1
0
Fork 0
alistair23-linux/crypto/asymmetric_keys/asymmetric_type.c

407 lines
10 KiB
C
Raw Normal View History

/* Asymmetric public-key cryptography key type
*
* See Documentation/security/asymmetric-keys.txt
*
* Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public Licence
* as published by the Free Software Foundation; either version
* 2 of the Licence, or (at your option) any later version.
*/
#include <keys/asymmetric-subtype.h>
KEYS: Asymmetric key pluggable data parsers The instantiation data passed to the asymmetric key type are expected to be formatted in some way, and there are several possible standard ways to format the data. The two obvious standards are OpenPGP keys and X.509 certificates. The latter is especially useful when dealing with UEFI, and the former might be useful when dealing with, say, eCryptfs. Further, it might be desirable to provide formatted blobs that indicate hardware is to be accessed to retrieve the keys or that the keys live unretrievably in a hardware store, but that the keys can be used by means of the hardware. From userspace, the keys can be loaded using the keyctl command, for example, an X.509 binary certificate: keyctl padd asymmetric foo @s <dhowells.pem or a PGP key: keyctl padd asymmetric bar @s <dhowells.pub or a pointer into the contents of the TPM: keyctl add asymmetric zebra "TPM:04982390582905f8" @s Inside the kernel, pluggable parsers register themselves and then get to examine the payload data to see if they can handle it. If they can, they get to: (1) Propose a name for the key, to be used it the name is "" or NULL. (2) Specify the key subtype. (3) Provide the data for the subtype. The key type asks the parser to do its stuff before a key is allocated and thus before the name is set. If successful, the parser stores the suggested data into the key_preparsed_payload struct, which will be either used (if the key is successfully created and instantiated or updated) or discarded. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-13 08:17:32 -06:00
#include <keys/asymmetric-parser.h>
#include <linux/seq_file.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/ctype.h>
#include "asymmetric_keys.h"
MODULE_LICENSE("GPL");
KEYS: Asymmetric key pluggable data parsers The instantiation data passed to the asymmetric key type are expected to be formatted in some way, and there are several possible standard ways to format the data. The two obvious standards are OpenPGP keys and X.509 certificates. The latter is especially useful when dealing with UEFI, and the former might be useful when dealing with, say, eCryptfs. Further, it might be desirable to provide formatted blobs that indicate hardware is to be accessed to retrieve the keys or that the keys live unretrievably in a hardware store, but that the keys can be used by means of the hardware. From userspace, the keys can be loaded using the keyctl command, for example, an X.509 binary certificate: keyctl padd asymmetric foo @s <dhowells.pem or a PGP key: keyctl padd asymmetric bar @s <dhowells.pub or a pointer into the contents of the TPM: keyctl add asymmetric zebra "TPM:04982390582905f8" @s Inside the kernel, pluggable parsers register themselves and then get to examine the payload data to see if they can handle it. If they can, they get to: (1) Propose a name for the key, to be used it the name is "" or NULL. (2) Specify the key subtype. (3) Provide the data for the subtype. The key type asks the parser to do its stuff before a key is allocated and thus before the name is set. If successful, the parser stores the suggested data into the key_preparsed_payload struct, which will be either used (if the key is successfully created and instantiated or updated) or discarded. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-13 08:17:32 -06:00
static LIST_HEAD(asymmetric_key_parsers);
static DECLARE_RWSEM(asymmetric_key_parsers_sem);
/**
* asymmetric_key_generate_id: Construct an asymmetric key ID
* @val_1: First binary blob
* @len_1: Length of first binary blob
* @val_2: Second binary blob
* @len_2: Length of second binary blob
*
* Construct an asymmetric key ID from a pair of binary blobs.
*/
struct asymmetric_key_id *asymmetric_key_generate_id(const void *val_1,
size_t len_1,
const void *val_2,
size_t len_2)
{
struct asymmetric_key_id *kid;
kid = kmalloc(sizeof(struct asymmetric_key_id) + len_1 + len_2,
GFP_KERNEL);
if (!kid)
return ERR_PTR(-ENOMEM);
kid->len = len_1 + len_2;
memcpy(kid->data, val_1, len_1);
memcpy(kid->data + len_1, val_2, len_2);
return kid;
}
EXPORT_SYMBOL_GPL(asymmetric_key_generate_id);
/**
* asymmetric_key_id_same - Return true if two asymmetric keys IDs are the same.
* @kid_1, @kid_2: The key IDs to compare
*/
bool asymmetric_key_id_same(const struct asymmetric_key_id *kid1,
const struct asymmetric_key_id *kid2)
{
if (!kid1 || !kid2)
return false;
if (kid1->len != kid2->len)
return false;
return memcmp(kid1->data, kid2->data, kid1->len) == 0;
}
EXPORT_SYMBOL_GPL(asymmetric_key_id_same);
/**
* asymmetric_key_id_partial - Return true if two asymmetric keys IDs
* partially match
* @kid_1, @kid_2: The key IDs to compare
*/
bool asymmetric_key_id_partial(const struct asymmetric_key_id *kid1,
const struct asymmetric_key_id *kid2)
{
if (!kid1 || !kid2)
return false;
if (kid1->len < kid2->len)
return false;
return memcmp(kid1->data + (kid1->len - kid2->len),
kid2->data, kid2->len) == 0;
}
EXPORT_SYMBOL_GPL(asymmetric_key_id_partial);
/**
* asymmetric_match_key_ids - Search asymmetric key IDs
* @kids: The list of key IDs to check
* @match_id: The key ID we're looking for
* @match: The match function to use
*/
static bool asymmetric_match_key_ids(
const struct asymmetric_key_ids *kids,
const struct asymmetric_key_id *match_id,
bool (*match)(const struct asymmetric_key_id *kid1,
const struct asymmetric_key_id *kid2))
{
int i;
if (!kids || !match_id)
return false;
for (i = 0; i < ARRAY_SIZE(kids->id); i++)
if (match(kids->id[i], match_id))
return true;
return false;
}
/**
* asymmetric_key_hex_to_key_id - Convert a hex string into a key ID.
* @id: The ID as a hex string.
*/
struct asymmetric_key_id *asymmetric_key_hex_to_key_id(const char *id)
{
struct asymmetric_key_id *match_id;
size_t hexlen;
int ret;
if (!*id)
return ERR_PTR(-EINVAL);
hexlen = strlen(id);
if (hexlen & 1)
return ERR_PTR(-EINVAL);
match_id = kmalloc(sizeof(struct asymmetric_key_id) + hexlen / 2,
GFP_KERNEL);
if (!match_id)
return ERR_PTR(-ENOMEM);
match_id->len = hexlen / 2;
ret = hex2bin(match_id->data, id, hexlen / 2);
if (ret < 0) {
kfree(match_id);
return ERR_PTR(-EINVAL);
}
return match_id;
}
/*
* Match asymmetric keys by an exact match on an ID.
