1
0
Fork 0
alistair23-linux/net/core/rtnetlink.c

5069 lines
122 KiB
C
Raw Normal View History

/*
* INET An implementation of the TCP/IP protocol suite for the LINUX
* operating system. INET is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* Routing netlink socket interface: protocol independent part.
*
* Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Fixes:
* Vitaly E. Lavrov RTA_OK arithmetics was wrong.
*/
#include <linux/bitops.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/socket.h>
#include <linux/kernel.h>
#include <linux/timer.h>
#include <linux/string.h>
#include <linux/sockios.h>
#include <linux/net.h>
#include <linux/fcntl.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/capability.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/security.h>
#include <linux/mutex.h>
#include <linux/if_addr.h>
net: add generic PF_BRIDGE:RTM_ FDB hooks This adds two new flags NTF_MASTER and NTF_SELF that can now be used to specify where PF_BRIDGE netlink commands should be sent. NTF_MASTER sends the commands to the 'dev->master' device for parsing. Typically this will be the linux net/bridge, or open-vswitch devices. Also without any flags set the command will be handled by the master device as well so that current user space tools continue to work as expected. The NTF_SELF flag will push the PF_BRIDGE commands to the device. In the basic example below the commands are then parsed and programmed in the embedded bridge. Note if both NTF_SELF and NTF_MASTER bits are set then the command will be sent to both 'dev->master' and 'dev' this allows user space to easily keep the embedded bridge and software bridge in sync. There is a slight complication in the case with both flags set when an error occurs. To resolve this the rtnl handler clears the NTF_ flag in the netlink ack to indicate which sets completed successfully. The add/del handlers will abort as soon as any error occurs. To support this new net device ops were added to call into the device and the existing bridging code was refactored to use these. There should be no required changes in user space to support the current bridge behavior. A basic setup with a SR-IOV enabled NIC looks like this, veth0 veth2 | | ------------ | bridge0 | <---- software bridging ------------ / / ethx.y ethx VF PF \ \ <---- propagate FDB entries to HW \ \ -------------------- | Embedded Bridge | <---- hardware offloaded switching -------------------- In this case the embedded bridge must be managed to allow 'veth0' to communicate with 'ethx.y' correctly. At present drivers managing the embedded bridge either send frames onto the network which then get dropped by the switch OR the embedded bridge will flood these frames. With this patch we have a mechanism to manage the embedded bridge correctly from user space. This example is specific to SR-IOV but replacing the VF with another PF or dropping this into the DSA framework generates similar management issues. Examples session using the 'br'[1] tool to add, dump and then delete a mac address with a new "embedded" option and enabled ixgbe driver: # br fdb add 22:35:19:ac:60:59 dev eth3 # br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static #br fdb add 22:35:19:ac:60:59 embedded dev eth3 #br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static eth3 22:35:19:ac:60:59 local embedded #br fdb del 22:35:19:ac:60:59 embedded dev eth3 I added a couple lines to 'br' to set the flags correctly is all. It is my opinion that the merit of this patch is now embedded and SW bridges can both be modeled correctly in user space using very nearly the same message passing. [1] 'br' tool was published as an RFC here and will be renamed 'bridge' http://patchwork.ozlabs.org/patch/117664/ Thanks to Jamal Hadi Salim, Stephen Hemminger and Ben Hutchings for valuable feedback, suggestions, and review. v2: fixed api descriptions and error case with both NTF_SELF and NTF_MASTER set plus updated patch description. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-15 00:43:56 -06:00
#include <linux/if_bridge.h>
#include <linux/if_vlan.h>
#include <linux/pci.h>
net: add generic PF_BRIDGE:RTM_ FDB hooks This adds two new flags NTF_MASTER and NTF_SELF that can now be used to specify where PF_BRIDGE netlink commands should be sent. NTF_MASTER sends the commands to the 'dev->master' device for parsing. Typically this will be the linux net/bridge, or open-vswitch devices. Also without any flags set the command will be handled by the master device as well so that current user space tools continue to work as expected. The NTF_SELF flag will push the PF_BRIDGE commands to the device. In the basic example below the commands are then parsed and programmed in the embedded bridge. Note if both NTF_SELF and NTF_MASTER bits are set then the command will be sent to both 'dev->master' and 'dev' this allows user space to easily keep the embedded bridge and software bridge in sync. There is a slight complication in the case with both flags set when an error occurs. To resolve this the rtnl handler clears the NTF_ flag in the netlink ack to indicate which sets completed successfully. The add/del handlers will abort as soon as any error occurs. To support this new net device ops were added to call into the device and the existing bridging code was refactored to use these. There should be no required changes in user space to support the current bridge behavior. A basic setup with a SR-IOV enabled NIC looks like this, veth0 veth2 | | ------------ | bridge0 | <---- software bridging ------------ / / ethx.y ethx VF PF \ \ <---- propagate FDB entries to HW \ \ -------------------- | Embedded Bridge | <---- hardware offloaded switching -------------------- In this case the embedded bridge must be managed to allow 'veth0' to communicate with 'ethx.y' correctly. At present drivers managing the embedded bridge either send frames onto the network which then get dropped by the switch OR the embedded bridge will flood these frames. With this patch we have a mechanism to manage the embedded bridge correctly from user space. This example is specific to SR-IOV but replacing the VF with another PF or dropping this into the DSA