1
0
Fork 0
alistair23-linux/fs/f2fs/super.c

3034 lines
75 KiB
C
Raw Normal View History

/*
* fs/f2fs/super.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/statfs.h>
#include <linux/buffer_head.h>
#include <linux/backing-dev.h>
#include <linux/kthread.h>
#include <linux/parser.h>
#include <linux/mount.h>
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
#include <linux/random.h>
#include <linux/exportfs.h>
#include <linux/blkdev.h>
#include <linux/quotaops.h>
#include <linux/f2fs_fs.h>
#include <linux/sysfs.h>
#include <linux/quota.h>
#include "f2fs.h"
#include "node.h"
#include "segment.h"
#include "xattr.h"
#include "gc.h"
#include "trace.h"
#define CREATE_TRACE_POINTS
#include <trace/events/f2fs.h>
static struct kmem_cache *f2fs_inode_cachep;
#ifdef CONFIG_F2FS_FAULT_INJECTION
char *fault_name[FAULT_MAX] = {
[FAULT_KMALLOC] = "kmalloc",
[FAULT_KVMALLOC] = "kvmalloc",
[FAULT_PAGE_ALLOC] = "page alloc",
[FAULT_PAGE_GET] = "page get",
[FAULT_ALLOC_BIO] = "alloc bio",
[FAULT_ALLOC_NID] = "alloc nid",
[FAULT_ORPHAN] = "orphan",
[FAULT_BLOCK] = "no more block",
[FAULT_DIR_DEPTH] = "too big dir depth",
[FAULT_EVICT_INODE] = "evict_inode fail",
[FAULT_TRUNCATE] = "truncate fail",
[FAULT_IO] = "IO error",
[FAULT_CHECKPOINT] = "checkpoint error",
};
static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
unsigned int rate)
{
struct f2fs_fault_info *ffi = &sbi->fault_info;
if (rate) {
atomic_set(&ffi->inject_ops, 0);
ffi->inject_rate = rate;
ffi->inject_type = (1 << FAULT_MAX) - 1;
} else {
memset(ffi, 0, sizeof(struct f2fs_fault_info));
}
}
#endif
/* f2fs-wide shrinker description */
static struct shrinker f2fs_shrinker_info = {
.scan_objects = f2fs_shrink_scan,
.count_objects = f2fs_shrink_count,
.seeks = DEFAULT_SEEKS,
};
enum {
Opt_gc_background,
Opt_disable_roll_forward,
Opt_norecovery,
Opt_discard,
Opt_nodiscard,
Opt_noheap,
Opt_heap,
Opt_user_xattr,
Opt_nouser_xattr,
Opt_acl,
Opt_noacl,
Opt_active_logs,
Opt_disable_ext_identify,
Opt_inline_xattr,
Opt_noinline_xattr,
f2fs: support flexible inline xattr size Now, in product, more and more features based on file encryption were introduced, their demand of xattr space is increasing, however, inline xattr has fixed-size of 200 bytes, once inline xattr space is full, new increased xattr data would occupy additional xattr block which may bring us more space usage and performance regression during persisting. In order to resolve above issue, it's better to expand inline xattr size flexibly according to user's requirement. So this patch introduces new filesystem feature 'flexible inline xattr', and new mount option 'inline_xattr_size=%u', once mkfs enables the feature, we can use the option to make f2fs supporting flexible inline xattr size. To support this feature, we add extra attribute i_inline_xattr_size in inode layout, indicating that how many space inline xattr borrows from block address mapping space in inode layout, by this, we can easily locate and store flexible-sized inline xattr data in inode. Inode disk layout: +----------------------+ | .i_mode | | ... | | .i_ext | +----------------------+ | .i_extra_isize | | .i_inline_xattr_size |-----------+ | ... | | +----------------------+ | | .i_addr | | | - block address or | | | - inline data | | +----------------------+<---+ v | inline xattr | +---inline xattr range +----------------------+<---+ | .i_nid | +----------------------+ | node_footer | | (nid, ino, offset) | +----------------------+ Note that, we have to cnosider backward compatibility which reserved inline_data space, 200 bytes, all the time, reported by Sheng Yong. Previous inline data or directory always reserved 200 bytes in inode layout, even if inline_xattr is disabled. In order to keep inline_dentry's structure for backward compatibility, we get the space back only from inline_data. Signed-off-by: Chao Yu <yuchao0@huawei.com> Reported-by: Sheng Yong <shengyong1@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2017-09-06 07:59:50 -06:00
Opt_inline_xattr_size,
Opt_inline_data,
Opt_inline_dentry,
Opt_noinline_dentry,
Opt_flush_merge,
Opt_noflush_merge,
Opt_nobarrier,
Opt_fastboot,
Opt_extent_cache,
Opt_noextent_cache,
Opt_noinline_data,
Opt_data_flush,
Opt_reserve_root,
Opt_resgid,
Opt_resuid,
Opt_mode,
Opt_io_size_bits,
Opt_fault_injection,
Opt_lazytime,
Opt_nolazytime,
Opt_quota,
Opt_noquota,
Opt_usrquota,
Opt_grpquota,
Opt_prjquota,
Opt_usrjquota,
Opt_grpjquota,
Opt_prjjquota,
Opt_offusrjquota,
Opt_offgrpjquota,
Opt_offprjjquota,
Opt_jqfmt_vfsold,
Opt_jqfmt_vfsv0,
Opt_jqfmt_vfsv1,
Opt_whint,
Opt_err,
};
static match_table_t f2fs_tokens = {
{Opt_gc_background, "background_gc=%s"},
{Opt_disable_roll_forward, "disable_roll_forward"},
{Opt_norecovery, "norecovery"},
{Opt_discard, "discard"},
{Opt_nodiscard, "nodiscard"},
{Opt_noheap, "no_heap"},
{Opt_heap, "heap"},
{Opt_user_xattr, "user_xattr"},
{Opt_nouser_xattr, "nouser_xattr"},
{Opt_acl, "acl"},
{Opt_noacl, "noacl"},
{Opt_active_logs, "active_logs=%u"},
{Opt_disable_ext_identify, "disable_ext_identify"},
{Opt_inline_xattr, "inline_xattr"},
{Opt_noinline_xattr, "noinline_xattr"},
f2fs: support flexible inline xattr size Now, in product, more and more features based on file encryption were introduced, their demand of xattr space is increasing, however, inline xattr has fixed-size of 200 bytes, once inline xattr space is full, new increased xattr data would occupy additional xattr block which may bring us more space usage and performance regression during persisting. In order to resolve above issue, it's better to expand inline xattr size flexibly according to user's requirement. So this patch introduces new filesystem feature 'flexible inline xattr', and new mount option 'inline_xattr_size=%u', once mkfs enables the feature, we can use the option to make f2fs supporting flexible inline xattr size. To support this feature, we add extra attribute i_inline_xattr_size in inode layout, indicating that how many space inline xattr borrows from block address mapping space in inode layout, by this, we can easily locate and store flexible-sized inline xattr data in inode. Inode disk layout: +----------------------+ | .i_mode | | ... | | .i_ext | +----------------------+ | .i_extra_isize | | .i_inline_xattr_size |-----------+ | ... | | +----------------------+ | | .i_addr | | | - block address or | | | - inline data | | +----------------------+<---+ v | inline xattr | +---inline xattr range +----------------------+<---+ | .i_nid | +----------------------+ | node_footer | | (nid, ino, offset) | +----------------------+ Note that, we have to cnosider backward compatibility which reserved inline_data space, 200 bytes, all the time, reported by Sheng Yong. Previous inline data or directory always reserved 200 bytes in inode layout, even if inline_xattr is disabled. In order to keep inline_dentry's structure for backward compatibility, we get the space back only from inline_data. Signed-off-by: Chao Yu <yuchao0@huawei.com> Reported-by: Sheng Yong <shengyong1@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2017-09-06 07:59:50 -06:00
{Opt_inline_xattr_size, "inline_xattr_size=%u"},
{Opt_inline_data, "inline_data"},
{Opt_inline_dentry, "inline_dentry"},
{Opt_noinline_dentry, "noinline_dentry"},
{Opt_flush_merge, "flush_merge"},
{Opt_noflush_merge, "noflush_merge"},
{Opt_nobarrier, "nobarrier"},
{Opt_fastboot, "fastboot"},
{Opt_extent_cache, "extent_cache"},
{Opt_noextent_cache, "noextent_cache"},
{Opt_noinline_data, "noinline_data"},
{Opt_data_flush, "data_flush"},
{Opt_reserve_root, "reserve_root=%u"},
{Opt_resgid, "resgid=%u"},
{Opt_resuid, "resuid=%u"},
{Opt_mode, "mode=%s"},
{Opt_io_size_bits, "io_bits=%u"},
{Opt_fault_injection, "fault_injection=%u"},
{Opt_lazytime, "lazytime"},
{Opt_nolazytime, "nolazytime"},
{Opt_quota, "quota"},
{Opt_noquota, "noquota"},
{Opt_usrquota, "usrquota"},
{Opt_grpquota, "grpquota"},
{Opt_prjquota, "prjquota"},
{Opt_usrjquota, "usrjquota=%s"},
{Opt_grpjquota, "grpjquota=%s"},
{Opt_prjjquota, "prjjquota=%s"},
{Opt_offusrjquota, "usrjquota="},
{Opt_offgrpjquota, "grpjquota="},
{Opt_offprjjquota, "prjjquota="},
{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
{Opt_whint, "whint_mode=%s"},
{Opt_err, NULL},
};
void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
{
struct va_format vaf;
va_list args;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
printk_ratelimited("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
va_end(args);
}
static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
{
block_t limit = (sbi->user_block_count << 1) / 1000;
/* limit is 0.2% */
if (test_opt(sbi, RESERVE_ROOT) && sbi->root_reserved_blocks > limit) {
sbi->root_reserved_blocks = limit;
f2fs_msg(sbi->sb, KERN_INFO,
"Reduce reserved blocks for root = %u",
sbi->root_reserved_blocks);
}
if (!test_opt(sbi, RESERVE_ROOT) &&
(!uid_eq(sbi->s_resuid,
make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
!gid_eq(sbi->s_resgid,
make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
f2fs_msg(sbi->sb, KERN_INFO,
"Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
from_kuid_munged(&init_user_ns, sbi->s_resuid),
from_kgid_munged(&init_user_ns, sbi->s_resgid));
}
static void init_once(void *foo)
{
struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
inode_init_once(&fi->vfs_inode);
}
#ifdef CONFIG_QUOTA
static const char * const quotatypes[] = INITQFNAMES;
#define QTYPE2NAME(t) (quotatypes[t])
static int f2fs_set_qf_name(struct super_block *sb, int qtype,
substring_t *args)
{
struct f2fs_sb_info *sbi = F2FS_SB(sb);
char *qname;
int ret = -EINVAL;
if (sb_any_quota_loaded(sb) && !sbi->s_qf_names[qtype]) {
f2fs_msg(sb, KERN_ERR,
"Cannot change journaled "
"quota options when quota turned on");
return -EINVAL;
}
if (f2fs_sb_has_quota_ino(sb)) {
f2fs_msg(sb, KERN_INFO,
"QUOTA feature is enabled, so ignore qf_name");
return 0;
}
qname = match_strdup(args);
if (!qname) {
f2fs_msg(sb, KERN_ERR,
"Not enough memory for storing quotafile name");
return -EINVAL;
}
if (sbi->s_qf_names[qtype]) {
if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
ret = 0;
else
f2fs_msg(sb, KERN_ERR,
"%s quota file already specified",
QTYPE2NAME(qtype));
goto errout;
}
if (strchr(qname, '/')) {
f2fs_msg(sb, KERN_ERR,
"quotafile must be on filesystem root");
goto errout;
}
sbi->s_qf_names[qtype] = qname;
set_opt(sbi, QUOTA);
return 0;
errout:
kfree(qname);
return ret;
}
static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
{
struct f2fs_sb_info *sbi = F2FS_SB(sb);
if (sb_any_quota_loaded(sb) && sbi->s_qf_names[qtype]) {
f2fs_msg(sb, KERN_ERR, "Cannot change journaled quota options"
" when quota turned on");
return -EINVAL;
}
kfree(sbi->s_qf_names[qtype]);
sbi->s_qf_names[qtype] = NULL;
return 0;
}
static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
{
/*
* We do the test below only for project quotas. 'usrquota' and
* 'grpquota' mount options are allowed even without quota feature
* to support legacy quotas in quota files.
*/
if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi->sb)) {
f2fs_msg(sbi->sb, KERN_ERR, "Project quota feature not enabled. "
"Cannot enable project quota enforcement.");
return -1;
}
if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA] ||
sbi->s_qf_names[PRJQUOTA]) {
if (test_opt(sbi, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
clear_opt(sbi, USRQUOTA);
if (test_opt(sbi, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
clear_opt(sbi, GRPQUOTA);
if (test_opt(sbi, PRJQUOTA) && sbi->s_qf_names[PRJQUOTA])
clear_opt(sbi, PRJQUOTA);
if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
test_opt(sbi, PRJQUOTA)) {
f2fs_msg(sbi->sb, KERN_ERR, "old and new quota "
"format mixing");
return -1;
}
if (!sbi->s_jquota_fmt) {
f2fs_msg(sbi->sb, KERN_ERR, "journaled quota format "
"not specified");
return -1;
}
}
if (f2fs_sb_has_quota_ino(sbi->sb) && sbi->s_jquota_fmt) {
f2fs_msg(sbi->sb, KERN_INFO,
"QUOTA feature is enabled, so ignore jquota_fmt");
sbi->s_jquota_fmt = 0;
}
if (f2fs_sb_has_quota_ino(sbi->sb) && sb_rdonly(sbi->sb)) {
f2fs_msg(sbi->sb, KERN_INFO,
"Filesystem with quota feature cannot be mounted RDWR "
"without CONFIG_QUOTA");
return -1;
}
return 0;
}
#endif
static int parse_options(struct super_block *sb, char *options)
{
struct f2fs_sb_info *sbi = F2FS_SB(sb);
struct request_queue *q;
substring_t args[MAX_OPT_ARGS];
char *p, *name;
int arg = 0;
kuid_t uid;
kgid_t gid;
#ifdef CONFIG_QUOTA
int ret;
#endif
if (!options)
return 0;
while ((p = strsep(&options, ",")) != NULL) {
int token;
if (!*p)
continue;
/*
* Initialize args struct so we know whether arg was
* found; some options take optional arguments.