*/
static bool asymmetric_key_cmp(const struct key *key,
const struct key_match_data *match_data)
{
KEYS: Overhaul key identification when searching for asymmetric keys Make use of the new match string preparsing to overhaul key identification when searching for asymmetric keys. The following changes are made: (1) Use the previously created asymmetric_key_id struct to hold the following key IDs derived from the X.509 certificate or PKCS#7 message: id: serial number + issuer skid: subjKeyId + subject authority: authKeyId + issuer (2) Replace the hex fingerprint attached to key->type_data[1] with an asymmetric_key_ids struct containing the id and the skid (if present). (3) Make the asymmetric_type match data preparse select one of two searches: (a) An iterative search for the key ID given if prefixed with "id:". The prefix is expected to be followed by a hex string giving the ID to search for. The criterion key ID is checked against all key IDs recorded on the key. (b) A direct search if the key ID is not prefixed with "id:". This will look for an exact match on the key description. (4) Make x509_request_asymmetric_key() take a key ID. This is then converted into "id:<hex>" and passed into keyring_search() where match preparsing will turn it back into a binary ID. (5) X.509 certificate verification then takes the authority key ID and looks up a key that matches it to find the public key for the certificate signature. (6) PKCS#7 certificate verification then takes the id key ID and looks up a key that matches it to find the public key for the signed information block signature. Additional changes: (1) Multiple subjKeyId and authKeyId values on an X.509 certificate cause the cert to be rejected with -EBADMSG. (2) The 'fingerprint' ID is gone. This was primarily intended to convey PGP public key fingerprints. If PGP is supported in future, this should generate a key ID that carries the fingerprint. (3) Th ca_keyid= kernel command line option is now converted to a key ID and used to match the authority key ID. Possibly this should only match the actual authKeyId part and not the issuer as well. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Vivek Goyal <vgoyal@redhat.com>
2014-09-16 10:36:13 -06:00
const struct asymmetric_key_ids *kids = asymmetric_key_ids(key);
const struct asymmetric_key_id *match_id = match_data->preparsed;
return asymmetric_match_key_ids(kids, match_id,
asymmetric_key_id_same);
}
/*
* Match asymmetric keys by a partial match on an IDs.
*/
static bool asymmetric_key_cmp_partial(const struct key *key,
const struct key_match_data *match_data)
{
const struct asymmetric_key_ids *kids = asymmetric_key_ids(key);
const struct asymmetric_key_id *match_id = match_data->preparsed;
return asymmetric_match_key_ids(kids, match_id,
asymmetric_key_id_partial);
}
/*
* Preparse the match criterion. If we don't set lookup_type and cmp,
* the default will be an exact match on the key description.
*
* There are some specifiers for matching key IDs rather than by the key
* description:
*
* "id:<id>" - find a key by partial match on any available ID
* "ex:<id>" - find a key by exact match on any available ID
*
* These have to be searched by iteration rather than by direct lookup because
* the key is hashed according to its description.
*/
static int asymmetric_key_match_preparse(struct key_match_data *match_data)
{
KEYS: Overhaul key identification when searching for asymmetric keys Make use of the new match string preparsing to overhaul key identification when searching for asymmetric keys. The following changes are made: (1) Use the previously created asymmetric_key_id struct to hold the following key IDs derived from the X.509 certificate or PKCS#7 message: id: serial number + issuer skid: subjKeyId + subject authority: authKeyId + issuer (2) Replace the hex fingerprint attached to key->type_data[1] with an asymmetric_key_ids struct containing the id and the skid (if present). (3) Make the asymmetric_type match data preparse select one of two searches: (a) An iterative search for the key ID given if prefixed with "id:". The prefix is expected to be followed by a hex string giving the ID to search for. The criterion key ID is checked against all key IDs recorded on the key. (b) A direct search if the key ID is not prefixed with "id:". This will look for an exact match on the key description. (4) Make x509_request_asymmetric_key() take a key ID. This is then converted into "id:<hex>" and passed into keyring_search() where match preparsing will turn it back into a binary ID. (5) X.509 certificate verification then takes the authority key ID and looks up a key that matches it to find the public key for the certificate signature. (6) PKCS#7 certificate verification then takes the id key ID and looks up a key that matches it to find the public key for the signed information block signature. Additional changes: (1) Multiple subjKeyId and authKeyId values on an X.509 certificate cause the cert to be rejected with -EBADMSG. (2) The 'fingerprint' ID is gone. This was primarily intended to convey PGP public key fingerprints. If PGP is supported in future, this should generate a key ID that carries the fingerprint. (3) Th ca_keyid= kernel command line option is now converted to a key ID and used to match the authority key ID. Possibly this should only match the actual authKeyId part and not the issuer as well. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Vivek Goyal <vgoyal@redhat.com>
2014-09-16 10:36:13 -06:00
struct asymmetric_key_id *match_id;
const char *spec = match_data->raw_data;
const char *id;
bool (*cmp)(const struct key *, const struct key_match_data *) =
asymmetric_key_cmp;
KEYS: Overhaul key identification when searching for asymmetric keys Make use of the new match string preparsing to overhaul key identification when searching for asymmetric keys. The following changes are made: (1) Use the previously created asymmetric_key_id struct to hold the following key IDs derived from the X.509 certificate or PKCS#7 message: id: serial number + issuer skid: subjKeyId + subject authority: authKeyId + issuer (2) Replace the hex fingerprint attached to key->type_data[1] with an asymmetric_key_ids struct containing the id and the skid (if present). (3) Make the asymmetric_type match data preparse select one of two searches: (a) An iterative search for the key ID given if prefixed with "id:". The prefix is expected to be followed by a hex string giving the ID to search for. The criterion key ID is checked against all key IDs recorded on the key. (b) A direct search if the key ID is not prefixed with "id:". This will look for an exact match on the key description. (4) Make x509_request_asymmetric_key() take a key ID. This is then converted into "id:<hex>" and passed into keyring_search() where match preparsing will turn it back into a binary ID. (5) X.509 certificate verification then takes the authority key ID and looks up a key that matches it to find the public key for the certificate signature. (6) PKCS#7 certificate verification then takes the id key ID and looks up a key that matches it to find the public key for the signed information block signature. Additional changes: (1) Multiple subjKeyId and authKeyId values on an X.509 certificate cause the cert to be rejected with -EBADMSG. (2) The 'fingerprint' ID is gone. This was primarily intended to convey PGP public key fingerprints. If PGP is supported in future, this should generate a key ID that carries the fingerprint. (3) Th ca_keyid= kernel command line option is now converted to a key ID and used to match the authority key ID. Possibly this should only match the actual authKeyId part and not the issuer as well. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Vivek Goyal <vgoyal@redhat.com>
