1
0
Fork 0
alistair23-linux/drivers/net/usb/ax88179_178a.c

1782 lines
44 KiB
C
Raw Normal View History

treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 13 Based on 2 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details you should have received a copy of the gnu general public license along with this program if not see http www gnu org licenses this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details [based] [from] [clk] [highbank] [c] you should have received a copy of the gnu general public license along with this program if not see http www gnu org licenses extracted by the scancode license scanner the SPDX license identifier GPL-2.0-or-later has been chosen to replace the boilerplate/reference in 355 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Jilayne Lovejoy <opensource@jilayne.com> Reviewed-by: Steve Winslow <swinslow@gmail.com> Reviewed-by: Allison Randal <allison@lohutok.net> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190519154041.837383322@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-19 07:51:43 -06:00
// SPDX-License-Identifier: GPL-2.0-or-later
2013-03-01 17:41:11 -07:00
/*
* ASIX AX88179/178A USB 3.0/2.0 to Gigabit Ethernet Devices
*
* Copyright (C) 2011-2013 ASIX
*/
#include <linux/module.h>
#include <linux/etherdevice.h>
#include <linux/mii.h>
#include <linux/usb.h>
#include <linux/crc32.h>
#include <linux/usb/usbnet.h>
#include <uapi/linux/mdio.h>
#include <linux/mdio.h>
2013-03-01 17:41:11 -07:00
#define AX88179_PHY_ID 0x03
#define AX_EEPROM_LEN 0x100
#define AX88179_EEPROM_MAGIC 0x17900b95
#define AX_MCAST_FLTSIZE 8
#define AX_MAX_MCAST 64
#define AX_INT_PPLS_LINK ((u32)BIT(16))
#define AX_RXHDR_L4_TYPE_MASK 0x1c
#define AX_RXHDR_L4_TYPE_UDP 4
#define AX_RXHDR_L4_TYPE_TCP 16
#define AX_RXHDR_L3CSUM_ERR 2
#define AX_RXHDR_L4CSUM_ERR 1
#define AX_RXHDR_CRC_ERR ((u32)BIT(29))
#define AX_RXHDR_DROP_ERR ((u32)BIT(31))
2013-03-01 17:41:11 -07:00
#define AX_ACCESS_MAC 0x01
#define AX_ACCESS_PHY 0x02
#define AX_ACCESS_EEPROM 0x04
#define AX_ACCESS_EFUS 0x05
#define AX_PAUSE_WATERLVL_HIGH 0x54
#define AX_PAUSE_WATERLVL_LOW 0x55
#define PHYSICAL_LINK_STATUS 0x02
#define AX_USB_SS 0x04
#define AX_USB_HS 0x02
#define GENERAL_STATUS 0x03
/* Check AX88179 version. UA1:Bit2 = 0, UA2:Bit2 = 1 */
#define AX_SECLD 0x04
#define AX_SROM_ADDR 0x07
#define AX_SROM_CMD 0x0a
#define EEP_RD 0x04
#define EEP_BUSY 0x10
#define AX_SROM_DATA_LOW 0x08
#define AX_SROM_DATA_HIGH 0x09
#define AX_RX_CTL 0x0b
#define AX_RX_CTL_DROPCRCERR 0x0100
#define AX_RX_CTL_IPE 0x0200
#define AX_RX_CTL_START 0x0080
#define AX_RX_CTL_AP 0x0020
#define AX_RX_CTL_AM 0x0010
#define AX_RX_CTL_AB 0x0008
#define AX_RX_CTL_AMALL 0x0002
#define AX_RX_CTL_PRO 0x0001
#define AX_RX_CTL_STOP 0x0000
#define AX_NODE_ID 0x10
#define AX_MULFLTARY 0x16
#define AX_MEDIUM_STATUS_MODE 0x22
#define AX_MEDIUM_GIGAMODE 0x01
#define AX_MEDIUM_FULL_DUPLEX 0x02
#define AX_MEDIUM_EN_125MHZ 0x08
#define AX_MEDIUM_RXFLOW_CTRLEN 0x10
#define AX_MEDIUM_TXFLOW_CTRLEN 0x20
#define AX_MEDIUM_RECEIVE_EN 0x100
#define AX_MEDIUM_PS 0x200
#define AX_MEDIUM_JUMBO_EN 0x8040
#define AX_MONITOR_MOD 0x24
#define AX_MONITOR_MODE_RWLC 0x02
#define AX_MONITOR_MODE_RWMP 0x04
#define AX_MONITOR_MODE_PMEPOL 0x20
#define AX_MONITOR_MODE_PMETYPE 0x40
#define AX_GPIO_CTRL 0x25
#define AX_GPIO_CTRL_GPIO3EN 0x80
#define AX_GPIO_CTRL_GPIO2EN 0x40
#define AX_GPIO_CTRL_GPIO1EN 0x20
#define AX_PHYPWR_RSTCTL 0x26
#define AX_PHYPWR_RSTCTL_BZ 0x0010
#define AX_PHYPWR_RSTCTL_IPRL 0x0020
#define AX_PHYPWR_RSTCTL_AT 0x1000
#define AX_RX_BULKIN_QCTRL 0x2e
#define AX_CLK_SELECT 0x33
#define AX_CLK_SELECT_BCS 0x01
#define AX_CLK_SELECT_ACS 0x02
#define AX_CLK_SELECT_ULR 0x08
#define AX_RXCOE_CTL 0x34
#define AX_RXCOE_IP 0x01
#define AX_RXCOE_TCP 0x02
#define AX_RXCOE_UDP 0x04
#define AX_RXCOE_TCPV6 0x20
#define AX_RXCOE_UDPV6 0x40
#define AX_TXCOE_CTL 0x35
#define AX_TXCOE_IP 0x01
#define AX_TXCOE_TCP 0x02
#define AX_TXCOE_UDP 0x04
#define AX_TXCOE_TCPV6 0x20
#define AX_TXCOE_UDPV6 0x40
#define AX_LEDCTRL 0x73
#define GMII_PHY_PHYSR 0x11
#define GMII_PHY_PHYSR_SMASK 0xc000
#define GMII_PHY_PHYSR_GIGA 0x8000
#define GMII_PHY_PHYSR_100 0x4000
#define GMII_PHY_PHYSR_FULL 0x2000
#define GMII_PHY_PHYSR_LINK 0x400
#define GMII_LED_ACT 0x1a
#define GMII_LED_ACTIVE_MASK 0xff8f
#define GMII_LED0_ACTIVE BIT(4)
#define GMII_LED1_ACTIVE BIT(5)
#define GMII_LED2_ACTIVE BIT(6)
#define GMII_LED_LINK 0x1c
#define GMII_LED_LINK_MASK 0xf888
#define GMII_LED0_LINK_10 BIT(0)
#define GMII_LED0_LINK_100 BIT(1)
#define GMII_LED0_LINK_1000 BIT(2)
#define GMII_LED1_LINK_10 BIT(4)
#define GMII_LED1_LINK_100 BIT(5)
#define GMII_LED1_LINK_1000 BIT(6)
#define GMII_LED2_LINK_10 BIT(8)
#define GMII_LED2_LINK_100 BIT(9)
#define GMII_LED2_LINK_1000 BIT(10)
#define LED0_ACTIVE BIT(0)
#define LED0_LINK_10 BIT(1)
#define LED0_LINK_100 BIT(2)
#define LED0_LINK_1000 BIT(3)
#define LED0_FD BIT(4)
#define LED0_USB3_MASK 0x001f
#define LED1_ACTIVE BIT(5)
#define LED1_LINK_10 BIT(6)
#define LED1_LINK_100 BIT(7)
#define LED1_LINK_1000 BIT(8)
#define LED1_FD BIT(9)
#define LED1_USB3_MASK 0x03e0
#define LED2_ACTIVE BIT(10)
#define LED2_LINK_1000 BIT(13)
#define LED2_LINK_100 BIT(12)
#define LED2_LINK_10 BIT(11)
#define LED2_FD BIT(14)
#define LED_VALID BIT(15)
#define LED2_USB3_MASK 0x7c00
#define GMII_PHYPAGE 0x1e
#define GMII_PHY_PAGE_SELECT 0x1f
#define GMII_PHY_PGSEL_EXT 0x0007
#define GMII_PHY_PGSEL_PAGE0 0x0000
#define GMII_PHY_PGSEL_PAGE3 0x0003
#define GMII_PHY_PGSEL_PAGE5 0x0005
2013-03-01 17:41:11 -07:00
struct ax88179_data {
u8 eee_enabled;
u8 eee_active;
2013-03-01 17:41:11 -07:00
u16 rxctl;
u16 reserved;
};
struct ax88179_int_data {
__le32 intdata1;
__le32 intdata2;
};
static const struct {
unsigned char ctrl, timer_l, timer_h, size, ifg;
} AX88179_BULKIN_SIZE[] = {
{7, 0x4f, 0, 0x12, 0xff},
{7, 0x20, 3, 0x16, 0xff},
{7, 0xae, 7, 0x18, 0xff},
{7, 0xcc, 0x4c, 0x18, 8},
};
static int __ax88179_read_cmd(struct usbnet *dev, u8 cmd, u16 value, u16 index,
u16 size, void *data, int in_pm)
{
int ret;
int (*fn)(struct usbnet *, u8, u8, u16, u16, void *, u16);
BUG_ON(!dev);
if (!in_pm)
fn = usbnet_read_cmd;
else
fn = usbnet_read_cmd_nopm;
ret = fn(dev, cmd, USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
value, index, data, size);
if (unlikely(ret < 0))
netdev_warn(dev->net, "Failed to read reg index 0x%04x: %d\n",
index, ret);
return ret;
}
static int __ax88179_write_cmd(struct usbnet *dev, u8 cmd, u16 value, u16 index,
u16 size, void *data, int in_pm)
