1
0
Fork 0
alistair23-linux/arch/x86/oprofile/op_model_p4.c

724 lines
18 KiB
C
Raw Normal View History

/**
* @file op_model_p4.c
* P4 model-specific MSR operations
*
* @remark Copyright 2002 OProfile authors
* @remark Read the file COPYING
*
* @author Graydon Hoare
*/
#include <linux/oprofile.h>
#include <linux/smp.h>
#include <linux/ptrace.h>
x86, nmi_watchdog: Remove ARCH_HAS_NMI_WATCHDOG and rely on CONFIG_HARDLOCKUP_DETECTOR The x86 arch has shifted its use of the nmi_watchdog from a local implementation to the global one provide by kernel/watchdog.c. This shift has caused a whole bunch of compile problems under different config options. I attempt to simplify things with the patch below. In order to simplify things, I had to come to terms with the meaning of two terms ARCH_HAS_NMI_WATCHDOG and CONFIG_HARDLOCKUP_DETECTOR. Basically they mean the same thing, the former on a local level and the latter on a global level. With the old x86 nmi watchdog gone, there is no need to rely on defining the ARCH_HAS_NMI_WATCHDOG variable because it doesn't make sense any more. x86 will now use the global implementation. The changes below do a few things. First it changes the few places that relied on ARCH_HAS_NMI_WATCHDOG to use CONFIG_X86_LOCAL_APIC (the former was an alias for the latter anyway, so nothing unusual here). Those pieces of code were relying more on local apic functionality the nmi watchdog functionality, so the change should make sense. Second, I removed the x86 implementation of touch_nmi_watchdog(). It isn't need now, instead x86 will rely on kernel/watchdog.c's implementation. Third, I removed the #define ARCH_HAS_NMI_WATCHDOG itself from x86. And tweaked the include/linux/nmi.h file to tell users to look for an externally defined touch_nmi_watchdog in the case of ARCH_HAS_NMI_WATCHDOG _or_ CONFIG_HARDLOCKUP_DETECTOR. This changes removes some of the ugliness in that file. Finally, I added a Kconfig dependency for CONFIG_HARDLOCKUP_DETECTOR that said you can't have ARCH_HAS_NMI_WATCHDOG _and_ CONFIG_HARDLOCKUP_DETECTOR. You can only have one nmi_watchdog. Tested with ARCH=i386: allnoconfig, defconfig, allyesconfig, (various broken configs) ARCH=x86_64: allnoconfig, defconfig, allyesconfig, (various broken configs) Hopefully, after this patch I won't get any more compile broken emails. :-) v3: changed a couple of 'linux/nmi.h' -> 'asm/nmi.h' to pick-up correct function prototypes when CONFIG_HARDLOCKUP_DETECTOR is not set. Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: fweisbec@gmail.com LKML-Reference: <1293044403-14117-1-git-send-email-dzickus@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-12-22 12:00:03 -07:00
#include <asm/nmi.h>
#include <asm/msr.h>
#include <asm/fixmap.h>
#include <asm/apic.h>
