1
0
Fork 0
alistair23-linux/drivers/clk/meson/clk-pll.c

446 lines
11 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2015 Endless Mobile, Inc.
* Author: Carlo Caione <carlo@endlessm.com>
*
* Copyright (c) 2018 Baylibre, SAS.
* Author: Jerome Brunet <jbrunet@baylibre.com>
*/
/*
* In the most basic form, a Meson PLL is composed as follows:
*
* PLL
* +--------------------------------+
* | |
* | +--+ |
* in >>-----[ /N ]--->| | +-----+ |
* | | |------| DCO |---->> out
* | +--------->| | +--v--+ |
* | | +--+ | |
* | | | |
* | +--[ *(M + (F/Fmax) ]<--+ |
* | |
* +--------------------------------+
*
* out = in * (m + frac / frac_max) / n
*/
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/math64.h>
#include <linux/module.h>
#include <linux/rational.h>
#include "clk-regmap.h"
#include "clk-pll.h"
static inline struct meson_clk_pll_data *
meson_clk_pll_data(struct clk_regmap *clk)
{
return (struct meson_clk_pll_data *)clk->data;
}
static int __pll_round_closest_mult(struct meson_clk_pll_data *pll)
{
if ((pll->flags & CLK_MESON_PLL_ROUND_CLOSEST) &&
!MESON_PARM_APPLICABLE(&pll->frac))
return 1;
return 0;
}
static unsigned long __pll_params_to_rate(unsigned long parent_rate,
unsigned int m, unsigned int n,
unsigned int frac,
struct meson_clk_pll_data *pll)
{
u64 rate = (u64)parent_rate * m;
if (frac && MESON_PARM_APPLICABLE(&pll->frac)) {
u64 frac_rate = (u64)parent_rate * frac;
rate += DIV_ROUND_UP_ULL(frac_rate,
(1 << pll->frac.width));
}
return DIV_ROUND_UP_ULL(rate, n);
}
static unsigned long meson_clk_pll_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_regmap *clk = to_clk_regmap(hw);
struct meson_clk_pll_data *pll = meson_clk_pll_data(clk);
unsigned int m, n, frac;
n = meson_parm_read(clk->map, &pll->n);
clk: meson: pll: Fix by 0 division in __pll_params_to_rate() [ Upstream commit d8488a41800d9f5c80bc0d17b9cc2c91b4841464 ] Some meson pll registers can be initialized with 0 as N value, introducing the following division by 0 when computing rate : UBSAN: Undefined behaviour in drivers/clk/meson/clk-pll.c:75:9 division by zero CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.4.0-rc3-608075-g86c9af8630e1-dirty #400 Call trace: dump_backtrace+0x0/0x1c0 show_stack+0x14/0x20 dump_stack+0xc4/0x100 ubsan_epilogue+0x14/0x68 __ubsan_handle_divrem_overflow+0x98/0xb8 __pll_params_to_rate+0xdc/0x140 meson_clk_pll_recalc_rate+0x278/0x3a0 __clk_register+0x7c8/0xbb0 devm_clk_hw_register+0x54/0xc0 meson_eeclkc_probe+0xf4/0x1a0 platform_drv_probe+0x54/0xd8 really_probe+0x16c/0x438 driver_probe_device+0xb0/0xf0 device_driver_attach+0x94/0xa0 __driver_attach+0x70/0x108 bus_for_each_dev+0xd8/0x128 driver_attach+0x30/0x40 bus_add_driver+0x1b0/0x2d8 driver_register+0xbc/0x1d0 __platform_driver_register+0x78/0x88 axg_driver_init+0x18/0x20 do_one_initcall+0xc8/0x24c kernel_init_freeable+0x2b0/0x344 kernel_init+0x10/0x128 ret_from_fork+0x10/0x18 This checks if N is null before doing the division. Fixes: 7a29a869434e ("clk: meson: Add support for Meson clock controller") Reviewed-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com> Signed-off-by: Remi Pommarel <repk@triplefau.lt> [jbrunet@baylibre.com: update the comment in above the fix] Signed-off-by: Jerome Brunet <jbrunet@baylibre.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-12-15 04:47:05 -07:00
/*
* On some HW, N is set to zero on init. This value is invalid as
* it would result in a division by zero. The rate can't be
* calculated in this case
*/
if (n == 0)
return 0;
m = meson_parm_read(clk->map, &pll->m);
frac = MESON_PARM_APPLICABLE(&pll->frac) ?