*/
args[0].to = args[0].from = NULL;
token = match_token(p, f2fs_tokens, args);
switch (token) {
case Opt_gc_background:
name = match_strdup(&args[0]);
if (!name)
return -ENOMEM;
if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
set_opt(sbi, BG_GC);
clear_opt(sbi, FORCE_FG_GC);
} else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
clear_opt(sbi, BG_GC);
clear_opt(sbi, FORCE_FG_GC);
} else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
set_opt(sbi, BG_GC);
set_opt(sbi, FORCE_FG_GC);
} else {
kfree(name);
return -EINVAL;
}
kfree(name);
break;
case Opt_disable_roll_forward:
set_opt(sbi, DISABLE_ROLL_FORWARD);
break;
case Opt_norecovery:
/* this option mounts f2fs with ro */
set_opt(sbi, DISABLE_ROLL_FORWARD);
if (!f2fs_readonly(sb))
return -EINVAL;
break;
case Opt_discard:
q = bdev_get_queue(sb->s_bdev);
if (blk_queue_discard(q)) {
set_opt(sbi, DISCARD);
} else if (!f2fs_sb_has_blkzoned(sb)) {
f2fs_msg(sb, KERN_WARNING,
"mounting with \"discard\" option, but "
"the device does not support discard");
}
break;
case Opt_nodiscard:
if (f2fs_sb_has_blkzoned(sb)) {
f2fs_msg(sb, KERN_WARNING,
"discard is required for zoned block devices");
return -EINVAL;
}
clear_opt(sbi, DISCARD);
break;
case Opt_noheap:
set_opt(sbi, NOHEAP);
break;
case Opt_heap:
clear_opt(sbi, NOHEAP);
break;
#ifdef CONFIG_F2FS_FS_XATTR
case Opt_user_xattr:
set_opt(sbi, XATTR_USER);
break;
case Opt_nouser_xattr:
clear_opt(sbi, XATTR_USER);
break;
case Opt_inline_xattr:
set_opt(sbi, INLINE_XATTR);
break;
case Opt_noinline_xattr:
clear_opt(sbi, INLINE_XATTR);
break;
f2fs: support flexible inline xattr size Now, in product, more and more features based on file encryption were introduced, their demand of xattr space is increasing, however, inline xattr has fixed-size of 200 bytes, once inline xattr space is full, new increased xattr data would occupy additional xattr block which may bring us more space usage and performance regression during persisting. In order to resolve above issue, it's better to expand inline xattr size flexibly according to user's requirement. So this patch introduces new filesystem feature 'flexible inline xattr', and new mount option 'inline_xattr_size=%u', once mkfs enables the feature, we can use the option to make f2fs supporting flexible inline xattr size. To support this feature, we add extra attribute i_inline_xattr_size in inode layout, indicating that how many space inline xattr borrows from block address mapping space in inode layout, by this, we can easily locate and store flexible-sized inline xattr data in inode. Inode disk layout: +----------------------+ | .i_mode | | ... | | .i_ext | +----------------------+ | .i_extra_isize | | .i_inline_xattr_size |-----------+ | ... | | +----------------------+ | | .i_addr | | | - block address or | | | - inline data | | +----------------------+<---+ v | inline xattr | +---inline xattr range +----------------------+<---+ | .i_nid | +----------------------+ | node_footer | | (nid, ino, offset) | +----------------------+ Note that, we have to cnosider backward compatibility which reserved inline_data space, 200 bytes, all the time, reported by Sheng Yong. Previous inline data or directory always reserved 200 bytes in inode layout, even if inline_xattr is disabled. In order to keep inline_dentry's structure for backward compatibility, we get the space back only from inline_data. Signed-off-by: Chao Yu <yuchao0@huawei.com> Reported-by: Sheng Yong <shengyong1@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2017-09-06 07:59:50 -06:00
case Opt_inline_xattr_size:
if (args->from && match_int(args, &arg))
return -EINVAL;
set_opt(sbi, INLINE_XATTR_SIZE);
sbi->inline_xattr_size = arg;
break;
#else
case Opt_user_xattr:
f2fs_msg(sb, KERN_INFO,
"user_xattr options not supported");
break;
case Opt_nouser_xattr:
f2fs_msg(sb, KERN_INFO,
"nouser_xattr options not supported");
break;
case Opt_inline_xattr:
f2fs_msg(sb, KERN_INFO,
"inline_xattr options not supported");
break;
case Opt_noinline_xattr:
f2fs_msg(sb, KERN_INFO,
"noinline_xattr options not supported");
break;
#endif
#ifdef CONFIG_F2FS_FS_POSIX_ACL
case Opt_acl:
set_opt(sbi, POSIX_ACL);
break;
case Opt_noacl:
clear_opt(sbi, POSIX_ACL);
break;
#else
case Opt_acl:
f2fs_msg(sb, KERN_INFO, "acl options not supported");
break;
case Opt_noacl:
f2fs_msg(sb, KERN_INFO, "noacl options not supported");
break;
#endif
case Opt_active_logs:
if (args->from && match_int(args, &arg))
return -EINVAL;
if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
return -EINVAL;
sbi->active_logs = arg;
break;
case Opt_disable_ext_identify:
set_opt(sbi, DISABLE_EXT_IDENTIFY);
break;
case Opt_inline_data:
set_opt(sbi, INLINE_DATA);
break;
case Opt_inline_dentry:
set_opt(sbi, INLINE_DENTRY);
break;
case Opt_noinline_dentry:
clear_opt(sbi, INLINE_DENTRY);
break;
case Opt_flush_merge:
set_opt(sbi, FLUSH_MERGE);
break;
case Opt_noflush_merge:
clear_opt(sbi, FLUSH_MERGE);
break;
case Opt_nobarrier:
set_opt(sbi, NOBARRIER);
break;
case Opt_fastboot:
set_opt(sbi, FASTBOOT);
break;
case Opt_extent_cache:
set_opt(sbi, EXTENT_CACHE);
break;
case Opt_noextent_cache:
clear_opt(sbi, EXTENT_CACHE);
break;
case Opt_noinline_data:
clear_opt(sbi, INLINE_DATA);
break;
case Opt_data_flush:
set_opt(sbi, DATA_FLUSH);
break;
case Opt_reserve_root:
if (args->from && match_int(args, &arg))
return -EINVAL;
if (test_opt(sbi, RESERVE_ROOT)) {
f2fs_msg(sb, KERN_INFO,
"Preserve previous reserve_root=%u",
sbi->root_reserved_blocks);
} else {
sbi->root_reserved_blocks = arg;
set_opt(sbi, RESERVE_ROOT);
}
break;
case Opt_resuid:
if (args->from && match_int(args, &arg))
return -EINVAL;
uid = make_kuid(current_user_ns(), arg);
if (!uid_valid(uid)) {
f2fs_msg(sb, KERN_ERR,
"Invalid uid value %d", arg);
return -EINVAL;
}
sbi->s_resuid = uid;
break;
case Opt_resgid:
if (args->from && match_int(args, &arg))
return -EINVAL;
gid = make_kgid(current_user_ns(), arg);
if (!gid_valid(gid)) {
f2fs_msg(sb, KERN_ERR,
"Invalid gid value %d", arg);
return -EINVAL;
}
sbi->s_resgid = gid;
break;
case Opt_mode:
name = match_strdup(&args[0]);
if (!name)
return -ENOMEM;
if (strlen(name) == 8 &&
!strncmp(name, "adaptive", 8)) {
if (f2fs_sb_has_blkzoned(sb)) {
f2fs_msg(sb, KERN_WARNING,
"adaptive mode is not allowed with "
"zoned block device feature");
kfree(name);
return -EINVAL;
}
set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
} else if (strlen(name) == 3 &&
!strncmp(name, "lfs", 3)) {
set_opt_mode(sbi, F2FS_MOUNT_LFS);
} else {
kfree(name);
return -EINVAL;
}
kfree(name);
break;
case Opt_io_size_bits:
if (args->from && match_int(args, &arg))
return -EINVAL;
if (arg > __ilog2_u32(BIO_MAX_PAGES)) {
f2fs_msg(sb, KERN_WARNING,
"Not support %d, larger than %d",
1 << arg, BIO_MAX_PAGES);
return -EINVAL;
}
sbi->write_io_size_bits = arg;
break;
case Opt_fault_injection:
if (args->from && match_int(args, &arg))
return -EINVAL;
#ifdef CONFIG_F2FS_FAULT_INJECTION
f2fs_build_fault_attr(sbi, arg);
set_opt(sbi, FAULT_INJECTION);
#else
f2fs_msg(sb, KERN_INFO,
"FAULT_INJECTION was not selected");
#endif
break;
case Opt_lazytime:
Rename superblock flags (MS_xyz -> SB_xyz) This is a pure automated search-and-replace of the internal kernel superblock flags. The s_flags are now called SB_*, with the names and the values for the moment mirroring the MS_* flags that they're equivalent to. Note how the MS_xyz flags are the ones passed to the mount system call, while the SB_xyz flags are what we then use in sb->s_flags. The script to do this was: # places to look in; re security/*: it generally should *not* be # touched (that stuff parses mount(2) arguments directly), but # there are two places where we really deal with superblock flags. FILES="drivers/mtd drivers/staging/lustre fs ipc mm \ include/linux/fs.h include/uapi/linux/bfs_fs.h \ security/apparmor/apparmorfs.c security/apparmor/include/lib.h" # the list of MS_... constants SYMS="RDONLY NOSUID NODEV NOEXEC SYNCHRONOUS REMOUNT MANDLOCK \ DIRSYNC NOATIME NODIRATIME BIND MOVE REC VERBOSE SILENT \ POSIXACL UNBINDABLE PRIVATE SLAVE SHARED RELATIME KERNMOUNT \ I_VERSION STRICTATIME LAZYTIME SUBMOUNT NOREMOTELOCK NOSEC BORN \ ACTIVE NOUSER" SED_PROG= for i in $SYMS; do SED_PROG="$SED_PROG -e s/MS_$i/SB_$i/g"; done # we want files that contain at least one of MS_..., # with fs/namespace.c and fs/pnode.c excluded. L=$(for i in $SYMS; do git grep -w -l MS_$i $FILES; done| sort|uniq|grep -v '^fs/namespace.c'|grep -v '^fs/pnode.c') for f in $L; do sed -i $f $SED_PROG; done Requested-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-27 14:05:09 -07:00
sb->s_flags |= SB_LAZYTIME;
break;
case Opt_nolazytime:
Rename superblock flags (MS_xyz -> SB_xyz) This is a pure automated search-and-replace of the internal kernel superblock flags. The s_flags are now called SB_*, with the names and the values for the moment mirroring the MS_* flags that they're equivalent to. Note how the MS_xyz flags are the ones passed to the mount system call, while the SB_xyz flags are what we then use in sb->s_flags. The script to do this was: # places to look in; re security/*: it generally should *not* be # touched (that stuff parses mount(2) arguments directly), but # there are two places where we really deal with superblock flags. FILES="drivers/mtd drivers/staging/lustre fs ipc mm \ include/linux/fs.h include/uapi/linux/bfs_fs.h \ security/apparmor/apparmorfs.c security/apparmor/include/lib.h" # the list of MS_... constants SYMS="RDONLY NOSUID NODEV NOEXEC SYNCHRONOUS REMOUNT MANDLOCK \ DIRSYNC NOATIME NODIRATIME BIND MOVE REC VERBOSE SILENT \ POSIXACL UNBINDABLE PRIVATE SLAVE SHARED RELATIME KERNMOUNT \ I_VERSION STRICTATIME LAZYTIME SUBMOUNT NOREMOTELOCK NOSEC BORN \ ACTIVE NOUSER" SED_PROG= for i in $SYMS; do SED_PROG="$SED_PROG -e s/MS_$i/SB_$i/g"; done # we want files that contain at least one of MS_..., # with fs/namespace.c and fs/pnode.c excluded. L=$(for i in $SYMS; do git grep -w -l MS_$i $FILES; done| sort|uniq|grep -v '^fs/namespace.c'|grep -v '^fs/pnode.c') for f in $L; do sed -i $f $SED_PROG; done Requested-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-27 14:05:09 -07:00
sb->s_flags &= ~SB_LAZYTIME;
break;
#ifdef CONFIG_QUOTA
case Opt_quota:
case Opt_usrquota:
set_opt(sbi, USRQUOTA);
break;
case Opt_grpquota:
set_opt(sbi, GRPQUOTA);
break;
case Opt_prjquota:
set_opt(sbi, PRJQUOTA);
break;
case Opt_usrjquota:
ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
if (ret)
return ret;
break;
case Opt_grpjquota:
ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
if (ret)
return ret;
break;
case Opt_prjjquota:
ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
if (ret)
return ret;
break;
case Opt_offusrjquota:
ret = f2fs_clear_qf_name(sb, USRQUOTA);
if (ret)
return ret;
break;
case Opt_offgrpjquota:
ret = f2fs_clear_qf_name(sb, GRPQUOTA);
if (ret)
return ret;
break;
case Opt_offprjjquota:
ret = f2fs_clear_qf_name(sb, PRJQUOTA);
if (ret)
return ret;
break;
case Opt_jqfmt_vfsold:
sbi->s_jquota_fmt = QFMT_VFS_OLD;
break;
case Opt_jqfmt_vfsv0:
sbi->s_jquota_fmt = QFMT_VFS_V0;
break;
case Opt_jqfmt_vfsv1:
sbi->s_jquota_fmt = QFMT_VFS_V1;
break;
case Opt_noquota:
clear_opt(sbi, QUOTA);
clear_opt(sbi, USRQUOTA);
clear_opt(sbi, GRPQUOTA);
clear_opt(sbi, PRJQUOTA);
break;
#else
case Opt_quota:
case Opt_usrquota:
case Opt_grpquota:
case Opt_prjquota:
case Opt_usrjquota:
case Opt_grpjquota:
case Opt_prjjquota:
case Opt_offusrjquota:
case Opt_offgrpjquota:
case Opt_offprjjquota:
case Opt_jqfmt_vfsold:
case Opt_jqfmt_vfsv0:
case Opt_jqfmt_vfsv1:
case Opt_noquota:
f2fs_msg(sb, KERN_INFO,
"quota operations not supported");
break;
#endif
case Opt_whint:
name = match_strdup(&args[0]);
if (!name)
return -ENOMEM;
if (strlen(name) == 10 &&
!strncmp(name, "user-based", 10)) {
sbi->whint_mode = WHINT_MODE_USER;
} else if (strlen(name) == 3 &&
!strncmp(name, "off", 3)) {
sbi->whint_mode = WHINT_MODE_OFF;
} else if (strlen(name) == 8 &&
!strncmp(name, "fs-based", 8)) {
sbi->whint_mode = WHINT_MODE_FS;
} else {
kfree(name);
return -EINVAL;
}
kfree(name);
break;
default:
f2fs_msg(sb, KERN_ERR,
"Unrecognized mount option \"%s\" or missing value",
p);
return -EINVAL;
}
}
#ifdef CONFIG_QUOTA
if (f2fs_check_quota_options(sbi))
return -EINVAL;
#endif
if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
f2fs_msg(sb, KERN_ERR,
"Should set mode=lfs with %uKB-sized IO",
F2FS_IO_SIZE_KB(sbi));
return -EINVAL;
}
f2fs: support flexible inline xattr size Now, in product, more and more features based on file encryption were introduced, their demand of xattr space is increasing, however, inline xattr has fixed-size of 200 bytes, once inline xattr space is full, new increased xattr data would occupy additional xattr block which may bring us more space usage and performance regression during persisting. In order to resolve above issue, it's better to expand inline xattr size flexibly according to user's requirement. So this patch introduces new filesystem feature 'flexible inline xattr', and new mount option 'inline_xattr_size=%u', once mkfs enables the feature, we can use the option to make f2fs supporting flexible inline xattr size. To support this feature, we add extra attribute i_inline_xattr_size in inode layout, indicating that how many space inline xattr borrows from block address mapping space in inode layout, by this, we can easily locate and store flexible-sized inline xattr data in inode. Inode disk layout: +----------------------+ | .i_mode | | ... | | .i_ext | +----------------------+ | .i_extra_isize | | .i_inline_xattr_size |-----------+ | ... | | +----------------------+ | | .i_addr | | | - block address or | | | - inline data | | +----------------------+<---+ v | inline xattr | +---inline xattr range +----------------------+<---+ | .i_nid | +----------------------+ | node_footer | | (nid, ino, offset) | +----------------------+ Note that, we have to cnosider backward compatibility which reserved inline_data space, 200 bytes, all the time, reported by Sheng Yong. Previous inline data or directory always reserved 200 bytes in inode layout, even if inline_xattr is disabled. In order to keep inline_dentry's structure for backward compatibility, we get the space back only from inline_data. Signed-off-by: Chao Yu <yuchao0@huawei.com> Reported-by: Sheng Yong <shengyong1@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2017-09-06 07:59:50 -06:00
if (test_opt(sbi, INLINE_XATTR_SIZE)) {
if (!f2fs_sb_has_extra_attr(sb) ||
!f2fs_sb_has_flexible_inline_xattr(sb)) {
f2fs_msg(sb, KERN_ERR,
"extra_attr or flexible_inline_xattr "
"feature is off");
return -EINVAL;
}
f2fs: support flexible inline xattr size Now, in product, more and more features based on file encryption were introduced, their demand of xattr space is increasing, however, inline xattr has fixed-size of 200 bytes, once inline xattr space is full, new increased xattr data would occupy additional xattr block which may bring us more space usage and performance regression during persisting. In order to resolve above issue, it's better to expand inline xattr size flexibly according to user's requirement. So this patch introduces new filesystem feature 'flexible inline xattr', and new mount option 'inline_xattr_size=%u', once mkfs enables the feature, we can use the option to make f2fs supporting flexible inline xattr size. To support this feature, we add extra attribute i_inline_xattr_size in inode layout, indicating that how many space inline xattr borrows from block address mapping space in inode layout, by this, we can easily locate and store flexible-sized inline xattr data in inode. Inode disk layout: +----------------------+ | .i_mode | | ... | | .i_ext | +----------------------+ | .i_extra_isize | | .i_inline_xattr_size |-----------+ | ... | | +----------------------+ | | .i_addr | | | - block address or | | | - inline data | | +----------------------+<---+ v | inline xattr | +---inline xattr range +----------------------+<---+ | .i_nid | +----------------------+ | node_footer | | (nid, ino, offset) | +----------------------+ Note that, we have to cnosider backward compatibility which reserved inline_data space, 200 bytes, all the time, reported by Sheng Yong. Previous inline data or directory always reserved 200 bytes in inode layout, even if inline_xattr is disabled. In order to keep inline_dentry's structure for backward compatibility, we get the space back only from inline_data. Signed-off-by: Chao Yu <yuchao0@huawei.com> Reported-by: Sheng Yong <shengyong1@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2017-09-06 07:59:50 -06:00
if (!test_opt(sbi, INLINE_XATTR)) {
f2fs_msg(sb, KERN_ERR,
"inline_xattr_size option should be "
"set with inline_xattr option");
return -EINVAL;
}
if (!sbi->inline_xattr_size ||
sbi->inline_xattr_size >= DEF_ADDRS_PER_INODE -
F2FS_TOTAL_EXTRA_ATTR_SIZE -
DEF_INLINE_RESERVED_SIZE -
DEF_MIN_INLINE_SIZE) {
f2fs_msg(sb, KERN_ERR,
"inline xattr size is out of range");
return -EINVAL;
}
}
/* Not pass down write hints if the number of active logs is lesser
* than NR_CURSEG_TYPE.
