1
0
Fork 0
alistair23-linux/block/blk-ioc.c

417 lines
11 KiB
C
Raw Normal View History

/*
* Functions related to io context handling
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 02:04:11 -06:00
#include <linux/slab.h>
#include "blk.h"
/*
* For io context allocations
*/
static struct kmem_cache *iocontext_cachep;
block: make ioc get/put interface more conventional and fix race on alloction Ignoring copy_io() during fork, io_context can be allocated from two places - current_io_context() and set_task_ioprio(). The former is always called from local task while the latter can be called from different task. The synchornization between them are peculiar and dubious. * current_io_context() doesn't grab task_lock() and assumes that if it saw %NULL ->io_context, it would stay that way until allocation and assignment is complete. It has smp_wmb() between alloc/init and assignment. * set_task_ioprio() grabs task_lock() for assignment and does smp_read_barrier_depends() between "ioc = task->io_context" and "if (ioc)". Unfortunately, this doesn't achieve anything - the latter is not a dependent load of the former. ie, if ioc itself were being dereferenced "ioc->xxx", it would mean something (not sure what tho) but as the code currently stands, the dependent read barrier is noop. As only one of the the two test-assignment sequences is task_lock() protected, the task_lock() can't do much about race between the two. Nothing prevents current_io_context() and set_task_ioprio() allocating its own ioc for the same task and overwriting the other's. Also, set_task_ioprio() can race with exiting task and create a new ioc after exit_io_context() is finished. ioc get/put doesn't have any reason to be complex. The only hot path is accessing the existing ioc of %current, which is simple to achieve given that ->io_context is never destroyed as long as the task is alive. All other paths can happily go through task_lock() like all other task sub structures without impacting anything. This patch updates ioc get/put so that it becomes more conventional. * alloc_io_context() is replaced with get_task_io_context(). This is the only interface which can acquire access to ioc of another task. On return, the caller has an explicit reference to the object which should be put using put_io_context() afterwards. * The functionality of current_io_context() remains the same but when creating a new ioc, it shares the code path with get_task_io_context() and always goes through task_lock(). * get_io_context() now means incrementing ref on an ioc which the caller already has access to (be that an explicit refcnt or implicit %current one). * PF_EXITING inhibits creation of new io_context and once exit_io_context() is finished, it's guaranteed that both ioc acquisition functions return %NULL. * All users are updated. Most are trivial but smp_read_barrier_depends() removal from cfq_get_io_context() needs a bit of explanation. I suppose the original intention was to ensure ioc->ioprio is visible when set_task_ioprio() allocates new io_context and installs it; however, this wouldn't have worked because set_task_ioprio() doesn't have wmb between init and install. There are other problems with this which will be fixed in another patch. * While at it, use NUMA_NO_NODE instead of -1 for wildcard node specification. -v2: Vivek spotted contamination from debug patch. Removed. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-12-13 16:33:38 -07:00
/**
* get_io_context - increment reference count to io_context
* @ioc: io_context to get
*
* Increment reference count to @ioc.
*/
void get_io_context(struct io_context *ioc)
{
BUG_ON(atomic_long_read(&ioc->refcount) <= 0);
atomic_long_inc(&ioc->refcount);
}
EXPORT_SYMBOL(get_io_context);
block, cfq: unlink cfq_io_context's immediately cic is association between io_context and request_queue. A cic is linked from both ioc and q and should be destroyed when either one goes away. As ioc and q both have their own locks, locking becomes a bit complex - both orders work for removal from one but not from the other. Currently, cfq tries to circumvent this locking order issue with RCU. ioc->lock nests inside queue_lock but the radix tree and cic's are also protected by RCU allowing either side to walk their lists without grabbing lock. This rather unconventional use of RCU quickly devolves into extremely fragile convolution. e.g. The following is from cfqd going away too soon after ioc and q exits raced. general protection fault: 0000 [#1] PREEMPT SMP CPU 2 Modules linked in: [ 88.503444] Pid: 599, comm: hexdump Not tainted 3.1.0-rc10-work+ #158 Bochs Bochs RIP: 0010:[<ffffffff81397628>] [<ffffffff81397628>] cfq_exit_single_io_context+0x58/0xf0 ... Call Trace: [<ffffffff81395a4a>] call_for_each_cic+0x5a/0x90 [<ffffffff81395ab5>] cfq_exit_io_context+0x15/0x20 [<ffffffff81389130>] exit_io_context+0x100/0x140 [<ffffffff81098a29>] do_exit+0x579/0x850 [<ffffffff81098d5b>] do_group_exit+0x5b/0xd0 [<ffffffff81098de7>] sys_exit_group+0x17/0x20 [<ffffffff81b02f2b>] system_call_fastpath+0x16/0x1b The only real hot path here is cic lookup during request initialization and avoiding extra locking requires very confined use of RCU. This patch makes cic removal from both ioc and request_queue perform double-locking and unlink immediately. * From q side, the change is almost trivial as ioc->lock nests inside queue_lock. It just needs to grab each ioc->lock as it walks cic_list and unlink it. * From ioc side, it's a bit more difficult because of inversed lock order. ioc needs its lock to walk its cic_list but can't grab the matching queue_lock and needs to perform unlock-relock dancing. Unlinking is now wholly done from put_io_context() and fast path is optimized by using the queue_lock the caller already holds, which is by far the most common case. If the ioc accessed multiple devices, it tries with trylock. In unlikely cases of fast path failure, it falls back to full double-locking dance from workqueue. Double-locking isn't the prettiest thing in the world but it's *far* simpler and more understandable than RCU trick without adding any meaningful overhead. This still leaves a lot of now unnecessary RCU logics. Future patches will trim them. -v2: Vivek pointed out that cic->q was being dereferenced after cic->release() was called. Updated to use local variable @this_q instead. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-12-13 16:33:39 -07:00
/*
* Releasing ioc may nest into another put_io_context() leading to nested
* fast path release. As the ioc's can't be the same, this is okay but
* makes lockdep whine. Keep track of nesting and use it as subclass.
*/
#ifdef CONFIG_LOCKDEP
#define ioc_release_depth(q) ((q) ? (q)->ioc_release_depth : 0)
#define ioc_release_depth_inc(q) (q)->ioc_release_depth++
#define ioc_release_depth_dec(q) (q)->ioc_release_depth--
#else
#define ioc_release_depth(q) 0
#define ioc_release_depth_inc(q) do { } while (0)
#define ioc_release_depth_dec(q) do { } while (0)
#endif
static void icq_free_icq_rcu(struct rcu_head *head)
{
struct io_cq *icq = container_of(head, struct io_cq, __rcu_head);
kmem_cache_free(icq->__rcu_icq_cache, icq);
}
/*
* Exit and free an icq. Called with both ioc and q locked.
*/
static void ioc_exit_icq(struct io_cq *icq)
{
struct io_context *ioc = icq->ioc;
struct request_queue *q = icq->q;
struct elevator_type *et = q->elevator->type;
lockdep_assert_held(&ioc->lock);
lockdep_assert_held(q->queue_lock);
radix_tree_delete(&ioc->icq_tree, icq->q->id);
hlist_del_init(&icq->ioc_node);
list_del_init(&icq->q_node);
/*
* Both setting lookup hint to and clearing it from @icq are done
* under queue_lock. If it's not pointing to @icq now, it never
* will. Hint assignment itself can race safely.
*/
if (rcu_dereference_raw(ioc->icq_hint) == icq)
rcu_assign_pointer(ioc->icq_hint, NULL);
if (et->ops.elevator_exit_icq_fn) {
ioc_release_depth_inc(q);
et->ops.elevator_exit_icq_fn(icq);
ioc_release_depth_dec(q);
}
/*
* @icq->q might have gone away by the time RCU callback runs
* making it impossible to determine icq_cache. Record it in @icq.
*/
icq->__rcu_icq_cache = et->icq_cache;
call_rcu(&icq->__rcu_head, icq_free_icq_rcu);
}
block, cfq: unlink cfq_io_context's immediately cic is association between io_context and request_queue. A cic is linked from both ioc and q and should be destroyed when either one goes away. As ioc and q both have their own locks, locking becomes a bit complex - both orders work for removal from one but not from the other. Currently, cfq tries to circumvent this locking order issue with RCU. ioc->lock nests inside queue_lock but the radix tree and cic's are also protected by RCU allowing either side to walk their lists without grabbing lock. This rather unconventional use of RCU quickly devolves into extremely fragile convolution. e.g. The following is from cfqd going away too soon after ioc and q exits raced. general protection fault: 0000 [#1] PREEMPT SMP CPU 2 Modules linked in: [ 88.503444] Pid: 599, comm: hexdump Not tainted 3.1.0-rc10-work+ #158 Bochs Bochs RIP: 0010:[<ffffffff81397628>] [<ffffffff81397628>] cfq_exit_single_io_context+0x58/0xf0 ... Call Trace: [<ffffffff81395a4a>] call_for_each_cic+0x5a/0x90 [<ffffffff81395ab5>] cfq_exit_io_context+0x15/0x20 [<ffffffff81389130>] exit_io_context+0x100/0x140 [<ffffffff81098a29>] do_exit+0x579/0x850 [<ffffffff81098d5b>] do_group_exit+0x5b/0xd0 [<ffffffff81098de7>] sys_exit_group+0x17/0x20 [<ffffffff81b02f2b>] system_call_fastpath+0x16/0x1b The only real hot path here is cic lookup during request initialization and avoiding extra locking requires very confined use of RCU. This patch makes cic removal from both ioc and request_queue perform double-locking and unlink immediately. * From q side, the change is almost trivial as ioc->lock nests inside queue_lock. It just needs to grab each ioc->lock as it walks cic_list and unlink it. * From ioc side, it's a bit more difficult because of inversed lock order. ioc needs its lock to walk its cic_list but can't grab the matching queue_lock and needs to perform unlock-relock dancing. Unlinking is now wholly done from put_io_context() and fast path is optimized by using the queue_lock the caller already holds, which is by far the most common case. If the ioc accessed multiple devices, it tries with trylock. In unlikely cases of fast path failure, it falls back to full double-locking dance from workqueue. Double-locking isn't the prettiest thing in the world but it's *far* simpler and more understandable than RCU trick without adding any meaningful overhead. This still leaves a lot of now unnecessary RCU logics. Future patches will trim them. -v2: Vivek pointed out that cic->q was being dereferenced after cic->release() was called. Updated to use local variable @this_q instead. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-12-13 16:33:39 -07:00
/*
* Slow path for ioc release in put_io_context(). Performs double-lock
* dancing to unlink all icq's and then frees ioc.