2014-09-16 10:36:13 -06:00
if (!spec || !*spec)
return -EINVAL;
if (spec[0] == 'i' &&
spec[1] == 'd' &&
spec[2] == ':') {
id = spec + 3;
cmp = asymmetric_key_cmp_partial;
} else if (spec[0] == 'e' &&
spec[1] == 'x' &&
spec[2] == ':') {
id = spec + 3;
KEYS: Overhaul key identification when searching for asymmetric keys Make use of the new match string preparsing to overhaul key identification when searching for asymmetric keys. The following changes are made: (1) Use the previously created asymmetric_key_id struct to hold the following key IDs derived from the X.509 certificate or PKCS#7 message: id: serial number + issuer skid: subjKeyId + subject authority: authKeyId + issuer (2) Replace the hex fingerprint attached to key->type_data[1] with an asymmetric_key_ids struct containing the id and the skid (if present). (3) Make the asymmetric_type match data preparse select one of two searches: (a) An iterative search for the key ID given if prefixed with "id:". The prefix is expected to be followed by a hex string giving the ID to search for. The criterion key ID is checked against all key IDs recorded on the key. (b) A direct search if the key ID is not prefixed with "id:". This will look for an exact match on the key description. (4) Make x509_request_asymmetric_key() take a key ID. This is then converted into "id:<hex>" and passed into keyring_search() where match preparsing will turn it back into a binary ID. (5) X.509 certificate verification then takes the authority key ID and looks up a key that matches it to find the public key for the certificate signature. (6) PKCS#7 certificate verification then takes the id key ID and looks up a key that matches it to find the public key for the signed information block signature. Additional changes: (1) Multiple subjKeyId and authKeyId values on an X.509 certificate cause the cert to be rejected with -EBADMSG. (2) The 'fingerprint' ID is gone. This was primarily intended to convey PGP public key fingerprints. If PGP is supported in future, this should generate a key ID that carries the fingerprint. (3) Th ca_keyid= kernel command line option is now converted to a key ID and used to match the authority key ID. Possibly this should only match the actual authKeyId part and not the issuer as well. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Vivek Goyal <vgoyal@redhat.com>
2014-09-16 10:36:13 -06:00
} else {
goto default_match;
}
match_id = asymmetric_key_hex_to_key_id(id);
KEYS: handle error code encoded in pointer If hexlen is odd then function returns an error. Use IS_ERR to check for error, otherwise invalid pointer is used and kernel gives oops: [ 132.816522] BUG: unable to handle kernel paging request at ffffffffffffffea [ 132.819902] IP: [<ffffffff812bfc20>] asymmetric_key_id_same+0x14/0x36 [ 132.820302] PGD 1a12067 PUD 1a14067 PMD 0 [ 132.820302] Oops: 0000 [#1] SMP [ 132.820302] Modules linked in: bridge(E) stp(E) llc(E) evdev(E) serio_raw(E) i2c_piix4(E) button(E) fuse(E) [ 132.820302] CPU: 0 PID: 2993 Comm: cat Tainted: G E 3.16.0-kds+ #2847 [ 132.820302] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 [ 132.820302] task: ffff88004249a430 ti: ffff880056640000 task.ti: ffff880056640000 [ 132.820302] RIP: 0010:[<ffffffff812bfc20>] [<ffffffff812bfc20>] asymmetric_key_id_same+0x14/0x36 [ 132.820302] RSP: 0018:ffff880056643930 EFLAGS: 00010246 [ 132.820302] RAX: 0000000000000000 RBX: ffffffffffffffea RCX: ffff880056643ae0 [ 132.820302] RDX: 000000000000005e RSI: ffffffffffffffea RDI: ffff88005bac9300 [ 132.820302] RBP: ffff880056643948 R08: 0000000000000003 R09: 00000007504aa01a [ 132.820302] R10: 0000000000000000 R11: 0000000000000000 R12: ffff88005d68ca40 [ 132.820302] R13: 0000000000000101 R14: 0000000000000000 R15: ffff88005bac5280 [ 132.820302] FS: 00007f67a153c740(0000) GS:ffff88005da00000(0000) knlGS:0000000000000000 [ 132.820302] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [ 132.820302] CR2: ffffffffffffffea CR3: 000000002e663000 CR4: 00000000000006f0 [ 132.820302] Stack: [ 132.820302] ffffffff812bfc66 ffff880056643ae0 ffff88005bac5280 ffff880056643958 [ 132.820302] ffffffff812bfc9d ffff880056643980 ffffffff812971d9 ffff88005ce930c1 [ 132.820302] ffff88005ce930c0 0000000000000000 ffff8800566439c8 ffffffff812fb753 [ 132.820302] Call Trace: [ 132.820302] [<ffffffff812bfc66>] ? asymmetric_match_key_ids+0x24/0x42 [ 132.820302] [<ffffffff812bfc9d>] asymmetric_key_cmp+0x19/0x1b [ 132.820302] [<ffffffff812971d9>] keyring_search_iterator+0x74/0xd7 [ 132.820302] [<ffffffff812fb753>] assoc_array_subtree_iterate+0x67/0xd2 [ 132.820302] [<ffffffff81297165>] ? key_default_cmp+0x20/0x20 [ 132.820302] [<ffffffff812fbaa1>] assoc_array_iterate+0x19/0x1e [ 132.820302] [<ffffffff81297332>] search_nested_keyrings+0xf6/0x2b6 [ 132.820302] [<ffffffff810728da>] ? sched_clock_cpu+0x91/0xa2 [ 132.820302] [<ffffffff810860d2>] ? mark_held_locks+0x58/0x6e [ 132.820302] [<ffffffff810a137d>] ? current_kernel_time+0x77/0xb8 [ 132.820302] [<ffffffff81297871>] keyring_search_aux+0xe1/0x14c [ 132.820302] [<ffffffff812977fc>] ? keyring_search_aux+0x6c/0x14c [ 132.820302] [<ffffffff8129796b>] keyring_search+0x8f/0xb6 [ 132.820302] [<ffffffff812bfc84>] ? asymmetric_match_key_ids+0x42/0x42 [ 132.820302] [<ffffffff81297165>] ? key_default_cmp+0x20/0x20 [ 132.820302] [<ffffffff812ab9e3>] asymmetric_verify+0xa4/0x214 [ 132.820302] [<ffffffff812ab90e>] integrity_digsig_verify+0xb1/0xe2 [ 132.820302] [<ffffffff812abe41>] ? evm_verifyxattr+0x6a/0x7a [ 132.820302] [<ffffffff812b0390>] ima_appraise_measurement+0x160/0x370 [ 132.820302] [<ffffffff81161db2>] ? d_absolute_path+0x5b/0x7a [ 132.820302] [<ffffffff812ada30>] process_measurement+0x322/0x404 Reported-by: Dmitry Kasatkin <d.kasatkin@samsung.com> Signed-off-by: Dmitry Kasatkin <d.kasatkin@samsung.com> Signed-off-by: David Howells <dhowells@redhat.com>
2014-10-03 02:53:28 -06:00
if (IS_ERR(match_id))
return PTR_ERR(match_id);
