1
0
Fork 0
alistair23-linux/drivers/net/ethernet/marvell/mv643xx_eth.c

3295 lines
78 KiB
C
Raw Normal View History

treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 13 Based on 2 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details you should have received a copy of the gnu general public license along with this program if not see http www gnu org licenses this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details [based] [from] [clk] [highbank] [c] you should have received a copy of the gnu general public license along with this program if not see http www gnu org licenses extracted by the scancode license scanner the SPDX license identifier GPL-2.0-or-later has been chosen to replace the boilerplate/reference in 355 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Jilayne Lovejoy <opensource@jilayne.com> Reviewed-by: Steve Winslow <swinslow@gmail.com> Reviewed-by: Allison Randal <allison@lohutok.net> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190519154041.837383322@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-19 07:51:43 -06:00
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Driver for Marvell Discovery (MV643XX) and Marvell Orion ethernet ports
* Copyright (C) 2002 Matthew Dharm <mdharm@momenco.com>
*
* Based on the 64360 driver from:
* Copyright (C) 2002 Rabeeh Khoury <rabeeh@galileo.co.il>
* Rabeeh Khoury <rabeeh@marvell.com>
*
* Copyright (C) 2003 PMC-Sierra, Inc.,
* written by Manish Lachwani
*
* Copyright (C) 2003 Ralf Baechle <ralf@linux-mips.org>
*
* Copyright (C) 2004-2006 MontaVista Software, Inc.
* Dale Farnsworth <dale@farnsworth.org>
*
* Copyright (C) 2004 Steven J. Hill <sjhill1@rockwellcollins.com>
* <sjhill@realitydiluted.com>
*
* Copyright (C) 2007-2008 Marvell Semiconductor
* Lennert Buytenhek <buytenh@marvell.com>
*
* Copyright (C) 2013 Michael Stapelberg <michael@stapelberg.de>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/init.h>
#include <linux/dma-mapping.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <net/tso.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/ethtool.h>
#include <linux/platform_device.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
#include <linux/phy.h>
#include <linux/mv643xx_eth.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/types.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 02:04:11 -06:00
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/of_net.h>
#include <linux/of_mdio.h>
static char mv643xx_eth_driver_name[] = "mv643xx_eth";
static char mv643xx_eth_driver_version[] = "1.4";
/*
* Registers shared between all ports.
*/
#define PHY_ADDR 0x0000
#define WINDOW_BASE(w) (0x0200 + ((w) << 3))
#define WINDOW_SIZE(w) (0x0204 + ((w) << 3))
#define WINDOW_REMAP_HIGH(w) (0x0280 + ((w) << 2))
#define WINDOW_BAR_ENABLE 0x0290
#define WINDOW_PROTECT(w) (0x0294 + ((w) << 4))
/*
* Main per-port registers. These live at offset 0x0400 for
* port #0, 0x0800 for port #1, and 0x0c00 for port #2.
*/
#define PORT_CONFIG 0x0000
#define UNICAST_PROMISCUOUS_MODE 0x00000001
#define PORT_CONFIG_EXT 0x0004
#define MAC_ADDR_LOW 0x0014
#define MAC_ADDR_HIGH 0x0018
#define SDMA_CONFIG 0x001c
#define TX_BURST_SIZE_16_64BIT 0x01000000
#define TX_BURST_SIZE_4_64BIT 0x00800000
#define BLM_TX_NO_SWAP 0x00000020
#define BLM_RX_NO_SWAP 0x00000010
#define RX_BURST_SIZE_16_64BIT 0x00000008
#define RX_BURST_SIZE_4_64BIT 0x00000004
#define PORT_SERIAL_CONTROL 0x003c
#define SET_MII_SPEED_TO_100 0x01000000
#define SET_GMII_SPEED_TO_1000 0x00800000
#define SET_FULL_DUPLEX_MODE 0x00200000
#define MAX_RX_PACKET_9700BYTE 0x000a0000
#define DISABLE_AUTO_NEG_SPEED_GMII 0x00002000
#define DO_NOT_FORCE_LINK_FAIL 0x00000400
#define SERIAL_PORT_CONTROL_RESERVED 0x00000200
#define DISABLE_AUTO_NEG_FOR_FLOW_CTRL 0x00000008
#define DISABLE_AUTO_NEG_FOR_DUPLEX 0x00000004
#define FORCE_LINK_PASS 0x00000002
#define SERIAL_PORT_ENABLE 0x00000001
#define PORT_STATUS 0x0044
#define TX_FIFO_EMPTY 0x00000400
#define TX_IN_PROGRESS 0x00000080
#define PORT_SPEED_MASK 0x00000030
#define PORT_SPEED_1000 0x00000010
#define PORT_SPEED_100 0x00000020
#define PORT_SPEED_10 0x00000000
#define FLOW_CONTROL_ENABLED 0x00000008
#define FULL_DUPLEX 0x00000004
#define LINK_UP 0x00000002
#define TXQ_COMMAND 0x0048
#define TXQ_FIX_PRIO_CONF 0x004c
#define PORT_SERIAL_CONTROL1 0x004c
#define CLK125_BYPASS_EN 0x00000010
#define TX_BW_RATE 0x0050
#define TX_BW_MTU 0x0058
#define TX_BW_BURST 0x005c
#define INT_CAUSE 0x0060
#define INT_TX_END 0x07f80000
#define INT_TX_END_0 0x00080000
#define INT_RX 0x000003fc
#define INT_RX_0 0x00000004
#define INT_EXT 0x00000002
#define INT_CAUSE_EXT 0x0064
#define INT_EXT_LINK_PHY 0x00110000
#define INT_EXT_TX 0x000000ff
#define INT_MASK 0x0068
#define INT_MASK_EXT 0x006c
#define TX_FIFO_URGENT_THRESHOLD 0x0074
#define RX_DISCARD_FRAME_CNT 0x0084
#define RX_OVERRUN_FRAME_CNT 0x0088
#define TXQ_FIX_PRIO_CONF_MOVED 0x00dc
#define TX_BW_RATE_MOVED 0x00e0
#define TX_BW_MTU_MOVED 0x00e8
#define TX_BW_BURST_MOVED 0x00ec
#define RXQ_CURRENT_DESC_PTR(q) (0x020c + ((q) << 4))
#define RXQ_COMMAND 0x0280
#define TXQ_CURRENT_DESC_PTR(q) (0x02c0 + ((q) << 2))
#define TXQ_BW_TOKENS(q) (0x0300 + ((q) << 4))
#define TXQ_BW_CONF(q) (0x0304 + ((q) << 4))
#define TXQ_BW_WRR_CONF(q) (0x0308 + ((q) << 4))
/*
* Misc per-port registers.
*/
#define MIB_COUNTERS(p) (0x1000 + ((p) << 7))
#define SPECIAL_MCAST_TABLE(p) (0x1400 + ((p) << 10))
#define OTHER_MCAST_TABLE(p) (0x1500 + ((p) << 10))
#define UNICAST_TABLE(p) (0x1600 + ((p) << 10))
/*
* SDMA configuration register default value.
*/
#if defined(__BIG_ENDIAN)
#define PORT_SDMA_CONFIG_DEFAULT_VALUE \
(RX_BURST_SIZE_4_64BIT | \
TX_BURST_SIZE_4_64BIT)
#elif defined(__LITTLE_ENDIAN)
#define PORT_SDMA_CONFIG_DEFAULT_VALUE \
(RX_BURST_SIZE_4_64BIT | \
BLM_RX_NO_SWAP | \
BLM_TX_NO_SWAP | \
TX_BURST_SIZE_4_64BIT)
#else
#error One of __BIG_ENDIAN or __LITTLE_ENDIAN must be defined
#endif
/*
* Misc definitions.
*/
#define DEFAULT_RX_QUEUE_SIZE 128
#define DEFAULT_TX_QUEUE_SIZE 512
#define SKB_DMA_REALIGN ((PAGE_SIZE - NET_SKB_PAD) % SMP_CACHE_BYTES)
/* Max number of allowed TCP segments for software TSO */
#define MV643XX_MAX_TSO_SEGS 100
#define MV643XX_MAX_SKB_DESCS (MV643XX_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
#define IS_TSO_HEADER(txq, addr) \
((addr >= txq->tso_hdrs_dma) && \
(addr < txq->tso_hdrs_dma + txq->tx_ring_size * TSO_HEADER_SIZE))
#define DESC_DMA_MAP_SINGLE 0
#define DESC_DMA_MAP_PAGE 1
/*
* RX/TX descriptors.
*/
#if defined(__BIG_ENDIAN)
struct rx_desc {
u16 byte_cnt; /* Descriptor buffer byte count */
u16 buf_size; /* Buffer size */
u32 cmd_sts; /* Descriptor command status */
u32 next_desc_ptr; /* Next descriptor pointer */
u32 buf_ptr; /* Descriptor buffer pointer */
};
struct tx_desc {
u16 byte_cnt; /* buffer byte count */
u16 l4i_chk; /* CPU provided TCP checksum */
u32 cmd_sts; /* Command/status field */
u32 next_desc_ptr; /* Pointer to next descriptor */
u32 buf_ptr; /* pointer to buffer for this descriptor*/
};
#elif defined(__LITTLE_ENDIAN)
struct rx_desc {
u32 cmd_sts; /* Descriptor command status */
u16 buf_size; /* Buffer size */
u16 byte_cnt; /* Descriptor buffer byte count */
u32 buf_ptr; /* Descriptor buffer pointer */
u32 next_desc_ptr; /* Next descriptor pointer */
};
struct tx_desc {
u32 cmd_sts; /* Command/status field */
u16 l4i_chk; /* CPU provided TCP checksum */
u16 byte_cnt; /* buffer byte count */
u32 buf_ptr; /* pointer to buffer for this descriptor*/
u32 next_desc_ptr; /* Pointer to next descriptor */
};
#else
#error One of __BIG_ENDIAN or __LITTLE_ENDIAN must be defined
#endif
/* RX & TX descriptor command */
#define BUFFER_OWNED_BY_DMA 0x80000000
/* RX & TX descriptor status */
#define ERROR_SUMMARY 0x00000001
/* RX descriptor status */
#define LAYER_4_CHECKSUM_OK 0x40000000
#define RX_ENABLE_INTERRUPT 0x20000000
#define RX_FIRST_DESC 0x08000000
#define RX_LAST_DESC 0x04000000
#define RX_IP_HDR_OK 0x02000000
#define RX_PKT_IS_IPV4 0x01000000
#define RX_PKT_IS_ETHERNETV2 0x00800000
#define RX_PKT_LAYER4_TYPE_MASK 0x00600000
#define RX_PKT_LAYER4_TYPE_TCP_IPV4 0x00000000
#define RX_PKT_IS_VLAN_TAGGED 0x00080000
/* TX descriptor command */
#define TX_ENABLE_INTERRUPT 0x00800000
#define GEN_CRC 0x00400000
#define TX_FIRST_DESC 0x00200000
#define TX_LAST_DESC 0x00100000
#define ZERO_PADDING 0x00080000
#define GEN_IP_V4_CHECKSUM 0x00040000
#define GEN_TCP_UDP_CHECKSUM 0x00020000
#define UDP_FRAME 0x00010000
#define MAC_HDR_EXTRA_4_BYTES 0x00008000
#define GEN_TCP_UDP_CHK_FULL 0x00000400
#define MAC_HDR_EXTRA_8_BYTES 0x00000200
#define TX_IHL_SHIFT 11
/* global *******************************************************************/
struct mv643xx_eth_shared_private {
/*
* Ethernet controller base address.
*/
void __iomem *base;
/*
* Per-port MBUS window access register value.
*/
u32 win_protect;
/*
* Hardware-specific parameters.
*/
int extended_rx_coal_limit;
int tx_bw_control;
int tx_csum_limit;
struct clk *clk;
};
#define TX_BW_CONTROL_ABSENT 0
#define TX_BW_CONTROL_OLD_LAYOUT 1
#define TX_BW_CONTROL_NEW_LAYOUT 2
static int mv643xx_eth_open(struct net_device *dev);
static int mv643xx_eth_stop(struct net_device *dev);
/* per-port *****************************************************************/
struct mib_counters {
u64 good_octets_received;
u32 bad_octets_received;
u32 internal_mac_transmit_err;
u32 good_frames_received;
u32 bad_frames_received;
u32 broadcast_frames_received;
u32 multicast_frames_received;
u32 frames_64_octets;
u32 frames_65_to_127_octets;
u32 frames_128_to_255_octets;
u32 frames_256_to_511_octets;
u32 frames_512_to_1023_octets;
u32 frames_1024_to_max_octets;
u64 good_octets_sent;
u32 good_frames_sent;
u32 excessive_collision;
u32 multicast_frames_sent;
u32 broadcast_frames_sent;
u32 unrec_mac_control_received;
u32 fc_sent;
u32 good_fc_received;
u32 bad_fc_received;
u32 undersize_received;
u32 fragments_received;
u32 oversize_received;
u32 jabber_received;
u32 mac_receive_error;
u32 bad_crc_event;
u32 collision;
u32 late_collision;
/* Non MIB hardware counters */
u32 rx_discard;
u32 rx_overrun;
};
struct rx_queue {
int index;
int rx_ring_size;
int rx_desc_count;
int rx_curr_desc;
int rx_used_desc;
struct rx_desc *rx_desc_area;
dma_addr_t rx_desc_dma;
int rx_desc_area_size;
struct sk_buff **rx_skb;
};
struct tx_queue {
int index;
int tx_ring_size;
int tx_desc_count;
int tx_curr_desc;
int tx_used_desc;
int tx_stop_threshold;
int tx_wake_threshold;
char *tso_hdrs;
dma_addr_t tso_hdrs_dma;
struct tx_desc *tx_desc_area;
char *tx_desc_mapping; /* array to track the type of the dma mapping */
dma_addr_t tx_desc_dma;
int tx_desc_area_size;
struct sk_buff_head tx_skb;
unsigned long tx_packets;
unsigned long tx_bytes;
unsigned long tx_dropped;
};
struct mv643xx_eth_private {
struct mv643xx_eth_shared_private *shared;
void __iomem *base;
int port_num;
struct net_device *dev;
struct timer_list mib_counters_timer;
spinlock_t mib_counters_lock;
struct mib_counters mib_counters;
struct work_struct tx_timeout_task;
struct napi_struct napi;
u32 int_mask;
u8 oom;
u8 work_link;
u8 work_tx;
u8 work_tx_end;
u8 work_rx;
u8 work_rx_refill;
int skb_size;
/*
* RX state.
*/
int rx_ring_size;
unsigned long rx_desc_sram_addr;
int rx_desc_sram_size;
int rxq_count;
struct timer_list rx_oom;
struct rx_queue rxq[8];
/*
* TX state.
*/
int tx_ring_size;
unsigned long tx_desc_sram_addr;
int tx_desc_sram_size;
int txq_count;
struct tx_queue txq[8];
/*
* Hardware-specific parameters.
