF_HLUT_MAX_INDEX + 1) * 4)
#define I40E_VF_HLUT_ARRAY_SIZE ((I40E_VFQF_HLUT1_MAX_INDEX + 1) * 4)
enum i40e_fd_stat_idx {
I40E_FD_STAT_ATR,
I40E_FD_STAT_SB,
I40E_FD_STAT_ATR_TUNNEL,
I40E_FD_STAT_PF_COUNT
};
#define I40E_FD_STAT_PF_IDX(pf_id) ((pf_id) * I40E_FD_STAT_PF_COUNT)
#define I40E_FD_ATR_STAT_IDX(pf_id) \
(I40E_FD_STAT_PF_IDX(pf_id) + I40E_FD_STAT_ATR)
#define I40E_FD_SB_STAT_IDX(pf_id) \
(I40E_FD_STAT_PF_IDX(pf_id) + I40E_FD_STAT_SB)
#define I40E_FD_ATR_TUNNEL_STAT_IDX(pf_id) \
(I40E_FD_STAT_PF_IDX(pf_id) + I40E_FD_STAT_ATR_TUNNEL)
/* The following structure contains the data parsed from the user-defined
* field of the ethtool_rx_flow_spec structure.
*/
struct i40e_rx_flow_userdef {
bool flex_filter;
u16 flex_word;
u16 flex_offset;
};
struct i40e_fdir_filter {
struct hlist_node fdir_node;
/* filter ipnut set */
u8 flow_type;
u8 ip4_proto;
/* TX packet view of src and dst */
__be32 dst_ip;
__be32 src_ip;
__be16 src_port;
__be16 dst_port;
__be32 sctp_v_tag;
/* Flexible data to match within the packet payload */
__be16 flex_word;
u16 flex_offset;
bool flex_filter;
/* filter control */
u16 q_index;
u8 flex_off;
u8 pctype;
u16 dest_vsi;
u8 dest_ctl;
u8 fd_status;
u16 cnt_index;
u32 fd_id;
};
#define I40E_CLOUD_FIELD_OMAC BIT(0)
#define I40E_CLOUD_FIELD_IMAC BIT(1)
#define I40E_CLOUD_FIELD_IVLAN BIT(2)
#define I40E_CLOUD_FIELD_TEN_ID BIT(3)
#define I40E_CLOUD_FIELD_IIP BIT(4)
i40e: Enable cloud filters via tc-flower This patch enables tc-flower based hardware offloads. tc flower filter provided by the kernel is configured as driver specific cloud filter. The patch implements functions and admin queue commands needed to support cloud filters in the driver and adds cloud filters to configure these tc-flower filters. The classification function of the filter is to direct matched packets to a traffic class. The hardware traffic class is set based on the the classid reserved in the range :ffe0 - :ffef. Match Dst MAC and route to TC0: prio 1 flower dst_mac 3c:fd:fe:a0:d6:70 skip_sw\ hw_tc 1 Match Dst IPv4,Dst Port and route to TC1: prio 2 flower dst_ip 192.168.3.5/32\ ip_proto udp dst_port 25 skip_sw\ hw_tc 2 Match Dst IPv6,Dst Port and route to TC1: prio 3 flower dst_ip fe8::200:1\ ip_proto udp dst_port 66 skip_sw\ hw_tc 2 Delete tc flower filter: Example: Flow Director Sideband is disabled while configuring cloud filters via tc-flower and until any cloud filter exists. Unsupported matches when cloud filters are added using enhanced big buffer cloud filter mode of underlying switch include: 1. source port and source IP 2. Combined MAC address and IP fields. 3. Not specifying L4 port These filter matches can however be used to redirect traffic to the main VSI (tc 0) which does not require the enhanced big buffer cloud filter support. Signed-off-by: Amritha Nambiar <amritha.nambiar@intel.com> Signed-off-by: Kiran Patil <kiran.patil@intel.com> Signed-off-by: Anjali Singhai Jain <anjali.singhai@intel.com> Signed-off-by: Jingjing Wu <jingjing.wu@intel.com> Acked-by: Shannon Nelson <shannon.nelson@oracle.com> Tested-by: Andrew Bowers <andrewx.bowers@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2017-10-27 03:36:01 -06:00
#define I40E_CLOUD_FILTER_FLAGS_OMAC I40E_CLOUD_FIELD_OMAC
#define I40E_CLOUD_FILTER_FLAGS_IMAC I40E_CLOUD_FIELD_IMAC
#define I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN (I40E_CLOUD_FIELD_IMAC | \
I40E_CLOUD_FIELD_IVLAN)
#define I40E_CLOUD_FILTER_FLAGS_IMAC_TEN_ID (I40E_CLOUD_FIELD_IMAC | \
I40E_CLOUD_FIELD_TEN_ID)
#define I40E_CLOUD_FILTER_FLAGS_OMAC_TEN_ID_IMAC (I40E_CLOUD_FIELD_OMAC | \
I40E_CLOUD_FIELD_IMAC | \
I40E_CLOUD_FIELD_TEN_ID)
#define I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN_TEN_ID (I40E_CLOUD_FIELD_IMAC | \
I40E_CLOUD_FIELD_IVLAN | \
I40E_CLOUD_FIELD_TEN_ID)
#define I40E_CLOUD_FILTER_FLAGS_IIP I40E_CLOUD_FIELD_IIP
struct i40e_cloud_filter {
struct hlist_node cloud_node;
unsigned long cookie;
i40e: Enable cloud filters via tc-flower This patch enables tc-flower based hardware offloads. tc flower filter provided by the kernel is configured as driver specific cloud filter. The patch implements functions and admin queue commands needed to support cloud filters in the driver and adds cloud filters to configure these tc-flower filters. The classification function of the filter is to direct matched packets to a traffic class. The hardware traffic class is set based on the the classid reserved in the range :ffe0 - :ffef. Match Dst MAC and route to TC0: prio 1 flower dst_mac 3c:fd:fe:a0:d6:70 skip_sw\ hw_tc 1 Match Dst IPv4,Dst Port and route to TC1: prio 2 flower dst_ip 192.168.3.5/32\ ip_proto udp dst_port 25 skip_sw\ hw_tc 2 Match Dst IPv6,Dst Port and route to TC1: prio 3 flower dst_ip fe8::200:1\ ip_proto udp dst_port 66 skip_sw\ hw_tc 2 Delete tc flower filter: Example: Flow Director Sideband is disabled while configuring cloud filters via tc-flower and until any cloud filter exists. Unsupported matches when cloud filters are added using enhanced big buffer cloud filter mode of underlying switch include: 1. source port and source IP 2. Combined MAC address and IP fields. 3. Not specifying L4 port These filter matches can however be used to redirect traffic to the main VSI (tc 0) which does not require the enhanced big buffer cloud filter support. Signed-off-by: Amritha Nambiar <amritha.nambiar@intel.com> Signed-off-by: Kiran Patil <kiran.patil@intel.com> Signed-off-by: Anjali Singhai Jain <anjali.singhai@intel.com> Signed-off-by: Jingjing Wu <jingjing.wu@intel.com> Acked-by: Shannon Nelson <shannon.nelson@oracle.com> Tested-by: Andrew Bowers <andrewx.bowers@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2017-10-27 03:36:01 -06:00
/* cloud filter input set follows */
u8 dst_mac[ETH_ALEN];
u8 src_mac[ETH_ALEN];
__be16 vlan_id;
u16 seid; /* filter control */
__be16 dst_port;
__be16 src_port;
u32 tenant_id;
union {