*/
if (sbi->active_logs != NR_CURSEG_TYPE)
sbi->whint_mode = WHINT_MODE_OFF;
return 0;
}
static struct inode *f2fs_alloc_inode(struct super_block *sb)
{
struct f2fs_inode_info *fi;
fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
if (!fi)
return NULL;
init_once((void *) fi);
/* Initialize f2fs-specific inode info */
atomic_set(&fi->dirty_pages, 0);
fi->i_current_depth = 1;
fi->i_advise = 0;
init_rwsem(&fi->i_sem);
INIT_LIST_HEAD(&fi->dirty_list);
INIT_LIST_HEAD(&fi->gdirty_list);
INIT_LIST_HEAD(&fi->inmem_ilist);
INIT_LIST_HEAD(&fi->inmem_pages);
mutex_init(&fi->inmem_lock);
init_rwsem(&fi->dio_rwsem[READ]);
init_rwsem(&fi->dio_rwsem[WRITE]);
init_rwsem(&fi->i_mmap_sem);
init_rwsem(&fi->i_xattr_sem);
#ifdef CONFIG_QUOTA
memset(&fi->i_dquot, 0, sizeof(fi->i_dquot));
fi->i_reserved_quota = 0;
#endif
/* Will be used by directory only */
fi->i_dir_level = F2FS_SB(sb)->dir_level;
return &fi->vfs_inode;
}
static int f2fs_drop_inode(struct inode *inode)
{
int ret;
/*
* This is to avoid a deadlock condition like below.
* writeback_single_inode(inode)
* - f2fs_write_data_page
* - f2fs_gc -> iput -> evict
* - inode_wait_for_writeback(inode)
*/
if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
if (!inode->i_nlink && !is_bad_inode(inode)) {
/* to avoid evict_inode call simultaneously */
atomic_inc(&inode->i_count);
spin_unlock(&inode->i_lock);
/* some remained atomic pages should discarded */
if (f2fs_is_atomic_file(inode))
drop_inmem_pages(inode);
/* should remain fi->extent_tree for writepage */
f2fs_destroy_extent_node(inode);
sb_start_intwrite(inode->i_sb);
f2fs_i_size_write(inode, 0);
if (F2FS_HAS_BLOCKS(inode))
f2fs_truncate(inode);
sb_end_intwrite(inode->i_sb);
spin_lock(&inode->i_lock);
atomic_dec(&inode->i_count);
}
trace_f2fs_drop_inode(inode, 0);
return 0;
}
ret = generic_drop_inode(inode);
trace_f2fs_drop_inode(inode, ret);
return ret;
}
int f2fs_inode_dirtied(struct inode *inode, bool sync)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
int ret = 0;
spin_lock(&sbi->inode_lock[DIRTY_META]);
if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
ret = 1;
} else {
set_inode_flag(inode, FI_DIRTY_INODE);
stat_inc_dirty_inode(sbi, DIRTY_META);
}
if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
list_add_tail(&F2FS_I(inode)->gdirty_list,
&sbi->inode_list[DIRTY_META]);
inc_page_count(sbi, F2FS_DIRTY_IMETA);
}
spin_unlock(&sbi->inode_lock[DIRTY_META]);
return ret;
}
void f2fs_inode_synced(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
spin_lock(&sbi->inode_lock[DIRTY_META]);
if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
spin_unlock(&sbi->inode_lock[DIRTY_META]);
return;
}
if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
list_del_init(&F2FS_I(inode)->gdirty_list);
dec_page_count(sbi, F2FS_DIRTY_IMETA);
}
clear_inode_flag(inode, FI_DIRTY_INODE);
clear_inode_flag(inode, FI_AUTO_RECOVER);
stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
spin_unlock(&sbi->inode_lock[DIRTY_META]);
}
/*
* f2fs_dirty_inode() is called from __mark_inode_dirty()
*
* We should call set_dirty_inode to write the dirty inode through write_inode.
*/
static void f2fs_dirty_inode(struct inode *inode, int flags)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
if (inode->i_ino == F2FS_NODE_INO(sbi) ||
inode->i_ino == F2FS_META_INO(sbi))
return;
if (flags == I_DIRTY_TIME)
return;
if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
clear_inode_flag(inode, FI_AUTO_RECOVER);
f2fs_inode_dirtied(inode, false);
}
static void f2fs_i_callback(struct rcu_head *head)
{
struct inode *inode = container_of(head, struct inode, i_rcu);
kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
}
static void f2fs_destroy_inode(struct inode *inode)
{
call_rcu(&inode->i_rcu, f2fs_i_callback);
}
static void destroy_percpu_info(struct f2fs_sb_info *sbi)
{
percpu_counter_destroy(&sbi->alloc_valid_block_count);
percpu_counter_destroy(&sbi->total_valid_inode_count);
}
static void destroy_device_list(struct f2fs_sb_info *sbi)
{
int i;
for (i = 0; i < sbi->s_ndevs; i++) {
blkdev_put(FDEV(i).bdev, FMODE_EXCL);
#ifdef CONFIG_BLK_DEV_ZONED
kfree(FDEV(i).blkz_type);
#endif
}
kfree(sbi->devs);
}
static void f2fs_put_super(struct super_block *sb)
{
struct f2fs_sb_info *sbi = F2FS_SB(sb);
int i;
bool dropped;
f2fs_quota_off_umount(sb);
/* prevent remaining shrinker jobs */
mutex_lock(&sbi->umount_mutex);
/*
* We don't need to do checkpoint when superblock is clean.
* But, the previous checkpoint was not done by umount, it needs to do
* clean checkpoint again.
*/
if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
struct cp_control cpc = {
.reason = CP_UMOUNT,
};
write_checkpoint(sbi, &cpc);
}
/* be sure to wait for any on-going discard commands */
dropped = f2fs_wait_discard_bios(sbi);
if (f2fs_discard_en(sbi) && !sbi->discard_blks && !dropped) {
struct cp_control cpc = {
.reason = CP_UMOUNT | CP_TRIMMED,
};
write_checkpoint(sbi, &cpc);
}
/* write_checkpoint can update stat informaion */
f2fs_destroy_stats(sbi);
/*
* normally superblock is clean, so we need to release this.
* In addition, EIO will skip do checkpoint, we need this as well.
*/
release_ino_entry(sbi, true);
f2fs_leave_shrinker(sbi);
mutex_unlock(&sbi->umount_mutex);
/* our cp_error case, we can wait for any writeback page */
f2fs_flush_merged_writes(sbi);
iput(sbi->node_inode);
iput(sbi->meta_inode);
/* destroy f2fs internal modules */
destroy_node_manager(sbi);
destroy_segment_manager(sbi);
kfree(sbi->ckpt);
f2fs_unregister_sysfs(sbi);
sb->s_fs_info = NULL;
if (sbi->s_chksum_driver)
crypto_free_shash(sbi->s_chksum_driver);
kfree(sbi->raw_super);
destroy_device_list(sbi);
mempool_destroy(sbi->write_io_dummy);
#ifdef CONFIG_QUOTA
for (i = 0; i < MAXQUOTAS; i++)
kfree(sbi->s_qf_names[i]);
#endif
destroy_percpu_info(sbi);
for (i = 0; i < NR_PAGE_TYPE; i++)
kfree(sbi->write_io[i]);
kfree(sbi);
}
int f2fs_sync_fs(struct super_block *sb, int sync)
{
struct f2fs_sb_info *sbi = F2FS_SB(sb);
int err = 0;
if (unlikely(f2fs_cp_error(sbi)))
return 0;
trace_f2fs_sync_fs(sb, sync);
if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
return -EAGAIN;
if (sync) {
struct cp_control cpc;
cpc.reason = __get_cp_reason(sbi);
mutex_lock(&sbi->gc_mutex);
err = write_checkpoint(sbi, &cpc);
mutex_unlock(&sbi->gc_mutex);
}
f2fs_trace_ios(NULL, 1);
return err;
}
static int f2fs_freeze(struct super_block *sb)
{
if (f2fs_readonly(sb))
return 0;
f2fs: remove checkpoint in f2fs_freeze The generic freeze_super() calls sync_filesystems() before f2fs_freeze(). So, basically we don't need to do checkpoint in f2fs_freeze(). But, in xfs/068, it triggers circular locking problem below due to gc_mutex for checkpoint. ====================================================== [ INFO: possible circular locking dependency detected ] 4.9.0-rc1+ #132 Tainted: G OE ------------------------------------------------------- 1. wait for __sb_start_write() by [<ffffffff9845f353>] dump_stack+0x85/0xc2 [<ffffffff980e80bf>] print_circular_bug+0x1cf/0x230 [<ffffffff980eb4d0>] __lock_acquire+0x19e0/0x1bc0 [<ffffffff980ebdcb>] lock_acquire+0x11b/0x220 [<ffffffffc08c7c3b>] ? f2fs_drop_inode+0x9b/0x160 [f2fs] [<ffffffff9826bdd0>] __sb_start_write+0x130/0x200 [<ffffffffc08c7c3b>] ? f2fs_drop_inode+0x9b/0x160 [f2fs] [<ffffffffc08c7c3b>] f2fs_drop_inode+0x9b/0x160 [f2fs] [<ffffffff98289991>] iput+0x171/0x2c0 [<ffffffffc08cfccf>] f2fs_sync_inode_meta+0x3f/0xf0 [f2fs] [<ffffffffc08cfe04>] block_operations+0x84/0x110 [f2fs] [<ffffffffc08cff78>] write_checkpoint+0xe8/0xf20 [f2fs] [<ffffffff980e979d>] ? trace_hardirqs_on+0xd/0x10 [<ffffffffc08c6de9>] ? f2fs_sync_fs+0x79/0x190 [f2fs] [<ffffffff9803e9d9>] ? sched_clock+0x9/0x10 [<ffffffffc08c6de9>] ? f2fs_sync_fs+0x79/0x190 [f2fs] [<ffffffffc08c6df5>] f2fs_sync_fs+0x85/0x190 [f2fs] [<ffffffff982a4f90>] ? do_fsync+0x70/0x70 [<ffffffff982a4f90>] ? do_fsync+0x70/0x70 [<ffffffff982a4fb0>] sync_fs_one_sb+0x20/0x30 [<ffffffff9826ca3e>] iterate_supers+0xae/0x100 [<ffffffff982a50b5>] sys_sync+0x55/0x90 [<ffffffff9890b345>] entry_SYSCALL_64_fastpath+0x23/0xc6 2. wait for sbi->gc_mutex by [<ffffffff980ebdcb>] lock_acquire+0x11b/0x220 [<ffffffff989063d6>] mutex_lock_nested+0x76/0x3f0 [<ffffffffc08c6de9>] f2fs_sync_fs+0x79/0x190 [f2fs] [<ffffffffc08c7a6c>] f2fs_freeze+0x1c/0x20 [f2fs] [<ffffffff9826b6ef>] freeze_super+0xcf/0x190 [<ffffffff9827eebc>] do_vfs_ioctl+0x53c/0x6a0 [<ffffffff9827f099>] SyS_ioctl+0x79/0x90 [<ffffffff9890b345>] entry_SYSCALL_64_fastpath+0x23/0xc6 Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-11-04 15:59:15 -06:00
/* IO error happened before */
if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
return -EIO;
/* must be clean, since sync_filesystem() was already called */
if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
return -EINVAL;
return 0;
}
static int f2fs_unfreeze(struct super_block *sb)
{
return 0;
}
#ifdef CONFIG_QUOTA
static int f2fs_statfs_project(struct super_block *sb,
kprojid_t projid, struct kstatfs *buf)
{
struct kqid qid;
struct dquot *dquot;
u64 limit;
u64 curblock;
qid = make_kqid_projid(projid);
dquot = dqget(sb, qid);
if (IS_ERR(dquot))
return PTR_ERR(dquot);
spin_lock(&dq_data_lock);
limit = (dquot->dq_dqb.dqb_bsoftlimit ?
dquot->dq_dqb.dqb_bsoftlimit :
dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
if (limit && buf->f_blocks > limit) {
curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
buf->f_blocks = limit;
buf->f_bfree = buf->f_bavail =
(buf->f_blocks > curblock) ?
(buf->f_blocks - curblock) : 0;
}
limit = dquot->dq_dqb.dqb_isoftlimit ?