block, cfq: unlink cfq_io_context's immediately cic is association between io_context and request_queue. A cic is linked from both ioc and q and should be destroyed when either one goes away. As ioc and q both have their own locks, locking becomes a bit complex - both orders work for removal from one but not from the other. Currently, cfq tries to circumvent this locking order issue with RCU. ioc->lock nests inside queue_lock but the radix tree and cic's are also protected by RCU allowing either side to walk their lists without grabbing lock. This rather unconventional use of RCU quickly devolves into extremely fragile convolution. e.g. The following is from cfqd going away too soon after ioc and q exits raced. general protection fault: 0000 [#1] PREEMPT SMP CPU 2 Modules linked in: [ 88.503444] Pid: 599, comm: hexdump Not tainted 3.1.0-rc10-work+ #158 Bochs Bochs RIP: 0010:[<ffffffff81397628>] [<ffffffff81397628>] cfq_exit_single_io_context+0x58/0xf0 ... Call Trace: [<ffffffff81395a4a>] call_for_each_cic+0x5a/0x90 [<ffffffff81395ab5>] cfq_exit_io_context+0x15/0x20 [<ffffffff81389130>] exit_io_context+0x100/0x140 [<ffffffff81098a29>] do_exit+0x579/0x850 [<ffffffff81098d5b>] do_group_exit+0x5b/0xd0 [<ffffffff81098de7>] sys_exit_group+0x17/0x20 [<ffffffff81b02f2b>] system_call_fastpath+0x16/0x1b The only real hot path here is cic lookup during request initialization and avoiding extra locking requires very confined use of RCU. This patch makes cic removal from both ioc and request_queue perform double-locking and unlink immediately. * From q side, the change is almost trivial as ioc->lock nests inside queue_lock. It just needs to grab each ioc->lock as it walks cic_list and unlink it. * From ioc side, it's a bit more difficult because of inversed lock order. ioc needs its lock to walk its cic_list but can't grab the matching queue_lock and needs to perform unlock-relock dancing. Unlinking is now wholly done from put_io_context() and fast path is optimized by using the queue_lock the caller already holds, which is by far the most common case. If the ioc accessed multiple devices, it tries with trylock. In unlikely cases of fast path failure, it falls back to full double-locking dance from workqueue. Double-locking isn't the prettiest thing in the world but it's *far* simpler and more understandable than RCU trick without adding any meaningful overhead. This still leaves a lot of now unnecessary RCU logics. Future patches will trim them. -v2: Vivek pointed out that cic->q was being dereferenced after cic->release() was called. Updated to use local variable @this_q instead. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-12-13 16:33:39 -07:00
*/
static void ioc_release_fn(struct work_struct *work)
{
block, cfq: unlink cfq_io_context's immediately cic is association between io_context and request_queue. A cic is linked from both ioc and q and should be destroyed when either one goes away. As ioc and q both have their own locks, locking becomes a bit complex - both orders work for removal from one but not from the other. Currently, cfq tries to circumvent this locking order issue with RCU. ioc->lock nests inside queue_lock but the radix tree and cic's are also protected by RCU allowing either side to walk their lists without grabbing lock. This rather unconventional use of RCU quickly devolves into extremely fragile convolution. e.g. The following is from cfqd going away too soon after ioc and q exits raced. general protection fault: 0000 [#1] PREEMPT SMP CPU 2 Modules linked in: [ 88.503444] Pid: 599, comm: hexdump Not tainted 3.1.0-rc10-work+ #158 Bochs Bochs RIP: 0010:[<ffffffff81397628>] [<ffffffff81397628>] cfq_exit_single_io_context+0x58/0xf0 ... Call Trace: [<ffffffff81395a4a>] call_for_each_cic+0x5a/0x90 [<ffffffff81395ab5>] cfq_exit_io_context+0x15/0x20 [<ffffffff81389130>] exit_io_context+0x100/0x140 [<ffffffff81098a29>] do_exit+0x579/0x850 [<ffffffff81098d5b>] do_group_exit+0x5b/0xd0 [<ffffffff81098de7>] sys_exit_group+0x17/0x20 [<ffffffff81b02f2b>] system_call_fastpath+0x16/0x1b The only real hot path here is cic lookup during request initialization and avoiding extra locking requires very confined use of RCU. This patch makes cic removal from both ioc and request_queue perform double-locking and unlink immediately. * From q side, the change is almost trivial as ioc->lock nests inside queue_lock. It just needs to grab each ioc->lock as it walks cic_list and unlink it. * From ioc side, it's a bit more difficult because of inversed lock order. ioc needs its lock to walk its cic_list but can't grab the matching queue_lock and needs to perform unlock-relock dancing. Unlinking is now wholly done from put_io_context() and fast path is optimized by using the queue_lock the caller already holds, which is by far the most common case. If the ioc accessed multiple devices, it tries with trylock. In unlikely cases of fast path failure, it falls back to full double-locking dance from workqueue. Double-locking isn't the prettiest thing in the world but it's *far* simpler and more understandable than RCU trick without adding any meaningful overhead. This still leaves a lot of now unnecessary RCU logics. Future patches will trim them. -v2: Vivek pointed out that cic->q was being dereferenced after cic->release() was called. Updated to use local variable @this_q instead. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-12-13 16:33:39 -07:00
struct io_context *ioc = container_of(work, struct io_context,
release_work);
struct request_queue *last_q = NULL;
spin_lock_irq(&ioc->lock);
while (!hlist_empty(&ioc->icq_list)) {
struct io_cq *icq = hlist_entry(ioc->icq_list.first,
struct io_cq, ioc_node);
struct request_queue *this_q = icq->q;
block, cfq: unlink cfq_io_context's immediately cic is association between io_context and request_queue. A cic is linked from both ioc and q and should be destroyed when either one goes away. As ioc and q both have their own locks, locking becomes a bit complex - both orders work for removal from one but not from the other. Currently, cfq tries to circumvent this locking order issue with RCU. ioc->lock nests inside queue_lock but the radix tree and cic's are also protected by RCU allowing either side to walk their lists without grabbing lock. This rather unconventional use of RCU quickly devolves into extremely fragile convolution. e.g. The following is from cfqd going away too soon after ioc and q exits raced. general protection fault: 0000 [#1] PREEMPT SMP CPU 2 Modules linked in: [ 88.503444] Pid: 599, comm: hexdump Not tainted 3.1.0-rc10-work+ #158 Bochs Bochs RIP: 0010:[<ffffffff81397628>] [<ffffffff81397628>] cfq_exit_single_io_context+0x58/0xf0 ... Call Trace: [<ffffffff81395a4a>] call_for_each_cic+0x5a/0x90 [<ffffffff81395ab5>] cfq_exit_io_context+0x15/0x20 [<ffffffff81389130>] exit_io_context+0x100/0x140 [<ffffffff81098a29>] do_exit+0x579/0x850 [<ffffffff81098d5b>] do_group_exit+0x5b/0xd0 [<ffffffff81098de7>] sys_exit_group+0x17/0x20 [<ffffffff81b02f2b>] system_call_fastpath+0x16/0x1b The only real hot path here is cic lookup during request initialization and avoiding extra locking requires very confined use of RCU. This patch makes cic removal from both ioc and request_queue perform double-locking and unlink immediately. * From q side, the change is almost trivial as ioc->lock nests inside queue_lock. It just needs to grab each ioc->lock as it walks cic_list and unlink it. * From ioc side, it's a bit more difficult because of inversed lock order. ioc needs its lock to walk its cic_list but can't grab the matching queue_lock and needs to perform unlock-relock dancing. Unlinking is now wholly done from put_io_context() and fast path is optimized by using the queue_lock the caller already holds, which is by far the most common case. If the ioc accessed multiple devices, it tries with trylock. In unlikely cases of fast path failure, it falls back to full double-locking dance from workqueue. Double-locking isn't the prettiest thing in the world but it's *far* simpler and more understandable than RCU trick without adding any meaningful overhead. This still leaves a lot of now unnecessary RCU logics. Future patches will trim them. -v2: Vivek pointed out that cic->q was being dereferenced after cic->release() was called. Updated to use local variable @this_q instead. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-12-13 16:33:39 -07:00
if (this_q != last_q) {
/*
* Need to switch to @this_q. Once we release
* @ioc->lock, it can go away along with @cic.
* Hold on to it.
*/
__blk_get_queue(this_q);
/*
* blk_put_queue() might sleep thanks to kobject
* idiocy. Always release both locks, put and
* restart.
*/
if (last_q) {
spin_unlock(last_q->queue_lock);
spin_unlock_irq(&ioc->lock);
blk_put_queue(last_q);
} else {
spin_unlock_irq(&ioc->lock);
}
last_q = this_q;
spin_lock_irq(this_q->queue_lock);
spin_lock(&ioc->lock);
continue;
}
ioc_exit_icq(icq);
block, cfq: unlink cfq_io_context's immediately cic is association between io_context and request_queue. A cic is linked from both ioc and q and should be destroyed when either one goes away. As ioc and q both have their own locks, locking becomes a bit complex - both orders work for removal from one but not from the other. Currently, cfq tries to circumvent this locking order issue with RCU. ioc->lock nests inside queue_lock but the radix tree and cic's are also protected by RCU allowing either side to walk their lists without grabbing lock. This rather unconventional use of RCU quickly devolves into extremely fragile convolution. e.g. The following is from cfqd going away too soon after ioc and q exits raced. general protection fault: 0000 [#1] PREEMPT SMP CPU 2 Modules linked in: [ 88.503444] Pid: 599, comm: hexdump Not tainted 3.1.0-rc10-work+ #158 Bochs Bochs RIP: 0010:[<ffffffff81397628>] [<ffffffff81397628>] cfq_exit_single_io_context+0x58/0xf0 ... Call Trace: [<ffffffff81395a4a>] call_for_each_cic+0x5a/0x90 [<ffffffff81395ab5>] cfq_exit_io_context+0x15/0x20 [<ffffffff81389130>] exit_io_context+0x100/0x140 [<ffffffff81098a29>] do_exit+0x579/0x850 [<ffffffff81098d5b>] do_group_exit+0x5b/0xd0 [<ffffffff81098de7>] sys_exit_group+0x17/0x20 [<ffffffff81b02f2b>] system_call_fastpath+0x16/0x1b The only real hot path here is cic lookup during request initialization and avoiding extra locking requires very confined use of RCU. This patch makes cic removal from both ioc and request_queue perform double-locking and unlink immediately. * From q side, the change is almost trivial as ioc->lock nests inside queue_lock. It just needs to grab each ioc->lock as it walks cic_list and unlink it. * From ioc side, it's a bit more difficult because of inversed lock order. ioc needs its lock to walk its cic_list but can't grab the matching queue_lock and needs to perform unlock-relock dancing. Unlinking is now wholly done from put_io_context() and fast path is optimized by using the queue_lock the caller already holds, which is by far the most common case. If the ioc accessed multiple devices, it tries with trylock. In unlikely cases of fast path failure, it falls back to full double-locking dance from workqueue. Double-locking isn't the prettiest thing in the world but it's *far* simpler and more understandable than RCU trick without adding any meaningful overhead. This still leaves a lot of now unnecessary RCU logics. Future patches will trim them. -v2: Vivek pointed out that cic->q was being dereferenced after cic->release() was called. Updated to use local variable @this_q instead. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-12-13 16:33:39 -07:00
}
block, cfq: unlink cfq_io_context's immediately cic is association between io_context and request_queue. A cic is linked from both ioc and q and should be destroyed when either one goes away. As ioc and q both have their own locks, locking becomes a bit complex - both orders work for removal from one but not from the other. Currently, cfq tries to circumvent this locking order issue with RCU. ioc->lock nests inside queue_lock but the radix tree and cic's are also protected by RCU allowing either side to walk their lists without grabbing lock. This rather unconventional use of RCU quickly devolves into extremely fragile convolution. e.g. The following is from cfqd going away too soon after ioc and q exits raced. general protection fault: 0000 [#1] PREEMPT SMP CPU 2 Modules linked in: [ 88.503444] Pid: 599, comm: hexdump Not tainted 3.1.0-rc10-work+ #158 Bochs Bochs RIP: 0010:[<ffffffff81397628>] [<ffffffff81397628>] cfq_exit_single_io_context+0x58/0xf0 ... Call Trace: [<ffffffff81395a4a>] call_for_each_cic+0x5a/0x90 [<ffffffff81395ab5>] cfq_exit_io_context+0x15/0x20 [<ffffffff81389130>] exit_io_context+0x100/0x140 [<ffffffff81098a29>] do_exit+0x579/0x850 [<ffffffff81098d5b>] do_group_exit+0x5b/0xd0 [<ffffffff81098de7>] sys_exit_group+0x17/0x20 [<ffffffff81b02f2b>] system_call_fastpath+0x16/0x1b The only real hot path here is cic lookup during request initialization and avoiding extra locking requires very confined use of RCU. This patch makes cic removal from both ioc and request_queue perform double-locking and unlink immediately. * From q side, the change is almost trivial as ioc->lock nests inside queue_lock. It just needs to grab each ioc->lock as it walks cic_list and unlink it. * From ioc side, it's a bit more difficult because of inversed lock order. ioc needs its lock to walk its cic_list but can't grab the matching queue_lock and needs to perform unlock-relock dancing. Unlinking is now wholly done from put_io_context() and fast path is optimized by using the queue_lock the caller already holds, which is by far the most common case. If the ioc accessed multiple devices, it tries with trylock. In unlikely cases of fast path failure, it falls back to full double-locking dance from workqueue. Double-locking isn't the prettiest thing in the world but it's *far* simpler and more understandable than RCU trick without adding any meaningful overhead. This still leaves a lot of now unnecessary RCU logics. Future patches will trim them. -v2: Vivek pointed out that cic->q was being dereferenced after cic->release() was called. Updated to use local variable @this_q instead. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-12-13 16:33:39 -07:00