*/
struct clk *clk;
unsigned int t_clk;
};
/* port register accessors **************************************************/
static inline u32 rdl(struct mv643xx_eth_private *mp, int offset)
{
return readl(mp->shared->base + offset);
}
static inline u32 rdlp(struct mv643xx_eth_private *mp, int offset)
{
return readl(mp->base + offset);
}
static inline void wrl(struct mv643xx_eth_private *mp, int offset, u32 data)
{
writel(data, mp->shared->base + offset);
}
static inline void wrlp(struct mv643xx_eth_private *mp, int offset, u32 data)
{
writel(data, mp->base + offset);
}
/* rxq/txq helper functions *************************************************/
static struct mv643xx_eth_private *rxq_to_mp(struct rx_queue *rxq)
{
return container_of(rxq, struct mv643xx_eth_private, rxq[rxq->index]);
}
static struct mv643xx_eth_private *txq_to_mp(struct tx_queue *txq)
{
return container_of(txq, struct mv643xx_eth_private, txq[txq->index]);
}
static void rxq_enable(struct rx_queue *rxq)
{
struct mv643xx_eth_private *mp = rxq_to_mp(rxq);
wrlp(mp, RXQ_COMMAND, 1 << rxq->index);
}
static void rxq_disable(struct rx_queue *rxq)
{
struct mv643xx_eth_private *mp = rxq_to_mp(rxq);
u8 mask = 1 << rxq->index;
wrlp(mp, RXQ_COMMAND, mask << 8);
while (rdlp(mp, RXQ_COMMAND) & mask)
udelay(10);
}
static void txq_reset_hw_ptr(struct tx_queue *txq)
{
struct mv643xx_eth_private *mp = txq_to_mp(txq);
u32 addr;
addr = (u32)txq->tx_desc_dma;
addr += txq->tx_curr_desc * sizeof(struct tx_desc);
wrlp(mp, TXQ_CURRENT_DESC_PTR(txq->index), addr);
}
static void txq_enable(struct tx_queue *txq)
{
struct mv643xx_eth_private *mp = txq_to_mp(txq);
wrlp(mp, TXQ_COMMAND, 1 << txq->index);
}
static void txq_disable(struct tx_queue *txq)
{
struct mv643xx_eth_private *mp = txq_to_mp(txq);
u8 mask = 1 << txq->index;
wrlp(mp, TXQ_COMMAND, mask << 8);
while (rdlp(mp, TXQ_COMMAND) & mask)
udelay(10);
}
static void txq_maybe_wake(struct tx_queue *txq)
{
struct mv643xx_eth_private *mp = txq_to_mp(txq);
struct netdev_queue *nq = netdev_get_tx_queue(mp->dev, txq->index);
if (netif_tx_queue_stopped(nq)) {
__netif_tx_lock(nq, smp_processor_id());
if (txq->tx_desc_count <= txq->tx_wake_threshold)
netif_tx_wake_queue(nq);
__netif_tx_unlock(nq);
}
}
static int rxq_process(struct rx_queue *rxq, int budget)
{
struct mv643xx_eth_private *mp = rxq_to_mp(rxq);
struct net_device_stats *stats = &mp->dev->stats;
int rx;
rx = 0;
while (rx < budget && rxq->rx_desc_count) {
struct rx_desc *rx_desc;
unsigned int cmd_sts;
struct sk_buff *skb;
u16 byte_cnt;
rx_desc = &rxq->rx_desc_area[rxq->rx_curr_desc];
cmd_sts = rx_desc->cmd_sts;
if (cmd_sts & BUFFER_OWNED_BY_DMA)
break;
rmb();
skb = rxq->rx_skb[rxq->rx_curr_desc];
rxq->rx_skb[rxq->rx_curr_desc] = NULL;
rxq->rx_curr_desc++;
if (rxq->rx_curr_desc == rxq->rx_ring_size)
rxq->rx_curr_desc = 0;
dma_unmap_single(mp->dev->dev.parent, rx_desc->buf_ptr,
rx_desc->buf_size, DMA_FROM_DEVICE);
rxq->rx_desc_count--;
rx++;
mp->work_rx_refill |= 1 << rxq->index;
byte_cnt = rx_desc->byte_cnt;
/*
* Update statistics.
*
* Note that the descriptor byte count includes 2 dummy
* bytes automatically inserted by the hardware at the
* start of the packet (which we don't count), and a 4
* byte CRC at the end of the packet (which we do count).
*/
stats->rx_packets++;
stats->rx_bytes += byte_cnt - 2;
/*
* In case we received a packet without first / last bits
* on, or the error summary bit is set, the packet needs
* to be dropped.
*/
if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC | ERROR_SUMMARY))
!= (RX_FIRST_DESC | RX_LAST_DESC))
goto err;
/*
* The -4 is for the CRC in the trailer of the
* received packet
*/
skb_put(skb, byte_cnt - 2 - 4);
if (cmd_sts & LAYER_4_CHECKSUM_OK)
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb->protocol = eth_type_trans(skb, mp->dev);
napi_gro_receive(&mp->napi, skb);
continue;
err:
stats->rx_dropped++;
if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
(RX_FIRST_DESC | RX_LAST_DESC)) {
if (net_ratelimit())
netdev_err(mp->dev,
"received packet spanning multiple descriptors\n");
}
if (cmd_sts & ERROR_SUMMARY)
stats->rx_errors++;
dev_kfree_skb(skb);
}
if (rx < budget)
mp->work_rx &= ~(1 << rxq->index);
return rx;
}
static int rxq_refill(struct rx_queue *rxq, int budget)
{
struct mv643xx_eth_private *mp = rxq_to_mp(rxq);
int refilled;
refilled = 0;
while (refilled < budget && rxq->rx_desc_count < rxq->rx_ring_size) {
struct sk_buff *skb;
int rx;
struct rx_desc *rx_desc;
int size;
skb = netdev_alloc_skb(mp->dev, mp->skb_size);
if (skb == NULL) {
mp->oom = 1;
goto oom;
}
if (SKB_DMA_REALIGN)
skb_reserve(skb, SKB_DMA_REALIGN);
refilled++;
rxq->rx_desc_count++;
rx = rxq->rx_used_desc++;
if (rxq->rx_used_desc == rxq->rx_ring_size)
rxq->rx_used_desc = 0;
rx_desc = rxq->rx_desc_area + rx;
size = skb_end_pointer(skb) - skb->data;
rx_desc->buf_ptr = dma_map_single(mp->dev->dev.parent,
skb->data, size,
DMA_FROM_DEVICE);
rx_desc->buf_size = size;
rxq->rx_skb[rx] = skb;
wmb();
rx_desc->cmd_sts = BUFFER_OWNED_BY_DMA | RX_ENABLE_INTERRUPT;
wmb();
/*
* The hardware automatically prepends 2 bytes of
* dummy data to each received packet, so that the
* IP header ends up 16-byte aligned.
*/
skb_reserve(skb, 2);
}
if (refilled < budget)
mp->work_rx_refill &= ~(1 << rxq->index);
oom:
return refilled;
}
/* tx ***********************************************************************/
static inline unsigned int has_tiny_unaligned_frags(struct sk_buff *skb)
{
int frag;
for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
if (skb_frag_size(fragp) <= 8 && skb_frag_off(fragp) & 7)
return 1;
}
return 0;
}
static inline __be16 sum16_as_be(__sum16 sum)
{
return (__force __be16)sum;
}
static int skb_tx_csum(struct mv643xx_eth_private *mp, struct sk_buff *skb,
u16 *l4i_chk, u32 *command, int length)
{
int ret;
u32 cmd = 0;
if (skb->ip_summed == CHECKSUM_PARTIAL) {
int hdr_len;
int tag_bytes;
BUG_ON(skb->protocol != htons(ETH_P_IP) &&
skb->protocol != htons(ETH_P_8021Q));
hdr_len = (void *)ip_hdr(skb) - (void *)skb->data;
tag_bytes = hdr_len - ETH_HLEN;
if (length - hdr_len > mp->shared->tx_csum_limit ||
unlikely(tag_bytes & ~12)) {
ret = skb_checksum_help(skb);
if (!ret)
goto no_csum;
return ret;
}
if (tag_bytes & 4)
cmd |= MAC_HDR_EXTRA_4_BYTES;
if (tag_bytes & 8)
cmd |= MAC_HDR_EXTRA_8_BYTES;
cmd |= GEN_TCP_UDP_CHECKSUM | GEN_TCP_UDP_CHK_FULL |
GEN_IP_V4_CHECKSUM |
ip_hdr(skb)->ihl << TX_IHL_SHIFT;
/* TODO: Revisit this. With the usage of GEN_TCP_UDP_CHK_FULL
* it seems we don't need to pass the initial checksum. */
switch (ip_hdr(skb)->protocol) {
case IPPROTO_UDP:
cmd |= UDP_FRAME;
*l4i_chk = 0;
break;
case IPPROTO_TCP:
*l4i_chk = 0;
break;
default:
WARN(1, "protocol not supported");
}
} else {
no_csum:
/* Errata BTS #50, IHL must be 5 if no HW checksum */
cmd |= 5 << TX_IHL_SHIFT;
}
*command = cmd;
return 0;
}
static inline int
txq_put_data_tso(struct net_device *dev, struct tx_queue *txq,
struct sk_buff *skb, char *data, int length,
bool last_tcp, bool is_last)
{
int tx_index;
u32 cmd_sts;
struct tx_desc *desc;
tx_index = txq->tx_curr_desc++;
if (txq->tx_curr_desc == txq->tx_ring_size)
txq->tx_curr_desc = 0;
desc = &txq->tx_desc_area[tx_index];
txq->tx_desc_mapping[tx_index] = DESC_DMA_MAP_SINGLE;
desc->l4i_chk = 0;
desc->byte_cnt = length;
if (length <= 8 && (uintptr_t)data & 0x7) {
/* Copy unaligned small data fragment to TSO header data area */
memcpy(txq->tso_hdrs + tx_index * TSO_HEADER_SIZE,
data, length);
desc->buf_ptr = txq->tso_hdrs_dma
+ tx_index * TSO_HEADER_SIZE;
} else {
/* Alignment is okay, map buffer and hand off to hardware */
txq->tx_desc_mapping[tx_index] = DESC_DMA_MAP_SINGLE;
desc->buf_ptr = dma_map_single(dev->dev.parent, data,
length, DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(dev->dev.parent,
desc->buf_ptr))) {
WARN(1, "dma_map_single failed!\n");
return -ENOMEM;
}
}
cmd_sts = BUFFER_OWNED_BY_DMA;
if (last_tcp) {
/* last descriptor in the TCP packet */
cmd_sts |= ZERO_PADDING | TX_LAST_DESC;
/* last descriptor in SKB */
if (is_last)
cmd_sts |= TX_ENABLE_INTERRUPT;
}
desc->cmd_sts = cmd_sts;
return 0;
}
static inline void
txq_put_hdr_tso(struct sk_buff *skb, struct tx_queue *txq, int length,
u32 *first_cmd_sts, bool first_desc)
{
struct mv643xx_eth_private *mp = txq_to_mp(txq);
int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
int tx_index;
struct tx_desc *desc;
int ret;
u32 cmd_csum = 0;
u16 l4i_chk = 0;
u32 cmd_sts;
tx_index = txq->tx_curr_desc;
desc = &txq->tx_desc_area[tx_index];
ret = skb_tx_csum(mp, skb, &l4i_chk, &cmd_csum, length);
if (ret)
WARN(1, "failed to prepare checksum!");
/* Should we set this? Can't use the value from skb_tx_csum()
* as it's not the correct initial L4 checksum to use. */
desc->l4i_chk = 0;
desc->byte_cnt = hdr_len;
desc->buf_ptr = txq->tso_hdrs_dma +
txq->tx_curr_desc * TSO_HEADER_SIZE;
cmd_sts = cmd_csum | BUFFER_OWNED_BY_DMA | TX_FIRST_DESC |
GEN_CRC;
/* Defer updating the first command descriptor until all
* following descriptors have been written.
*/
if (first_desc)
*first_cmd_sts = cmd_sts;
else
desc->cmd_sts = cmd_sts;
txq->tx_curr_desc++;
if (txq->tx_curr_desc == txq->tx_ring_size)
txq->tx_curr_desc = 0;
}
static int txq_submit_tso(struct tx_queue *txq, struct sk_buff *skb,
struct net_device *dev)
{
struct mv643xx_eth_private *mp = txq_to_mp(txq);
int total_len, data_left, ret;
int desc_count = 0;
struct tso_t tso;
int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
struct tx_desc *first_tx_desc;
u32 first_cmd_sts = 0;
/* Count needed descriptors */
if ((txq->tx_desc_count + tso_count_descs(skb)) >= txq->tx_ring_size) {
netdev_dbg(dev, "not enough descriptors for TSO!\n");
return -EBUSY;
}
first_tx_desc = &txq->tx_desc_area[txq->tx_curr_desc];
/* Initialize the TSO handler, and prepare the first payload */
tso_start(skb, &tso);
total_len = skb->len - hdr_len;
while (total_len > 0) {
bool first_desc = (desc_count == 0);
char *hdr;
data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
total_len -= data_left;
desc_count++;
/* prepare packet headers: MAC + IP + TCP */
hdr = txq->tso_hdrs + txq->tx_curr_desc * TSO_HEADER_SIZE;
tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
txq_put_hdr_tso(skb, txq, data_left, &first_cmd_sts,
first_desc);
while (data_left > 0) {
int size;
desc_count++;
size = min_t(int, tso.size, data_left);
ret = txq_put_data_tso(dev, txq, skb, tso.data, size,
size == data_left,
total_len == 0);
if (ret)
goto err_release;
data_left -= size;
tso_build_data(skb, &tso, size);
}
}
__skb_queue_tail(&txq->tx_skb, skb);
skb_tx_timestamp(skb);
/* ensure all other descriptors are written before first cmd_sts */
wmb();
first_tx_desc->cmd_sts = first_cmd_sts;
/* clear TX_END status */
mp->work_tx_end &= ~(1 << txq->index);
/* ensure all descriptors are written before poking hardware */
wmb();
txq_enable(txq);
txq->tx_desc_count += desc_count;
return 0;
err_release:
/* TODO: Release all used data descriptors; header descriptors must not
* be DMA-unmapped.
*/
return ret;
}
static void txq_submit_frag_skb(struct tx_queue *txq, struct sk_buff *skb)
{
struct mv643xx_eth_private *mp = txq_to_mp(txq);
int nr_frags = skb_shinfo(skb)->nr_frags;
int frag;
for (frag = 0; frag < nr_frags; frag++) {
skb_frag_t *this_frag;
int tx_index;
struct tx_desc *desc;
this_frag = &skb_shinfo(skb)->frags[frag];
tx_index = txq->tx_curr_desc++;
if (txq->tx_curr_desc == txq->tx_ring_size)
txq->tx_curr_desc = 0;
desc = &txq->tx_desc_area[tx_index];
txq->tx_desc_mapping[tx_index] = DESC_DMA_MAP_PAGE;
/*
* The last fragment will generate an interrupt
* which will free the skb on TX completion.
