1
0
Fork 0
alistair23-linux/lib/scatterlist.c

758 lines
19 KiB
C
Raw Normal View History

/*
* Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
*
* Scatterlist handling helpers.
*
* This source code is licensed under the GNU General Public License,
* Version 2. See the file COPYING for more details.
*/
#include <linux/export.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 02:04:11 -06:00
#include <linux/slab.h>
#include <linux/scatterlist.h>
#include <linux/highmem.h>
#include <linux/kmemleak.h>
/**
* sg_next - return the next scatterlist entry in a list
* @sg: The current sg entry
*
* Description:
* Usually the next entry will be @sg@ + 1, but if this sg element is part
* of a chained scatterlist, it could jump to the start of a new
* scatterlist array.
*
**/
struct scatterlist *sg_next(struct scatterlist *sg)
{
#ifdef CONFIG_DEBUG_SG
BUG_ON(sg->sg_magic != SG_MAGIC);
#endif
if (sg_is_last(sg))
return NULL;
sg++;
if (unlikely(sg_is_chain(sg)))
sg = sg_chain_ptr(sg);
return sg;
}
EXPORT_SYMBOL(sg_next);
/**
* sg_nents - return total count of entries in scatterlist
* @sg: The scatterlist
*
* Description:
* Allows to know how many entries are in sg, taking into acount
* chaining as well
*
**/
int sg_nents(struct scatterlist *sg)
{
int nents;
for (nents = 0; sg; sg = sg_next(sg))
nents++;
return nents;
}
EXPORT_SYMBOL(sg_nents);
/**
* sg_nents_for_len - return total count of entries in scatterlist
* needed to satisfy the supplied length
* @sg: The scatterlist
* @len: The total required length
*
* Description:
* Determines the number of entries in sg that are required to meet
* the supplied length, taking into acount chaining as well
*
* Returns:
* the number of sg entries needed, negative error on failure
*
**/
int sg_nents_for_len(struct scatterlist *sg, u64 len)
{
int nents;
u64 total;
if (!len)
return 0;
for (nents = 0, total = 0; sg; sg = sg_next(sg)) {
nents++;
total += sg->length;
if (total >= len)
return nents;
}
return -EINVAL;
}
EXPORT_SYMBOL(sg_nents_for_len);
/**
* sg_last - return the last scatterlist entry in a list
* @sgl: First entry in the scatterlist
* @nents: Number of entries in the scatterlist
*
* Description:
* Should only be used casually, it (currently) scans the entire list
* to get the last entry.
*
* Note that the @sgl@ pointer passed in need not be the first one,
* the important bit is that @nents@ denotes the number of entries that
* exist from @sgl@.
*
**/
struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
{
struct scatterlist *sg, *ret = NULL;
unsigned int i;
for_each_sg(sgl, sg, nents, i)
ret = sg;
#ifdef CONFIG_DEBUG_SG
BUG_ON(sgl[0].sg_magic != SG_MAGIC);
BUG_ON(!sg_is_last(ret));
#endif
return ret;
}
EXPORT_SYMBOL(sg_last);
/**
* sg_init_table - Initialize SG table
* @sgl: The SG table
* @nents: Number of entries in table
*
* Notes:
* If this is part of a chained sg table, sg_mark_end() should be
* used only on the last table part.
*
**/
void sg_init_table(struct scatterlist *sgl, unsigned int nents)
{
memset(sgl, 0, sizeof(*sgl) * nents);
#ifdef CONFIG_DEBUG_SG
{
unsigned int i;
for (i = 0; i < nents; i++)
sgl[i].sg_magic = SG_MAGIC;
}
#endif
sg_mark_end(&sgl[nents - 1]);
}
EXPORT_SYMBOL(sg_init_table);
/**
* sg_init_one - Initialize a single entry sg list
* @sg: SG entry
* @buf: Virtual address for IO
* @buflen: IO length
*
**/
void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
{
sg_init_table(sg, 1);
sg_set_buf(sg, buf, buflen);
}
EXPORT_SYMBOL(sg_init_one);
/*
* The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
* helpers.
*/
static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
{
if (nents == SG_MAX_SINGLE_ALLOC) {
/*
* Kmemleak doesn't track page allocations as they are not
* commonly used (in a raw form) for kernel data structures.