{
int ret;
int (*fn)(struct usbnet *, u8, u8, u16, u16, const void *, u16);
BUG_ON(!dev);
if (!in_pm)
fn = usbnet_write_cmd;
else
fn = usbnet_write_cmd_nopm;
ret = fn(dev, cmd, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
value, index, data, size);
if (unlikely(ret < 0))
netdev_warn(dev->net, "Failed to write reg index 0x%04x: %d\n",
index, ret);
return ret;
}
static void ax88179_write_cmd_async(struct usbnet *dev, u8 cmd, u16 value,
u16 index, u16 size, void *data)
{
u16 buf;
if (2 == size) {
buf = *((u16 *)data);
cpu_to_le16s(&buf);
usbnet_write_cmd_async(dev, cmd, USB_DIR_OUT | USB_TYPE_VENDOR |
USB_RECIP_DEVICE, value, index, &buf,
size);
} else {
usbnet_write_cmd_async(dev, cmd, USB_DIR_OUT | USB_TYPE_VENDOR |
USB_RECIP_DEVICE, value, index, data,
size);
}
}
static int ax88179_read_cmd_nopm(struct usbnet *dev, u8 cmd, u16 value,
u16 index, u16 size, void *data)
{
int ret;
if (2 == size) {
u16 buf;
ret = __ax88179_read_cmd(dev, cmd, value, index, size, &buf, 1);
le16_to_cpus(&buf);
*((u16 *)data) = buf;
} else if (4 == size) {
u32 buf;
ret = __ax88179_read_cmd(dev, cmd, value, index, size, &buf, 1);
le32_to_cpus(&buf);
*((u32 *)data) = buf;
} else {
ret = __ax88179_read_cmd(dev, cmd, value, index, size, data, 1);
}
return ret;
}
static int ax88179_write_cmd_nopm(struct usbnet *dev, u8 cmd, u16 value,
u16 index, u16 size, void *data)
{
int ret;
if (2 == size) {
u16 buf;
buf = *((u16 *)data);
cpu_to_le16s(&buf);
ret = __ax88179_write_cmd(dev, cmd, value, index,
size, &buf, 1);
} else {
ret = __ax88179_write_cmd(dev, cmd, value, index,
size, data, 1);
}
return ret;
}
static int ax88179_read_cmd(struct usbnet *dev, u8 cmd, u16 value, u16 index,
u16 size, void *data)
{
int ret;
if (2 == size) {
u16 buf;
ret = __ax88179_read_cmd(dev, cmd, value, index, size, &buf, 0);
le16_to_cpus(&buf);
*((u16 *)data) = buf;
} else if (4 == size) {
u32 buf;
ret = __ax88179_read_cmd(dev, cmd, value, index, size, &buf, 0);
le32_to_cpus(&buf);
*((u32 *)data) = buf;
} else {
ret = __ax88179_read_cmd(dev, cmd, value, index, size, data, 0);
}
return ret;
}
static int ax88179_write_cmd(struct usbnet *dev, u8 cmd, u16 value, u16 index,
u16 size, void *data)
{
int ret;
if (2 == size) {
u16 buf;
buf = *((u16 *)data);
cpu_to_le16s(&buf);
ret = __ax88179_write_cmd(dev, cmd, value, index,
size, &buf, 0);
} else {
ret = __ax88179_write_cmd(dev, cmd, value, index,
size, data, 0);
}
return ret;
}
static void ax88179_status(struct usbnet *dev, struct urb *urb)
{
struct ax88179_int_data *event;
u32 link;
if (urb->actual_length < 8)
return;
event = urb->transfer_buffer;
le32_to_cpus((void *)&event->intdata1);
link = (((__force u32)event->intdata1) & AX_INT_PPLS_LINK) >> 16;
if (netif_carrier_ok(dev->net) != link) {
usbnet_link_change(dev, link, 1);
2013-03-01 17:41:11 -07:00
netdev_info(dev->net, "ax88179 - Link status is: %d\n", link);
}
}
static int ax88179_mdio_read(struct net_device *netdev, int phy_id, int loc)
{
struct usbnet *dev = netdev_priv(netdev);
u16 res;
ax88179_read_cmd(dev, AX_ACCESS_PHY, phy_id, (__u16)loc, 2, &res);
return res;
}
static void ax88179_mdio_write(struct net_device *netdev, int phy_id, int loc,
int val)
{
struct usbnet *dev = netdev_priv(netdev);
u16 res = (u16) val;
ax88179_write_cmd(dev, AX_ACCESS_PHY, phy_id, (__u16)loc, 2, &res);
}
static inline int ax88179_phy_mmd_indirect(struct usbnet *dev, u16 prtad,
u16 devad)
{
u16 tmp16;
int ret;
tmp16 = devad;
ret = ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
MII_MMD_CTRL, 2, &tmp16);
tmp16 = prtad;
ret = ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
MII_MMD_DATA, 2, &tmp16);
tmp16 = devad | MII_MMD_CTRL_NOINCR;
ret = ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
MII_MMD_CTRL, 2, &tmp16);
return ret;
}
static int
ax88179_phy_read_mmd_indirect(struct usbnet *dev, u16 prtad, u16 devad)
{
int ret;
u16 tmp16;
ax88179_phy_mmd_indirect(dev, prtad, devad);
ret = ax88179_read_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
MII_MMD_DATA, 2, &tmp16);
if (ret < 0)
return ret;
return tmp16;
}
static int
ax88179_phy_write_mmd_indirect(struct usbnet *dev, u16 prtad, u16 devad,
u16 data)
{
int ret;
ax88179_phy_mmd_indirect(dev, prtad, devad);
ret = ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
MII_MMD_DATA, 2, &data);
if (ret < 0)
return ret;
return 0;
}
2013-03-01 17:41:11 -07:00
static int ax88179_suspend(struct usb_interface *intf, pm_message_t message)
{
struct usbnet *dev = usb_get_intfdata(intf);
u16 tmp16;
u8 tmp8;
usbnet_suspend(intf, message);
/* Disable RX path */
ax88179_read_cmd_nopm(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE,
2, 2, &tmp16);
tmp16 &= ~AX_MEDIUM_RECEIVE_EN;
ax88179_write_cmd_nopm(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE,
2, 2, &tmp16);
/* Force bulk-in zero length */
ax88179_read_cmd_nopm(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL,
2, 2, &tmp16);
tmp16 |= AX_PHYPWR_RSTCTL_BZ | AX_PHYPWR_RSTCTL_IPRL;
ax88179_write_cmd_nopm(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL,
2, 2, &tmp16);
/* change clock */
tmp8 = 0;
ax88179_write_cmd_nopm(dev, AX_ACCESS_MAC, AX_CLK_SELECT, 1, 1, &tmp8);
/* Configure RX control register => stop operation */
tmp16 = AX_RX_CTL_STOP;
ax88179_write_cmd_nopm(dev, AX_ACCESS_MAC, AX_RX_CTL, 2, 2, &tmp16);
return 0;
}
/* This function is used to enable the autodetach function. */
/* This function is determined by offset 0x43 of EEPROM */
static int ax88179_auto_detach(struct usbnet *dev, int in_pm)
{
u16 tmp16;
u8 tmp8;
int (*fnr)(struct usbnet *, u8, u16, u16, u16, void *);
int (*fnw)(struct usbnet *, u8, u16, u16, u16, void *);
if (!in_pm) {
fnr = ax88179_read_cmd;
fnw = ax88179_write_cmd;
} else {
fnr = ax88179_read_cmd_nopm;
fnw = ax88179_write_cmd_nopm;
}
if (fnr(dev, AX_ACCESS_EEPROM, 0x43, 1, 2, &tmp16) < 0)
return 0;
if ((tmp16 == 0xFFFF) || (!(tmp16 & 0x0100)))
return 0;
/* Enable Auto Detach bit */
tmp8 = 0;
fnr(dev, AX_ACCESS_MAC, AX_CLK_SELECT, 1, 1, &tmp8);
tmp8 |= AX_CLK_SELECT_ULR;
fnw(dev, AX_ACCESS_MAC, AX_CLK_SELECT, 1, 1, &tmp8);
fnr(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL, 2, 2, &tmp16);
tmp16 |= AX_PHYPWR_RSTCTL_AT;
fnw(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL, 2, 2, &tmp16);
return 0;
}
static int ax88179_resume(struct usb_interface *intf)
{
struct usbnet *dev = usb_get_intfdata(intf);
u16 tmp16;
u8 tmp8;
usbnet_link_change(dev, 0, 0);
2013-03-01 17:41:11 -07:00
/* Power up ethernet PHY */
tmp16 = 0;
ax88179_write_cmd_nopm(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL,