dquot->dq_dqb.dqb_isoftlimit :
dquot->dq_dqb.dqb_ihardlimit;
if (limit && buf->f_files > limit) {
buf->f_files = limit;
buf->f_ffree =
(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
(buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
}
spin_unlock(&dq_data_lock);
dqput(dquot);
return 0;
}
#endif
static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
{
struct super_block *sb = dentry->d_sb;
struct f2fs_sb_info *sbi = F2FS_SB(sb);
u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
block_t total_count, user_block_count, start_count;
u64 avail_node_count;
total_count = le64_to_cpu(sbi->raw_super->block_count);
user_block_count = sbi->user_block_count;
start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
buf->f_type = F2FS_SUPER_MAGIC;
buf->f_bsize = sbi->blocksize;
buf->f_blocks = total_count - start_count;
buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
sbi->current_reserved_blocks;
if (buf->f_bfree > sbi->root_reserved_blocks)
buf->f_bavail = buf->f_bfree - sbi->root_reserved_blocks;
else
buf->f_bavail = 0;
avail_node_count = sbi->total_node_count - sbi->nquota_files -
F2FS_RESERVED_NODE_NUM;
if (avail_node_count > user_block_count) {
buf->f_files = user_block_count;
buf->f_ffree = buf->f_bavail;
} else {
buf->f_files = avail_node_count;
buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
buf->f_bavail);
}
buf->f_namelen = F2FS_NAME_LEN;
buf->f_fsid.val[0] = (u32)id;
buf->f_fsid.val[1] = (u32)(id >> 32);
#ifdef CONFIG_QUOTA
if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
}
#endif
return 0;
}
static inline void f2fs_show_quota_options(struct seq_file *seq,
struct super_block *sb)
{
#ifdef CONFIG_QUOTA
struct f2fs_sb_info *sbi = F2FS_SB(sb);
if (sbi->s_jquota_fmt) {
char *fmtname = "";
switch (sbi->s_jquota_fmt) {
case QFMT_VFS_OLD:
fmtname = "vfsold";
break;
case QFMT_VFS_V0:
fmtname = "vfsv0";
break;
case QFMT_VFS_V1:
fmtname = "vfsv1";
break;
}
seq_printf(seq, ",jqfmt=%s", fmtname);
}
if (sbi->s_qf_names[USRQUOTA])
seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
if (sbi->s_qf_names[GRPQUOTA])
seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
if (sbi->s_qf_names[PRJQUOTA])
seq_show_option(seq, "prjjquota", sbi->s_qf_names[PRJQUOTA]);
#endif
}
static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
{
struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
if (test_opt(sbi, FORCE_FG_GC))
seq_printf(seq, ",background_gc=%s", "sync");
else
seq_printf(seq, ",background_gc=%s", "on");
} else {
seq_printf(seq, ",background_gc=%s", "off");
}
if (test_opt(sbi, DISABLE_ROLL_FORWARD))
seq_puts(seq, ",disable_roll_forward");
if (test_opt(sbi, DISCARD))
seq_puts(seq, ",discard");
if (test_opt(sbi, NOHEAP))
seq_puts(seq, ",no_heap");
else
seq_puts(seq, ",heap");
#ifdef CONFIG_F2FS_FS_XATTR
if (test_opt(sbi, XATTR_USER))
seq_puts(seq, ",user_xattr");
else
seq_puts(seq, ",nouser_xattr");
if (test_opt(sbi, INLINE_XATTR))
seq_puts(seq, ",inline_xattr");
else
seq_puts(seq, ",noinline_xattr");
f2fs: support flexible inline xattr size Now, in product, more and more features based on file encryption were introduced, their demand of xattr space is increasing, however, inline xattr has fixed-size of 200 bytes, once inline xattr space is full, new increased xattr data would occupy additional xattr block which may bring us more space usage and performance regression during persisting. In order to resolve above issue, it's better to expand inline xattr size flexibly according to user's requirement. So this patch introduces new filesystem feature 'flexible inline xattr', and new mount option 'inline_xattr_size=%u', once mkfs enables the feature, we can use the option to make f2fs supporting flexible inline xattr size. To support this feature, we add extra attribute i_inline_xattr_size in inode layout, indicating that how many space inline xattr borrows from block address mapping space in inode layout, by this, we can easily locate and store flexible-sized inline xattr data in inode. Inode disk layout: +----------------------+ | .i_mode | | ... | | .i_ext | +----------------------+ | .i_extra_isize | | .i_inline_xattr_size |-----------+ | ... | | +----------------------+ | | .i_addr | | | - block address or | | | - inline data | | +----------------------+<---+ v | inline xattr | +---inline xattr range +----------------------+<---+ | .i_nid | +----------------------+ | node_footer | | (nid, ino, offset) | +----------------------+ Note that, we have to cnosider backward compatibility which reserved inline_data space, 200 bytes, all the time, reported by Sheng Yong. Previous inline data or directory always reserved 200 bytes in inode layout, even if inline_xattr is disabled. In order to keep inline_dentry's structure for backward compatibility, we get the space back only from inline_data. Signed-off-by: Chao Yu <yuchao0@huawei.com> Reported-by: Sheng Yong <shengyong1@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2017-09-06 07:59:50 -06:00
if (test_opt(sbi, INLINE_XATTR_SIZE))
seq_printf(seq, ",inline_xattr_size=%u",
sbi->inline_xattr_size);
#endif
#ifdef CONFIG_F2FS_FS_POSIX_ACL
if (test_opt(sbi, POSIX_ACL))
seq_puts(seq, ",acl");
else
seq_puts(seq, ",noacl");
#endif
if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
seq_puts(seq, ",disable_ext_identify");
if (test_opt(sbi, INLINE_DATA))
seq_puts(seq, ",inline_data");
else
seq_puts(seq, ",noinline_data");
if (test_opt(sbi, INLINE_DENTRY))
seq_puts(seq, ",inline_dentry");
else
seq_puts(seq, ",noinline_dentry");
if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
seq_puts(seq, ",flush_merge");
if (test_opt(sbi, NOBARRIER))
seq_puts(seq, ",nobarrier");
if (test_opt(sbi, FASTBOOT))
seq_puts(seq, ",fastboot");
if (test_opt(sbi, EXTENT_CACHE))
seq_puts(seq, ",extent_cache");
else
seq_puts(seq, ",noextent_cache");
if (test_opt(sbi, DATA_FLUSH))
seq_puts(seq, ",data_flush");
seq_puts(seq, ",mode=");
if (test_opt(sbi, ADAPTIVE))
seq_puts(seq, "adaptive");
else if (test_opt(sbi, LFS))
seq_puts(seq, "lfs");
seq_printf(seq, ",active_logs=%u", sbi->active_logs);
if (test_opt(sbi, RESERVE_ROOT))
seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
sbi->root_reserved_blocks,
from_kuid_munged(&init_user_ns, sbi->s_resuid),
from_kgid_munged(&init_user_ns, sbi->s_resgid));
if (F2FS_IO_SIZE_BITS(sbi))
seq_printf(seq, ",io_size=%uKB", F2FS_IO_SIZE_KB(sbi));
#ifdef CONFIG_F2FS_FAULT_INJECTION
if (test_opt(sbi, FAULT_INJECTION))
seq_printf(seq, ",fault_injection=%u",
sbi->fault_info.inject_rate);
#endif
#ifdef CONFIG_QUOTA
if (test_opt(sbi, QUOTA))
seq_puts(seq, ",quota");
if (test_opt(sbi, USRQUOTA))
seq_puts(seq, ",usrquota");
if (test_opt(sbi, GRPQUOTA))
seq_puts(seq, ",grpquota");
if (test_opt(sbi, PRJQUOTA))
seq_puts(seq, ",prjquota");
#endif
f2fs_show_quota_options(seq, sbi->sb);
if (sbi->whint_mode == WHINT_MODE_USER)
seq_printf(seq, ",whint_mode=%s", "user-based");
else if (sbi->whint_mode == WHINT_MODE_FS)
seq_printf(seq, ",whint_mode=%s", "fs-based");
return 0;
}
static void default_options(struct f2fs_sb_info *sbi)
{
/* init some FS parameters */
sbi->active_logs = NR_CURSEG_TYPE;
f2fs: support flexible inline xattr size Now, in product, more and more features based on file encryption were introduced, their demand of xattr space is increasing, however, inline xattr has fixed-size of 200 bytes, once inline xattr space is full, new increased xattr data would occupy additional xattr block which may bring us more space usage and performance regression during persisting. In order to resolve above issue, it's better to expand inline xattr size flexibly according to user's requirement. So this patch introduces new filesystem feature 'flexible inline xattr', and new mount option 'inline_xattr_size=%u', once mkfs enables the feature, we can use the option to make f2fs supporting flexible inline xattr size. To support this feature, we add extra attribute i_inline_xattr_size in inode layout, indicating that how many space inline xattr borrows from block address mapping space in inode layout, by this, we can easily locate and store flexible-sized inline xattr data in inode. Inode disk layout: +----------------------+ | .i_mode | | ... | | .i_ext | +----------------------+ | .i_extra_isize | | .i_inline_xattr_size |-----------+ | ... | | +----------------------+ | | .i_addr | | | - block address or | | | - inline data | | +----------------------+<---+ v | inline xattr | +---inline xattr range +----------------------+<---+ | .i_nid | +----------------------+ | node_footer | | (nid, ino, offset) | +----------------------+ Note that, we have to cnosider backward compatibility which reserved inline_data space, 200 bytes, all the time, reported by Sheng Yong. Previous inline data or directory always reserved 200 bytes in inode layout, even if inline_xattr is disabled. In order to keep inline_dentry's structure for backward compatibility, we get the space back only from inline_data. Signed-off-by: Chao Yu <yuchao0@huawei.com> Reported-by: Sheng Yong <shengyong1@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2017-09-06 07:59:50 -06:00
sbi->inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
sbi->whint_mode = WHINT_MODE_OFF;
set_opt(sbi, BG_GC);
set_opt(sbi, INLINE_XATTR);
set_opt(sbi, INLINE_DATA);
set_opt(sbi, INLINE_DENTRY);
set_opt(sbi, EXTENT_CACHE);
set_opt(sbi, NOHEAP);
Rename superblock flags (MS_xyz -> SB_xyz) This is a pure automated search-and-replace of the internal kernel superblock flags. The s_flags are now called SB_*, with the names and the values for the moment mirroring the MS_* flags that they're equivalent to. Note how the MS_xyz flags are the ones passed to the mount system call, while the SB_xyz flags are what we then use in sb->s_flags. The script to do this was: # places to look in; re security/*: it generally should *not* be # touched (that stuff parses mount(2) arguments directly), but # there are two places where we really deal with superblock flags. FILES="drivers/mtd drivers/staging/lustre fs ipc mm \ include/linux/fs.h include/uapi/linux/bfs_fs.h \ security/apparmor/apparmorfs.c security/apparmor/include/lib.h" # the list of MS_... constants SYMS="RDONLY NOSUID NODEV NOEXEC SYNCHRONOUS REMOUNT MANDLOCK \ DIRSYNC NOATIME NODIRATIME BIND MOVE REC VERBOSE SILENT \ POSIXACL UNBINDABLE PRIVATE SLAVE SHARED RELATIME KERNMOUNT \ I_VERSION STRICTATIME LAZYTIME SUBMOUNT NOREMOTELOCK NOSEC BORN \ ACTIVE NOUSER" SED_PROG= for i in $SYMS; do SED_PROG="$SED_PROG -e s/MS_$i/SB_$i/g"; done # we want files that contain at least one of MS_..., # with fs/namespace.c and fs/pnode.c excluded. L=$(for i in $SYMS; do git grep -w -l MS_$i $FILES; done| sort|uniq|grep -v '^fs/namespace.c'|grep -v '^fs/pnode.c') for f in $L; do sed -i $f $SED_PROG; done Requested-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-27 14:05:09 -07:00
sbi->sb->s_flags |= SB_LAZYTIME;
set_opt(sbi, FLUSH_MERGE);
if (f2fs_sb_has_blkzoned(sbi->sb)) {
set_opt_mode(sbi, F2FS_MOUNT_LFS);
set_opt(sbi, DISCARD);
} else {
set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
}
#ifdef CONFIG_F2FS_FS_XATTR
set_opt(sbi, XATTR_USER);
#endif
#ifdef CONFIG_F2FS_FS_POSIX_ACL
set_opt(sbi, POSIX_ACL);
#endif
#ifdef CONFIG_F2FS_FAULT_INJECTION
f2fs_build_fault_attr(sbi, 0);
#endif
}
#ifdef CONFIG_QUOTA
static int f2fs_enable_quotas(struct super_block *sb);
#endif
static int f2fs_remount(struct super_block *sb, int *flags, char *data)
{
struct f2fs_sb_info *sbi = F2FS_SB(sb);
struct f2fs_mount_info org_mount_opt;
unsigned long old_sb_flags;
int err, active_logs;
bool need_restart_gc = false;
bool need_stop_gc = false;
bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
int old_whint_mode = sbi->whint_mode;
#ifdef CONFIG_F2FS_FAULT_INJECTION
struct f2fs_fault_info ffi = sbi->fault_info;
#endif
#ifdef CONFIG_QUOTA
int s_jquota_fmt;
char *s_qf_names[MAXQUOTAS];
int i, j;
#endif
/*
* Save the old mount options in case we
* need to restore them.
*/
org_mount_opt = sbi->mount_opt;
old_sb_flags = sb->s_flags;
active_logs = sbi->active_logs;
#ifdef CONFIG_QUOTA
s_jquota_fmt = sbi->s_jquota_fmt;
for (i = 0; i < MAXQUOTAS; i++) {
if (sbi->s_qf_names[i]) {
s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
GFP_KERNEL);
if (!s_qf_names[i]) {
for (j = 0; j < i; j++)
kfree(s_qf_names[j]);
return -ENOMEM;
}
} else {
s_qf_names[i] = NULL;
}
}
#endif
/* recover superblocks we couldn't write due to previous RO mount */
Rename superblock flags (MS_xyz -> SB_xyz) This is a pure automated search-and-replace of the internal kernel superblock flags. The s_flags are now called SB_*, with the names and the values for the moment mirroring the MS_* flags that they're equivalent to. Note how the MS_xyz flags are the ones passed to the mount system call, while the SB_xyz flags are what we then use in sb->s_flags. The script to do this was: # places to look in; re security/*: it generally should *not* be # touched (that stuff parses mount(2) arguments directly), but # there are two places where we really deal with superblock flags. FILES="drivers/mtd drivers/staging/lustre fs ipc mm \ include/linux/fs.h include/uapi/linux/bfs_fs.h \ security/apparmor/apparmorfs.c security/apparmor/include/lib.h" # the list of MS_... constants SYMS="RDONLY NOSUID NODEV NOEXEC SYNCHRONOUS REMOUNT MANDLOCK \ DIRSYNC NOATIME NODIRATIME BIND MOVE REC VERBOSE SILENT \ POSIXACL UNBINDABLE PRIVATE SLAVE SHARED RELATIME KERNMOUNT \ I_VERSION STRICTATIME LAZYTIME SUBMOUNT NOREMOTELOCK NOSEC BORN \ ACTIVE NOUSER" SED_PROG= for i in $SYMS; do SED_PROG="$SED_PROG -e s/MS_$i/SB_$i/g"; done # we want files that contain at least one of MS_..., # with fs/namespace.c and fs/pnode.c excluded. L=$(for i in $SYMS; do git grep -w -l MS_$i $FILES; done| sort|uniq|grep -v '^fs/namespace.c'|grep -v '^fs/pnode.c') for f in $L; do sed -i $f $SED_PROG; done Requested-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-27 14:05:09 -07:00
if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
err = f2fs_commit_super(sbi, false);
f2fs_msg(sb, KERN_INFO,
"Try to recover all the superblocks, ret: %d", err);
if (!err)
clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
}
default_options(sbi);
/* parse mount options */
err = parse_options(sb, data);
if (err)
goto restore_opts;
/*
* Previous and new state of filesystem is RO,
* so skip checking GC and FLUSH_MERGE conditions.
*/
Rename superblock flags (MS_xyz -> SB_xyz) This is a pure automated search-and-replace of the internal kernel superblock flags. The s_flags are now called SB_*, with the names and the values for the moment mirroring the MS_* flags that they're equivalent to. Note how the MS_xyz flags are the ones passed to the mount system call, while the SB_xyz flags are what we then use in sb->s_flags. The script to do this was: # places to look in; re security/*: it generally should *not* be # touched (that stuff parses mount(2) arguments directly), but # there are two places where we really deal with superblock flags. FILES="drivers/mtd drivers/staging/lustre fs ipc mm \ include/linux/fs.h include/uapi/linux/bfs_fs.h \ security/apparmor/apparmorfs.c security/apparmor/include/lib.h" # the list of MS_... constants SYMS="RDONLY NOSUID NODEV NOEXEC SYNCHRONOUS REMOUNT MANDLOCK \ DIRSYNC NOATIME NODIRATIME BIND MOVE REC VERBOSE SILENT \ POSIXACL UNBINDABLE PRIVATE SLAVE SHARED RELATIME KERNMOUNT \ I_VERSION STRICTATIME LAZYTIME SUBMOUNT NOREMOTELOCK NOSEC BORN \ ACTIVE NOUSER" SED_PROG= for i in $SYMS; do SED_PROG="$SED_PROG -e s/MS_$i/SB_$i/g"; done # we want files that contain at least one of MS_..., # with fs/namespace.c and fs/pnode.c excluded. L=$(for i in $SYMS; do git grep -w -l MS_$i $FILES; done| sort|uniq|grep -v '^fs/namespace.c'|grep -v '^fs/pnode.c') for f in $L; do sed -i $f $SED_PROG; done Requested-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-27 14:05:09 -07:00
if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
goto skip;
#ifdef CONFIG_QUOTA
Rename superblock flags (MS_xyz -> SB_xyz) This is a pure automated search-and-replace of the internal kernel superblock flags. The s_flags are now called SB_*, with the names and the values for the moment mirroring the MS_* flags that they're equivalent to. Note how the MS_xyz flags are the ones passed to the mount system call, while the SB_xyz flags are what we then use in sb->s_flags. The script to do this was: # places to look in; re security/*: it generally should *not* be # touched (that stuff parses mount(2) arguments directly), but # there are two places where we really deal with superblock flags. FILES="drivers/mtd drivers/staging/lustre fs ipc mm \ include/linux/fs.h include/uapi/linux/bfs_fs.h \ security/apparmor/apparmorfs.c security/apparmor/include/lib.h" # the list of MS_... constants SYMS="RDONLY NOSUID NODEV NOEXEC SYNCHRONOUS REMOUNT MANDLOCK \ DIRSYNC NOATIME NODIRATIME BIND MOVE REC VERBOSE SILENT \ POSIXACL UNBINDABLE PRIVATE SLAVE SHARED RELATIME KERNMOUNT \ I_VERSION STRICTATIME LAZYTIME SUBMOUNT NOREMOTELOCK NOSEC BORN \ ACTIVE NOUSER" SED_PROG= for i in $SYMS; do SED_PROG="$SED_PROG -e s/MS_$i/SB_$i/g"; done # we want files that contain at least one of MS_..., # with fs/namespace.c and fs/pnode.c excluded. L=$(for i in $SYMS; do git grep -w -l MS_$i $FILES; done| sort|uniq|grep -v '^fs/namespace.c'|grep -v '^fs/pnode.c') for f in $L; do sed -i $f $SED_PROG; done Requested-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-27 14:05:09 -07:00
if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
err = dquot_suspend(sb, -1);
if (err < 0)
goto restore_opts;
} else if (f2fs_readonly(sb) && !(*flags & MS_RDONLY)) {
/* dquot_resume needs RW */
Rename superblock flags (MS_xyz -> SB_xyz) This is a pure automated search-and-replace of the internal kernel superblock flags. The s_flags are now called SB_*, with the names and the values for the moment mirroring the MS_* flags that they're equivalent to. Note how the MS_xyz flags are the ones passed to the mount system call, while the SB_xyz flags are what we then use in sb->s_flags. The script to do this was: # places to look in; re security/*: it generally should *not* be # touched (that stuff parses mount(2) arguments directly), but # there are two places where we really deal with superblock flags. FILES="drivers/mtd drivers/staging/lustre fs ipc mm \ include/linux/fs.h include/uapi/linux/bfs_fs.h \ security/apparmor/apparmorfs.c security/apparmor/include/lib.h" # the list of MS_... constants SYMS="RDONLY NOSUID NODEV NOEXEC SYNCHRONOUS REMOUNT MANDLOCK \ DIRSYNC NOATIME NODIRATIME BIND MOVE REC VERBOSE SILENT \ POSIXACL UNBINDABLE PRIVATE SLAVE SHARED RELATIME KERNMOUNT \ I_VERSION STRICTATIME LAZYTIME SUBMOUNT NOREMOTELOCK NOSEC BORN \ ACTIVE NOUSER" SED_PROG= for i in $SYMS; do SED_PROG="$SED_PROG -e s/MS_$i/SB_$i/g"; done # we want files that contain at least one of MS_..., # with fs/namespace.c and fs/pnode.c excluded. L=$(for i in $SYMS; do git grep -w -l MS_$i $FILES; done| sort|uniq|grep -v '^fs/namespace.c'|grep -v '^fs/pnode.c') for f in $L; do sed -i $f $SED_PROG; done Requested-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-27 14:05:09 -07:00
sb->s_flags &= ~SB_RDONLY;
if (sb_any_quota_suspended(sb)) {
dquot_resume(sb, -1);
} else if (f2fs_sb_has_quota_ino(sb)) {
err = f2fs_enable_quotas(sb);
if (err)
goto restore_opts;
}
}
#endif
/* disallow enable/disable extent_cache dynamically */
if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
err = -EINVAL;
f2fs_msg(sbi->sb, KERN_WARNING,
"switch extent_cache option is not allowed");
goto restore_opts;
}
/*
* We stop the GC thread if FS is mounted as RO
* or if background_gc = off is passed in mount
* option. Also sync the filesystem.