struct {
struct in_addr dst_ip;
struct in_addr src_ip;
} v4;
struct {
struct in6_addr dst_ip6;
struct in6_addr src_ip6;
} v6;
} ip;
#define dst_ipv6 ip.v6.dst_ip6.s6_addr32
#define src_ipv6 ip.v6.src_ip6.s6_addr32
#define dst_ipv4 ip.v4.dst_ip.s_addr
#define src_ipv4 ip.v4.src_ip.s_addr
u16 n_proto; /* Ethernet Protocol */
u8 ip_proto; /* IPPROTO value */
u8 flags;
#define I40E_CLOUD_TNL_TYPE_NONE 0xff
u8 tunnel_type;
};
#define I40E_DCB_PRIO_TYPE_STRICT 0
#define I40E_DCB_PRIO_TYPE_ETS 1
#define I40E_DCB_STRICT_PRIO_CREDITS 127
/* DCB per TC information data structure */
struct i40e_tc_info {
u16 qoffset; /* Queue offset from base queue */
u16 qcount; /* Total Queues */
u8 netdev_tc; /* Netdev TC index if netdev associated */
};
/* TC configuration data structure */
struct i40e_tc_configuration {
u8 numtc; /* Total number of enabled TCs */
u8 enabled_tc; /* TC map */
struct i40e_tc_info tc_info[I40E_MAX_TRAFFIC_CLASS];
};
#define I40E_UDP_PORT_INDEX_UNUSED 255
struct i40e_udp_port_config {
/* AdminQ command interface expects port number in Host byte order */
u16 port;
u8 type;
u8 filter_index;
};
#define I40_DDP_FLASH_REGION 100
#define I40E_PROFILE_INFO_SIZE 48
#define I40E_MAX_PROFILE_NUM 16
#define I40E_PROFILE_LIST_SIZE \
(I40E_PROFILE_INFO_SIZE * I40E_MAX_PROFILE_NUM + 4)
#define I40E_DDP_PROFILE_PATH "intel/i40e/ddp/"
#define I40E_DDP_PROFILE_NAME_MAX 64
int i40e_ddp_load(struct net_device *netdev, const u8 *data, size_t size,
bool is_add);
int i40e_ddp_flash(struct net_device *netdev, struct ethtool_flash *flash);
struct i40e_ddp_profile_list {
u32 p_count;
struct i40e_profile_info p_info[0];
};
struct i40e_ddp_old_profile_list {
struct list_head list;
size_t old_ddp_size;
u8 old_ddp_buf[0];
};
/* macros related to FLX_PIT */
#define I40E_FLEX_SET_FSIZE(fsize) (((fsize) << \
I40E_PRTQF_FLX_PIT_FSIZE_SHIFT) & \
I40E_PRTQF_FLX_PIT_FSIZE_MASK)
#define I40E_FLEX_SET_DST_WORD(dst) (((dst) << \
I40E_PRTQF_FLX_PIT_DEST_OFF_SHIFT) & \
I40E_PRTQF_FLX_PIT_DEST_OFF_MASK)
#define I40E_FLEX_SET_SRC_WORD(src) (((src) << \
I40E_PRTQF_FLX_PIT_SOURCE_OFF_SHIFT) & \
I40E_PRTQF_FLX_PIT_SOURCE_OFF_MASK)
#define I40E_FLEX_PREP_VAL(dst, fsize, src) (I40E_FLEX_SET_DST_WORD(dst) | \
I40E_FLEX_SET_FSIZE(fsize) | \
I40E_FLEX_SET_SRC_WORD(src))
#define I40E_FLEX_PIT_GET_SRC(flex) (((flex) & \
I40E_PRTQF_FLX_PIT_SOURCE_OFF_MASK) >> \
I40E_PRTQF_FLX_PIT_SOURCE_OFF_SHIFT)
#define I40E_FLEX_PIT_GET_DST(flex) (((flex) & \
I40E_PRTQF_FLX_PIT_DEST_OFF_MASK) >> \
I40E_PRTQF_FLX_PIT_DEST_OFF_SHIFT)
#define I40E_FLEX_PIT_GET_FSIZE(flex) (((flex) & \
I40E_PRTQF_FLX_PIT_FSIZE_MASK) >> \
I40E_PRTQF_FLX_PIT_FSIZE_SHIFT)
#define I40E_MAX_FLEX_SRC_OFFSET 0x1F
/* macros related to GLQF_ORT */
#define I40E_ORT_SET_IDX(idx) (((idx) << \
I40E_GLQF_ORT_PIT_INDX_SHIFT) & \
I40E_GLQF_ORT_PIT_INDX_MASK)
#define I40E_ORT_SET_COUNT(count) (((count) << \
I40E_GLQF_ORT_FIELD_CNT_SHIFT) & \
I40E_GLQF_ORT_FIELD_CNT_MASK)
#define I40E_ORT_SET_PAYLOAD(payload) (((payload) << \
I40E_GLQF_ORT_FLX_PAYLOAD_SHIFT) & \
I40E_GLQF_ORT_FLX_PAYLOAD_MASK)
#define I40E_ORT_PREP_VAL(idx, count, payload) (I40E_ORT_SET_IDX(idx) | \
I40E_ORT_SET_COUNT(count) | \
I40E_ORT_SET_PAYLOAD(payload))
#define I40E_L3_GLQF_ORT_IDX 34
#define I40E_L4_GLQF_ORT_IDX 35
/* Flex PIT register index */
#define I40E_FLEX_PIT_IDX_START_L2 0
#define I40E_FLEX_PIT_IDX_START_L3 3
#define I40E_FLEX_PIT_IDX_START_L4 6
#define I40E_FLEX_PIT_TABLE_SIZE 3
#define I40E_FLEX_DEST_UNUSED 63
#define I40E_FLEX_INDEX_ENTRIES 8
/* Flex MASK to disable all flexible entries */
#define I40E_FLEX_INPUT_MASK (I40E_FLEX_50_MASK | I40E_FLEX_51_MASK | \
I40E_FLEX_52_MASK | I40E_FLEX_53_MASK | \
I40E_FLEX_54_MASK | I40E_FLEX_55_MASK | \
I40E_FLEX_56_MASK | I40E_FLEX_57_MASK)
struct i40e_flex_pit {
struct list_head list;
u16 src_offset;
u8 pit_index;
};
struct i40e_fwd_adapter {
struct net_device *netdev;
int bit_no;
};
struct i40e_channel {
struct list_head list;
bool initialized;
u8 type;
u16 vsi_number; /* Assigned VSI number from AQ 'Add VSI' response */
u16 stat_counter_idx;
u16 base_queue;
u16 num_queue_pairs; /* Requested by user */
u16 seid;
u8 enabled_tc;
struct i40e_aqc_vsi_properties_data info;
u64 max_tx_rate;
struct i40e_fwd_adapter *fwd;
/* track this channel belongs to which VSI */
struct i40e_vsi *parent_vsi;
};
static inline bool i40e_is_channel_macvlan(struct i40e_channel *ch)
{
return !!ch->fwd;
}
static inline u8 *i40e_channel_mac(struct i40e_channel *ch)
{
if (i40e_is_channel_macvlan(ch))
return ch->fwd->netdev->dev_addr;
else
return NULL;
}
/* struct that defines the Ethernet device */
struct i40e_pf {
struct pci_dev *pdev;
struct i40e_hw hw;
DECLARE_BITMAP(state, __I40E_STATE_SIZE__);
struct msix_entry *msix_entries;
bool fc_autoneg_status;
u16 eeprom_version;
u16 num_vmdq_vsis; /* num vmdq vsis this PF has set up */
u16 num_vmdq_qps; /* num queue pairs per vmdq pool */
u16 num_vmdq_msix; /* num queue vectors per vmdq pool */
u16 num_req_vfs; /* num VFs requested for this PF */
u16 num_vf_qps; /* num queue pairs per VF */
u16 num_lan_qps; /* num lan queues this PF has set up */
u16 num_lan_msix; /* num queue vectors for the base PF vsi */
u16 num_fdsb_msix; /* num queue vectors for sideband Fdir */
u16 num_iwarp_msix; /* num of iwarp vectors for this PF */
int iwarp_base_vector;
int queues_left; /* queues left unclaimed */
u16 alloc_rss_size; /* allocated RSS queues */
u16 rss_size_max; /* HW defined max RSS queues */
u16 fdir_pf_filter_count; /* num of guaranteed filters for this PF */
u16 num_alloc_vsi; /* num VSIs this driver supports */
u8 atr_sample_rate;
bool wol_en;
struct hlist_head fdir_filter_list;
u16 fdir_pf_active_filters;
unsigned long fd_flush_timestamp;
u32 fd_flush_cnt;
u32 fd_add_err;
u32 fd_atr_cnt;
/* Book-keeping of side-band filter count per flow-type.
* This is used to detect and handle input set changes for
* respective flow-type.