* As we chain together a list of pages and then a normal
* kmalloc (tracked by kmemleak), in order to for that last
* allocation not to become decoupled (and thus a
* false-positive) we need to inform kmemleak of all the
* intermediate allocations.
*/
void *ptr = (void *) __get_free_page(gfp_mask);
kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
return ptr;
} else
return kmalloc(nents * sizeof(struct scatterlist), gfp_mask);
}
static void sg_kfree(struct scatterlist *sg, unsigned int nents)
{
if (nents == SG_MAX_SINGLE_ALLOC) {
kmemleak_free(sg);
free_page((unsigned long) sg);
} else
kfree(sg);
}
/**
* __sg_free_table - Free a previously mapped sg table
* @table: The sg table header to use
* @max_ents: The maximum number of entries per single scatterlist
* @skip_first_chunk: don't free the (preallocated) first scatterlist chunk
* @free_fn: Free function
*
* Description:
* Free an sg table previously allocated and setup with
* __sg_alloc_table(). The @max_ents value must be identical to
* that previously used with __sg_alloc_table().
*
**/
void __sg_free_table(struct sg_table *table, unsigned int max_ents,
bool skip_first_chunk, sg_free_fn *free_fn)
{
struct scatterlist *sgl, *next;
if (unlikely(!table->sgl))
return;
sgl = table->sgl;
while (table->orig_nents) {
unsigned int alloc_size = table->orig_nents;
unsigned int sg_size;
/*
* If we have more than max_ents segments left,
* then assign 'next' to the sg table after the current one.
* sg_size is then one less than alloc size, since the last
* element is the chain pointer.
*/
if (alloc_size > max_ents) {
next = sg_chain_ptr(&sgl[max_ents - 1]);
alloc_size = max_ents;
sg_size = alloc_size - 1;
} else {
sg_size = alloc_size;
next = NULL;
}
table->orig_nents -= sg_size;
if (skip_first_chunk)
skip_first_chunk = false;
else
free_fn(sgl, alloc_size);
sgl = next;
}
table->sgl = NULL;
}
EXPORT_SYMBOL(__sg_free_table);
/**
* sg_free_table - Free a previously allocated sg table
* @table: The mapped sg table header
*
**/
void sg_free_table(struct sg_table *table)
{
__sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree);
}
EXPORT_SYMBOL(sg_free_table);
/**
* __sg_alloc_table - Allocate and initialize an sg table with given allocator
* @table: The sg table header to use
* @nents: Number of entries in sg list
* @max_ents: The maximum number of entries the allocator returns per call
* @gfp_mask: GFP allocation mask
* @alloc_fn: Allocator to use
*
* Description:
* This function returns a @table @nents long. The allocator is
* defined to return scatterlist chunks of maximum size @max_ents.
* Thus if @nents is bigger than @max_ents, the scatterlists will be
* chained in units of @max_ents.
*
* Notes:
* If this function returns non-0 (eg failure), the caller must call
* __sg_free_table() to cleanup any leftover allocations.
*
**/
int __sg_alloc_table(struct sg_table *table, unsigned int nents,
unsigned int max_ents, struct scatterlist *first_chunk,
gfp_t gfp_mask, sg_alloc_fn *alloc_fn)
{
struct scatterlist *sg, *prv;
unsigned int left;
memset(table, 0, sizeof(*table));
if (nents == 0)
return -EINVAL;
#ifndef CONFIG_ARCH_HAS_SG_CHAIN
if (WARN_ON_ONCE(nents > max_ents))
return -EINVAL;
#endif
left = nents;
prv = NULL;
do {
unsigned int sg_size, alloc_size = left;
if (alloc_size > max_ents) {
alloc_size = max_ents;
sg_size = alloc_size - 1;
} else
sg_size = alloc_size;
left -= sg_size;
if (first_chunk) {
sg = first_chunk;
first_chunk = NULL;
} else {
sg = alloc_fn(alloc_size, gfp_mask);
}
if (unlikely(!sg)) {
/*
* Adjust entry count to reflect that the last
* entry of the previous table won't be used for
* linkage. Without this, sg_kfree() may get
* confused.
*/
if (prv)
table->nents = ++table->orig_nents;
return -ENOMEM;
}
sg_init_table(sg, alloc_size);
table->nents = table->orig_nents += sg_size;
/*
* If this is the first mapping, assign the sg table header.
* If this is not the first mapping, chain previous part.