*/
Rename superblock flags (MS_xyz -> SB_xyz) This is a pure automated search-and-replace of the internal kernel superblock flags. The s_flags are now called SB_*, with the names and the values for the moment mirroring the MS_* flags that they're equivalent to. Note how the MS_xyz flags are the ones passed to the mount system call, while the SB_xyz flags are what we then use in sb->s_flags. The script to do this was: # places to look in; re security/*: it generally should *not* be # touched (that stuff parses mount(2) arguments directly), but # there are two places where we really deal with superblock flags. FILES="drivers/mtd drivers/staging/lustre fs ipc mm \ include/linux/fs.h include/uapi/linux/bfs_fs.h \ security/apparmor/apparmorfs.c security/apparmor/include/lib.h" # the list of MS_... constants SYMS="RDONLY NOSUID NODEV NOEXEC SYNCHRONOUS REMOUNT MANDLOCK \ DIRSYNC NOATIME NODIRATIME BIND MOVE REC VERBOSE SILENT \ POSIXACL UNBINDABLE PRIVATE SLAVE SHARED RELATIME KERNMOUNT \ I_VERSION STRICTATIME LAZYTIME SUBMOUNT NOREMOTELOCK NOSEC BORN \ ACTIVE NOUSER" SED_PROG= for i in $SYMS; do SED_PROG="$SED_PROG -e s/MS_$i/SB_$i/g"; done # we want files that contain at least one of MS_..., # with fs/namespace.c and fs/pnode.c excluded. L=$(for i in $SYMS; do git grep -w -l MS_$i $FILES; done| sort|uniq|grep -v '^fs/namespace.c'|grep -v '^fs/pnode.c') for f in $L; do sed -i $f $SED_PROG; done Requested-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-27 14:05:09 -07:00
if ((*flags & SB_RDONLY) || !test_opt(sbi, BG_GC)) {
if (sbi->gc_thread) {
stop_gc_thread(sbi);
need_restart_gc = true;
}
} else if (!sbi->gc_thread) {
err = start_gc_thread(sbi);
if (err)
goto restore_opts;
need_stop_gc = true;
}
if (*flags & SB_RDONLY || sbi->whint_mode != old_whint_mode) {
writeback_inodes_sb(sb, WB_REASON_SYNC);
sync_inodes_sb(sb);
set_sbi_flag(sbi, SBI_IS_DIRTY);
set_sbi_flag(sbi, SBI_IS_CLOSE);
f2fs_sync_fs(sb, 1);
clear_sbi_flag(sbi, SBI_IS_CLOSE);
}
/*
* We stop issue flush thread if FS is mounted as RO
* or if flush_merge is not passed in mount option.
*/
Rename superblock flags (MS_xyz -> SB_xyz) This is a pure automated search-and-replace of the internal kernel superblock flags. The s_flags are now called SB_*, with the names and the values for the moment mirroring the MS_* flags that they're equivalent to. Note how the MS_xyz flags are the ones passed to the mount system call, while the SB_xyz flags are what we then use in sb->s_flags. The script to do this was: # places to look in; re security/*: it generally should *not* be # touched (that stuff parses mount(2) arguments directly), but # there are two places where we really deal with superblock flags. FILES="drivers/mtd drivers/staging/lustre fs ipc mm \ include/linux/fs.h include/uapi/linux/bfs_fs.h \ security/apparmor/apparmorfs.c security/apparmor/include/lib.h" # the list of MS_... constants SYMS="RDONLY NOSUID NODEV NOEXEC SYNCHRONOUS REMOUNT MANDLOCK \ DIRSYNC NOATIME NODIRATIME BIND MOVE REC VERBOSE SILENT \ POSIXACL UNBINDABLE PRIVATE SLAVE SHARED RELATIME KERNMOUNT \ I_VERSION STRICTATIME LAZYTIME SUBMOUNT NOREMOTELOCK NOSEC BORN \ ACTIVE NOUSER" SED_PROG= for i in $SYMS; do SED_PROG="$SED_PROG -e s/MS_$i/SB_$i/g"; done # we want files that contain at least one of MS_..., # with fs/namespace.c and fs/pnode.c excluded. L=$(for i in $SYMS; do git grep -w -l MS_$i $FILES; done| sort|uniq|grep -v '^fs/namespace.c'|grep -v '^fs/pnode.c') for f in $L; do sed -i $f $SED_PROG; done Requested-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-27 14:05:09 -07:00
if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
clear_opt(sbi, FLUSH_MERGE);
destroy_flush_cmd_control(sbi, false);
} else {
err = create_flush_cmd_control(sbi);
if (err)
goto restore_gc;
}
skip:
#ifdef CONFIG_QUOTA
/* Release old quota file names */
for (i = 0; i < MAXQUOTAS; i++)
kfree(s_qf_names[i]);
#endif
/* Update the POSIXACL Flag */
Rename superblock flags (MS_xyz -> SB_xyz) This is a pure automated search-and-replace of the internal kernel superblock flags. The s_flags are now called SB_*, with the names and the values for the moment mirroring the MS_* flags that they're equivalent to. Note how the MS_xyz flags are the ones passed to the mount system call, while the SB_xyz flags are what we then use in sb->s_flags. The script to do this was: # places to look in; re security/*: it generally should *not* be # touched (that stuff parses mount(2) arguments directly), but # there are two places where we really deal with superblock flags. FILES="drivers/mtd drivers/staging/lustre fs ipc mm \ include/linux/fs.h include/uapi/linux/bfs_fs.h \ security/apparmor/apparmorfs.c security/apparmor/include/lib.h" # the list of MS_... constants SYMS="RDONLY NOSUID NODEV NOEXEC SYNCHRONOUS REMOUNT MANDLOCK \ DIRSYNC NOATIME NODIRATIME BIND MOVE REC VERBOSE SILENT \ POSIXACL UNBINDABLE PRIVATE SLAVE SHARED RELATIME KERNMOUNT \ I_VERSION STRICTATIME LAZYTIME SUBMOUNT NOREMOTELOCK NOSEC BORN \ ACTIVE NOUSER" SED_PROG= for i in $SYMS; do SED_PROG="$SED_PROG -e s/MS_$i/SB_$i/g"; done # we want files that contain at least one of MS_..., # with fs/namespace.c and fs/pnode.c excluded. L=$(for i in $SYMS; do git grep -w -l MS_$i $FILES; done| sort|uniq|grep -v '^fs/namespace.c'|grep -v '^fs/pnode.c') for f in $L; do sed -i $f $SED_PROG; done Requested-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-27 14:05:09 -07:00
sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
limit_reserve_root(sbi);
return 0;
restore_gc:
if (need_restart_gc) {
if (start_gc_thread(sbi))
f2fs_msg(sbi->sb, KERN_WARNING,
"background gc thread has stopped");
} else if (need_stop_gc) {
stop_gc_thread(sbi);
}
restore_opts:
#ifdef CONFIG_QUOTA
sbi->s_jquota_fmt = s_jquota_fmt;
for (i = 0; i < MAXQUOTAS; i++) {
kfree(sbi->s_qf_names[i]);
sbi->s_qf_names[i] = s_qf_names[i];
}
#endif
sbi->whint_mode = old_whint_mode;
sbi->mount_opt = org_mount_opt;
sbi->active_logs = active_logs;
sb->s_flags = old_sb_flags;
#ifdef CONFIG_F2FS_FAULT_INJECTION
sbi->fault_info = ffi;
#endif
return err;
}
#ifdef CONFIG_QUOTA
/* Read data from quotafile */
static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
size_t len, loff_t off)
{
struct inode *inode = sb_dqopt(sb)->files[type];
struct address_space *mapping = inode->i_mapping;
block_t blkidx = F2FS_BYTES_TO_BLK(off);
int offset = off & (sb->s_blocksize - 1);
int tocopy;
size_t toread;
loff_t i_size = i_size_read(inode);
struct page *page;
char *kaddr;
if (off > i_size)
return 0;
if (off + len > i_size)
len = i_size - off;
toread = len;
while (toread > 0) {
tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
repeat:
page = read_mapping_page(mapping, blkidx, NULL);
if (IS_ERR(page)) {
if (PTR_ERR(page) == -ENOMEM) {
congestion_wait(BLK_RW_ASYNC, HZ/50);
goto repeat;
}
return PTR_ERR(page);
}
lock_page(page);
if (unlikely(page->mapping != mapping)) {
f2fs_put_page(page, 1);
goto repeat;
}
if (unlikely(!PageUptodate(page))) {
f2fs_put_page(page, 1);
return -EIO;
}
kaddr = kmap_atomic(page);
memcpy(data, kaddr + offset, tocopy);
kunmap_atomic(kaddr);
f2fs_put_page(page, 1);
offset = 0;
toread -= tocopy;
data += tocopy;
blkidx++;
}
return len;
}
/* Write to quotafile */
static ssize_t f2fs_quota_write(struct super_block *sb, int type,
const char *data, size_t len, loff_t off)
{
struct inode *inode = sb_dqopt(sb)->files[type];
struct address_space *mapping = inode->i_mapping;
const struct address_space_operations *a_ops = mapping->a_ops;
int offset = off & (sb->s_blocksize - 1);
size_t towrite = len;
struct page *page;
char *kaddr;
int err = 0;
int tocopy;
while (towrite > 0) {
tocopy = min_t(unsigned long, sb->s_blocksize - offset,
towrite);
retry:
err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
&page, NULL);
if (unlikely(err)) {
if (err == -ENOMEM) {
congestion_wait(BLK_RW_ASYNC, HZ/50);
goto retry;
}
break;
}
kaddr = kmap_atomic(page);
memcpy(kaddr + offset, data, tocopy);
kunmap_atomic(kaddr);
flush_dcache_page(page);
a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
page, NULL);
offset = 0;
towrite -= tocopy;
off += tocopy;
data += tocopy;
cond_resched();
}
if (len == towrite)
return err;
inode->i_mtime = inode->i_ctime = current_time(inode);
f2fs_mark_inode_dirty_sync(inode, false);
return len - towrite;
}
static struct dquot **f2fs_get_dquots(struct inode *inode)
{
return F2FS_I(inode)->i_dquot;
}
static qsize_t *f2fs_get_reserved_space(struct inode *inode)
{
return &F2FS_I(inode)->i_reserved_quota;
}
static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
{
return dquot_quota_on_mount(sbi->sb, sbi->s_qf_names[type],
sbi->s_jquota_fmt, type);
}
int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
{
int enabled = 0;
int i, err;
if (f2fs_sb_has_quota_ino(sbi->sb) && rdonly) {
err = f2fs_enable_quotas(sbi->sb);
if (err) {
f2fs_msg(sbi->sb, KERN_ERR,
"Cannot turn on quota_ino: %d", err);
return 0;
}
return 1;
}
for (i = 0; i < MAXQUOTAS; i++) {
if (sbi->s_qf_names[i]) {
err = f2fs_quota_on_mount(sbi, i);
if (!err) {
enabled = 1;
continue;
}
f2fs_msg(sbi->sb, KERN_ERR,
"Cannot turn on quotas: %d on %d", err, i);
}
}
return enabled;
}
static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
unsigned int flags)
{
struct inode *qf_inode;
unsigned long qf_inum;
int err;
BUG_ON(!f2fs_sb_has_quota_ino(sb));
qf_inum = f2fs_qf_ino(sb, type);
if (!qf_inum)
return -EPERM;
qf_inode = f2fs_iget(sb, qf_inum);
if (IS_ERR(qf_inode)) {
f2fs_msg(sb, KERN_ERR,
"Bad quota inode %u:%lu", type, qf_inum);
return PTR_ERR(qf_inode);
}
/* Don't account quota for quota files to avoid recursion */
qf_inode->i_flags |= S_NOQUOTA;
err = dquot_enable(qf_inode, type, format_id, flags);
iput(qf_inode);
return err;
}
static int f2fs_enable_quotas(struct super_block *sb)
{
int type, err = 0;
unsigned long qf_inum;
bool quota_mopt[MAXQUOTAS] = {
test_opt(F2FS_SB(sb), USRQUOTA),
test_opt(F2FS_SB(sb), GRPQUOTA),
test_opt(F2FS_SB(sb), PRJQUOTA),
};
sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
for (type = 0; type < MAXQUOTAS; type++) {
qf_inum = f2fs_qf_ino(sb, type);
if (qf_inum) {
err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
DQUOT_USAGE_ENABLED |
(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
if (err) {
f2fs_msg(sb, KERN_ERR,
"Failed to enable quota tracking "
"(type=%d, err=%d). Please run "
"fsck to fix.", type, err);
for (type--; type >= 0; type--)
dquot_quota_off(sb, type);
return err;
}
}
}
return 0;
}
static int f2fs_quota_sync(struct super_block *sb, int type)
{
struct quota_info *dqopt = sb_dqopt(sb);
int cnt;
int ret;
ret = dquot_writeback_dquots(sb, type);
if (ret)
return ret;
/*
* Now when everything is written we can discard the pagecache so
* that userspace sees the changes.