*/
u16 fd_tcp4_filter_cnt;
u16 fd_udp4_filter_cnt;
u16 fd_sctp4_filter_cnt;
u16 fd_ip4_filter_cnt;
/* Flexible filter table values that need to be programmed into
* hardware, which expects L3 and L4 to be programmed separately. We
* need to ensure that the values are in ascended order and don't have
* duplicates, so we track each L3 and L4 values in separate lists.
*/
struct list_head l3_flex_pit_list;
struct list_head l4_flex_pit_list;
struct i40e_udp_port_config udp_ports[I40E_MAX_PF_UDP_OFFLOAD_PORTS];
u16 pending_udp_bitmap;
struct hlist_head cloud_filter_list;
u16 num_cloud_filters;
enum i40e_interrupt_policy int_policy;
u16 rx_itr_default;
u16 tx_itr_default;
u32 msg_enable;
char int_name[I40E_INT_NAME_STR_LEN];
u16 adminq_work_limit; /* num of admin receive queue desc to process */
unsigned long service_timer_period;
unsigned long service_timer_previous;
struct timer_list service_timer;
struct work_struct service_task;
u32 hw_features;
#define I40E_HW_RSS_AQ_CAPABLE BIT(0)
#define I40E_HW_128_QP_RSS_CAPABLE BIT(1)
#define I40E_HW_ATR_EVICT_CAPABLE BIT(2)
#define I40E_HW_WB_ON_ITR_CAPABLE BIT(3)
#define I40E_HW_MULTIPLE_TCP_UDP_RSS_PCTYPE BIT(4)
#define I40E_HW_NO_PCI_LINK_CHECK BIT(5)
#define I40E_HW_100M_SGMII_CAPABLE BIT(6)
#define I40E_HW_NO_DCB_SUPPORT BIT(7)
#define I40E_HW_USE_SET_LLDP_MIB BIT(8)
#define I40E_HW_GENEVE_OFFLOAD_CAPABLE BIT(9)
#define I40E_HW_PTP_L4_CAPABLE BIT(10)
#define I40E_HW_WOL_MC_MAGIC_PKT_WAKE BIT(11)
#define I40E_HW_MPLS_HDR_OFFLOAD_CAPABLE BIT(12)
#define I40E_HW_HAVE_CRT_RETIMER BIT(13)
#define I40E_HW_OUTER_UDP_CSUM_CAPABLE BIT(14)
#define I40E_HW_PHY_CONTROLS_LEDS BIT(15)
#define I40E_HW_STOP_FW_LLDP BIT(16)
#define I40E_HW_PORT_ID_VALID BIT(17)
#define I40E_HW_RESTART_AUTONEG BIT(18)
u32 flags;
#define I40E_FLAG_RX_CSUM_ENABLED BIT(0)
#define I40E_FLAG_MSI_ENABLED BIT(1)
#define I40E_FLAG_MSIX_ENABLED BIT(2)
#define I40E_FLAG_RSS_ENABLED BIT(3)
#define I40E_FLAG_VMDQ_ENABLED BIT(4)
#define I40E_FLAG_SRIOV_ENABLED BIT(5)
#define I40E_FLAG_DCB_CAPABLE BIT(6)
#define I40E_FLAG_DCB_ENABLED BIT(7)
#define I40E_FLAG_FD_SB_ENABLED BIT(8)
#define I40E_FLAG_FD_ATR_ENABLED BIT(9)
#define I40E_FLAG_MFP_ENABLED BIT(10)
#define I40E_FLAG_HW_ATR_EVICT_ENABLED BIT(11)
#define I40E_FLAG_VEB_MODE_ENABLED BIT(12)
#define I40E_FLAG_VEB_STATS_ENABLED BIT(13)
#define I40E_FLAG_LINK_POLLING_ENABLED BIT(14)
#define I40E_FLAG_TRUE_PROMISC_SUPPORT BIT(15)
#define I40E_FLAG_LEGACY_RX BIT(16)
#define I40E_FLAG_PTP BIT(17)
#define I40E_FLAG_IWARP_ENABLED BIT(18)
#define I40E_FLAG_LINK_DOWN_ON_CLOSE_ENABLED BIT(19)
#define I40E_FLAG_SOURCE_PRUNING_DISABLED BIT(20)
#define I40E_FLAG_TC_MQPRIO BIT(21)
#define I40E_FLAG_FD_SB_INACTIVE BIT(22)
#define I40E_FLAG_FD_SB_TO_CLOUD_FILTER BIT(23)
#define I40E_FLAG_DISABLE_FW_LLDP BIT(24)
#define I40E_FLAG_RS_FEC BIT(25)
#define I40E_FLAG_BASE_R_FEC BIT(26)
struct i40e_client_instance *cinst;
bool stat_offsets_loaded;
struct i40e_hw_port_stats stats;
struct i40e_hw_port_stats stats_offsets;
u32 tx_timeout_count;
u32 tx_timeout_recovery_level;
unsigned long tx_timeout_last_recovery;
u32 tx_sluggish_count;
u32 hw_csum_rx_error;
u32 led_status;
u16 corer_count; /* Core reset count */
u16 globr_count; /* Global reset count */
u16 empr_count; /* EMP reset count */
u16 pfr_count; /* PF reset count */
u16 sw_int_count; /* SW interrupt count */
struct mutex switch_mutex;
u16 lan_vsi; /* our default LAN VSI */
u16 lan_veb; /* initial relay, if exists */
#define I40E_NO_VEB 0xffff
#define I40E_NO_VSI 0xffff
u16 next_vsi; /* Next unallocated VSI - 0-based! */
struct i40e_vsi **vsi;
struct i40e_veb *veb[I40E_MAX_VEB];
struct i40e_lump_tracking *qp_pile;
struct i40e_lump_tracking *irq_pile;
/* switch config info */
u16 pf_seid;
u16 main_vsi_seid;
u16 mac_seid;
struct kobject *switch_kobj;
#ifdef CONFIG_DEBUG_FS
struct dentry *i40e_dbg_pf;
#endif /* CONFIG_DEBUG_FS */
bool cur_promisc;
u16 instance; /* A unique number per i40e_pf instance in the system */
/* sr-iov config info */
struct i40e_vf *vf;
int num_alloc_vfs; /* actual number of VFs allocated */
u32 vf_aq_requests;
u32 arq_overflows; /* Not fatal, possibly indicative of problems */
/* DCBx/DCBNL capability for PF that indicates
* whether DCBx is managed by firmware or host
* based agent (LLDPAD). Also, indicates what
* flavor of DCBx protocol (IEEE/CEE) is supported
* by the device. For now we're supporting IEEE
* mode only.