framework generates similar management issues. Examples session using the 'br'[1] tool to add, dump and then delete a mac address with a new "embedded" option and enabled ixgbe driver: # br fdb add 22:35:19:ac:60:59 dev eth3 # br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static #br fdb add 22:35:19:ac:60:59 embedded dev eth3 #br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static eth3 22:35:19:ac:60:59 local embedded #br fdb del 22:35:19:ac:60:59 embedded dev eth3 I added a couple lines to 'br' to set the flags correctly is all. It is my opinion that the merit of this patch is now embedded and SW bridges can both be modeled correctly in user space using very nearly the same message passing. [1] 'br' tool was published as an RFC here and will be renamed 'bridge' http://patchwork.ozlabs.org/patch/117664/ Thanks to Jamal Hadi Salim, Stephen Hemminger and Ben Hutchings for valuable feedback, suggestions, and review. v2: fixed api descriptions and error case with both NTF_SELF and NTF_MASTER set plus updated patch description. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-15 00:43:56 -06:00
#include <linux/etherdevice.h>
#include <linux/bpf.h>
#include <linux/uaccess.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <net/switchdev.h>
#include <net/ip.h>
#include <net/protocol.h>
#include <net/arp.h>
#include <net/route.h>
#include <net/udp.h>
#include <net/tcp.h>
#include <net/sock.h>
#include <net/pkt_sched.h>
#include <net/fib_rules.h>
#include <net/rtnetlink.h>
#include <net/net_namespace.h>
#define RTNL_MAX_TYPE 49
#define RTNL_SLAVE_MAX_TYPE 36
struct rtnl_link {
rtnl_doit_func doit;
rtnl_dumpit_func dumpit;
struct module *owner;
unsigned int flags;
struct rcu_head rcu;
};
static DEFINE_MUTEX(rtnl_mutex);
void rtnl_lock(void)
{
mutex_lock(&rtnl_mutex);
}
EXPORT_SYMBOL(rtnl_lock);
int rtnl_lock_killable(void)
{
return mutex_lock_killable(&rtnl_mutex);
}
EXPORT_SYMBOL(rtnl_lock_killable);
static struct sk_buff *defer_kfree_skb_list;
void rtnl_kfree_skbs(struct sk_buff *head, struct sk_buff *tail)
{
if (head && tail) {
tail->next = defer_kfree_skb_list;
defer_kfree_skb_list = head;
}
}
EXPORT_SYMBOL(rtnl_kfree_skbs);
void __rtnl_unlock(void)
{
struct sk_buff *head = defer_kfree_skb_list;
defer_kfree_skb_list = NULL;
mutex_unlock(&rtnl_mutex);
while (head) {
struct sk_buff *next = head->next;
kfree_skb(head);
cond_resched();
head = next;
}
}
void rtnl_unlock(void)
{
/* This fellow will unlock it for us. */
netdev_run_todo();
}
EXPORT_SYMBOL(rtnl_unlock);
int rtnl_trylock(void)
{
return mutex_trylock(&rtnl_mutex);
}
EXPORT_SYMBOL(rtnl_trylock);
int rtnl_is_locked(void)
{
return mutex_is_locked(&rtnl_mutex);
}
EXPORT_SYMBOL(rtnl_is_locked);
bool refcount_dec_and_rtnl_lock(refcount_t *r)
{
return refcount_dec_and_mutex_lock(r, &rtnl_mutex);
}
EXPORT_SYMBOL(refcount_dec_and_rtnl_lock);
#ifdef CONFIG_PROVE_LOCKING
bool lockdep_rtnl_is_held(void)
{
return lockdep_is_held(&rtnl_mutex);
}
EXPORT_SYMBOL(lockdep_rtnl_is_held);
#endif /* #ifdef CONFIG_PROVE_LOCKING */
static struct rtnl_link *__rcu *rtnl_msg_handlers[RTNL_FAMILY_MAX + 1];
static inline int rtm_msgindex(int msgtype)
{
int msgindex = msgtype - RTM_BASE;
/*
* msgindex < 0 implies someone tried to register a netlink
* control code. msgindex >= RTM_NR_MSGTYPES may indicate that
* the message type has not been added to linux/rtnetlink.h
*/
BUG_ON(msgindex < 0 || msgindex >= RTM_NR_MSGTYPES);
return msgindex;
}
static struct rtnl_link *rtnl_get_link(int protocol, int msgtype)
{
struct rtnl_link **tab;
if (protocol >= ARRAY_SIZE(rtnl_msg_handlers))
protocol = PF_UNSPEC;
tab = rcu_dereference_rtnl(rtnl_msg_handlers[protocol]);
if (!tab)
tab = rcu_dereference_rtnl(rtnl_msg_handlers[PF_UNSPEC]);
return tab[msgtype];
}
static int rtnl_register_internal(struct module *owner,
int protocol, int msgtype,
rtnl_doit_func doit, rtnl_dumpit_func dumpit,
unsigned int flags)
{
struct rtnl_link *link, *old;
struct rtnl_link __rcu **tab;
int msgindex;
int ret = -ENOBUFS;
BUG_ON(protocol < 0 || protocol > RTNL_FAMILY_MAX);
msgindex = rtm_msgindex(msgtype);
rtnl_lock();
tab = rtnl_msg_handlers[protocol];
if (tab == NULL) {
tab = kcalloc(RTM_NR_MSGTYPES, sizeof(void *), GFP_KERNEL);
if (!tab)
goto unlock;
/* ensures we see the 0 stores */
rcu_assign_pointer(rtnl_msg_handlers[protocol], tab);
}
old = rtnl_dereference(tab[msgindex]);
if (old) {
link = kmemdup(old, sizeof(*old), GFP_KERNEL);
if (!link)
goto unlock;
} else {
link = kzalloc(sizeof(*link), GFP_KERNEL);
if (!link)
goto unlock;
}
WARN_ON(link->owner && link->owner != owner);
link->owner = owner;
WARN_ON(doit && link->doit && link->doit != doit);
if (doit)
link->doit = doit;
WARN_ON(dumpit && link->dumpit && link->dumpit != dumpit);
if (dumpit)
link->dumpit = dumpit;
link->flags |= flags;
/* publish protocol:msgtype */
rcu_assign_pointer(tab[msgindex], link);
ret = 0;
if (old)
kfree_rcu(old, rcu);
unlock:
rtnl_unlock();
return ret;
}
/**
* rtnl_register_module - Register a rtnetlink message type
*
* @owner: module registering the hook (THIS_MODULE)
* @protocol: Protocol family or PF_UNSPEC
* @msgtype: rtnetlink message type
* @doit: Function pointer called for each request message
* @dumpit: Function pointer called for each dump request (NLM_F_DUMP) message
* @flags: rtnl_link_flags to modifiy behaviour of doit/dumpit functions
*
* Like rtnl_register, but for use by removable modules.
*/
int rtnl_register_module(struct module *owner,
int protocol, int msgtype,
rtnl_doit_func doit, rtnl_dumpit_func dumpit,
unsigned int flags)
{
return rtnl_register_internal(owner, protocol, msgtype,
doit, dumpit, flags);
}
EXPORT_SYMBOL_GPL(rtnl_register_module);
/**
* rtnl_register - Register a rtnetlink message type
* @protocol: Protocol family or PF_UNSPEC
* @msgtype: rtnetlink message type
* @doit: Function pointer called for each request message
* @dumpit: Function pointer called for each dump request (NLM_F_DUMP) message
* @flags: rtnl_link_flags to modifiy behaviour of doit/dumpit functions
*
* Registers the specified function pointers (at least one of them has
* to be non-NULL) to be called whenever a request message for the
* specified protocol family and message type is received.