*/
if (frag == nr_frags - 1) {
desc->cmd_sts = BUFFER_OWNED_BY_DMA |
ZERO_PADDING | TX_LAST_DESC |
TX_ENABLE_INTERRUPT;
} else {
desc->cmd_sts = BUFFER_OWNED_BY_DMA;
}
desc->l4i_chk = 0;
desc->byte_cnt = skb_frag_size(this_frag);
desc->buf_ptr = skb_frag_dma_map(mp->dev->dev.parent,
this_frag, 0, desc->byte_cnt,
DMA_TO_DEVICE);
}
}
static int txq_submit_skb(struct tx_queue *txq, struct sk_buff *skb,
struct net_device *dev)
{
mv643xx_eth: fix TX hang erratum workaround The previously merged TX hang erratum workaround ("mv643xx_eth: work around TX hang hardware issue") assumes that TX_END interrupts are delivered simultaneously with or after their corresponding TX interrupts, but this is not always true in practise. In particular, it appears that TX_END interrupts are issued as soon as descriptor fetch returns an invalid descriptor, which may happen before earlier descriptors have been fully transmitted and written back to memory as being done. This hardware behavior can lead to a situation where the current driver code mistakenly assumes that the MAC has given up transmitting before noticing the packets that it is in fact still currently working on, causing the driver to re-kick the transmit queue, which will only cause the MAC to re-fetch the invalid head descriptor, and generate another TX_END interrupt, et cetera, until the packets in the pipe finally finish transmitting and have their descriptors written back to memory, which will then finally break the loop. Fix this by having the erratum workaround not check the 'number of unfinished descriptor', but instead, to compare the software's idea of what the head descriptor pointer should be to the hardware's head descriptor pointer (which is updated on the same conditions as the TX_END interupt is generated on, i.e. possibly before all previous descriptors have been transmitted and written back). Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
2008-07-14 14:56:55 -06:00
struct mv643xx_eth_private *mp = txq_to_mp(txq);
int nr_frags = skb_shinfo(skb)->nr_frags;
int tx_index;
struct tx_desc *desc;
u32 cmd_sts;
u16 l4i_chk;
int length, ret;
cmd_sts = 0;
l4i_chk = 0;
if (txq->tx_ring_size - txq->tx_desc_count < MAX_SKB_FRAGS + 1) {
if (net_ratelimit())
netdev_err(dev, "tx queue full?!\n");
return -EBUSY;
}
ret = skb_tx_csum(mp, skb, &l4i_chk, &cmd_sts, skb->len);
if (ret)
return ret;
cmd_sts |= TX_FIRST_DESC | GEN_CRC | BUFFER_OWNED_BY_DMA;
tx_index = txq->tx_curr_desc++;
if (txq->tx_curr_desc == txq->tx_ring_size)
txq->tx_curr_desc = 0;
desc = &txq->tx_desc_area[tx_index];
txq->tx_desc_mapping[tx_index] = DESC_DMA_MAP_SINGLE;
if (nr_frags) {
txq_submit_frag_skb(txq, skb);
length = skb_headlen(skb);
} else {
cmd_sts |= ZERO_PADDING | TX_LAST_DESC | TX_ENABLE_INTERRUPT;
length = skb->len;
}
desc->l4i_chk = l4i_chk;
desc->byte_cnt = length;
desc->buf_ptr = dma_map_single(mp->dev->dev.parent, skb->data,
length, DMA_TO_DEVICE);
__skb_queue_tail(&txq->tx_skb, skb);
skb_tx_timestamp(skb);
/* ensure all other descriptors are written before first cmd_sts */
wmb();
desc->cmd_sts = cmd_sts;
/* clear TX_END status */
mp->work_tx_end &= ~(1 << txq->index);
mv643xx_eth: fix TX hang erratum workaround The previously merged TX hang erratum workaround ("mv643xx_eth: work around TX hang hardware issue") assumes that TX_END interrupts are delivered simultaneously with or after their corresponding TX interrupts, but this is not always true in practise. In particular, it appears that TX_END interrupts are issued as soon as descriptor fetch returns an invalid descriptor, which may happen before earlier descriptors have been fully transmitted and written back to memory as being done. This hardware behavior can lead to a situation where the current driver code mistakenly assumes that the MAC has given up transmitting before noticing the packets that it is in fact still currently working on, causing the driver to re-kick the transmit queue, which will only cause the MAC to re-fetch the invalid head descriptor, and generate another TX_END interrupt, et cetera, until the packets in the pipe finally finish transmitting and have their descriptors written back to memory, which will then finally break the loop. Fix this by having the erratum workaround not check the 'number of unfinished descriptor', but instead, to compare the software's idea of what the head descriptor pointer should be to the hardware's head descriptor pointer (which is updated on the same conditions as the TX_END interupt is generated on, i.e. possibly before all previous descriptors have been transmitted and written back). Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
2008-07-14 14:56:55 -06:00
/* ensure all descriptors are written before poking hardware */
wmb();
txq_enable(txq);
txq->tx_desc_count += nr_frags + 1;
return 0;
}
static netdev_tx_t mv643xx_eth_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
int length, queue, ret;
struct tx_queue *txq;
struct netdev_queue *nq;
queue = skb_get_queue_mapping(skb);
txq = mp->txq + queue;
nq = netdev_get_tx_queue(dev, queue);
if (has_tiny_unaligned_frags(skb) && __skb_linearize(skb)) {
netdev_printk(KERN_DEBUG, dev,
"failed to linearize skb with tiny unaligned fragment\n");
return NETDEV_TX_BUSY;
}
length = skb->len;
if (skb_is_gso(skb))
ret = txq_submit_tso(txq, skb, dev);
else
ret = txq_submit_skb(txq, skb, dev);
if (!ret) {
txq->tx_bytes += length;
txq->tx_packets++;
if (txq->tx_desc_count >= txq->tx_stop_threshold)
netif_tx_stop_queue(nq);
} else {
txq->tx_dropped++;
dev_kfree_skb_any(skb);
}
return NETDEV_TX_OK;
}
/* tx napi ******************************************************************/
static void txq_kick(struct tx_queue *txq)
{
struct mv643xx_eth_private *mp = txq_to_mp(txq);
struct netdev_queue *nq = netdev_get_tx_queue(mp->dev, txq->index);
u32 hw_desc_ptr;
u32 expected_ptr;
__netif_tx_lock(nq, smp_processor_id());
if (rdlp(mp, TXQ_COMMAND) & (1 << txq->index))
goto out;
hw_desc_ptr = rdlp(mp, TXQ_CURRENT_DESC_PTR(txq->index));
expected_ptr = (u32)txq->tx_desc_dma +
txq->tx_curr_desc * sizeof(struct tx_desc);
if (hw_desc_ptr != expected_ptr)
txq_enable(txq);
out:
__netif_tx_unlock(nq);
mp->work_tx_end &= ~(1 << txq->index);
}
static int txq_reclaim(struct tx_queue *txq, int budget, int force)
{
struct mv643xx_eth_private *mp = txq_to_mp(txq);
struct netdev_queue *nq = netdev_get_tx_queue(mp->dev, txq->index);
int reclaimed;
NET: mv643xx_eth: avoid lockdep dump on interface down When the interface is shutdown, the mv643xx_eth driver hits the following lockdep dump: ================================= [ INFO: inconsistent lock state ] 3.8.0+ #303 Not tainted --------------------------------- inconsistent {IN-SOFTIRQ-W} -> {SOFTIRQ-ON-W} usage. NetworkManager/3449 [HC0[0]:SC0[0]:HE1:SE1] takes: (_xmit_ETHER#2){+.?...}, at: [<c02828e4>] txq_reclaim+0x60/0x230 {IN-SOFTIRQ-W} state was registered at: [<c007e93c>] mark_irqflags+0xf8/0x1c4 [<c007ee60>] __lock_acquire+0x458/0x9a4 [<c007f8b0>] lock_acquire+0x60/0x74 [<c03ea914>] _raw_spin_lock+0x40/0x50 [<c0334040>] sch_direct_xmit+0xa4/0x2e4 [<c0320880>] dev_queue_xmit+0x174/0x508 [<c03953b0>] ip6_finish_output2+0xd0/0x3c4 [<c03b15bc>] mld_sendpack+0x190/0x368 [<c03b3204>] mld_ifc_timer_expire+0xc/0x58 [<c005133c>] call_timer_fn+0x6c/0xe0 [<c0051588>] run_timer_softirq+0x1d8/0x210 [<c004c004>] __do_softirq+0xe0/0x1b4 [<c004c448>] irq_exit+0x64/0x6c [<c000f1e0>] handle_IRQ+0x34/0x84 [<c000e0d0>] __irq_usr+0x30/0x80 irq event stamp: 160603 hardirqs last enabled at (160603): [<c00c736c>] kfree+0xa8/0xe8 hardirqs last disabled at (160602): [<c00c72e0>] kfree+0x1c/0xe8 softirqs last enabled at (160304): [<c028260c>] mib_counters_update+0x5ec/0x60c softirqs last disabled at (160302): [<c03eab8c>] _raw_spin_lock_bh+0x14/0x54 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(_xmit_ETHER#2); <Interrupt> lock(_xmit_ETHER#2); *** DEADLOCK *** 1 lock held by NetworkManager/3449: #0: (rtnl_mutex){+.+.+.}, at: [<c032e664>] rtnetlink_rcv+0xc/0x24 stack backtrace: [<c0013e34>] (unwind_backtrace+0x0/0xf8) from [<c007e12c>] (print_usage_bug+0x150/0x1d4) [<c007e12c>] (print_usage_bug+0x150/0x1d4) from [<c007e3f8>] (mark_lock_irq+0x248/0x290) [<c007e3f8>] (mark_lock_irq+0x248/0x290) from [<c007e598>] (mark_lock+0x158/0x404) [<c007e598>] (mark_lock+0x158/0x404) from [<c007e97c>] (mark_irqflags+0x138/0x1c4) [<c007e97c>] (mark_irqflags+0x138/0x1c4) from [<c007ee60>] (__lock_acquire+0x458/0x9a4) [<c007ee60>] (__lock_acquire+0x458/0x9a4) from [<c007f8b0>] (lock_acquire+0x60/0x74) [<c007f8b0>] (lock_acquire+0x60/0x74) from [<c03ea914>] (_raw_spin_lock+0x40/0x50) [<c03ea914>] (_raw_spin_lock+0x40/0x50) from [<c02828e4>] (txq_reclaim+0x60/0x230) [<c02828e4>] (txq_reclaim+0x60/0x230) from [<c0282ad8>] (txq_deinit+0x24/0xcc) [<c0282ad8>] (txq_deinit+0x24/0xcc) from [<c0282d28>] (mv643xx_eth_stop+0x1a8/0x1bc) [<c0282d28>] (mv643xx_eth_stop+0x1a8/0x1bc) from [<c031e314>] (__dev_close_many+0x88/0xcc) [<c031e314>] (__dev_close_many+0x88/0xcc) from [<c031e380>] (__dev_close+0x28/0x3c) [<c031e380>] (__dev_close+0x28/0x3c) from [<c0320fa0>] (__dev_change_flags+0x7c/0x134) [<c0320fa0>] (__dev_change_flags+0x7c/0x134) from [<c03210e0>] (dev_change_flags+0x10/0x48) [<c03210e0>] (dev_change_flags+0x10/0x48) from [<c032da1c>] (do_setlink+0x1a0/0x730) [<c032da1c>] (do_setlink+0x1a0/0x730) from [<c032f524>] (rtnl_newlink+0x304/0x4b0) [<c032f524>] (rtnl_newlink+0x304/0x4b0) from [<c032ef8c>] (rtnetlink_rcv_msg+0x25c/0x2a0) [<c032ef8c>] (rtnetlink_rcv_msg+0x25c/0x2a0) from [<c03383a0>] (netlink_rcv_skb+0xbc/0xd8) [<c03383a0>] (netlink_rcv_skb+0xbc/0xd8) from [<c032e674>] (rtnetlink_rcv+0x1c/0x24) [<c032e674>] (rtnetlink_rcv+0x1c/0x24) from [<c03361d8>] (netlink_unicast_kernel+0x88/0xd4) [<c03361d8>] (netlink_unicast_kernel+0x88/0xd4) from [<c0337dd0>] (netlink_unicast+0x138/0x180) [<c0337dd0>] (netlink_unicast+0x138/0x180) from [<c0338020>] (netlink_sendmsg+0x208/0x32c) [<c0338020>] (netlink_sendmsg+0x208/0x32c) from [<c030ab48>] (sock_sendmsg+0x84/0xa4) [<c030ab48>] (sock_sendmsg+0x84/0xa4) from [<c030aef4>] (__sys_sendmsg+0x2ac/0x2c4) [<c030aef4>] (__sys_sendmsg+0x2ac/0x2c4) from [<c030c8ec>] (sys_sendmsg+0x3c/0x68) [<c030c8ec>] (sys_sendmsg+0x3c/0x68) from [<c000e2e0>] (ret_fast_syscall+0x0/0x3c) It seems that txq_reclaim() takes the netif tx lock: __netif_tx_lock(nq, smp_processor_id()); in a context outside of softirq context, and thus is susceptible to deadlock should an interrupt occur. Use __netif_tx_lock_bh()/__netif_tx_unlock_bh() instead. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-05-16 00:31:42 -06:00
__netif_tx_lock_bh(nq);
reclaimed = 0;
while (reclaimed < budget && txq->tx_desc_count > 0) {
int tx_index;
struct tx_desc *desc;
u32 cmd_sts;
char desc_dma_map;
tx_index = txq->tx_used_desc;
desc = &txq->tx_desc_area[tx_index];
desc_dma_map = txq->tx_desc_mapping[tx_index];
cmd_sts = desc->cmd_sts;
if (cmd_sts & BUFFER_OWNED_BY_DMA) {
if (!force)
break;
desc->cmd_sts = cmd_sts & ~BUFFER_OWNED_BY_DMA;
}
txq->tx_used_desc = tx_index + 1;