*/
u16 dcbx_cap;
struct i40e_filter_control_settings filter_settings;
struct ptp_clock *ptp_clock;
struct ptp_clock_info ptp_caps;
struct sk_buff *ptp_tx_skb;
unsigned long ptp_tx_start;
struct hwtstamp_config tstamp_config;
i40e: save PTP time before a device reset In the case where PTP is running on the hardware clock, but the kernel system time is not being synced, a device reset can mess up the clock time. This occurs because we reset the clock time based on the kernel time every reset. This causes us to potentially completely reset the PTP time, and can cause unexpected behavior in programs like ptp4l. Avoid this by saving the PTP time prior to device reset, and then restoring using that time after the reset. Directly restoring the PTP time we saved isn't perfect, because time should have continued running, but the clock will essentially be stopped during the reset. This is still better than the current solution of assuming that the PTP HW clock is synced to the CLOCK_REALTIME. We can do even better, by saving the ktime and calculating a differential, using ktime_get(). This is based on CLOCK_MONOTONIC, and allows us to get a fairly precise measure of the time difference between saving and restoring the time. Using this, we can update the saved PTP time, and use that as the value to write to the hardware clock registers. This, of course is not perfect. However, it does help ensure that the PTP time is restored as close as feasible to the time it should have been if the reset had not occurred. During device initialization, continue using the system time as the source for the creation of the PTP clock, since this is the best known current time source at driver load. Signed-off-by: Jacob Keller <jacob.e.keller@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2019-02-12 14:56:24 -07:00
struct timespec64 ptp_prev_hw_time;
ktime_t ptp_reset_start;
struct mutex tmreg_lock; /* Used to protect the SYSTIME registers. */
u32 ptp_adj_mult;
u32 tx_hwtstamp_timeouts;
u32 tx_hwtstamp_skipped;
u32 rx_hwtstamp_cleared;
u32 latch_event_flags;
spinlock_t ptp_rx_lock; /* Used to protect Rx timestamp registers. */
unsigned long latch_events[4];
bool ptp_tx;
bool ptp_rx;
u16 rss_table_size; /* HW RSS table size */
u32 max_bw;
u32 min_bw;
u32 ioremap_len;
u32 fd_inv;
u16 phy_led_val;
u16 override_q_count;
i40e: Enable cloud filters via tc-flower This patch enables tc-flower based hardware offloads. tc flower filter provided by the kernel is configured as driver specific cloud filter. The patch implements functions and admin queue commands needed to support cloud filters in the driver and adds cloud filters to configure these tc-flower filters. The classification function of the filter is to direct matched packets to a traffic class. The hardware traffic class is set based on the the classid reserved in the range :ffe0 - :ffef. Match Dst MAC and route to TC0: prio 1 flower dst_mac 3c:fd:fe:a0:d6:70 skip_sw\ hw_tc 1 Match Dst IPv4,Dst Port and route to TC1: prio 2 flower dst_ip 192.168.3.5/32\ ip_proto udp dst_port 25 skip_sw\ hw_tc 2 Match Dst IPv6,Dst Port and route to TC1: prio 3 flower dst_ip fe8::200:1\ ip_proto udp dst_port 66 skip_sw\ hw_tc 2 Delete tc flower filter: Example: Flow Director Sideband is disabled while configuring cloud filters via tc-flower and until any cloud filter exists. Unsupported matches when cloud filters are added using enhanced big buffer cloud filter mode of underlying switch include: 1. source port and source IP 2. Combined MAC address and IP fields. 3. Not specifying L4 port These filter matches can however be used to redirect traffic to the main VSI (tc 0) which does not require the enhanced big buffer cloud filter support. Signed-off-by: Amritha Nambiar <amritha.nambiar@intel.com> Signed-off-by: Kiran Patil <kiran.patil@intel.com> Signed-off-by: Anjali Singhai Jain <anjali.singhai@intel.com> Signed-off-by: Jingjing Wu <jingjing.wu@intel.com> Acked-by: Shannon Nelson <shannon.nelson@oracle.com> Tested-by: Andrew Bowers <andrewx.bowers@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2017-10-27 03:36:01 -06:00
u16 last_sw_conf_flags;
u16 last_sw_conf_valid_flags;
/* List to keep previous DDP profiles to be rolled back in the future */
struct list_head ddp_old_prof;
};
/**
* i40e_mac_to_hkey - Convert a 6-byte MAC Address to a u64 hash key
* @macaddr: the MAC Address as the base key
*
* Simply copies the address and returns it as a u64 for hashing
**/
static inline u64 i40e_addr_to_hkey(const u8 *macaddr)
{
u64 key = 0;
ether_addr_copy((u8 *)&key, macaddr);
return key;
}
enum i40e_filter_state {
I40E_FILTER_INVALID = 0, /* Invalid state */
I40E_FILTER_NEW, /* New, not sent to FW yet */
I40E_FILTER_ACTIVE, /* Added to switch by FW */
I40E_FILTER_FAILED, /* Rejected by FW */
I40E_FILTER_REMOVE, /* To be removed */
/* There is no 'removed' state; the filter struct is freed */
};
struct i40e_mac_filter {
struct hlist_node hlist;
u8 macaddr[ETH_ALEN];
#define I40E_VLAN_ANY -1
s16 vlan;
enum i40e_filter_state state;
};
i40e: avoid race condition when sending filters to firmware for addition Refactor how we add new filters to firmware to avoid a race condition that can occur due to removing filters from the hash temporarily. To understand the race condition, suppose that you have a number of MAC filters, but have not yet added any VLANs. Now, add two VLANs in rapid succession. A possible resulting flow would look something like the following: (1) lock hash for add VLAN (2) add the new MAC/VLAN combos for each current MAC filter (3) unlock hash (4) lock hash for filter sync (5) notice that we have a VLAN, so prepare to update all MAC filters with VLAN=-1 to be VLAN=0. (6) move NEW and REMOVE filters to temporary list (7) unlock hash (8) lock hash for add VLAN (9) add new MAC/VLAN combos. Notice that no MAC filters are currently in the hash list, so we don't add any VLANs <--- BUG! (10) unlock hash (11) sync the temporary lists to firmware (12) lock hash for post-sync (13) move the temporary elements back to the main list .... Because we take filters out of the main hash into temporary lists, we introduce a narrow window where it is possible that other callers to the list will not see some of the filters which were previously added but have not yet been finalized. This results in sometimes dropping VLAN additions, and could also result in failing to add a MAC address on the newly added VLAN. One obvious way to avoid this race condition would be to lock the entire firmware process. Unfortunately this does not work because adminq firmware commands take a mutex which results in a sleep while atomic BUG(). So, we can't use the simplest approach. An alternative approach is to simply not remove the filters from the hash list while adding. Instead, add an i40e_new_mac_filter structure which we will use to track added filters. This avoids the need to remove the filter from the hash list. We'll store a pointer to the original i40e_mac_filter, along with our own copy of the state. We won't update the state directly, so as to avoid race with other code that may modify the state while under the lock. We are safe to read f->macaddr and f->vlan since these only change in two locations. The first is on filter creation, which must have already occurred. The second is inside i40e_correct_vlan_filters which was previously run after creation of this object and can't be run again until after. Thus, we should be safe to read the MAC address and VLAN while outside the lock. We also aren't going to run into a use-after-free issue because the only place where we free filters is when they are marked FAILED or when we remove them inside the sync subtask. Since the subtask has its own critical flag to prevent duplicate runs, we know this won't happen. We also know that the only location to transition a filter from NEW to FAILED is inside the subtask also, so we aren't worried about that either. Use the wrapper i40e_new_mac_filter for additions, and once we've finalized the addition to firmware, we will update the filter state inside a lock, and then free the wrapper structure. In order to avoid a possible race condition with filter deletion, we won't update the original filter state unless it is still I40E_FILTER_NEW when we finish the firmware sync. This approach is more complex, but avoids race conditions related to filters being temporarily removed from the list. We do not need the same behavior for deletion because we always unconditionally removed the filters from the list regardless of the firmware status. Change-Id: I14b74bc2301f8e69433fbe77ebca532db20c5317 Signed-off-by: Jacob Keller <jacob.e.keller@intel.com> Tested-by: Andrew Bowers <andrewx.bowers@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2016-12-02 13:33:00 -07:00
/* Wrapper structure to keep track of filters while we are preparing to send
* firmware commands. We cannot send firmware commands while holding a
* spinlock, since it might sleep. To avoid this, we wrap the added filters in
* a separate structure, which will track the state change and update the real
* filter while under lock. We can't simply hold the filters in a separate
* list, as this opens a window for a race condition when adding new MAC
* addresses to all VLANs, or when adding new VLANs to all MAC addresses.