*
* The special protocol family PF_UNSPEC may be used to define fallback
* function pointers for the case when no entry for the specific protocol
* family exists.
*/
void rtnl_register(int protocol, int msgtype,
rtnl_doit_func doit, rtnl_dumpit_func dumpit,
unsigned int flags)
{
int err;
err = rtnl_register_internal(NULL, protocol, msgtype, doit, dumpit,
flags);
if (err)
pr_err("Unable to register rtnetlink message handler, "
"protocol = %d, message type = %d\n", protocol, msgtype);
}
/**
* rtnl_unregister - Unregister a rtnetlink message type
* @protocol: Protocol family or PF_UNSPEC
* @msgtype: rtnetlink message type
*
* Returns 0 on success or a negative error code.
*/
int rtnl_unregister(int protocol, int msgtype)
{
struct rtnl_link **tab, *link;
int msgindex;
BUG_ON(protocol < 0 || protocol > RTNL_FAMILY_MAX);
msgindex = rtm_msgindex(msgtype);
rtnl_lock();
tab = rtnl_dereference(rtnl_msg_handlers[protocol]);
if (!tab) {
rtnl_unlock();
return -ENOENT;
}
link = tab[msgindex];
rcu_assign_pointer(tab[msgindex], NULL);
rtnl_unlock();
kfree_rcu(link, rcu);
return 0;
}
EXPORT_SYMBOL_GPL(rtnl_unregister);
/**
* rtnl_unregister_all - Unregister all rtnetlink message type of a protocol
* @protocol : Protocol family or PF_UNSPEC
*
* Identical to calling rtnl_unregster() for all registered message types
* of a certain protocol family.
*/
void rtnl_unregister_all(int protocol)
{
struct rtnl_link **tab, *link;
int msgindex;
BUG_ON(protocol < 0 || protocol > RTNL_FAMILY_MAX);
rtnl_lock();
tab = rtnl_msg_handlers[protocol];
if (!tab) {
rtnl_unlock();
return;
}
RCU_INIT_POINTER(rtnl_msg_handlers[protocol], NULL);
for (msgindex = 0; msgindex < RTM_NR_MSGTYPES; msgindex++) {
link = tab[msgindex];
if (!link)
continue;
rcu_assign_pointer(tab[msgindex], NULL);
kfree_rcu(link, rcu);
}
rtnl_unlock();
synchronize_net();
kfree(tab);
}
EXPORT_SYMBOL_GPL(rtnl_unregister_all);
static LIST_HEAD(link_ops);
static const struct rtnl_link_ops *rtnl_link_ops_get(const char *kind)
{
const struct rtnl_link_ops *ops;
list_for_each_entry(ops, &link_ops, list) {
if (!strcmp(ops->kind, kind))
return ops;
}
return NULL;
}
/**
* __rtnl_link_register - Register rtnl_link_ops with rtnetlink.
* @ops: struct rtnl_link_ops * to register
*
* The caller must hold the rtnl_mutex. This function should be used
* by drivers that create devices during module initialization. It
* must be called before registering the devices.
*
* Returns 0 on success or a negative error code.
*/
int __rtnl_link_register(struct rtnl_link_ops *ops)
{
if (rtnl_link_ops_get(ops->kind))
return -EEXIST;
/* The check for setup is here because if ops
* does not have that filled up, it is not possible
* to use the ops for creating device. So do not
* fill up dellink as well. That disables rtnl_dellink.
*/
if (ops->setup && !ops->dellink)
ops->dellink = unregister_netdevice_queue;
list_add_tail(&ops->list, &link_ops);
return 0;
}
EXPORT_SYMBOL_GPL(__rtnl_link_register);
/**
* rtnl_link_register - Register rtnl_link_ops with rtnetlink.
* @ops: struct rtnl_link_ops * to register
*
* Returns 0 on success or a negative error code.
*/
int rtnl_link_register(struct rtnl_link_ops *ops)
{
int err;
/* Sanity-check max sizes to avoid stack buffer overflow. */
if (WARN_ON(ops->maxtype > RTNL_MAX_TYPE ||
ops->slave_maxtype > RTNL_SLAVE_MAX_TYPE))
return -EINVAL;
rtnl_lock();
err = __rtnl_link_register(ops);
rtnl_unlock();
return err;
}
EXPORT_SYMBOL_GPL(rtnl_link_register);
static void __rtnl_kill_links(struct net *net, struct rtnl_link_ops *ops)
{
struct net_device *dev;
LIST_HEAD(list_kill);
for_each_netdev(net, dev) {
if (dev->rtnl_link_ops == ops)
ops->dellink(dev, &list_kill);
}
unregister_netdevice_many(&list_kill);
}
/**
* __rtnl_link_unregister - Unregister rtnl_link_ops from rtnetlink.
* @ops: struct rtnl_link_ops * to unregister
*
* The caller must hold the rtnl_mutex and guarantee net_namespace_list
* integrity (hold pernet_ops_rwsem for writing to close the race
* with setup_net() and cleanup_net()).
*/
void __rtnl_link_unregister(struct rtnl_link_ops *ops)
{
[NET]: Make the device list and device lookups per namespace. This patch makes most of the generic device layer network namespace safe. This patch makes dev_base_head a network namespace variable, and then it picks up a few associated variables. The functions: dev_getbyhwaddr dev_getfirsthwbytype dev_get_by_flags dev_get_by_name __dev_get_by_name dev_get_by_index __dev_get_by_index dev_ioctl dev_ethtool dev_load wireless_process_ioctl were modified to take a network namespace argument, and deal with it. vlan_ioctl_set and brioctl_set were modified so their hooks will receive a network namespace argument. So basically anthing in the core of the network stack that was affected to by the change of dev_base was modified to handle multiple network namespaces. The rest of the network stack was simply modified to explicitly use &init_net the initial network namespace. This can be fixed when those components of the network stack are modified to handle multiple network namespaces. For now the ifindex generator is left global. Fundametally ifindex numbers are per namespace, or else we will have corner case problems with migration when we get that far. At the same time there are assumptions in the network stack that the ifindex of a network device won't change. Making the ifindex number global seems a good compromise until the network stack can cope with ifindex changes when you change namespaces, and the like. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-09-17 12:56:21 -06:00
struct net *net;
[NET]: Make the device list and device lookups per namespace. This patch makes most of the generic device layer network namespace safe. This patch makes dev_base_head a network namespace variable, and then it picks up a few associated variables. The functions: dev_getbyhwaddr dev_getfirsthwbytype dev_get_by_flags dev_get_by_name __dev_get_by_name dev_get_by_index __dev_get_by_index dev_ioctl dev_ethtool dev_load wireless_process_ioctl were modified to take a network namespace argument, and deal with it. vlan_ioctl_set and brioctl_set were modified so their hooks will receive a network namespace argument. So basically anthing in the core of the network stack that was affected to by the change of dev_base was modified to handle multiple network namespaces. The rest of the network stack was simply modified to explicitly use &init_net the initial network namespace. This can be fixed when those components of the network stack are modified to handle multiple network namespaces. For now the ifindex generator is left global. Fundametally ifindex numbers are per namespace, or else we will have corner case problems with migration when we get that far. At the same time there are assumptions in the network stack that the ifindex of a network device won't change. Making the ifindex number global seems a good compromise until the network stack can cope with ifindex changes when you change namespaces, and the like. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-09-17 12:56:21 -06:00
for_each_net(net) {
__rtnl_kill_links(net, ops);
}
list_del(&ops->list);
}
EXPORT_SYMBOL_GPL(__rtnl_link_unregister);
/* Return with the rtnl_lock held when there are no network
* devices unregistering in any network namespace.