KEYS: Overhaul key identification when searching for asymmetric keys Make use of the new match string preparsing to overhaul key identification when searching for asymmetric keys. The following changes are made: (1) Use the previously created asymmetric_key_id struct to hold the following key IDs derived from the X.509 certificate or PKCS#7 message: id: serial number + issuer skid: subjKeyId + subject authority: authKeyId + issuer (2) Replace the hex fingerprint attached to key->type_data[1] with an asymmetric_key_ids struct containing the id and the skid (if present). (3) Make the asymmetric_type match data preparse select one of two searches: (a) An iterative search for the key ID given if prefixed with "id:". The prefix is expected to be followed by a hex string giving the ID to search for. The criterion key ID is checked against all key IDs recorded on the key. (b) A direct search if the key ID is not prefixed with "id:". This will look for an exact match on the key description. (4) Make x509_request_asymmetric_key() take a key ID. This is then converted into "id:<hex>" and passed into keyring_search() where match preparsing will turn it back into a binary ID. (5) X.509 certificate verification then takes the authority key ID and looks up a key that matches it to find the public key for the certificate signature. (6) PKCS#7 certificate verification then takes the id key ID and looks up a key that matches it to find the public key for the signed information block signature. Additional changes: (1) Multiple subjKeyId and authKeyId values on an X.509 certificate cause the cert to be rejected with -EBADMSG. (2) The 'fingerprint' ID is gone. This was primarily intended to convey PGP public key fingerprints. If PGP is supported in future, this should generate a key ID that carries the fingerprint. (3) Th ca_keyid= kernel command line option is now converted to a key ID and used to match the authority key ID. Possibly this should only match the actual authKeyId part and not the issuer as well. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Vivek Goyal <vgoyal@redhat.com>
2014-09-16 10:36:13 -06:00
match_data->preparsed = match_id;
match_data->cmp = cmp;
KEYS: Overhaul key identification when searching for asymmetric keys Make use of the new match string preparsing to overhaul key identification when searching for asymmetric keys. The following changes are made: (1) Use the previously created asymmetric_key_id struct to hold the following key IDs derived from the X.509 certificate or PKCS#7 message: id: serial number + issuer skid: subjKeyId + subject authority: authKeyId + issuer (2) Replace the hex fingerprint attached to key->type_data[1] with an asymmetric_key_ids struct containing the id and the skid (if present). (3) Make the asymmetric_type match data preparse select one of two searches: (a) An iterative search for the key ID given if prefixed with "id:". The prefix is expected to be followed by a hex string giving the ID to search for. The criterion key ID is checked against all key IDs recorded on the key. (b) A direct search if the key ID is not prefixed with "id:". This will look for an exact match on the key description. (4) Make x509_request_asymmetric_key() take a key ID. This is then converted into "id:<hex>" and passed into keyring_search() where match preparsing will turn it back into a binary ID. (5) X.509 certificate verification then takes the authority key ID and looks up a key that matches it to find the public key for the certificate signature. (6) PKCS#7 certificate verification then takes the id key ID and looks up a key that matches it to find the public key for the signed information block signature. Additional changes: (1) Multiple subjKeyId and authKeyId values on an X.509 certificate cause the cert to be rejected with -EBADMSG. (2) The 'fingerprint' ID is gone. This was primarily intended to convey PGP public key fingerprints. If PGP is supported in future, this should generate a key ID that carries the fingerprint. (3) Th ca_keyid= kernel command line option is now converted to a key ID and used to match the authority key ID. Possibly this should only match the actual authKeyId part and not the issuer as well. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Vivek Goyal <vgoyal@redhat.com>
2014-09-16 10:36:13 -06:00
match_data->lookup_type = KEYRING_SEARCH_LOOKUP_ITERATE;
return 0;
default_match:
return 0;
}
/*
* Free the preparsed the match criterion.
*/
static void asymmetric_key_match_free(struct key_match_data *match_data)
{
KEYS: Overhaul key identification when searching for asymmetric keys Make use of the new match string preparsing to overhaul key identification when searching for asymmetric keys. The following changes are made: (1) Use the previously created asymmetric_key_id struct to hold the following key IDs derived from the X.509 certificate or PKCS#7 message: id: serial number + issuer skid: subjKeyId + subject authority: authKeyId + issuer (2) Replace the hex fingerprint attached to key->type_data[1] with an asymmetric_key_ids struct containing the id and the skid (if present). (3) Make the asymmetric_type match data preparse select one of two searches: (a) An iterative search for the key ID given if prefixed with "id:". The prefix is expected to be followed by a hex string giving the ID to search for. The criterion key ID is checked against all key IDs recorded on the key. (b) A direct search if the key ID is not prefixed with "id:". This will look for an exact match on the key description. (4) Make x509_request_asymmetric_key() take a key ID. This is then converted into "id:<hex>" and passed into keyring_search() where match preparsing will turn it back into a binary ID. (5) X.509 certificate verification then takes the authority key ID and looks up a key that matches it to find the public key for the certificate signature. (6) PKCS#7 certificate verification then takes the id key ID and looks up a key that matches it to find the public key for the signed information block signature. Additional changes: (1) Multiple subjKeyId and authKeyId values on an X.509 certificate cause the cert to be rejected with -EBADMSG. (2) The 'fingerprint' ID is gone. This was primarily intended to convey PGP public key fingerprints. If PGP is supported in future, this should generate a key ID that carries the fingerprint. (3) Th ca_keyid= kernel command line option is now converted to a key ID and used to match the authority key ID. Possibly this should only match the actual authKeyId part and not the issuer as well. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Vivek Goyal <vgoyal@redhat.com>
2014-09-16 10:36:13 -06:00
kfree(match_data->preparsed);
}
/*
* Describe the asymmetric key
*/
static void asymmetric_key_describe(const struct key *key, struct seq_file *m)
{
const struct asymmetric_key_subtype *subtype = asymmetric_key_subtype(key);
KEYS: Overhaul key identification when searching for asymmetric keys Make use of the new match string preparsing to overhaul key identification when searching for asymmetric keys. The following changes are made: (1) Use the previously created asymmetric_key_id struct to hold the following key IDs derived from the X.509 certificate or PKCS#7 message: id: serial number + issuer skid: subjKeyId + subject authority: authKeyId + issuer (2) Replace the hex fingerprint attached to key->type_data[1] with an asymmetric_key_ids struct containing the id and the skid (if present). (3) Make the asymmetric_type match data preparse select one of two searches: (a) An iterative search for the key ID given if prefixed with "id:". The prefix is expected to be followed by a hex string giving the ID to search for. The criterion key ID is checked against all key IDs recorded on the key. (b) A direct search if the key ID is not prefixed with "id:". This will look for an exact match on the key description. (4) Make x509_request_asymmetric_key() take a key ID. This is then converted into "id:<hex>" and passed into keyring_search() where match preparsing will turn it back into a binary ID. (5) X.509 certificate verification then takes the authority key ID and looks up a key that matches it to find the public key for the certificate signature. (6) PKCS#7 certificate verification then takes the id key ID and looks up a key that matches it to find the public key for the signed information block signature. Additional changes: (1) Multiple subjKeyId and authKeyId values on an X.509 certificate cause the cert to be rejected with -EBADMSG. (2) The 'fingerprint' ID is gone. This was primarily intended to convey PGP public key fingerprints. If PGP is supported in future, this should generate a key ID that carries the fingerprint. (3) Th ca_keyid= kernel command line option is now converted to a key ID and used to match the authority key ID. Possibly this should only match the actual authKeyId part and not the issuer as well. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Vivek Goyal <vgoyal@redhat.com>