*/
struct i40e_new_mac_filter {
struct hlist_node hlist;
struct i40e_mac_filter *f;
/* Track future changes to state separately */
enum i40e_filter_state state;
};
struct i40e_veb {
struct i40e_pf *pf;
u16 idx;
u16 veb_idx; /* index of VEB parent */
u16 seid;
u16 uplink_seid;
u16 stats_idx; /* index of VEB parent */
u8 enabled_tc;
u16 bridge_mode; /* Bridge Mode (VEB/VEPA) */
u16 flags;
u16 bw_limit;
u8 bw_max_quanta;
bool is_abs_credits;
u8 bw_tc_share_credits[I40E_MAX_TRAFFIC_CLASS];
u16 bw_tc_limit_credits[I40E_MAX_TRAFFIC_CLASS];
u8 bw_tc_max_quanta[I40E_MAX_TRAFFIC_CLASS];
struct kobject *kobj;
bool stat_offsets_loaded;
struct i40e_eth_stats stats;
struct i40e_eth_stats stats_offsets;
struct i40e_veb_tc_stats tc_stats;
struct i40e_veb_tc_stats tc_stats_offsets;
};
/* struct that defines a VSI, associated with a dev */
struct i40e_vsi {
struct net_device *netdev;
unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
bool netdev_registered;
bool stat_offsets_loaded;
u32 current_netdev_flags;
DECLARE_BITMAP(state, __I40E_VSI_STATE_SIZE__);
#define I40E_VSI_FLAG_FILTER_CHANGED BIT(0)
#define I40E_VSI_FLAG_VEB_OWNER BIT(1)
unsigned long flags;
/* Per VSI lock to protect elements/hash (MAC filter) */
spinlock_t mac_filter_hash_lock;
/* Fixed size hash table with 2^8 buckets for MAC filters */
DECLARE_HASHTABLE(mac_filter_hash, 8);
bool has_vlan_filter;
/* VSI stats */
struct rtnl_link_stats64 net_stats;
struct rtnl_link_stats64 net_stats_offsets;
struct i40e_eth_stats eth_stats;
struct i40e_eth_stats eth_stats_offsets;
u32 tx_restart;
u32 tx_busy;
u64 tx_linearize;
u64 tx_force_wb;
u32 rx_buf_failed;
u32 rx_page_failed;
/* These are containers of ring pointers, allocated at run-time */
struct i40e_ring **rx_rings;
struct i40e_ring **tx_rings;
struct i40e_ring **xdp_rings; /* XDP Tx rings */
u32 active_filters;
u32 promisc_threshold;
u16 work_limit;
u16 int_rate_limit; /* value in usecs */
u16 rss_table_size; /* HW RSS table size */
u16 rss_size; /* Allocated RSS queues */
u8 *rss_hkey_user; /* User configured hash keys */
u8 *rss_lut_user; /* User configured lookup table entries */
u16 max_frame;
u16 rx_buf_len;
struct bpf_prog *xdp_prog;
/* List of q_vectors allocated to this VSI */
struct i40e_q_vector **q_vectors;
int num_q_vectors;
int base_vector;
bool irqs_ready;
u16 seid; /* HW index of this VSI (absolute index) */
u16 id; /* VSI number */
u16 uplink_seid;
u16 base_queue; /* vsi's first queue in hw array */
u16 alloc_queue_pairs; /* Allocated Tx/Rx queues */
u16 req_queue_pairs; /* User requested queue pairs */
u16 num_queue_pairs; /* Used tx and rx pairs */
u16 num_tx_desc;
u16 num_rx_desc;
enum i40e_vsi_type type; /* VSI type, e.g., LAN, FCoE, etc */
s16 vf_id; /* Virtual function ID for SRIOV VSIs */
i40e: Enable 'channel' mode in mqprio for TC configs The i40e driver is modified to enable the new mqprio hardware offload mode and factor the TCs and queue configuration by creating channel VSIs. In this mode, the priority to traffic class mapping and the user specified queue ranges are used to configure the traffic classes by setting the mode option to 'channel'. Example: map 0 0 0 0 1 2 2 3 queues 2@0 2@2 1@4 1@5\ hw 1 mode channel qdisc mqprio 8038: root tc 4 map 0 0 0 0 1 2 2 3 0 0 0 0 0 0 0 0 queues:(0:1) (2:3) (4:4) (5:5) mode:channel shaper:dcb The HW channels created are removed and all the queue configuration is set to default when the qdisc is detached from the root of the device. This patch also disables setting up channels via ethtool (ethtool -L) when the TCs are configured using mqprio scheduler. The patch also limits setting ethtool Rx flow hash indirection (ethtool -X eth0 equal N) to max queues configured via mqprio. The Rx flow hash indirection input through ethtool should be validated so that it is within in the queue range configured via tc/mqprio. The bound checking is achieved by reporting the current rss size to the kernel when queues are configured via mqprio. Example: map 0 0 0 1 0 2 3 0 queues 2@0 4@2 8@6 11@14\ hw 1 mode channel Cannot set RX flow hash configuration: Invalid argument Signed-off-by: Amritha Nambiar <amritha.nambiar@intel.com> Tested-by: Andrew Bowers <andrewx.bowers@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2017-09-07 05:00:22 -06:00
struct tc_mqprio_qopt_offload mqprio_qopt; /* queue parameters */
struct i40e_tc_configuration tc_config;
struct i40e_aqc_vsi_properties_data info;
/* VSI BW limit (absolute across all TCs) */
u16 bw_limit; /* VSI BW Limit (0 = disabled) */
u8 bw_max_quanta; /* Max Quanta when BW limit is enabled */
/* Relative TC credits across VSIs */
u8 bw_ets_share_credits[I40E_MAX_TRAFFIC_CLASS];
/* TC BW limit credits within VSI */
u16 bw_ets_limit_credits[I40E_MAX_TRAFFIC_CLASS];
/* TC BW limit max quanta within VSI */
u8 bw_ets_max_quanta[I40E_MAX_TRAFFIC_CLASS];
struct i40e_pf *back; /* Backreference to associated PF */
u16 idx; /* index in pf->vsi[] */
u16 veb_idx; /* index of VEB parent */
struct kobject *kobj; /* sysfs object */
bool current_isup; /* Sync 'link up' logging */
enum i40e_aq_link_speed current_speed; /* Sync link speed logging */
/* channel specific fields */
u16 cnt_q_avail; /* num of queues available for channel usage */
u16 orig_rss_size;
u16 current_rss_size;
i40e: Enable 'channel' mode in mqprio for TC configs The i40e driver is modified to enable the new mqprio hardware offload mode and factor the TCs and queue configuration by creating channel VSIs. In this mode, the priority to traffic class mapping and the user specified queue ranges are used to configure the traffic classes by setting the mode option to 'channel'. Example: map 0 0 0 0 1 2 2 3 queues 2@0 2@2 1@4 1@5\ hw 1 mode channel qdisc mqprio 8038: root tc 4 map 0 0 0 0 1 2 2 3 0 0 0 0 0 0 0 0 queues:(0:1) (2:3) (4:4) (5:5) mode:channel shaper:dcb The HW channels created are removed and all the queue configuration is set to default when the qdisc is detached from the root of the device. This patch also disables setting up channels via ethtool (ethtool -L) when the TCs are configured using mqprio scheduler. The patch also limits setting ethtool Rx flow hash indirection (ethtool -X eth0 equal N) to max queues configured via mqprio. The Rx flow hash indirection input through ethtool should be validated so that it is within in the queue range configured via tc/mqprio. The bound checking is achieved by reporting the current rss size to the kernel when queues are configured via mqprio. Example: map 0 0 0 1 0 2 3 0 queues 2@0 4@2 8@6 11@14\ hw 1 mode channel Cannot set RX flow hash configuration: Invalid argument Signed-off-by: Amritha Nambiar <amritha.nambiar@intel.com> Tested-by: Andrew Bowers <andrewx.bowers@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2017-09-07 05:00:22 -06:00
bool reconfig_rss;
u16 next_base_queue; /* next queue to be used for channel setup */
struct list_head ch_list;
u16 tc_seid_map[I40E_MAX_TRAFFIC_CLASS];
/* macvlan fields */
#define I40E_MAX_MACVLANS 128 /* Max HW vectors - 1 on FVL */
#define I40E_MIN_MACVLAN_VECTORS 2 /* Min vectors to enable macvlans */
