1
0
Fork 0
alistair23-linux/arch/arm/mach-s3c64xx/mach-smartq.c

426 lines
9.8 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
//
// Copyright (C) 2010 Maurus Cuelenaere
#include <linux/delay.h>
#include <linux/fb.h>
#include <linux/gpio.h>
#include <linux/gpio/machine.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/pwm.h>
#include <linux/pwm_backlight.h>
#include <linux/serial_core.h>
#include <linux/serial_s3c.h>
#include <linux/spi/spi_gpio.h>
#include <linux/usb/gpio_vbus.h>
#include <linux/platform_data/s3c-hsotg.h>
#include <asm/mach-types.h>
#include <asm/mach/map.h>
#include <mach/map.h>
#include <mach/regs-gpio.h>
#include <mach/gpio-samsung.h>
#include <plat/cpu.h>
#include <plat/devs.h>
#include <linux/platform_data/i2c-s3c2410.h>
#include <plat/gpio-cfg.h>
#include <linux/platform_data/hwmon-s3c.h>
#include <linux/platform_data/usb-ohci-s3c2410.h>
#include <plat/sdhci.h>
#include <linux/platform_data/touchscreen-s3c2410.h>
#include <video/platform_lcd.h>
#include <plat/samsung-time.h>
#include "common.h"
#include "mach-smartq.h"
#include "regs-modem.h"
#define UCON S3C2410_UCON_DEFAULT
#define ULCON (S3C2410_LCON_CS8 | S3C2410_LCON_PNONE)
#define UFCON (S3C2410_UFCON_RXTRIG8 | S3C2410_UFCON_FIFOMODE)
static struct s3c2410_uartcfg smartq_uartcfgs[] __initdata = {
[0] = {
.hwport = 0,
.flags = 0,
.ucon = UCON,
.ulcon = ULCON,
.ufcon = UFCON,
},
[1] = {
.hwport = 1,
.flags = 0,
.ucon = UCON,
.ulcon = ULCON,
.ufcon = UFCON,
},
[2] = {
.hwport = 2,
.flags = 0,
.ucon = UCON,
.ulcon = ULCON,
.ufcon = UFCON,
},
};
static void smartq_usb_host_powercontrol(int port, int to)
{
pr_debug("%s(%d, %d)\n", __func__, port, to);
if (port == 0) {
gpio_set_value(S3C64XX_GPL(0), to);
gpio_set_value(S3C64XX_GPL(1), to);
}
}
static irqreturn_t smartq_usb_host_ocirq(int irq, void *pw)
{
struct s3c2410_hcd_info *info = pw;
if (gpio_get_value(S3C64XX_GPL(10)) == 0) {
pr_debug("%s: over-current irq (oc detected)\n", __func__);
s3c2410_usb_report_oc(info, 3);
} else {
pr_debug("%s: over-current irq (oc cleared)\n", __func__);
s3c2410_usb_report_oc(info, 0);
}
return IRQ_HANDLED;
}
static void smartq_usb_host_enableoc(struct s3c2410_hcd_info *info, int on)
{
int ret;
/* This isn't present on a SmartQ 5 board */
if (machine_is_smartq5())
return;
if (on) {
ret = request_irq(gpio_to_irq(S3C64XX_GPL(10)),
smartq_usb_host_ocirq,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
"USB host overcurrent", info);
if (ret != 0)
pr_err("failed to request usb oc irq: %d\n", ret);
} else {
free_irq(gpio_to_irq(S3C64XX_GPL(10)), info);
}
}
static struct s3c2410_hcd_info smartq_usb_host_info = {
.port[0] = {
.flags = S3C_HCDFLG_USED
},
.port[1] = {
.flags = 0
},
.power_control = smartq_usb_host_powercontrol,
.enable_oc = smartq_usb_host_enableoc,
};
static struct gpio_vbus_mach_info smartq_usb_otg_vbus_pdata = {
.gpio_vbus = S3C64XX_GPL(9),
.gpio_pullup = -1,
.gpio_vbus_inverted = true,
};
static struct platform_device smartq_usb_otg_vbus_dev = {
.name = "gpio-vbus",
.dev.platform_data = &smartq_usb_otg_vbus_pdata,
};
static struct pwm_lookup smartq_pwm_lookup[] = {
PWM_LOOKUP("samsung-pwm", 1, "pwm-backlight.0", NULL,
1000000000 / (1000 * 20), PWM_POLARITY_NORMAL),
};
static int smartq_bl_init(struct device *dev)
{
s3c_gpio_cfgpin(S3C64XX_GPF(15), S3C_GPIO_SFN(2));
return 0;
}
static struct platform_pwm_backlight_data smartq_backlight_data = {
.max_brightness = 1000,
.dft_brightness = 600,
.enable_gpio = -1,
.init = smartq_bl_init,
};
static struct platform_device smartq_backlight_device = {
.name = "pwm-backlight",
.dev = {
.parent = &samsung_device_pwm.dev,
.platform_data = &smartq_backlight_data,
},
};
static struct s3c2410_ts_mach_info smartq_touchscreen_pdata __initdata = {
.delay = 65535,
.presc = 99,
.oversampling_shift = 4,
};
static struct s3c_sdhci_platdata smartq_internal_hsmmc_pdata = {
.max_width = 4,
.cd_type = S3C_SDHCI_CD_PERMANENT,
};