2014-09-16 10:36:13 -06:00
const struct asymmetric_key_ids *kids = asymmetric_key_ids(key);
const struct asymmetric_key_id *kid;
const unsigned char *p;
int n;
seq_puts(m, key->description);
if (subtype) {
seq_puts(m, ": ");
subtype->describe(key, m);
if (kids && kids->id[1]) {
kid = kids->id[1];
seq_putc(m, ' ');
KEYS: Overhaul key identification when searching for asymmetric keys Make use of the new match string preparsing to overhaul key identification when searching for asymmetric keys. The following changes are made: (1) Use the previously created asymmetric_key_id struct to hold the following key IDs derived from the X.509 certificate or PKCS#7 message: id: serial number + issuer skid: subjKeyId + subject authority: authKeyId + issuer (2) Replace the hex fingerprint attached to key->type_data[1] with an asymmetric_key_ids struct containing the id and the skid (if present). (3) Make the asymmetric_type match data preparse select one of two searches: (a) An iterative search for the key ID given if prefixed with "id:". The prefix is expected to be followed by a hex string giving the ID to search for. The criterion key ID is checked against all key IDs recorded on the key. (b) A direct search if the key ID is not prefixed with "id:". This will look for an exact match on the key description. (4) Make x509_request_asymmetric_key() take a key ID. This is then converted into "id:<hex>" and passed into keyring_search() where match preparsing will turn it back into a binary ID. (5) X.509 certificate verification then takes the authority key ID and looks up a key that matches it to find the public key for the certificate signature. (6) PKCS#7 certificate verification then takes the id key ID and looks up a key that matches it to find the public key for the signed information block signature. Additional changes: (1) Multiple subjKeyId and authKeyId values on an X.509 certificate cause the cert to be rejected with -EBADMSG. (2) The 'fingerprint' ID is gone. This was primarily intended to convey PGP public key fingerprints. If PGP is supported in future, this should generate a key ID that carries the fingerprint. (3) Th ca_keyid= kernel command line option is now converted to a key ID and used to match the authority key ID. Possibly this should only match the actual authKeyId part and not the issuer as well. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Vivek Goyal <vgoyal@redhat.com>
2014-09-16 10:36:13 -06:00
n = kid->len;
p = kid->data;
if (n > 4) {
p += n - 4;
n = 4;
KEYS: Overhaul key identification when searching for asymmetric keys Make use of the new match string preparsing to overhaul key identification when searching for asymmetric keys. The following changes are made: (1) Use the previously created asymmetric_key_id struct to hold the following key IDs derived from the X.509 certificate or PKCS#7 message: id: serial number + issuer skid: subjKeyId + subject authority: authKeyId + issuer (2) Replace the hex fingerprint attached to key->type_data[1] with an asymmetric_key_ids struct containing the id and the skid (if present). (3) Make the asymmetric_type match data preparse select one of two searches: (a) An iterative search for the key ID given if prefixed with "id:". The prefix is expected to be followed by a hex string giving the ID to search for. The criterion key ID is checked against all key IDs recorded on the key. (b) A direct search if the key ID is not prefixed with "id:". This will look for an exact match on the key description. (4) Make x509_request_asymmetric_key() take a key ID. This is then converted into "id:<hex>" and passed into keyring_search() where match preparsing will turn it back into a binary ID. (5) X.509 certificate verification then takes the authority key ID and looks up a key that matches it to find the public key for the certificate signature. (6) PKCS#7 certificate verification then takes the id key ID and looks up a key that matches it to find the public key for the signed information block signature. Additional changes: (1) Multiple subjKeyId and authKeyId values on an X.509 certificate cause the cert to be rejected with -EBADMSG. (2) The 'fingerprint' ID is gone. This was primarily intended to convey PGP public key fingerprints. If PGP is supported in future, this should generate a key ID that carries the fingerprint. (3) Th ca_keyid= kernel command line option is now converted to a key ID and used to match the authority key ID. Possibly this should only match the actual authKeyId part and not the issuer as well. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Vivek Goyal <vgoyal@redhat.com>
2014-09-16 10:36:13 -06:00
}
seq_printf(m, "%*phN", n, p);
}
seq_puts(m, " [");
/* put something here to indicate the key's capabilities */
seq_putc(m, ']');
}
}
KEYS: Asymmetric key pluggable data parsers The instantiation data passed to the asymmetric key type are expected to be formatted in some way, and there are several possible standard ways to format the data. The two obvious standards are OpenPGP keys and X.509 certificates. The latter is especially useful when dealing with UEFI, and the former might be useful when dealing with, say, eCryptfs. Further, it might be desirable to provide formatted blobs that indicate hardware is to be accessed to retrieve the keys or that the keys live unretrievably in a hardware store, but that the keys can be used by means of the hardware. From userspace, the keys can be loaded using the keyctl command, for example, an X.509 binary certificate: keyctl padd asymmetric foo @s <dhowells.pem or a PGP key: keyctl padd asymmetric bar @s <dhowells.pub or a pointer into the contents of the TPM: keyctl add asymmetric zebra "TPM:04982390582905f8" @s Inside the kernel, pluggable parsers register themselves and then get to examine the payload data to see if they can handle it. If they can, they get to: (1) Propose a name for the key, to be used it the name is "" or NULL. (2) Specify the key subtype. (3) Provide the data for the subtype. The key type asks the parser to do its stuff before a key is allocated and thus before the name is set. If successful, the parser stores the suggested data into the key_preparsed_payload struct, which will be either used (if the key is successfully created and instantiated or updated) or discarded. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-13 08:17:32 -06:00
/*
* Preparse a asymmetric payload to get format the contents appropriately for the
* internal payload to cut down on the number of scans of the data performed.