*/
static void rtnl_lock_unregistering_all(void)
{
struct net *net;
bool unregistering;
DEFINE_WAIT_FUNC(wait, woken_wake_function);
add_wait_queue(&netdev_unregistering_wq, &wait);
for (;;) {
unregistering = false;
rtnl_lock();
/* We held write locked pernet_ops_rwsem, and parallel
* setup_net() and cleanup_net() are not possible.
*/
for_each_net(net) {
if (net->dev_unreg_count > 0) {
unregistering = true;
break;
}
}
if (!unregistering)
break;
__rtnl_unlock();
wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
}
remove_wait_queue(&netdev_unregistering_wq, &wait);
}
/**
* rtnl_link_unregister - Unregister rtnl_link_ops from rtnetlink.
* @ops: struct rtnl_link_ops * to unregister
*/
void rtnl_link_unregister(struct rtnl_link_ops *ops)
{
/* Close the race with setup_net() and cleanup_net() */
down_write(&pernet_ops_rwsem);
rtnl_lock_unregistering_all();
__rtnl_link_unregister(ops);
rtnl_unlock();
up_write(&pernet_ops_rwsem);
}
EXPORT_SYMBOL_GPL(rtnl_link_unregister);
static size_t rtnl_link_get_slave_info_data_size(const struct net_device *dev)
{
struct net_device *master_dev;
const struct rtnl_link_ops *ops;
size_t size = 0;
rcu_read_lock();
master_dev = netdev_master_upper_dev_get_rcu((struct net_device *)dev);
if (!master_dev)
goto out;
ops = master_dev->rtnl_link_ops;
rtnetlink: fix oops in rtnl_link_get_slave_info_data_size We should check whether rtnetlink link operations are defined before calling get_slave_size(). Without this, the following oops can occur when adding a tap device to OVS. [ 87.839553] BUG: unable to handle kernel NULL pointer dereference at 00000000000000a8 [ 87.839595] IP: [<ffffffff813d47c0>] if_nlmsg_size+0xf0/0x220 [...] [ 87.840651] Call Trace: [ 87.840664] [<ffffffff813d694b>] ? rtmsg_ifinfo+0x2b/0x100 [ 87.840688] [<ffffffff813c8340>] ? __netdev_adjacent_dev_insert+0x150/0x1a0 [ 87.840718] [<ffffffff813d6a50>] ? rtnetlink_event+0x30/0x40 [ 87.840742] [<ffffffff814b4144>] ? notifier_call_chain+0x44/0x70 [ 87.840768] [<ffffffff813c8946>] ? __netdev_upper_dev_link+0x3c6/0x3f0 [ 87.840798] [<ffffffffa0678d6c>] ? netdev_create+0xcc/0x160 [openvswitch] [ 87.840828] [<ffffffffa06781ea>] ? ovs_vport_add+0x4a/0xd0 [openvswitch] [ 87.840857] [<ffffffffa0670139>] ? new_vport+0x9/0x50 [openvswitch] [ 87.840884] [<ffffffffa067279e>] ? ovs_vport_cmd_new+0x11e/0x210 [openvswitch] [ 87.840915] [<ffffffff813f3efa>] ? genl_family_rcv_msg+0x19a/0x360 [ 87.840941] [<ffffffff813f40c0>] ? genl_family_rcv_msg+0x360/0x360 [ 87.840967] [<ffffffff813f4139>] ? genl_rcv_msg+0x79/0xc0 [ 87.840991] [<ffffffff813b6cf9>] ? __kmalloc_reserve.isra.25+0x29/0x80 [ 87.841018] [<ffffffff813f2389>] ? netlink_rcv_skb+0xa9/0xc0 [ 87.841042] [<ffffffff813f27cf>] ? genl_rcv+0x1f/0x30 [ 87.841064] [<ffffffff813f1988>] ? netlink_unicast+0xe8/0x1e0 [ 87.841088] [<ffffffff813f1d9a>] ? netlink_sendmsg+0x31a/0x750 [ 87.841113] [<ffffffff813aee96>] ? sock_sendmsg+0x86/0xc0 [ 87.841136] [<ffffffff813c960d>] ? __netdev_update_features+0x4d/0x200 [ 87.841163] [<ffffffff813ca94e>] ? ethtool_get_value+0x2e/0x50 [ 87.841188] [<ffffffff813af269>] ? ___sys_sendmsg+0x359/0x370 [ 87.841212] [<ffffffff813da686>] ? dev_ioctl+0x1a6/0x5c0 [ 87.841236] [<ffffffff8109c210>] ? autoremove_wake_function+0x30/0x30 [ 87.841264] [<ffffffff813ac59d>] ? sock_do_ioctl+0x3d/0x50 [ 87.841288] [<ffffffff813aca68>] ? sock_ioctl+0x1e8/0x2c0 [ 87.841312] [<ffffffff811934bf>] ? do_vfs_ioctl+0x2cf/0x4b0 [ 87.841335] [<ffffffff813afeb9>] ? __sys_sendmsg+0x39/0x70 [ 87.841362] [<ffffffff814b86f9>] ? system_call_fastpath+0x16/0x1b [ 87.841386] Code: c0 74 10 48 89 ef ff d0 83 c0 07 83 e0 fc 48 98 49 01 c7 48 89 ef e8 d0 d6 fe ff 48 85 c0 0f 84 df 00 00 00 48 8b 90 08 07 00 00 <48> 8b 8a a8 00 00 00 31 d2 48 85 c9 74 0c 48 89 ee 48 89 c7 ff [ 87.841529] RIP [<ffffffff813d47c0>] if_nlmsg_size+0xf0/0x220 [ 87.841555] RSP <ffff880221aa5950> [ 87.841569] CR2: 00000000000000a8 [ 87.851442] ---[ end trace e42ab217691b4fc2 ]--- Signed-off-by: Fernando Luis Vazquez Cao <fernando@oss.ntt.co.jp> Acked-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-02-04 03:35:02 -07:00
if (!ops || !ops->get_slave_size)
goto out;
/* IFLA_INFO_SLAVE_DATA + nested data */
size = nla_total_size(sizeof(struct nlattr)) +
ops->get_slave_size(master_dev, dev);
out:
rcu_read_unlock();
return size;
}
static size_t rtnl_link_get_size(const struct net_device *dev)
{
const struct rtnl_link_ops *ops = dev->rtnl_link_ops;
size_t size;
if (!ops)
return 0;
size = nla_total_size(sizeof(struct nlattr)) + /* IFLA_LINKINFO */
nla_total_size(strlen(ops->kind) + 1); /* IFLA_INFO_KIND */
if (ops->get_size)
/* IFLA_INFO_DATA + nested data */