#include "op_x86_model.h"
#include "op_counter.h"
#define NUM_EVENTS 39
#define NUM_COUNTERS_NON_HT 8
#define NUM_ESCRS_NON_HT 45
#define NUM_CCCRS_NON_HT 18
#define NUM_CONTROLS_NON_HT (NUM_ESCRS_NON_HT + NUM_CCCRS_NON_HT)
#define NUM_COUNTERS_HT2 4
#define NUM_ESCRS_HT2 23
#define NUM_CCCRS_HT2 9
#define NUM_CONTROLS_HT2 (NUM_ESCRS_HT2 + NUM_CCCRS_HT2)
#define OP_CTR_OVERFLOW (1ULL<<31)
static unsigned int num_counters = NUM_COUNTERS_NON_HT;
static unsigned int num_controls = NUM_CONTROLS_NON_HT;
/* this has to be checked dynamically since the
hyper-threadedness of a chip is discovered at
kernel boot-time. */
static inline void setup_num_counters(void)
{
#ifdef CONFIG_SMP
if (smp_num_siblings == 2) {
num_counters = NUM_COUNTERS_HT2;
num_controls = NUM_CONTROLS_HT2;
}
#endif
}
static inline int addr_increment(void)
{
#ifdef CONFIG_SMP
return smp_num_siblings == 2 ? 2 : 1;
#else
return 1;
#endif
}
/* tables to simulate simplified hardware view of p4 registers */
struct p4_counter_binding {
int virt_counter;
int counter_address;
int cccr_address;
};
struct p4_event_binding {
int escr_select; /* value to put in CCCR */
int event_select; /* value to put in ESCR */
struct {
int virt_counter; /* for this counter... */
int escr_address; /* use this ESCR */
} bindings[2];
};
/* nb: these CTR_* defines are a duplicate of defines in
event/i386.p4*events. */
#define CTR_BPU_0 (1 << 0)
#define CTR_MS_0 (1 << 1)
#define CTR_FLAME_0 (1 << 2)
#define CTR_IQ_4 (1 << 3)
#define CTR_BPU_2 (1 << 4)
#define CTR_MS_2 (1 << 5)
#define CTR_FLAME_2 (1 << 6)
#define CTR_IQ_5 (1 << 7)
static struct p4_counter_binding p4_counters[NUM_COUNTERS_NON_HT] = {
{ CTR_BPU_0, MSR_P4_BPU_PERFCTR0, MSR_P4_BPU_CCCR0 },
{ CTR_MS_0, MSR_P4_MS_PERFCTR0, MSR_P4_MS_CCCR0 },
{ CTR_FLAME_0, MSR_P4_FLAME_PERFCTR0, MSR_P4_FLAME_CCCR0 },
{ CTR_IQ_4, MSR_P4_IQ_PERFCTR4, MSR_P4_IQ_CCCR4 },
{ CTR_BPU_2, MSR_P4_BPU_PERFCTR2, MSR_P4_BPU_CCCR2 },
{ CTR_MS_2, MSR_P4_MS_PERFCTR2, MSR_P4_MS_CCCR2 },
{ CTR_FLAME_2, MSR_P4_FLAME_PERFCTR2, MSR_P4_FLAME_CCCR2 },
{ CTR_IQ_5, MSR_P4_IQ_PERFCTR5, MSR_P4_IQ_CCCR5 }
};
#define NUM_UNUSED_CCCRS (NUM_CCCRS_NON_HT - NUM_COUNTERS_NON_HT)
/* p4 event codes in libop/op_event.h are indices into this table. */
static struct p4_event_binding p4_events[NUM_EVENTS] = {
{ /* BRANCH_RETIRED */
0x05, 0x06,
{ {CTR_IQ_4, MSR_P4_CRU_ESCR2},
{CTR_IQ_5, MSR_P4_CRU_ESCR3} }
},
{ /* MISPRED_BRANCH_RETIRED */
0x04, 0x03,
{ { CTR_IQ_4, MSR_P4_CRU_ESCR0},
{ CTR_IQ_5, MSR_P4_CRU_ESCR1} }
},
{ /* TC_DELIVER_MODE */
0x01, 0x01,
{ { CTR_MS_0, MSR_P4_TC_ESCR0},
{ CTR_MS_2, MSR_P4_TC_ESCR1} }
},
{ /* BPU_FETCH_REQUEST */
0x00, 0x03,
{ { CTR_BPU_0, MSR_P4_BPU_ESCR0},
{ CTR_BPU_2, MSR_P4_BPU_ESCR1} }
},
{ /* ITLB_REFERENCE */
0x03, 0x18,