*
* We also generate a proposed description from the contents of the key that
* can be used to name the key if the user doesn't want to provide one.
*/
static int asymmetric_key_preparse(struct key_preparsed_payload *prep)
{
struct asymmetric_key_parser *parser;
int ret;
pr_devel("==>%s()\n", __func__);
if (prep->datalen == 0)
return -EINVAL;
down_read(&asymmetric_key_parsers_sem);
ret = -EBADMSG;
list_for_each_entry(parser, &asymmetric_key_parsers, link) {
pr_debug("Trying parser '%s'\n", parser->name);
ret = parser->parse(prep);
if (ret != -EBADMSG) {
pr_debug("Parser recognised the format (ret %d)\n",
ret);
break;
}
}
up_read(&asymmetric_key_parsers_sem);
pr_devel("<==%s() = %d\n", __func__, ret);
return ret;
}
/*
* Clean up the preparse data
*/
static void asymmetric_key_free_preparse(struct key_preparsed_payload *prep)
{
struct asymmetric_key_subtype *subtype = prep->type_data[0];
KEYS: Overhaul key identification when searching for asymmetric keys Make use of the new match string preparsing to overhaul key identification when searching for asymmetric keys. The following changes are made: (1) Use the previously created asymmetric_key_id struct to hold the following key IDs derived from the X.509 certificate or PKCS#7 message: id: serial number + issuer skid: subjKeyId + subject authority: authKeyId + issuer (2) Replace the hex fingerprint attached to key->type_data[1] with an asymmetric_key_ids struct containing the id and the skid (if present). (3) Make the asymmetric_type match data preparse select one of two searches: (a) An iterative search for the key ID given if prefixed with "id:". The prefix is expected to be followed by a hex string giving the ID to search for. The criterion key ID is checked against all key IDs recorded on the key. (b) A direct search if the key ID is not prefixed with "id:". This will look for an exact match on the key description. (4) Make x509_request_asymmetric_key() take a key ID. This is then converted into "id:<hex>" and passed into keyring_search() where match preparsing will turn it back into a binary ID. (5) X.509 certificate verification then takes the authority key ID and looks up a key that matches it to find the public key for the certificate signature. (6) PKCS#7 certificate verification then takes the id key ID and looks up a key that matches it to find the public key for the signed information block signature. Additional changes: (1) Multiple subjKeyId and authKeyId values on an X.509 certificate cause the cert to be rejected with -EBADMSG. (2) The 'fingerprint' ID is gone. This was primarily intended to convey PGP public key fingerprints. If PGP is supported in future, this should generate a key ID that carries the fingerprint. (3) Th ca_keyid= kernel command line option is now converted to a key ID and used to match the authority key ID. Possibly this should only match the actual authKeyId part and not the issuer as well. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Vivek Goyal <vgoyal@redhat.com>
2014-09-16 10:36:13 -06:00
struct asymmetric_key_ids *kids = prep->type_data[1];
int i;
KEYS: Asymmetric key pluggable data parsers The instantiation data passed to the asymmetric key type are expected to be formatted in some way, and there are several possible standard ways to format the data. The two obvious standards are OpenPGP keys and X.509 certificates. The latter is especially useful when dealing with UEFI, and the former might be useful when dealing with, say, eCryptfs. Further, it might be desirable to provide formatted blobs that indicate hardware is to be accessed to retrieve the keys or that the keys live unretrievably in a hardware store, but that the keys can be used by means of the hardware. From userspace, the keys can be loaded using the keyctl command, for example, an X.509 binary certificate: keyctl padd asymmetric foo @s <dhowells.pem or a PGP key: keyctl padd asymmetric bar @s <dhowells.pub or a pointer into the contents of the TPM: keyctl add asymmetric zebra "TPM:04982390582905f8" @s Inside the kernel, pluggable parsers register themselves and then get to examine the payload data to see if they can handle it. If they can, they get to: (1) Propose a name for the key, to be used it the name is "" or NULL. (2) Specify the key subtype. (3) Provide the data for the subtype. The key type asks the parser to do its stuff before a key is allocated and thus before the name is set. If successful, the parser stores the suggested data into the key_preparsed_payload struct, which will be either used (if the key is successfully created and instantiated or updated) or discarded. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-13 08:17:32 -06:00
pr_devel("==>%s()\n", __func__);
if (subtype) {
subtype->destroy(prep->payload[0]);
KEYS: Asymmetric key pluggable data parsers The instantiation data passed to the asymmetric key type are expected to be formatted in some way, and there are several possible standard ways to format the data. The two obvious standards are OpenPGP keys and X.509 certificates. The latter is especially useful when dealing with UEFI, and the former might be useful when dealing with, say, eCryptfs. Further, it might be desirable to provide formatted blobs that indicate hardware is to be accessed to retrieve the keys or that the keys live unretrievably in a hardware store, but that the keys can be used by means of the hardware. From userspace, the keys can be loaded using the keyctl command, for example, an X.509 binary certificate: keyctl padd asymmetric foo @s <dhowells.pem or a PGP key: keyctl padd asymmetric bar @s <dhowells.pub or a pointer into the contents of the TPM: keyctl add asymmetric zebra "TPM:04982390582905f8" @s Inside the kernel, pluggable parsers register themselves and then get to examine the payload data to see if they can handle it. If they can, they get to: (1) Propose a name for the key, to be used it the name is "" or NULL. (2) Specify the key subtype. (3) Provide the data for the subtype. The key type asks the parser to do its stuff before a key is allocated and thus before the name is set. If successful, the parser stores the suggested data into the key_preparsed_payload struct, which will be either used (if the key is successfully created and instantiated or updated) or discarded. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-13 08:17:32 -06:00
module_put(subtype->owner);
}