*/
if (prv)
sg_chain(prv, max_ents, sg);
else
table->sgl = sg;
/*
* If no more entries after this one, mark the end
*/
if (!left)
sg_mark_end(&sg[sg_size - 1]);
prv = sg;
} while (left);
return 0;
}
EXPORT_SYMBOL(__sg_alloc_table);
/**
* sg_alloc_table - Allocate and initialize an sg table
* @table: The sg table header to use
* @nents: Number of entries in sg list
* @gfp_mask: GFP allocation mask
*
* Description:
* Allocate and initialize an sg table. If @nents@ is larger than
* SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
*
**/
int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
{
int ret;
ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
NULL, gfp_mask, sg_kmalloc);
if (unlikely(ret))
__sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree);
return ret;
}
EXPORT_SYMBOL(sg_alloc_table);
/**
* sg_alloc_table_from_pages - Allocate and initialize an sg table from
* an array of pages
* @sgt: The sg table header to use
* @pages: Pointer to an array of page pointers
* @n_pages: Number of pages in the pages array
* @offset: Offset from start of the first page to the start of a buffer
* @size: Number of valid bytes in the buffer (after offset)
* @gfp_mask: GFP allocation mask
*
* Description:
* Allocate and initialize an sg table from a list of pages. Contiguous
* ranges of the pages are squashed into a single scatterlist node. A user
* may provide an offset at a start and a size of valid data in a buffer
* specified by the page array. The returned sg table is released by
* sg_free_table.
*
* Returns:
* 0 on success, negative error on failure
*/
int sg_alloc_table_from_pages(struct sg_table *sgt,
struct page **pages, unsigned int n_pages,
unsigned long offset, unsigned long size,
gfp_t gfp_mask)
{
unsigned int chunks;
unsigned int i;
unsigned int cur_page;
int ret;
struct scatterlist *s;
/* compute number of contiguous chunks */
chunks = 1;
for (i = 1; i < n_pages; ++i)
if (page_to_pfn(pages[i]) != page_to_pfn(pages[i - 1]) + 1)
++chunks;
ret = sg_alloc_table(sgt, chunks, gfp_mask);
if (unlikely(ret))
return ret;
/* merging chunks and putting them into the scatterlist */
cur_page = 0;
for_each_sg(sgt->sgl, s, sgt->orig_nents, i) {
unsigned long chunk_size;
unsigned int j;
/* look for the end of the current chunk */
for (j = cur_page + 1; j < n_pages; ++j)
if (page_to_pfn(pages[j]) !=
page_to_pfn(pages[j - 1]) + 1)
break;
chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset;
sg_set_page(s, pages[cur_page], min(size, chunk_size), offset);
size -= chunk_size;
offset = 0;
cur_page = j;
}
return 0;
}
EXPORT_SYMBOL(sg_alloc_table_from_pages);
void __sg_page_iter_start(struct sg_page_iter *piter,
struct scatterlist *sglist, unsigned int nents,
unsigned long pgoffset)
{
piter->__pg_advance = 0;
piter->__nents = nents;
piter->sg = sglist;
piter->sg_pgoffset = pgoffset;
}
EXPORT_SYMBOL(__sg_page_iter_start);
static int sg_page_count(struct scatterlist *sg)
{
return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
}
bool __sg_page_iter_next(struct sg_page_iter *piter)
{
if (!piter->__nents || !piter->sg)
return false;
piter->sg_pgoffset += piter->__pg_advance;
piter->__pg_advance = 1;
while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
piter->sg_pgoffset -= sg_page_count(piter->sg);
piter->sg = sg_next(piter->sg);
if (!--piter->__nents || !piter->sg)
return false;
}
return true;
}
EXPORT_SYMBOL(__sg_page_iter_next);
/**
* sg_miter_start - start mapping iteration over a sg list
* @miter: sg mapping iter to be started
* @sgl: sg list to iterate over
* @nents: number of sg entries
*
* Description:
* Starts mapping iterator @miter.
*
* Context:
* Don't care.