size += nla_total_size(sizeof(struct nlattr)) +
ops->get_size(dev);
if (ops->get_xstats_size)
/* IFLA_INFO_XSTATS */
size += nla_total_size(ops->get_xstats_size(dev));
size += rtnl_link_get_slave_info_data_size(dev);
return size;
}
static LIST_HEAD(rtnl_af_ops);
static const struct rtnl_af_ops *rtnl_af_lookup(const int family)
{
const struct rtnl_af_ops *ops;
list_for_each_entry_rcu(ops, &rtnl_af_ops, list) {
if (ops->family == family)
return ops;
}
return NULL;
}
/**
* rtnl_af_register - Register rtnl_af_ops with rtnetlink.
* @ops: struct rtnl_af_ops * to register
*
* Returns 0 on success or a negative error code.
*/
void rtnl_af_register(struct rtnl_af_ops *ops)
{
rtnl_lock();
list_add_tail_rcu(&ops->list, &rtnl_af_ops);
rtnl_unlock();
}
EXPORT_SYMBOL_GPL(rtnl_af_register);
/**
* rtnl_af_unregister - Unregister rtnl_af_ops from rtnetlink.
* @ops: struct rtnl_af_ops * to unregister
*/
void rtnl_af_unregister(struct rtnl_af_ops *ops)
{
rtnl_lock();
list_del_rcu(&ops->list);
rtnl_unlock();
synchronize_rcu();
}
EXPORT_SYMBOL_GPL(rtnl_af_unregister);
static size_t rtnl_link_get_af_size(const struct net_device *dev,
u32 ext_filter_mask)
{
struct rtnl_af_ops *af_ops;
size_t size;
/* IFLA_AF_SPEC */
size = nla_total_size(sizeof(struct nlattr));
rcu_read_lock();
list_for_each_entry_rcu(af_ops, &rtnl_af_ops, list) {
if (af_ops->get_link_af_size) {
/* AF_* + nested data */
size += nla_total_size(sizeof(struct nlattr)) +
af_ops->get_link_af_size(dev, ext_filter_mask);
}
}
rcu_read_unlock();
return size;
}
static bool rtnl_have_link_slave_info(const struct net_device *dev)
{
struct net_device *master_dev;
bool ret = false;
rcu_read_lock();
master_dev = netdev_master_upper_dev_get_rcu((struct net_device *)dev);
if (master_dev && master_dev->rtnl_link_ops)
ret = true;
rcu_read_unlock();
return ret;
}
static int rtnl_link_slave_info_fill(struct sk_buff *skb,
const struct net_device *dev)
{
struct net_device *master_dev;
const struct rtnl_link_ops *ops;
struct nlattr *slave_data;
int err;
master_dev = netdev_master_upper_dev_get((struct net_device *) dev);
if (!master_dev)
return 0;
ops = master_dev->rtnl_link_ops;
if (!ops)
return 0;
if (nla_put_string(skb, IFLA_INFO_SLAVE_KIND, ops->kind) < 0)
return -EMSGSIZE;
if (ops->fill_slave_info) {
slave_data = nla_nest_start(skb, IFLA_INFO_SLAVE_DATA);
if (!slave_data)
return -EMSGSIZE;
err = ops->fill_slave_info(skb, master_dev, dev);
if (err < 0)
goto err_cancel_slave_data;
nla_nest_end(skb, slave_data);
}
return 0;
err_cancel_slave_data:
nla_nest_cancel(skb, slave_data);
return err;
}
static int rtnl_link_info_fill(struct sk_buff *skb,
const struct net_device *dev)
{
const struct rtnl_link_ops *ops = dev->rtnl_link_ops;
struct nlattr *data;
int err;
if (!ops)
return 0;
if (nla_put_string(skb, IFLA_INFO_KIND, ops->kind) < 0)
return -EMSGSIZE;
if (ops->fill_xstats) {
err = ops->fill_xstats(skb, dev);
if (err < 0)
return err;
}
if (ops->fill_info) {
data = nla_nest_start(skb, IFLA_INFO_DATA);
if (data == NULL)
return -EMSGSIZE;
err = ops->fill_info(skb, dev);
if (err < 0)
goto err_cancel_data;
nla_nest_end(skb, data);
}
return 0;
err_cancel_data:
nla_nest_cancel(skb, data);
return err;
}
static int rtnl_link_fill(struct sk_buff *skb, const struct net_device *dev)
{
struct nlattr *linkinfo;
int err = -EMSGSIZE;
linkinfo = nla_nest_start(skb, IFLA_LINKINFO);
if (linkinfo == NULL)
goto out;
err = rtnl_link_info_fill(skb, dev);
if (err < 0)
goto err_cancel_link;
err = rtnl_link_slave_info_fill(skb, dev);
if (err < 0)
goto err_cancel_link;
nla_nest_end(skb, linkinfo);
return 0;
err_cancel_link:
nla_nest_cancel(skb, linkinfo);
out:
return err;
}
int rtnetlink_send(struct sk_buff *skb, struct net *net, u32 pid, unsigned int group, int echo)
{
struct sock *rtnl = net->rtnl;
int err = 0;
NETLINK_CB(skb).dst_group = group;
if (echo)
refcount_inc(&skb->users);
netlink_broadcast(rtnl, skb, pid, group, GFP_KERNEL);
if (echo)
err = netlink_unicast(rtnl, skb, pid, MSG_DONTWAIT);
return err;
}
int rtnl_unicast(struct sk_buff *skb, struct net *net, u32 pid)
{
struct sock *rtnl = net->rtnl;
return nlmsg_unicast(rtnl, skb, pid);
}
EXPORT_SYMBOL(rtnl_unicast);
2009-02-25 00:18:28 -07:00
void rtnl_notify(struct sk_buff *skb, struct net *net, u32 pid, u32 group,
struct nlmsghdr *nlh, gfp_t flags)
{
struct sock *rtnl = net->rtnl;
int report = 0;
if (nlh)
report = nlmsg_report(nlh);
2009-02-25 00:18:28 -07:00
nlmsg_notify(rtnl, skb, pid, group, report, flags);
}
EXPORT_SYMBOL(rtnl_notify);
void rtnl_set_sk_err(struct net *net, u32 group, int error)
{
struct sock *rtnl = net->rtnl;
netlink_set_err(rtnl, 0, group, error);
}