meson_parm_read(clk->map, &pll->frac) :
0;
return __pll_params_to_rate(parent_rate, m, n, frac, pll);
}
static unsigned int __pll_params_with_frac(unsigned long rate,
unsigned long parent_rate,
unsigned int m,
unsigned int n,
struct meson_clk_pll_data *pll)
{
unsigned int frac_max = (1 << pll->frac.width);
u64 val = (u64)rate * n;
/* Bail out if we are already over the requested rate */
if (rate < parent_rate * m / n)
return 0;
if (pll->flags & CLK_MESON_PLL_ROUND_CLOSEST)
val = DIV_ROUND_CLOSEST_ULL(val * frac_max, parent_rate);
else
val = div_u64(val * frac_max, parent_rate);
val -= m * frac_max;
return min((unsigned int)val, (frac_max - 1));
}
static bool meson_clk_pll_is_better(unsigned long rate,
unsigned long best,
unsigned long now,
struct meson_clk_pll_data *pll)
{
if (__pll_round_closest_mult(pll)) {
/* Round Closest */
if (abs(now - rate) < abs(best - rate))
return true;
} else {
/* Round down */
if (now <= rate && best < now)
return true;
}
return false;
}
static int meson_clk_get_pll_table_index(unsigned int index,
unsigned int *m,
unsigned int *n,
struct meson_clk_pll_data *pll)
{
if (!pll->table[index].n)
return -EINVAL;
*m = pll->table[index].m;
*n = pll->table[index].n;
return 0;
}
static unsigned int meson_clk_get_pll_range_m(unsigned long rate,
unsigned long parent_rate,
unsigned int n,
struct meson_clk_pll_data *pll)
{
u64 val = (u64)rate * n;
if (__pll_round_closest_mult(pll))
return DIV_ROUND_CLOSEST_ULL(val, parent_rate);
return div_u64(val, parent_rate);
}
static int meson_clk_get_pll_range_index(unsigned long rate,
unsigned long parent_rate,
unsigned int index,
unsigned int *m,
unsigned int *n,
struct meson_clk_pll_data *pll)
{
*n = index + 1;
/* Check the predivider range */
if (*n >= (1 << pll->n.width))
return -EINVAL;
if (*n == 1) {
/* Get the boundaries out the way */
if (rate <= pll->range->min * parent_rate) {
*m = pll->range->min;
return -ENODATA;
} else if (rate >= pll->range->max * parent_rate) {
*m = pll->range->max;
return -ENODATA;
}
}
*m = meson_clk_get_pll_range_m(rate, parent_rate, *n, pll);
/* the pre-divider gives a multiplier too big - stop */
if (*m >= (1 << pll->m.width))
return -EINVAL;
return 0;
}
static int meson_clk_get_pll_get_index(unsigned long rate,
unsigned long parent_rate,
unsigned int index,
unsigned int *m,
unsigned int *n,
struct meson_clk_pll_data *pll)
{
if (pll->range)
return meson_clk_get_pll_range_index(rate, parent_rate,
index, m, n, pll);
else if (pll->table)
return meson_clk_get_pll_table_index(index, m, n, pll);
return -EINVAL;
}
static int meson_clk_get_pll_settings(unsigned long rate,
unsigned long parent_rate,
unsigned int *best_m,
unsigned int *best_n,
struct meson_clk_pll_data *pll)
{
unsigned long best = 0, now = 0;
unsigned int i, m, n;
int ret;
for (i = 0, ret = 0; !ret; i++) {
ret = meson_clk_get_pll_get_index(rate, parent_rate,
i, &m, &n, pll);
if (ret == -EINVAL)
break;
now = __pll_params_to_rate(parent_rate, m, n, 0, pll);
if (meson_clk_pll_is_better(rate, best, now, pll)) {
best = now;
*best_m = m;
*best_n = n;
if (now == rate)
break;
}
}
return best ? 0 : -EINVAL;
}
static long meson_clk_pll_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
struct clk_regmap *clk = to_clk_regmap(hw);
struct meson_clk_pll_data *pll = meson_clk_pll_data(clk);
unsigned int m, n, frac;
unsigned long round;
int ret;
ret = meson_clk_get_pll_settings(rate, *parent_rate, &m, &n, pll);
if (ret)
return meson_clk_pll_recalc_rate(hw, *parent_rate);