{ { CTR_BPU_0, MSR_P4_ITLB_ESCR0},
{ CTR_BPU_2, MSR_P4_ITLB_ESCR1} }
},
{ /* MEMORY_CANCEL */
0x05, 0x02,
{ { CTR_FLAME_0, MSR_P4_DAC_ESCR0},
{ CTR_FLAME_2, MSR_P4_DAC_ESCR1} }
},
{ /* MEMORY_COMPLETE */
0x02, 0x08,
{ { CTR_FLAME_0, MSR_P4_SAAT_ESCR0},
{ CTR_FLAME_2, MSR_P4_SAAT_ESCR1} }
},
{ /* LOAD_PORT_REPLAY */
0x02, 0x04,
{ { CTR_FLAME_0, MSR_P4_SAAT_ESCR0},
{ CTR_FLAME_2, MSR_P4_SAAT_ESCR1} }
},
{ /* STORE_PORT_REPLAY */
0x02, 0x05,
{ { CTR_FLAME_0, MSR_P4_SAAT_ESCR0},
{ CTR_FLAME_2, MSR_P4_SAAT_ESCR1} }
},
{ /* MOB_LOAD_REPLAY */
0x02, 0x03,
{ { CTR_BPU_0, MSR_P4_MOB_ESCR0},
{ CTR_BPU_2, MSR_P4_MOB_ESCR1} }
},
{ /* PAGE_WALK_TYPE */
0x04, 0x01,
{ { CTR_BPU_0, MSR_P4_PMH_ESCR0},
{ CTR_BPU_2, MSR_P4_PMH_ESCR1} }
},
{ /* BSQ_CACHE_REFERENCE */
0x07, 0x0c,
{ { CTR_BPU_0, MSR_P4_BSU_ESCR0},
{ CTR_BPU_2, MSR_P4_BSU_ESCR1} }
},
{ /* IOQ_ALLOCATION */
0x06, 0x03,
{ { CTR_BPU_0, MSR_P4_FSB_ESCR0},
{ 0, 0 } }
},
{ /* IOQ_ACTIVE_ENTRIES */
0x06, 0x1a,
{ { CTR_BPU_2, MSR_P4_FSB_ESCR1},
{ 0, 0 } }
},
{ /* FSB_DATA_ACTIVITY */
0x06, 0x17,
{ { CTR_BPU_0, MSR_P4_FSB_ESCR0},
{ CTR_BPU_2, MSR_P4_FSB_ESCR1} }
},
{ /* BSQ_ALLOCATION */
0x07, 0x05,
{ { CTR_BPU_0, MSR_P4_BSU_ESCR0},
{ 0, 0 } }
},
{ /* BSQ_ACTIVE_ENTRIES */
0x07, 0x06,
{ { CTR_BPU_2, MSR_P4_BSU_ESCR1 /* guess */},
{ 0, 0 } }
},
{ /* X87_ASSIST */
0x05, 0x03,
{ { CTR_IQ_4, MSR_P4_CRU_ESCR2},
{ CTR_IQ_5, MSR_P4_CRU_ESCR3} }
},
{ /* SSE_INPUT_ASSIST */
0x01, 0x34,
{ { CTR_FLAME_0, MSR_P4_FIRM_ESCR0},
{ CTR_FLAME_2, MSR_P4_FIRM_ESCR1} }
},
{ /* PACKED_SP_UOP */
0x01, 0x08,
{ { CTR_FLAME_0, MSR_P4_FIRM_ESCR0},
{ CTR_FLAME_2, MSR_P4_FIRM_ESCR1} }
},
{ /* PACKED_DP_UOP */
0x01, 0x0c,
{ { CTR_FLAME_0, MSR_P4_FIRM_ESCR0},
{ CTR_FLAME_2, MSR_P4_FIRM_ESCR1} }
},
{ /* SCALAR_SP_UOP */
0x01, 0x0a,
{ { CTR_FLAME_0, MSR_P4_FIRM_ESCR0},
{ CTR_FLAME_2, MSR_P4_FIRM_ESCR1} }
},
{ /* SCALAR_DP_UOP */
0x01, 0x0e,
{ { CTR_FLAME_0, MSR_P4_FIRM_ESCR0},
{ CTR_FLAME_2, MSR_P4_FIRM_ESCR1} }
},
{ /* 64BIT_MMX_UOP */
0x01, 0x02,
{ { CTR_FLAME_0, MSR_P4_FIRM_ESCR0},
{ CTR_FLAME_2, MSR_P4_FIRM_ESCR1} }
},
{ /* 128BIT_MMX_UOP */
0x01, 0x1a,
{ { CTR_FLAME_0, MSR_P4_FIRM_ESCR0},
{ CTR_FLAME_2, MSR_P4_FIRM_ESCR1} }
},
{ /* X87_FP_UOP */
0x01, 0x04,
{ { CTR_FLAME_0, MSR_P4_FIRM_ESCR0},
{ CTR_FLAME_2, MSR_P4_FIRM_ESCR1} }
},
{ /* X87_SIMD_MOVES_UOP */
0x01, 0x2e,
{ { CTR_FLAME_0, MSR_P4_FIRM_ESCR0},
{ CTR_FLAME_2, MSR_P4_FIRM_ESCR1} }
},
{ /* MACHINE_CLEAR */
0x05, 0x02,
{ { CTR_IQ_4, MSR_P4_CRU_ESCR2},
{ CTR_IQ_5, MSR_P4_CRU_ESCR3} }
},
{ /* GLOBAL_POWER_EVENTS */
0x06, 0x13 /* older manual says 0x05, newer 0x13 */,
{ { CTR_BPU_0, MSR_P4_FSB_ESCR0},
{ CTR_BPU_2, MSR_P4_FSB_ESCR1} }
},
{ /* TC_MS_XFER */
0x00, 0x05,
{ { CTR_MS_0, MSR_P4_MS_ESCR0},
{ CTR_MS_2, MSR_P4_MS_ESCR1} }
},
{ /* UOP_QUEUE_WRITES */
