1
0
Fork 0
alistair23-linux/arch/mips/pci/pci-alchemy.c

538 lines
14 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 08:07:57 -06:00
// SPDX-License-Identifier: GPL-2.0
/*
* Alchemy PCI host mode support.
*
* Copyright 2001-2003, 2007-2008 MontaVista Software Inc.
* Author: MontaVista Software, Inc. <source@mvista.com>
*
* Support for all devices (greater than 16) added by David Gathright.
*/
#include <linux/clk.h>
#include <linux/export.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/syscore_ops.h>
#include <linux/vmalloc.h>
#include <asm/dma-coherence.h>
#include <asm/mach-au1x00/au1000.h>
#include <asm/tlbmisc.h>
#ifdef CONFIG_PCI_DEBUG
#define DBG(x...) printk(KERN_DEBUG x)
#else
#define DBG(x...) do {} while (0)
#endif
#define PCI_ACCESS_READ 0
#define PCI_ACCESS_WRITE 1
struct alchemy_pci_context {
struct pci_controller alchemy_pci_ctrl; /* leave as first member! */
void __iomem *regs; /* ctrl base */
/* tools for wired entry for config space access */
unsigned long last_elo0;
unsigned long last_elo1;
int wired_entry;
struct vm_struct *pci_cfg_vm;
unsigned long pm[12];
int (*board_map_irq)(const struct pci_dev *d, u8 slot, u8 pin);
int (*board_pci_idsel)(unsigned int devsel, int assert);
};
/* for syscore_ops. There's only one PCI controller on Alchemy chips, so this
* should suffice for now.
*/
static struct alchemy_pci_context *__alchemy_pci_ctx;
/* IO/MEM resources for PCI. Keep the memres in sync with __fixup_bigphys_addr
* in arch/mips/alchemy/common/setup.c
*/
static struct resource alchemy_pci_def_memres = {
.start = ALCHEMY_PCI_MEMWIN_START,
.end = ALCHEMY_PCI_MEMWIN_END,
.name = "PCI memory space",
.flags = IORESOURCE_MEM
};
static struct resource alchemy_pci_def_iores = {
.start = ALCHEMY_PCI_IOWIN_START,
.end = ALCHEMY_PCI_IOWIN_END,
.name = "PCI IO space",
.flags = IORESOURCE_IO
};
static void mod_wired_entry(int entry, unsigned long entrylo0,
unsigned long entrylo1, unsigned long entryhi,
unsigned long pagemask)
{
unsigned long old_pagemask;
unsigned long old_ctx;
/* Save old context and create impossible VPN2 value */
old_ctx = read_c0_entryhi() & MIPS_ENTRYHI_ASID;
old_pagemask = read_c0_pagemask();
write_c0_index(entry);
write_c0_pagemask(pagemask);
write_c0_entryhi(entryhi);
write_c0_entrylo0(entrylo0);
write_c0_entrylo1(entrylo1);
tlb_write_indexed();
write_c0_entryhi(old_ctx);
write_c0_pagemask(old_pagemask);
}
static void alchemy_pci_wired_entry(struct alchemy_pci_context *ctx)
{
ctx->wired_entry = read_c0_wired();
add_wired_entry(0, 0, (unsigned long)ctx->pci_cfg_vm->addr, PM_4K);
ctx->last_elo0 = ctx->last_elo1 = ~0;
}
static int config_access(unsigned char access_type, struct pci_bus *bus,
unsigned int dev_fn, unsigned char where, u32 *data)
{
struct alchemy_pci_context *ctx = bus->sysdata;
unsigned int device = PCI_SLOT(dev_fn);
unsigned int function = PCI_FUNC(dev_fn);
unsigned long offset, status, cfg_base, flags, entryLo0, entryLo1, r;
int error = PCIBIOS_SUCCESSFUL;
if (device > 19) {
*data = 0xffffffff;
return -1;
}
local_irq_save(flags);
r = __raw_readl(ctx->regs + PCI_REG_STATCMD) & 0x0000ffff;
r |= PCI_STATCMD_STATUS(0x2000);
__raw_writel(r, ctx->regs + PCI_REG_STATCMD);
wmb();
/* Allow board vendors to implement their own off-chip IDSEL.
* If it doesn't succeed, may as well bail out at this point.
*/
if (ctx->board_pci_idsel(device, 1) == 0) {
*data = 0xffffffff;
local_irq_restore(flags);
return -1;
}
/* Setup the config window */
if (bus->number == 0)
cfg_base = (1 << device) << 11;
else
cfg_base = 0x80000000 | (bus->number << 16) | (device << 11);
/* Setup the lower bits of the 36-bit address */
offset = (function << 8) | (where & ~0x3);
/* Pick up any address that falls below the page mask */
offset |= cfg_base & ~PAGE_MASK;
/* Page boundary */
cfg_base = cfg_base & PAGE_MASK;
/* To improve performance, if the current device is the same as
* the last device accessed, we don't touch the TLB.