*/
for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
if (type != -1 && cnt != type)
continue;
if (!sb_has_quota_active(sb, cnt))
continue;
ret = filemap_write_and_wait(dqopt->files[cnt]->i_mapping);
if (ret)
return ret;
inode_lock(dqopt->files[cnt]);
truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
inode_unlock(dqopt->files[cnt]);
}
return 0;
}
static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
const struct path *path)
{
struct inode *inode;
int err;
err = f2fs_quota_sync(sb, type);
if (err)
return err;
err = dquot_quota_on(sb, type, format_id, path);
if (err)
return err;
inode = d_inode(path->dentry);
inode_lock(inode);
F2FS_I(inode)->i_flags |= FS_NOATIME_FL | FS_IMMUTABLE_FL;
inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
S_NOATIME | S_IMMUTABLE);
inode_unlock(inode);
f2fs_mark_inode_dirty_sync(inode, false);
return 0;
}
static int f2fs_quota_off(struct super_block *sb, int type)
{
struct inode *inode = sb_dqopt(sb)->files[type];
int err;
if (!inode || !igrab(inode))
return dquot_quota_off(sb, type);
f2fs_quota_sync(sb, type);
err = dquot_quota_off(sb, type);
if (err || f2fs_sb_has_quota_ino(sb))
goto out_put;
inode_lock(inode);
F2FS_I(inode)->i_flags &= ~(FS_NOATIME_FL | FS_IMMUTABLE_FL);
inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
inode_unlock(inode);
f2fs_mark_inode_dirty_sync(inode, false);
out_put:
iput(inode);
return err;
}
void f2fs_quota_off_umount(struct super_block *sb)
{
int type;
for (type = 0; type < MAXQUOTAS; type++)
f2fs_quota_off(sb, type);
}
static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
{
*projid = F2FS_I(inode)->i_projid;
return 0;
}
static const struct dquot_operations f2fs_quota_operations = {
.get_reserved_space = f2fs_get_reserved_space,
.write_dquot = dquot_commit,
.acquire_dquot = dquot_acquire,
.release_dquot = dquot_release,
.mark_dirty = dquot_mark_dquot_dirty,
.write_info = dquot_commit_info,
.alloc_dquot = dquot_alloc,
.destroy_dquot = dquot_destroy,
.get_projid = f2fs_get_projid,
.get_next_id = dquot_get_next_id,
};
static const struct quotactl_ops f2fs_quotactl_ops = {
.quota_on = f2fs_quota_on,
.quota_off = f2fs_quota_off,
.quota_sync = f2fs_quota_sync,
.get_state = dquot_get_state,
.set_info = dquot_set_dqinfo,
.get_dqblk = dquot_get_dqblk,
.set_dqblk = dquot_set_dqblk,
.get_nextdqblk = dquot_get_next_dqblk,
};
#else
void f2fs_quota_off_umount(struct super_block *sb)
{
}
#endif
static const struct super_operations f2fs_sops = {
.alloc_inode = f2fs_alloc_inode,
.drop_inode = f2fs_drop_inode,
.destroy_inode = f2fs_destroy_inode,
.write_inode = f2fs_write_inode,
.dirty_inode = f2fs_dirty_inode,
.show_options = f2fs_show_options,
#ifdef CONFIG_QUOTA
.quota_read = f2fs_quota_read,
.quota_write = f2fs_quota_write,
.get_dquots = f2fs_get_dquots,
#endif
.evict_inode = f2fs_evict_inode,
.put_super = f2fs_put_super,
.sync_fs = f2fs_sync_fs,
.freeze_fs = f2fs_freeze,
.unfreeze_fs = f2fs_unfreeze,
.statfs = f2fs_statfs,
.remount_fs = f2fs_remount,
};
#ifdef CONFIG_F2FS_FS_ENCRYPTION
static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
{
return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
ctx, len, NULL);
}
static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
void *fs_data)
{
return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
ctx, len, fs_data, XATTR_CREATE);
}
static unsigned f2fs_max_namelen(struct inode *inode)
{
return S_ISLNK(inode->i_mode) ?
inode->i_sb->s_blocksize : F2FS_NAME_LEN;
}
static const struct fscrypt_operations f2fs_cryptops = {
.key_prefix = "f2fs:",
.get_context = f2fs_get_context,
.set_context = f2fs_set_context,
.empty_dir = f2fs_empty_dir,
.max_namelen = f2fs_max_namelen,
};
#endif
static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
u64 ino, u32 generation)
{
struct f2fs_sb_info *sbi = F2FS_SB(sb);
struct inode *inode;
if (check_nid_range(sbi, ino))
return ERR_PTR(-ESTALE);
/*
* f2fs_iget isn't quite right if the inode is currently unallocated!
* However f2fs_iget currently does appropriate checks to handle stale
* inodes so everything is OK.
*/
inode = f2fs_iget(sb, ino);
if (IS_ERR(inode))
return ERR_CAST(inode);
if (unlikely(generation && inode->i_generation != generation)) {
/* we didn't find the right inode.. */
iput(inode);
return ERR_PTR(-ESTALE);
}
return inode;
}
static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
int fh_len, int fh_type)
{
return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
f2fs_nfs_get_inode);
}
static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
int fh_len, int fh_type)
{
return generic_fh_to_parent(sb, fid, fh_len, fh_type,
f2fs_nfs_get_inode);
}
static const struct export_operations f2fs_export_ops = {
.fh_to_dentry = f2fs_fh_to_dentry,
.fh_to_parent = f2fs_fh_to_parent,
.get_parent = f2fs_get_parent,
};
static loff_t max_file_blocks(void)
{
f2fs: enhance on-disk inode structure scalability This patch add new flag F2FS_EXTRA_ATTR storing in inode.i_inline to indicate that on-disk structure of current inode is extended. In order to extend, we changed the inode structure a bit: Original one: struct f2fs_inode { ... struct f2fs_extent i_ext; __le32 i_addr[DEF_ADDRS_PER_INODE]; __le32 i_nid[DEF_NIDS_PER_INODE]; } Extended one: struct f2fs_inode { ... struct f2fs_extent i_ext; union { struct { __le16 i_extra_isize; __le16 i_padding; __le32 i_extra_end[0]; }; __le32 i_addr[DEF_ADDRS_PER_INODE]; }; __le32 i_nid[DEF_NIDS_PER_INODE]; } Once F2FS_EXTRA_ATTR is set, we will steal four bytes in the head of i_addr field for storing i_extra_isize and i_padding. with i_extra_isize, we can calculate actual size of reserved space in i_addr, available attribute fields included in total extra attribute fields for current inode can be described as below: +--------------------+ | .i_mode | | ... | | .i_ext | +--------------------+ | .i_extra_isize |-----+ | .i_padding | | | .i_prjid | | | .i_atime_extra | | | .i_ctime_extra | | | .i_mtime_extra |<----+ | .i_inode_cs |<----- store blkaddr/inline from here | .i_xattr_cs | | ... | +--------------------+ | | | block address | | | +--------------------+ | .i_nid | +--------------------+ | node_footer | | (nid, ino, offset) | +--------------------+ Hence, with this patch, we would enhance scalability of f2fs inode for storing more newly added attribute. Signed-off-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2017-07-18 10:19:06 -06:00
loff_t result = 0;
loff_t leaf_count = ADDRS_PER_BLOCK;
f2fs: enhance on-disk inode structure scalability This patch add new flag F2FS_EXTRA_ATTR storing in inode.i_inline to indicate that on-disk structure of current inode is extended. In order to extend, we changed the inode structure a bit: Original one: struct f2fs_inode { ... struct f2fs_extent i_ext; __le32 i_addr[DEF_ADDRS_PER_INODE]; __le32 i_nid[DEF_NIDS_PER_INODE]; } Extended one: struct f2fs_inode { ... struct f2fs_extent i_ext; union { struct { __le16 i_extra_isize; __le16 i_padding; __le32 i_extra_end[0]; }; __le32 i_addr[DEF_ADDRS_PER_INODE]; }; __le32 i_nid[DEF_NIDS_PER_INODE]; } Once F2FS_EXTRA_ATTR is set, we will steal four bytes in the head of i_addr field for storing i_extra_isize and i_padding. with i_extra_isize, we can calculate actual size of reserved space in i_addr, available attribute fields included in total extra attribute fields for current inode can be described as below: +--------------------+ | .i_mode | | ... | | .i_ext | +--------------------+ | .i_extra_isize |-----+ | .i_padding | | | .i_prjid | | | .i_atime_extra | | | .i_ctime_extra | | | .i_mtime_extra |<----+ | .i_inode_cs |<----- store blkaddr/inline from here | .i_xattr_cs | | ... | +--------------------+ | | | block address | | | +--------------------+ | .i_nid | +--------------------+ | node_footer | | (nid, ino, offset) | +--------------------+ Hence, with this patch, we would enhance scalability of f2fs inode for storing more newly added attribute. Signed-off-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2017-07-18 10:19:06 -06:00
/*
* note: previously, result is equal to (DEF_ADDRS_PER_INODE -
f2fs: support flexible inline xattr size Now, in product, more and more features based on file encryption were introduced, their demand of xattr space is increasing, however, inline xattr has fixed-size of 200 bytes, once inline xattr space is full, new increased xattr data would occupy additional xattr block which may bring us more space usage and performance regression during persisting. In order to resolve above issue, it's better to expand inline xattr size flexibly according to user's requirement. So this patch introduces new filesystem feature 'flexible inline xattr', and new mount option 'inline_xattr_size=%u', once mkfs enables the feature, we can use the option to make f2fs supporting flexible inline xattr size. To support this feature, we add extra attribute i_inline_xattr_size in inode layout, indicating that how many space inline xattr borrows from block address mapping space in inode layout, by this, we can easily locate and store flexible-sized inline xattr data in inode. Inode disk layout: +----------------------+ | .i_mode | | ... | | .i_ext | +----------------------+ | .i_extra_isize | | .i_inline_xattr_size |-----------+ | ... | | +----------------------+ | | .i_addr | | | - block address or | | | - inline data | | +----------------------+<---+ v | inline xattr | +---inline xattr range +----------------------+<---+ | .i_nid | +----------------------+ | node_footer | | (nid, ino, offset) | +----------------------+ Note that, we have to cnosider backward compatibility which reserved inline_data space, 200 bytes, all the time, reported by Sheng Yong. Previous inline data or directory always reserved 200 bytes in inode layout, even if inline_xattr is disabled. In order to keep inline_dentry's structure for backward compatibility, we get the space back only from inline_data. Signed-off-by: Chao Yu <yuchao0@huawei.com> Reported-by: Sheng Yong <shengyong1@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2017-09-06 07:59:50 -06:00
* DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
f2fs: enhance on-disk inode structure scalability This patch add new flag F2FS_EXTRA_ATTR storing in inode.i_inline to indicate that on-disk structure of current inode is extended. In order to extend, we changed the inode structure a bit: Original one: struct f2fs_inode { ... struct f2fs_extent i_ext; __le32 i_addr[DEF_ADDRS_PER_INODE]; __le32 i_nid[DEF_NIDS_PER_INODE]; } Extended one: struct f2fs_inode { ... struct f2fs_extent i_ext; union { struct { __le16 i_extra_isize; __le16 i_padding; __le32 i_extra_end[0]; }; __le32 i_addr[DEF_ADDRS_PER_INODE]; }; __le32 i_nid[DEF_NIDS_PER_INODE]; } Once F2FS_EXTRA_ATTR is set, we will steal four bytes in the head of i_addr field for storing i_extra_isize and i_padding. with i_extra_isize, we can calculate actual size of reserved space in i_addr, available attribute fields included in total extra attribute fields for current inode can be described as below: +--------------------+ | .i_mode | | ... | | .i_ext | +--------------------+ | .i_extra_isize |-----+ | .i_padding | | | .i_prjid | | | .i_atime_extra | | | .i_ctime_extra | | | .i_mtime_extra |<----+ | .i_inode_cs |<----- store blkaddr/inline from here | .i_xattr_cs | | ... | +--------------------+ | | | block address | | | +--------------------+ | .i_nid | +--------------------+ | node_footer | | (nid, ino, offset) | +--------------------+ Hence, with this patch, we would enhance scalability of f2fs inode for storing more newly added attribute. Signed-off-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2017-07-18 10:19:06 -06:00
* space in inode.i_addr, it will be more safe to reassign
* result as zero.
*/
/* two direct node blocks */
result += (leaf_count * 2);
/* two indirect node blocks */
leaf_count *= NIDS_PER_BLOCK;
result += (leaf_count * 2);
/* one double indirect node block */
leaf_count *= NIDS_PER_BLOCK;
result += leaf_count;
return result;
}
static int __f2fs_commit_super(struct buffer_head *bh,
struct f2fs_super_block *super)
{
lock_buffer(bh);
if (super)
memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
set_buffer_dirty(bh);
unlock_buffer(bh);
/* it's rare case, we can do fua all the time */
return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
}
static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
struct buffer_head *bh)
{
struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
(bh->b_data + F2FS_SUPER_OFFSET);
struct super_block *sb = sbi->sb;
u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
u32 segment_count = le32_to_cpu(raw_super->segment_count);
u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
u64 main_end_blkaddr = main_blkaddr +
(segment_count_main << log_blocks_per_seg);
u64 seg_end_blkaddr = segment0_blkaddr +
(segment_count << log_blocks_per_seg);
if (segment0_blkaddr != cp_blkaddr) {
f2fs_msg(sb, KERN_INFO,
"Mismatch start address, segment0(%u) cp_blkaddr(%u)",
segment0_blkaddr, cp_blkaddr);
return true;
}
if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
sit_blkaddr) {
f2fs_msg(sb, KERN_INFO,
"Wrong CP boundary, start(%u) end(%u) blocks(%u)",
cp_blkaddr, sit_blkaddr,
segment_count_ckpt << log_blocks_per_seg);
return true;
}
if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
nat_blkaddr) {
f2fs_msg(sb, KERN_INFO,
"Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
sit_blkaddr, nat_blkaddr,
segment_count_sit << log_blocks_per_seg);
return true;
}
if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
ssa_blkaddr) {
f2fs_msg(sb, KERN_INFO,
"Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
nat_blkaddr, ssa_blkaddr,
segment_count_nat << log_blocks_per_seg);
return true;
}
if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
main_blkaddr) {
f2fs_msg(sb, KERN_INFO,
"Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
ssa_blkaddr, main_blkaddr,
segment_count_ssa << log_blocks_per_seg);
return true;
}
if (main_end_blkaddr > seg_end_blkaddr) {
f2fs_msg(sb, KERN_INFO,
"Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
main_blkaddr,
segment0_blkaddr +
(segment_count << log_blocks_per_seg),
segment_count_main << log_blocks_per_seg);
return true;
} else if (main_end_blkaddr < seg_end_blkaddr) {
int err = 0;
char *res;
/* fix in-memory information all the time */
raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
segment0_blkaddr) >> log_blocks_per_seg);
if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
res = "internally";
} else {
err = __f2fs_commit_super(bh, NULL);
res = err ? "failed" : "done";
}
f2fs_msg(sb, KERN_INFO,
"Fix alignment : %s, start(%u) end(%u) block(%u)",
res, main_blkaddr,
segment0_blkaddr +
(segment_count << log_blocks_per_seg),
segment_count_main << log_blocks_per_seg);
if (err)
return true;
}
return false;
}
static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
struct buffer_head *bh)
{
struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
(bh->b_data + F2FS_SUPER_OFFSET);
struct super_block *sb = sbi->sb;
unsigned int blocksize;
if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
f2fs_msg(sb, KERN_INFO,
"Magic Mismatch, valid(0x%x) - read(0x%x)",
F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
return 1;
}
/* Currently, support only 4KB page cache size */
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 06:29:47 -06:00
if (F2FS_BLKSIZE != PAGE_SIZE) {
f2fs_msg(sb, KERN_INFO,
"Invalid page_cache_size (%lu), supports only 4KB\n",
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 06:29:47 -06:00
PAGE_SIZE);
return 1;
}
/* Currently, support only 4KB block size */
blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
if (blocksize != F2FS_BLKSIZE) {
f2fs_msg(sb, KERN_INFO,
"Invalid blocksize (%u), supports only 4KB\n",
blocksize);
return 1;
}
/* check log blocks per segment */
if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
f2fs_msg(sb, KERN_INFO,
"Invalid log blocks per segment (%u)\n",
le32_to_cpu(raw_super->log_blocks_per_seg));
return 1;
}
/* Currently, support 512/1024/2048/4096 bytes sector size */
if (le32_to_cpu(raw_super->log_sectorsize) >
F2FS_MAX_LOG_SECTOR_SIZE ||
le32_to_cpu(raw_super->log_sectorsize) <
F2FS_MIN_LOG_SECTOR_SIZE) {
f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
le32_to_cpu(raw_super->log_sectorsize));
return 1;
}
if (le32_to_cpu(raw_super->log_sectors_per_block) +
le32_to_cpu(raw_super->log_sectorsize) !=
F2FS_MAX_LOG_SECTOR_SIZE) {
f2fs_msg(sb, KERN_INFO,
"Invalid log sectors per block(%u) log sectorsize(%u)",
le32_to_cpu(raw_super->log_sectors_per_block),
le32_to_cpu(raw_super->log_sectorsize));
return 1;
}
/* check reserved ino info */
if (le32_to_cpu(raw_super->node_ino) != 1 ||
le32_to_cpu(raw_super->meta_ino) != 2 ||
le32_to_cpu(raw_super->root_ino) != 3) {
f2fs_msg(sb, KERN_INFO,
"Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
le32_to_cpu(raw_super->node_ino),
le32_to_cpu(raw_super->meta_ino),
le32_to_cpu(raw_super->root_ino));
return 1;
}
if (le32_to_cpu(raw_super->segment_count) > F2FS_MAX_SEGMENT) {
f2fs_msg(sb, KERN_INFO,
"Invalid segment count (%u)",
le32_to_cpu(raw_super->segment_count));
return 1;
}
/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
if (sanity_check_area_boundary(sbi, bh))
return 1;
return 0;
}
int sanity_check_ckpt(struct f2fs_sb_info *sbi)
{
unsigned int total, fsmeta;
struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
unsigned int ovp_segments, reserved_segments;
unsigned int main_segs, blocks_per_seg;
int i;
total = le32_to_cpu(raw_super->segment_count);
fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
fsmeta += le32_to_cpu(raw_super->segment_count_sit);
fsmeta += le32_to_cpu(raw_super->segment_count_nat);
fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
if (unlikely(fsmeta >= total))
return 1;
ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
ovp_segments == 0 || reserved_segments == 0)) {
f2fs_msg(sbi->sb, KERN_ERR,
"Wrong layout: check mkfs.f2fs version");
return 1;
}
main_segs = le32_to_cpu(raw_super->segment_count_main);
blocks_per_seg = sbi->blocks_per_seg;
for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
return 1;
}
for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
return 1;
}
if (unlikely(f2fs_cp_error(sbi))) {
f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
return 1;
}
return 0;
}
static void init_sb_info(struct f2fs_sb_info *sbi)
{
struct f2fs_super_block *raw_super = sbi->raw_super;
int i, j;
sbi->log_sectors_per_block =
le32_to_cpu(raw_super->log_sectors_per_block);
sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
sbi->blocksize = 1 << sbi->log_blocksize;
sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
sbi->total_sections = le32_to_cpu(raw_super->section_count);
sbi->total_node_count =
(le32_to_cpu(raw_super->segment_count_nat) / 2)
* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
sbi->cur_victim_sec = NULL_SECNO;
sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
sbi->dir_level = DEF_DIR_LEVEL;
sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
clear_sbi_flag(sbi, SBI_NEED_FSCK);
for (i = 0; i < NR_COUNT_TYPE; i++)
atomic_set(&sbi->nr_pages[i], 0);
atomic_set(&sbi->wb_sync_req, 0);
INIT_LIST_HEAD(&sbi->s_list);
mutex_init(&sbi->umount_mutex);
for (i = 0; i < NR_PAGE_TYPE - 1; i++)
for (j = HOT; j < NR_TEMP_TYPE; j++)
mutex_init(&sbi->wio_mutex[i][j]);
spin_lock_init(&sbi->cp_lock);
sbi->dirty_device = 0;
spin_lock_init(&sbi->dev_lock);
}
static int init_percpu_info(struct f2fs_sb_info *sbi)
{
int err;
err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
if (err)
return err;
return percpu_counter_init(&sbi->total_valid_inode_count, 0,
GFP_KERNEL);
}
#ifdef CONFIG_BLK_DEV_ZONED
static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
{
struct block_device *bdev = FDEV(devi).bdev;
sector_t nr_sectors = bdev->bd_part->nr_sects;
sector_t sector = 0;
struct blk_zone *zones;
unsigned int i, nr_zones;
unsigned int n = 0;
int err = -EIO;
if (!f2fs_sb_has_blkzoned(sbi->sb))
return 0;
if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
return -EINVAL;
sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
__ilog2_u32(sbi->blocks_per_blkz))
return -EINVAL;
sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
sbi->log_blocks_per_blkz;
if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
FDEV(devi).nr_blkz++;
FDEV(devi).blkz_type = f2fs_kmalloc(sbi, FDEV(devi).nr_blkz,
GFP_KERNEL);
if (!FDEV(devi).blkz_type)
return -ENOMEM;
#define F2FS_REPORT_NR_ZONES 4096
zones = f2fs_kzalloc(sbi, sizeof(struct blk_zone) *
F2FS_REPORT_NR_ZONES, GFP_KERNEL);
if (!zones)
return -ENOMEM;
/* Get block zones type */
while (zones && sector < nr_sectors) {
nr_zones = F2FS_REPORT_NR_ZONES;
err = blkdev_report_zones(bdev, sector,
zones, &nr_zones,
GFP_KERNEL);
if (err)
break;
if (!nr_zones) {
err = -EIO;
break;
}
for (i = 0; i < nr_zones; i++) {
FDEV(devi).blkz_type[n] = zones[i].type;
sector += zones[i].len;
n++;
}
}
kfree(zones);
return err;
}
#endif
/*
* Read f2fs raw super block.