EXPORT_SYMBOL(rtnl_set_sk_err);
int rtnetlink_put_metrics(struct sk_buff *skb, u32 *metrics)
{
struct nlattr *mx;
int i, valid = 0;
mx = nla_nest_start(skb, RTA_METRICS);
if (mx == NULL)
return -ENOBUFS;
for (i = 0; i < RTAX_MAX; i++) {
if (metrics[i]) {
if (i == RTAX_CC_ALGO - 1) {
char tmp[TCP_CA_NAME_MAX], *name;
name = tcp_ca_get_name_by_key(metrics[i], tmp);
if (!name)
continue;
if (nla_put_string(skb, i + 1, name))
goto nla_put_failure;
} else if (i == RTAX_FEATURES - 1) {
u32 user_features = metrics[i] & RTAX_FEATURE_MASK;
if (!user_features)
continue;
BUILD_BUG_ON(RTAX_FEATURE_MASK & DST_FEATURE_MASK);
if (nla_put_u32(skb, i + 1, user_features))
goto nla_put_failure;
} else {
if (nla_put_u32(skb, i + 1, metrics[i]))
goto nla_put_failure;
}
valid++;
}
}
if (!valid) {
nla_nest_cancel(skb, mx);
return 0;
}
return nla_nest_end(skb, mx);
nla_put_failure:
nla_nest_cancel(skb, mx);
return -EMSGSIZE;
}
EXPORT_SYMBOL(rtnetlink_put_metrics);
int rtnl_put_cacheinfo(struct sk_buff *skb, struct dst_entry *dst, u32 id,
long expires, u32 error)
{
struct rta_cacheinfo ci = {
.rta_error = error,
.rta_id = id,
};
if (dst) {
ci.rta_lastuse = jiffies_delta_to_clock_t(jiffies - dst->lastuse);
ci.rta_used = dst->__use;
ci.rta_clntref = atomic_read(&dst->__refcnt);
}
if (expires) {
unsigned long clock;
clock = jiffies_to_clock_t(abs(expires));
clock = min_t(unsigned long, clock, INT_MAX);
ci.rta_expires = (expires > 0) ? clock : -clock;
}
return nla_put(skb, RTA_CACHEINFO, sizeof(ci), &ci);
}
EXPORT_SYMBOL_GPL(rtnl_put_cacheinfo);
static void set_operstate(struct net_device *dev, unsigned char transition)
{
unsigned char operstate = dev->operstate;
switch (transition) {
case IF_OPER_UP:
if ((operstate == IF_OPER_DORMANT ||
operstate == IF_OPER_UNKNOWN) &&
!netif_dormant(dev))
operstate = IF_OPER_UP;
break;
case IF_OPER_DORMANT:
if (operstate == IF_OPER_UP ||
operstate == IF_OPER_UNKNOWN)
operstate = IF_OPER_DORMANT;
break;
}
if (dev->operstate != operstate) {
write_lock_bh(&dev_base_lock);
dev->operstate = operstate;
write_unlock_bh(&dev_base_lock);
netdev_state_change(dev);
}
}
static unsigned int rtnl_dev_get_flags(const struct net_device *dev)
{
return (dev->flags & ~(IFF_PROMISC | IFF_ALLMULTI)) |
(dev->gflags & (IFF_PROMISC | IFF_ALLMULTI));
}
rtnetlink: support specifying device flags on device creation commit e8469ed959c373c2ff9e6f488aa5a14971aebe1f Author: Patrick McHardy <kaber@trash.net> Date: Tue Feb 23 20:41:30 2010 +0100 Support specifying the initial device flags when creating a device though rtnl_link. Devices allocated by rtnl_create_link() are marked as INITIALIZING in order to surpress netlink registration notifications. To complete setup, rtnl_configure_link() must be called, which performs the device flag changes and invokes the deferred notifiers if everything went well. Two examples: # add macvlan to eth0 # $ ip link add link eth0 up allmulticast on type macvlan [LINK]11: macvlan0@eth0: <BROADCAST,MULTICAST,ALLMULTI,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN link/ether 26:f8:84:02:f9:2a brd ff:ff:ff:ff:ff:ff [ROUTE]ff00::/8 dev macvlan0 table local metric 256 mtu 1500 advmss 1440 hoplimit 0 [ROUTE]fe80::/64 dev macvlan0 proto kernel metric 256 mtu 1500 advmss 1440 hoplimit 0 [LINK]11: macvlan0@eth0: <BROADCAST,MULTICAST,ALLMULTI,UP,LOWER_UP> mtu 1500 link/ether 26:f8:84:02:f9:2a [ADDR]11: macvlan0 inet6 fe80::24f8:84ff:fe02:f92a/64 scope link valid_lft forever preferred_lft forever [ROUTE]local fe80::24f8:84ff:fe02:f92a via :: dev lo table local proto none metric 0 mtu 16436 advmss 16376 hoplimit 0 [ROUTE]default via fe80::215:e9ff:fef0:10f8 dev macvlan0 proto kernel metric 1024 mtu 1500 advmss 1440 hoplimit 0 [NEIGH]fe80::215:e9ff:fef0:10f8 dev macvlan0 lladdr 00:15:e9:f0:10:f8 router STALE [ROUTE]2001:6f8:974::/64 dev macvlan0 proto kernel metric 256 expires 0sec mtu 1500 advmss 1440 hoplimit 0 [PREFIX]prefix 2001:6f8:974::/64 dev macvlan0 onlink autoconf valid 14400 preferred 131084 [ADDR]11: macvlan0 inet6 2001:6f8:974:0:24f8:84ff:fe02:f92a/64 scope global dynamic valid_lft 86399sec preferred_lft 14399sec # add VLAN to eth1, eth1 is down # $ ip link add link eth1 up type vlan id 1000 RTNETLINK answers: Network is down <no events> Signed-off-by: Patrick McHardy <kaber@trash.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-02-25 23:34:54 -07:00
static unsigned int rtnl_dev_combine_flags(const struct net_device *dev,
const struct ifinfomsg *ifm)
{
unsigned int flags = ifm->ifi_flags;
/* bugwards compatibility: ifi_change == 0 is treated as ~0 */
if (ifm->ifi_change)
flags = (flags & ifm->ifi_change) |
(rtnl_dev_get_flags(dev) & ~ifm->ifi_change);