2, 2, &tmp16);
udelay(1000);
tmp16 = AX_PHYPWR_RSTCTL_IPRL;
ax88179_write_cmd_nopm(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL,
2, 2, &tmp16);
msleep(200);
/* Ethernet PHY Auto Detach*/
ax88179_auto_detach(dev, 1);
/* Enable clock */
ax88179_read_cmd_nopm(dev, AX_ACCESS_MAC, AX_CLK_SELECT, 1, 1, &tmp8);
tmp8 |= AX_CLK_SELECT_ACS | AX_CLK_SELECT_BCS;
ax88179_write_cmd_nopm(dev, AX_ACCESS_MAC, AX_CLK_SELECT, 1, 1, &tmp8);
msleep(100);
/* Configure RX control register => start operation */
tmp16 = AX_RX_CTL_DROPCRCERR | AX_RX_CTL_IPE | AX_RX_CTL_START |
AX_RX_CTL_AP | AX_RX_CTL_AMALL | AX_RX_CTL_AB;
ax88179_write_cmd_nopm(dev, AX_ACCESS_MAC, AX_RX_CTL, 2, 2, &tmp16);
return usbnet_resume(intf);
}
static void
ax88179_get_wol(struct net_device *net, struct ethtool_wolinfo *wolinfo)
{
struct usbnet *dev = netdev_priv(net);
u8 opt;
if (ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_MONITOR_MOD,
1, 1, &opt) < 0) {
wolinfo->supported = 0;
wolinfo->wolopts = 0;
return;
}
wolinfo->supported = WAKE_PHY | WAKE_MAGIC;
wolinfo->wolopts = 0;
if (opt & AX_MONITOR_MODE_RWLC)
wolinfo->wolopts |= WAKE_PHY;
if (opt & AX_MONITOR_MODE_RWMP)
wolinfo->wolopts |= WAKE_MAGIC;
}
static int
ax88179_set_wol(struct net_device *net, struct ethtool_wolinfo *wolinfo)
{
struct usbnet *dev = netdev_priv(net);
u8 opt = 0;
if (wolinfo->wolopts & ~(WAKE_PHY | WAKE_MAGIC))
return -EINVAL;
2013-03-01 17:41:11 -07:00
if (wolinfo->wolopts & WAKE_PHY)
opt |= AX_MONITOR_MODE_RWLC;
if (wolinfo->wolopts & WAKE_MAGIC)
opt |= AX_MONITOR_MODE_RWMP;
if (ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_MONITOR_MOD,
1, 1, &opt) < 0)
return -EINVAL;
return 0;
}
static int ax88179_get_eeprom_len(struct net_device *net)
{
return AX_EEPROM_LEN;
}
static int
ax88179_get_eeprom(struct net_device *net, struct ethtool_eeprom *eeprom,
u8 *data)
{
struct usbnet *dev = netdev_priv(net);
u16 *eeprom_buff;
int first_word, last_word;
int i, ret;
if (eeprom->len == 0)
return -EINVAL;
eeprom->magic = AX88179_EEPROM_MAGIC;
first_word = eeprom->offset >> 1;
last_word = (eeprom->offset + eeprom->len - 1) >> 1;
treewide: kmalloc() -> kmalloc_array() The kmalloc() function has a 2-factor argument form, kmalloc_array(). This patch replaces cases of: kmalloc(a * b, gfp) with: kmalloc_array(a * b, gfp) as well as handling cases of: kmalloc(a * b * c, gfp) with: kmalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kmalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kmalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The tools/ directory was manually excluded, since it has its own implementation of kmalloc(). The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kmalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kmalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kmalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(char) * COUNT + COUNT , ...) | kmalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kmalloc + kmalloc_array ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kmalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kmalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kmalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kmalloc(C1 * C2 * C3, ...) | kmalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kmalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kmalloc(sizeof(THING) * C2, ...) | kmalloc(sizeof(TYPE) * C2, ...) | kmalloc(C1 * C2 * C3, ...) | kmalloc(C1 * C2, ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - (E1) * E2 + E1, E2 , ...) | - kmalloc + kmalloc_array ( - (E1) * (E2) + E1, E2 , ...) | - kmalloc + kmalloc_array ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 14:55:00 -06:00
eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
GFP_KERNEL);
2013-03-01 17:41:11 -07:00
if (!eeprom_buff)
return -ENOMEM;
/* ax88179/178A returns 2 bytes from eeprom on read */
for (i = first_word; i <= last_word; i++) {
ret = __ax88179_read_cmd(dev, AX_ACCESS_EEPROM, i, 1, 2,
&eeprom_buff[i - first_word],
0);
if (ret < 0) {
kfree(eeprom_buff);
return -EIO;
}
}
memcpy(data, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
kfree(eeprom_buff);
return 0;
}
static int ax88179_get_link_ksettings(struct net_device *net,
struct ethtool_link_ksettings *cmd)
2013-03-01 17:41:11 -07:00
{
struct usbnet *dev = netdev_priv(net);
mii_ethtool_get_link_ksettings(&dev->mii, cmd);
return 0;
2013-03-01 17:41:11 -07:00
}
static int ax88179_set_link_ksettings(struct net_device *net,
const struct ethtool_link_ksettings *cmd)
2013-03-01 17:41:11 -07:00
{
struct usbnet *dev = netdev_priv(net);
return mii_ethtool_set_link_ksettings(&dev->mii, cmd);
2013-03-01 17:41:11 -07:00
}
static int
ax88179_ethtool_get_eee(struct usbnet *dev, struct ethtool_eee *data)
{
int val;
/* Get Supported EEE */
val = ax88179_phy_read_mmd_indirect(dev, MDIO_PCS_EEE_ABLE,
MDIO_MMD_PCS);
if (val < 0)
return val;
data->supported = mmd_eee_cap_to_ethtool_sup_t(val);
/* Get advertisement EEE */
val = ax88179_phy_read_mmd_indirect(dev, MDIO_AN_EEE_ADV,
MDIO_MMD_AN);
if (val < 0)
return val;
data->advertised = mmd_eee_adv_to_ethtool_adv_t(val);
/* Get LP advertisement EEE */
val = ax88179_phy_read_mmd_indirect(dev, MDIO_AN_EEE_LPABLE,
MDIO_MMD_AN);
if (val < 0)
return val;
data->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(val);
return 0;
}
static int
ax88179_ethtool_set_eee(struct usbnet *dev, struct ethtool_eee *data)
{
u16 tmp16 = ethtool_adv_to_mmd_eee_adv_t(data->advertised);
return ax88179_phy_write_mmd_indirect(dev, MDIO_AN_EEE_ADV,
MDIO_MMD_AN, tmp16);
}
static int ax88179_chk_eee(struct usbnet *dev)
{
struct ethtool_cmd ecmd = { .cmd = ETHTOOL_GSET };
struct ax88179_data *priv = (struct ax88179_data *)dev->data;
mii_ethtool_gset(&dev->mii, &ecmd);
if (ecmd.duplex & DUPLEX_FULL) {
int eee_lp, eee_cap, eee_adv;
u32 lp, cap, adv, supported = 0;
eee_cap = ax88179_phy_read_mmd_indirect(dev,
MDIO_PCS_EEE_ABLE,
MDIO_MMD_PCS);
if (eee_cap < 0) {
priv->eee_active = 0;
return false;
}
cap = mmd_eee_cap_to_ethtool_sup_t(eee_cap);
if (!cap) {
priv->eee_active = 0;
return false;
}
eee_lp = ax88179_phy_read_mmd_indirect(dev,
MDIO_AN_EEE_LPABLE,
MDIO_MMD_AN);
if (eee_lp < 0) {
priv->eee_active = 0;
return false;
}
eee_adv = ax88179_phy_read_mmd_indirect(dev,
MDIO_AN_EEE_ADV,
MDIO_MMD_AN);
if (eee_adv < 0) {
priv->eee_active = 0;
return false;
}
adv = mmd_eee_adv_to_ethtool_adv_t(eee_adv);
lp = mmd_eee_adv_to_ethtool_adv_t(eee_lp);
supported = (ecmd.speed == SPEED_1000) ?