* Because we have two copies of super block, so read both of them
* to get the first valid one. If any one of them is broken, we pass
* them recovery flag back to the caller.
*/
static int read_raw_super_block(struct f2fs_sb_info *sbi,
struct f2fs_super_block **raw_super,
int *valid_super_block, int *recovery)
{
struct super_block *sb = sbi->sb;
int block;
struct buffer_head *bh;
struct f2fs_super_block *super;
int err = 0;
super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
if (!super)
return -ENOMEM;
for (block = 0; block < 2; block++) {
bh = sb_bread(sb, block);
if (!bh) {
f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
block + 1);
err = -EIO;
continue;
}
/* sanity checking of raw super */
if (sanity_check_raw_super(sbi, bh)) {
f2fs_msg(sb, KERN_ERR,
"Can't find valid F2FS filesystem in %dth superblock",
block + 1);
err = -EINVAL;
brelse(bh);
continue;
}
if (!*raw_super) {
memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
sizeof(*super));
*valid_super_block = block;
*raw_super = super;
}
brelse(bh);
}
/* Fail to read any one of the superblocks*/
if (err < 0)
*recovery = 1;
/* No valid superblock */
if (!*raw_super)
kfree(super);
else
err = 0;
return err;
}
int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
{
struct buffer_head *bh;
int err;
if ((recover && f2fs_readonly(sbi->sb)) ||
bdev_read_only(sbi->sb->s_bdev)) {
set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
return -EROFS;
}
/* write back-up superblock first */
bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
if (!bh)
return -EIO;
err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
brelse(bh);
/* if we are in recovery path, skip writing valid superblock */
if (recover || err)
return err;
/* write current valid superblock */
bh = sb_bread(sbi->sb, sbi->valid_super_block);
if (!bh)
return -EIO;
err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
brelse(bh);
return err;
}
static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
{
struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
unsigned int max_devices = MAX_DEVICES;
int i;
/* Initialize single device information */
if (!RDEV(0).path[0]) {
if (!bdev_is_zoned(sbi->sb->s_bdev))
return 0;
max_devices = 1;
}
/*
* Initialize multiple devices information, or single
* zoned block device information.
*/
sbi->devs = f2fs_kzalloc(sbi, sizeof(struct f2fs_dev_info) *
max_devices, GFP_KERNEL);
if (!sbi->devs)
return -ENOMEM;
for (i = 0; i < max_devices; i++) {
if (i > 0 && !RDEV(i).path[0])
break;
if (max_devices == 1) {
/* Single zoned block device mount */
FDEV(0).bdev =
blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
sbi->sb->s_mode, sbi->sb->s_type);
} else {
/* Multi-device mount */
memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
FDEV(i).total_segments =
le32_to_cpu(RDEV(i).total_segments);
if (i == 0) {
FDEV(i).start_blk = 0;
FDEV(i).end_blk = FDEV(i).start_blk +
(FDEV(i).total_segments <<
sbi->log_blocks_per_seg) - 1 +
le32_to_cpu(raw_super->segment0_blkaddr);
} else {
FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
FDEV(i).end_blk = FDEV(i).start_blk +
(FDEV(i).total_segments <<
sbi->log_blocks_per_seg) - 1;
}
FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
sbi->sb->s_mode, sbi->sb->s_type);
}
if (IS_ERR(FDEV(i).bdev))
return PTR_ERR(FDEV(i).bdev);
/* to release errored devices */
sbi->s_ndevs = i + 1;
#ifdef CONFIG_BLK_DEV_ZONED
if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
!f2fs_sb_has_blkzoned(sbi->sb)) {
f2fs_msg(sbi->sb, KERN_ERR,
"Zoned block device feature not enabled\n");
return -EINVAL;
}
if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
if (init_blkz_info(sbi, i)) {
f2fs_msg(sbi->sb, KERN_ERR,
"Failed to initialize F2FS blkzone information");
return -EINVAL;
}
if (max_devices == 1)
break;
f2fs_msg(sbi->sb, KERN_INFO,
"Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
i, FDEV(i).path,
FDEV(i).total_segments,
FDEV(i).start_blk, FDEV(i).end_blk,
bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
"Host-aware" : "Host-managed");
continue;
}
#endif
f2fs_msg(sbi->sb, KERN_INFO,
"Mount Device [%2d]: %20s, %8u, %8x - %8x",
i, FDEV(i).path,
FDEV(i).total_segments,
FDEV(i).start_blk, FDEV(i).end_blk);
}
f2fs_msg(sbi->sb, KERN_INFO,
"IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
return 0;
}
static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
{
struct f2fs_sb_info *sbi;
struct f2fs_super_block *raw_super;
struct inode *root;
int err;
bool retry = true, need_fsck = false;
char *options = NULL;
int recovery, i, valid_super_block;
struct curseg_info *seg_i;
try_onemore:
err = -EINVAL;
raw_super = NULL;
valid_super_block = -1;
recovery = 0;
/* allocate memory for f2fs-specific super block info */
sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
if (!sbi)
return -ENOMEM;
sbi->sb = sb;
/* Load the checksum driver */
sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
if (IS_ERR(sbi->s_chksum_driver)) {
f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
err = PTR_ERR(sbi->s_chksum_driver);
sbi->s_chksum_driver = NULL;
goto free_sbi;
}
/* set a block size */
if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
goto free_sbi;
}
err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
&recovery);
if (err)
goto free_sbi;
sb->s_fs_info = sbi;
sbi->raw_super = raw_super;
sbi->s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
sbi->s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
/* precompute checksum seed for metadata */
if (f2fs_sb_has_inode_chksum(sb))
sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
sizeof(raw_super->uuid));
/*
* The BLKZONED feature indicates that the drive was formatted with
* zone alignment optimization. This is optional for host-aware
* devices, but mandatory for host-managed zoned block devices.
*/
#ifndef CONFIG_BLK_DEV_ZONED
if (f2fs_sb_has_blkzoned(sb)) {
f2fs_msg(sb, KERN_ERR,
"Zoned block device support is not enabled\n");
err = -EOPNOTSUPP;
goto free_sb_buf;
}
#endif
default_options(sbi);
/* parse mount options */
options = kstrdup((const char *)data, GFP_KERNEL);
if (data && !options) {
err = -ENOMEM;
goto free_sb_buf;
}
err = parse_options(sb, options);
if (err)
goto free_options;
sbi->max_file_blocks = max_file_blocks();
sb->s_maxbytes = sbi->max_file_blocks <<
le32_to_cpu(raw_super->log_blocksize);
sb->s_max_links = F2FS_LINK_MAX;
get_random_bytes(&sbi->s_next_generation, sizeof(u32));
#ifdef CONFIG_QUOTA
sb->dq_op = &f2fs_quota_operations;
if (f2fs_sb_has_quota_ino(sb))
sb->s_qcop = &dquot_quotactl_sysfile_ops;
else
sb->s_qcop = &f2fs_quotactl_ops;
sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
if (f2fs_sb_has_quota_ino(sbi->sb)) {
for (i = 0; i < MAXQUOTAS; i++) {
if (f2fs_qf_ino(sbi->sb, i))
sbi->nquota_files++;
}
}
#endif
sb->s_op = &f2fs_sops;
#ifdef CONFIG_F2FS_FS_ENCRYPTION
sb->s_cop = &f2fs_cryptops;
#endif
sb->s_xattr = f2fs_xattr_handlers;
sb->s_export_op = &f2fs_export_ops;
sb->s_magic = F2FS_SUPER_MAGIC;
sb->s_time_gran = 1;
Rename superblock flags (MS_xyz -> SB_xyz) This is a pure automated search-and-replace of the internal kernel superblock flags. The s_flags are now called SB_*, with the names and the values for the moment mirroring the MS_* flags that they're equivalent to. Note how the MS_xyz flags are the ones passed to the mount system call, while the SB_xyz flags are what we then use in sb->s_flags. The script to do this was: # places to look in; re security/*: it generally should *not* be # touched (that stuff parses mount(2) arguments directly), but # there are two places where we really deal with superblock flags. FILES="drivers/mtd drivers/staging/lustre fs ipc mm \ include/linux/fs.h include/uapi/linux/bfs_fs.h \ security/apparmor/apparmorfs.c security/apparmor/include/lib.h" # the list of MS_... constants SYMS="RDONLY NOSUID NODEV NOEXEC SYNCHRONOUS REMOUNT MANDLOCK \ DIRSYNC NOATIME NODIRATIME BIND MOVE REC VERBOSE SILENT \ POSIXACL UNBINDABLE PRIVATE SLAVE SHARED RELATIME KERNMOUNT \ I_VERSION STRICTATIME LAZYTIME SUBMOUNT NOREMOTELOCK NOSEC BORN \ ACTIVE NOUSER" SED_PROG= for i in $SYMS; do SED_PROG="$SED_PROG -e s/MS_$i/SB_$i/g"; done # we want files that contain at least one of MS_..., # with fs/namespace.c and fs/pnode.c excluded. L=$(for i in $SYMS; do git grep -w -l MS_$i $FILES; done| sort|uniq|grep -v '^fs/namespace.c'|grep -v '^fs/pnode.c') for f in $L; do sed -i $f $SED_PROG; done Requested-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-27 14:05:09 -07:00
sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
sb->s_iflags |= SB_I_CGROUPWB;
/* init f2fs-specific super block info */
sbi->valid_super_block = valid_super_block;
mutex_init(&sbi->gc_mutex);
mutex_init(&sbi->cp_mutex);
init_rwsem(&sbi->node_write);
init_rwsem(&sbi->node_change);
/* disallow all the data/node/meta page writes */
set_sbi_flag(sbi, SBI_POR_DOING);
spin_lock_init(&sbi->stat_lock);
/* init iostat info */
spin_lock_init(&sbi->iostat_lock);
sbi->iostat_enable = false;
for (i = 0; i < NR_PAGE_TYPE; i++) {
int n = (i == META) ? 1: NR_TEMP_TYPE;
int j;
sbi->write_io[i] = f2fs_kmalloc(sbi,
n * sizeof(struct f2fs_bio_info),
GFP_KERNEL);
if (!sbi->write_io[i]) {
err = -ENOMEM;
goto free_options;
}
for (j = HOT; j < n; j++) {
init_rwsem(&sbi->write_io[i][j].io_rwsem);
sbi->write_io[i][j].sbi = sbi;
sbi->write_io[i][j].bio = NULL;
spin_lock_init(&sbi->write_io[i][j].io_lock);
INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
}
}
init_rwsem(&sbi->cp_rwsem);
init_waitqueue_head(&sbi->cp_wait);
init_sb_info(sbi);
err = init_percpu_info(sbi);
if (err)
goto free_bio_info;
if (F2FS_IO_SIZE(sbi) > 1) {
sbi->write_io_dummy =
mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
if (!sbi->write_io_dummy) {
err = -ENOMEM;
goto free_percpu;
}
}
/* get an inode for meta space */
sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
if (IS_ERR(sbi->meta_inode)) {
f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
err = PTR_ERR(sbi->meta_inode);
goto free_io_dummy;
}
err = get_valid_checkpoint(sbi);
if (err) {
f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
goto free_meta_inode;
}
/* Initialize device list */
err = f2fs_scan_devices(sbi);
if (err) {
f2fs_msg(sb, KERN_ERR, "Failed to find devices");
goto free_devices;
}
sbi->total_valid_node_count =
le32_to_cpu(sbi->ckpt->valid_node_count);
percpu_counter_set(&sbi->total_valid_inode_count,
le32_to_cpu(sbi->ckpt->valid_inode_count));
sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
sbi->total_valid_block_count =
le64_to_cpu(sbi->ckpt->valid_block_count);
sbi->last_valid_block_count = sbi->total_valid_block_count;
sbi->reserved_blocks = 0;
sbi->current_reserved_blocks = 0;
limit_reserve_root(sbi);
for (i = 0; i < NR_INODE_TYPE; i++) {
INIT_LIST_HEAD(&sbi->inode_list[i]);
spin_lock_init(&sbi->inode_lock[i]);
}
init_extent_cache_info(sbi);
init_ino_entry_info(sbi);
/* setup f2fs internal modules */
err = build_segment_manager(sbi);
if (err) {
f2fs_msg(sb, KERN_ERR,
"Failed to initialize F2FS segment manager");
goto free_sm;
}
err = build_node_manager(sbi);
if (err) {
f2fs_msg(sb, KERN_ERR,
"Failed to initialize F2FS node manager");
goto free_nm;
}
/* For write statistics */
if (sb->s_bdev->bd_part)
sbi->sectors_written_start =
(u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
/* Read accumulated write IO statistics if exists */
seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
if (__exist_node_summaries(sbi))
sbi->kbytes_written =
le64_to_cpu(seg_i->journal->info.kbytes_written);
build_gc_manager(sbi);
/* get an inode for node space */
sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
if (IS_ERR(sbi->node_inode)) {
f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
err = PTR_ERR(sbi->node_inode);
goto free_nm;
}
err = f2fs_build_stats(sbi);
if (err)
goto free_node_inode;
/* read root inode and dentry */
root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
if (IS_ERR(root)) {
f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
err = PTR_ERR(root);
goto free_stats;
}
if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
iput(root);
err = -EINVAL;
goto free_node_inode;
}
sb->s_root = d_make_root(root); /* allocate root dentry */
if (!sb->s_root) {
err = -ENOMEM;
goto free_root_inode;
}
err = f2fs_register_sysfs(sbi);
if (err)
goto free_root_inode;
#ifdef CONFIG_QUOTA
/*
* Turn on quotas which were not enabled for read-only mounts if
* filesystem has quota feature, so that they are updated correctly.