DECLARE_BITMAP(fwd_bitmask, I40E_MAX_MACVLANS);
struct list_head macvlan_list;
int macvlan_cnt;
void *priv; /* client driver data reference. */
/* VSI specific handlers */
irqreturn_t (*irq_handler)(int irq, void *data);
unsigned long *af_xdp_zc_qps; /* tracks AF_XDP ZC enabled qps */
} ____cacheline_internodealigned_in_smp;
struct i40e_netdev_priv {
struct i40e_vsi *vsi;
};
/* struct that defines an interrupt vector */
struct i40e_q_vector {
struct i40e_vsi *vsi;
u16 v_idx; /* index in the vsi->q_vector array. */
u16 reg_idx; /* register index of the interrupt */
struct napi_struct napi;
struct i40e_ring_container rx;
struct i40e_ring_container tx;
i40e/i40evf: Add support for new mechanism of updating adaptive ITR This patch replaces the existing mechanism for determining the correct value to program for adaptive ITR with yet another new and more complicated approach. The basic idea from a 30K foot view is that this new approach will push the Rx interrupt moderation up so that by default it starts in low latency and is gradually pushed up into a higher latency setup as long as doing so increases the number of packets processed, if the number of packets drops to 4 to 1 per packet we will reset and just base our ITR on the size of the packets being received. For Tx we leave it floating at a high interrupt delay and do not pull it down unless we start processing more than 112 packets per interrupt. If we start exceeding that we will cut our interrupt rates in half until we are back below 112. The side effect of these patches are that we will be processing more packets per interrupt. This is both a good and a bad thing as it means we will not be blocking processing in the case of things like pktgen and XDP, but we will also be consuming a bit more CPU in the cases of things such as network throughput tests using netperf. One delta from this versus the ixgbe version of the changes is that I have made the interrupt moderation a bit more aggressive when we are in bulk mode by moving our "goldilocks zone" up from 48 to 96 to 56 to 112. The main motivation behind moving this is to address the fact that we need to update less frequently, and have more fine grained control due to the separate Tx and Rx ITR times. Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com> Tested-by: Andrew Bowers <andrewx.bowers@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2017-12-29 06:52:19 -07:00
u8 itr_countdown; /* when 0 should adjust adaptive ITR */
u8 num_ringpairs; /* total number of ring pairs in vector */
cpumask_t affinity_mask;
i40e/i40evf: fix interrupt affinity bug There exists a bug in which a 'perfect storm' can occur and cause interrupts to fail to be correctly affinitized. This causes unexpected behavior and has a substantial impact on performance when it happens. The bug occurs if there is heavy traffic, any number of CPUs that have an i40e interrupt are pegged at 100%, and the interrupt afffinity for those CPUs is changed. Instead of moving to the new CPU, the interrupt continues to be polled while there is heavy traffic. The bug is most readily realized as the driver is first brought up and all interrupts start on CPU0. If there is heavy traffic and the interrupt starts polling before the interrupt is affinitized, the interrupt will be stuck on CPU0 until traffic stops. The bug, however, can also be wrought out more simply by affinitizing all the interrupts to a single CPU and then attempting to move any of those interrupts off while there is heavy traffic. This patch fixes the bug by registering for update notifications from the kernel when the interrupt affinity changes. When that fires, we cache the intended affinity mask. Then, while polling, if the cpu is pegged at 100% and we failed to clean the rings, we check to make sure we have the correct affinity and stop polling if we're firing on the wrong CPU. When the kernel successfully moves the interrupt, it will start polling on the correct CPU. The performance impact is minimal since the only time this section gets executed is when performance is already compromised by the CPU. Change-ID: I4410a880159b9dba1f8297aa72bef36dca34e830 Signed-off-by: Alan Brady <alan.brady@intel.com> Tested-by: Andrew Bowers <andrewx.bowers@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2016-09-14 17:24:38 -06:00
struct irq_affinity_notify affinity_notify;
struct rcu_head rcu; /* to avoid race with update stats on free */
char name[I40E_INT_NAME_STR_LEN];
bool arm_wb_state;
} ____cacheline_internodealigned_in_smp;
/* lan device */
struct i40e_device {
struct list_head list;
struct i40e_pf *pf;
};
/**
* i40e_nvm_version_str - format the NVM version strings
* @hw: ptr to the hardware info
**/
static inline char *i40e_nvm_version_str(struct i40e_hw *hw)
{
static char buf[32];
u32 full_ver;
full_ver = hw->nvm.oem_ver;
if (hw->nvm.eetrack == I40E_OEM_EETRACK_ID) {
u8 gen, snap;
u16 release;
gen = (u8)(full_ver >> I40E_OEM_GEN_SHIFT);
snap = (u8)((full_ver & I40E_OEM_SNAP_MASK) >>
I40E_OEM_SNAP_SHIFT);
release = (u16)(full_ver & I40E_OEM_RELEASE_MASK);
snprintf(buf, sizeof(buf), "%x.%x.%x", gen, snap, release);
} else {
u8 ver, patch;
u16 build;
ver = (u8)(full_ver >> I40E_OEM_VER_SHIFT);
build = (u16)((full_ver >> I40E_OEM_VER_BUILD_SHIFT) &
I40E_OEM_VER_BUILD_MASK);
patch = (u8)(full_ver & I40E_OEM_VER_PATCH_MASK);
snprintf(buf, sizeof(buf),
"%x.%02x 0x%x %d.%d.%d",
(hw->nvm.version & I40E_NVM_VERSION_HI_MASK) >>
I40E_NVM_VERSION_HI_SHIFT,
(hw->nvm.version & I40E_NVM_VERSION_LO_MASK) >>
I40E_NVM_VERSION_LO_SHIFT,
hw->nvm.eetrack, ver, build, patch);
}
return buf;
}
/**
* i40e_netdev_to_pf: Retrieve the PF struct for given netdev
* @netdev: the corresponding netdev
*
* Return the PF struct for the given netdev
**/
static inline struct i40e_pf *i40e_netdev_to_pf(struct net_device *netdev)
{
struct i40e_netdev_priv *np = netdev_priv(netdev);
struct i40e_vsi *vsi = np->vsi;
return vsi->back;
}
static inline void i40e_vsi_setup_irqhandler(struct i40e_vsi *vsi,
irqreturn_t (*irq_handler)(int, void *))
{
vsi->irq_handler = irq_handler;
}
/**
* i40e_get_fd_cnt_all - get the total FD filter space available
* @pf: pointer to the PF struct
**/
static inline int i40e_get_fd_cnt_all(struct i40e_pf *pf)
{
return pf->hw.fdir_shared_filter_count + pf->fdir_pf_filter_count;
}
/**
* i40e_read_fd_input_set - reads value of flow director input set register
* @pf: pointer to the PF struct
* @addr: register addr
*
* This function reads value of flow director input set register
* specified by 'addr' (which is specific to flow-type)
**/
static inline u64 i40e_read_fd_input_set(struct i40e_pf *pf, u16 addr)
{
u64 val;
val = i40e_read_rx_ctl(&pf->hw, I40E_PRTQF_FD_INSET(addr, 1));
val <<= 32;
val += i40e_read_rx_ctl(&pf->hw, I40E_PRTQF_FD_INSET(addr, 0));
return val;
}
/**
* i40e_write_fd_input_set - writes value into flow director input set register
* @pf: pointer to the PF struct
* @addr: register addr
* @val: value to be written
*
* This function writes specified value to the register specified by 'addr'.
* This register is input set register based on flow-type.
