1
0
Fork 0
alistair23-linux/security/smack/Kconfig

56 lines
2.0 KiB
Plaintext
Raw Normal View History

# SPDX-License-Identifier: GPL-2.0-only
Smack: Simplified Mandatory Access Control Kernel Smack is the Simplified Mandatory Access Control Kernel. Smack implements mandatory access control (MAC) using labels attached to tasks and data containers, including files, SVIPC, and other tasks. Smack is a kernel based scheme that requires an absolute minimum of application support and a very small amount of configuration data. Smack uses extended attributes and provides a set of general mount options, borrowing technics used elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides a pseudo-filesystem smackfs that is used for manipulation of system Smack attributes. The patch, patches for ls and sshd, a README, a startup script, and x86 binaries for ls and sshd are also available on http://www.schaufler-ca.com Development has been done using Fedora Core 7 in a virtual machine environment and on an old Sony laptop. Smack provides mandatory access controls based on the label attached to a task and the label attached to the object it is attempting to access. Smack labels are deliberately short (1-23 characters) text strings. Single character labels using special characters are reserved for system use. The only operation applied to Smack labels is equality comparison. No wildcards or expressions, regular or otherwise, are used. Smack labels are composed of printable characters and may not include "/". A file always gets the Smack label of the task that created it. Smack defines and uses these labels: "*" - pronounced "star" "_" - pronounced "floor" "^" - pronounced "hat" "?" - pronounced "huh" The access rules enforced by Smack are, in order: 1. Any access requested by a task labeled "*" is denied. 2. A read or execute access requested by a task labeled "^" is permitted. 3. A read or execute access requested on an object labeled "_" is permitted. 4. Any access requested on an object labeled "*" is permitted. 5. Any access requested by a task on an object with the same label is permitted. 6. Any access requested that is explicitly defined in the loaded rule set is permitted. 7. Any other access is denied. Rules may be explicitly defined by writing subject,object,access triples to /smack/load. Smack rule sets can be easily defined that describe Bell&LaPadula sensitivity, Biba integrity, and a variety of interesting configurations. Smack rule sets can be modified on the fly to accommodate changes in the operating environment or even the time of day. Some practical use cases: Hierarchical levels. The less common of the two usual uses for MLS systems is to define hierarchical levels, often unclassified, confidential, secret, and so on. To set up smack to support this, these rules could be defined: C Unclass rx S C rx S Unclass rx TS S rx TS C rx TS Unclass rx A TS process can read S, C, and Unclass data, but cannot write it. An S process can read C and Unclass. Note that specifying that TS can read S and S can read C does not imply TS can read C, it has to be explicitly stated. Non-hierarchical categories. This is the more common of the usual uses for an MLS system. Since the default rule is that a subject cannot access an object with a different label no access rules are required to implement compartmentalization. A case that the Bell & LaPadula policy does not allow is demonstrated with this Smack access rule: A case that Bell&LaPadula does not allow that Smack does: ESPN ABC r ABC ESPN r On my portable video device I have two applications, one that shows ABC programming and the other ESPN programming. ESPN wants to show me sport stories that show up as news, and ABC will only provide minimal information about a sports story if ESPN is covering it. Each side can look at the other's info, neither can change the other. Neither can see what FOX is up to, which is just as well all things considered. Another case that I especially like: SatData Guard w Guard Publish w A program running with the Guard label opens a UDP socket and accepts messages sent by a program running with a SatData label. The Guard program inspects the message to ensure it is wholesome and if it is sends it to a program running with the Publish label. This program then puts the information passed in an appropriate place. Note that the Guard program cannot write to a Publish file system object because file system semanitic require read as well as write. The four cases (categories, levels, mutual read, guardbox) here are all quite real, and problems I've been asked to solve over the years. The first two are easy to do with traditonal MLS systems while the last two you can't without invoking privilege, at least for a while. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Cc: Joshua Brindle <method@manicmethod.com> Cc: Paul Moore <paul.moore@hp.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Chris Wright <chrisw@sous-sol.org> Cc: James Morris <jmorris@namei.org> Cc: "Ahmed S. Darwish" <darwish.07@gmail.com> Cc: Andrew G. Morgan <morgan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-04 23:29:50 -07:00
config SECURITY_SMACK
bool "Simplified Mandatory Access Control Kernel Support"
depends on NET
depends on INET
depends on SECURITY
select NETLABEL
select SECURITY_NETWORK