*/
entryLo0 = (6 << 26) | (cfg_base >> 6) | (2 << 3) | 7;
entryLo1 = (6 << 26) | (cfg_base >> 6) | (0x1000 >> 6) | (2 << 3) | 7;
if ((entryLo0 != ctx->last_elo0) || (entryLo1 != ctx->last_elo1)) {
mod_wired_entry(ctx->wired_entry, entryLo0, entryLo1,
(unsigned long)ctx->pci_cfg_vm->addr, PM_4K);
ctx->last_elo0 = entryLo0;
ctx->last_elo1 = entryLo1;
}
if (access_type == PCI_ACCESS_WRITE)
__raw_writel(*data, ctx->pci_cfg_vm->addr + offset);
else
*data = __raw_readl(ctx->pci_cfg_vm->addr + offset);
wmb();
DBG("alchemy-pci: cfg access %d bus %u dev %u at %x dat %x conf %lx\n",
access_type, bus->number, device, where, *data, offset);
/* check for errors, master abort */
status = __raw_readl(ctx->regs + PCI_REG_STATCMD);
if (status & (1 << 29)) {
*data = 0xffffffff;
error = -1;
DBG("alchemy-pci: master abort on cfg access %d bus %d dev %d\n",
access_type, bus->number, device);
} else if ((status >> 28) & 0xf) {
DBG("alchemy-pci: PCI ERR detected: dev %d, status %lx\n",
device, (status >> 28) & 0xf);
/* clear errors */
__raw_writel(status & 0xf000ffff, ctx->regs + PCI_REG_STATCMD);
*data = 0xffffffff;
error = -1;
}
/* Take away the IDSEL. */
(void)ctx->board_pci_idsel(device, 0);
local_irq_restore(flags);
return error;
}
static int read_config_byte(struct pci_bus *bus, unsigned int devfn,
int where, u8 *val)
{
u32 data;
int ret = config_access(PCI_ACCESS_READ, bus, devfn, where, &data);
if (where & 1)
data >>= 8;
if (where & 2)
data >>= 16;
*val = data & 0xff;
return ret;
}
static int read_config_word(struct pci_bus *bus, unsigned int devfn,
int where, u16 *val)
{
u32 data;
int ret = config_access(PCI_ACCESS_READ, bus, devfn, where, &data);
if (where & 2)
data >>= 16;
*val = data & 0xffff;
return ret;
}
static int read_config_dword(struct pci_bus *bus, unsigned int devfn,
int where, u32 *val)
{
return config_access(PCI_ACCESS_READ, bus, devfn, where, val);
}
static int write_config_byte(struct pci_bus *bus, unsigned int devfn,
int where, u8 val)
{
u32 data = 0;
if (config_access(PCI_ACCESS_READ, bus, devfn, where, &data))
return -1;
data = (data & ~(0xff << ((where & 3) << 3))) |
(val << ((where & 3) << 3));
if (config_access(PCI_ACCESS_WRITE, bus, devfn, where, &data))
return -1;
return PCIBIOS_SUCCESSFUL;
}
static int write_config_word(struct pci_bus *bus, unsigned int devfn,
int where, u16 val)
{
u32 data = 0;
if (config_access(PCI_ACCESS_READ, bus, devfn, where, &data))
return -1;
data = (data & ~(0xffff << ((where & 3) << 3))) |
(val << ((where & 3) << 3));
if (config_access(PCI_ACCESS_WRITE, bus, devfn, where, &data))
return -1;
return PCIBIOS_SUCCESSFUL;
}
static int write_config_dword(struct pci_bus *bus, unsigned int devfn,
int where, u32 val)
{
return config_access(PCI_ACCESS_WRITE, bus, devfn, where, &val);
}
static int alchemy_pci_read(struct pci_bus *bus, unsigned int devfn,
int where, int size, u32 *val)
{
switch (size) {
case 1: {
u8 _val;
int rc = read_config_byte(bus, devfn, where, &_val);
*val = _val;
return rc;
}
case 2: {
u16 _val;
int rc = read_config_word(bus, devfn, where, &_val);
*val = _val;
return rc;
}
default:
return read_config_dword(bus, devfn, where, val);
}
}
static int alchemy_pci_write(struct pci_bus *bus, unsigned int devfn,
int where, int size, u32 val)
{
switch (size) {
case 1:
return write_config_byte(bus, devfn, where, (u8) val);
case 2:
return write_config_word(bus, devfn, where, (u16) val);
default:
return write_config_dword(bus, devfn, where, val);
}
}
static struct pci_ops alchemy_pci_ops = {