static struct s3c_hwmon_pdata smartq_hwmon_pdata __initdata = {
/* Battery voltage (?-4.2V) */
.in[0] = &(struct s3c_hwmon_chcfg) {
.name = "smartq:battery-voltage",
.mult = 3300,
.div = 2048,
},
/* Reference voltage (1.2V) */
.in[1] = &(struct s3c_hwmon_chcfg) {
.name = "smartq:reference-voltage",
.mult = 3300,
.div = 4096,
},
};
static struct dwc2_hsotg_plat smartq_hsotg_pdata;
static int __init smartq_lcd_setup_gpio(void)
{
int ret;
ret = gpio_request(S3C64XX_GPM(3), "LCD power");
if (ret < 0)
return ret;
/* turn power off */
gpio_direction_output(S3C64XX_GPM(3), 0);
return 0;
}
/* GPM0 -> CS */
static struct spi_gpio_platform_data smartq_lcd_control = {
spi: spi-gpio: Rewrite to use GPIO descriptors This converts the bit-banged GPIO SPI driver to looking up and using GPIO descriptors to get a handle on GPIO lines for SCK, MOSI, MISO and all CS lines. All existing board files are converted in one go to keep it all consistent. With these conversions I rarely find any interrim steps that makes any sense. Device tree probing and GPIO handling should work like before also after this patch. For board files, we stop using controller data to pass the GPIO line for chip select, instead we pass this as a GPIO descriptor lookup like everything else. In some s3c24xx machines the names of the SPI devices were set to "spi-gpio" rather than "spi_gpio" which can never have worked, I fixed it working (I guess) as part of this patch set. Sometimes I wonder how this code got upstream in the first place, it obviously is not tested. mach-s3c64xx/mach-smartq.c has the same problem and additionally defines the *same* GPIO line for MOSI and MISO which is not going to be accepted by gpiolib. As the lines were number 1,2,2 I assumed it was a typo and use lines 1,2,3. A comment gives awat that line 0 is chip select though no actual SPI device is provided for the LCD supposed to be on this bit-banged SPI bus. I left it intact instead of just deleting the bus though. Kill off board file code that try to initialize the SPI lines to the same values that they will later be set by the spi_gpio driver anyways. Given the huge number of weird things in these board files I do not think this code is very tested or put in with much afterthought anyways. In order to assert that we do not get performance regressions on this crucial bing-banged driver, a ran a script like this dumping the Ilitek ILI9322 regmap 10000 times (it has no caching obviously) on an otherwise idle system in two iterations before and after the patches: #!/bin/sh for run in `seq 10000` do cat /debug/regmap/spi0.0/registers > /dev/null done Before the patch: time test.sh real 3m 41.03s user 0m 29.41s sys 3m 7.22s time test.sh real 3m 44.24s user 0m 32.31s sys 3m 7.60s After the patch: time test.sh real 3m 41.32s user 0m 28.92s sys 3m 8.08s time test.sh real 3m 39.92s user 0m 30.20s sys 3m 5.56s So any performance differences seems to be in the error margin. Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Acked-by: Olof Johansson <olof@lixom.net> Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com> Signed-off-by: Mark Brown <broonie@kernel.org>
2018-02-12 05:45:30 -07:00
.num_chipselect = 1,
};
static struct platform_device smartq_lcd_control_device = {
spi: spi-gpio: Rewrite to use GPIO descriptors This converts the bit-banged GPIO SPI driver to looking up and using GPIO descriptors to get a handle on GPIO lines for SCK, MOSI, MISO and all CS lines. All existing board files are converted in one go to keep it all consistent. With these conversions I rarely find any interrim steps that makes any sense. Device tree probing and GPIO handling should work like before also after this patch. For board files, we stop using controller data to pass the GPIO line for chip select, instead we pass this as a GPIO descriptor lookup like everything else. In some s3c24xx machines the names of the SPI devices were