if (last_q) {
spin_unlock(last_q->queue_lock);
spin_unlock_irq(&ioc->lock);
blk_put_queue(last_q);
} else {
spin_unlock_irq(&ioc->lock);
}
block, cfq: unlink cfq_io_context's immediately cic is association between io_context and request_queue. A cic is linked from both ioc and q and should be destroyed when either one goes away. As ioc and q both have their own locks, locking becomes a bit complex - both orders work for removal from one but not from the other. Currently, cfq tries to circumvent this locking order issue with RCU. ioc->lock nests inside queue_lock but the radix tree and cic's are also protected by RCU allowing either side to walk their lists without grabbing lock. This rather unconventional use of RCU quickly devolves into extremely fragile convolution. e.g. The following is from cfqd going away too soon after ioc and q exits raced. general protection fault: 0000 [#1] PREEMPT SMP CPU 2 Modules linked in: [ 88.503444] Pid: 599, comm: hexdump Not tainted 3.1.0-rc10-work+ #158 Bochs Bochs RIP: 0010:[<ffffffff81397628>] [<ffffffff81397628>] cfq_exit_single_io_context+0x58/0xf0 ... Call Trace: [<ffffffff81395a4a>] call_for_each_cic+0x5a/0x90 [<ffffffff81395ab5>] cfq_exit_io_context+0x15/0x20 [<ffffffff81389130>] exit_io_context+0x100/0x140 [<ffffffff81098a29>] do_exit+0x579/0x850 [<ffffffff81098d5b>] do_group_exit+0x5b/0xd0 [<ffffffff81098de7>] sys_exit_group+0x17/0x20 [<ffffffff81b02f2b>] system_call_fastpath+0x16/0x1b The only real hot path here is cic lookup during request initialization and avoiding extra locking requires very confined use of RCU. This patch makes cic removal from both ioc and request_queue perform double-locking and unlink immediately. * From q side, the change is almost trivial as ioc->lock nests inside queue_lock. It just needs to grab each ioc->lock as it walks cic_list and unlink it. * From ioc side, it's a bit more difficult because of inversed lock order. ioc needs its lock to walk its cic_list but can't grab the matching queue_lock and needs to perform unlock-relock dancing. Unlinking is now wholly done from put_io_context() and fast path is optimized by using the queue_lock the caller already holds, which is by far the most common case. If the ioc accessed multiple devices, it tries with trylock. In unlikely cases of fast path failure, it falls back to full double-locking dance from workqueue. Double-locking isn't the prettiest thing in the world but it's *far* simpler and more understandable than RCU trick without adding any meaningful overhead. This still leaves a lot of now unnecessary RCU logics. Future patches will trim them. -v2: Vivek pointed out that cic->q was being dereferenced after cic->release() was called. Updated to use local variable @this_q instead. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-12-13 16:33:39 -07:00
kmem_cache_free(iocontext_cachep, ioc);
}
/**
* put_io_context - put a reference of io_context
* @ioc: io_context to put
block, cfq: unlink cfq_io_context's immediately cic is association between io_context and request_queue. A cic is linked from both ioc and q and should be destroyed when either one goes away. As ioc and q both have their own locks, locking becomes a bit complex - both orders work for removal from one but not from the other. Currently, cfq tries to circumvent this locking order issue with RCU. ioc->lock nests inside queue_lock but the radix tree and cic's are also protected by RCU allowing either side to walk their lists without grabbing lock. This rather unconventional use of RCU quickly devolves into extremely fragile convolution. e.g. The following is from cfqd going away too soon after ioc and q exits raced. general protection fault: 0000 [#1] PREEMPT SMP CPU 2 Modules linked in: [ 88.503444] Pid: 599, comm: hexdump Not tainted 3.1.0-rc10-work+ #158 Bochs Bochs RIP: 0010:[<ffffffff81397628>] [<ffffffff81397628>] cfq_exit_single_io_context+0x58/0xf0 ... Call Trace: [<ffffffff81395a4a>] call_for_each_cic+0x5a/0x90 [<ffffffff81395ab5>] cfq_exit_io_context+0x15/0x20 [<ffffffff81389130>] exit_io_context+0x100/0x140 [<ffffffff81098a29>] do_exit+0x579/0x850 [<ffffffff81098d5b>] do_group_exit+0x5b/0xd0 [<ffffffff81098de7>] sys_exit_group+0x17/0x20 [<ffffffff81b02f2b>] system_call_fastpath+0x16/0x1b The only real hot path here is cic lookup during request initialization and avoiding extra locking requires very confined use of RCU. This patch makes cic removal from both ioc and request_queue perform double-locking and unlink immediately. * From q side, the change is almost trivial as ioc->lock nests inside queue_lock. It just needs to grab each ioc->lock as it walks cic_list and unlink it. * From ioc side, it's a bit more difficult because of inversed lock order. ioc needs its lock to walk its cic_list but can't grab the matching queue_lock and needs to perform unlock-relock dancing. Unlinking is now wholly done from put_io_context() and fast path is optimized by using the queue_lock the caller already holds, which is by far the most common case. If the ioc accessed multiple devices, it tries with trylock. In unlikely cases of fast path failure, it falls back to full double-locking dance from workqueue. Double-locking isn't the prettiest thing in the world but it's *far* simpler and more understandable than RCU trick without adding any meaningful overhead. This still leaves a lot of now unnecessary RCU logics. Future patches will trim them. -v2: Vivek pointed out that cic->q was being dereferenced after cic->release() was called. Updated to use local variable @this_q instead. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-12-13 16:33:39 -07:00
* @locked_q: request_queue the caller is holding queue_lock of (hint)
*
* Decrement reference count of @ioc and release it if the count reaches
block, cfq: unlink cfq_io_context's immediately cic is association between io_context and request_queue. A cic is linked from both ioc and q and should be destroyed when either one goes away. As ioc and q both have their own locks, locking becomes a bit complex - both orders work for removal from one but not from the other. Currently, cfq tries to circumvent this locking order issue with RCU. ioc->lock nests inside queue_lock but the radix tree and cic's are also protected by RCU allowing either side to walk their lists without grabbing lock. This rather unconventional use of RCU quickly devolves into extremely fragile convolution. e.g. The following is from cfqd going away too soon after ioc and q exits raced. general protection fault: 0000 [#1] PREEMPT SMP CPU 2 Modules linked in: [ 88.503444] Pid: 599, comm: hexdump Not tainted 3.1.0-rc10-work+ #158 Bochs Bochs RIP: 0010:[<ffffffff81397628>] [<ffffffff81397628>] cfq_exit_single_io_context+0x58/0xf0 ... Call Trace: [<ffffffff81395a4a>] call_for_each_cic+0x5a/0x90 [<ffffffff81395ab5>] cfq_exit_io_context+0x15/0x20 [<ffffffff81389130>] exit_io_context+0x100/0x140 [<ffffffff81098a29>] do_exit+0x579/0x850 [<ffffffff81098d5b>] do_group_exit+0x5b/0xd0 [<ffffffff81098de7>] sys_exit_group+0x17/0x20 [<ffffffff81b02f2b>] system_call_fastpath+0x16/0x1b The only real hot path here is cic lookup during request initialization and avoiding extra locking requires very confined use of RCU. This patch makes cic removal from both ioc and request_queue perform double-locking and unlink immediately. * From q side, the change is almost trivial as ioc->lock nests inside queue_lock. It just needs to grab each ioc->lock as it walks cic_list and unlink it. * From ioc side, it's a bit more difficult because of inversed lock order. ioc needs its lock to walk its cic_list but can't grab the matching queue_lock and needs to perform unlock-relock dancing. Unlinking is now wholly done from put_io_context() and fast path is optimized by using the queue_lock the caller already holds, which is by far the most common case. If the ioc accessed multiple devices, it tries with trylock. In unlikely cases of fast path failure, it falls back to full double-locking dance from workqueue. Double-locking isn't the prettiest thing in the world but it's *far* simpler and more understandable than RCU trick without adding any meaningful overhead. This still leaves a lot of now unnecessary RCU logics. Future patches will trim them. -v2: Vivek pointed out that cic->q was being dereferenced after cic->release() was called. Updated to use local variable @this_q instead. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-12-13 16:33:39 -07:00
* zero. If the caller is holding queue_lock of a queue, it can indicate
* that with @locked_q. This is an optimization hint and the caller is
* allowed to pass in %NULL even when it's holding a queue_lock.
*/
block, cfq: unlink cfq_io_context's immediately cic is association between io_context and request_queue. A cic is linked from both ioc and q and should be destroyed when either one goes away. As ioc and q both have their own locks, locking becomes a bit complex - both orders work for removal from one but not from the other. Currently, cfq tries to circumvent this locking order issue with RCU. ioc->lock nests inside queue_lock but the radix tree and cic's are also protected by RCU allowing either side to walk their lists without grabbing lock. This rather unconventional use of RCU quickly devolves into extremely fragile convolution. e.g. The following is from cfqd going away too soon after ioc and q exits raced. general protection fault: 0000 [#1] PREEMPT SMP CPU 2 Modules linked in: [ 88.503444] Pid: 599, comm: hexdump Not tainted 3.1.0-rc10-work+ #158 Bochs Bochs RIP: 0010:[<ffffffff81397628>] [<ffffffff81397628>] cfq_exit_single_io_context+0x58/0xf0 ... Call Trace: [<ffffffff81395a4a>] call_for_each_cic+0x5a/0x90 [<ffffffff81395ab5>] cfq_exit_io_context+0x15/0x20 [<ffffffff81389130>] exit_io_context+0x100/0x140 [<ffffffff81098a29>] do_exit+0x579/0x850 [<ffffffff81098d5b>] do_group_exit+0x5b/0xd0 [<ffffffff81098de7>] sys_exit_group+0x17/0x20 [<ffffffff81b02f2b>] system_call_fastpath+0x16/0x1b The only real hot path here is cic lookup during request initialization and avoiding extra locking requires very confined use of RCU. This patch makes cic removal from both ioc and request_queue perform double-locking and unlink immediately. * From q side, the change is almost trivial as ioc->lock nests inside queue_lock. It just needs to grab each ioc->lock as it walks cic_list and unlink it. * From ioc side, it's a bit more difficult because of inversed lock order. ioc needs its lock to walk its cic_list but can't grab the matching queue_lock and needs to perform unlock-relock dancing. Unlinking is now wholly done from put_io_context() and fast path is optimized by using the queue_lock the caller already holds, which is by far the most common case. If the ioc accessed multiple devices, it tries with trylock. In unlikely cases of fast path failure, it falls back to full double-locking dance from workqueue. Double-locking isn't the prettiest thing in the world but it's *far* simpler and more understandable than RCU trick without adding any meaningful overhead. This still leaves a lot of now unnecessary RCU logics. Future patches will trim them. -v2: Vivek pointed out that cic->q was being dereferenced after cic->release() was called. Updated to use local variable @this_q instead. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-12-13 16:33:39 -07:00
void put_io_context(struct io_context *ioc, struct request_queue *locked_q)
{