0x00, 0x09,
{ { CTR_MS_0, MSR_P4_MS_ESCR0},
{ CTR_MS_2, MSR_P4_MS_ESCR1} }
},
{ /* FRONT_END_EVENT */
0x05, 0x08,
{ { CTR_IQ_4, MSR_P4_CRU_ESCR2},
{ CTR_IQ_5, MSR_P4_CRU_ESCR3} }
},
{ /* EXECUTION_EVENT */
0x05, 0x0c,
{ { CTR_IQ_4, MSR_P4_CRU_ESCR2},
{ CTR_IQ_5, MSR_P4_CRU_ESCR3} }
},
{ /* REPLAY_EVENT */
0x05, 0x09,
{ { CTR_IQ_4, MSR_P4_CRU_ESCR2},
{ CTR_IQ_5, MSR_P4_CRU_ESCR3} }
},
{ /* INSTR_RETIRED */
0x04, 0x02,
{ { CTR_IQ_4, MSR_P4_CRU_ESCR0},
{ CTR_IQ_5, MSR_P4_CRU_ESCR1} }
},
{ /* UOPS_RETIRED */
0x04, 0x01,
{ { CTR_IQ_4, MSR_P4_CRU_ESCR0},
{ CTR_IQ_5, MSR_P4_CRU_ESCR1} }
},
{ /* UOP_TYPE */
0x02, 0x02,
{ { CTR_IQ_4, MSR_P4_RAT_ESCR0},
{ CTR_IQ_5, MSR_P4_RAT_ESCR1} }
},
{ /* RETIRED_MISPRED_BRANCH_TYPE */
0x02, 0x05,
{ { CTR_MS_0, MSR_P4_TBPU_ESCR0},
{ CTR_MS_2, MSR_P4_TBPU_ESCR1} }
},
{ /* RETIRED_BRANCH_TYPE */
0x02, 0x04,
{ { CTR_MS_0, MSR_P4_TBPU_ESCR0},
{ CTR_MS_2, MSR_P4_TBPU_ESCR1} }
}
};
#define MISC_PMC_ENABLED_P(x) ((x) & 1 << 7)
#define ESCR_RESERVED_BITS 0x80000003
#define ESCR_CLEAR(escr) ((escr) &= ESCR_RESERVED_BITS)
#define ESCR_SET_USR_0(escr, usr) ((escr) |= (((usr) & 1) << 2))
#define ESCR_SET_OS_0(escr, os) ((escr) |= (((os) & 1) << 3))
#define ESCR_SET_USR_1(escr, usr) ((escr) |= (((usr) & 1)))
#define ESCR_SET_OS_1(escr, os) ((escr) |= (((os) & 1) << 1))
#define ESCR_SET_EVENT_SELECT(escr, sel) ((escr) |= (((sel) & 0x3f) << 25))
#define ESCR_SET_EVENT_MASK(escr, mask) ((escr) |= (((mask) & 0xffff) << 9))
#define CCCR_RESERVED_BITS 0x38030FFF
#define CCCR_CLEAR(cccr) ((cccr) &= CCCR_RESERVED_BITS)
#define CCCR_SET_REQUIRED_BITS(cccr) ((cccr) |= 0x00030000)
#define CCCR_SET_ESCR_SELECT(cccr, sel) ((cccr) |= (((sel) & 0x07) << 13))
#define CCCR_SET_PMI_OVF_0(cccr) ((cccr) |= (1<<26))
#define CCCR_SET_PMI_OVF_1(cccr) ((cccr) |= (1<<27))
#define CCCR_SET_ENABLE(cccr) ((cccr) |= (1<<12))
#define CCCR_SET_DISABLE(cccr) ((cccr) &= ~(1<<12))
#define CCCR_OVF_P(cccr) ((cccr) & (1U<<31))
#define CCCR_CLEAR_OVF(cccr) ((cccr) &= (~(1U<<31)))
/* this assigns a "stagger" to the current CPU, which is used throughout
the code in this module as an extra array offset, to select the "even"
or "odd" part of all the divided resources. */
static unsigned int get_stagger(void)
{
#ifdef CONFIG_SMP
int cpu = smp_processor_id();
return cpu != cpumask_first(this_cpu_cpumask_var_ptr(cpu_sibling_map));
#endif
return 0;
}
/* finally, mediate access to a real hardware counter
by passing a "virtual" counter numer to this macro,
along with your stagger setting. */
#define VIRT_CTR(stagger, i) ((i) + ((num_counters) * (stagger)))
static unsigned long reset_value[NUM_COUNTERS_NON_HT];
static void p4_shutdown(struct op_msrs const * const msrs)
{
int i;
for (i = 0; i < num_counters; ++i) {
if (msrs->counters[i].addr)