rtnetlink: support specifying device flags on device creation commit e8469ed959c373c2ff9e6f488aa5a14971aebe1f Author: Patrick McHardy <kaber@trash.net> Date: Tue Feb 23 20:41:30 2010 +0100 Support specifying the initial device flags when creating a device though rtnl_link. Devices allocated by rtnl_create_link() are marked as INITIALIZING in order to surpress netlink registration notifications. To complete setup, rtnl_configure_link() must be called, which performs the device flag changes and invokes the deferred notifiers if everything went well. Two examples: # add macvlan to eth0 # $ ip link add link eth0 up allmulticast on type macvlan [LINK]11: macvlan0@eth0: <BROADCAST,MULTICAST,ALLMULTI,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN link/ether 26:f8:84:02:f9:2a brd ff:ff:ff:ff:ff:ff [ROUTE]ff00::/8 dev macvlan0 table local metric 256 mtu 1500 advmss 1440 hoplimit 0 [ROUTE]fe80::/64 dev macvlan0 proto kernel metric 256 mtu 1500 advmss 1440 hoplimit 0 [LINK]11: macvlan0@eth0: <BROADCAST,MULTICAST,ALLMULTI,UP,LOWER_UP> mtu 1500 link/ether 26:f8:84:02:f9:2a [ADDR]11: macvlan0 inet6 fe80::24f8:84ff:fe02:f92a/64 scope link valid_lft forever preferred_lft forever [ROUTE]local fe80::24f8:84ff:fe02:f92a via :: dev lo table local proto none metric 0 mtu 16436 advmss 16376 hoplimit 0 [ROUTE]default via fe80::215:e9ff:fef0:10f8 dev macvlan0 proto kernel metric 1024 mtu 1500 advmss 1440 hoplimit 0 [NEIGH]fe80::215:e9ff:fef0:10f8 dev macvlan0 lladdr 00:15:e9:f0:10:f8 router STALE [ROUTE]2001:6f8:974::/64 dev macvlan0 proto kernel metric 256 expires 0sec mtu 1500 advmss 1440 hoplimit 0 [PREFIX]prefix 2001:6f8:974::/64 dev macvlan0 onlink autoconf valid 14400 preferred 131084 [ADDR]11: macvlan0 inet6 2001:6f8:974:0:24f8:84ff:fe02:f92a/64 scope global dynamic valid_lft 86399sec preferred_lft 14399sec # add VLAN to eth1, eth1 is down # $ ip link add link eth1 up type vlan id 1000 RTNETLINK answers: Network is down <no events> Signed-off-by: Patrick McHardy <kaber@trash.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-02-25 23:34:54 -07:00
return flags;
}
static void copy_rtnl_link_stats(struct rtnl_link_stats *a,
const struct rtnl_link_stats64 *b)
{
a->rx_packets = b->rx_packets;
a->tx_packets = b->tx_packets;
a->rx_bytes = b->rx_bytes;
a->tx_bytes = b->tx_bytes;
a->rx_errors = b->rx_errors;
a->tx_errors = b->tx_errors;
a->rx_dropped = b->rx_dropped;
a->tx_dropped = b->tx_dropped;
a->multicast = b->multicast;
a->collisions = b->collisions;
a->rx_length_errors = b->rx_length_errors;
a->rx_over_errors = b->rx_over_errors;
a->rx_crc_errors = b->rx_crc_errors;
a->rx_frame_errors = b->rx_frame_errors;
a->rx_fifo_errors = b->rx_fifo_errors;
a->rx_missed_errors = b->rx_missed_errors;
a->tx_aborted_errors = b->tx_aborted_errors;
a->tx_carrier_errors = b->tx_carrier_errors;
a->tx_fifo_errors = b->tx_fifo_errors;
a->tx_heartbeat_errors = b->tx_heartbeat_errors;
a->tx_window_errors = b->tx_window_errors;
a->rx_compressed = b->rx_compressed;
a->tx_compressed = b->tx_compressed;
a->rx_nohandler = b->rx_nohandler;
}
/* All VF info */
static inline int rtnl_vfinfo_size(const struct net_device *dev,
u32 ext_filter_mask)
{
if (dev->dev.parent && (ext_filter_mask & RTEXT_FILTER_VF)) {
int num_vfs = dev_num_vf(dev->dev.parent);
size_t size = nla_total_size(0);
size += num_vfs *
(nla_total_size(0) +
nla_total_size(sizeof(struct ifla_vf_mac)) +
nla_total_size(sizeof(struct ifla_vf_vlan)) +
nla_total_size(0) + /* nest IFLA_VF_VLAN_LIST */
nla_total_size(MAX_VLAN_LIST_LEN *
sizeof(struct ifla_vf_vlan_info)) +
net-next:v4: Add support to configure SR-IOV VF minimum and maximum Tx rate through ip tool. o min_tx_rate puts lower limit on the VF bandwidth. VF is guaranteed to have a bandwidth of at least this value. max_tx_rate puts cap on the VF bandwidth. VF can have a bandwidth of up to this value. o A new handler set_vf_rate for attr IFLA_VF_RATE has been introduced which takes 4 arguments: netdev, VF number, min_tx_rate, max_tx_rate o ndo_set_vf_rate replaces ndo_set_vf_tx_rate handler. o Drivers that currently implement ndo_set_vf_tx_rate should now call ndo_set_vf_rate instead and reject attempt to set a minimum bandwidth greater than 0 for IFLA_VF_TX_RATE when IFLA_VF_RATE is not yet implemented by driver. o If user enters only one of either min_tx_rate or max_tx_rate, then, userland should read back the other value from driver and set both for IFLA_VF_RATE. Drivers that have not yet implemented IFLA_VF_RATE should always return min_tx_rate as 0 when read from ip tool. o If both IFLA_VF_TX_RATE and IFLA_VF_RATE options are specified, then IFLA_VF_RATE