if (txq->tx_used_desc == txq->tx_ring_size)
txq->tx_used_desc = 0;
reclaimed++;
txq->tx_desc_count--;
if (!IS_TSO_HEADER(txq, desc->buf_ptr)) {
if (desc_dma_map == DESC_DMA_MAP_PAGE)
dma_unmap_page(mp->dev->dev.parent,
desc->buf_ptr,
desc->byte_cnt,
DMA_TO_DEVICE);
else
dma_unmap_single(mp->dev->dev.parent,
desc->buf_ptr,
desc->byte_cnt,
DMA_TO_DEVICE);
}
if (cmd_sts & TX_ENABLE_INTERRUPT) {
struct sk_buff *skb = __skb_dequeue(&txq->tx_skb);
if (!WARN_ON(!skb))
dev_consume_skb_any(skb);
}
if (cmd_sts & ERROR_SUMMARY) {
netdev_info(mp->dev, "tx error\n");
mp->dev->stats.tx_errors++;
}
}
NET: mv643xx_eth: avoid lockdep dump on interface down When the interface is shutdown, the mv643xx_eth driver hits the following lockdep dump: ================================= [ INFO: inconsistent lock state ] 3.8.0+ #303 Not tainted --------------------------------- inconsistent {IN-SOFTIRQ-W} -> {SOFTIRQ-ON-W} usage. NetworkManager/3449 [HC0[0]:SC0[0]:HE1:SE1] takes: (_xmit_ETHER#2){+.?...}, at: [<c02828e4>] txq_reclaim+0x60/0x230 {IN-SOFTIRQ-W} state was registered at: [<c007e93c>] mark_irqflags+0xf8/0x1c4 [<c007ee60>] __lock_acquire+0x458/0x9a4 [<c007f8b0>] lock_acquire+0x60/0x74 [<c03ea914>] _raw_spin_lock+0x40/0x50 [<c0334040>] sch_direct_xmit+0xa4/0x2e4 [<c0320880>] dev_queue_xmit+0x174/0x508 [<c03953b0>] ip6_finish_output2+0xd0/0x3c4 [<c03b15bc>] mld_sendpack+0x190/0x368 [<c03b3204>] mld_ifc_timer_expire+0xc/0x58 [<c005133c>] call_timer_fn+0x6c/0xe0 [<c0051588>] run_timer_softirq+0x1d8/0x210 [<c004c004>] __do_softirq+0xe0/0x1b4 [<c004c448>] irq_exit+0x64/0x6c [<c000f1e0>] handle_IRQ+0x34/0x84 [<c000e0d0>] __irq_usr+0x30/0x80 irq event stamp: 160603 hardirqs last enabled at (160603): [<c00c736c>] kfree+0xa8/0xe8 hardirqs last disabled at (160602): [<c00c72e0>] kfree+0x1c/0xe8 softirqs last enabled at (160304): [<c028260c>] mib_counters_update+0x5ec/0x60c softirqs last disabled at (160302): [<c03eab8c>] _raw_spin_lock_bh+0x14/0x54 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(_xmit_ETHER#2); <Interrupt> lock(_xmit_ETHER#2); *** DEADLOCK *** 1 lock held by NetworkManager/3449: #0: (rtnl_mutex){+.+.+.}, at: [<c032e664>] rtnetlink_rcv+0xc/0x24 stack backtrace: [<c0013e34>] (unwind_backtrace+0x0/0xf8) from [<c007e12c>] (print_usage_bug+0x150/0x1d4) [<c007e12c>] (print_usage_bug+0x150/0x1d4) from [<c007e3f8>] (mark_lock_irq+0x248/0x290) [<c007e3f8>] (mark_lock_irq+0x248/0x290) from [<c007e598>] (mark_lock+0x158/0x404) [<c007e598>] (mark_lock+0x158/0x404) from [<c007e97c>] (mark_irqflags+0x138/0x1c4) [<c007e97c>] (mark_irqflags+0x138/0x1c4) from [<c007ee60>] (__lock_acquire+0x458/0x9a4) [<c007ee60>] (__lock_acquire+0x458/0x9a4) from [<c007f8b0>] (lock_acquire+0x60/0x74) [<c007f8b0>] (lock_acquire+0x60/0x74) from [<c03ea914>] (_raw_spin_lock+0x40/0x50) [<c03ea914>] (_raw_spin_lock+0x40/0x50) from [<c02828e4>] (txq_reclaim+0x60/0x230) [<c02828e4>] (txq_reclaim+0x60/0x230) from [<c0282ad8>] (txq_deinit+0x24/0xcc) [<c0282ad8>] (txq_deinit+0x24/0xcc) from [<c0282d28>] (mv643xx_eth_stop+0x1a8/0x1bc) [<c0282d28>] (mv643xx_eth_stop+0x1a8/0x1bc) from [<c031e314>] (__dev_close_many+0x88/0xcc) [<c031e314>] (__dev_close_many+0x88/0xcc) from [<c031e380>] (__dev_close+0x28/0x3c) [<c031e380>] (__dev_close+0x28/0x3c) from [<c0320fa0>] (__dev_change_flags+0x7c/0x134) [<c0320fa0>] (__dev_change_flags+0x7c/0x134) from [<c03210e0>] (dev_change_flags+0x10/0x48) [<c03210e0>] (dev_change_flags+0x10/0x48) from [<c032da1c>] (do_setlink+0x1a0/0x730) [<c032da1c>] (do_setlink+0x1a0/0x730) from [<c032f524>] (rtnl_newlink+0x304/0x4b0) [<c032f524>] (rtnl_newlink+0x304/0x4b0) from [<c032ef8c>] (rtnetlink_rcv_msg+0x25c/0x2a0) [<c032ef8c>] (rtnetlink_rcv_msg+0x25c/0x2a0) from [<c03383a0>] (netlink_rcv_skb+0xbc/0xd8) [<c03383a0>] (netlink_rcv_skb+0xbc/0xd8) from [<c032e674>] (rtnetlink_rcv+0x1c/0x24) [<c032e674>] (rtnetlink_rcv+0x1c/0x24) from [<c03361d8>] (netlink_unicast_kernel+0x88/0xd4) [<c03361d8>] (netlink_unicast_kernel+0x88/0xd4) from [<c0337dd0>] (netlink_unicast+0x138/0x180) [<c0337dd0>] (netlink_unicast+0x138/0x180) from [<c0338020>] (netlink_sendmsg+0x208/0x32c) [<c0338020>] (netlink_sendmsg+0x208/0x32c) from [<c030ab48>] (sock_sendmsg+0x84/0xa4) [<c030ab48>] (sock_sendmsg+0x84/0xa4) from [<c030aef4>] (__sys_sendmsg+0x2ac/0x2c4) [<c030aef4>] (__sys_sendmsg+0x2ac/0x2c4) from [<c030c8ec>] (sys_sendmsg+0x3c/0x68) [<c030c8ec>] (sys_sendmsg+0x3c/0x68) from [<c000e2e0>] (ret_fast_syscall+0x0/0x3c) It seems that txq_reclaim() takes the netif tx lock: __netif_tx_lock(nq, smp_processor_id()); in a context outside of softirq context, and thus is susceptible to deadlock should an interrupt occur. Use __netif_tx_lock_bh()/__netif_tx_unlock_bh() instead. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-05-16 00:31:42 -06:00
__netif_tx_unlock_bh(nq);
if (reclaimed < budget)
mp->work_tx &= ~(1 << txq->index);
return reclaimed;
}
/* tx rate control **********************************************************/
/*
* Set total maximum TX rate (shared by all TX queues for this port)
* to 'rate' bits per second, with a maximum burst of 'burst' bytes.
*/
static void tx_set_rate(struct mv643xx_eth_private *mp, int rate, int burst)
{
int token_rate;
int mtu;
int bucket_size;
token_rate = ((rate / 1000) * 64) / (mp->t_clk / 1000);
if (token_rate > 1023)
token_rate = 1023;
mtu = (mp->dev->mtu + 255) >> 8;
if (mtu > 63)
mtu = 63;
bucket_size = (burst + 255) >> 8;
if (bucket_size > 65535)
bucket_size = 65535;
switch (mp->shared->tx_bw_control) {
case TX_BW_CONTROL_OLD_LAYOUT:
wrlp(mp, TX_BW_RATE, token_rate);
wrlp(mp, TX_BW_MTU, mtu);
wrlp(mp, TX_BW_BURST, bucket_size);
break;
case TX_BW_CONTROL_NEW_LAYOUT:
wrlp(mp, TX_BW_RATE_MOVED, token_rate);
wrlp(mp, TX_BW_MTU_MOVED, mtu);
wrlp(mp, TX_BW_BURST_MOVED, bucket_size);
break;
}
}
static void txq_set_rate(struct tx_queue *txq, int rate, int burst)
{
struct mv643xx_eth_private *mp = txq_to_mp(txq);
int token_rate;
int bucket_size;
token_rate = ((rate / 1000) * 64) / (mp->t_clk / 1000);
if (token_rate > 1023)
token_rate = 1023;
bucket_size = (burst + 255) >> 8;
if (bucket_size > 65535)
bucket_size = 65535;
wrlp(mp, TXQ_BW_TOKENS(txq->index), token_rate << 14);
wrlp(mp, TXQ_BW_CONF(txq->index), (bucket_size << 10) | token_rate);
}
static void txq_set_fixed_prio_mode(struct tx_queue *txq)
{
struct mv643xx_eth_private *mp = txq_to_mp(txq);
int off;
u32 val;
/*
* Turn on fixed priority mode.
*/
off = 0;
switch (mp->shared->tx_bw_control) {
case TX_BW_CONTROL_OLD_LAYOUT:
off = TXQ_FIX_PRIO_CONF;
break;
case TX_BW_CONTROL_NEW_LAYOUT:
off = TXQ_FIX_PRIO_CONF_MOVED;
break;
}
if (off) {
val = rdlp(mp, off);
val |= 1 << txq->index;
wrlp(mp, off, val);
}
}
/* mii management interface *************************************************/
static void mv643xx_eth_adjust_link(struct net_device *dev)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
u32 pscr = rdlp(mp, PORT_SERIAL_CONTROL);
u32 autoneg_disable = FORCE_LINK_PASS |
DISABLE_AUTO_NEG_SPEED_GMII |
DISABLE_AUTO_NEG_FOR_FLOW_CTRL |
DISABLE_AUTO_NEG_FOR_DUPLEX;
if (dev->phydev->autoneg == AUTONEG_ENABLE) {
/* enable auto negotiation */
pscr &= ~autoneg_disable;
goto out_write;
}
pscr |= autoneg_disable;
if (dev->phydev->speed == SPEED_1000) {
/* force gigabit, half duplex not supported */
pscr |= SET_GMII_SPEED_TO_1000;
pscr |= SET_FULL_DUPLEX_MODE;
goto out_write;
}
pscr &= ~SET_GMII_SPEED_TO_1000;
if (dev->phydev->speed == SPEED_100)
pscr |= SET_MII_SPEED_TO_100;
else
pscr &= ~SET_MII_SPEED_TO_100;
if (dev->phydev->duplex == DUPLEX_FULL)
pscr |= SET_FULL_DUPLEX_MODE;
else
pscr &= ~SET_FULL_DUPLEX_MODE;
out_write:
wrlp(mp, PORT_SERIAL_CONTROL, pscr);
}
/* statistics ***************************************************************/
static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *dev)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
struct net_device_stats *stats = &dev->stats;
unsigned long tx_packets = 0;
unsigned long tx_bytes = 0;
unsigned long tx_dropped = 0;
int i;
for (i = 0; i < mp->txq_count; i++) {
struct tx_queue *txq = mp->txq + i;
tx_packets += txq->tx_packets;
tx_bytes += txq->tx_bytes;
tx_dropped += txq->tx_dropped;
}
stats->tx_packets = tx_packets;
stats->tx_bytes = tx_bytes;
stats->tx_dropped = tx_dropped;
return stats;
}
static inline u32 mib_read(struct mv643xx_eth_private *mp, int offset)
{
return rdl(mp, MIB_COUNTERS(mp->port_num) + offset);
}
static void mib_counters_clear(struct mv643xx_eth_private *mp)
{
int i;
for (i = 0; i < 0x80; i += 4)
mib_read(mp, i);
/* Clear non MIB hw counters also */
rdlp(mp, RX_DISCARD_FRAME_CNT);
rdlp(mp, RX_OVERRUN_FRAME_CNT);
}
static void mib_counters_update(struct mv643xx_eth_private *mp)
{
struct mib_counters *p = &mp->mib_counters;
spin_lock_bh(&mp->mib_counters_lock);
p->good_octets_received += mib_read(mp, 0x00);
p->bad_octets_received += mib_read(mp, 0x08);
p->internal_mac_transmit_err += mib_read(mp, 0x0c);
p->good_frames_received += mib_read(mp, 0x10);
p->bad_frames_received += mib_read(mp, 0x14);
p->broadcast_frames_received += mib_read(mp, 0x18);
p->multicast_frames_received += mib_read(mp, 0x1c);
p->frames_64_octets += mib_read(mp, 0x20);
p->frames_65_to_127_octets += mib_read(mp, 0x24);
p->frames_128_to_255_octets += mib_read(mp, 0x28);
p->frames_256_to_511_octets += mib_read(mp, 0x2c);
p->frames_512_to_1023_octets += mib_read(mp, 0x30);
p->frames_1024_to_max_octets += mib_read(mp, 0x34);
p->good_octets_sent += mib_read(mp, 0x38);
p->good_frames_sent += mib_read(mp, 0x40);
p->excessive_collision += mib_read(mp, 0x44);
p->multicast_frames_sent += mib_read(mp, 0x48);
p->broadcast_frames_sent += mib_read(mp, 0x4c);
p->unrec_mac_control_received += mib_read(mp, 0x50);
p->fc_sent += mib_read(mp, 0x54);
p->good_fc_received += mib_read(mp, 0x58);
p->bad_fc_received += mib_read(mp, 0x5c);
p->undersize_received += mib_read(mp, 0x60);
p->fragments_received += mib_read(mp, 0x64);
p->oversize_received += mib_read(mp, 0x68);
p->jabber_received += mib_read(mp, 0x6c);
p->mac_receive_error += mib_read(mp, 0x70);
p->bad_crc_event += mib_read(mp, 0x74);
p->collision += mib_read(mp, 0x78);
p->late_collision += mib_read(mp, 0x7c);
/* Non MIB hardware counters */
p->rx_discard += rdlp(mp, RX_DISCARD_FRAME_CNT);
p->rx_overrun += rdlp(mp, RX_OVERRUN_FRAME_CNT);
spin_unlock_bh(&mp->mib_counters_lock);
}
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-16 15:43:17 -06:00
static void mib_counters_timer_wrapper(struct timer_list *t)
{
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-16 15:43:17 -06:00
struct mv643xx_eth_private *mp = from_timer(mp, t, mib_counters_timer);
mib_counters_update(mp);
mod_timer(&mp->mib_counters_timer, jiffies + 30 * HZ);
}
/* interrupt coalescing *****************************************************/
/*
* Hardware coalescing parameters are set in units of 64 t_clk
* cycles. I.e.:
*
* coal_delay_in_usec = 64000000 * register_value / t_clk_rate
*
* register_value = coal_delay_in_usec * t_clk_rate / 64000000
*
* In the ->set*() methods, we round the computed register value
* to the nearest integer.