release_perfctr_nmi(msrs->counters[i].addr);
}
/*
* some of the control registers are specially reserved in
* conjunction with the counter registers (hence the starting offset).
* This saves a few bits.
*/
for (i = num_counters; i < num_controls; ++i) {
if (msrs->controls[i].addr)
release_evntsel_nmi(msrs->controls[i].addr);
}
}
static int p4_fill_in_addresses(struct op_msrs * const msrs)
{
unsigned int i;
unsigned int addr, cccraddr, stag;
setup_num_counters();
stag = get_stagger();
/* the counter & cccr registers we pay attention to */
for (i = 0; i < num_counters; ++i) {
addr = p4_counters[VIRT_CTR(stag, i)].counter_address;
cccraddr = p4_counters[VIRT_CTR(stag, i)].cccr_address;
if (reserve_perfctr_nmi(addr)) {
msrs->counters[i].addr = addr;
msrs->controls[i].addr = cccraddr;
}
}
/* 43 ESCR registers in three or four discontiguous group */
for (addr = MSR_P4_BSU_ESCR0 + stag;
addr < MSR_P4_IQ_ESCR0; ++i, addr += addr_increment()) {
if (reserve_evntsel_nmi(addr))
msrs->controls[i].addr = addr;
}
/* no IQ_ESCR0/1 on some models, we save a seconde time BSU_ESCR0/1
* to avoid special case in nmi_{save|restore}_registers() */
if (boot_cpu_data.x86_model >= 0x3) {
for (addr = MSR_P4_BSU_ESCR0 + stag;
addr <= MSR_P4_BSU_ESCR1; ++i, addr += addr_increment()) {
if (reserve_evntsel_nmi(addr))
msrs->controls[i].addr = addr;
}
} else {
for (addr = MSR_P4_IQ_ESCR0 + stag;
addr <= MSR_P4_IQ_ESCR1; ++i, addr += addr_increment()) {
if (reserve_evntsel_nmi(addr))
msrs->controls[i].addr = addr;
}
}
for (addr = MSR_P4_RAT_ESCR0 + stag;
addr <= MSR_P4_SSU_ESCR0; ++i, addr += addr_increment()) {
if (reserve_evntsel_nmi(addr))
msrs->controls[i].addr = addr;
}
for (addr = MSR_P4_MS_ESCR0 + stag;
addr <= MSR_P4_TC_ESCR1; ++i, addr += addr_increment()) {
if (reserve_evntsel_nmi(addr))
msrs->controls[i].addr = addr;
}
for (addr = MSR_P4_IX_ESCR0 + stag;
addr <= MSR_P4_CRU_ESCR3; ++i, addr += addr_increment()) {
if (reserve_evntsel_nmi(addr))
msrs->controls[i].addr = addr;
}
/* there are 2 remaining non-contiguously located ESCRs */
if (num_counters == NUM_COUNTERS_NON_HT) {
/* standard non-HT CPUs handle both remaining ESCRs*/
if (reserve_evntsel_nmi(MSR_P4_CRU_ESCR5))
msrs->controls[i++].addr = MSR_P4_CRU_ESCR5;
if (reserve_evntsel_nmi(MSR_P4_CRU_ESCR4))
msrs->controls[i++].addr = MSR_P4_CRU_ESCR4;
} else if (stag == 0) {
/* HT CPUs give the first remainder to the even thread, as
the 32nd control register */
if (reserve_evntsel_nmi(MSR_P4_CRU_ESCR4))
msrs->controls[i++].addr = MSR_P4_CRU_ESCR4;
} else {
/* and two copies of the second to the odd thread,
for the 22st and 23nd control registers */
if (reserve_evntsel_nmi(MSR_P4_CRU_ESCR5)) {
msrs->controls[i++].addr = MSR_P4_CRU_ESCR5;
msrs->controls[i++].addr = MSR_P4_CRU_ESCR5;
}
}