SUPPORTED_1000baseT_Full :
SUPPORTED_100baseT_Full;
if (!(lp & adv & supported)) {
priv->eee_active = 0;
return false;
}
priv->eee_active = 1;
return true;
}
priv->eee_active = 0;
return false;
}
static void ax88179_disable_eee(struct usbnet *dev)
{
u16 tmp16;
tmp16 = GMII_PHY_PGSEL_PAGE3;
ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
GMII_PHY_PAGE_SELECT, 2, &tmp16);
tmp16 = 0x3246;
ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
MII_PHYADDR, 2, &tmp16);
tmp16 = GMII_PHY_PGSEL_PAGE0;
ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
GMII_PHY_PAGE_SELECT, 2, &tmp16);
}
static void ax88179_enable_eee(struct usbnet *dev)
{
u16 tmp16;
tmp16 = GMII_PHY_PGSEL_PAGE3;
ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
GMII_PHY_PAGE_SELECT, 2, &tmp16);
tmp16 = 0x3247;
ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
MII_PHYADDR, 2, &tmp16);
tmp16 = GMII_PHY_PGSEL_PAGE5;
ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
GMII_PHY_PAGE_SELECT, 2, &tmp16);
tmp16 = 0x0680;
ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
MII_BMSR, 2, &tmp16);
tmp16 = GMII_PHY_PGSEL_PAGE0;
ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
GMII_PHY_PAGE_SELECT, 2, &tmp16);
}
static int ax88179_get_eee(struct net_device *net, struct ethtool_eee *edata)
{
struct usbnet *dev = netdev_priv(net);
struct ax88179_data *priv = (struct ax88179_data *)dev->data;
edata->eee_enabled = priv->eee_enabled;
edata->eee_active = priv->eee_active;
return ax88179_ethtool_get_eee(dev, edata);
}
static int ax88179_set_eee(struct net_device *net, struct ethtool_eee *edata)
{
struct usbnet *dev = netdev_priv(net);
struct ax88179_data *priv = (struct ax88179_data *)dev->data;
int ret = -EOPNOTSUPP;
priv->eee_enabled = edata->eee_enabled;
if (!priv->eee_enabled) {
ax88179_disable_eee(dev);
} else {
priv->eee_enabled = ax88179_chk_eee(dev);
if (!priv->eee_enabled)
return -EOPNOTSUPP;
ax88179_enable_eee(dev);
}
ret = ax88179_ethtool_set_eee(dev, edata);
if (ret)
return ret;
mii_nway_restart(&dev->mii);
usbnet_link_change(dev, 0, 0);
return ret;
}
2013-03-01 17:41:11 -07:00
static int ax88179_ioctl(struct net_device *net, struct ifreq *rq, int cmd)
{
struct usbnet *dev = netdev_priv(net);
return generic_mii_ioctl(&dev->mii, if_mii(rq), cmd, NULL);
}
static const struct ethtool_ops ax88179_ethtool_ops = {
.get_link = ethtool_op_get_link,
.get_msglevel = usbnet_get_msglevel,
.set_msglevel = usbnet_set_msglevel,
.get_wol = ax88179_get_wol,
.set_wol = ax88179_set_wol,
.get_eeprom_len = ax88179_get_eeprom_len,
.get_eeprom = ax88179_get_eeprom,
.get_eee = ax88179_get_eee,
.set_eee = ax88179_set_eee,
2013-03-01 17:41:11 -07:00
.nway_reset = usbnet_nway_reset,
.get_link_ksettings = ax88179_get_link_ksettings,
.set_link_ksettings = ax88179_set_link_ksettings,
2013-03-01 17:41:11 -07:00
};
static void ax88179_set_multicast(struct net_device *net)
{
struct usbnet *dev = netdev_priv(net);
struct ax88179_data *data = (struct ax88179_data *)dev->data;
u8 *m_filter = ((u8 *)dev->data) + 12;
data->rxctl = (AX_RX_CTL_START | AX_RX_CTL_AB | AX_RX_CTL_IPE);
if (net->flags & IFF_PROMISC) {
data->rxctl |= AX_RX_CTL_PRO;
} else if (net->flags & IFF_ALLMULTI ||
netdev_mc_count(net) > AX_MAX_MCAST) {
data->rxctl |= AX_RX_CTL_AMALL;
} else if (netdev_mc_empty(net)) {
/* just broadcast and directed */
} else {
/* We use the 20 byte dev->data for our 8 byte filter buffer
* to avoid allocating memory that is tricky to free later
*/
u32 crc_bits;
struct netdev_hw_addr *ha;
memset(m_filter, 0, AX_MCAST_FLTSIZE);
netdev_for_each_mc_addr(ha, net) {
crc_bits = ether_crc(ETH_ALEN, ha->addr) >> 26;
*(m_filter + (crc_bits >> 3)) |= (1 << (crc_bits & 7));
}
ax88179_write_cmd_async(dev, AX_ACCESS_MAC, AX_MULFLTARY,
AX_MCAST_FLTSIZE, AX_MCAST_FLTSIZE,
m_filter);
data->rxctl |= AX_RX_CTL_AM;
}
ax88179_write_cmd_async(dev, AX_ACCESS_MAC, AX_RX_CTL,
2, 2, &data->rxctl);
}
static int
ax88179_set_features(struct net_device *net, netdev_features_t features)
{
u8 tmp;
struct usbnet *dev = netdev_priv(net);
netdev_features_t changed = net->features ^ features;
if (changed & NETIF_F_IP_CSUM) {
ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_TXCOE_CTL, 1, 1, &tmp);
tmp ^= AX_TXCOE_TCP | AX_TXCOE_UDP;
ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_TXCOE_CTL, 1, 1, &tmp);
}
if (changed & NETIF_F_IPV6_CSUM) {
ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_TXCOE_CTL, 1, 1, &tmp);
tmp ^= AX_TXCOE_TCPV6 | AX_TXCOE_UDPV6;
ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_TXCOE_CTL, 1, 1, &tmp);
}
if (changed & NETIF_F_RXCSUM) {
ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_RXCOE_CTL, 1, 1, &tmp);
tmp ^= AX_RXCOE_IP | AX_RXCOE_TCP | AX_RXCOE_UDP |
AX_RXCOE_TCPV6 | AX_RXCOE_UDPV6;
ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RXCOE_CTL, 1, 1, &tmp);
}
return 0;
}
static int ax88179_change_mtu(struct net_device *net, int new_mtu)
{
struct usbnet *dev = netdev_priv(net);
u16 tmp16;
net->mtu = new_mtu;
dev->hard_mtu = net->mtu + net->hard_header_len;
if (net->mtu > 1500) {
ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE,
2, 2, &tmp16);
tmp16 |= AX_MEDIUM_JUMBO_EN;
ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE,
2, 2, &tmp16);
} else {
ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE,
2, 2, &tmp16);
tmp16 &= ~AX_MEDIUM_JUMBO_EN;
ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE,
2, 2, &tmp16);
}
/* max qlen depend on hard_mtu and rx_urb_size */
usbnet_update_max_qlen(dev);
2013-03-01 17:41:11 -07:00
return 0;
}
static int ax88179_set_mac_addr(struct net_device *net, void *p)
{
struct usbnet *dev = netdev_priv(net);
struct sockaddr *addr = p;
int ret;
2013-03-01 17:41:11 -07:00
if (netif_running(net))
return -EBUSY;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
memcpy(net->dev_addr, addr->sa_data, ETH_ALEN);
/* Set the MAC address */
ret = ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_NODE_ID, ETH_ALEN,
2013-03-01 17:41:11 -07:00