*/
static unsigned int get_rx_coal(struct mv643xx_eth_private *mp)
{
u32 val = rdlp(mp, SDMA_CONFIG);
u64 temp;
if (mp->shared->extended_rx_coal_limit)
temp = ((val & 0x02000000) >> 10) | ((val & 0x003fff80) >> 7);
else
temp = (val & 0x003fff00) >> 8;
temp *= 64000000;
temp += mp->t_clk / 2;
do_div(temp, mp->t_clk);
return (unsigned int)temp;
}
static void set_rx_coal(struct mv643xx_eth_private *mp, unsigned int usec)
{
u64 temp;
u32 val;
temp = (u64)usec * mp->t_clk;
temp += 31999999;
do_div(temp, 64000000);
val = rdlp(mp, SDMA_CONFIG);
if (mp->shared->extended_rx_coal_limit) {
if (temp > 0xffff)
temp = 0xffff;
val &= ~0x023fff80;
val |= (temp & 0x8000) << 10;
val |= (temp & 0x7fff) << 7;
} else {
if (temp > 0x3fff)
temp = 0x3fff;
val &= ~0x003fff00;
val |= (temp & 0x3fff) << 8;
}
wrlp(mp, SDMA_CONFIG, val);
}
static unsigned int get_tx_coal(struct mv643xx_eth_private *mp)
{
u64 temp;
temp = (rdlp(mp, TX_FIFO_URGENT_THRESHOLD) & 0x3fff0) >> 4;
temp *= 64000000;
temp += mp->t_clk / 2;
do_div(temp, mp->t_clk);
return (unsigned int)temp;
}
static void set_tx_coal(struct mv643xx_eth_private *mp, unsigned int usec)
{
u64 temp;
temp = (u64)usec * mp->t_clk;
temp += 31999999;
do_div(temp, 64000000);
if (temp > 0x3fff)
temp = 0x3fff;
wrlp(mp, TX_FIFO_URGENT_THRESHOLD, temp << 4);
}
/* ethtool ******************************************************************/
struct mv643xx_eth_stats {
char stat_string[ETH_GSTRING_LEN];
int sizeof_stat;
int netdev_off;
int mp_off;
};
#define SSTAT(m) \
{ #m, FIELD_SIZEOF(struct net_device_stats, m), \
offsetof(struct net_device, stats.m), -1 }
#define MIBSTAT(m) \
{ #m, FIELD_SIZEOF(struct mib_counters, m), \
-1, offsetof(struct mv643xx_eth_private, mib_counters.m) }
static const struct mv643xx_eth_stats mv643xx_eth_stats[] = {
SSTAT(rx_packets),
SSTAT(tx_packets),
SSTAT(rx_bytes),
SSTAT(tx_bytes),
SSTAT(rx_errors),
SSTAT(tx_errors),
SSTAT(rx_dropped),
SSTAT(tx_dropped),
MIBSTAT(good_octets_received),
MIBSTAT(bad_octets_received),
MIBSTAT(internal_mac_transmit_err),
MIBSTAT(good_frames_received),
MIBSTAT(bad_frames_received),
MIBSTAT(broadcast_frames_received),
MIBSTAT(multicast_frames_received),
MIBSTAT(frames_64_octets),
MIBSTAT(frames_65_to_127_octets),
MIBSTAT(frames_128_to_255_octets),
MIBSTAT(frames_256_to_511_octets),
MIBSTAT(frames_512_to_1023_octets),
MIBSTAT(frames_1024_to_max_octets),
MIBSTAT(good_octets_sent),
MIBSTAT(good_frames_sent),
MIBSTAT(excessive_collision),
MIBSTAT(multicast_frames_sent),
MIBSTAT(broadcast_frames_sent),
MIBSTAT(unrec_mac_control_received),
MIBSTAT(fc_sent),
MIBSTAT(good_fc_received),
MIBSTAT(bad_fc_received),
MIBSTAT(undersize_received),
MIBSTAT(fragments_received),
MIBSTAT(oversize_received),
MIBSTAT(jabber_received),
MIBSTAT(mac_receive_error),
MIBSTAT(bad_crc_event),
MIBSTAT(collision),
MIBSTAT(late_collision),
MIBSTAT(rx_discard),
MIBSTAT(rx_overrun),
};
static int
mv643xx_eth_get_link_ksettings_phy(struct mv643xx_eth_private *mp,
struct ethtool_link_ksettings *cmd)
{
struct net_device *dev = mp->dev;
phy_ethtool_ksettings_get(dev->phydev, cmd);
/*
* The MAC does not support 1000baseT_Half.
*/
linkmode_clear_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
cmd->link_modes.supported);
linkmode_clear_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
cmd->link_modes.advertising);
return 0;
}
static int
mv643xx_eth_get_link_ksettings_phyless(struct mv643xx_eth_private *mp,
struct ethtool_link_ksettings *cmd)
{
u32 port_status;
u32 supported, advertising;
port_status = rdlp(mp, PORT_STATUS);
supported = SUPPORTED_MII;
advertising = ADVERTISED_MII;
switch (port_status & PORT_SPEED_MASK) {
case PORT_SPEED_10:
cmd->base.speed = SPEED_10;
break;
case PORT_SPEED_100:
cmd->base.speed = SPEED_100;
break;
case PORT_SPEED_1000:
cmd->base.speed = SPEED_1000;
break;
default:
cmd->base.speed = -1;
break;
}
cmd->base.duplex = (port_status & FULL_DUPLEX) ?
DUPLEX_FULL : DUPLEX_HALF;
cmd->base.port = PORT_MII;
cmd->base.phy_address = 0;
cmd->base.autoneg = AUTONEG_DISABLE;
ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
supported);
ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
advertising);
return 0;
}
static void
mv643xx_eth_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
wol->supported = 0;
wol->wolopts = 0;
if (dev->phydev)
phy_ethtool_get_wol(dev->phydev, wol);
}
static int
mv643xx_eth_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
int err;
if (!dev->phydev)
return -EOPNOTSUPP;
err = phy_ethtool_set_wol(dev->phydev, wol);
/* Given that mv643xx_eth works without the marvell-specific PHY driver,
* this debugging hint is useful to have.
*/
if (err == -EOPNOTSUPP)
netdev_info(dev, "The PHY does not support set_wol, was CONFIG_MARVELL_PHY enabled?\n");
return err;
}
static int
mv643xx_eth_get_link_ksettings(struct net_device *dev,
struct ethtool_link_ksettings *cmd)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
if (dev->phydev)
return mv643xx_eth_get_link_ksettings_phy(mp, cmd);
else
return mv643xx_eth_get_link_ksettings_phyless(mp, cmd);
}
static int
mv643xx_eth_set_link_ksettings(struct net_device *dev,
const struct ethtool_link_ksettings *cmd)
{
struct ethtool_link_ksettings c = *cmd;
u32 advertising;
int ret;
if (!dev->phydev)
return -EINVAL;
/*
* The MAC does not support 1000baseT_Half.
*/
ethtool_convert_link_mode_to_legacy_u32(&advertising,
c.link_modes.advertising);
advertising &= ~ADVERTISED_1000baseT_Half;
ethtool_convert_legacy_u32_to_link_mode(c.link_modes.advertising,
advertising);
ret = phy_ethtool_ksettings_set(dev->phydev, &c);
if (!ret)
mv643xx_eth_adjust_link(dev);
return ret;
}
static void mv643xx_eth_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *drvinfo)
{
strlcpy(drvinfo->driver, mv643xx_eth_driver_name,
sizeof(drvinfo->driver));
strlcpy(drvinfo->version, mv643xx_eth_driver_version,
sizeof(drvinfo->version));
strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
strlcpy(drvinfo->bus_info, "platform", sizeof(drvinfo->bus_info));
}
static int
mv643xx_eth_get_coalesce(struct net_device *dev, struct ethtool_coalesce *ec)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
ec->rx_coalesce_usecs = get_rx_coal(mp);
ec->tx_coalesce_usecs = get_tx_coal(mp);
return 0;
}
static int
mv643xx_eth_set_coalesce(struct net_device *dev, struct ethtool_coalesce *ec)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
set_rx_coal(mp, ec->rx_coalesce_usecs);
set_tx_coal(mp, ec->tx_coalesce_usecs);
return 0;
}
static void
mv643xx_eth_get_ringparam(struct net_device *dev, struct ethtool_ringparam *er)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
er->rx_max_pending = 4096;
er->tx_max_pending = 4096;
er->rx_pending = mp->rx_ring_size;
er->tx_pending = mp->tx_ring_size;
}
static int
mv643xx_eth_set_ringparam(struct net_device *dev, struct ethtool_ringparam *er)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
if (er->rx_mini_pending || er->rx_jumbo_pending)
return -EINVAL;
mp->rx_ring_size = er->rx_pending < 4096 ? er->rx_pending : 4096;
mp->tx_ring_size = clamp_t(unsigned int, er->tx_pending,
MV643XX_MAX_SKB_DESCS * 2, 4096);
if (mp->tx_ring_size != er->tx_pending)
netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
mp->tx_ring_size, er->tx_pending);
if (netif_running(dev)) {
mv643xx_eth_stop(dev);
if (mv643xx_eth_open(dev)) {
netdev_err(dev,
"fatal error on re-opening device after ring param change\n");
return -ENOMEM;
}
}
return 0;
}
static int
mv643xx_eth_set_features(struct net_device *dev, netdev_features_t features)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
bool rx_csum = features & NETIF_F_RXCSUM;
wrlp(mp, PORT_CONFIG, rx_csum ? 0x02000000 : 0x00000000);
return 0;
}
static void mv643xx_eth_get_strings(struct net_device *dev,
uint32_t stringset, uint8_t *data)
{
int i;
if (stringset == ETH_SS_STATS) {
for (i = 0; i < ARRAY_SIZE(mv643xx_eth_stats); i++) {
memcpy(data + i * ETH_GSTRING_LEN,
mv643xx_eth_stats[i].stat_string,
ETH_GSTRING_LEN);
}
}
}
static void mv643xx_eth_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats,
uint64_t *data)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
int i;
mv643xx_eth_get_stats(dev);
mib_counters_update(mp);
for (i = 0; i < ARRAY_SIZE(mv643xx_eth_stats); i++) {
const struct mv643xx_eth_stats *stat;
void *p;
stat = mv643xx_eth_stats + i;
if (stat->netdev_off >= 0)
p = ((void *)mp->dev) + stat->netdev_off;
else
p = ((void *)mp) + stat->mp_off;
data[i] = (stat->sizeof_stat == 8) ?
*(uint64_t *)p : *(uint32_t *)p;
}
}
static int mv643xx_eth_get_sset_count(struct net_device *dev, int sset)
{
if (sset == ETH_SS_STATS)
return ARRAY_SIZE(mv643xx_eth_stats);
return -EOPNOTSUPP;
}
static const struct ethtool_ops mv643xx_eth_ethtool_ops = {
.get_drvinfo = mv643xx_eth_get_drvinfo,
.nway_reset = phy_ethtool_nway_reset,
.get_link = ethtool_op_get_link,
.get_coalesce = mv643xx_eth_get_coalesce,
.set_coalesce = mv643xx_eth_set_coalesce,
.get_ringparam = mv643xx_eth_get_ringparam,
.set_ringparam = mv643xx_eth_set_ringparam,
.get_strings = mv643xx_eth_get_strings,
.get_ethtool_stats = mv643xx_eth_get_ethtool_stats,
.get_sset_count = mv643xx_eth_get_sset_count,
.get_ts_info = ethtool_op_get_ts_info,
.get_wol = mv643xx_eth_get_wol,
.set_wol = mv643xx_eth_set_wol,
.get_link_ksettings = mv643xx_eth_get_link_ksettings,
.set_link_ksettings = mv643xx_eth_set_link_ksettings,
};
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 17:41:36 -06:00
/* address handling *********************************************************/
static void uc_addr_get(struct mv643xx_eth_private *mp, unsigned char *addr)
{
unsigned int mac_h = rdlp(mp, MAC_ADDR_HIGH);
unsigned int mac_l = rdlp(mp, MAC_ADDR_LOW);
addr[0] = (mac_h >> 24) & 0xff;
addr[1] = (mac_h >> 16) & 0xff;
addr[2] = (mac_h >> 8) & 0xff;
addr[3] = mac_h & 0xff;
addr[4] = (mac_l >> 8) & 0xff;
addr[5] = mac_l & 0xff;
}
static void uc_addr_set(struct mv643xx_eth_private *mp, unsigned char *addr)
{
wrlp(mp, MAC_ADDR_HIGH,
(addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3]);
wrlp(mp, MAC_ADDR_LOW, (addr[4] << 8) | addr[5]);
}
static u32 uc_addr_filter_mask(struct net_device *dev)
{
struct netdev_hw_addr *ha;
u32 nibbles;
if (dev->flags & IFF_PROMISC)
return 0;
nibbles = 1 << (dev->dev_addr[5] & 0x0f);
netdev_for_each_uc_addr(ha, dev) {
if (memcmp(dev->dev_addr, ha->addr, 5))
return 0;
if ((dev->dev_addr[5] ^ ha->addr[5]) & 0xf0)
return 0;
nibbles |= 1 << (ha->addr[5] & 0x0f);
}
return nibbles;
}
static void mv643xx_eth_program_unicast_filter(struct net_device *dev)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
u32 port_config;
u32 nibbles;
int i;
uc_addr_set(mp, dev->dev_addr);
port_config = rdlp(mp, PORT_CONFIG) & ~UNICAST_PROMISCUOUS_MODE;
nibbles = uc_addr_filter_mask(dev);
if (!nibbles) {
port_config |= UNICAST_PROMISCUOUS_MODE;
nibbles = 0xffff;
}
for (i = 0; i < 16; i += 4) {
int off = UNICAST_TABLE(mp->port_num) + i;
u32 v;
v = 0;
if (nibbles & 1)
v |= 0x00000001;
if (nibbles & 2)
v |= 0x00000100;
if (nibbles & 4)
v |= 0x00010000;
if (nibbles & 8)
v |= 0x01000000;
nibbles >>= 4;
wrl(mp, off, v);
}
wrlp(mp, PORT_CONFIG, port_config);
}
static int addr_crc(unsigned char *addr)
{
int crc = 0;
int i;
for (i = 0; i < 6; i++) {
int j;
crc = (crc ^ addr[i]) << 8;
for (j = 7; j >= 0; j--) {
if (crc & (0x100 << j))
crc ^= 0x107 << j;
}
}
return crc;
}
static void mv643xx_eth_program_multicast_filter(struct net_device *dev)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
u32 *mc_spec;
u32 *mc_other;
struct netdev_hw_addr *ha;
int i;
if (dev->flags & (IFF_PROMISC | IFF_ALLMULTI))
goto promiscuous;
/* Allocate both mc_spec and mc_other tables */
mc_spec = kcalloc(128, sizeof(u32), GFP_ATOMIC);
if (!mc_spec)
goto promiscuous;
mc_other = &mc_spec[64];
netdev_for_each_mc_addr(ha, dev) {
u8 *a = ha->addr;
u32 *table;
u8 entry;
if (memcmp(a, "\x01\x00\x5e\x00\x00", 5) == 0) {
table = mc_spec;
entry = a[5];
} else {
table = mc_other;
entry = addr_crc(a);
}
table[entry >> 2] |= 1 << (8 * (entry & 3));
}
for (i = 0; i < 64; i++) {
wrl(mp, SPECIAL_MCAST_TABLE(mp->port_num) + i * sizeof(u32),
mc_spec[i]);
wrl(mp, OTHER_MCAST_TABLE(mp->port_num) + i * sizeof(u32),
mc_other[i]);
}
kfree(mc_spec);
return;
promiscuous:
for (i = 0; i < 64; i++) {
wrl(mp, SPECIAL_MCAST_TABLE(mp->port_num) + i * sizeof(u32),
0x01010101u);
wrl(mp, OTHER_MCAST_TABLE(mp->port_num) + i * sizeof(u32),
0x01010101u);
}
}
static void mv643xx_eth_set_rx_mode(struct net_device *dev)
{
mv643xx_eth_program_unicast_filter(dev);
mv643xx_eth_program_multicast_filter(dev);
}
static int mv643xx_eth_set_mac_address(struct net_device *dev, void *addr)
{
struct sockaddr *sa = addr;
if (!is_valid_ether_addr(sa->sa_data))
return -EADDRNOTAVAIL;
memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
netif_addr_lock_bh(dev);
mv643xx_eth_program_unicast_filter(dev);
netif_addr_unlock_bh(dev);
return 0;
}
/* rx/tx queue initialisation ***********************************************/
static int rxq_init(struct mv643xx_eth_private *mp, int index)
{
struct rx_queue *rxq = mp->rxq + index;
struct rx_desc *rx_desc;
int size;
int i;
rxq->index = index;
rxq->rx_ring_size = mp->rx_ring_size;
rxq->rx_desc_count = 0;
rxq->rx_curr_desc = 0;
rxq->rx_used_desc = 0;
size = rxq->rx_ring_size * sizeof(struct rx_desc);
if (index == 0 && size <= mp->rx_desc_sram_size) {
rxq->rx_desc_area = ioremap(mp->rx_desc_sram_addr,
mp->rx_desc_sram_size);
rxq->rx_desc_dma = mp->rx_desc_sram_addr;
} else {
rxq->rx_desc_area = dma_alloc_coherent(mp->dev->dev.parent,
size, &rxq->rx_desc_dma,
GFP_KERNEL);
}
if (rxq->rx_desc_area == NULL) {
netdev_err(mp->dev,
"can't allocate rx ring (%d bytes)\n", size);
goto out;
}
memset(rxq->rx_desc_area, 0, size);
rxq->rx_desc_area_size = size;
rxq->rx_skb = kcalloc(rxq->rx_ring_size, sizeof(*rxq->rx_skb),
GFP_KERNEL);
if (rxq->rx_skb == NULL)
goto out_free;
rx_desc = rxq->rx_desc_area;
for (i = 0; i < rxq->rx_ring_size; i++) {
int nexti;
nexti = i + 1;
if (nexti == rxq->rx_ring_size)
nexti = 0;
rx_desc[i].next_desc_ptr = rxq->rx_desc_dma +
nexti * sizeof(struct rx_desc);
}
return 0;
out_free:
if (index == 0 && size <= mp->rx_desc_sram_size)
iounmap(rxq->rx_desc_area);
else
dma_free_coherent(mp->dev->dev.parent, size,
rxq->rx_desc_area,
rxq->rx_desc_dma);
out:
return -ENOMEM;
}
static void rxq_deinit(struct rx_queue *rxq)
{
struct mv643xx_eth_private *mp = rxq_to_mp(rxq);
int i;
rxq_disable(rxq);
for (i = 0; i < rxq->rx_ring_size; i++) {
if (rxq->rx_skb[i]) {
dev_consume_skb_any(rxq->rx_skb[i]);
rxq->rx_desc_count--;
}
}
if (rxq->rx_desc_count) {
netdev_err(mp->dev, "error freeing rx ring -- %d skbs stuck\n",
rxq->rx_desc_count);
}
if (rxq->index == 0 &&
rxq->rx_desc_area_size <= mp->rx_desc_sram_size)
iounmap(rxq->rx_desc_area);
else
dma_free_coherent(mp->dev->dev.parent, rxq->rx_desc_area_size,
rxq->rx_desc_area, rxq->rx_desc_dma);
kfree(rxq->rx_skb);
}
static int txq_init(struct mv643xx_eth_private *mp, int index)
{
struct tx_queue *txq = mp->txq + index;
struct tx_desc *tx_desc;
int size;
int ret;
int i;
txq->index = index;
txq->tx_ring_size = mp->tx_ring_size;
/* A queue must always have room for at least one skb.