set to "spi-gpio" rather than "spi_gpio" which can never have worked, I fixed it working (I guess) as part of this patch set. Sometimes I wonder how this code got upstream in the first place, it obviously is not tested. mach-s3c64xx/mach-smartq.c has the same problem and additionally defines the *same* GPIO line for MOSI and MISO which is not going to be accepted by gpiolib. As the lines were number 1,2,2 I assumed it was a typo and use lines 1,2,3. A comment gives awat that line 0 is chip select though no actual SPI device is provided for the LCD supposed to be on this bit-banged SPI bus. I left it intact instead of just deleting the bus though. Kill off board file code that try to initialize the SPI lines to the same values that they will later be set by the spi_gpio driver anyways. Given the huge number of weird things in these board files I do not think this code is very tested or put in with much afterthought anyways. In order to assert that we do not get performance regressions on this crucial bing-banged driver, a ran a script like this dumping the Ilitek ILI9322 regmap 10000 times (it has no caching obviously) on an otherwise idle system in two iterations before and after the patches: #!/bin/sh for run in `seq 10000` do cat /debug/regmap/spi0.0/registers > /dev/null done Before the patch: time test.sh real 3m 41.03s user 0m 29.41s sys 3m 7.22s time test.sh real 3m 44.24s user 0m 32.31s sys 3m 7.60s After the patch: time test.sh real 3m 41.32s user 0m 28.92s sys 3m 8.08s time test.sh real 3m 39.92s user 0m 30.20s sys 3m 5.56s So any performance differences seems to be in the error margin. Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Acked-by: Olof Johansson <olof@lixom.net> Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com> Signed-off-by: Mark Brown <broonie@kernel.org>
2018-02-12 05:45:30 -07:00
.name = "spi_gpio",
.id = 1,
.dev.platform_data = &smartq_lcd_control,
};
spi: spi-gpio: Rewrite to use GPIO descriptors This converts the bit-banged GPIO SPI driver to looking up and using GPIO descriptors to get a handle on GPIO lines for SCK, MOSI, MISO and all CS lines. All existing board files are converted in one go to keep it all consistent. With these conversions I rarely find any interrim steps that makes any sense. Device tree probing and GPIO handling should work like before also after this patch. For board files, we stop using controller data to pass the GPIO line for chip select, instead we pass this as a GPIO descriptor lookup like everything else. In some s3c24xx machines the names of the SPI devices were set to "spi-gpio" rather than "spi_gpio" which can never have worked, I fixed it working (I guess) as part of this patch set. Sometimes I wonder how this code got upstream in the first place, it obviously is not tested. mach-s3c64xx/mach-smartq.c has the same problem and additionally defines the *same* GPIO line for MOSI and MISO which is not going to be accepted by gpiolib. As the lines were number 1,2,2 I assumed it was a typo and use lines 1,2,3. A comment gives awat that line 0 is chip select though no actual SPI device is provided for the LCD supposed to be on this bit-banged SPI bus. I left it intact instead of just deleting the bus though. Kill off board file code that try to initialize the SPI lines to the same values that they will later be set by the spi_gpio driver anyways. Given the huge number of weird things in these board files I do not think this code is very tested or put in with much afterthought anyways. In order to assert that we do not get performance regressions on this crucial bing-banged driver, a ran a script like this dumping the Ilitek ILI9322 regmap 10000 times (it has no caching obviously) on an otherwise idle system in two iterations before and after the patches: #!/bin/sh for run in `seq 10000` do cat /debug/regmap/spi0.0/registers > /dev/null done Before the patch: time test.sh real 3m 41.03s user 0m 29.41s sys 3m 7.22s time test.sh real 3m 44.24s user 0m 32.31s sys 3m 7.60s After the patch: time test.sh real 3m 41.32s user 0m 28.92s sys 3m 8.08s time test.sh real 3m 39.92s user 0m 30.20s sys 3m 5.56s So any performance differences seems to be in the error margin. Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Acked-by: Olof Johansson <olof@lixom.net> Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com> Signed-off-by: Mark Brown <broonie@kernel.org>