round = __pll_params_to_rate(*parent_rate, m, n, 0, pll);
if (!MESON_PARM_APPLICABLE(&pll->frac) || rate == round)
return round;
/*
* The rate provided by the setting is not an exact match, let's
* try to improve the result using the fractional parameter
*/
frac = __pll_params_with_frac(rate, *parent_rate, m, n, pll);
return __pll_params_to_rate(*parent_rate, m, n, frac, pll);
}
static int meson_clk_pll_wait_lock(struct clk_hw *hw)
{
struct clk_regmap *clk = to_clk_regmap(hw);
struct meson_clk_pll_data *pll = meson_clk_pll_data(clk);
int delay = 24000000;
do {
/* Is the clock locked now ? */
if (meson_parm_read(clk->map, &pll->l))
return 0;
delay--;
} while (delay > 0);
return -ETIMEDOUT;
}
static void meson_clk_pll_init(struct clk_hw *hw)
{
struct clk_regmap *clk = to_clk_regmap(hw);
struct meson_clk_pll_data *pll = meson_clk_pll_data(clk);
if (pll->init_count) {
meson_parm_write(clk->map, &pll->rst, 1);
regmap_multi_reg_write(clk->map, pll->init_regs,
pll->init_count);
meson_parm_write(clk->map, &pll->rst, 0);
}
}
clk: meson: clk-pll: check if the clock is already enabled Since commit 6f888e7bc7bd58 ("clk: meson: clk-pll: add enable bit") our PLLs also support the "enable" bit. Currently meson_clk_pll_enable unconditionally resets the PLL, enables it, takes it out of reset and waits until it is locked. This works fine for our current clock trees. However, there will be a problem once we allow modifications to sys_pll on Meson8, Meson8b and Meson8m2 (which will be required for CPU frequency scaling): the CPU clock is derived from the sys_pll clock. Once clk_enable is called on the CPU clock this will be propagated by the common clock framework up until the sys_pll clock. If we reset the PLL unconditionally in meson_clk_pll_enable the CPU will be stopped (on Meson8, Meson8b and Meson8m2). To prevent this we simply check if the PLL is already enabled and do reset the PLL if it's already enabled and locked. Now that we have a utility function to check whether the PLL is enabled we can also pass that to our clk_ops to let the common clock framework know about the status of the hardware clock. For now this is of limited use since the only common clock framework's internal "disabled unused clocks" mechanism checks for this. Everything else still uses the ref-counting (internal to the common clock framework) when clk_enable is called. Signed-off-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com> Reviewed-by: Jerome Brunet <jbrunet@baylibre.com> Signed-off-by: Neil Armstrong <narmstrong@baylibre.com> Link: https://lkml.kernel.org/r/20181115224048.13511-2-martin.blumenstingl@googlemail.com
2018-11-15 15:40:43 -07:00
static int meson_clk_pll_is_enabled(struct clk_hw *hw)
{
struct clk_regmap *clk = to_clk_regmap(hw);
struct meson_clk_pll_data *pll = meson_clk_pll_data(clk);
if (meson_parm_read(clk->map, &pll->rst) ||
!meson_parm_read(clk->map, &pll->en) ||
!meson_parm_read(clk->map, &pll->l))
return 0;
return 1;
}
static int meson_clk_pcie_pll_enable(struct clk_hw *hw)
{
meson_clk_pll_init(hw);
if (meson_clk_pll_wait_lock(hw))
return -EIO;
return 0;
}
static int meson_clk_pll_enable(struct clk_hw *hw)
{
struct clk_regmap *clk = to_clk_regmap(hw);
struct meson_clk_pll_data *pll = meson_clk_pll_data(clk);