* Therefore, stop the queue when the free entries reaches
* the maximum number of descriptors per skb.
*/
txq->tx_stop_threshold = txq->tx_ring_size - MV643XX_MAX_SKB_DESCS;
txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
txq->tx_desc_count = 0;
txq->tx_curr_desc = 0;
txq->tx_used_desc = 0;
size = txq->tx_ring_size * sizeof(struct tx_desc);
if (index == 0 && size <= mp->tx_desc_sram_size) {
txq->tx_desc_area = ioremap(mp->tx_desc_sram_addr,
mp->tx_desc_sram_size);
txq->tx_desc_dma = mp->tx_desc_sram_addr;
} else {
txq->tx_desc_area = dma_alloc_coherent(mp->dev->dev.parent,
size, &txq->tx_desc_dma,
GFP_KERNEL);
}
if (txq->tx_desc_area == NULL) {
netdev_err(mp->dev,
"can't allocate tx ring (%d bytes)\n", size);
return -ENOMEM;
}
memset(txq->tx_desc_area, 0, size);
txq->tx_desc_area_size = size;
tx_desc = txq->tx_desc_area;
for (i = 0; i < txq->tx_ring_size; i++) {
struct tx_desc *txd = tx_desc + i;
int nexti;
nexti = i + 1;
if (nexti == txq->tx_ring_size)
nexti = 0;
txd->cmd_sts = 0;
txd->next_desc_ptr = txq->tx_desc_dma +
nexti * sizeof(struct tx_desc);
}
txq->tx_desc_mapping = kcalloc(txq->tx_ring_size, sizeof(char),
GFP_KERNEL);
if (!txq->tx_desc_mapping) {
ret = -ENOMEM;
goto err_free_desc_area;
}
/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
txq->tso_hdrs = dma_alloc_coherent(mp->dev->dev.parent,
txq->tx_ring_size * TSO_HEADER_SIZE,
&txq->tso_hdrs_dma, GFP_KERNEL);
if (txq->tso_hdrs == NULL) {
ret = -ENOMEM;
goto err_free_desc_mapping;
}
skb_queue_head_init(&txq->tx_skb);
return 0;
err_free_desc_mapping:
kfree(txq->tx_desc_mapping);
err_free_desc_area:
if (index == 0 && size <= mp->tx_desc_sram_size)
iounmap(txq->tx_desc_area);
else
dma_free_coherent(mp->dev->dev.parent, txq->tx_desc_area_size,
txq->tx_desc_area, txq->tx_desc_dma);
return ret;
}
static void txq_deinit(struct tx_queue *txq)
{
struct mv643xx_eth_private *mp = txq_to_mp(txq);
txq_disable(txq);
txq_reclaim(txq, txq->tx_ring_size, 1);
BUG_ON(txq->tx_used_desc != txq->tx_curr_desc);
if (txq->index == 0 &&
txq->tx_desc_area_size <= mp->tx_desc_sram_size)
iounmap(txq->tx_desc_area);
else
dma_free_coherent(mp->dev->dev.parent, txq->tx_desc_area_size,
txq->tx_desc_area, txq->tx_desc_dma);
kfree(txq->tx_desc_mapping);
if (txq->tso_hdrs)
dma_free_coherent(mp->dev->dev.parent,
txq->tx_ring_size * TSO_HEADER_SIZE,
txq->tso_hdrs, txq->tso_hdrs_dma);
}
/* netdev ops and related ***************************************************/
static int mv643xx_eth_collect_events(struct mv643xx_eth_private *mp)
{
u32 int_cause;
u32 int_cause_ext;
int_cause = rdlp(mp, INT_CAUSE) & mp->int_mask;
if (int_cause == 0)
return 0;
int_cause_ext = 0;
if (int_cause & INT_EXT) {
int_cause &= ~INT_EXT;
int_cause_ext = rdlp(mp, INT_CAUSE_EXT);
}
if (int_cause) {
wrlp(mp, INT_CAUSE, ~int_cause);
mp->work_tx_end |= ((int_cause & INT_TX_END) >> 19) &
~(rdlp(mp, TXQ_COMMAND) & 0xff);
mp->work_rx |= (int_cause & INT_RX) >> 2;
}
int_cause_ext &= INT_EXT_LINK_PHY | INT_EXT_TX;
if (int_cause_ext) {
wrlp(mp, INT_CAUSE_EXT, ~int_cause_ext);
if (int_cause_ext & INT_EXT_LINK_PHY)
mp->work_link = 1;
mp->work_tx |= int_cause_ext & INT_EXT_TX;
}
return 1;
}
static irqreturn_t mv643xx_eth_irq(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *)dev_id;
struct mv643xx_eth_private *mp = netdev_priv(dev);
if (unlikely(!mv643xx_eth_collect_events(mp)))
return IRQ_NONE;
wrlp(mp, INT_MASK, 0);
napi_schedule(&mp->napi);
return IRQ_HANDLED;
}
static void handle_link_event(struct mv643xx_eth_private *mp)
{
struct net_device *dev = mp->dev;
u32 port_status;
int speed;
int duplex;
int fc;
port_status = rdlp(mp, PORT_STATUS);
if (!(port_status & LINK_UP)) {
if (netif_carrier_ok(dev)) {
int i;
netdev_info(dev, "link down\n");
netif_carrier_off(dev);
for (i = 0; i < mp->txq_count; i++) {
struct tx_queue *txq = mp->txq + i;
txq_reclaim(txq, txq->tx_ring_size, 1);
txq_reset_hw_ptr(txq);
}
}
return;
}
switch (port_status & PORT_SPEED_MASK) {
case PORT_SPEED_10:
speed = 10;
break;
case PORT_SPEED_100:
speed = 100;
break;
case PORT_SPEED_1000:
speed = 1000;
break;
default:
speed = -1;
break;
}
duplex = (port_status & FULL_DUPLEX) ? 1 : 0;
fc = (port_status & FLOW_CONTROL_ENABLED) ? 1 : 0;
netdev_info(dev, "link up, %d Mb/s, %s duplex, flow control %sabled\n",
speed, duplex ? "full" : "half", fc ? "en" : "dis");
if (!netif_carrier_ok(dev))
netif_carrier_on(dev);
}
static int mv643xx_eth_poll(struct napi_struct *napi, int budget)
{
struct mv643xx_eth_private *mp;
int work_done;
mp = container_of(napi, struct mv643xx_eth_private, napi);
if (unlikely(mp->oom)) {
mp->oom = 0;
del_timer(&mp->rx_oom);
}
work_done = 0;
while (work_done < budget) {
u8 queue_mask;
int queue;
int work_tbd;
if (mp->work_link) {
mp->work_link = 0;
handle_link_event(mp);
work_done++;
continue;
}
queue_mask = mp->work_tx | mp->work_tx_end | mp->work_rx;
if (likely(!mp->oom))
queue_mask |= mp->work_rx_refill;
if (!queue_mask) {
if (mv643xx_eth_collect_events(mp))
continue;
break;
}
queue = fls(queue_mask) - 1;
queue_mask = 1 << queue;
work_tbd = budget - work_done;
if (work_tbd > 16)
work_tbd = 16;
if (mp->work_tx_end & queue_mask) {
txq_kick(mp->txq + queue);
} else if (mp->work_tx & queue_mask) {
work_done += txq_reclaim(mp->txq + queue, work_tbd, 0);
txq_maybe_wake(mp->txq + queue);
} else if (mp->work_rx & queue_mask) {
work_done += rxq_process(mp->rxq + queue, work_tbd);
} else if (!mp->oom && (mp->work_rx_refill & queue_mask)) {
work_done += rxq_refill(mp->rxq + queue, work_tbd);
} else {
BUG();
}
}
if (work_done < budget) {
if (mp->oom)
mod_timer(&mp->rx_oom, jiffies + (HZ / 10));
napi_complete_done(napi, work_done);
wrlp(mp, INT_MASK, mp->int_mask);
}
return work_done;
}
mv643xx_eth: fix TX hang erratum workaround The previously merged TX hang erratum workaround ("mv643xx_eth: work around TX hang hardware issue") assumes that TX_END interrupts are delivered simultaneously with or after their corresponding TX interrupts, but this is not always true in practise. In particular, it appears that TX_END interrupts are issued as soon as descriptor fetch returns an invalid descriptor, which may happen before earlier descriptors have been fully transmitted and written back to memory as being done. This hardware behavior can lead to a situation where the current driver code mistakenly assumes that the MAC has given up transmitting before noticing the packets that it is in fact still currently working on, causing the driver to re-kick the transmit queue, which will only cause the MAC to re-fetch the invalid head descriptor, and generate another TX_END interrupt, et cetera, until the packets in the pipe finally finish transmitting and have their descriptors written back to memory, which will then finally break the loop. Fix this by having the erratum workaround not check the 'number of unfinished descriptor', but instead, to compare the software's idea of what the head descriptor pointer should be to the hardware's head descriptor pointer (which is updated on the same conditions as the TX_END interupt is generated on, i.e. possibly before all previous descriptors have been transmitted and written back). Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
2008-07-14 14:56:55 -06:00
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-16 15:43:17 -06:00
static inline void oom_timer_wrapper(struct timer_list *t)
{
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-16 15:43:17 -06:00
struct mv643xx_eth_private *mp = from_timer(mp, t, rx_oom);
napi_schedule(&mp->napi);
}
static void port_start(struct mv643xx_eth_private *mp)
{
struct net_device *dev = mp->dev;
u32 pscr;
int i;
/*
* Perform PHY reset, if there is a PHY.
*/
if (dev->phydev) {
struct ethtool_link_ksettings cmd;
mv643xx_eth_get_link_ksettings(dev, &cmd);
phy_init_hw(dev->phydev);
mv643xx_eth_set_link_ksettings(
dev, (const struct ethtool_link_ksettings *)&cmd);
phy_start(dev->phydev);
}
/*
* Configure basic link parameters.
*/
pscr = rdlp(mp, PORT_SERIAL_CONTROL);
pscr |= SERIAL_PORT_ENABLE;
wrlp(mp, PORT_SERIAL_CONTROL, pscr);
pscr |= DO_NOT_FORCE_LINK_FAIL;
if (!dev->phydev)
pscr |= FORCE_LINK_PASS;
wrlp(mp, PORT_SERIAL_CONTROL, pscr);
/*
* Configure TX path and queues.
*/
tx_set_rate(mp, 1000000000, 16777216);
for (i = 0; i < mp->txq_count; i++) {
struct tx_queue *txq = mp->txq + i;
txq_reset_hw_ptr(txq);
txq_set_rate(txq, 1000000000, 16777216);
txq_set_fixed_prio_mode(txq);
}
/*
* Receive all unmatched unicast, TCP, UDP, BPDU and broadcast
* frames to RX queue #0, and include the pseudo-header when
* calculating receive checksums.
*/
mv643xx_eth_set_features(mp->dev, mp->dev->features);
/*
* Treat BPDUs as normal multicasts, and disable partition mode.
*/
wrlp(mp, PORT_CONFIG_EXT, 0x00000000);
/*
* Add configured unicast addresses to address filter table.
*/
mv643xx_eth_program_unicast_filter(mp->dev);
/*
* Enable the receive queues.
*/
for (i = 0; i < mp->rxq_count; i++) {
struct rx_queue *rxq = mp->rxq + i;
u32 addr;
addr = (u32)rxq->rx_desc_dma;
addr += rxq->rx_curr_desc * sizeof(struct rx_desc);
wrlp(mp, RXQ_CURRENT_DESC_PTR(i), addr);
rxq_enable(rxq);
}
}
static void mv643xx_eth_recalc_skb_size(struct mv643xx_eth_private *mp)
{
int skb_size;
/*
* Reserve 2+14 bytes for an ethernet header (the hardware
* automatically prepends 2 bytes of dummy data to each
* received packet), 16 bytes for up to four VLAN tags, and
* 4 bytes for the trailing FCS -- 36 bytes total.
*/
skb_size = mp->dev->mtu + 36;
/*
* Make sure that the skb size is a multiple of 8 bytes, as
* the lower three bits of the receive descriptor's buffer
* size field are ignored by the hardware.