block, cfq: unlink cfq_io_context's immediately cic is association between io_context and request_queue. A cic is linked from both ioc and q and should be destroyed when either one goes away. As ioc and q both have their own locks, locking becomes a bit complex - both orders work for removal from one but not from the other. Currently, cfq tries to circumvent this locking order issue with RCU. ioc->lock nests inside queue_lock but the radix tree and cic's are also protected by RCU allowing either side to walk their lists without grabbing lock. This rather unconventional use of RCU quickly devolves into extremely fragile convolution. e.g. The following is from cfqd going away too soon after ioc and q exits raced. general protection fault: 0000 [#1] PREEMPT SMP CPU 2 Modules linked in: [ 88.503444] Pid: 599, comm: hexdump Not tainted 3.1.0-rc10-work+ #158 Bochs Bochs RIP: 0010:[<ffffffff81397628>] [<ffffffff81397628>] cfq_exit_single_io_context+0x58/0xf0 ... Call Trace: [<ffffffff81395a4a>] call_for_each_cic+0x5a/0x90 [<ffffffff81395ab5>] cfq_exit_io_context+0x15/0x20 [<ffffffff81389130>] exit_io_context+0x100/0x140 [<ffffffff81098a29>] do_exit+0x579/0x850 [<ffffffff81098d5b>] do_group_exit+0x5b/0xd0 [<ffffffff81098de7>] sys_exit_group+0x17/0x20 [<ffffffff81b02f2b>] system_call_fastpath+0x16/0x1b The only real hot path here is cic lookup during request initialization and avoiding extra locking requires very confined use of RCU. This patch makes cic removal from both ioc and request_queue perform double-locking and unlink immediately. * From q side, the change is almost trivial as ioc->lock nests inside queue_lock. It just needs to grab each ioc->lock as it walks cic_list and unlink it. * From ioc side, it's a bit more difficult because of inversed lock order. ioc needs its lock to walk its cic_list but can't grab the matching queue_lock and needs to perform unlock-relock dancing. Unlinking is now wholly done from put_io_context() and fast path is optimized by using the queue_lock the caller already holds, which is by far the most common case. If the ioc accessed multiple devices, it tries with trylock. In unlikely cases of fast path failure, it falls back to full double-locking dance from workqueue. Double-locking isn't the prettiest thing in the world but it's *far* simpler and more understandable than RCU trick without adding any meaningful overhead. This still leaves a lot of now unnecessary RCU logics. Future patches will trim them. -v2: Vivek pointed out that cic->q was being dereferenced after cic->release() was called. Updated to use local variable @this_q instead. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-12-13 16:33:39 -07:00
struct request_queue *last_q = locked_q;
unsigned long flags;
if (ioc == NULL)
return;
BUG_ON(atomic_long_read(&ioc->refcount) <= 0);
block, cfq: unlink cfq_io_context's immediately cic is association between io_context and request_queue. A cic is linked from both ioc and q and should be destroyed when either one goes away. As ioc and q both have their own locks, locking becomes a bit complex - both orders work for removal from one but not from the other. Currently, cfq tries to circumvent this locking order issue with RCU. ioc->lock nests inside queue_lock but the radix tree and cic's are also protected by RCU allowing either side to walk their lists without grabbing lock. This rather unconventional use of RCU quickly devolves into extremely fragile convolution. e.g. The following is from cfqd going away too soon after ioc and q exits raced. general protection fault: 0000 [#1] PREEMPT SMP CPU 2 Modules linked in: [ 88.503444] Pid: 599, comm: hexdump Not tainted 3.1.0-rc10-work+ #158 Bochs Bochs RIP: 0010:[<ffffffff81397628>] [<ffffffff81397628>] cfq_exit_single_io_context+0x58/0xf0 ... Call Trace: [<ffffffff81395a4a>] call_for_each_cic+0x5a/0x90 [<ffffffff81395ab5>] cfq_exit_io_context+0x15/0x20 [<ffffffff81389130>] exit_io_context+0x100/0x140 [<ffffffff81098a29>] do_exit+0x579/0x850 [<ffffffff81098d5b>] do_group_exit+0x5b/0xd0 [<ffffffff81098de7>] sys_exit_group+0x17/0x20 [<ffffffff81b02f2b>] system_call_fastpath+0x16/0x1b The only real hot path here is cic lookup during request initialization and avoiding extra locking requires very confined use of RCU. This patch makes cic removal from both ioc and request_queue perform double-locking and unlink immediately. * From q side, the change is almost trivial as ioc->lock nests inside queue_lock. It just needs to grab each ioc->lock as it walks cic_list and unlink it. * From ioc side, it's a bit more difficult because of inversed lock order. ioc needs its lock to walk its cic_list but can't grab the matching queue_lock and needs to perform unlock-relock dancing. Unlinking is now wholly done from put_io_context() and fast path is optimized by using the queue_lock the caller already holds, which is by far the most common case. If the ioc accessed multiple devices, it tries with trylock. In unlikely cases of fast path failure, it falls back to full double-locking dance from workqueue. Double-locking isn't the prettiest thing in the world but it's *far* simpler and more understandable than RCU trick without adding any meaningful overhead. This still leaves a lot of now unnecessary RCU logics. Future patches will trim them. -v2: Vivek pointed out that cic->q was being dereferenced after cic->release() was called. Updated to use local variable @this_q instead. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-12-13 16:33:39 -07:00
if (locked_q)
lockdep_assert_held(locked_q->queue_lock);
if (!atomic_long_dec_and_test(&ioc->refcount))
return;
block, cfq: unlink cfq_io_context's immediately cic is association between io_context and request_queue. A cic is linked from both ioc and q and should be destroyed when either one goes away. As ioc and q both have their own locks, locking becomes a bit complex - both orders work for removal from one but not from the other. Currently, cfq tries to circumvent this locking order issue with RCU. ioc->lock nests inside queue_lock but the radix tree and cic's are also protected by RCU allowing either side to walk their lists without grabbing lock. This rather unconventional use of RCU quickly devolves into extremely fragile convolution. e.g. The following is from cfqd going away too soon after ioc and q exits raced. general protection fault: 0000 [#1] PREEMPT SMP CPU 2 Modules linked in: [ 88.503444] Pid: 599, comm: hexdump Not tainted 3.1.0-rc10-work+ #158 Bochs Bochs RIP: 0010:[<ffffffff81397628>] [<ffffffff81397628>] cfq_exit_single_io_context+0x58/0xf0 ... Call Trace: [<ffffffff81395a4a>] call_for_each_cic+0x5a/0x90 [<ffffffff81395ab5>] cfq_exit_io_context+0x15/0x20 [<ffffffff81389130>] exit_io_context+0x100/0x140 [<ffffffff81098a29>] do_exit+0x579/0x850 [<ffffffff81098d5b>] do_group_exit+0x5b/0xd0 [<ffffffff81098de7>] sys_exit_group+0x17/0x20 [<ffffffff81b02f2b>] system_call_fastpath+0x16/0x1b The only real hot path here is cic lookup during request initialization and avoiding extra locking requires very confined use of RCU. This patch makes cic removal from both ioc and request_queue perform double-locking and unlink immediately. * From q side, the change is almost trivial as ioc->lock nests inside queue_lock. It just needs to grab each ioc->lock as it walks cic_list and unlink it. * From ioc side, it's a bit more difficult because of inversed lock order. ioc needs its lock to walk its cic_list but can't grab the matching queue_lock and needs to perform unlock-relock dancing. Unlinking is now wholly done from put_io_context() and fast path is optimized by using the queue_lock the caller already holds, which is by far the most common case. If the ioc accessed multiple devices, it tries with trylock. In unlikely cases of fast path failure, it falls back to full double-locking dance from workqueue. Double-locking isn't the prettiest thing in the world but it's *far* simpler and more understandable than RCU trick without adding any meaningful overhead. This still leaves a lot of now unnecessary RCU logics. Future patches will trim them. -v2: Vivek pointed out that cic->q was being dereferenced after cic->release() was called. Updated to use local variable @this_q instead. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-12-13 16:33:39 -07:00
/*
* Destroy @ioc. This is a bit messy because icq's are chained
block, cfq: unlink cfq_io_context's immediately cic is association between io_context and request_queue. A cic is linked from both ioc and q and should be destroyed when either one goes away. As ioc and q both have their own locks, locking becomes a bit complex - both orders work for removal from one but not from the other. Currently, cfq tries to circumvent this locking order issue with RCU. ioc->lock nests inside queue_lock but the radix tree and cic's are also protected by RCU allowing either side to walk their lists without grabbing lock. This rather unconventional use of RCU quickly devolves into extremely fragile convolution. e.g. The following is from cfqd going away too soon after ioc and q exits raced. general protection fault: 0000 [#1] PREEMPT SMP CPU 2 Modules linked in: [ 88.503444] Pid: 599, comm: hexdump Not tainted 3.1.0-rc10-work+ #158 Bochs Bochs RIP: 0010:[<ffffffff81397628>] [<ffffffff81397628>] cfq_exit_single_io_context+0x58/0xf0 ... Call Trace: [<ffffffff81395a4a>] call_for_each_cic+0x5a/0x90 [<ffffffff81395ab5>] cfq_exit_io_context+0x15/0x20 [<ffffffff81389130>] exit_io_context+0x100/0x140 [<ffffffff81098a29>] do_exit+0x579/0x850 [<ffffffff81098d5b>] do_group_exit+0x5b/0xd0 [<ffffffff81098de7>] sys_exit_group+0x17/0x20 [<ffffffff81b02f2b>] system_call_fastpath+0x16/0x1b The only real hot path here is cic lookup during request initialization and avoiding extra locking requires very confined use of RCU. This patch makes cic removal from both ioc and request_queue perform double-locking and unlink immediately. * From q side, the change is almost trivial as ioc->lock nests inside queue_lock. It just needs to grab each ioc->lock as it walks cic_list and unlink it. * From ioc side, it's a bit more difficult because of inversed lock order. ioc needs its lock to walk its cic_list but can't grab the matching queue_lock and needs to perform unlock-relock dancing. Unlinking is now wholly done from put_io_context() and fast path is optimized by using the queue_lock the caller already holds, which is by far the most common case. If the ioc accessed multiple devices, it tries with trylock. In unlikely cases of fast path failure, it falls back to full double-locking dance from workqueue. Double-locking isn't the prettiest thing in the world but it's *far* simpler and more understandable than RCU trick without adding any meaningful overhead. This still leaves a lot of now unnecessary RCU logics. Future patches will trim them. -v2: Vivek pointed out that cic->q was being dereferenced after cic->release() was called. Updated to use local variable @this_q instead. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-12-13 16:33:39 -07:00
* from both ioc and queue, and ioc->lock nests inside queue_lock.
* The inner ioc->lock should be held to walk our icq_list and then
* for each icq the outer matching queue_lock should be grabbed.
block, cfq: unlink cfq_io_context's immediately cic is association between io_context and request_queue. A cic is linked from both ioc and q and should be destroyed when either one goes away. As ioc and q both have their own locks, locking becomes a bit complex - both orders work for removal from one but not from the other. Currently, cfq tries to circumvent this locking order issue with RCU. ioc->lock nests inside queue_lock but the radix tree and cic's are also protected by RCU allowing either side to walk their lists without grabbing lock. This rather unconventional use of RCU quickly devolves into extremely fragile convolution. e.g. The following is from cfqd going away too soon after ioc and q exits raced. general protection fault: 0000 [#1] PREEMPT SMP CPU 2 Modules linked in: [ 88.503444] Pid: 599, comm: hexdump Not tainted 3.1.0-rc10-work+ #158 Bochs Bochs RIP: 0010:[<ffffffff81397628>] [<ffffffff81397628>] cfq_exit_single_io_context+0x58/0xf0 ... Call Trace: [<ffffffff81395a4a>] call_for_each_cic+0x5a/0x90 [<ffffffff81395ab5>] cfq_exit_io_context+0x15/0x20 [<ffffffff81389130>] exit_io_context+0x100/0x140 [<ffffffff81098a29>] do_exit+0x579/0x850 [<ffffffff81098d5b>] do_group_exit+0x5b/0xd0 [<ffffffff81098de7>] sys_exit_group+0x17/0x20 [<ffffffff81b02f2b>] system_call_fastpath+0x16/0x1b The only real hot path here is cic lookup during request initialization and avoiding extra locking requires very confined use of RCU. This patch makes cic removal from both ioc and request_queue perform double-locking and unlink immediately. * From q side, the change is almost trivial as ioc->lock nests inside queue_lock. It just needs to grab each ioc->lock as it walks cic_list and unlink it. * From ioc side, it's a bit more difficult because of inversed lock order. ioc needs its lock to walk its cic_list but can't grab the matching queue_lock and needs to perform unlock-relock dancing. Unlinking is now wholly done from put_io_context() and fast path is optimized by using the queue_lock the caller already holds, which is by far the most common case. If the ioc accessed multiple devices, it tries with trylock. In unlikely cases of fast path failure, it falls back to full double-locking dance from workqueue. Double-locking isn't the prettiest thing in the world but it's *far* simpler and more understandable than RCU trick without adding any meaningful overhead. This still leaves a lot of now unnecessary RCU logics. Future patches will trim them. -v2: Vivek pointed out that cic->q was being dereferenced after cic->release() was called. Updated to use local variable @this_q instead. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-12-13 16:33:39 -07:00
* ie. We need to do reverse-order double lock dancing.
*
* Another twist is that we are often called with one of the
* matching queue_locks held as indicated by @locked_q, which
* prevents performing double-lock dance for other queues.
*
* So, we do it in two stages. The fast path uses the queue_lock
* the caller is holding and, if other queues need to be accessed,
* uses trylock to avoid introducing locking dependency. This can
* handle most cases, especially if @ioc was performing IO on only
* single device.
*
* If trylock doesn't cut it, we defer to @ioc->release_work which
* can do all the double-locking dancing.