2018-02-12 05:45:30 -07:00
static struct gpiod_lookup_table smartq_lcd_control_gpiod_table = {
.dev_id = "spi_gpio",
.table = {
GPIO_LOOKUP("GPIOM", 1,
"sck", GPIO_ACTIVE_HIGH),
GPIO_LOOKUP("GPIOM", 2,
"mosi", GPIO_ACTIVE_HIGH),
GPIO_LOOKUP("GPIOM", 3,
"miso", GPIO_ACTIVE_HIGH),
GPIO_LOOKUP("GPIOM", 0,
"cs", GPIO_ACTIVE_HIGH),
{ },
},
};
static void smartq_lcd_power_set(struct plat_lcd_data *pd, unsigned int power)
{
gpio_direction_output(S3C64XX_GPM(3), power);
}
static struct plat_lcd_data smartq_lcd_power_data = {
.set_power = smartq_lcd_power_set,
};
static struct platform_device smartq_lcd_power_device = {
.name = "platform-lcd",
.dev.parent = &s3c_device_fb.dev,
.dev.platform_data = &smartq_lcd_power_data,
};
static struct i2c_board_info smartq_i2c_devs[] __initdata = {
{ I2C_BOARD_INFO("wm8987", 0x1a), },
};
static struct platform_device *smartq_devices[] __initdata = {
&s3c_device_hsmmc1, /* Init iNAND first, ... */
&s3c_device_hsmmc0, /* ... then the external SD card */
&s3c_device_hsmmc2,
&s3c_device_adc,
&s3c_device_fb,
&s3c_device_hwmon,
&s3c_device_i2c0,
&s3c_device_ohci,
&s3c_device_rtc,
&samsung_device_pwm,
&s3c_device_usb_hsotg,
&s3c64xx_device_iis0,
&smartq_backlight_device,
&smartq_lcd_control_device,
&smartq_lcd_power_device,
&smartq_usb_otg_vbus_dev,
};
static void __init smartq_lcd_mode_set(void)
{
u32 tmp;
/* set the LCD type */
tmp = __raw_readl(S3C64XX_SPCON);
tmp &= ~S3C64XX_SPCON_LCD_SEL_MASK;
tmp |= S3C64XX_SPCON_LCD_SEL_RGB;
__raw_writel(tmp, S3C64XX_SPCON);
/* remove the LCD bypass */
tmp = __raw_readl(S3C64XX_MODEM_MIFPCON);
tmp &= ~MIFPCON_LCD_BYPASS;
__raw_writel(tmp, S3C64XX_MODEM_MIFPCON);
}
static void smartq_power_off(void)
{
gpio_direction_output(S3C64XX_GPK(15), 1);
}
static int __init smartq_power_off_init(void)
{
int ret;
ret = gpio_request(S3C64XX_GPK(15), "Power control");
if (ret < 0) {
pr_err("%s: failed to get GPK15\n", __func__);
return ret;
}
/* leave power on */
gpio_direction_output(S3C64XX_GPK(15), 0);
pm_power_off = smartq_power_off;
return ret;
}
static int __init smartq_usb_host_init(void)
{
int ret;
ret = gpio_request(S3C64XX_GPL(0), "USB power control");
if (ret < 0) {
pr_err("%s: failed to get GPL0\n", __func__);
return ret;
}
ret = gpio_request(S3C64XX_GPL(1), "USB host power control");
if (ret < 0) {
pr_err("%s: failed to get GPL1\n", __func__);
goto err;
}
if (!machine_is_smartq5()) {
/* This isn't present on a SmartQ 5 board */
ret = gpio_request(S3C64XX_GPL(10), "USB host overcurrent");
if (ret < 0) {
pr_err("%s: failed to get GPL10\n", __func__);
goto err2;
}
}
/* turn power off */
gpio_direction_output(S3C64XX_GPL(0), 0);
gpio_direction_output(S3C64XX_GPL(1), 0);
if (!machine_is_smartq5())
gpio_direction_input(S3C64XX_GPL(10));
s3c_device_ohci.dev.platform_data = &smartq_usb_host_info;
return 0;
err2:
gpio_free(S3C64XX_GPL(1));
err:
gpio_free(S3C64XX_GPL(0));
return ret;
}
static int __init smartq_wifi_init(void)
{
int ret;
ret = gpio_request(S3C64XX_GPK(1), "wifi control");
if (ret < 0) {
pr_err("%s: failed to get GPK1\n", __func__);
return ret;
}
ret = gpio_request(S3C64XX_GPK(2), "wifi reset");
if (ret < 0) {
pr_err("%s: failed to get GPK2\n", __func__);
gpio_free(S3C64XX_GPK(1));
return ret;
}
/* turn power on */
gpio_direction_output(S3C64XX_GPK(1), 1);
/* reset device */
gpio_direction_output(S3C64XX_GPK(2), 0);
mdelay(100);
gpio_set_value(S3C64XX_GPK(2), 1);
gpio_direction_input(S3C64XX_GPK(2));