KEYS: Overhaul key identification when searching for asymmetric keys Make use of the new match string preparsing to overhaul key identification when searching for asymmetric keys. The following changes are made: (1) Use the previously created asymmetric_key_id struct to hold the following key IDs derived from the X.509 certificate or PKCS#7 message: id: serial number + issuer skid: subjKeyId + subject authority: authKeyId + issuer (2) Replace the hex fingerprint attached to key->type_data[1] with an asymmetric_key_ids struct containing the id and the skid (if present). (3) Make the asymmetric_type match data preparse select one of two searches: (a) An iterative search for the key ID given if prefixed with "id:". The prefix is expected to be followed by a hex string giving the ID to search for. The criterion key ID is checked against all key IDs recorded on the key. (b) A direct search if the key ID is not prefixed with "id:". This will look for an exact match on the key description. (4) Make x509_request_asymmetric_key() take a key ID. This is then converted into "id:<hex>" and passed into keyring_search() where match preparsing will turn it back into a binary ID. (5) X.509 certificate verification then takes the authority key ID and looks up a key that matches it to find the public key for the certificate signature. (6) PKCS#7 certificate verification then takes the id key ID and looks up a key that matches it to find the public key for the signed information block signature. Additional changes: (1) Multiple subjKeyId and authKeyId values on an X.509 certificate cause the cert to be rejected with -EBADMSG. (2) The 'fingerprint' ID is gone. This was primarily intended to convey PGP public key fingerprints. If PGP is supported in future, this should generate a key ID that carries the fingerprint. (3) Th ca_keyid= kernel command line option is now converted to a key ID and used to match the authority key ID. Possibly this should only match the actual authKeyId part and not the issuer as well. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Vivek Goyal <vgoyal@redhat.com>
2014-09-16 10:36:13 -06:00
if (kids) {
for (i = 0; i < ARRAY_SIZE(kids->id); i++)
kfree(kids->id[i]);
KEYS: Overhaul key identification when searching for asymmetric keys Make use of the new match string preparsing to overhaul key identification when searching for asymmetric keys. The following changes are made: (1) Use the previously created asymmetric_key_id struct to hold the following key IDs derived from the X.509 certificate or PKCS#7 message: id: serial number + issuer skid: subjKeyId + subject authority: authKeyId + issuer (2) Replace the hex fingerprint attached to key->type_data[1] with an asymmetric_key_ids struct containing the id and the skid (if present). (3) Make the asymmetric_type match data preparse select one of two searches: (a) An iterative search for the key ID given if prefixed with "id:". The prefix is expected to be followed by a hex string giving the ID to search for. The criterion key ID is checked against all key IDs recorded on the key. (b) A direct search if the key ID is not prefixed with "id:". This will look for an exact match on the key description. (4) Make x509_request_asymmetric_key() take a key ID. This is then converted into "id:<hex>" and passed into keyring_search() where match preparsing will turn it back into a binary ID. (5) X.509 certificate verification then takes the authority key ID and looks up a key that matches it to find the public key for the certificate signature. (6) PKCS#7 certificate verification then takes the id key ID and looks up a key that matches it to find the public key for the signed information block signature. Additional changes: (1) Multiple subjKeyId and authKeyId values on an X.509 certificate cause the cert to be rejected with -EBADMSG. (2) The 'fingerprint' ID is gone. This was primarily intended to convey PGP public key fingerprints. If PGP is supported in future, this should generate a key ID that carries the fingerprint. (3) Th ca_keyid= kernel command line option is now converted to a key ID and used to match the authority key ID. Possibly this should only match the actual authKeyId part and not the issuer as well. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Vivek Goyal <vgoyal@redhat.com>
2014-09-16 10:36:13 -06:00
kfree(kids);
}
KEYS: Asymmetric key pluggable data parsers The instantiation data passed to the asymmetric key type are expected to be formatted in some way, and there are several possible standard ways to format the data. The two obvious standards are OpenPGP keys and X.509 certificates. The latter is especially useful when dealing with UEFI, and the former might be useful when dealing with, say, eCryptfs. Further, it might be desirable to provide formatted blobs that indicate hardware is to be accessed to retrieve the keys or that the keys live unretrievably in a hardware store, but that the keys can be used by means of the hardware. From userspace, the keys can be loaded using the keyctl command, for example, an X.509 binary certificate: keyctl padd asymmetric foo @s <dhowells.pem or a PGP key: keyctl padd asymmetric bar @s <dhowells.pub or a pointer into the contents of the TPM: keyctl add asymmetric zebra "TPM:04982390582905f8" @s Inside the kernel, pluggable parsers register themselves and then get to examine the payload data to see if they can handle it. If they can, they get to: (1) Propose a name for the key, to be used it the name is "" or NULL. (2) Specify the key subtype. (3) Provide the data for the subtype. The key type asks the parser to do its stuff before a key is allocated and thus before the name is set. If successful, the parser stores the suggested data into the key_preparsed_payload struct, which will be either used (if the key is successfully created and instantiated or updated) or discarded. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-13 08:17:32 -06:00
kfree(prep->description);
}
/*
* dispose of the data dangling from the corpse of a asymmetric key
*/
static void asymmetric_key_destroy(struct key *key)
{
struct asymmetric_key_subtype *subtype = asymmetric_key_subtype(key);
KEYS: Overhaul key identification when searching for asymmetric keys Make use of the new match string preparsing to overhaul key identification when searching for asymmetric keys. The following changes are made: (1) Use the previously created asymmetric_key_id struct to hold the following key IDs derived from the X.509 certificate or PKCS#7 message: id: serial number + issuer skid: subjKeyId + subject authority: authKeyId + issuer (2) Replace the hex fingerprint attached to key->type_data[1] with an asymmetric_key_ids struct containing the id and the skid (if present). (3) Make the asymmetric_type match data preparse select one of two searches: (a) An iterative search for the key ID given if prefixed with "id:". The prefix is expected to be followed by a hex string giving the ID to search for. The criterion key ID is checked against all key IDs recorded on the key. (b) A direct search if the key ID is not prefixed with "id:". This will look for an exact match on the key description. (4) Make x509_request_asymmetric_key() take a key ID. This is then converted into "id:<hex>" and passed into keyring_search() where match preparsing will turn it back into a binary ID. (5) X.509 certificate verification then takes the authority key ID and looks up a key that matches it to find the public key for the certificate signature. (6) PKCS#7 certificate verification then takes the id key ID and looks up a key that matches it to find the public key for the signed information block signature. Additional changes: (1) Multiple subjKeyId and authKeyId values on an X.509 certificate cause the cert to be rejected with -EBADMSG. (2) The 'fingerprint' ID is gone. This was primarily intended to convey PGP public key fingerprints. If PGP is supported in future, this should generate a key ID that carries the fingerprint. (3) Th ca_keyid= kernel command line option is now converted to a key ID and used to match the authority key ID. Possibly this should only match the actual authKeyId part and not the issuer as well. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Vivek Goyal <vgoyal@redhat.com>
2014-09-16 10:36:13 -06:00
struct asymmetric_key_ids *kids = key->type_data.p[1];