*/
spin_lock_irqsave_nested(&ioc->lock, flags,
ioc_release_depth(locked_q));
while (!hlist_empty(&ioc->icq_list)) {
struct io_cq *icq = hlist_entry(ioc->icq_list.first,
struct io_cq, ioc_node);
struct request_queue *this_q = icq->q;
block, cfq: unlink cfq_io_context's immediately cic is association between io_context and request_queue. A cic is linked from both ioc and q and should be destroyed when either one goes away. As ioc and q both have their own locks, locking becomes a bit complex - both orders work for removal from one but not from the other. Currently, cfq tries to circumvent this locking order issue with RCU. ioc->lock nests inside queue_lock but the radix tree and cic's are also protected by RCU allowing either side to walk their lists without grabbing lock. This rather unconventional use of RCU quickly devolves into extremely fragile convolution. e.g. The following is from cfqd going away too soon after ioc and q exits raced. general protection fault: 0000 [#1] PREEMPT SMP CPU 2 Modules linked in: [ 88.503444] Pid: 599, comm: hexdump Not tainted 3.1.0-rc10-work+ #158 Bochs Bochs RIP: 0010:[<ffffffff81397628>] [<ffffffff81397628>] cfq_exit_single_io_context+0x58/0xf0 ... Call Trace: [<ffffffff81395a4a>] call_for_each_cic+0x5a/0x90 [<ffffffff81395ab5>] cfq_exit_io_context+0x15/0x20 [<ffffffff81389130>] exit_io_context+0x100/0x140 [<ffffffff81098a29>] do_exit+0x579/0x850 [<ffffffff81098d5b>] do_group_exit+0x5b/0xd0 [<ffffffff81098de7>] sys_exit_group+0x17/0x20 [<ffffffff81b02f2b>] system_call_fastpath+0x16/0x1b The only real hot path here is cic lookup during request initialization and avoiding extra locking requires very confined use of RCU. This patch makes cic removal from both ioc and request_queue perform double-locking and unlink immediately. * From q side, the change is almost trivial as ioc->lock nests inside queue_lock. It just needs to grab each ioc->lock as it walks cic_list and unlink it. * From ioc side, it's a bit more difficult because of inversed lock order. ioc needs its lock to walk its cic_list but can't grab the matching queue_lock and needs to perform unlock-relock dancing. Unlinking is now wholly done from put_io_context() and fast path is optimized by using the queue_lock the caller already holds, which is by far the most common case. If the ioc accessed multiple devices, it tries with trylock. In unlikely cases of fast path failure, it falls back to full double-locking dance from workqueue. Double-locking isn't the prettiest thing in the world but it's *far* simpler and more understandable than RCU trick without adding any meaningful overhead. This still leaves a lot of now unnecessary RCU logics. Future patches will trim them. -v2: Vivek pointed out that cic->q was being dereferenced after cic->release() was called. Updated to use local variable @this_q instead. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-12-13 16:33:39 -07:00
if (this_q != last_q) {
if (last_q && last_q != locked_q)
spin_unlock(last_q->queue_lock);
last_q = NULL;
if (!spin_trylock(this_q->queue_lock))
break;
last_q = this_q;
continue;
}
ioc_exit_icq(icq);
block, cfq: unlink cfq_io_context's immediately cic is association between io_context and request_queue. A cic is linked from both ioc and q and should be destroyed when either one goes away. As ioc and q both have their own locks, locking becomes a bit complex - both orders work for removal from one but not from the other. Currently, cfq tries to circumvent this locking order issue with RCU. ioc->lock nests inside queue_lock but the radix tree and cic's are also protected by RCU allowing either side to walk their lists without grabbing lock. This rather unconventional use of RCU quickly devolves into extremely fragile convolution. e.g. The following is from cfqd going away too soon after ioc and q exits raced. general protection fault: 0000 [#1] PREEMPT SMP CPU 2 Modules linked in: [ 88.503444] Pid: 599, comm: hexdump Not tainted 3.1.0-rc10-work+ #158 Bochs Bochs RIP: 0010:[<ffffffff81397628>] [<ffffffff81397628>] cfq_exit_single_io_context+0x58/0xf0 ... Call Trace: [<ffffffff81395a4a>] call_for_each_cic+0x5a/0x90 [<ffffffff81395ab5>] cfq_exit_io_context+0x15/0x20 [<ffffffff81389130>] exit_io_context+0x100/0x140 [<ffffffff81098a29>] do_exit+0x579/0x850 [<ffffffff81098d5b>] do_group_exit+0x5b/0xd0 [<ffffffff81098de7>] sys_exit_group+0x17/0x20 [<ffffffff81b02f2b>] system_call_fastpath+0x16/0x1b The only real hot path here is cic lookup during request initialization and avoiding extra locking requires very confined use of RCU. This patch makes cic removal from both ioc and request_queue perform double-locking and unlink immediately. * From q side, the change is almost trivial as ioc->lock nests inside queue_lock. It just needs to grab each ioc->lock as it walks cic_list and unlink it. * From ioc side, it's a bit more difficult because of inversed lock order. ioc needs its lock to walk its cic_list but can't grab the matching queue_lock and needs to perform unlock-relock dancing. Unlinking is now wholly done from put_io_context() and fast path is optimized by using the queue_lock the caller already holds, which is by far the most common case. If the ioc accessed multiple devices, it tries with trylock. In unlikely cases of fast path failure, it falls back to full double-locking dance from workqueue. Double-locking isn't the prettiest thing in the world but it's *far* simpler and more understandable than RCU trick without adding any meaningful overhead. This still leaves a lot of now unnecessary RCU logics. Future patches will trim them. -v2: Vivek pointed out that cic->q was being dereferenced after cic->release() was called. Updated to use local variable @this_q instead. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-12-13 16:33:39 -07:00
}
block, cfq: unlink cfq_io_context's immediately cic is association between io_context and request_queue. A cic is linked from both ioc and q and should be destroyed when either one goes away. As ioc and q both have their own locks, locking becomes a bit complex - both orders work for removal from one but not from the other. Currently, cfq tries to circumvent this locking order issue with RCU. ioc->lock nests inside queue_lock but the radix tree and cic's are also protected by RCU allowing either side to walk their lists without grabbing lock. This rather unconventional use of RCU quickly devolves into extremely fragile convolution. e.g. The following is from cfqd going away too soon after ioc and q exits raced. general protection fault: 0000 [#1] PREEMPT SMP CPU 2 Modules linked in: [ 88.503444] Pid: 599, comm: hexdump Not tainted 3.1.0-rc10-work+ #158 Bochs Bochs RIP: 0010:[<ffffffff81397628>] [<ffffffff81397628>] cfq_exit_single_io_context+0x58/0xf0 ... Call Trace: [<ffffffff81395a4a>] call_for_each_cic+0x5a/0x90 [<ffffffff81395ab5>] cfq_exit_io_context+0x15/0x20 [<ffffffff81389130>] exit_io_context+0x100/0x140 [<ffffffff81098a29>] do_exit+0x579/0x850 [<ffffffff81098d5b>] do_group_exit+0x5b/0xd0 [<ffffffff81098de7>] sys_exit_group+0x17/0x20 [<ffffffff81b02f2b>] system_call_fastpath+0x16/0x1b The only real hot path here is cic lookup during request initialization and avoiding extra locking requires very confined use of RCU. This patch makes cic removal from both ioc and request_queue perform double-locking and unlink immediately. * From q side, the change is almost trivial as ioc->lock nests inside queue_lock. It just needs to grab each ioc->lock as it walks cic_list and unlink it. * From ioc side, it's a bit more difficult because of inversed lock order. ioc needs its lock to walk its cic_list but can't grab the matching queue_lock and needs to perform unlock-relock dancing. Unlinking is now wholly done from put_io_context() and fast path is optimized by using the queue_lock the caller already holds, which is by far the most common case. If the ioc accessed multiple devices, it tries with trylock. In unlikely cases of fast path failure, it falls back to full double-locking dance from workqueue. Double-locking isn't the prettiest thing in the world but it's *far* simpler and more understandable than RCU trick without adding any meaningful overhead. This still leaves a lot of now unnecessary RCU logics. Future patches will trim them. -v2: Vivek pointed out that cic->q was being dereferenced after cic->release() was called. Updated to use local variable @this_q instead. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-12-13 16:33:39 -07:00
if (last_q && last_q != locked_q)
spin_unlock(last_q->queue_lock);
block, cfq: unlink cfq_io_context's immediately cic is association between io_context and request_queue. A cic is linked from both ioc and q and should be destroyed when either one goes away. As ioc and q both have their own locks, locking becomes a bit complex - both orders work for removal from one but not from the other. Currently, cfq tries to circumvent this locking order issue with RCU. ioc->lock nests inside queue_lock but the radix tree and cic's are also protected by RCU allowing either side to walk their lists without grabbing lock. This rather unconventional use of RCU quickly devolves into extremely fragile convolution. e.g. The following is from cfqd going away too soon after ioc and q exits raced. general protection fault: 0000 [#1] PREEMPT SMP CPU 2 Modules linked in: [ 88.503444] Pid: 599, comm: hexdump Not tainted 3.1.0-rc10-work+ #158 Bochs Bochs RIP: 0010:[<ffffffff81397628>] [<ffffffff81397628>] cfq_exit_single_io_context+0x58/0xf0 ... Call Trace: [<ffffffff81395a4a>] call_for_each_cic+0x5a/0x90 [<ffffffff81395ab5>] cfq_exit_io_context+0x15/0x20 [<ffffffff81389130>] exit_io_context+0x100/0x140 [<ffffffff81098a29>] do_exit+0x579/0x850 [<ffffffff81098d5b>] do_group_exit+0x5b/0xd0 [<ffffffff81098de7>] sys_exit_group+0x17/0x20 [<ffffffff81b02f2b>] system_call_fastpath+0x16/0x1b The only real hot path here is cic lookup during request initialization and avoiding extra locking requires very confined use of RCU. This patch makes cic removal from both ioc and request_queue perform double-locking and unlink immediately. * From q side, the change is almost trivial as ioc->lock nests inside queue_lock. It just needs to grab each ioc->lock as it walks cic_list and unlink it. * From ioc side, it's a bit more difficult because of inversed lock order. ioc needs its lock to walk its cic_list but can't grab the matching queue_lock and needs to perform unlock-relock dancing. Unlinking is now wholly done from put_io_context() and fast path is optimized by using the queue_lock the caller already holds, which is by far the most common case. If the ioc accessed multiple devices, it tries with trylock. In unlikely cases of fast path failure, it falls back to full double-locking dance from workqueue. Double-locking isn't the prettiest thing in the world but it's *far* simpler and more understandable than RCU trick without adding any meaningful overhead. This still leaves a lot of now unnecessary RCU logics. Future patches will trim them. -v2: Vivek pointed out that cic->q was being dereferenced after cic->release() was called. Updated to use local variable @this_q instead. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-12-13 16:33:39 -07:00
spin_unlock_irqrestore(&ioc->lock, flags);
/* if no icq is left, we're done; otherwise, kick release_work */
if (hlist_empty(&ioc->icq_list))
block, cfq: unlink cfq_io_context's immediately cic is association between io_context and request_queue. A cic is linked from both ioc and q and should be destroyed when either one goes away. As ioc and q both have their own locks, locking becomes a bit complex - both orders work for removal from one but not from the other. Currently, cfq tries to circumvent this locking order issue with RCU. ioc->lock nests inside queue_lock but the radix tree and cic's are also protected by RCU allowing either side to walk their lists without grabbing lock. This rather unconventional use of RCU quickly devolves into extremely fragile convolution. e.g. The following is from cfqd going away too soon after ioc and q exits raced. general protection fault: 0000 [#1] PREEMPT SMP CPU 2 Modules linked in: [ 88.503444] Pid: 599, comm: hexdump Not tainted 3.1.0-rc10-work+ #158 Bochs Bochs RIP: 0010:[<ffffffff81397628>] [<ffffffff81397628>] cfq_exit_single_io_context+0x58/0xf0 ... Call Trace: [<ffffffff81395a4a>] call_for_each_cic+0x5a/0x90 [<ffffffff81395ab5>] cfq_exit_io_context+0x15/0x20 [<ffffffff81389130>] exit_io_context+0x100/0x140 [<ffffffff81098a29>] do_exit+0x579/0x850 [<ffffffff81098d5b>] do_group_exit+0x5b/0xd0 [<ffffffff81098de7>] sys_exit_group+0x17/0x20 [<ffffffff81b02f2b>] system_call_fastpath+0x16/0x1b The only real hot path here is cic lookup during request initialization and avoiding extra locking requires very confined use of RCU. This patch makes cic removal from both ioc and request_queue perform double-locking and unlink immediately. * From q side, the change is almost trivial as ioc->lock nests inside queue_lock. It just needs to grab each ioc->lock as it walks cic_list and unlink it. * From ioc side, it's a bit more difficult because of inversed lock order. ioc needs its lock to walk its cic_list but can't grab the matching queue_lock and needs to perform unlock-relock dancing. Unlinking is now wholly done from put_io_context() and fast path is optimized by using the queue_lock the caller already holds, which is by far the most common case. If the ioc accessed multiple devices, it tries with trylock. In unlikely cases of fast path failure, it falls back to full double-locking dance from workqueue. Double-locking isn't the prettiest thing in the world but it's *far* simpler and more understandable than RCU trick without adding any meaningful overhead. This still leaves a lot of now unnecessary RCU logics. Future patches will trim them. -v2: Vivek pointed out that cic->q was being dereferenced after cic->release() was called. Updated to use local variable @this_q instead. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-12-13 16:33:39 -07:00
kmem_cache_free(iocontext_cachep, ioc);
else
schedule_work(&ioc->release_work);
}
block, cfq: unlink cfq_io_context's immediately cic is association between io_context and request_queue. A cic is linked from both ioc and q and should be destroyed when either one goes away. As ioc and q both have their own locks, locking becomes a bit complex - both orders work for removal from one but not from the other. Currently, cfq tries to circumvent this locking order issue with RCU. ioc->lock nests inside queue_lock but the radix tree and cic's are also protected by RCU allowing either side to walk their lists without grabbing lock. This rather unconventional use of RCU quickly devolves into extremely fragile convolution. e.g. The following is from cfqd going away too soon after ioc and q exits raced. general protection fault: 0000 [#1] PREEMPT SMP CPU 2 Modules linked in: [ 88.503444] Pid: 599, comm: hexdump Not tainted 3.1.0-rc10-work+ #158 Bochs Bochs RIP: 0010:[<ffffffff81397628>] [<ffffffff81397628>] cfq_exit_single_io_context+0x58/0xf0 ... Call Trace: [<ffffffff81395a4a>] call_for_each_cic+0x5a/0x90 [<ffffffff81395ab5>] cfq_exit_io_context+0x15/0x20 [<ffffffff81389130>] exit_io_context+0x100/0x140 [<ffffffff81098a29>] do_exit+0x579/0x850 [<ffffffff81098d5b>] do_group_exit+0x5b/0xd0 [<ffffffff81098de7>] sys_exit_group+0x17/0x20 [<ffffffff81b02f2b>] system_call_fastpath+0x16/0x1b The only real hot path here is cic lookup during request initialization and avoiding extra locking requires very confined use of RCU. This patch makes cic removal from both ioc and request_queue perform double-locking and unlink immediately. * From q side, the change is almost trivial as ioc->lock nests inside queue_lock. It just needs to grab each ioc->lock as it walks cic_list and unlink it. * From ioc side, it's a bit more difficult because of inversed lock order. ioc needs its lock to walk its cic_list but can't grab the matching queue_lock and needs to perform unlock-relock dancing. Unlinking is now wholly done from put_io_context() and fast path is optimized by using the queue_lock the caller already holds, which is by far the most common case. If the ioc accessed multiple devices, it tries with trylock. In unlikely cases of fast path failure, it falls back to full double-locking dance from workqueue. Double-locking isn't the prettiest thing in the world but it's *far* simpler and more understandable than RCU trick without adding any meaningful overhead. This still leaves a lot of now unnecessary RCU logics. Future patches will trim them. -v2: Vivek pointed out that cic->q was being dereferenced after cic->release() was called. Updated to use local variable @this_q instead. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-12-13 16:33:39 -07:00