for (i = 0; i < num_counters; ++i) {
if (!counter_config[i].enabled)
continue;
if (msrs->controls[i].addr)
continue;
op_x86_warn_reserved(i);
p4_shutdown(msrs);
return -EBUSY;
}
return 0;
}
static void pmc_setup_one_p4_counter(unsigned int ctr)
{
int i;
int const maxbind = 2;
unsigned int cccr = 0;
unsigned int escr = 0;
unsigned int high = 0;
unsigned int counter_bit;
struct p4_event_binding *ev = NULL;
unsigned int stag;
stag = get_stagger();
/* convert from counter *number* to counter *bit* */
counter_bit = 1 << VIRT_CTR(stag, ctr);
/* find our event binding structure. */
if (counter_config[ctr].event <= 0 || counter_config[ctr].event > NUM_EVENTS) {
printk(KERN_ERR
"oprofile: P4 event code 0x%lx out of range\n",
counter_config[ctr].event);
return;
}
ev = &(p4_events[counter_config[ctr].event - 1]);
for (i = 0; i < maxbind; i++) {
if (ev->bindings[i].virt_counter & counter_bit) {
/* modify ESCR */
rdmsr(ev->bindings[i].escr_address, escr, high);
ESCR_CLEAR(escr);
if (stag == 0) {
ESCR_SET_USR_0(escr, counter_config[ctr].user);
ESCR_SET_OS_0(escr, counter_config[ctr].kernel);
} else {
ESCR_SET_USR_1(escr, counter_config[ctr].user);
ESCR_SET_OS_1(escr, counter_config[ctr].kernel);
}
ESCR_SET_EVENT_SELECT(escr, ev->event_select);
ESCR_SET_EVENT_MASK(escr, counter_config[ctr].unit_mask);
wrmsr(ev->bindings[i].escr_address, escr, high);
/* modify CCCR */
rdmsr(p4_counters[VIRT_CTR(stag, ctr)].cccr_address,
cccr, high);
CCCR_CLEAR(cccr);
CCCR_SET_REQUIRED_BITS(cccr);
CCCR_SET_ESCR_SELECT(cccr, ev->escr_select);
if (stag == 0)
CCCR_SET_PMI_OVF_0(cccr);
else
CCCR_SET_PMI_OVF_1(cccr);
wrmsr(p4_counters[VIRT_CTR(stag, ctr)].cccr_address,
cccr, high);
return;
}
}
printk(KERN_ERR
"oprofile: P4 event code 0x%lx no binding, stag %d ctr %d\n",
counter_config[ctr].event, stag, ctr);
}
static void p4_setup_ctrs(struct op_x86_model_spec const *model,
struct op_msrs const * const msrs)
{
unsigned int i;
unsigned int low, high;
unsigned int stag;
stag = get_stagger();
rdmsr(MSR_IA32_MISC_ENABLE, low, high);
if (!MISC_PMC_ENABLED_P(low)) {
printk(KERN_ERR "oprofile: P4 PMC not available\n");
return;
}
/* clear the cccrs we will use */
for (i = 0; i < num_counters; i++) {
if (unlikely(!msrs->controls[i].addr))
continue;
rdmsr(p4_counters[VIRT_CTR(stag, i)].cccr_address, low, high);
CCCR_CLEAR(low);
CCCR_SET_REQUIRED_BITS(low);
wrmsr(p4_counters[VIRT_CTR(stag, i)].cccr_address, low, high);
}
/* clear all escrs (including those outside our concern) */
for (i = num_counters; i < num_controls; i++) {
if (unlikely(!msrs->controls[i].addr))
continue;
wrmsr(msrs->controls[i].addr, 0, 0);
}
/* setup all counters */
for (i = 0; i < num_counters; ++i) {
if (counter_config[i].enabled && msrs->controls[i].addr) {
reset_value[i] = counter_config[i].count;