clk: meson: clk-pll: check if the clock is already enabled Since commit 6f888e7bc7bd58 ("clk: meson: clk-pll: add enable bit") our PLLs also support the "enable" bit. Currently meson_clk_pll_enable unconditionally resets the PLL, enables it, takes it out of reset and waits until it is locked. This works fine for our current clock trees. However, there will be a problem once we allow modifications to sys_pll on Meson8, Meson8b and Meson8m2 (which will be required for CPU frequency scaling): the CPU clock is derived from the sys_pll clock. Once clk_enable is called on the CPU clock this will be propagated by the common clock framework up until the sys_pll clock. If we reset the PLL unconditionally in meson_clk_pll_enable the CPU will be stopped (on Meson8, Meson8b and Meson8m2). To prevent this we simply check if the PLL is already enabled and do reset the PLL if it's already enabled and locked. Now that we have a utility function to check whether the PLL is enabled we can also pass that to our clk_ops to let the common clock framework know about the status of the hardware clock. For now this is of limited use since the only common clock framework's internal "disabled unused clocks" mechanism checks for this. Everything else still uses the ref-counting (internal to the common clock framework) when clk_enable is called. Signed-off-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com> Reviewed-by: Jerome Brunet <jbrunet@baylibre.com> Signed-off-by: Neil Armstrong <narmstrong@baylibre.com> Link: https://lkml.kernel.org/r/20181115224048.13511-2-martin.blumenstingl@googlemail.com
2018-11-15 15:40:43 -07:00
/* do nothing if the PLL is already enabled */
if (clk_hw_is_enabled(hw))
return 0;
/* Make sure the pll is in reset */
meson_parm_write(clk->map, &pll->rst, 1);
/* Enable the pll */
meson_parm_write(clk->map, &pll->en, 1);
/* Take the pll out reset */
meson_parm_write(clk->map, &pll->rst, 0);
if (meson_clk_pll_wait_lock(hw))
return -EIO;
return 0;
}
static void meson_clk_pll_disable(struct clk_hw *hw)
{
struct clk_regmap *clk = to_clk_regmap(hw);
struct meson_clk_pll_data *pll = meson_clk_pll_data(clk);
/* Put the pll is in reset */
meson_parm_write(clk->map, &pll->rst, 1);
/* Disable the pll */
meson_parm_write(clk->map, &pll->en, 0);
}
static int meson_clk_pll_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_regmap *clk = to_clk_regmap(hw);
struct meson_clk_pll_data *pll = meson_clk_pll_data(clk);
unsigned int enabled, m, n, frac = 0, ret;
unsigned long old_rate;
if (parent_rate == 0 || rate == 0)
return -EINVAL;
old_rate = rate;
ret = meson_clk_get_pll_settings(rate, parent_rate, &m, &n, pll);
if (ret)
return ret;
enabled = meson_parm_read(clk->map, &pll->en);
if (enabled)
meson_clk_pll_disable(hw);
meson_parm_write(clk->map, &pll->n, n);
meson_parm_write(clk->map, &pll->m, m);
if (MESON_PARM_APPLICABLE(&pll->frac)) {
frac = __pll_params_with_frac(rate, parent_rate, m, n, pll);
meson_parm_write(clk->map, &pll->frac, frac);
}
/* If the pll is stopped, bail out now */
if (!enabled)
return 0;
if (meson_clk_pll_enable(hw)) {
pr_warn("%s: pll did not lock, trying to restore old rate %lu\n",
__func__, old_rate);
/*
* FIXME: Do we really need/want this HACK ?
* It looks unsafe. what happens if the clock gets into a
* broken state and we can't lock back on the old_rate ? Looks
* like an infinite recursion is possible
*/
meson_clk_pll_set_rate(hw, old_rate, parent_rate);
}
return 0;
}
/*
* The Meson G12A PCIE PLL is fined tuned to deliver a very precise
* 100MHz reference clock for the PCIe Analog PHY, and thus requires
* a strict register sequence to enable the PLL.
* To simplify, re-use the _init() op to enable the PLL and keep
* the other ops except set_rate since the rate is fixed.