if (subtype) {
subtype->destroy(key->payload.data);
module_put(subtype->owner);
key->type_data.p[0] = NULL;
}
KEYS: Overhaul key identification when searching for asymmetric keys Make use of the new match string preparsing to overhaul key identification when searching for asymmetric keys. The following changes are made: (1) Use the previously created asymmetric_key_id struct to hold the following key IDs derived from the X.509 certificate or PKCS#7 message: id: serial number + issuer skid: subjKeyId + subject authority: authKeyId + issuer (2) Replace the hex fingerprint attached to key->type_data[1] with an asymmetric_key_ids struct containing the id and the skid (if present). (3) Make the asymmetric_type match data preparse select one of two searches: (a) An iterative search for the key ID given if prefixed with "id:". The prefix is expected to be followed by a hex string giving the ID to search for. The criterion key ID is checked against all key IDs recorded on the key. (b) A direct search if the key ID is not prefixed with "id:". This will look for an exact match on the key description. (4) Make x509_request_asymmetric_key() take a key ID. This is then converted into "id:<hex>" and passed into keyring_search() where match preparsing will turn it back into a binary ID. (5) X.509 certificate verification then takes the authority key ID and looks up a key that matches it to find the public key for the certificate signature. (6) PKCS#7 certificate verification then takes the id key ID and looks up a key that matches it to find the public key for the signed information block signature. Additional changes: (1) Multiple subjKeyId and authKeyId values on an X.509 certificate cause the cert to be rejected with -EBADMSG. (2) The 'fingerprint' ID is gone. This was primarily intended to convey PGP public key fingerprints. If PGP is supported in future, this should generate a key ID that carries the fingerprint. (3) Th ca_keyid= kernel command line option is now converted to a key ID and used to match the authority key ID. Possibly this should only match the actual authKeyId part and not the issuer as well. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Vivek Goyal <vgoyal@redhat.com>
2014-09-16 10:36:13 -06:00
if (kids) {
kfree(kids->id[0]);
kfree(kids->id[1]);
kfree(kids);
key->type_data.p[1] = NULL;
}
}
struct key_type key_type_asymmetric = {
.name = "asymmetric",
KEYS: Asymmetric key pluggable data parsers The instantiation data passed to the asymmetric key type are expected to be formatted in some way, and there are several possible standard ways to format the data. The two obvious standards are OpenPGP keys and X.509 certificates. The latter is especially useful when dealing with UEFI, and the former might be useful when dealing with, say, eCryptfs. Further, it might be desirable to provide formatted blobs that indicate hardware is to be accessed to retrieve the keys or that the keys live unretrievably in a hardware store, but that the keys can be used by means of the hardware. From userspace, the keys can be loaded using the keyctl command, for example, an X.509 binary certificate: keyctl padd asymmetric foo @s <dhowells.pem or a PGP key: keyctl padd asymmetric bar @s <dhowells.pub or a pointer into the contents of the TPM: keyctl add asymmetric zebra "TPM:04982390582905f8" @s Inside the kernel, pluggable parsers register themselves and then get to examine the payload data to see if they can handle it. If they can, they get to: (1) Propose a name for the key, to be used it the name is "" or NULL. (2) Specify the key subtype. (3) Provide the data for the subtype. The key type asks the parser to do its stuff before a key is allocated and thus before the name is set. If successful, the parser stores the suggested data into the key_preparsed_payload struct, which will be either used (if the key is successfully created and instantiated or updated) or discarded. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-13 08:17:32 -06:00
.preparse = asymmetric_key_preparse,
.free_preparse = asymmetric_key_free_preparse,
.instantiate = generic_key_instantiate,
.match_preparse = asymmetric_key_match_preparse,
.match_free = asymmetric_key_match_free,
.destroy = asymmetric_key_destroy,
.describe = asymmetric_key_describe,
};
EXPORT_SYMBOL_GPL(key_type_asymmetric);
KEYS: Asymmetric key pluggable data parsers The instantiation data passed to the asymmetric key type are expected to be formatted in some way, and there are several possible standard ways to format the data. The two obvious standards are OpenPGP keys and X.509 certificates. The latter is especially useful when dealing with UEFI, and the former might be useful when dealing with, say, eCryptfs. Further, it might be desirable to provide formatted blobs that indicate hardware is to be accessed to retrieve the keys or that the keys live unretrievably in a hardware store, but that the keys can be used by means of the hardware. From userspace, the keys can be loaded using the keyctl command, for example, an X.509 binary certificate: keyctl padd asymmetric foo @s <dhowells.pem or a PGP key: keyctl padd asymmetric bar @s <dhowells.pub or a pointer into the contents of the TPM: keyctl add asymmetric zebra "TPM:04982390582905f8" @s Inside the kernel, pluggable parsers register themselves and then get to examine the payload data to see if they can handle it. If they can, they get to: (1) Propose a name for the key, to be used it the name is "" or NULL. (2) Specify the key subtype. (3) Provide the data for the subtype. The key type asks the parser to do its stuff before a key is allocated and thus before the name is set. If successful, the parser stores the suggested data into the key_preparsed_payload struct, which will be either used (if the key is successfully created and instantiated or updated) or discarded. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-13 08:17:32 -06:00
/**
* register_asymmetric_key_parser - Register a asymmetric key blob parser
* @parser: The parser to register
*/
int register_asymmetric_key_parser(struct asymmetric_key_parser *parser)
{
struct asymmetric_key_parser *cursor;
int ret;
down_write(&asymmetric_key_parsers_sem);
list_for_each_entry(cursor, &asymmetric_key_parsers, link) {
if (strcmp(cursor->name, parser->name) == 0) {
pr_err("Asymmetric key parser '%s' already registered\n",
parser->name);
ret = -EEXIST;
goto out;
}
}
list_add_tail(&parser->link, &asymmetric_key_parsers);
pr_notice("Asymmetric key parser '%s' registered\n", parser->name);
ret = 0;
out:
up_write(&asymmetric_key_parsers_sem);
return ret;
}
EXPORT_SYMBOL_GPL(register_asymmetric_key_parser);
/**
* unregister_asymmetric_key_parser - Unregister a asymmetric key blob parser
* @parser: The parser to unregister
*/
void unregister_asymmetric_key_parser(struct asymmetric_key_parser *parser)
{
down_write(&asymmetric_key_parsers_sem);
list_del(&parser->link);
up_write(&asymmetric_key_parsers_sem);
pr_notice("Asymmetric key parser '%s' unregistered\n", parser->name);
}
EXPORT_SYMBOL_GPL(unregister_asymmetric_key_parser);
/*
* Module stuff
*/
static int __init asymmetric_key_init(void)
{
return register_key_type(&key_type_asymmetric);
}
static void __exit asymmetric_key_cleanup(void)
{
unregister_key_type(&key_type_asymmetric);
}
module_init(asymmetric_key_init);
module_exit(asymmetric_key_cleanup);