ETH_ALEN, net->dev_addr);
if (ret < 0)
return ret;
return 0;
2013-03-01 17:41:11 -07:00
}
static const struct net_device_ops ax88179_netdev_ops = {
.ndo_open = usbnet_open,
.ndo_stop = usbnet_stop,
.ndo_start_xmit = usbnet_start_xmit,
.ndo_tx_timeout = usbnet_tx_timeout,
.ndo_get_stats64 = usbnet_get_stats64,
2013-03-01 17:41:11 -07:00
.ndo_change_mtu = ax88179_change_mtu,
.ndo_set_mac_address = ax88179_set_mac_addr,
.ndo_validate_addr = eth_validate_addr,
.ndo_do_ioctl = ax88179_ioctl,
.ndo_set_rx_mode = ax88179_set_multicast,
.ndo_set_features = ax88179_set_features,
};
static int ax88179_check_eeprom(struct usbnet *dev)
{
u8 i, buf, eeprom[20];
u16 csum, delay = HZ / 10;
unsigned long jtimeout;
/* Read EEPROM content */
for (i = 0; i < 6; i++) {
buf = i;
if (ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_SROM_ADDR,
1, 1, &buf) < 0)
return -EINVAL;
buf = EEP_RD;
if (ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_SROM_CMD,
1, 1, &buf) < 0)
return -EINVAL;
jtimeout = jiffies + delay;
do {
ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_SROM_CMD,
1, 1, &buf);
if (time_after(jiffies, jtimeout))
return -EINVAL;
} while (buf & EEP_BUSY);
__ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_SROM_DATA_LOW,
2, 2, &eeprom[i * 2], 0);
if ((i == 0) && (eeprom[0] == 0xFF))
return -EINVAL;
}
csum = eeprom[6] + eeprom[7] + eeprom[8] + eeprom[9];
csum = (csum >> 8) + (csum & 0xff);
if ((csum + eeprom[10]) != 0xff)
return -EINVAL;
return 0;
}
static int ax88179_check_efuse(struct usbnet *dev, u16 *ledmode)
{
u8 i;
u8 efuse[64];
u16 csum = 0;
if (ax88179_read_cmd(dev, AX_ACCESS_EFUS, 0, 64, 64, efuse) < 0)
return -EINVAL;
if (*efuse == 0xFF)
return -EINVAL;
for (i = 0; i < 64; i++)
csum = csum + efuse[i];
while (csum > 255)
csum = (csum & 0x00FF) + ((csum >> 8) & 0x00FF);
if (csum != 0xFF)
return -EINVAL;
*ledmode = (efuse[51] << 8) | efuse[52];
return 0;
}
static int ax88179_convert_old_led(struct usbnet *dev, u16 *ledvalue)
{
u16 led;
/* Loaded the old eFuse LED Mode */
if (ax88179_read_cmd(dev, AX_ACCESS_EEPROM, 0x3C, 1, 2, &led) < 0)
return -EINVAL;
led >>= 8;
switch (led) {
case 0xFF:
led = LED0_ACTIVE | LED1_LINK_10 | LED1_LINK_100 |
LED1_LINK_1000 | LED2_ACTIVE | LED2_LINK_10 |
LED2_LINK_100 | LED2_LINK_1000 | LED_VALID;
break;
case 0xFE:
led = LED0_ACTIVE | LED1_LINK_1000 | LED2_LINK_100 | LED_VALID;
break;
case 0xFD:
led = LED0_ACTIVE | LED1_LINK_1000 | LED2_LINK_100 |
LED2_LINK_10 | LED_VALID;
break;
case 0xFC:
led = LED0_ACTIVE | LED1_ACTIVE | LED1_LINK_1000 | LED2_ACTIVE |
LED2_LINK_100 | LED2_LINK_10 | LED_VALID;
break;
default:
led = LED0_ACTIVE | LED1_LINK_10 | LED1_LINK_100 |
LED1_LINK_1000 | LED2_ACTIVE | LED2_LINK_10 |
LED2_LINK_100 | LED2_LINK_1000 | LED_VALID;
break;
}
*ledvalue = led;
return 0;
}
static int ax88179_led_setting(struct usbnet *dev)
{
u8 ledfd, value = 0;
u16 tmp, ledact, ledlink, ledvalue = 0, delay = HZ / 10;
unsigned long jtimeout;
/* Check AX88179 version. UA1 or UA2*/
ax88179_read_cmd(dev, AX_ACCESS_MAC, GENERAL_STATUS, 1, 1, &value);
if (!(value & AX_SECLD)) { /* UA1 */
value = AX_GPIO_CTRL_GPIO3EN | AX_GPIO_CTRL_GPIO2EN |
AX_GPIO_CTRL_GPIO1EN;
if (ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_GPIO_CTRL,
1, 1, &value) < 0)
return -EINVAL;
}
/* Check EEPROM */
if (!ax88179_check_eeprom(dev)) {
value = 0x42;
if (ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_SROM_ADDR,
1, 1, &value) < 0)
return -EINVAL;
value = EEP_RD;
if (ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_SROM_CMD,
1, 1, &value) < 0)
return -EINVAL;
jtimeout = jiffies + delay;
do {
ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_SROM_CMD,
1, 1, &value);
if (time_after(jiffies, jtimeout))
return -EINVAL;
} while (value & EEP_BUSY);
ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_SROM_DATA_HIGH,
1, 1, &value);
ledvalue = (value << 8);
ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_SROM_DATA_LOW,
1, 1, &value);
ledvalue |= value;
/* load internal ROM for defaule setting */
if ((ledvalue == 0xFFFF) || ((ledvalue & LED_VALID) == 0))
ax88179_convert_old_led(dev, &ledvalue);
} else if (!ax88179_check_efuse(dev, &ledvalue)) {
if ((ledvalue == 0xFFFF) || ((ledvalue & LED_VALID) == 0))
ax88179_convert_old_led(dev, &ledvalue);
} else {
ax88179_convert_old_led(dev, &ledvalue);
}
tmp = GMII_PHY_PGSEL_EXT;
ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
GMII_PHY_PAGE_SELECT, 2, &tmp);
tmp = 0x2c;
ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
GMII_PHYPAGE, 2, &tmp);
ax88179_read_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
GMII_LED_ACT, 2, &ledact);
ax88179_read_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
GMII_LED_LINK, 2, &ledlink);
ledact &= GMII_LED_ACTIVE_MASK;
ledlink &= GMII_LED_LINK_MASK;
if (ledvalue & LED0_ACTIVE)
ledact |= GMII_LED0_ACTIVE;
if (ledvalue & LED1_ACTIVE)
ledact |= GMII_LED1_ACTIVE;
if (ledvalue & LED2_ACTIVE)
ledact |= GMII_LED2_ACTIVE;
if (ledvalue & LED0_LINK_10)
ledlink |= GMII_LED0_LINK_10;
if (ledvalue & LED1_LINK_10)
ledlink |= GMII_LED1_LINK_10;
if (ledvalue & LED2_LINK_10)
ledlink |= GMII_LED2_LINK_10;
if (ledvalue & LED0_LINK_100)
ledlink |= GMII_LED0_LINK_100;
if (ledvalue & LED1_LINK_100)
ledlink |= GMII_LED1_LINK_100;
if (ledvalue & LED2_LINK_100)
ledlink |= GMII_LED2_LINK_100;
if (ledvalue & LED0_LINK_1000)
ledlink |= GMII_LED0_LINK_1000;
if (ledvalue & LED1_LINK_1000)
ledlink |= GMII_LED1_LINK_1000;
if (ledvalue & LED2_LINK_1000)
ledlink |= GMII_LED2_LINK_1000;
tmp = ledact;
ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
GMII_LED_ACT, 2, &tmp);
tmp = ledlink;
ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
GMII_LED_LINK, 2, &tmp);
tmp = GMII_PHY_PGSEL_PAGE0;
ax88179_write_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
GMII_PHY_PAGE_SELECT, 2, &tmp);
/* LED full duplex setting */
ledfd = 0;
if (ledvalue & LED0_FD)
ledfd |= 0x01;
else if ((ledvalue & LED0_USB3_MASK) == 0)
ledfd |= 0x02;
if (ledvalue & LED1_FD)
ledfd |= 0x04;