*/
mp->skb_size = (skb_size + 7) & ~7;
/*
* If NET_SKB_PAD is smaller than a cache line,
* netdev_alloc_skb() will cause skb->data to be misaligned
* to a cache line boundary. If this is the case, include
* some extra space to allow re-aligning the data area.
*/
mp->skb_size += SKB_DMA_REALIGN;
}
static int mv643xx_eth_open(struct net_device *dev)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
int err;
int i;
wrlp(mp, INT_CAUSE, 0);
wrlp(mp, INT_CAUSE_EXT, 0);
rdlp(mp, INT_CAUSE_EXT);
err = request_irq(dev->irq, mv643xx_eth_irq,
IRQF_SHARED, dev->name, dev);
if (err) {
netdev_err(dev, "can't assign irq\n");
return -EAGAIN;
}
mv643xx_eth_recalc_skb_size(mp);
napi_enable(&mp->napi);
mp->int_mask = INT_EXT;
for (i = 0; i < mp->rxq_count; i++) {
err = rxq_init(mp, i);
if (err) {
while (--i >= 0)
rxq_deinit(mp->rxq + i);
goto out;
}
rxq_refill(mp->rxq + i, INT_MAX);
mp->int_mask |= INT_RX_0 << i;
}
if (mp->oom) {
mp->rx_oom.expires = jiffies + (HZ / 10);
add_timer(&mp->rx_oom);
}
for (i = 0; i < mp->txq_count; i++) {
err = txq_init(mp, i);
if (err) {
while (--i >= 0)
txq_deinit(mp->txq + i);
goto out_free;
}
mp->int_mask |= INT_TX_END_0 << i;
}
add_timer(&mp->mib_counters_timer);
port_start(mp);
wrlp(mp, INT_MASK_EXT, INT_EXT_LINK_PHY | INT_EXT_TX);
wrlp(mp, INT_MASK, mp->int_mask);
return 0;
out_free:
for (i = 0; i < mp->rxq_count; i++)
rxq_deinit(mp->rxq + i);
out:
free_irq(dev->irq, dev);
return err;
}
static void port_reset(struct mv643xx_eth_private *mp)
{
unsigned int data;
int i;
for (i = 0; i < mp->rxq_count; i++)
rxq_disable(mp->rxq + i);
for (i = 0; i < mp->txq_count; i++)
txq_disable(mp->txq + i);
while (1) {
u32 ps = rdlp(mp, PORT_STATUS);
if ((ps & (TX_IN_PROGRESS | TX_FIFO_EMPTY)) == TX_FIFO_EMPTY)
break;
udelay(10);
}
/* Reset the Enable bit in the Configuration Register */
data = rdlp(mp, PORT_SERIAL_CONTROL);
data &= ~(SERIAL_PORT_ENABLE |
DO_NOT_FORCE_LINK_FAIL |
FORCE_LINK_PASS);
wrlp(mp, PORT_SERIAL_CONTROL, data);
}
static int mv643xx_eth_stop(struct net_device *dev)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
int i;
wrlp(mp, INT_MASK_EXT, 0x00000000);
wrlp(mp, INT_MASK, 0x00000000);
rdlp(mp, INT_MASK);
napi_disable(&mp->napi);
del_timer_sync(&mp->rx_oom);
netif_carrier_off(dev);
if (dev->phydev)
phy_stop(dev->phydev);
free_irq(dev->irq, dev);
port_reset(mp);
mv643xx_eth_get_stats(dev);
mib_counters_update(mp);
del_timer_sync(&mp->mib_counters_timer);
for (i = 0; i < mp->rxq_count; i++)
rxq_deinit(mp->rxq + i);
for (i = 0; i < mp->txq_count; i++)
txq_deinit(mp->txq + i);
return 0;
}
static int mv643xx_eth_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
int ret;
if (!dev->phydev)
return -ENOTSUPP;
ret = phy_mii_ioctl(dev->phydev, ifr, cmd);
if (!ret)
mv643xx_eth_adjust_link(dev);
return ret;
}
static int mv643xx_eth_change_mtu(struct net_device *dev, int new_mtu)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
dev->mtu = new_mtu;
mv643xx_eth_recalc_skb_size(mp);
tx_set_rate(mp, 1000000000, 16777216);
if (!netif_running(dev))
return 0;
/*
* Stop and then re-open the interface. This will allocate RX
* skbs of the new MTU.
* There is a possible danger that the open will not succeed,
* due to memory being full.
*/
mv643xx_eth_stop(dev);
if (mv643xx_eth_open(dev)) {
netdev_err(dev,
"fatal error on re-opening device after MTU change\n");
}
return 0;
}
static void tx_timeout_task(struct work_struct *ugly)
{
struct mv643xx_eth_private *mp;
mp = container_of(ugly, struct mv643xx_eth_private, tx_timeout_task);
if (netif_running(mp->dev)) {
netif_tx_stop_all_queues(mp->dev);
port_reset(mp);
port_start(mp);
netif_tx_wake_all_queues(mp->dev);
}
}
static void mv643xx_eth_tx_timeout(struct net_device *dev)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
netdev_info(dev, "tx timeout\n");
schedule_work(&mp->tx_timeout_task);
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void mv643xx_eth_netpoll(struct net_device *dev)
{
struct mv643xx_eth_private *mp = netdev_priv(dev);
wrlp(mp, INT_MASK, 0x00000000);
rdlp(mp, INT_MASK);
mv643xx_eth_irq(dev->irq, dev);
wrlp(mp, INT_MASK, mp->int_mask);
}
#endif
/* platform glue ************************************************************/
static void
mv643xx_eth_conf_mbus_windows(struct mv643xx_eth_shared_private *msp,
const struct mbus_dram_target_info *dram)
{
void __iomem *base = msp->base;
u32 win_enable;
u32 win_protect;
int i;
for (i = 0; i < 6; i++) {
writel(0, base + WINDOW_BASE(i));
writel(0, base + WINDOW_SIZE(i));
if (i < 4)
writel(0, base + WINDOW_REMAP_HIGH(i));
}
win_enable = 0x3f;
win_protect = 0;
for (i = 0; i < dram->num_cs; i++) {
const struct mbus_dram_window *cs = dram->cs + i;
writel((cs->base & 0xffff0000) |
(cs->mbus_attr << 8) |
dram->mbus_dram_target_id, base + WINDOW_BASE(i));
writel((cs->size - 1) & 0xffff0000, base + WINDOW_SIZE(i));
win_enable &= ~(1 << i);
win_protect |= 3 << (2 * i);
}
writel(win_enable, base + WINDOW_BAR_ENABLE);
msp->win_protect = win_protect;
}
static void infer_hw_params(struct mv643xx_eth_shared_private *msp)
{
/*
* Check whether we have a 14-bit coal limit field in bits
* [21:8], or a 16-bit coal limit in bits [25,21:7] of the
* SDMA config register.
*/
writel(0x02000000, msp->base + 0x0400 + SDMA_CONFIG);
if (readl(msp->base + 0x0400 + SDMA_CONFIG) & 0x02000000)
msp->extended_rx_coal_limit = 1;
else
msp->extended_rx_coal_limit = 0;
/*
* Check whether the MAC supports TX rate control, and if
* yes, whether its associated registers are in the old or
* the new place.
*/
writel(1, msp->base + 0x0400 + TX_BW_MTU_MOVED);
if (readl(msp->base + 0x0400 + TX_BW_MTU_MOVED) & 1) {
msp->tx_bw_control = TX_BW_CONTROL_NEW_LAYOUT;
} else {
writel(7, msp->base + 0x0400 + TX_BW_RATE);
if (readl(msp->base + 0x0400 + TX_BW_RATE) & 7)
msp->tx_bw_control = TX_BW_CONTROL_OLD_LAYOUT;
else
msp->tx_bw_control = TX_BW_CONTROL_ABSENT;
}
}
#if defined(CONFIG_OF)
static const struct of_device_id mv643xx_eth_shared_ids[] = {
{ .compatible = "marvell,orion-eth", },
{ .compatible = "marvell,kirkwood-eth", },
{ }
};
MODULE_DEVICE_TABLE(of, mv643xx_eth_shared_ids);
#endif
#if defined(CONFIG_OF_IRQ) && !defined(CONFIG_MV64X60)
#define mv643xx_eth_property(_np, _name, _v) \
do { \
u32 tmp; \
if (!of_property_read_u32(_np, "marvell," _name, &tmp)) \
_v = tmp; \
} while (0)
static struct platform_device *port_platdev[3];
static int mv643xx_eth_shared_of_add_port(struct platform_device *pdev,
struct device_node *pnp)
{
struct platform_device *ppdev;
struct mv643xx_eth_platform_data ppd;
struct resource res;
const char *mac_addr;
int ret;
int dev_num = 0;
memset(&ppd, 0, sizeof(ppd));
ppd.shared = pdev;
memset(&res, 0, sizeof(res));
if (of_irq_to_resource(pnp, 0, &res) <= 0) {
dev_err(&pdev->dev, "missing interrupt on %pOFn\n", pnp);
return -EINVAL;
}
if (of_property_read_u32(pnp, "reg", &ppd.port_number)) {
dev_err(&pdev->dev, "missing reg property on %pOFn\n", pnp);
return -EINVAL;
}
if (ppd.port_number >= 3) {
dev_err(&pdev->dev, "invalid reg property on %pOFn\n", pnp);
return -EINVAL;
}
while (dev_num < 3 && port_platdev[dev_num])
dev_num++;
if (dev_num == 3) {
dev_err(&pdev->dev, "too many ports registered\n");
return -EINVAL;
}
mac_addr = of_get_mac_address(pnp);
if (!IS_ERR(mac_addr))
2019-05-10 03:35:17 -06:00
ether_addr_copy(ppd.mac_addr, mac_addr);
mv643xx_eth_property(pnp, "tx-queue-size", ppd.tx_queue_size);
mv643xx_eth_property(pnp, "tx-sram-addr", ppd.tx_sram_addr);
mv643xx_eth_property(pnp, "tx-sram-size", ppd.tx_sram_size);
mv643xx_eth_property(pnp, "rx-queue-size", ppd.rx_queue_size);
mv643xx_eth_property(pnp, "rx-sram-addr", ppd.rx_sram_addr);
mv643xx_eth_property(pnp, "rx-sram-size", ppd.rx_sram_size);
ppd.phy_node = of_parse_phandle(pnp, "phy-handle", 0);
if (!ppd.phy_node) {
ppd.phy_addr = MV643XX_ETH_PHY_NONE;
of_property_read_u32(pnp, "speed", &ppd.speed);
of_property_read_u32(pnp, "duplex", &ppd.duplex);
}
ppdev = platform_device_alloc(MV643XX_ETH_NAME, dev_num);
if (!ppdev)
return -ENOMEM;
ppdev->dev.coherent_dma_mask = DMA_BIT_MASK(32);
ppdev->dev.of_node = pnp;
ret = platform_device_add_resources(ppdev, &res, 1);
if (ret)
goto port_err;
ret = platform_device_add_data(ppdev, &ppd, sizeof(ppd));
if (ret)
goto port_err;
ret = platform_device_add(ppdev);
if (ret)
goto port_err;
port_platdev[dev_num] = ppdev;
return 0;
port_err:
platform_device_put(ppdev);
return ret;
}
static int mv643xx_eth_shared_of_probe(struct platform_device *pdev)
{
struct mv643xx_eth_shared_platform_data *pd;
struct device_node *pnp, *np = pdev->dev.of_node;
int ret;
/* bail out if not registered from DT */
if (!np)
return 0;
pd = devm_kzalloc(&pdev->dev, sizeof(*pd), GFP_KERNEL);
if (!pd)
return -ENOMEM;
pdev->dev.platform_data = pd;
mv643xx_eth_property(np, "tx-checksum-limit", pd->tx_csum_limit);
for_each_available_child_of_node(np, pnp) {
ret = mv643xx_eth_shared_of_add_port(pdev, pnp);
if (ret) {
of_node_put(pnp);
return ret;
}
}
return 0;
}
static void mv643xx_eth_shared_of_remove(void)
{
int n;
for (n = 0; n < 3; n++) {
platform_device_del(port_platdev[n]);
port_platdev[n] = NULL;
}
}
#else
static inline int mv643xx_eth_shared_of_probe(struct platform_device *pdev)
{
return 0;
}
static inline void mv643xx_eth_shared_of_remove(void)
{
}
#endif
static int mv643xx_eth_shared_probe(struct platform_device *pdev)
{
static int mv643xx_eth_version_printed;
struct mv643xx_eth_shared_platform_data *pd;
struct mv643xx_eth_shared_private *msp;
const struct mbus_dram_target_info *dram;
struct resource *res;
int ret;
if (!mv643xx_eth_version_printed++)
pr_notice("MV-643xx 10/100/1000 ethernet driver version %s\n",
mv643xx_eth_driver_version);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (res == NULL)
return -EINVAL;
msp = devm_kzalloc(&pdev->dev, sizeof(*msp), GFP_KERNEL);
if (msp == NULL)
return -ENOMEM;
platform_set_drvdata(pdev, msp);
msp->base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
if (msp->base == NULL)
return -ENOMEM;
msp->clk = devm_clk_get(&pdev->dev, NULL);
if (!IS_ERR(msp->clk))
clk_prepare_enable(msp->clk);
/*
* (Re-)program MBUS remapping windows if we are asked to.