*/
const struct clk_ops meson_clk_pcie_pll_ops = {
.recalc_rate = meson_clk_pll_recalc_rate,
.round_rate = meson_clk_pll_round_rate,
.is_enabled = meson_clk_pll_is_enabled,
.enable = meson_clk_pcie_pll_enable,
.disable = meson_clk_pll_disable
};
EXPORT_SYMBOL_GPL(meson_clk_pcie_pll_ops);
const struct clk_ops meson_clk_pll_ops = {
.init = meson_clk_pll_init,
.recalc_rate = meson_clk_pll_recalc_rate,
.round_rate = meson_clk_pll_round_rate,
.set_rate = meson_clk_pll_set_rate,
clk: meson: clk-pll: check if the clock is already enabled Since commit 6f888e7bc7bd58 ("clk: meson: clk-pll: add enable bit") our PLLs also support the "enable" bit. Currently meson_clk_pll_enable unconditionally resets the PLL, enables it, takes it out of reset and waits until it is locked. This works fine for our current clock trees. However, there will be a problem once we allow modifications to sys_pll on Meson8, Meson8b and Meson8m2 (which will be required for CPU frequency scaling): the CPU clock is derived from the sys_pll clock. Once clk_enable is called on the CPU clock this will be propagated by the common clock framework up until the sys_pll clock. If we reset the PLL unconditionally in meson_clk_pll_enable the CPU will be stopped (on Meson8, Meson8b and Meson8m2). To prevent this we simply check if the PLL is already enabled and do reset the PLL if it's already enabled and locked. Now that we have a utility function to check whether the PLL is enabled we can also pass that to our clk_ops to let the common clock framework know about the status of the hardware clock. For now this is of limited use since the only common clock framework's internal "disabled unused clocks" mechanism checks for this. Everything else still uses the ref-counting (internal to the common clock framework) when clk_enable is called. Signed-off-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com> Reviewed-by: Jerome Brunet <jbrunet@baylibre.com> Signed-off-by: Neil Armstrong <narmstrong@baylibre.com> Link: https://lkml.kernel.org/r/20181115224048.13511-2-martin.blumenstingl@googlemail.com
2018-11-15 15:40:43 -07:00
.is_enabled = meson_clk_pll_is_enabled,
.enable = meson_clk_pll_enable,
.disable = meson_clk_pll_disable
};
EXPORT_SYMBOL_GPL(meson_clk_pll_ops);
const struct clk_ops meson_clk_pll_ro_ops = {
.recalc_rate = meson_clk_pll_recalc_rate,
clk: meson: clk-pll: check if the clock is already enabled Since commit 6f888e7bc7bd58 ("clk: meson: clk-pll: add enable bit") our PLLs also support the "enable" bit. Currently meson_clk_pll_enable unconditionally resets the PLL, enables it, takes it out of reset and waits until it is locked. This works fine for our current clock trees. However, there will be a problem once we allow modifications to sys_pll on Meson8, Meson8b and Meson8m2 (which will be required for CPU frequency scaling): the CPU clock is derived from the sys_pll clock. Once clk_enable is called on the CPU clock this will be propagated by the common clock framework up until the sys_pll clock. If we reset the PLL unconditionally in meson_clk_pll_enable the CPU will be stopped (on Meson8, Meson8b and Meson8m2). To prevent this we simply check if the PLL is already enabled and do reset the PLL if it's already enabled and locked. Now that we have a utility function to check whether the PLL is enabled we can also pass that to our clk_ops to let the common clock framework know about the status of the hardware clock. For now this is of limited use since the only common clock framework's internal "disabled unused clocks" mechanism checks for this. Everything else still uses the ref-counting (internal to the common clock framework) when clk_enable is called. Signed-off-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com> Reviewed-by: Jerome Brunet <jbrunet@baylibre.com> Signed-off-by: Neil Armstrong <narmstrong@baylibre.com> Link: https://lkml.kernel.org/r/20181115224048.13511-2-martin.blumenstingl@googlemail.com
2018-11-15 15:40:43 -07:00
.is_enabled = meson_clk_pll_is_enabled,
};
EXPORT_SYMBOL_GPL(meson_clk_pll_ro_ops);
MODULE_DESCRIPTION("Amlogic PLL driver");
MODULE_AUTHOR("Carlo Caione <carlo@endlessm.com>");
MODULE_AUTHOR("Jerome Brunet <jbrunet@baylibre.com>");
MODULE_LICENSE("GPL v2");