*/
if (f2fs_sb_has_quota_ino(sb) && !sb_rdonly(sb)) {
err = f2fs_enable_quotas(sb);
if (err) {
f2fs_msg(sb, KERN_ERR,
"Cannot turn on quotas: error %d", err);
goto free_sysfs;
}
}
#endif
/* if there are nt orphan nodes free them */
err = recover_orphan_inodes(sbi);
if (err)
goto free_meta;
/* recover fsynced data */
if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
/*
* mount should be failed, when device has readonly mode, and
* previous checkpoint was not done by clean system shutdown.
*/
if (bdev_read_only(sb->s_bdev) &&
!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
err = -EROFS;
goto free_meta;
}
if (need_fsck)
set_sbi_flag(sbi, SBI_NEED_FSCK);
if (!retry)
goto skip_recovery;
err = recover_fsync_data(sbi, false);
if (err < 0) {
need_fsck = true;
f2fs_msg(sb, KERN_ERR,
"Cannot recover all fsync data errno=%d", err);
goto free_meta;
}
} else {
err = recover_fsync_data(sbi, true);
if (!f2fs_readonly(sb) && err > 0) {
err = -EINVAL;
f2fs_msg(sb, KERN_ERR,
"Need to recover fsync data");
goto free_meta;
}
}
skip_recovery:
/* recover_fsync_data() cleared this already */
clear_sbi_flag(sbi, SBI_POR_DOING);
/*
* If filesystem is not mounted as read-only then
* do start the gc_thread.
*/
if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
/* After POR, we can run background GC thread.*/
err = start_gc_thread(sbi);
if (err)
goto free_meta;
}
kfree(options);
/* recover broken superblock */
if (recovery) {
err = f2fs_commit_super(sbi, true);
f2fs_msg(sb, KERN_INFO,
"Try to recover %dth superblock, ret: %d",
sbi->valid_super_block ? 1 : 2, err);
}
f2fs_join_shrinker(sbi);
f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx",
cur_cp_version(F2FS_CKPT(sbi)));
f2fs_update_time(sbi, CP_TIME);
f2fs_update_time(sbi, REQ_TIME);
return 0;
free_meta:
#ifdef CONFIG_QUOTA
if (f2fs_sb_has_quota_ino(sb) && !sb_rdonly(sb))
f2fs_quota_off_umount(sbi->sb);
#endif
f2fs_sync_inode_meta(sbi);
/*
* Some dirty meta pages can be produced by recover_orphan_inodes()
* failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
* followed by write_checkpoint() through f2fs_write_node_pages(), which
* falls into an infinite loop in sync_meta_pages().
*/
truncate_inode_pages_final(META_MAPPING(sbi));
#ifdef CONFIG_QUOTA
free_sysfs:
#endif
f2fs_unregister_sysfs(sbi);
free_root_inode:
dput(sb->s_root);
sb->s_root = NULL;
free_stats:
f2fs_destroy_stats(sbi);
free_node_inode:
f2fs: handle errors during recover_orphan_inodes This patch fixes to handle EIO during recover_orphan_inode() given the below panic. F2FS-fs : inject IO error in f2fs_read_end_io+0xe6/0x100 [f2fs] ------------[ cut here ]------------ RIP: 0010:[<ffffffffc0b244e3>] [<ffffffffc0b244e3>] f2fs_evict_inode+0x433/0x470 [f2fs] RSP: 0018:ffff92f8b7fb7c30 EFLAGS: 00010246 RAX: ffff92fb88a13500 RBX: ffff92f890566ea0 RCX: 00000000fd3c255c RDX: 0000000000000001 RSI: ffff92fb88a13d90 RDI: ffff92fb8ee127e8 RBP: ffff92f8b7fb7c58 R08: 0000000000000001 R09: ffff92fb88a13d58 R10: 000000005a6a9373 R11: 0000000000000001 R12: 00000000fffffffb R13: ffff92fb8ee12000 R14: 00000000000034ca R15: ffff92fb8ee12620 FS: 00007f1fefd8e880(0000) GS:ffff92fb95600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fc211d34cdb CR3: 000000012d43a000 CR4: 00000000001406e0 Stack: ffff92f890566ea0 ffff92f890567078 ffffffffc0b5a0c0 ffff92f890566f28 ffff92fb888b2000 ffff92f8b7fb7c80 ffffffffbc27ff55 ffff92f890566ea0 ffff92fb8bf10000 ffffffffc0b5a0c0 ffff92f8b7fb7cb0 ffffffffbc28090d Call Trace: [<ffffffffbc27ff55>] evict+0xc5/0x1a0 [<ffffffffbc28090d>] iput+0x1ad/0x2c0 [<ffffffffc0b3304c>] recover_orphan_inodes+0x10c/0x2e0 [f2fs] [<ffffffffc0b2e0f4>] f2fs_fill_super+0x884/0x1150 [f2fs] [<ffffffffbc2644ac>] mount_bdev+0x18c/0x1c0 [<ffffffffc0b2d870>] ? f2fs_commit_super+0x100/0x100 [f2fs] [<ffffffffc0b2a755>] f2fs_mount+0x15/0x20 [f2fs] [<ffffffffbc264e49>] mount_fs+0x39/0x170 [<ffffffffbc28555b>] vfs_kern_mount+0x6b/0x160 [<ffffffffbc2881df>] do_mount+0x1cf/0xd00 [<ffffffffbc287f2c>] ? copy_mount_options+0xac/0x170 [<ffffffffbc289003>] SyS_mount+0x83/0xd0 [<ffffffffbc8ee880>] entry_SYSCALL_64_fastpath+0x23/0xc1 Reviewed-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-09-21 12:39:42 -06:00
release_ino_entry(sbi, true);
truncate_inode_pages_final(NODE_MAPPING(sbi));
iput(sbi->node_inode);
free_nm:
destroy_node_manager(sbi);
free_sm:
destroy_segment_manager(sbi);
free_devices:
destroy_device_list(sbi);
kfree(sbi->ckpt);
free_meta_inode:
make_bad_inode(sbi->meta_inode);
iput(sbi->meta_inode);
free_io_dummy:
mempool_destroy(sbi->write_io_dummy);
free_percpu:
destroy_percpu_info(sbi);
free_bio_info:
for (i = 0; i < NR_PAGE_TYPE; i++)
kfree(sbi->write_io[i]);
free_options:
#ifdef CONFIG_QUOTA
for (i = 0; i < MAXQUOTAS; i++)
kfree(sbi->s_qf_names[i]);
#endif
kfree(options);
free_sb_buf:
kfree(raw_super);
free_sbi:
if (sbi->s_chksum_driver)
crypto_free_shash(sbi->s_chksum_driver);
kfree(sbi);
/* give only one another chance */
if (retry) {
retry = false;
shrink_dcache_sb(sb);
goto try_onemore;
}
return err;
}
static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
const char *dev_name, void *data)
{
return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
}
static void kill_f2fs_super(struct super_block *sb)
{
if (sb->s_root) {
set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
stop_gc_thread(F2FS_SB(sb));
stop_discard_thread(F2FS_SB(sb));
}
kill_block_super(sb);
}
static struct file_system_type f2fs_fs_type = {
.owner = THIS_MODULE,
.name = "f2fs",
.mount = f2fs_mount,
.kill_sb = kill_f2fs_super,
.fs_flags = FS_REQUIRES_DEV,
};
fs: Limit sys_mount to only request filesystem modules. Modify the request_module to prefix the file system type with "fs-" and add aliases to all of the filesystems that can be built as modules to match. A common practice is to build all of the kernel code and leave code that is not commonly needed as modules, with the result that many users are exposed to any bug anywhere in the kernel. Looking for filesystems with a fs- prefix limits the pool of possible modules that can be loaded by mount to just filesystems trivially making things safer with no real cost. Using aliases means user space can control the policy of which filesystem modules are auto-loaded by editing /etc/modprobe.d/*.conf with blacklist and alias directives. Allowing simple, safe, well understood work-arounds to known problematic software. This also addresses a rare but unfortunate problem where the filesystem name is not the same as it's module name and module auto-loading would not work. While writing this patch I saw a handful of such cases. The most significant being autofs that lives in the module autofs4. This is relevant to user namespaces because we can reach the request module in get_fs_type() without having any special permissions, and people get uncomfortable when a user specified string (in this case the filesystem type) goes all of the way to request_module. After having looked at this issue I don't think there is any particular reason to perform any filtering or permission checks beyond making it clear in the module request that we want a filesystem module. The common pattern in the kernel is to call request_module() without regards to the users permissions. In general all a filesystem module does once loaded is call register_filesystem() and go to sleep. Which means there is not much attack surface exposed by loading a filesytem module unless the filesystem is mounted. In a user namespace filesystems are not mounted unless .fs_flags = FS_USERNS_MOUNT, which most filesystems do not set today. Acked-by: Serge Hallyn <serge.hallyn@canonical.com> Acked-by: Kees Cook <keescook@chromium.org> Reported-by: Kees Cook <keescook@google.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2013-03-02 20:39:14 -07:00
MODULE_ALIAS_FS("f2fs");
static int __init init_inodecache(void)
{
2016-01-14 16:18:21 -07:00
f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
sizeof(struct f2fs_inode_info), 0,
SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
if (!f2fs_inode_cachep)
return -ENOMEM;
return 0;
}
static void destroy_inodecache(void)
{
/*
* Make sure all delayed rcu free inodes are flushed before we
* destroy cache.
*/
rcu_barrier();
kmem_cache_destroy(f2fs_inode_cachep);
}
static int __init init_f2fs_fs(void)
{
int err;
f2fs_build_trace_ios();
err = init_inodecache();
if (err)
goto fail;
err = create_node_manager_caches();
if (err)
goto free_inodecache;
err = create_segment_manager_caches();
if (err)
goto free_node_manager_caches;
err = create_checkpoint_caches();
if (err)
goto free_segment_manager_caches;
err = create_extent_cache();
if (err)
goto free_checkpoint_caches;
err = f2fs_init_sysfs();
if (err)
goto free_extent_cache;
err = register_shrinker(&f2fs_shrinker_info);
if (err)
goto free_sysfs;
err = register_filesystem(&f2fs_fs_type);
if (err)
goto free_shrinker;
err = f2fs_create_root_stats();
if (err)
goto free_filesystem;
return 0;
free_filesystem:
unregister_filesystem(&f2fs_fs_type);
free_shrinker:
unregister_shrinker(&f2fs_shrinker_info);
free_sysfs:
f2fs_exit_sysfs();
free_extent_cache:
destroy_extent_cache();
free_checkpoint_caches:
destroy_checkpoint_caches();
free_segment_manager_caches:
destroy_segment_manager_caches();
free_node_manager_caches:
destroy_node_manager_caches();
free_inodecache:
destroy_inodecache();
fail:
return err;
}
static void __exit exit_f2fs_fs(void)
{
f2fs_destroy_root_stats();
unregister_filesystem(&f2fs_fs_type);
unregister_shrinker(&f2fs_shrinker_info);
f2fs_exit_sysfs();
destroy_extent_cache();
destroy_checkpoint_caches();
destroy_segment_manager_caches();
destroy_node_manager_caches();
destroy_inodecache();
f2fs_destroy_trace_ios();
}
module_init(init_f2fs_fs)
module_exit(exit_f2fs_fs)
MODULE_AUTHOR("Samsung Electronics's Praesto Team");
MODULE_DESCRIPTION("Flash Friendly File System");
MODULE_LICENSE("GPL");
f2fs: remove checkpoint in f2fs_freeze The generic freeze_super() calls sync_filesystems() before f2fs_freeze(). So, basically we don't need to do checkpoint in f2fs_freeze(). But, in xfs/068, it triggers circular locking problem below due to gc_mutex for checkpoint. ====================================================== [ INFO: possible circular locking dependency detected ] 4.9.0-rc1+ #132 Tainted: G OE ------------------------------------------------------- 1. wait for __sb_start_write() by [<ffffffff9845f353>] dump_stack+0x85/0xc2 [<ffffffff980e80bf>] print_circular_bug+0x1cf/0x230 [<ffffffff980eb4d0>] __lock_acquire+0x19e0/0x1bc0 [<ffffffff980ebdcb>] lock_acquire+0x11b/0x220 [<ffffffffc08c7c3b>] ? f2fs_drop_inode+0x9b/0x160 [f2fs] [<ffffffff9826bdd0>] __sb_start_write+0x130/0x200 [<ffffffffc08c7c3b>] ? f2fs_drop_inode+0x9b/0x160 [f2fs] [<ffffffffc08c7c3b>] f2fs_drop_inode+0x9b/0x160 [f2fs] [<ffffffff98289991>] iput+0x171/0x2c0 [<ffffffffc08cfccf>] f2fs_sync_inode_meta+0x3f/0xf0 [f2fs] [<ffffffffc08cfe04>] block_operations+0x84/0x110 [f2fs] [<ffffffffc08cff78>] write_checkpoint+0xe8/0xf20 [f2fs] [<ffffffff980e979d>] ? trace_hardirqs_on+0xd/0x10 [<ffffffffc08c6de9>] ? f2fs_sync_fs+0x79/0x190 [f2fs] [<ffffffff9803e9d9>] ? sched_clock+0x9/0x10 [<ffffffffc08c6de9>] ? f2fs_sync_fs+0x79/0x190 [f2fs] [<ffffffffc08c6df5>] f2fs_sync_fs+0x85/0x190 [f2fs] [<ffffffff982a4f90>] ? do_fsync+0x70/0x70 [<ffffffff982a4f90>] ? do_fsync+0x70/0x70 [<ffffffff982a4fb0>] sync_fs_one_sb+0x20/0x30 [<ffffffff9826ca3e>] iterate_supers+0xae/0x100 [<ffffffff982a50b5>] sys_sync+0x55/0x90 [<ffffffff9890b345>] entry_SYSCALL_64_fastpath+0x23/0xc6 2. wait for sbi->gc_mutex by [<ffffffff980ebdcb>] lock_acquire+0x11b/0x220 [<ffffffff989063d6>] mutex_lock_nested+0x76/0x3f0 [<ffffffffc08c6de9>] f2fs_sync_fs+0x79/0x190 [f2fs] [<ffffffffc08c7a6c>] f2fs_freeze+0x1c/0x20 [f2fs] [<ffffffff9826b6ef>] freeze_super+0xcf/0x190 [<ffffffff9827eebc>] do_vfs_ioctl+0x53c/0x6a0 [<ffffffff9827f099>] SyS_ioctl+0x79/0x90 [<ffffffff9890b345>] entry_SYSCALL_64_fastpath+0x23/0xc6 Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-11-04 15:59:15 -06:00