.read = alchemy_pci_read,
.write = alchemy_pci_write,
};
static int alchemy_pci_def_idsel(unsigned int devsel, int assert)
{
return 1; /* success */
}
/* save PCI controller register contents. */
static int alchemy_pci_suspend(void)
{
struct alchemy_pci_context *ctx = __alchemy_pci_ctx;
if (!ctx)
return 0;
ctx->pm[0] = __raw_readl(ctx->regs + PCI_REG_CMEM);
ctx->pm[1] = __raw_readl(ctx->regs + PCI_REG_CONFIG) & 0x0009ffff;
ctx->pm[2] = __raw_readl(ctx->regs + PCI_REG_B2BMASK_CCH);
ctx->pm[3] = __raw_readl(ctx->regs + PCI_REG_B2BBASE0_VID);
ctx->pm[4] = __raw_readl(ctx->regs + PCI_REG_B2BBASE1_SID);
ctx->pm[5] = __raw_readl(ctx->regs + PCI_REG_MWMASK_DEV);
ctx->pm[6] = __raw_readl(ctx->regs + PCI_REG_MWBASE_REV_CCL);
ctx->pm[7] = __raw_readl(ctx->regs + PCI_REG_ID);
ctx->pm[8] = __raw_readl(ctx->regs + PCI_REG_CLASSREV);
ctx->pm[9] = __raw_readl(ctx->regs + PCI_REG_PARAM);
ctx->pm[10] = __raw_readl(ctx->regs + PCI_REG_MBAR);
ctx->pm[11] = __raw_readl(ctx->regs + PCI_REG_TIMEOUT);
return 0;
}
static void alchemy_pci_resume(void)
{
struct alchemy_pci_context *ctx = __alchemy_pci_ctx;
if (!ctx)
return;
__raw_writel(ctx->pm[0], ctx->regs + PCI_REG_CMEM);
__raw_writel(ctx->pm[2], ctx->regs + PCI_REG_B2BMASK_CCH);
__raw_writel(ctx->pm[3], ctx->regs + PCI_REG_B2BBASE0_VID);
__raw_writel(ctx->pm[4], ctx->regs + PCI_REG_B2BBASE1_SID);
__raw_writel(ctx->pm[5], ctx->regs + PCI_REG_MWMASK_DEV);
__raw_writel(ctx->pm[6], ctx->regs + PCI_REG_MWBASE_REV_CCL);
__raw_writel(ctx->pm[7], ctx->regs + PCI_REG_ID);
__raw_writel(ctx->pm[8], ctx->regs + PCI_REG_CLASSREV);
__raw_writel(ctx->pm[9], ctx->regs + PCI_REG_PARAM);
__raw_writel(ctx->pm[10], ctx->regs + PCI_REG_MBAR);
__raw_writel(ctx->pm[11], ctx->regs + PCI_REG_TIMEOUT);
wmb();
__raw_writel(ctx->pm[1], ctx->regs + PCI_REG_CONFIG);
wmb();
/* YAMON on all db1xxx boards wipes the TLB and writes zero to C0_wired
* on resume, making it necessary to recreate it as soon as possible.
*/
ctx->wired_entry = 8191; /* impossibly high value */
alchemy_pci_wired_entry(ctx); /* install it */
}
static struct syscore_ops alchemy_pci_pmops = {
.suspend = alchemy_pci_suspend,
.resume = alchemy_pci_resume,
};
static int alchemy_pci_probe(struct platform_device *pdev)
{
struct alchemy_pci_platdata *pd = pdev->dev.platform_data;
struct alchemy_pci_context *ctx;
void __iomem *virt_io;
unsigned long val;
struct resource *r;
struct clk *c;
int ret;
/* need at least PCI IRQ mapping table */
if (!pd) {
dev_err(&pdev->dev, "need platform data for PCI setup\n");
ret = -ENODEV;
goto out;
}
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx) {
dev_err(&pdev->dev, "no memory for pcictl context\n");
ret = -ENOMEM;
goto out;
}
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!r) {
dev_err(&pdev->dev, "no pcictl ctrl regs resource\n");
ret = -ENODEV;
goto out1;
}
if (!request_mem_region(r->start, resource_size(r), pdev->name)) {
dev_err(&pdev->dev, "cannot claim pci regs\n");
ret = -ENODEV;
goto out1;
}
c = clk_get(&pdev->dev, "pci_clko");
if (IS_ERR(c)) {
dev_err(&pdev->dev, "unable to find PCI clock\n");
ret = PTR_ERR(c);
goto out2;
}
ret = clk_prepare_enable(c);
if (ret) {
dev_err(&pdev->dev, "cannot enable PCI clock\n");
goto out6;
}
ctx->regs = ioremap_nocache(r->start, resource_size(r));
if (!ctx->regs) {
dev_err(&pdev->dev, "cannot map pci regs\n");
ret = -ENODEV;
goto out5;
}
/* map parts of the PCI IO area */
/* REVISIT: if this changes with a newer variant (doubt it) make this
* a platform resource.