return 0;
}
static struct map_desc smartq_iodesc[] __initdata = {};
void __init smartq_map_io(void)
{
s3c64xx_init_io(smartq_iodesc, ARRAY_SIZE(smartq_iodesc));
s3c64xx_set_xtal_freq(12000000);
s3c64xx_set_xusbxti_freq(12000000);
s3c24xx_init_uarts(smartq_uartcfgs, ARRAY_SIZE(smartq_uartcfgs));
samsung_set_timer_source(SAMSUNG_PWM3, SAMSUNG_PWM4);
smartq_lcd_mode_set();
}
static struct gpiod_lookup_table smartq_audio_gpios = {
.dev_id = "smartq-audio",
.table = {
GPIO_LOOKUP("GPL", 12, "headphone detect", 0),
GPIO_LOOKUP("GPK", 12, "amplifiers shutdown", 0),
{ },
},
};
void __init smartq_machine_init(void)
{
s3c_i2c0_set_platdata(NULL);
dwc2_hsotg_set_platdata(&smartq_hsotg_pdata);
s3c_hwmon_set_platdata(&smartq_hwmon_pdata);
s3c_sdhci1_set_platdata(&smartq_internal_hsmmc_pdata);
s3c_sdhci2_set_platdata(&smartq_internal_hsmmc_pdata);
s3c64xx_ts_set_platdata(&smartq_touchscreen_pdata);
i2c_register_board_info(0, smartq_i2c_devs,
ARRAY_SIZE(smartq_i2c_devs));
WARN_ON(smartq_lcd_setup_gpio());
WARN_ON(smartq_power_off_init());
WARN_ON(smartq_usb_host_init());
WARN_ON(smartq_wifi_init());
pwm_add_table(smartq_pwm_lookup, ARRAY_SIZE(smartq_pwm_lookup));
spi: spi-gpio: Rewrite to use GPIO descriptors This converts the bit-banged GPIO SPI driver to looking up and using GPIO descriptors to get a handle on GPIO lines for SCK, MOSI, MISO and all CS lines. All existing board files are converted in one go to keep it all consistent. With these conversions I rarely find any interrim steps that makes any sense. Device tree probing and GPIO handling should work like before also after this patch. For board files, we stop using controller data to pass the GPIO line for chip select, instead we pass this as a GPIO descriptor lookup like everything else. In some s3c24xx machines the names of the SPI devices were set to "spi-gpio" rather than "spi_gpio" which can never have worked, I fixed it working (I guess) as part of this patch set. Sometimes I wonder how this code got upstream in the first place, it obviously is not tested. mach-s3c64xx/mach-smartq.c has the same problem and additionally defines the *same* GPIO line for MOSI and MISO which is not going to be accepted by gpiolib. As the lines were number 1,2,2 I assumed it was a typo and use lines 1,2,3. A comment gives awat that line 0 is chip select though no actual SPI device is provided for the LCD supposed to be on this bit-banged SPI bus. I left it intact instead of just deleting the bus though. Kill off board file code that try to initialize the SPI lines to the same values that they will later be set by the spi_gpio driver anyways. Given the huge number of weird things in these board files I do not think this code is very tested or put in with much afterthought anyways. In order to assert that we do not get performance regressions on this crucial bing-banged driver, a ran a script like this dumping the Ilitek ILI9322 regmap 10000 times (it has no caching obviously) on an otherwise idle system in two iterations before and after the patches: #!/bin/sh for run in `seq 10000` do cat /debug/regmap/spi0.0/registers > /dev/null done Before the patch: time test.sh real 3m 41.03s user 0m 29.41s sys 3m 7.22s time test.sh real 3m 44.24s user 0m 32.31s sys 3m 7.60s After the patch: time test.sh real 3m 41.32s user 0m 28.92s sys 3m 8.08s time test.sh real 3m 39.92s user 0m 30.20s sys 3m 5.56s So any performance differences seems to be in the error margin. Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Acked-by: Olof Johansson <olof@lixom.net> Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com> Signed-off-by: Mark Brown <broonie@kernel.org>
2018-02-12 05:45:30 -07:00
gpiod_add_lookup_table(&smartq_lcd_control_gpiod_table);
platform_add_devices(smartq_devices, ARRAY_SIZE(smartq_devices));
gpiod_add_lookup_table(&smartq_audio_gpios);
platform_device_register_simple("smartq-audio", -1, NULL, 0);
}