*/
void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
unsigned int nents, unsigned int flags)
{
memset(miter, 0, sizeof(struct sg_mapping_iter));
__sg_page_iter_start(&miter->piter, sgl, nents, 0);
WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
miter->__flags = flags;
}
EXPORT_SYMBOL(sg_miter_start);
static bool sg_miter_get_next_page(struct sg_mapping_iter *miter)
{
if (!miter->__remaining) {
struct scatterlist *sg;
unsigned long pgoffset;
if (!__sg_page_iter_next(&miter->piter))
return false;
sg = miter->piter.sg;
pgoffset = miter->piter.sg_pgoffset;
miter->__offset = pgoffset ? 0 : sg->offset;
miter->__remaining = sg->offset + sg->length -
(pgoffset << PAGE_SHIFT) - miter->__offset;
miter->__remaining = min_t(unsigned long, miter->__remaining,
PAGE_SIZE - miter->__offset);
}
return true;
}
/**
* sg_miter_skip - reposition mapping iterator
* @miter: sg mapping iter to be skipped
* @offset: number of bytes to plus the current location
*
* Description:
* Sets the offset of @miter to its current location plus @offset bytes.
* If mapping iterator @miter has been proceeded by sg_miter_next(), this
* stops @miter.
*
* Context:
* Don't care if @miter is stopped, or not proceeded yet.
* Otherwise, preemption disabled if the SG_MITER_ATOMIC is set.
*
* Returns:
* true if @miter contains the valid mapping. false if end of sg
* list is reached.
*/
bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset)
{
sg_miter_stop(miter);
while (offset) {
off_t consumed;
if (!sg_miter_get_next_page(miter))
return false;
consumed = min_t(off_t, offset, miter->__remaining);
miter->__offset += consumed;
miter->__remaining -= consumed;
offset -= consumed;
}
return true;
}
EXPORT_SYMBOL(sg_miter_skip);
/**
* sg_miter_next - proceed mapping iterator to the next mapping
* @miter: sg mapping iter to proceed
*
* Description:
* Proceeds @miter to the next mapping. @miter should have been started
* using sg_miter_start(). On successful return, @miter->page,
* @miter->addr and @miter->length point to the current mapping.
*
* Context:
* Preemption disabled if SG_MITER_ATOMIC. Preemption must stay disabled
* till @miter is stopped. May sleep if !SG_MITER_ATOMIC.
*
* Returns:
* true if @miter contains the next mapping. false if end of sg
* list is reached.
*/
bool sg_miter_next(struct sg_mapping_iter *miter)
{
sg_miter_stop(miter);
/*
* Get to the next page if necessary.
* __remaining, __offset is adjusted by sg_miter_stop
*/
if (!sg_miter_get_next_page(miter))
return false;
miter->page = sg_page_iter_page(&miter->piter);
miter->consumed = miter->length = miter->__remaining;
if (miter->__flags & SG_MITER_ATOMIC)
miter->addr = kmap_atomic(miter->page) + miter->__offset;
else
miter->addr = kmap(miter->page) + miter->__offset;
return true;
}
EXPORT_SYMBOL(sg_miter_next);
/**
* sg_miter_stop - stop mapping iteration
* @miter: sg mapping iter to be stopped
*
* Description:
* Stops mapping iterator @miter. @miter should have been started
* using sg_miter_start(). A stopped iteration can be resumed by
* calling sg_miter_next() on it. This is useful when resources (kmap)
* need to be released during iteration.
*
* Context:
* Preemption disabled if the SG_MITER_ATOMIC is set. Don't care
* otherwise.