**/
static inline void i40e_write_fd_input_set(struct i40e_pf *pf,
u16 addr, u64 val)
{
i40e_write_rx_ctl(&pf->hw, I40E_PRTQF_FD_INSET(addr, 1),
(u32)(val >> 32));
i40e_write_rx_ctl(&pf->hw, I40E_PRTQF_FD_INSET(addr, 0),
(u32)(val & 0xFFFFFFFFULL));
}
/* needed by i40e_ethtool.c */
int i40e_up(struct i40e_vsi *vsi);
void i40e_down(struct i40e_vsi *vsi);
extern const char i40e_driver_name[];
extern const char i40e_driver_version_str[];
void i40e_do_reset_safe(struct i40e_pf *pf, u32 reset_flags);
void i40e_do_reset(struct i40e_pf *pf, u32 reset_flags, bool lock_acquired);
int i40e_config_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size);
int i40e_get_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size);
void i40e_fill_rss_lut(struct i40e_pf *pf, u8 *lut,
u16 rss_table_size, u16 rss_size);
struct i40e_vsi *i40e_find_vsi_from_id(struct i40e_pf *pf, u16 id);
/**
* i40e_find_vsi_by_type - Find and return Flow Director VSI
* @pf: PF to search for VSI
* @type: Value indicating type of VSI we are looking for
**/
static inline struct i40e_vsi *
i40e_find_vsi_by_type(struct i40e_pf *pf, u16 type)
{
int i;
for (i = 0; i < pf->num_alloc_vsi; i++) {
struct i40e_vsi *vsi = pf->vsi[i];
if (vsi && vsi->type == type)
return vsi;
}
return NULL;
}
void i40e_update_stats(struct i40e_vsi *vsi);
void i40e_update_veb_stats(struct i40e_veb *veb);
void i40e_update_eth_stats(struct i40e_vsi *vsi);
struct rtnl_link_stats64 *i40e_get_vsi_stats_struct(struct i40e_vsi *vsi);
int i40e_fetch_switch_configuration(struct i40e_pf *pf,
bool printconfig);
int i40e_add_del_fdir(struct i40e_vsi *vsi,
struct i40e_fdir_filter *input, bool add);
void i40e_fdir_check_and_reenable(struct i40e_pf *pf);
u32 i40e_get_current_fd_count(struct i40e_pf *pf);
u32 i40e_get_cur_guaranteed_fd_count(struct i40e_pf *pf);
u32 i40e_get_current_atr_cnt(struct i40e_pf *pf);
u32 i40e_get_global_fd_count(struct i40e_pf *pf);
bool i40e_set_ntuple(struct i40e_pf *pf, netdev_features_t features);
void i40e_set_ethtool_ops(struct net_device *netdev);
struct i40e_mac_filter *i40e_add_filter(struct i40e_vsi *vsi,
const u8 *macaddr, s16 vlan);
void __i40e_del_filter(struct i40e_vsi *vsi, struct i40e_mac_filter *f);
void i40e_del_filter(struct i40e_vsi *vsi, const u8 *macaddr, s16 vlan);
int i40e_sync_vsi_filters(struct i40e_vsi *vsi);
struct i40e_vsi *i40e_vsi_setup(struct i40e_pf *pf, u8 type,
u16 uplink, u32 param1);
int i40e_vsi_release(struct i40e_vsi *vsi);
void i40e_service_event_schedule(struct i40e_pf *pf);
void i40e_notify_client_of_vf_msg(struct i40e_vsi *vsi, u32 vf_id,
u8 *msg, u16 len);
int i40e_control_wait_tx_q(int seid, struct i40e_pf *pf, int pf_q, bool is_xdp,
bool enable);
int i40e_control_wait_rx_q(struct i40e_pf *pf, int pf_q, bool enable);
int i40e_vsi_start_rings(struct i40e_vsi *vsi);
void i40e_vsi_stop_rings(struct i40e_vsi *vsi);
i40e: reset all VFs in parallel when rebuilding PF When there are a lot of active VFs, it can take multiple seconds to finish resetting all of them during certain flows., which can cause some VFs to fail to wait long enough for the reset to occur. The user might see messages like "Never saw reset" or "Reset never finished" and the VF driver will stop functioning properly. The naive solution would be to simply increase the wait timer. We can get much more clever. Notice that i40e_reset_vf is run in a serialized fashion, and includes lots of delays. There are two prominent delays which take most of the time. First, when we begin resetting VFs, we have multiple 10ms delays which accrue because we reset each VF in a serial fashion. These delays accumulate to almost 4 seconds when handling the maximum number of VFs (128). Secondly, there is a massive 50ms delay for each time we disable queues on a VSI. This delay is necessary to allow HW to finish disabling queues before we restore functionality. However, just like with the first case, we are paying the cost for each VF, rather than disabling all VFs and waiting once. Both of these can be fixed, but required some previous refactoring to handle the special case. First, we will need the i40e_vsi_wait_queues_disabled function which was previously DCB specific. Second, we will need to implement our own i40e_vsi_stop_rings_no_wait function which will handle the stopping of rings without the delays. Finally, implement an i40e_reset_all_vfs function, which will first start the reset of all VFs, and pay the wait cost all at once, rather than serially waiting for each VF before we start processing then next one. After the VF has been reset, we'll disable all the VF queues, and then wait for them to disable. Again, we'll organize the flow such that we pay the wait cost only once. Finally, after we've disabled queues we'll go ahead and begin restoring VF functionality. The result is reducing the wait time by a large factor and ensuring that VFs do not timeout when waiting in the VF driver. Change-ID: Ia6e8cf8d98131b78aec89db78afb8d905c9b12be Signed-off-by: Jacob Keller <jacob.e.keller@intel.com> Tested-by: Andrew Bowers <andrewx.bowers@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2017-04-13 02:45:52 -06:00
void i40e_vsi_stop_rings_no_wait(struct i40e_vsi *vsi);
int i40e_vsi_wait_queues_disabled(struct i40e_vsi *vsi);
int i40e_reconfig_rss_queues(struct i40e_pf *pf, int queue_count);
struct i40e_veb *i40e_veb_setup(struct i40e_pf *pf, u16 flags, u16 uplink_seid,
u16 downlink_seid, u8 enabled_tc);
void i40e_veb_release(struct i40e_veb *veb);
int i40e_veb_config_tc(struct i40e_veb *veb, u8 enabled_tc);
int i40e_vsi_add_pvid(struct i40e_vsi *vsi, u16 vid);
void i40e_vsi_remove_pvid(struct i40e_vsi *vsi);
void i40e_vsi_reset_stats(struct i40e_vsi *vsi);
void i40e_pf_reset_stats(struct i40e_pf *pf);
#ifdef CONFIG_DEBUG_FS
void i40e_dbg_pf_init(struct i40e_pf *pf);
void i40e_dbg_pf_exit(struct i40e_pf *pf);
void i40e_dbg_init(void);
void i40e_dbg_exit(void);
#else
static inline void i40e_dbg_pf_init(struct i40e_pf *pf) {}
static inline void i40e_dbg_pf_exit(struct i40e_pf *pf) {}
static inline void i40e_dbg_init(void) {}
static inline void i40e_dbg_exit(void) {}
#endif /* CONFIG_DEBUG_FS*/
/* needed by client drivers */
int i40e_lan_add_device(struct i40e_pf *pf);
int i40e_lan_del_device(struct i40e_pf *pf);
void i40e_client_subtask(struct i40e_pf *pf);
void i40e_notify_client_of_l2_param_changes(struct i40e_vsi *vsi);
void i40e_notify_client_of_netdev_close(struct i40e_vsi *vsi, bool reset);
void i40e_notify_client_of_vf_enable(struct i40e_pf *pf, u32 num_vfs);
void i40e_notify_client_of_vf_reset(struct i40e_pf *pf, u32 vf_id);
void i40e_client_update_msix_info(struct i40e_pf *pf);
int i40e_vf_client_capable(struct i40e_pf *pf, u32 vf_id);
/**
* i40e_irq_dynamic_enable - Enable default interrupt generation settings
* @vsi: pointer to a vsi
* @vector: enable a particular Hw Interrupt vector, without base_vector
**/
static inline void i40e_irq_dynamic_enable(struct i40e_vsi *vsi, int vector)
{
struct i40e_pf *pf = vsi->back;
struct i40e_hw *hw = &pf->hw;
u32 val;
val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
I40E_PFINT_DYN_CTLN_CLEARPBA_MASK |
(I40E_ITR_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT);
wr32(hw, I40E_PFINT_DYN_CTLN(vector + vsi->base_vector - 1), val);
/* skip the flush */
}
void i40e_irq_dynamic_disable_icr0(struct i40e_pf *pf);
void i40e_irq_dynamic_enable_icr0(struct i40e_pf *pf);
int i40e_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
int i40e_open(struct net_device *netdev);
int i40e_close(struct net_device *netdev);
int i40e_vsi_open(struct i40e_vsi *vsi);
void i40e_vlan_stripping_disable(struct i40e_vsi *vsi);