else if ((ledvalue & LED1_USB3_MASK) == 0)
ledfd |= 0x08;
if (ledvalue & LED2_FD)
ledfd |= 0x10;
else if ((ledvalue & LED2_USB3_MASK) == 0)
ledfd |= 0x20;
ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_LEDCTRL, 1, 1, &ledfd);
return 0;
}
static int ax88179_bind(struct usbnet *dev, struct usb_interface *intf)
2013-03-01 17:41:11 -07:00
{
u8 buf[5];
u16 *tmp16;
u8 *tmp;
struct ax88179_data *ax179_data = (struct ax88179_data *)dev->data;
struct ethtool_eee eee_data;
2013-03-01 17:41:11 -07:00
usbnet_get_endpoints(dev, intf);
2013-03-01 17:41:11 -07:00
tmp16 = (u16 *)buf;
tmp = (u8 *)buf;
memset(ax179_data, 0, sizeof(*ax179_data));
2013-03-01 17:41:11 -07:00
/* Power up ethernet PHY */
*tmp16 = 0;
ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL, 2, 2, tmp16);
*tmp16 = AX_PHYPWR_RSTCTL_IPRL;
ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL, 2, 2, tmp16);
msleep(200);
*tmp = AX_CLK_SELECT_ACS | AX_CLK_SELECT_BCS;
ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_CLK_SELECT, 1, 1, tmp);
msleep(100);
ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_NODE_ID, ETH_ALEN,
ETH_ALEN, dev->net->dev_addr);
memcpy(dev->net->perm_addr, dev->net->dev_addr, ETH_ALEN);
2013-03-01 17:41:11 -07:00
/* RX bulk configuration */
memcpy(tmp, &AX88179_BULKIN_SIZE[0], 5);
ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RX_BULKIN_QCTRL, 5, 5, tmp);
dev->rx_urb_size = 1024 * 20;
*tmp = 0x34;
ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_PAUSE_WATERLVL_LOW, 1, 1, tmp);
*tmp = 0x52;
ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_PAUSE_WATERLVL_HIGH,
1, 1, tmp);
dev->net->netdev_ops = &ax88179_netdev_ops;
dev->net->ethtool_ops = &ax88179_ethtool_ops;
dev->net->needed_headroom = 8;
dev->net->max_mtu = 4088;
/* Initialize MII structure */
dev->mii.dev = dev->net;
dev->mii.mdio_read = ax88179_mdio_read;
dev->mii.mdio_write = ax88179_mdio_write;
dev->mii.phy_id_mask = 0xff;
dev->mii.reg_num_mask = 0xff;
dev->mii.phy_id = 0x03;
dev->mii.supports_gmii = 1;
2013-03-01 17:41:11 -07:00
dev->net->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
NETIF_F_RXCSUM;
2013-03-01 17:41:11 -07:00
dev->net->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
NETIF_F_RXCSUM;
2013-03-01 17:41:11 -07:00
/* Enable checksum offload */
*tmp = AX_RXCOE_IP | AX_RXCOE_TCP | AX_RXCOE_UDP |
AX_RXCOE_TCPV6 | AX_RXCOE_UDPV6;
ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RXCOE_CTL, 1, 1, tmp);
*tmp = AX_TXCOE_IP | AX_TXCOE_TCP | AX_TXCOE_UDP |
AX_TXCOE_TCPV6 | AX_TXCOE_UDPV6;
ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_TXCOE_CTL, 1, 1, tmp);
/* Configure RX control register => start operation */
*tmp16 = AX_RX_CTL_DROPCRCERR | AX_RX_CTL_IPE | AX_RX_CTL_START |
AX_RX_CTL_AP | AX_RX_CTL_AMALL | AX_RX_CTL_AB;
ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RX_CTL, 2, 2, tmp16);
*tmp = AX_MONITOR_MODE_PMETYPE | AX_MONITOR_MODE_PMEPOL |
AX_MONITOR_MODE_RWMP;
ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_MONITOR_MOD, 1, 1, tmp);
/* Configure default medium type => giga */
*tmp16 = AX_MEDIUM_RECEIVE_EN | AX_MEDIUM_TXFLOW_CTRLEN |
AX_MEDIUM_RXFLOW_CTRLEN | AX_MEDIUM_FULL_DUPLEX |
AX_MEDIUM_GIGAMODE;
2013-03-01 17:41:11 -07:00
ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE,
2, 2, tmp16);
ax88179_led_setting(dev);
ax179_data->eee_enabled = 0;
ax179_data->eee_active = 0;
ax88179_disable_eee(dev);
ax88179_ethtool_get_eee(dev, &eee_data);
eee_data.advertised = 0;
ax88179_ethtool_set_eee(dev, &eee_data);
2013-03-01 17:41:11 -07:00
/* Restart autoneg */
mii_nway_restart(&dev->mii);
usbnet_link_change(dev, 0, 0);
2013-03-01 17:41:11 -07:00
return 0;
}
static void ax88179_unbind(struct usbnet *dev, struct usb_interface *intf)
{
u16 tmp16;
/* Configure RX control register => stop operation */
tmp16 = AX_RX_CTL_STOP;
ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RX_CTL, 2, 2, &tmp16);
tmp16 = 0;
ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_CLK_SELECT, 1, 1, &tmp16);
/* Power down ethernet PHY */
tmp16 = 0;
ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL, 2, 2, &tmp16);
}
static void
ax88179_rx_checksum(struct sk_buff *skb, u32 *pkt_hdr)
{
skb->ip_summed = CHECKSUM_NONE;
/* checksum error bit is set */
if ((*pkt_hdr & AX_RXHDR_L3CSUM_ERR) ||
(*pkt_hdr & AX_RXHDR_L4CSUM_ERR))
return;
/* It must be a TCP or UDP packet with a valid checksum */
if (((*pkt_hdr & AX_RXHDR_L4_TYPE_MASK) == AX_RXHDR_L4_TYPE_TCP) ||
((*pkt_hdr & AX_RXHDR_L4_TYPE_MASK) == AX_RXHDR_L4_TYPE_UDP))
skb->ip_summed = CHECKSUM_UNNECESSARY;
}
static int ax88179_rx_fixup(struct usbnet *dev, struct sk_buff *skb)
{
struct sk_buff *ax_skb;
int pkt_cnt;
u32 rx_hdr;
u16 hdr_off;
u32 *pkt_hdr;
usbnet: remove generic hard_header_len check This patch removes a generic hard_header_len check from the usbnet module that is causing dropped packages under certain circumstances for devices that send rx packets that cross urb boundaries. One example is the AX88772B which occasionally send rx packets that cross urb boundaries where the remaining partial packet is sent with no hardware header. When the buffer with a partial packet is of less number of octets than the value of hard_header_len the buffer is discarded by the usbnet module. With AX88772B this can be reproduced by using ping with a packet size between 1965-1976. The bug has been reported here: https://bugzilla.kernel.org/show_bug.cgi?id=29082 This patch introduces the following changes: - Removes the generic hard_header_len check in the rx_complete function in the usbnet module. - Introduces a ETH_HLEN check for skbs that are not cloned from within a rx_fixup callback. - For safety a hard_header_len check is added to each rx_fixup callback function that could be affected by this change. These extra checks could possibly be removed by someone who has the hardware to test. - Removes a call to dev_kfree_skb_any() and instead utilizes the dev->done list to queue skbs for cleanup. The changes place full responsibility on the rx_fixup callback functions that clone skbs to only pass valid skbs to the usbnet_skb_return function. Signed-off-by: Emil Goode <emilgoode@gmail.com> Reported-by: Igor Gnatenko <i.gnatenko.brain@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-02-13 09:50:19 -07:00