EXPORT_SYMBOL(put_io_context);
/* Called by the exiting task */
void exit_io_context(struct task_struct *task)
{
struct io_context *ioc;
block: make ioc get/put interface more conventional and fix race on alloction Ignoring copy_io() during fork, io_context can be allocated from two places - current_io_context() and set_task_ioprio(). The former is always called from local task while the latter can be called from different task. The synchornization between them are peculiar and dubious. * current_io_context() doesn't grab task_lock() and assumes that if it saw %NULL ->io_context, it would stay that way until allocation and assignment is complete. It has smp_wmb() between alloc/init and assignment. * set_task_ioprio() grabs task_lock() for assignment and does smp_read_barrier_depends() between "ioc = task->io_context" and "if (ioc)". Unfortunately, this doesn't achieve anything - the latter is not a dependent load of the former. ie, if ioc itself were being dereferenced "ioc->xxx", it would mean something (not sure what tho) but as the code currently stands, the dependent read barrier is noop. As only one of the the two test-assignment sequences is task_lock() protected, the task_lock() can't do much about race between the two. Nothing prevents current_io_context() and set_task_ioprio() allocating its own ioc for the same task and overwriting the other's. Also, set_task_ioprio() can race with exiting task and create a new ioc after exit_io_context() is finished. ioc get/put doesn't have any reason to be complex. The only hot path is accessing the existing ioc of %current, which is simple to achieve given that ->io_context is never destroyed as long as the task is alive. All other paths can happily go through task_lock() like all other task sub structures without impacting anything. This patch updates ioc get/put so that it becomes more conventional. * alloc_io_context() is replaced with get_task_io_context(). This is the only interface which can acquire access to ioc of another task. On return, the caller has an explicit reference to the object which should be put using put_io_context() afterwards. * The functionality of current_io_context() remains the same but when creating a new ioc, it shares the code path with get_task_io_context() and always goes through task_lock(). * get_io_context() now means incrementing ref on an ioc which the caller already has access to (be that an explicit refcnt or implicit %current one). * PF_EXITING inhibits creation of new io_context and once exit_io_context() is finished, it's guaranteed that both ioc acquisition functions return %NULL. * All users are updated. Most are trivial but smp_read_barrier_depends() removal from cfq_get_io_context() needs a bit of explanation. I suppose the original intention was to ensure ioc->ioprio is visible when set_task_ioprio() allocates new io_context and installs it; however, this wouldn't have worked because set_task_ioprio() doesn't have wmb between init and install. There are other problems with this which will be fixed in another patch. * While at it, use NUMA_NO_NODE instead of -1 for wildcard node specification. -v2: Vivek spotted contamination from debug patch. Removed. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-12-13 16:33:38 -07:00
/* PF_EXITING prevents new io_context from being attached to @task */
WARN_ON_ONCE(!(current->flags & PF_EXITING));
task_lock(task);
ioc = task->io_context;
task->io_context = NULL;
task_unlock(task);
block, cfq: unlink cfq_io_context's immediately cic is association between io_context and request_queue. A cic is linked from both ioc and q and should be destroyed when either one goes away. As ioc and q both have their own locks, locking becomes a bit complex - both orders work for removal from one but not from the other. Currently, cfq tries to circumvent this locking order issue with RCU. ioc->lock nests inside queue_lock but the radix tree and cic's are also protected by RCU allowing either side to walk their lists without grabbing lock. This rather unconventional use of RCU quickly devolves into extremely fragile convolution. e.g. The following is from cfqd going away too soon after ioc and q exits raced. general protection fault: 0000 [#1] PREEMPT SMP CPU 2 Modules linked in: [ 88.503444] Pid: 599, comm: hexdump Not tainted 3.1.0-rc10-work+ #158 Bochs Bochs RIP: 0010:[<ffffffff81397628>] [<ffffffff81397628>] cfq_exit_single_io_context+0x58/0xf0 ... Call Trace: [<ffffffff81395a4a>] call_for_each_cic+0x5a/0x90 [<ffffffff81395ab5>] cfq_exit_io_context+0x15/0x20 [<ffffffff81389130>] exit_io_context+0x100/0x140 [<ffffffff81098a29>] do_exit+0x579/0x850 [<ffffffff81098d5b>] do_group_exit+0x5b/0xd0 [<ffffffff81098de7>] sys_exit_group+0x17/0x20 [<ffffffff81b02f2b>] system_call_fastpath+0x16/0x1b The only real hot path here is cic lookup during request initialization and avoiding extra locking requires very confined use of RCU. This patch makes cic removal from both ioc and request_queue perform double-locking and unlink immediately. * From q side, the change is almost trivial as ioc->lock nests inside queue_lock. It just needs to grab each ioc->lock as it walks cic_list and unlink it. * From ioc side, it's a bit more difficult because of inversed lock order. ioc needs its lock to walk its cic_list but can't grab the matching queue_lock and needs to perform unlock-relock dancing. Unlinking is now wholly done from put_io_context() and fast path is optimized by using the queue_lock the caller already holds, which is by far the most common case. If the ioc accessed multiple devices, it tries with trylock. In unlikely cases of fast path failure, it falls back to full double-locking dance from workqueue. Double-locking isn't the prettiest thing in the world but it's *far* simpler and more understandable than RCU trick without adding any meaningful overhead. This still leaves a lot of now unnecessary RCU logics. Future patches will trim them. -v2: Vivek pointed out that cic->q was being dereferenced after cic->release() was called. Updated to use local variable @this_q instead. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-12-13 16:33:39 -07:00
atomic_dec(&ioc->nr_tasks);
put_io_context(ioc, NULL);
}
/**
* ioc_clear_queue - break any ioc association with the specified queue
* @q: request_queue being cleared
*
* Walk @q->icq_list and exit all io_cq's. Must be called with @q locked.
*/
void ioc_clear_queue(struct request_queue *q)
{
lockdep_assert_held(q->queue_lock);
while (!list_empty(&q->icq_list)) {
struct io_cq *icq = list_entry(q->icq_list.next,
struct io_cq, q_node);
struct io_context *ioc = icq->ioc;
spin_lock(&ioc->lock);
ioc_exit_icq(icq);
spin_unlock(&ioc->lock);
}
}
void create_io_context_slowpath(struct task_struct *task, gfp_t gfp_flags,
int node)
{
struct io_context *ioc;
ioc = kmem_cache_alloc_node(iocontext_cachep, gfp_flags | __GFP_ZERO,
node);
if (unlikely(!ioc))
return;
/* initialize */
atomic_long_set(&ioc->refcount, 1);
atomic_set(&ioc->nr_tasks, 1);
spin_lock_init(&ioc->lock);
INIT_RADIX_TREE(&ioc->icq_tree, GFP_ATOMIC | __GFP_HIGH);
INIT_HLIST_HEAD(&ioc->icq_list);
block, cfq: unlink cfq_io_context's immediately cic is association between io_context and request_queue. A cic is linked from both ioc and q and should be destroyed when either one goes away. As ioc and q both have their own locks, locking becomes a bit complex - both orders work for removal from one but not from the other. Currently, cfq tries to circumvent this locking order issue with RCU. ioc->lock nests inside queue_lock but the radix tree and cic's are also protected by RCU allowing either side to walk their lists without grabbing lock. This rather unconventional use of RCU quickly devolves into extremely fragile convolution. e.g. The following is from cfqd going away too soon after ioc and q exits raced. general protection fault: 0000 [#1] PREEMPT SMP CPU 2 Modules linked in: [ 88.503444] Pid: 599, comm: hexdump Not tainted 3.1.0-rc10-work+ #158 Bochs Bochs RIP: 0010:[<ffffffff81397628>] [<ffffffff81397628>] cfq_exit_single_io_context+0x58/0xf0 ... Call Trace: [<ffffffff81395a4a>] call_for_each_cic+0x5a/0x90 [<ffffffff81395ab5>] cfq_exit_io_context+0x15/0x20 [<ffffffff81389130>] exit_io_context+0x100/0x140 [<ffffffff81098a29>] do_exit+0x579/0x850 [<ffffffff81098d5b>] do_group_exit+0x5b/0xd0 [<ffffffff81098de7>] sys_exit_group+0x17/0x20 [<ffffffff81b02f2b>] system_call_fastpath+0x16/0x1b The only real hot path here is cic lookup during request initialization and avoiding extra locking requires very confined use of RCU. This patch makes cic removal from both ioc and request_queue perform double-locking and unlink immediately. * From q side, the change is almost trivial as ioc->lock nests inside queue_lock. It just needs to grab each ioc->lock as it walks cic_list and unlink it. * From ioc side, it's a bit more difficult because of inversed lock order. ioc needs its lock to walk its cic_list but can't grab the matching queue_lock and needs to perform unlock-relock dancing. Unlinking is now wholly done from put_io_context() and fast path is optimized by using the queue_lock the caller already holds, which is by far the most common case. If the ioc accessed multiple devices, it tries with trylock. In unlikely cases of fast path failure, it falls back to full double-locking dance from workqueue. Double-locking isn't the prettiest thing in the world but it's *far* simpler and more understandable than RCU trick without adding any meaningful overhead. This still leaves a lot of now unnecessary RCU logics. Future patches will trim them. -v2: Vivek pointed out that cic->q was being dereferenced after cic->release() was called. Updated to use local variable @this_q instead. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-12-13 16:33:39 -07:00
INIT_WORK(&ioc->release_work, ioc_release_fn);
block: make ioc get/put interface more conventional and fix race on alloction Ignoring copy_io() during fork, io_context can be allocated from two places - current_io_context() and set_task_ioprio(). The former is always called from local task while the latter can be called from different task. The synchornization between them are peculiar and dubious. * current_io_context() doesn't grab task_lock() and assumes that if it saw %NULL ->io_context, it would stay that way until allocation and assignment is complete. It has smp_wmb() between alloc/init and assignment. * set_task_ioprio() grabs task_lock() for assignment and does smp_read_barrier_depends() between "ioc = task->io_context" and "if (ioc)". Unfortunately, this doesn't achieve anything - the latter is not a dependent load of the former. ie, if ioc itself were being dereferenced "ioc->xxx", it would mean something (not sure what tho) but as the code currently stands, the dependent read barrier is noop. As only one of the the two test-assignment sequences is task_lock() protected, the task_lock() can't do much about race between the two. Nothing prevents current_io_context() and set_task_ioprio() allocating its own ioc for the same task and overwriting the other's. Also, set_task_ioprio() can race with exiting task and create a new ioc after exit_io_context() is finished. ioc get/put doesn't have any reason to be complex. The only hot path is accessing the existing ioc of %current, which is simple to achieve given that ->io_context is never destroyed as long as the task is alive. All other paths can happily go through task_lock() like all other task sub structures without impacting anything. This patch updates ioc get/put so that it becomes more conventional. * alloc_io_context() is replaced with get_task_io_context(). This is the only interface which can acquire access to ioc of another task. On return, the caller has an explicit reference to the object which should be put using put_io_context() afterwards. * The functionality of current_io_context() remains the same but when creating a new ioc, it shares the code path with get_task_io_context() and always goes through task_lock(). * get_io_context() now means incrementing ref on an ioc which the caller already has access to (be that an explicit refcnt or implicit %current one). * PF_EXITING inhibits creation of new io_context and once exit_io_context() is finished, it's guaranteed that both ioc acquisition functions return %NULL. * All users are updated. Most are trivial but smp_read_barrier_depends() removal from cfq_get_io_context() needs a bit of explanation. I suppose the original intention was to ensure ioc->ioprio is visible when set_task_ioprio() allocates new io_context and installs it; however, this wouldn't have worked because set_task_ioprio() doesn't have wmb between init and install. There are other problems with this which will be fixed in another patch. * While at it, use NUMA_NO_NODE instead of -1 for wildcard node specification. -v2: Vivek spotted contamination from debug patch. Removed. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-12-13 16:33:38 -07:00
/* try to install, somebody might already have beaten us to it */
task_lock(task);
if (!task->io_context && !(task->flags & PF_EXITING))
block: make ioc get/put interface more conventional and fix race on alloction Ignoring copy_io() during fork, io_context can be allocated from two places - current_io_context() and set_task_ioprio(). The former is always called from local task while the latter can be called from different task. The synchornization between them are peculiar and dubious. * current_io_context() doesn't grab task_lock() and assumes that if it saw %NULL ->io_context, it would stay that way until allocation and assignment is complete. It has smp_wmb() between alloc/init and assignment. * set_task_ioprio() grabs task_lock() for assignment and does smp_read_barrier_depends() between "ioc = task->io_context" and "if (ioc)". Unfortunately, this doesn't achieve anything - the latter is not a dependent load of the former. ie, if ioc itself were being dereferenced "ioc->xxx", it would mean something (not sure what tho) but as the code currently stands, the dependent read barrier is noop. As only one of the the two test-assignment sequences is task_lock() protected, the task_lock() can't do much about race between the two. Nothing prevents current_io_context() and set_task_ioprio() allocating its own ioc for the same task and overwriting the other's. Also, set_task_ioprio() can race with exiting task and create a new ioc after exit_io_context() is finished. ioc get/put doesn't have any reason to be complex. The only hot path is accessing the existing ioc of %current, which is simple to achieve given that ->io_context is never destroyed as long as the task is alive. All other paths can happily go through task_lock() like all other task sub structures without impacting anything. This patch updates ioc get/put so that it becomes more conventional. * alloc_io_context() is replaced with get_task_io_context(). This is the only interface which can acquire access to ioc of another task. On return, the caller has an explicit reference to the object which should be put using put_io_context() afterwards. * The functionality of current_io_context() remains the same but when creating a new ioc, it shares the code path with get_task_io_context() and always goes through task_lock(). * get_io_context() now means incrementing ref on an ioc which the caller already has access to (be that an explicit refcnt or implicit %current one). * PF_EXITING inhibits creation of new io_context and once exit_io_context() is finished, it's guaranteed that both ioc acquisition functions return %NULL. * All users are updated. Most are trivial but smp_read_barrier_depends() removal from cfq_get_io_context() needs a bit of explanation. I suppose the original intention was to ensure ioc->ioprio is visible when set_task_ioprio() allocates new io_context and installs it; however, this wouldn't have worked because set_task_ioprio() doesn't have wmb between init and install. There are other problems with this which will be fixed in another patch. * While at it, use NUMA_NO_NODE instead of -1 for wildcard node specification. -v2: Vivek spotted contamination from debug patch. Removed. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-12-13 16:33:38 -07:00