i40e: use (add|rm)_vlan_all_mac helper functions when changing PVID The current flow for adding or updating the PVID for a VF uses i40e_vsi_add_vlan and i40e_vsi_kill_vlan which each take, then release the hash lock. In addition the two functions also must take special care that they do not perform VLAN mode changes as this will make the code in i40e_ndo_set_vf_port_vlan behave incorrectly. Fix these issues by using the new helper functions i40e_add_vlan_all_mac and i40e_rm_vlan_all_mac which expect the hash lock to already be taken. Additionally these functions do not perform any state updates in regards to VLAN mode, so they are safe to use in the PVID update flow. It should be noted that we don't need the VLAN mode update code here, because there are only a few flows here. (a) we're adding a new PVID In this case, if we already had VLAN filters the VSI is knocked offline so we don't need to worry about pre-existing VLAN filters (b) we're replacing an existing PVID In this case, we can't have any VLAN filters except those with the old PVID which we already take care of manually. (c) we're removing an existing PVID Similarly to above, we can't have any existing VLAN filters except those with the old PVID which we already take care of correctly. Because of this, we do not need (or even want) the special accounting done in i40e_vsi_add_vlan, so use of the helpers is a saner alternative. It also opens the door for a future patch which will refactor the flow of i40e_vsi_add_vlan now that it is not needed in this function. Change-ID: Ia841f63da94e12b106f41cf7d28ce8ce92f2ad99 Signed-off-by: Jacob Keller <jacob.e.keller@intel.com> Tested-by: Andrew Bowers <andrewx.bowers@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2016-11-11 13:39:30 -07:00
int i40e_add_vlan_all_mac(struct i40e_vsi *vsi, s16 vid);
int i40e_vsi_add_vlan(struct i40e_vsi *vsi, u16 vid);
i40e: use (add|rm)_vlan_all_mac helper functions when changing PVID The current flow for adding or updating the PVID for a VF uses i40e_vsi_add_vlan and i40e_vsi_kill_vlan which each take, then release the hash lock. In addition the two functions also must take special care that they do not perform VLAN mode changes as this will make the code in i40e_ndo_set_vf_port_vlan behave incorrectly. Fix these issues by using the new helper functions i40e_add_vlan_all_mac and i40e_rm_vlan_all_mac which expect the hash lock to already be taken. Additionally these functions do not perform any state updates in regards to VLAN mode, so they are safe to use in the PVID update flow. It should be noted that we don't need the VLAN mode update code here, because there are only a few flows here. (a) we're adding a new PVID In this case, if we already had VLAN filters the VSI is knocked offline so we don't need to worry about pre-existing VLAN filters (b) we're replacing an existing PVID In this case, we can't have any VLAN filters except those with the old PVID which we already take care of manually. (c) we're removing an existing PVID Similarly to above, we can't have any existing VLAN filters except those with the old PVID which we already take care of correctly. Because of this, we do not need (or even want) the special accounting done in i40e_vsi_add_vlan, so use of the helpers is a saner alternative. It also opens the door for a future patch which will refactor the flow of i40e_vsi_add_vlan now that it is not needed in this function. Change-ID: Ia841f63da94e12b106f41cf7d28ce8ce92f2ad99 Signed-off-by: Jacob Keller <jacob.e.keller@intel.com> Tested-by: Andrew Bowers <andrewx.bowers@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2016-11-11 13:39:30 -07:00
void i40e_rm_vlan_all_mac(struct i40e_vsi *vsi, s16 vid);
void i40e_vsi_kill_vlan(struct i40e_vsi *vsi, u16 vid);
struct i40e_mac_filter *i40e_add_mac_filter(struct i40e_vsi *vsi,
const u8 *macaddr);
int i40e_del_mac_filter(struct i40e_vsi *vsi, const u8 *macaddr);
bool i40e_is_vsi_in_vlan(struct i40e_vsi *vsi);
struct i40e_mac_filter *i40e_find_mac(struct i40e_vsi *vsi, const u8 *macaddr);
void i40e_vlan_stripping_enable(struct i40e_vsi *vsi);
#ifdef CONFIG_I40E_DCB
void i40e_dcbnl_flush_apps(struct i40e_pf *pf,
struct i40e_dcbx_config *old_cfg,
struct i40e_dcbx_config *new_cfg);
void i40e_dcbnl_set_all(struct i40e_vsi *vsi);
void i40e_dcbnl_setup(struct i40e_vsi *vsi);
bool i40e_dcb_need_reconfig(struct i40e_pf *pf,
struct i40e_dcbx_config *old_cfg,
struct i40e_dcbx_config *new_cfg);
#endif /* CONFIG_I40E_DCB */
void i40e_ptp_rx_hang(struct i40e_pf *pf);
void i40e_ptp_tx_hang(struct i40e_pf *pf);
void i40e_ptp_tx_hwtstamp(struct i40e_pf *pf);
void i40e_ptp_rx_hwtstamp(struct i40e_pf *pf, struct sk_buff *skb, u8 index);
void i40e_ptp_set_increment(struct i40e_pf *pf);
int i40e_ptp_set_ts_config(struct i40e_pf *pf, struct ifreq *ifr);
int i40e_ptp_get_ts_config(struct i40e_pf *pf, struct ifreq *ifr);
i40e: save PTP time before a device reset In the case where PTP is running on the hardware clock, but the kernel system time is not being synced, a device reset can mess up the clock time. This occurs because we reset the clock time based on the kernel time every reset. This causes us to potentially completely reset the PTP time, and can cause unexpected behavior in programs like ptp4l. Avoid this by saving the PTP time prior to device reset, and then restoring using that time after the reset. Directly restoring the PTP time we saved isn't perfect, because time should have continued running, but the clock will essentially be stopped during the reset. This is still better than the current solution of assuming that the PTP HW clock is synced to the CLOCK_REALTIME. We can do even better, by saving the ktime and calculating a differential, using ktime_get(). This is based on CLOCK_MONOTONIC, and allows us to get a fairly precise measure of the time difference between saving and restoring the time. Using this, we can update the saved PTP time, and use that as the value to write to the hardware clock registers. This, of course is not perfect. However, it does help ensure that the PTP time is restored as close as feasible to the time it should have been if the reset had not occurred. During device initialization, continue using the system time as the source for the creation of the PTP clock, since this is the best known current time source at driver load. Signed-off-by: Jacob Keller <jacob.e.keller@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2019-02-12 14:56:24 -07:00
void i40e_ptp_save_hw_time(struct i40e_pf *pf);
void i40e_ptp_restore_hw_time(struct i40e_pf *pf);
void i40e_ptp_init(struct i40e_pf *pf);
void i40e_ptp_stop(struct i40e_pf *pf);
int i40e_is_vsi_uplink_mode_veb(struct i40e_vsi *vsi);
i40e_status i40e_get_partition_bw_setting(struct i40e_pf *pf);
i40e_status i40e_set_partition_bw_setting(struct i40e_pf *pf);
i40e_status i40e_commit_partition_bw_setting(struct i40e_pf *pf);
void i40e_print_link_message(struct i40e_vsi *vsi, bool isup);
void i40e_set_fec_in_flags(u8 fec_cfg, u32 *flags);
static inline bool i40e_enabled_xdp_vsi(struct i40e_vsi *vsi)
{
return !!READ_ONCE(vsi->xdp_prog);
}
int i40e_create_queue_channel(struct i40e_vsi *vsi, struct i40e_channel *ch);
int i40e_set_bw_limit(struct i40e_vsi *vsi, u16 seid, u64 max_tx_rate);
i40e: Add and delete cloud filter This patch provides support to add or delete cloud filter for queue channels created for ADq on VF. We are using the HW's cloud filter feature and programming it to act as a TC filter applied to a group of queues. There are two possible modes for a VF when applying a cloud filter 1. Basic Mode: Intended to apply filters that don't need a VF to be Trusted. This would include the following Dest MAC + L4 port Dest MAC + VLAN + L4 port 2. Advanced Mode: This mode is only for filters with combination that requires VF to be Trusted. Dest IP + L4 port When cloud filters are applied on a trusted VF and for some reason the same VF is later made as untrusted then all cloud filters will be deleted. All cloud filters has to be re-applied in such a case. Cloud filters are also deleted when queue channel is deleted. Testing-Hints: ============= 1. Adding Basic Mode filter should be possible on a VF in Non-Trusted mode. 2. In Advanced mode all filters should be able to be created. Steps: ====== 1. Enable ADq and create TCs using TC mqprio command 2. Apply cloud filter. 3. Turn-off the spoof check. 4. Pass traffic. Example: ======== 1. tc qdisc add dev enp4s2 root mqprio num_tc 4 map 0 0 0 0 1 2 2 3\ queues 2@0 2@2 1@4 1@5 hw 1 mode channel 2. tc qdisc add dev enp4s2 ingress 3. ethtool -K enp4s2 hw-tc-offload on 4. ip link set ens261f0 vf 0 spoofchk off 5. tc filter add dev enp4s2 protocol ip parent ffff: prio 1 flower\ dst_ip 192.168.3.5/32 ip_proto udp dst_port 25 skip_sw hw_tc 2 Signed-off-by: Avinash Dayanand <avinash.dayanand@intel.com> Tested-by: Andrew Bowers <andrewx.bowers@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2018-01-23 09:51:06 -07:00
int i40e_add_del_cloud_filter(struct i40e_vsi *vsi,
struct i40e_cloud_filter *filter,
bool add);
int i40e_add_del_cloud_filter_big_buf(struct i40e_vsi *vsi,
struct i40e_cloud_filter *filter,
bool add);
#endif /* _I40E_H_ */