*/
virt_io = ioremap(AU1500_PCI_IO_PHYS_ADDR, 0x00100000);
if (!virt_io) {
dev_err(&pdev->dev, "cannot remap pci io space\n");
ret = -ENODEV;
goto out3;
}
ctx->alchemy_pci_ctrl.io_map_base = (unsigned long)virt_io;
/* Au1500 revisions older than AD have borked coherent PCI */
if ((alchemy_get_cputype() == ALCHEMY_CPU_AU1500) &&
(read_c0_prid() < 0x01030202) &&
(coherentio == IO_COHERENCE_DISABLED)) {
val = __raw_readl(ctx->regs + PCI_REG_CONFIG);
val |= PCI_CONFIG_NC;
__raw_writel(val, ctx->regs + PCI_REG_CONFIG);
wmb();
dev_info(&pdev->dev, "non-coherent PCI on Au1500 AA/AB/AC\n");
}
if (pd->board_map_irq)
ctx->board_map_irq = pd->board_map_irq;
if (pd->board_pci_idsel)
ctx->board_pci_idsel = pd->board_pci_idsel;
else
ctx->board_pci_idsel = alchemy_pci_def_idsel;
/* fill in relevant pci_controller members */
ctx->alchemy_pci_ctrl.pci_ops = &alchemy_pci_ops;
ctx->alchemy_pci_ctrl.mem_resource = &alchemy_pci_def_memres;
ctx->alchemy_pci_ctrl.io_resource = &alchemy_pci_def_iores;
/* we can't ioremap the entire pci config space because it's too large,
* nor can we dynamically ioremap it because some drivers use the
* PCI config routines from within atomic contex and that becomes a
* problem in get_vm_area(). Instead we use one wired TLB entry to
* handle all config accesses for all busses.
*/
ctx->pci_cfg_vm = get_vm_area(0x2000, VM_IOREMAP);
if (!ctx->pci_cfg_vm) {
dev_err(&pdev->dev, "unable to get vm area\n");
ret = -ENOMEM;
goto out4;
}
ctx->wired_entry = 8191; /* impossibly high value */
alchemy_pci_wired_entry(ctx); /* install it */
set_io_port_base((unsigned long)ctx->alchemy_pci_ctrl.io_map_base);
/* board may want to modify bits in the config register, do it now */
val = __raw_readl(ctx->regs + PCI_REG_CONFIG);
val &= ~pd->pci_cfg_clr;
val |= pd->pci_cfg_set;
val &= ~PCI_CONFIG_PD; /* clear disable bit */
__raw_writel(val, ctx->regs + PCI_REG_CONFIG);
wmb();
__alchemy_pci_ctx = ctx;
platform_set_drvdata(pdev, ctx);
register_syscore_ops(&alchemy_pci_pmops);
register_pci_controller(&ctx->alchemy_pci_ctrl);
dev_info(&pdev->dev, "PCI controller at %ld MHz\n",
clk_get_rate(c) / 1000000);
return 0;
out4:
iounmap(virt_io);
out3:
iounmap(ctx->regs);
out5:
clk_disable_unprepare(c);
out6:
clk_put(c);
out2:
release_mem_region(r->start, resource_size(r));
out1:
kfree(ctx);
out:
return ret;
}
static struct platform_driver alchemy_pcictl_driver = {
.probe = alchemy_pci_probe,
.driver = {
.name = "alchemy-pci",
},
};
static int __init alchemy_pci_init(void)
{
/* Au1500/Au1550 have PCI */
switch (alchemy_get_cputype()) {
case ALCHEMY_CPU_AU1500:
case ALCHEMY_CPU_AU1550:
return platform_driver_register(&alchemy_pcictl_driver);
}
return 0;
}
arch_initcall(alchemy_pci_init);
int pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
{
struct alchemy_pci_context *ctx = dev->sysdata;
if (ctx && ctx->board_map_irq)
return ctx->board_map_irq(dev, slot, pin);
return -1;
}
int pcibios_plat_dev_init(struct pci_dev *dev)
{
return 0;
}