task->io_context = ioc;
else
block: make ioc get/put interface more conventional and fix race on alloction Ignoring copy_io() during fork, io_context can be allocated from two places - current_io_context() and set_task_ioprio(). The former is always called from local task while the latter can be called from different task. The synchornization between them are peculiar and dubious. * current_io_context() doesn't grab task_lock() and assumes that if it saw %NULL ->io_context, it would stay that way until allocation and assignment is complete. It has smp_wmb() between alloc/init and assignment. * set_task_ioprio() grabs task_lock() for assignment and does smp_read_barrier_depends() between "ioc = task->io_context" and "if (ioc)". Unfortunately, this doesn't achieve anything - the latter is not a dependent load of the former. ie, if ioc itself were being dereferenced "ioc->xxx", it would mean something (not sure what tho) but as the code currently stands, the dependent read barrier is noop. As only one of the the two test-assignment sequences is task_lock() protected, the task_lock() can't do much about race between the two. Nothing prevents current_io_context() and set_task_ioprio() allocating its own ioc for the same task and overwriting the other's. Also, set_task_ioprio() can race with exiting task and create a new ioc after exit_io_context() is finished. ioc get/put doesn't have any reason to be complex. The only hot path is accessing the existing ioc of %current, which is simple to achieve given that ->io_context is never destroyed as long as the task is alive. All other paths can happily go through task_lock() like all other task sub structures without impacting anything. This patch updates ioc get/put so that it becomes more conventional. * alloc_io_context() is replaced with get_task_io_context(). This is the only interface which can acquire access to ioc of another task. On return, the caller has an explicit reference to the object which should be put using put_io_context() afterwards. * The functionality of current_io_context() remains the same but when creating a new ioc, it shares the code path with get_task_io_context() and always goes through task_lock(). * get_io_context() now means incrementing ref on an ioc which the caller already has access to (be that an explicit refcnt or implicit %current one). * PF_EXITING inhibits creation of new io_context and once exit_io_context() is finished, it's guaranteed that both ioc acquisition functions return %NULL. * All users are updated. Most are trivial but smp_read_barrier_depends() removal from cfq_get_io_context() needs a bit of explanation. I suppose the original intention was to ensure ioc->ioprio is visible when set_task_ioprio() allocates new io_context and installs it; however, this wouldn't have worked because set_task_ioprio() doesn't have wmb between init and install. There are other problems with this which will be fixed in another patch. * While at it, use NUMA_NO_NODE instead of -1 for wildcard node specification. -v2: Vivek spotted contamination from debug patch. Removed. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-12-13 16:33:38 -07:00
kmem_cache_free(iocontext_cachep, ioc);
task_unlock(task);
}
EXPORT_SYMBOL(create_io_context_slowpath);
block: make ioc get/put interface more conventional and fix race on alloction Ignoring copy_io() during fork, io_context can be allocated from two places - current_io_context() and set_task_ioprio(). The former is always called from local task while the latter can be called from different task. The synchornization between them are peculiar and dubious. * current_io_context() doesn't grab task_lock() and assumes that if it saw %NULL ->io_context, it would stay that way until allocation and assignment is complete. It has smp_wmb() between alloc/init and assignment. * set_task_ioprio() grabs task_lock() for assignment and does smp_read_barrier_depends() between "ioc = task->io_context" and "if (ioc)". Unfortunately, this doesn't achieve anything - the latter is not a dependent load of the former. ie, if ioc itself were being dereferenced "ioc->xxx", it would mean something (not sure what tho) but as the code currently stands, the dependent read barrier is noop. As only one of the the two test-assignment sequences is task_lock() protected, the task_lock() can't do much about race between the two. Nothing prevents current_io_context() and set_task_ioprio() allocating its own ioc for the same task and overwriting the other's. Also, set_task_ioprio() can race with exiting task and create a new ioc after exit_io_context() is finished. ioc get/put doesn't have any reason to be complex. The only hot path is accessing the existing ioc of %current, which is simple to achieve given that ->io_context is never destroyed as long as the task is alive. All other paths can happily go through task_lock() like all other task sub structures without impacting anything. This patch updates ioc get/put so that it becomes more conventional. * alloc_io_context() is replaced with get_task_io_context(). This is the only interface which can acquire access to ioc of another task. On return, the caller has an explicit reference to the object which should be put using put_io_context() afterwards. * The functionality of current_io_context() remains the same but when creating a new ioc, it shares the code path with get_task_io_context() and always goes through task_lock(). * get_io_context() now means incrementing ref on an ioc which the caller already has access to (be that an explicit refcnt or implicit %current one). * PF_EXITING inhibits creation of new io_context and once exit_io_context() is finished, it's guaranteed that both ioc acquisition functions return %NULL. * All users are updated. Most are trivial but smp_read_barrier_depends() removal from cfq_get_io_context() needs a bit of explanation. I suppose the original intention was to ensure ioc->ioprio is visible when set_task_ioprio() allocates new io_context and installs it; however, this wouldn't have worked because set_task_ioprio() doesn't have wmb between init and install. There are other problems with this which will be fixed in another patch. * While at it, use NUMA_NO_NODE instead of -1 for wildcard node specification. -v2: Vivek spotted contamination from debug patch. Removed. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-12-13 16:33:38 -07:00
/**
* get_task_io_context - get io_context of a task
* @task: task of interest
* @gfp_flags: allocation flags, used if allocation is necessary
* @node: allocation node, used if allocation is necessary
*
* Return io_context of @task. If it doesn't exist, it is created with
* @gfp_flags and @node. The returned io_context has its reference count
* incremented.
*
block: make ioc get/put interface more conventional and fix race on alloction Ignoring copy_io() during fork, io_context can be allocated from two places - current_io_context() and set_task_ioprio(). The former is always called from local task while the latter can be called from different task. The synchornization between them are peculiar and dubious. * current_io_context() doesn't grab task_lock() and assumes that if it saw %NULL ->io_context, it would stay that way until allocation and assignment is complete. It has smp_wmb() between alloc/init and assignment. * set_task_ioprio() grabs task_lock() for assignment and does smp_read_barrier_depends() between "ioc = task->io_context" and "if (ioc)". Unfortunately, this doesn't achieve anything - the latter is not a dependent load of the former. ie, if ioc itself were being dereferenced "ioc->xxx", it would mean something (not sure what tho) but as the code currently stands, the dependent read barrier is noop. As only one of the the two test-assignment sequences is task_lock() protected, the task_lock() can't do much about race between the two. Nothing prevents current_io_context() and set_task_ioprio() allocating its own ioc for the same task and overwriting the other's. Also, set_task_ioprio() can race with exiting task and create a new ioc after exit_io_context() is finished. ioc get/put doesn't have any reason to be complex. The only hot path is accessing the existing ioc of %current, which is simple to achieve given that ->io_context is never destroyed as long as the task is alive. All other paths can happily go through task_lock() like all other task sub structures without impacting anything. This patch updates ioc get/put so that it becomes more conventional. * alloc_io_context() is replaced with get_task_io_context(). This is the only interface which can acquire access to ioc of another task. On return, the caller has an explicit reference to the object which should be put using put_io_context() afterwards. * The functionality of current_io_context() remains the same but when creating a new ioc, it shares the code path with get_task_io_context() and always goes through task_lock(). * get_io_context() now means incrementing ref on an ioc which the caller already has access to (be that an explicit refcnt or implicit %current one). * PF_EXITING inhibits creation of new io_context and once exit_io_context() is finished, it's guaranteed that both ioc acquisition functions return %NULL. * All users are updated. Most are trivial but smp_read_barrier_depends() removal from cfq_get_io_context() needs a bit of explanation. I suppose the original intention was to ensure ioc->ioprio is visible when set_task_ioprio() allocates new io_context and installs it; however, this wouldn't have worked because set_task_ioprio() doesn't have wmb between init and install. There are other problems with this which will be fixed in another patch. * While at it, use NUMA_NO_NODE instead of -1 for wildcard node specification. -v2: Vivek spotted contamination from debug patch. Removed. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-12-13 16:33:38 -07:00
* This function always goes through task_lock() and it's better to use
* %current->io_context + get_io_context() for %current.
*/
block: make ioc get/put interface more conventional and fix race on alloction Ignoring copy_io() during fork, io_context can be allocated from two places - current_io_context() and set_task_ioprio(). The former is always called from local task while the latter can be called from different task. The synchornization between them are peculiar and dubious. * current_io_context() doesn't grab task_lock() and assumes that if it saw %NULL ->io_context, it would stay that way until allocation and assignment is complete. It has smp_wmb() between alloc/init and assignment. * set_task_ioprio() grabs task_lock() for assignment and does smp_read_barrier_depends() between "ioc = task->io_context" and "if (ioc)". Unfortunately, this doesn't achieve anything - the latter is not a dependent load of the former. ie, if ioc itself were being dereferenced "ioc->xxx", it would mean something (not sure what tho) but as the code currently stands, the dependent read barrier is noop. As only one of the the two test-assignment sequences is task_lock() protected, the task_lock() can't do much about race between the two. Nothing prevents current_io_context() and set_task_ioprio() allocating its own ioc for the same task and overwriting the other's. Also, set_task_ioprio() can race with exiting task and create a new ioc after exit_io_context() is finished. ioc get/put doesn't have any reason to be complex. The only hot path is accessing the existing ioc of %current, which is simple to achieve given that ->io_context is never destroyed as long as the task is alive. All other paths can happily go through task_lock() like all other task sub structures without impacting anything. This patch updates ioc get/put so that it becomes more conventional. * alloc_io_context() is replaced with get_task_io_context(). This is the only interface which can acquire access to ioc of another task. On return, the caller has an explicit reference to the object which should be put using put_io_context() afterwards. * The functionality of current_io_context() remains the same but when creating a new ioc, it shares the code path with get_task_io_context() and always goes through task_lock(). * get_io_context() now means incrementing ref on an ioc which the caller already has access to (be that an explicit refcnt or implicit %current one). * PF_EXITING inhibits creation of new io_context and once exit_io_context() is finished, it's guaranteed that both ioc acquisition functions return %NULL. * All users are updated. Most are trivial but smp_read_barrier_depends() removal from cfq_get_io_context() needs a bit of explanation. I suppose the original intention was to ensure ioc->ioprio is visible when set_task_ioprio() allocates new io_context and installs it; however, this wouldn't have worked because set_task_ioprio() doesn't have wmb between init and install. There are other problems with this which will be fixed in another patch. * While at it, use NUMA_NO_NODE instead of -1 for wildcard node specification. -v2: Vivek spotted contamination from debug patch. Removed. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-12-13 16:33:38 -07:00
struct io_context *get_task_io_context(struct task_struct *task,
gfp_t gfp_flags, int node)
{
block: make ioc get/put interface more conventional and fix race on alloction Ignoring copy_io() during fork, io_context can be allocated from two places - current_io_context() and set_task_ioprio(). The former is always called from local task while the latter can be called from different task. The synchornization between them are peculiar and dubious. * current_io_context() doesn't grab task_lock() and assumes that if it saw %NULL ->io_context, it would stay that way until allocation and assignment is complete. It has smp_wmb() between alloc/init and assignment. * set_task_ioprio() grabs task_lock() for assignment and does smp_read_barrier_depends() between "ioc = task->io_context" and "if (ioc)". Unfortunately, this doesn't achieve anything - the latter is not a dependent load of the former. ie, if ioc itself were being dereferenced "ioc->xxx", it would mean something (not sure what tho) but as the code currently stands, the dependent read barrier is noop. As only one of the the two test-assignment sequences is task_lock() protected, the task_lock() can't do much about race between the two. Nothing prevents current_io_context() and set_task_ioprio() allocating its own ioc for the same task and overwriting the other's. Also, set_task_ioprio() can race with exiting task and create a new ioc after exit_io_context() is finished. ioc get/put doesn't have any reason to be complex. The only hot path is accessing the existing ioc of %current, which is simple to achieve given that ->io_context is never destroyed as long as the task is alive. All other paths can happily go through task_lock() like all other task sub structures without impacting anything. This patch updates ioc get/put so that it becomes more conventional. * alloc_io_context() is replaced with get_task_io_context(). This is the only interface which can acquire access to ioc of another task. On return, the caller has an explicit reference to the object which should be put using put_io_context() afterwards. * The functionality of current_io_context() remains the same but when creating a new ioc, it shares the code path with get_task_io_context() and always goes through task_lock(). * get_io_context() now means incrementing ref on an ioc which the caller already has access to (be that an explicit refcnt or implicit %current one). * PF_EXITING inhibits creation of new io_context and once exit_io_context() is finished, it's guaranteed that both ioc acquisition functions return %NULL. * All users are updated. Most are trivial but smp_read_barrier_depends() removal from cfq_get_io_context() needs a bit of explanation. I suppose the original intention was to ensure ioc->ioprio is visible when set_task_ioprio() allocates new io_context and installs it; however, this wouldn't have worked because set_task_ioprio() doesn't have wmb between init and install. There are other problems with this which will be fixed in another patch. * While at it, use NUMA_NO_NODE instead of -1 for wildcard node specification. -v2: Vivek spotted contamination from debug patch. Removed. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-12-13 16:33:38 -07:00