pmc_setup_one_p4_counter(i);
wrmsrl(p4_counters[VIRT_CTR(stag, i)].counter_address,
-(u64)counter_config[i].count);
} else {
reset_value[i] = 0;
}
}
}
static int p4_check_ctrs(struct pt_regs * const regs,
struct op_msrs const * const msrs)
{
unsigned long ctr, low, high, stag, real;
int i;
stag = get_stagger();
for (i = 0; i < num_counters; ++i) {
if (!reset_value[i])
continue;
/*
* there is some eccentricity in the hardware which
* requires that we perform 2 extra corrections:
*
* - check both the CCCR:OVF flag for overflow and the
* counter high bit for un-flagged overflows.
*
* - write the counter back twice to ensure it gets
* updated properly.
*
* the former seems to be related to extra NMIs happening
* during the current NMI; the latter is reported as errata
* N15 in intel doc 249199-029, pentium 4 specification
* update, though their suggested work-around does not
* appear to solve the problem.
*/
real = VIRT_CTR(stag, i);
rdmsr(p4_counters[real].cccr_address, low, high);
rdmsr(p4_counters[real].counter_address, ctr, high);
if (CCCR_OVF_P(low) || !(ctr & OP_CTR_OVERFLOW)) {
oprofile_add_sample(regs, i);
wrmsrl(p4_counters[real].counter_address,
-(u64)reset_value[i]);
CCCR_CLEAR_OVF(low);
wrmsr(p4_counters[real].cccr_address, low, high);
wrmsrl(p4_counters[real].counter_address,
-(u64)reset_value[i]);
}
}
/* P4 quirk: you have to re-unmask the apic vector */
apic_write(APIC_LVTPC, apic_read(APIC_LVTPC) & ~APIC_LVT_MASKED);
/* See op_model_ppro.c */
return 1;
}
static void p4_start(struct op_msrs const * const msrs)
{
unsigned int low, high, stag;
int i;
stag = get_stagger();
for (i = 0; i < num_counters; ++i) {
if (!reset_value[i])
continue;
rdmsr(p4_counters[VIRT_CTR(stag, i)].cccr_address, low, high);
CCCR_SET_ENABLE(low);
wrmsr(p4_counters[VIRT_CTR(stag, i)].cccr_address, low, high);
}
}
static void p4_stop(struct op_msrs const * const msrs)
{
unsigned int low, high, stag;
int i;
stag = get_stagger();
for (i = 0; i < num_counters; ++i) {
if (!reset_value[i])
continue;
rdmsr(p4_counters[VIRT_CTR(stag, i)].cccr_address, low, high);
CCCR_SET_DISABLE(low);
wrmsr(p4_counters[VIRT_CTR(stag, i)].cccr_address, low, high);
}
}
#ifdef CONFIG_SMP
struct op_x86_model_spec op_p4_ht2_spec = {
.num_counters = NUM_COUNTERS_HT2,
.num_controls = NUM_CONTROLS_HT2,
.fill_in_addresses = &p4_fill_in_addresses,
.setup_ctrs = &p4_setup_ctrs,
.check_ctrs = &p4_check_ctrs,
.start = &p4_start,
.stop = &p4_stop,
.shutdown = &p4_shutdown
};
#endif
struct op_x86_model_spec op_p4_spec = {
.num_counters = NUM_COUNTERS_NON_HT,
.num_controls = NUM_CONTROLS_NON_HT,
.fill_in_addresses = &p4_fill_in_addresses,
.setup_ctrs = &p4_setup_ctrs,
.check_ctrs = &p4_check_ctrs,
.start = &p4_start,
.stop = &p4_stop,
.shutdown = &p4_shutdown
};