/* This check is no longer done by usbnet */
if (skb->len < dev->net->hard_header_len)
return 0;
2013-03-01 17:41:11 -07:00
skb_trim(skb, skb->len - 4);
rx_hdr = get_unaligned_le32(skb_tail_pointer(skb));
2013-03-01 17:41:11 -07:00
pkt_cnt = (u16)rx_hdr;
hdr_off = (u16)(rx_hdr >> 16);
pkt_hdr = (u32 *)(skb->data + hdr_off);
while (pkt_cnt--) {
u16 pkt_len;
le32_to_cpus(pkt_hdr);
pkt_len = (*pkt_hdr >> 16) & 0x1fff;
/* Check CRC or runt packet */
if ((*pkt_hdr & AX_RXHDR_CRC_ERR) ||
(*pkt_hdr & AX_RXHDR_DROP_ERR)) {
skb_pull(skb, (pkt_len + 7) & 0xFFF8);
pkt_hdr++;
continue;
}
if (pkt_cnt == 0) {
skb->len = pkt_len;
/* Skip IP alignment pseudo header */
skb_pull(skb, 2);
skb_set_tail_pointer(skb, skb->len);
2013-03-01 17:41:11 -07:00
skb->truesize = pkt_len + sizeof(struct sk_buff);
ax88179_rx_checksum(skb, pkt_hdr);
return 1;
}
ax_skb = skb_clone(skb, GFP_ATOMIC);
if (ax_skb) {
ax_skb->len = pkt_len;
/* Skip IP alignment pseudo header */
skb_pull(ax_skb, 2);
skb_set_tail_pointer(ax_skb, ax_skb->len);
2013-03-01 17:41:11 -07:00
ax_skb->truesize = pkt_len + sizeof(struct sk_buff);
ax88179_rx_checksum(ax_skb, pkt_hdr);
usbnet_skb_return(dev, ax_skb);
} else {
return 0;
}
skb_pull(skb, (pkt_len + 7) & 0xFFF8);
pkt_hdr++;
}
return 1;
}
static struct sk_buff *
ax88179_tx_fixup(struct usbnet *dev, struct sk_buff *skb, gfp_t flags)
{
u32 tx_hdr1, tx_hdr2;
int frame_size = dev->maxpacket;
int mss = skb_shinfo(skb)->gso_size;
int headroom;
void *ptr;
2013-03-01 17:41:11 -07:00
tx_hdr1 = skb->len;
tx_hdr2 = mss;
if (((skb->len + 8) % frame_size) == 0)
tx_hdr2 |= 0x80008000; /* Enable padding */
headroom = skb_headroom(skb) - 8;
2013-03-01 17:41:11 -07:00
if ((skb_header_cloned(skb) || headroom < 0) &&
pskb_expand_head(skb, headroom < 0 ? 8 : 0, 0, GFP_ATOMIC)) {
2013-03-01 17:41:11 -07:00
dev_kfree_skb_any(skb);
return NULL;
2013-03-01 17:41:11 -07:00
}
ptr = skb_push(skb, 8);
put_unaligned_le32(tx_hdr1, ptr);
put_unaligned_le32(tx_hdr2, ptr + 4);
2013-03-01 17:41:11 -07:00
return skb;
}
static int ax88179_link_reset(struct usbnet *dev)
{
struct ax88179_data *ax179_data = (struct ax88179_data *)dev->data;
u8 tmp[5], link_sts;
u16 mode, tmp16, delay = HZ / 10;
u32 tmp32 = 0x40000000;
unsigned long jtimeout;
jtimeout = jiffies + delay;
while (tmp32 & 0x40000000) {
mode = 0;
ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RX_CTL, 2, 2, &mode);
ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RX_CTL, 2, 2,
&ax179_data->rxctl);
/*link up, check the usb device control TX FIFO full or empty*/
ax88179_read_cmd(dev, 0x81, 0x8c, 0, 4, &tmp32);
if (time_after(jiffies, jtimeout))
return 0;
}
mode = AX_MEDIUM_RECEIVE_EN | AX_MEDIUM_TXFLOW_CTRLEN |
AX_MEDIUM_RXFLOW_CTRLEN;
ax88179_read_cmd(dev, AX_ACCESS_MAC, PHYSICAL_LINK_STATUS,
1, 1, &link_sts);
ax88179_read_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
GMII_PHY_PHYSR, 2, &tmp16);
if (!(tmp16 & GMII_PHY_PHYSR_LINK)) {
return 0;
} else if (GMII_PHY_PHYSR_GIGA == (tmp16 & GMII_PHY_PHYSR_SMASK)) {
mode |= AX_MEDIUM_GIGAMODE | AX_MEDIUM_EN_125MHZ;
if (dev->net->mtu > 1500)
mode |= AX_MEDIUM_JUMBO_EN;
if (link_sts & AX_USB_SS)
memcpy(tmp, &AX88179_BULKIN_SIZE[0], 5);
else if (link_sts & AX_USB_HS)
memcpy(tmp, &AX88179_BULKIN_SIZE[1], 5);
else
memcpy(tmp, &AX88179_BULKIN_SIZE[3], 5);
} else if (GMII_PHY_PHYSR_100 == (tmp16 & GMII_PHY_PHYSR_SMASK)) {
mode |= AX_MEDIUM_PS;
if (link_sts & (AX_USB_SS | AX_USB_HS))
memcpy(tmp, &AX88179_BULKIN_SIZE[2], 5);
else
memcpy(tmp, &AX88179_BULKIN_SIZE[3], 5);
} else {
memcpy(tmp, &AX88179_BULKIN_SIZE[3], 5);
}
/* RX bulk configuration */
ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RX_BULKIN_QCTRL, 5, 5, tmp);
dev->rx_urb_size = (1024 * (tmp[3] + 2));
if (tmp16 & GMII_PHY_PHYSR_FULL)
mode |= AX_MEDIUM_FULL_DUPLEX;
ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE,
2, 2, &mode);
ax179_data->eee_enabled = ax88179_chk_eee(dev);
netif_carrier_on(dev->net);
return 0;
2013-03-01 17:41:11 -07:00
}
static int ax88179_reset(struct usbnet *dev)
{
u8 buf[5];
u16 *tmp16;
u8 *tmp;
struct ax88179_data *ax179_data = (struct ax88179_data *)dev->data;
struct ethtool_eee eee_data;
2013-03-01 17:41:11 -07:00
tmp16 = (u16 *)buf;
tmp = (u8 *)buf;
/* Power up ethernet PHY */
*tmp16 = 0;
ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL, 2, 2, tmp16);
*tmp16 = AX_PHYPWR_RSTCTL_IPRL;
ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL, 2, 2, tmp16);
msleep(200);
*tmp = AX_CLK_SELECT_ACS | AX_CLK_SELECT_BCS;
ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_CLK_SELECT, 1, 1, tmp);
msleep(100);
/* Ethernet PHY Auto Detach*/
ax88179_auto_detach(dev, 0);
ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_NODE_ID, ETH_ALEN, ETH_ALEN,
dev->net->dev_addr);
/* RX bulk configuration */
memcpy(tmp, &AX88179_BULKIN_SIZE[0], 5);
ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RX_BULKIN_QCTRL, 5, 5, tmp);
dev->rx_urb_size = 1024 * 20;
*tmp = 0x34;
ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_PAUSE_WATERLVL_LOW, 1, 1, tmp);
*tmp = 0x52;
ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_PAUSE_WATERLVL_HIGH,
1, 1, tmp);
dev->net->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
NETIF_F_RXCSUM;
2013-03-01 17:41:11 -07:00
dev->net->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
NETIF_F_RXCSUM;
2013-03-01 17:41:11 -07:00
/* Enable checksum offload */
*tmp = AX_RXCOE_IP | AX_RXCOE_TCP | AX_RXCOE_UDP |
AX_RXCOE_TCPV6 | AX_RXCOE_UDPV6;
ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RXCOE_CTL, 1, 1, tmp);
*tmp = AX_TXCOE_IP | AX_TXCOE_TCP | AX_TXCOE_UDP |
AX_TXCOE_TCPV6 | AX_TXCOE_UDPV6;
ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_TXCOE_CTL, 1, 1, tmp);