struct io_context *ioc;
block: make ioc get/put interface more conventional and fix race on alloction Ignoring copy_io() during fork, io_context can be allocated from two places - current_io_context() and set_task_ioprio(). The former is always called from local task while the latter can be called from different task. The synchornization between them are peculiar and dubious. * current_io_context() doesn't grab task_lock() and assumes that if it saw %NULL ->io_context, it would stay that way until allocation and assignment is complete. It has smp_wmb() between alloc/init and assignment. * set_task_ioprio() grabs task_lock() for assignment and does smp_read_barrier_depends() between "ioc = task->io_context" and "if (ioc)". Unfortunately, this doesn't achieve anything - the latter is not a dependent load of the former. ie, if ioc itself were being dereferenced "ioc->xxx", it would mean something (not sure what tho) but as the code currently stands, the dependent read barrier is noop. As only one of the the two test-assignment sequences is task_lock() protected, the task_lock() can't do much about race between the two. Nothing prevents current_io_context() and set_task_ioprio() allocating its own ioc for the same task and overwriting the other's. Also, set_task_ioprio() can race with exiting task and create a new ioc after exit_io_context() is finished. ioc get/put doesn't have any reason to be complex. The only hot path is accessing the existing ioc of %current, which is simple to achieve given that ->io_context is never destroyed as long as the task is alive. All other paths can happily go through task_lock() like all other task sub structures without impacting anything. This patch updates ioc get/put so that it becomes more conventional. * alloc_io_context() is replaced with get_task_io_context(). This is the only interface which can acquire access to ioc of another task. On return, the caller has an explicit reference to the object which should be put using put_io_context() afterwards. * The functionality of current_io_context() remains the same but when creating a new ioc, it shares the code path with get_task_io_context() and always goes through task_lock(). * get_io_context() now means incrementing ref on an ioc which the caller already has access to (be that an explicit refcnt or implicit %current one). * PF_EXITING inhibits creation of new io_context and once exit_io_context() is finished, it's guaranteed that both ioc acquisition functions return %NULL. * All users are updated. Most are trivial but smp_read_barrier_depends() removal from cfq_get_io_context() needs a bit of explanation. I suppose the original intention was to ensure ioc->ioprio is visible when set_task_ioprio() allocates new io_context and installs it; however, this wouldn't have worked because set_task_ioprio() doesn't have wmb between init and install. There are other problems with this which will be fixed in another patch. * While at it, use NUMA_NO_NODE instead of -1 for wildcard node specification. -v2: Vivek spotted contamination from debug patch. Removed. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-12-13 16:33:38 -07:00
might_sleep_if(gfp_flags & __GFP_WAIT);
do {
task_lock(task);
ioc = task->io_context;
if (likely(ioc)) {
get_io_context(ioc);
task_unlock(task);
return ioc;
}
block: make ioc get/put interface more conventional and fix race on alloction Ignoring copy_io() during fork, io_context can be allocated from two places - current_io_context() and set_task_ioprio(). The former is always called from local task while the latter can be called from different task. The synchornization between them are peculiar and dubious. * current_io_context() doesn't grab task_lock() and assumes that if it saw %NULL ->io_context, it would stay that way until allocation and assignment is complete. It has smp_wmb() between alloc/init and assignment. * set_task_ioprio() grabs task_lock() for assignment and does smp_read_barrier_depends() between "ioc = task->io_context" and "if (ioc)". Unfortunately, this doesn't achieve anything - the latter is not a dependent load of the former. ie, if ioc itself were being dereferenced "ioc->xxx", it would mean something (not sure what tho) but as the code currently stands, the dependent read barrier is noop. As only one of the the two test-assignment sequences is task_lock() protected, the task_lock() can't do much about race between the two. Nothing prevents current_io_context() and set_task_ioprio() allocating its own ioc for the same task and overwriting the other's. Also, set_task_ioprio() can race with exiting task and create a new ioc after exit_io_context() is finished. ioc get/put doesn't have any reason to be complex. The only hot path is accessing the existing ioc of %current, which is simple to achieve given that ->io_context is never destroyed as long as the task is alive. All other paths can happily go through task_lock() like all other task sub structures without impacting anything. This patch updates ioc get/put so that it becomes more conventional. * alloc_io_context() is replaced with get_task_io_context(). This is the only interface which can acquire access to ioc of another task. On return, the caller has an explicit reference to the object which should be put using put_io_context() afterwards. * The functionality of current_io_context() remains the same but when creating a new ioc, it shares the code path with get_task_io_context() and always goes through task_lock(). * get_io_context() now means incrementing ref on an ioc which the caller already has access to (be that an explicit refcnt or implicit %current one). * PF_EXITING inhibits creation of new io_context and once exit_io_context() is finished, it's guaranteed that both ioc acquisition functions return %NULL. * All users are updated. Most are trivial but smp_read_barrier_depends() removal from cfq_get_io_context() needs a bit of explanation. I suppose the original intention was to ensure ioc->ioprio is visible when set_task_ioprio() allocates new io_context and installs it; however, this wouldn't have worked because set_task_ioprio() doesn't have wmb between init and install. There are other problems with this which will be fixed in another patch. * While at it, use NUMA_NO_NODE instead of -1 for wildcard node specification. -v2: Vivek spotted contamination from debug patch. Removed. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-12-13 16:33:38 -07:00
task_unlock(task);
} while (create_io_context(task, gfp_flags, node));
block: make ioc get/put interface more conventional and fix race on alloction Ignoring copy_io() during fork, io_context can be allocated from two places - current_io_context() and set_task_ioprio(). The former is always called from local task while the latter can be called from different task. The synchornization between them are peculiar and dubious. * current_io_context() doesn't grab task_lock() and assumes that if it saw %NULL ->io_context, it would stay that way until allocation and assignment is complete. It has smp_wmb() between alloc/init and assignment. * set_task_ioprio() grabs task_lock() for assignment and does smp_read_barrier_depends() between "ioc = task->io_context" and "if (ioc)". Unfortunately, this doesn't achieve anything - the latter is not a dependent load of the former. ie, if ioc itself were being dereferenced "ioc->xxx", it would mean something (not sure what tho) but as the code currently stands, the dependent read barrier is noop. As only one of the the two test-assignment sequences is task_lock() protected, the task_lock() can't do much about race between the two. Nothing prevents current_io_context() and set_task_ioprio() allocating its own ioc for the same task and overwriting the other's. Also, set_task_ioprio() can race with exiting task and create a new ioc after exit_io_context() is finished. ioc get/put doesn't have any reason to be complex. The only hot path is accessing the existing ioc of %current, which is simple to achieve given that ->io_context is never destroyed as long as the task is alive. All other paths can happily go through task_lock() like all other task sub structures without impacting anything. This patch updates ioc get/put so that it becomes more conventional. * alloc_io_context() is replaced with get_task_io_context(). This is the only interface which can acquire access to ioc of another task. On return, the caller has an explicit reference to the object which should be put using put_io_context() afterwards. * The functionality of current_io_context() remains the same but when creating a new ioc, it shares the code path with get_task_io_context() and always goes through task_lock(). * get_io_context() now means incrementing ref on an ioc which the caller already has access to (be that an explicit refcnt or implicit %current one). * PF_EXITING inhibits creation of new io_context and once exit_io_context() is finished, it's guaranteed that both ioc acquisition functions return %NULL. * All users are updated. Most are trivial but smp_read_barrier_depends() removal from cfq_get_io_context() needs a bit of explanation. I suppose the original intention was to ensure ioc->ioprio is visible when set_task_ioprio() allocates new io_context and installs it; however, this wouldn't have worked because set_task_ioprio() doesn't have wmb between init and install. There are other problems with this which will be fixed in another patch. * While at it, use NUMA_NO_NODE instead of -1 for wildcard node specification. -v2: Vivek spotted contamination from debug patch. Removed. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-12-13 16:33:38 -07:00
return NULL;
}
block: make ioc get/put interface more conventional and fix race on alloction Ignoring copy_io() during fork, io_context can be allocated from two places - current_io_context() and set_task_ioprio(). The former is always called from local task while the latter can be called from different task. The synchornization between them are peculiar and dubious. * current_io_context() doesn't grab task_lock() and assumes that if it saw %NULL ->io_context, it would stay that way until allocation and assignment is complete. It has smp_wmb() between alloc/init and assignment. * set_task_ioprio() grabs task_lock() for assignment and does smp_read_barrier_depends() between "ioc = task->io_context" and "if (ioc)". Unfortunately, this doesn't achieve anything - the latter is not a dependent load of the former. ie, if ioc itself were being dereferenced "ioc->xxx", it would mean something (not sure what tho) but as the code currently stands, the dependent read barrier is noop. As only one of the the two test-assignment sequences is task_lock() protected, the task_lock() can't do much about race between the two. Nothing prevents current_io_context() and set_task_ioprio() allocating its own ioc for the same task and overwriting the other's. Also, set_task_ioprio() can race with exiting task and create a new ioc after exit_io_context() is finished. ioc get/put doesn't have any reason to be complex. The only hot path is accessing the existing ioc of %current, which is simple to achieve given that ->io_context is never destroyed as long as the task is alive. All other paths can happily go through task_lock() like all other task sub structures without impacting anything. This patch updates ioc get/put so that it becomes more conventional. * alloc_io_context() is replaced with get_task_io_context(). This is the only interface which can acquire access to ioc of another task. On return, the caller has an explicit reference to the object which should be put using put_io_context() afterwards. * The functionality of current_io_context() remains the same but when creating a new ioc, it shares the code path with get_task_io_context() and always goes through task_lock(). * get_io_context() now means incrementing ref on an ioc which the caller already has access to (be that an explicit refcnt or implicit %current one). * PF_EXITING inhibits creation of new io_context and once exit_io_context() is finished, it's guaranteed that both ioc acquisition functions return %NULL. * All users are updated. Most are trivial but smp_read_barrier_depends() removal from cfq_get_io_context() needs a bit of explanation. I suppose the original intention was to ensure ioc->ioprio is visible when set_task_ioprio() allocates new io_context and installs it; however, this wouldn't have worked because set_task_ioprio() doesn't have wmb between init and install. There are other problems with this which will be fixed in another patch. * While at it, use NUMA_NO_NODE instead of -1 for wildcard node specification. -v2: Vivek spotted contamination from debug patch. Removed. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2011-12-13 16:33:38 -07:00
EXPORT_SYMBOL(get_task_io_context);
/**
* ioc_lookup_icq - lookup io_cq from ioc
* @ioc: the associated io_context
* @q: the associated request_queue
*
* Look up io_cq associated with @ioc - @q pair from @ioc. Must be called
* with @q->queue_lock held.
*/
struct io_cq *ioc_lookup_icq(struct io_context *ioc, struct request_queue *q)
{
struct io_cq *icq;
lockdep_assert_held(q->queue_lock);
/*
* icq's are indexed from @ioc using radix tree and hint pointer,
* both of which are protected with RCU. All removals are done
* holding both q and ioc locks, and we're holding q lock - if we
* find a icq which points to us, it's guaranteed to be valid.
*/
rcu_read_lock();
icq = rcu_dereference(ioc->icq_hint);
if (icq && icq->q == q)
goto out;
icq = radix_tree_lookup(&ioc->icq_tree, q->id);
if (icq && icq->q == q)
rcu_assign_pointer(ioc->icq_hint, icq); /* allowed to race */
else
icq = NULL;
out:
rcu_read_unlock();
return icq;
}
EXPORT_SYMBOL(ioc_lookup_icq);
void ioc_set_changed(struct io_context *ioc, int which)
{
struct io_cq *icq;
struct hlist_node *n;
hlist_for_each_entry(icq, n, &ioc->icq_list, ioc_node)
set_bit(which, &icq->changed);
}
/**
* ioc_ioprio_changed - notify ioprio change
* @ioc: io_context of interest
* @ioprio: new ioprio
*
* @ioc's ioprio has changed to @ioprio. Set %ICQ_IOPRIO_CHANGED for all
* icq's. iosched is responsible for checking the bit and applying it on
* request issue path.
*/
void ioc_ioprio_changed(struct io_context *ioc, int ioprio)
{
unsigned long flags;
spin_lock_irqsave(&ioc->lock, flags);
ioc->ioprio = ioprio;
ioc_set_changed(ioc, ICQ_IOPRIO_CHANGED);
spin_unlock_irqrestore(&ioc->lock, flags);
}
/**
* ioc_cgroup_changed - notify cgroup change
* @ioc: io_context of interest
*
* @ioc's cgroup has changed. Set %ICQ_CGROUP_CHANGED for all icq's.
* iosched is responsible for checking the bit and applying it on request
* issue path.
*/
void ioc_cgroup_changed(struct io_context *ioc)
{
unsigned long flags;
spin_lock_irqsave(&ioc->lock, flags);
ioc_set_changed(ioc, ICQ_CGROUP_CHANGED);
spin_unlock_irqrestore(&ioc->lock, flags);
}
static int __init blk_ioc_init(void)
{
iocontext_cachep = kmem_cache_create("blkdev_ioc",
sizeof(struct io_context), 0, SLAB_PANIC, NULL);
return 0;
}
subsys_initcall(blk_ioc_init);