*/
void sg_miter_stop(struct sg_mapping_iter *miter)
{
WARN_ON(miter->consumed > miter->length);
/* drop resources from the last iteration */
if (miter->addr) {
miter->__offset += miter->consumed;
miter->__remaining -= miter->consumed;
lib/scatterlist.c: don't flush_kernel_dcache_page on slab page Commit b1adaf65ba03 ("[SCSI] block: add sg buffer copy helper functions") introduces two sg buffer copy helpers, and calls flush_kernel_dcache_page() on pages in SG list after these pages are written to. Unfortunately, the commit may introduce a potential bug: - Before sending some SCSI commands, kmalloc() buffer may be passed to block layper, so flush_kernel_dcache_page() can see a slab page finally - According to cachetlb.txt, flush_kernel_dcache_page() is only called on "a user page", which surely can't be a slab page. - ARCH's implementation of flush_kernel_dcache_page() may use page mapping information to do optimization so page_mapping() will see the slab page, then VM_BUG_ON() is triggered. Aaro Koskinen reported the bug on ARM/kirkwood when DEBUG_VM is enabled, and this patch fixes the bug by adding test of '!PageSlab(miter->page)' before calling flush_kernel_dcache_page(). Signed-off-by: Ming Lei <ming.lei@canonical.com> Reported-by: Aaro Koskinen <aaro.koskinen@iki.fi> Tested-by: Simon Baatz <gmbnomis@gmail.com> Cc: Russell King - ARM Linux <linux@arm.linux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: Aaro Koskinen <aaro.koskinen@iki.fi> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Cc: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp> Cc: Tejun Heo <tj@kernel.org> Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: <stable@vger.kernel.org> [3.2+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-10-31 17:34:17 -06:00
if ((miter->__flags & SG_MITER_TO_SG) &&
!PageSlab(miter->page))
flush_kernel_dcache_page(miter->page);
if (miter->__flags & SG_MITER_ATOMIC) {
WARN_ON_ONCE(preemptible());
kunmap_atomic(miter->addr);
} else
kunmap(miter->page);
miter->page = NULL;
miter->addr = NULL;
miter->length = 0;
miter->consumed = 0;
}
}
EXPORT_SYMBOL(sg_miter_stop);
/**
* sg_copy_buffer - Copy data between a linear buffer and an SG list
* @sgl: The SG list
* @nents: Number of SG entries
* @buf: Where to copy from
* @buflen: The number of bytes to copy
* @skip: Number of bytes to skip before copying
* @to_buffer: transfer direction (true == from an sg list to a
* buffer, false == from a buffer to an sg list
*
* Returns the number of copied bytes.
*
**/
size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf,
size_t buflen, off_t skip, bool to_buffer)
{
unsigned int offset = 0;
struct sg_mapping_iter miter;
unsigned long flags;
unsigned int sg_flags = SG_MITER_ATOMIC;
if (to_buffer)
sg_flags |= SG_MITER_FROM_SG;
else
sg_flags |= SG_MITER_TO_SG;
sg_miter_start(&miter, sgl, nents, sg_flags);
if (!sg_miter_skip(&miter, skip))
return false;
local_irq_save(flags);
while (sg_miter_next(&miter) && offset < buflen) {
unsigned int len;
len = min(miter.length, buflen - offset);
if (to_buffer)
memcpy(buf + offset, miter.addr, len);
else
memcpy(miter.addr, buf + offset, len);
offset += len;
}
sg_miter_stop(&miter);
local_irq_restore(flags);
return offset;
}
EXPORT_SYMBOL(sg_copy_buffer);
/**
* sg_copy_from_buffer - Copy from a linear buffer to an SG list
* @sgl: The SG list
* @nents: Number of SG entries
* @buf: Where to copy from
* @buflen: The number of bytes to copy
*
* Returns the number of copied bytes.
*
**/
size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
const void *buf, size_t buflen)
{
return sg_copy_buffer(sgl, nents, (void *)buf, buflen, 0, false);
}
EXPORT_SYMBOL(sg_copy_from_buffer);
/**
* sg_copy_to_buffer - Copy from an SG list to a linear buffer
* @sgl: The SG list
* @nents: Number of SG entries
* @buf: Where to copy to
* @buflen: The number of bytes to copy
*
* Returns the number of copied bytes.
*
**/
size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
void *buf, size_t buflen)
{
return sg_copy_buffer(sgl, nents, buf, buflen, 0, true);
}
EXPORT_SYMBOL(sg_copy_to_buffer);
/**
* sg_pcopy_from_buffer - Copy from a linear buffer to an SG list
* @sgl: The SG list
* @nents: Number of SG entries
* @buf: Where to copy from
* @buflen: The number of bytes to copy
* @skip: Number of bytes to skip before copying
*
* Returns the number of copied bytes.
*
**/
size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
const void *buf, size_t buflen, off_t skip)
{
return sg_copy_buffer(sgl, nents, (void *)buf, buflen, skip, false);
}
EXPORT_SYMBOL(sg_pcopy_from_buffer);
/**
* sg_pcopy_to_buffer - Copy from an SG list to a linear buffer
* @sgl: The SG list
* @nents: Number of SG entries
* @buf: Where to copy to
* @buflen: The number of bytes to copy
* @skip: Number of bytes to skip before copying
*
* Returns the number of copied bytes.
*
**/
size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
void *buf, size_t buflen, off_t skip)
{
return sg_copy_buffer(sgl, nents, buf, buflen, skip, true);
}
EXPORT_SYMBOL(sg_pcopy_to_buffer);