/* Configure RX control register => start operation */
*tmp16 = AX_RX_CTL_DROPCRCERR | AX_RX_CTL_IPE | AX_RX_CTL_START |
AX_RX_CTL_AP | AX_RX_CTL_AMALL | AX_RX_CTL_AB;
ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_RX_CTL, 2, 2, tmp16);
*tmp = AX_MONITOR_MODE_PMETYPE | AX_MONITOR_MODE_PMEPOL |
AX_MONITOR_MODE_RWMP;
ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_MONITOR_MOD, 1, 1, tmp);
/* Configure default medium type => giga */
*tmp16 = AX_MEDIUM_RECEIVE_EN | AX_MEDIUM_TXFLOW_CTRLEN |
AX_MEDIUM_RXFLOW_CTRLEN | AX_MEDIUM_FULL_DUPLEX |
AX_MEDIUM_GIGAMODE;
2013-03-01 17:41:11 -07:00
ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE,
2, 2, tmp16);
ax88179_led_setting(dev);
ax179_data->eee_enabled = 0;
ax179_data->eee_active = 0;
ax88179_disable_eee(dev);
ax88179_ethtool_get_eee(dev, &eee_data);
eee_data.advertised = 0;
ax88179_ethtool_set_eee(dev, &eee_data);
2013-03-01 17:41:11 -07:00
/* Restart autoneg */
mii_nway_restart(&dev->mii);
usbnet_link_change(dev, 0, 0);
2013-03-01 17:41:11 -07:00
return 0;
}
static int ax88179_stop(struct usbnet *dev)
{
u16 tmp16;
ax88179_read_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE,
2, 2, &tmp16);
tmp16 &= ~AX_MEDIUM_RECEIVE_EN;
ax88179_write_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE,
2, 2, &tmp16);
return 0;
}
static const struct driver_info ax88179_info = {
.description = "ASIX AX88179 USB 3.0 Gigabit Ethernet",
2013-03-01 17:41:11 -07:00
.bind = ax88179_bind,
.unbind = ax88179_unbind,
.status = ax88179_status,
.link_reset = ax88179_link_reset,
.reset = ax88179_reset,
.stop = ax88179_stop,
.flags = FLAG_ETHER | FLAG_FRAMING_AX,
.rx_fixup = ax88179_rx_fixup,
.tx_fixup = ax88179_tx_fixup,
};
static const struct driver_info ax88178a_info = {
.description = "ASIX AX88178A USB 2.0 Gigabit Ethernet",
2013-03-01 17:41:11 -07:00
.bind = ax88179_bind,
.unbind = ax88179_unbind,
.status = ax88179_status,
.link_reset = ax88179_link_reset,
.reset = ax88179_reset,
.stop = ax88179_stop,
.flags = FLAG_ETHER | FLAG_FRAMING_AX,
.rx_fixup = ax88179_rx_fixup,
.tx_fixup = ax88179_tx_fixup,
};
static const struct driver_info cypress_GX3_info = {
.description = "Cypress GX3 SuperSpeed to Gigabit Ethernet Controller",
.bind = ax88179_bind,
.unbind = ax88179_unbind,
.status = ax88179_status,
.link_reset = ax88179_link_reset,
.reset = ax88179_reset,
.stop = ax88179_stop,
.flags = FLAG_ETHER | FLAG_FRAMING_AX,
.rx_fixup = ax88179_rx_fixup,
.tx_fixup = ax88179_tx_fixup,
};
static const struct driver_info dlink_dub1312_info = {
.description = "D-Link DUB-1312 USB 3.0 to Gigabit Ethernet Adapter",
.bind = ax88179_bind,
.unbind = ax88179_unbind,
.status = ax88179_status,
.link_reset = ax88179_link_reset,
.reset = ax88179_reset,
.stop = ax88179_stop,
.flags = FLAG_ETHER | FLAG_FRAMING_AX,
.rx_fixup = ax88179_rx_fixup,
.tx_fixup = ax88179_tx_fixup,
};
2013-03-01 17:41:11 -07:00
static const struct driver_info sitecom_info = {
.description = "Sitecom USB 3.0 to Gigabit Adapter",
.bind = ax88179_bind,
.unbind = ax88179_unbind,
.status = ax88179_status,
.link_reset = ax88179_link_reset,
.reset = ax88179_reset,
.stop = ax88179_stop,
.flags = FLAG_ETHER | FLAG_FRAMING_AX,
.rx_fixup = ax88179_rx_fixup,
.tx_fixup = ax88179_tx_fixup,
};
static const struct driver_info samsung_info = {
.description = "Samsung USB Ethernet Adapter",
.bind = ax88179_bind,
.unbind = ax88179_unbind,
.status = ax88179_status,
.link_reset = ax88179_link_reset,
.reset = ax88179_reset,
.stop = ax88179_stop,
.flags = FLAG_ETHER | FLAG_FRAMING_AX,
.rx_fixup = ax88179_rx_fixup,
.tx_fixup = ax88179_tx_fixup,
};
static const struct driver_info lenovo_info = {
.description = "Lenovo OneLinkDock Gigabit LAN",
.bind = ax88179_bind,
.unbind = ax88179_unbind,
.status = ax88179_status,
.link_reset = ax88179_link_reset,
.reset = ax88179_reset,
.stop = ax88179_stop,
.flags = FLAG_ETHER | FLAG_FRAMING_AX,
.rx_fixup = ax88179_rx_fixup,
.tx_fixup = ax88179_tx_fixup,
};
static const struct driver_info belkin_info = {
.description = "Belkin USB Ethernet Adapter",
.bind = ax88179_bind,
.unbind = ax88179_unbind,
.status = ax88179_status,
.link_reset = ax88179_link_reset,
.reset = ax88179_reset,
.stop = ax88179_stop,
.flags = FLAG_ETHER | FLAG_FRAMING_AX,
.rx_fixup = ax88179_rx_fixup,
.tx_fixup = ax88179_tx_fixup,
};
2013-03-01 17:41:11 -07:00
static const struct usb_device_id products[] = {
{
/* ASIX AX88179 10/100/1000 */
USB_DEVICE(0x0b95, 0x1790),
.driver_info = (unsigned long)&ax88179_info,
}, {
/* ASIX AX88178A 10/100/1000 */
USB_DEVICE(0x0b95, 0x178a),
.driver_info = (unsigned long)&ax88178a_info,
}, {
/* Cypress GX3 SuperSpeed to Gigabit Ethernet Bridge Controller */
USB_DEVICE(0x04b4, 0x3610),
.driver_info = (unsigned long)&cypress_GX3_info,
}, {
/* D-Link DUB-1312 USB 3.0 to Gigabit Ethernet Adapter */
USB_DEVICE(0x2001, 0x4a00),
.driver_info = (unsigned long)&dlink_dub1312_info,
2013-03-01 17:41:11 -07:00
}, {
/* Sitecom USB 3.0 to Gigabit Adapter */
USB_DEVICE(0x0df6, 0x0072),
.driver_info = (unsigned long)&sitecom_info,
}, {
/* Samsung USB Ethernet Adapter */
USB_DEVICE(0x04e8, 0xa100),
.driver_info = (unsigned long)&samsung_info,
}, {
/* Lenovo OneLinkDock Gigabit LAN */
USB_DEVICE(0x17ef, 0x304b),
.driver_info = (unsigned long)&lenovo_info,
}, {
/* Belkin B2B128 USB 3.0 Hub + Gigabit Ethernet Adapter */
USB_DEVICE(0x050d, 0x0128),
.driver_info = (unsigned long)&belkin_info,
2013-03-01 17:41:11 -07:00
},
{ },
};
MODULE_DEVICE_TABLE(usb, products);
static struct usb_driver ax88179_178a_driver = {
.name = "ax88179_178a",
.id_table = products,
.probe = usbnet_probe,
.suspend = ax88179_suspend,
.resume = ax88179_resume,
.reset_resume = ax88179_resume,
2013-03-01 17:41:11 -07:00
.disconnect = usbnet_disconnect,
.supports_autosuspend = 1,
.disable_hub_initiated_lpm = 1,
};
module_usb_driver(ax88179_178a_driver);
MODULE_DESCRIPTION("ASIX AX88179/178A based USB 3.0/2.0 Gigabit Ethernet Devices");
MODULE_LICENSE("GPL");