Smack: Simplified Mandatory Access Control Kernel Smack is the Simplified Mandatory Access Control Kernel. Smack implements mandatory access control (MAC) using labels attached to tasks and data containers, including files, SVIPC, and other tasks. Smack is a kernel based scheme that requires an absolute minimum of application support and a very small amount of configuration data. Smack uses extended attributes and provides a set of general mount options, borrowing technics used elsewhere. Smack uses netlabel for CIPSO labeling. Smack provides a pseudo-filesystem smackfs that is used for manipulation of system Smack attributes. The patch, patches for ls and sshd, a README, a startup script, and x86 binaries for ls and sshd are also available on http://www.schaufler-ca.com Development has been done using Fedora Core 7 in a virtual machine environment and on an old Sony laptop. Smack provides mandatory access controls based on the label attached to a task and the label attached to the object it is attempting to access. Smack labels are deliberately short (1-23 characters) text strings. Single character labels using special characters are reserved for system use. The only operation applied to Smack labels is equality comparison. No wildcards or expressions, regular or otherwise, are used. Smack labels are composed of printable characters and may not include "/". A file always gets the Smack label of the task that created it. Smack defines and uses these labels: "*" - pronounced "star" "_" - pronounced "floor" "^" - pronounced "hat" "?" - pronounced "huh" The access rules enforced by Smack are, in order: 1. Any access requested by a task labeled "*" is denied. 2. A read or execute access requested by a task labeled "^" is permitted. 3. A read or execute access requested on an object labeled "_" is permitted. 4. Any access requested on an object labeled "*" is permitted. 5. Any access requested by a task on an object with the same label is permitted. 6. Any access requested that is explicitly defined in the loaded rule set is permitted. 7. Any other access is denied. Rules may be explicitly defined by writing subject,object,access triples to /smack/load. Smack rule sets can be easily defined that describe Bell&LaPadula sensitivity, Biba integrity, and a variety of interesting configurations. Smack rule sets can be modified on the fly to accommodate changes in the operating environment or even the time of day. Some practical use cases: Hierarchical levels. The less common of the two usual uses for MLS systems is to define hierarchical levels, often unclassified, confidential, secret, and so on. To set up smack to support this, these rules could be defined: C Unclass rx S C rx S Unclass rx TS S rx TS C rx TS Unclass rx A TS process can read S, C, and Unclass data, but cannot write it. An S process can read C and Unclass. Note that specifying that TS can read S and S can read C does not imply TS can read C, it has to be explicitly stated. Non-hierarchical categories. This is the more common of the usual uses for an MLS system. Since the default rule is that a subject cannot access an object with a different label no access rules are required to implement compartmentalization. A case that the Bell & LaPadula policy does not allow is demonstrated with this Smack access rule: A case that Bell&LaPadula does not allow that Smack does: ESPN ABC r ABC ESPN r On my portable video device I have two applications, one that shows ABC programming and the other ESPN programming. ESPN wants to show me sport stories that show up as news, and ABC will only provide minimal information about a sports story if ESPN is covering it. Each side can look at the other's info, neither can change the other. Neither can see what FOX is up to, which is just as well all things considered. Another case that I especially like: SatData Guard w Guard Publish w A program running with the Guard label opens a UDP socket and accepts messages sent by a program running with a SatData label. The Guard program inspects the message to ensure it is wholesome and if it is sends it to a program running with the Publish label. This program then puts the information passed in an appropriate place. Note that the Guard program cannot write to a Publish file system object because file system semanitic require read as well as write. The four cases (categories, levels, mutual read, guardbox) here are all quite real, and problems I've been asked to solve over the years. The first two are easy to do with traditonal MLS systems while the last two you can't without invoking privilege, at least for a while. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> Cc: Joshua Brindle <method@manicmethod.com> Cc: Paul Moore <paul.moore@hp.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Chris Wright <chrisw@sous-sol.org> Cc: James Morris <jmorris@namei.org> Cc: "Ahmed S. Darwish" <darwish.07@gmail.com> Cc: Andrew G. Morgan <morgan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-04 23:29:50 -07:00
default n
help
This selects the Simplified Mandatory Access Control Kernel.
Smack is useful for sensitivity, integrity, and a variety
of other mandatory security schemes.
If you are unsure how to answer this question, answer N.
config SECURITY_SMACK_BRINGUP
bool "Reporting on access granted by Smack rules"
depends on SECURITY_SMACK
default n
help
Enable the bring-up ("b") access mode in Smack rules.
When access is granted by a rule with the "b" mode a
message about the access requested is generated. The
intention is that a process can be granted a wide set
of access initially with the bringup mode set on the
rules. The developer can use the information to
identify which rules are necessary and what accesses
may be inappropriate. The developer can reduce the
access rule set once the behavior is well understood.
This is a superior mechanism to the oft abused
"permissive" mode of other systems.
If you are unsure how to answer this question, answer N.
config SECURITY_SMACK_NETFILTER
bool "Packet marking using secmarks for netfilter"
depends on SECURITY_SMACK
depends on NETWORK_SECMARK
depends on NETFILTER
default n
help
This enables security marking of network packets using
Smack labels.
If you are unsure how to answer this question, answer N.
config SECURITY_SMACK_APPEND_SIGNALS
bool "Treat delivering signals as an append operation"
depends on SECURITY_SMACK
default n
help
Sending a signal has been treated as a write operation to the
receiving process. If this option is selected, the delivery
will be an append operation instead. This makes it possible
to differentiate between delivering a network packet and
delivering a signal in the Smack rules.
If you are unsure how to answer this question, answer N.