*/
dram = mv_mbus_dram_info();
if (dram)
mv643xx_eth_conf_mbus_windows(msp, dram);
ret = mv643xx_eth_shared_of_probe(pdev);
if (ret)
goto err_put_clk;
pd = dev_get_platdata(&pdev->dev);
msp->tx_csum_limit = (pd != NULL && pd->tx_csum_limit) ?
pd->tx_csum_limit : 9 * 1024;
infer_hw_params(msp);
return 0;
err_put_clk:
if (!IS_ERR(msp->clk))
clk_disable_unprepare(msp->clk);
return ret;
}
static int mv643xx_eth_shared_remove(struct platform_device *pdev)
{
struct mv643xx_eth_shared_private *msp = platform_get_drvdata(pdev);
mv643xx_eth_shared_of_remove();
if (!IS_ERR(msp->clk))
clk_disable_unprepare(msp->clk);
return 0;
}
static struct platform_driver mv643xx_eth_shared_driver = {
.probe = mv643xx_eth_shared_probe,
.remove = mv643xx_eth_shared_remove,
.driver = {
.name = MV643XX_ETH_SHARED_NAME,
.of_match_table = of_match_ptr(mv643xx_eth_shared_ids),
},
};
static void phy_addr_set(struct mv643xx_eth_private *mp, int phy_addr)
{
int addr_shift = 5 * mp->port_num;
u32 data;
data = rdl(mp, PHY_ADDR);
data &= ~(0x1f << addr_shift);
data |= (phy_addr & 0x1f) << addr_shift;
wrl(mp, PHY_ADDR, data);
}
static int phy_addr_get(struct mv643xx_eth_private *mp)
{
unsigned int data;
data = rdl(mp, PHY_ADDR);
return (data >> (5 * mp->port_num)) & 0x1f;
}
static void set_params(struct mv643xx_eth_private *mp,
struct mv643xx_eth_platform_data *pd)
{
struct net_device *dev = mp->dev;
unsigned int tx_ring_size;
if (is_valid_ether_addr(pd->mac_addr))
memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
else
uc_addr_get(mp, dev->dev_addr);
mp->rx_ring_size = DEFAULT_RX_QUEUE_SIZE;
if (pd->rx_queue_size)
mp->rx_ring_size = pd->rx_queue_size;
mp->rx_desc_sram_addr = pd->rx_sram_addr;
mp->rx_desc_sram_size = pd->rx_sram_size;
mp->rxq_count = pd->rx_queue_count ? : 1;
tx_ring_size = DEFAULT_TX_QUEUE_SIZE;
if (pd->tx_queue_size)
tx_ring_size = pd->tx_queue_size;
mp->tx_ring_size = clamp_t(unsigned int, tx_ring_size,
MV643XX_MAX_SKB_DESCS * 2, 4096);
if (mp->tx_ring_size != tx_ring_size)
netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
mp->tx_ring_size, tx_ring_size);
mp->tx_desc_sram_addr = pd->tx_sram_addr;
mp->tx_desc_sram_size = pd->tx_sram_size;
mp->txq_count = pd->tx_queue_count ? : 1;
}
static int get_phy_mode(struct mv643xx_eth_private *mp)
{
struct device *dev = mp->dev->dev.parent;
int iface = -1;
if (dev->of_node)
iface = of_get_phy_mode(dev->of_node);
/* Historical default if unspecified. We could also read/write
* the interface state in the PSC1
*/
if (iface < 0)
iface = PHY_INTERFACE_MODE_GMII;
return iface;
}
static struct phy_device *phy_scan(struct mv643xx_eth_private *mp,
int phy_addr)
{
struct phy_device *phydev;
int start;
int num;
int i;
char phy_id[MII_BUS_ID_SIZE + 3];
if (phy_addr == MV643XX_ETH_PHY_ADDR_DEFAULT) {
start = phy_addr_get(mp) & 0x1f;
num = 32;
} else {
start = phy_addr & 0x1f;
num = 1;
}
/* Attempt to connect to the PHY using orion-mdio */
phydev = ERR_PTR(-ENODEV);
for (i = 0; i < num; i++) {
int addr = (start + i) & 0x1f;
snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
"orion-mdio-mii", addr);
phydev = phy_connect(mp->dev, phy_id, mv643xx_eth_adjust_link,
get_phy_mode(mp));
if (!IS_ERR(phydev)) {
phy_addr_set(mp, addr);
break;
}
}
return phydev;
}
static void phy_init(struct mv643xx_eth_private *mp, int speed, int duplex)
{
struct net_device *dev = mp->dev;
struct phy_device *phy = dev->phydev;
if (speed == 0) {
phy->autoneg = AUTONEG_ENABLE;
phy->speed = 0;
phy->duplex = 0;
linkmode_copy(phy->advertising, phy->supported);
linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
phy->advertising);
} else {
phy->autoneg = AUTONEG_DISABLE;
linkmode_zero(phy->advertising);
phy->speed = speed;
phy->duplex = duplex;
}
phy_start_aneg(phy);
}
static void init_pscr(struct mv643xx_eth_private *mp, int speed, int duplex)
{
struct net_device *dev = mp->dev;
u32 pscr;
pscr = rdlp(mp, PORT_SERIAL_CONTROL);
if (pscr & SERIAL_PORT_ENABLE) {
pscr &= ~SERIAL_PORT_ENABLE;
wrlp(mp, PORT_SERIAL_CONTROL, pscr);
}
pscr = MAX_RX_PACKET_9700BYTE | SERIAL_PORT_CONTROL_RESERVED;
if (!dev->phydev) {
pscr |= DISABLE_AUTO_NEG_SPEED_GMII;
if (speed == SPEED_1000)
pscr |= SET_GMII_SPEED_TO_1000;
else if (speed == SPEED_100)
pscr |= SET_MII_SPEED_TO_100;
pscr |= DISABLE_AUTO_NEG_FOR_FLOW_CTRL;
pscr |= DISABLE_AUTO_NEG_FOR_DUPLEX;
if (duplex == DUPLEX_FULL)
pscr |= SET_FULL_DUPLEX_MODE;
}
wrlp(mp, PORT_SERIAL_CONTROL, pscr);
}
static const struct net_device_ops mv643xx_eth_netdev_ops = {
.ndo_open = mv643xx_eth_open,
.ndo_stop = mv643xx_eth_stop,
.ndo_start_xmit = mv643xx_eth_xmit,
.ndo_set_rx_mode = mv643xx_eth_set_rx_mode,
.ndo_set_mac_address = mv643xx_eth_set_mac_address,
.ndo_validate_addr = eth_validate_addr,
.ndo_do_ioctl = mv643xx_eth_ioctl,
.ndo_change_mtu = mv643xx_eth_change_mtu,
.ndo_set_features = mv643xx_eth_set_features,
.ndo_tx_timeout = mv643xx_eth_tx_timeout,
.ndo_get_stats = mv643xx_eth_get_stats,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = mv643xx_eth_netpoll,
#endif
};
static int mv643xx_eth_probe(struct platform_device *pdev)
{
struct mv643xx_eth_platform_data *pd;
struct mv643xx_eth_private *mp;
struct net_device *dev;
struct phy_device *phydev = NULL;
struct resource *res;
int err;
pd = dev_get_platdata(&pdev->dev);
if (pd == NULL) {
dev_err(&pdev->dev, "no mv643xx_eth_platform_data\n");
return -ENODEV;
}
if (pd->shared == NULL) {
dev_err(&pdev->dev, "no mv643xx_eth_platform_data->shared\n");
return -ENODEV;
}
dev = alloc_etherdev_mq(sizeof(struct mv643xx_eth_private), 8);
if (!dev)
return -ENOMEM;
SET_NETDEV_DEV(dev, &pdev->dev);
mp = netdev_priv(dev);
platform_set_drvdata(pdev, mp);
mp->shared = platform_get_drvdata(pd->shared);
mp->base = mp->shared->base + 0x0400 + (pd->port_number << 10);
mp->port_num = pd->port_number;
mp->dev = dev;
/* Kirkwood resets some registers on gated clocks. Especially
* CLK125_BYPASS_EN must be cleared but is not available on
* all other SoCs/System Controllers using this driver.
*/
if (of_device_is_compatible(pdev->dev.of_node,
"marvell,kirkwood-eth-port"))
wrlp(mp, PORT_SERIAL_CONTROL1,
rdlp(mp, PORT_SERIAL_CONTROL1) & ~CLK125_BYPASS_EN);
/*
* Start with a default rate, and if there is a clock, allow
* it to override the default.
*/
mp->t_clk = 133000000;
mp->clk = devm_clk_get(&pdev->dev, NULL);
if (!IS_ERR(mp->clk)) {
clk_prepare_enable(mp->clk);
mp->t_clk = clk_get_rate(mp->clk);
} else if (!IS_ERR(mp->shared->clk)) {
mp->t_clk = clk_get_rate(mp->shared->clk);
}
set_params(mp, pd);
netif_set_real_num_tx_queues(dev, mp->txq_count);
netif_set_real_num_rx_queues(dev, mp->rxq_count);
err = 0;
if (pd->phy_node) {
phydev = of_phy_connect(mp->dev, pd->phy_node,
mv643xx_eth_adjust_link, 0,
get_phy_mode(mp));
if (!phydev)
err = -ENODEV;
else
phy_addr_set(mp, phydev->mdio.addr);
} else if (pd->phy_addr != MV643XX_ETH_PHY_NONE) {
phydev = phy_scan(mp, pd->phy_addr);
if (IS_ERR(phydev))
err = PTR_ERR(phydev);
else
phy_init(mp, pd->speed, pd->duplex);
}
if (err == -ENODEV) {
err = -EPROBE_DEFER;
goto out;
}
if (err)
goto out;
dev->ethtool_ops = &mv643xx_eth_ethtool_ops;
init_pscr(mp, pd->speed, pd->duplex);
mib_counters_clear(mp);
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-16 15:43:17 -06:00
timer_setup(&mp->mib_counters_timer, mib_counters_timer_wrapper, 0);
mp->mib_counters_timer.expires = jiffies + 30 * HZ;
spin_lock_init(&mp->mib_counters_lock);
INIT_WORK(&mp->tx_timeout_task, tx_timeout_task);
netif_napi_add(dev, &mp->napi, mv643xx_eth_poll, NAPI_POLL_WEIGHT);
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-16 15:43:17 -06:00
timer_setup(&mp->rx_oom, oom_timer_wrapper, 0);
res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
BUG_ON(!res);
dev->irq = res->start;
dev->netdev_ops = &mv643xx_eth_netdev_ops;
dev->watchdog_timeo = 2 * HZ;
dev->base_addr = 0;
dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
dev->vlan_features = dev->features;
dev->features |= NETIF_F_RXCSUM;
dev->hw_features = dev->features;
dev->priv_flags |= IFF_UNICAST_FLT;
dev->gso_max_segs = MV643XX_MAX_TSO_SEGS;
ethernet: use net core MTU range checking in more drivers Somehow, I missed a healthy number of ethernet drivers in the last pass. Most of these drivers either were in need of an updated max_mtu to make jumbo frames possible to enable again. In a few cases, also setting a different min_mtu to match previous lower bounds. There are also a few drivers that had no upper bounds checking, so they're getting a brand new ETH_MAX_MTU that is identical to IP_MAX_MTU, but accessible by includes all ethernet and ethernet-like drivers all have already. acenic: - min_mtu = 0, max_mtu = 9000 amazon/ena: - min_mtu = 128, max_mtu = adapter->max_mtu amd/xgbe: - min_mtu = 0, max_mtu = 9000 sb1250: - min_mtu = 0, max_mtu = 1518 cxgb3: - min_mtu = 81, max_mtu = 65535 cxgb4: - min_mtu = 81, max_mtu = 9600 cxgb4vf: - min_mtu = 81, max_mtu = 65535 benet: - min_mtu = 256, max_mtu = 9000 ibmveth: - min_mtu = 68, max_mtu = 65535 ibmvnic: - min_mtu = adapter->min_mtu, max_mtu = adapter->max_mtu - remove now redundant ibmvnic_change_mtu jme: - min_mtu = 1280, max_mtu = 9202 mv643xx_eth: - min_mtu = 64, max_mtu = 9500 mlxsw: - min_mtu = 0, max_mtu = 65535 - Basically bypassing the core checks, and instead relying on dynamic checks in the respective switch drivers' ndo_change_mtu functions ns83820: - min_mtu = 0 - remove redundant ns83820_change_mtu, only checked for mtu > 1500 netxen: - min_mtu = 0, max_mtu = 8000 (P2), max_mtu = 9600 (P3) qlge: - min_mtu = 1500, max_mtu = 9000 - driver only supports setting mtu to 1500 or 9000, so the core check only rules out < 1500 and > 9000, qlge_change_mtu still needs to check that the value is 1500 or 9000 qualcomm/emac: - min_mtu = 46, max_mtu = 9194 xilinx_axienet: - min_mtu = 64, max_mtu = 9000 Fixes: 61e84623ace3 ("net: centralize net_device min/max MTU checking") CC: netdev@vger.kernel.org CC: Jes Sorensen <jes@trained-monkey.org> CC: Netanel Belgazal <netanel@annapurnalabs.com> CC: Tom Lendacky <thomas.lendacky@amd.com> CC: Santosh Raspatur <santosh@chelsio.com> CC: Hariprasad S <hariprasad@chelsio.com> CC: Sathya Perla <sathya.perla@broadcom.com> CC: Ajit Khaparde <ajit.khaparde@broadcom.com> CC: Sriharsha Basavapatna <sriharsha.basavapatna@broadcom.com> CC: Somnath Kotur <somnath.kotur@broadcom.com> CC: Thomas Falcon <tlfalcon@linux.vnet.ibm.com> CC: John Allen <jallen@linux.vnet.ibm.com> CC: Guo-Fu Tseng <cooldavid@cooldavid.org> CC: Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com> CC: Jiri Pirko <jiri@mellanox.com> CC: Ido Schimmel <idosch@mellanox.com> CC: Manish Chopra <manish.chopra@qlogic.com> CC: Sony Chacko <sony.chacko@qlogic.com> CC: Rajesh Borundia <rajesh.borundia@qlogic.com> CC: Timur Tabi <timur@codeaurora.org> CC: Anirudha Sarangi <anirudh@xilinx.com> CC: John Linn <John.Linn@xilinx.com> Signed-off-by: Jarod Wilson <jarod@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-10-20 11:55:16 -06:00
/* MTU range: 64 - 9500 */
dev->min_mtu = 64;
dev->max_mtu = 9500;
if (mp->shared->win_protect)
wrl(mp, WINDOW_PROTECT(mp->port_num), mp->shared->win_protect);
netif_carrier_off(dev);
wrlp(mp, SDMA_CONFIG, PORT_SDMA_CONFIG_DEFAULT_VALUE);
set_rx_coal(mp, 250);
set_tx_coal(mp, 0);
err = register_netdev(dev);
if (err)
goto out;
netdev_notice(dev, "port %d with MAC address %pM\n",
mp->port_num, dev->dev_addr);
if (mp->tx_desc_sram_size > 0)
netdev_notice(dev, "configured with sram\n");
return 0;
out:
if (!IS_ERR(mp->clk))
clk_disable_unprepare(mp->clk);
free_netdev(dev);
return err;
}
static int mv643xx_eth_remove(struct platform_device *pdev)
{
struct mv643xx_eth_private *mp = platform_get_drvdata(pdev);
struct net_device *dev = mp->dev;
unregister_netdev(mp->dev);
if (dev->phydev)
phy_disconnect(dev->phydev);
cancel_work_sync(&mp->tx_timeout_task);
if (!IS_ERR(mp->clk))
clk_disable_unprepare(mp->clk);
free_netdev(mp->dev);
return 0;
}
static void mv643xx_eth_shutdown(struct platform_device *pdev)
{
struct mv643xx_eth_private *mp = platform_get_drvdata(pdev);
/* Mask all interrupts on ethernet port */
wrlp(mp, INT_MASK, 0);
rdlp(mp, INT_MASK);
if (netif_running(mp->dev))
port_reset(mp);
}
static struct platform_driver mv643xx_eth_driver = {
.probe = mv643xx_eth_probe,
.remove = mv643xx_eth_remove,
.shutdown = mv643xx_eth_shutdown,
.driver = {
.name = MV643XX_ETH_NAME,
},
};
static struct platform_driver * const drivers[] = {
&mv643xx_eth_shared_driver,
&mv643xx_eth_driver,
};
static int __init mv643xx_eth_init_module(void)
{
return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
}
module_init(mv643xx_eth_init_module);
static void __exit mv643xx_eth_cleanup_module(void)
{
platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
}
module_exit(mv643xx_eth_cleanup_module);
MODULE_AUTHOR("Rabeeh Khoury, Assaf Hoffman, Matthew Dharm, "
"Manish Lachwani, Dale Farnsworth and Lennert Buytenhek");
MODULE_DESCRIPTION("Ethernet driver for Marvell MV643XX");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:" MV643XX_ETH_SHARED_NAME);
MODULE_ALIAS("platform:" MV643XX_ETH_NAME);