should override. o Idea is to have consistent display of rate values to user. o Usage example: - ./ip link set p4p1 vf 0 rate 900 ./ip link show p4p1 32: p4p1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT qlen 1000 link/ether 00:0e:1e:08:b0:f0 brd ff:ff:ff:ff:ff:ff vf 0 MAC 3e:a0:ca:bd:ae:5a, tx rate 900 (Mbps), max_tx_rate 900Mbps vf 1 MAC f6:c6:7c:3f:3d:6c vf 2 MAC 56:32:43:98:d7:71 vf 3 MAC d6:be:c3:b5:85:ff vf 4 MAC ee:a9:9a:1e:19:14 vf 5 MAC 4a:d0:4c:07:52:18 vf 6 MAC 3a:76:44:93:62:f9 vf 7 MAC 82:e9:e7:e3:15:1a ./ip link set p4p1 vf 0 max_tx_rate 300 min_tx_rate 200 ./ip link show p4p1 32: p4p1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT qlen 1000 link/ether 00:0e:1e:08:b0:f0 brd ff:ff:ff:ff:ff:ff vf 0 MAC 3e:a0:ca:bd:ae:5a, tx rate 300 (Mbps), max_tx_rate 300Mbps, min_tx_rate 200Mbps vf 1 MAC f6:c6:7c:3f:3d:6c vf 2 MAC 56:32:43:98:d7:71 vf 3 MAC d6:be:c3:b5:85:ff vf 4 MAC ee:a9:9a:1e:19:14 vf 5 MAC 4a:d0:4c:07:52:18 vf 6 MAC 3a:76:44:93:62:f9 vf 7 MAC 82:e9:e7:e3:15:1a ./ip link set p4p1 vf 0 max_tx_rate 600 rate 300 ./ip link show p4p1 32: p4p1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT qlen 1000 link/ether 00:0e:1e:08:b0:f brd ff:ff:ff:ff:ff:ff vf 0 MAC 3e:a0:ca:bd:ae:5, tx rate 600 (Mbps), max_tx_rate 600Mbps, min_tx_rate 200Mbps vf 1 MAC f6:c6:7c:3f:3d:6c vf 2 MAC 56:32:43:98:d7:71 vf 3 MAC d6:be:c3:b5:85:ff vf 4 MAC ee:a9:9a:1e:19:14 vf 5 MAC 4a:d0:4c:07:52:18 vf 6 MAC 3a:76:44:93:62:f9 vf 7 MAC 82:e9:e7:e3:15:1a Signed-off-by: Sucheta Chakraborty <sucheta.chakraborty@qlogic.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-22 07:59:05 -06:00
nla_total_size(sizeof(struct ifla_vf_spoofchk)) +
nla_total_size(sizeof(struct ifla_vf_tx_rate)) +
nla_total_size(sizeof(struct ifla_vf_rate)) +
nla_total_size(sizeof(struct ifla_vf_link_state)) +
nla_total_size(sizeof(struct ifla_vf_rss_query_en)) +
nla_total_size(0) + /* nest IFLA_VF_STATS */
/* IFLA_VF_STATS_RX_PACKETS */
nla_total_size_64bit(sizeof(__u64)) +
/* IFLA_VF_STATS_TX_PACKETS */
nla_total_size_64bit(sizeof(__u64)) +
/* IFLA_VF_STATS_RX_BYTES */
nla_total_size_64bit(sizeof(__u64)) +
/* IFLA_VF_STATS_TX_BYTES */
nla_total_size_64bit(sizeof(__u64)) +
/* IFLA_VF_STATS_BROADCAST */
nla_total_size_64bit(sizeof(__u64)) +
/* IFLA_VF_STATS_MULTICAST */
nla_total_size_64bit(sizeof(__u64)) +
/* IFLA_VF_STATS_RX_DROPPED */
nla_total_size_64bit(sizeof(__u64)) +
/* IFLA_VF_STATS_TX_DROPPED */
nla_total_size_64bit(sizeof(__u64)) +
nla_total_size(sizeof(struct ifla_vf_trust)));
return size;
} else
return 0;
}
rtnetlink: Only supply IFLA_VF_PORTS information when RTEXT_FILTER_VF is set Since 115c9b81928360d769a76c632bae62d15206a94a (rtnetlink: Fix problem with buffer allocation), RTM_NEWLINK messages only contain the IFLA_VFINFO_LIST attribute if they were solicited by a GETLINK message containing an IFLA_EXT_MASK attribute with the RTEXT_FILTER_VF flag. That was done because some user programs broke when they received more data than expected - because IFLA_VFINFO_LIST contains information for each VF it can become large if there are many VFs. However, the IFLA_VF_PORTS attribute, supplied for devices which implement ndo_get_vf_port (currently the 'enic' driver only), has the same problem. It supplies per-VF information and can therefore become large, but it is not currently conditional on the IFLA_EXT_MASK value. Worse, it interacts badly with the existing EXT_MASK handling. When IFLA_EXT_MASK is not supplied, the buffer for netlink replies is fixed at NLMSG_GOODSIZE. If the information for IFLA_VF_PORTS exceeds this, then rtnl_fill_ifinfo() returns -EMSGSIZE on the first message in a packet. netlink_dump() will misinterpret this as having finished the listing and omit data for this interface and all subsequent ones. That can cause getifaddrs(3) to enter an infinite loop. This patch addresses the problem by only supplying IFLA_VF_PORTS when IFLA_EXT_MASK is supplied with the RTEXT_FILTER_VF flag set. Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-04-23 18:22:36 -06:00
static size_t rtnl_port_size(const struct net_device *dev,
u32 ext_filter_mask)
net: Add netlink support for virtual port management (was iovnl) Add new netdev ops ndo_{set|get}_vf_port to allow setting of port-profile on a netdev interface. Extends netlink socket RTM_SETLINK/ RTM_GETLINK with two new sub msgs called IFLA_VF_PORTS and IFLA_PORT_SELF (added to end of IFLA_cmd list). These are both nested atrtibutes using this layout: [IFLA_NUM_VF] [IFLA_VF_PORTS] [IFLA_VF_PORT] [IFLA_PORT_*], ... [IFLA_VF_PORT] [IFLA_PORT_*], ... ... [IFLA_PORT_SELF] [IFLA_PORT_*], ... These attributes are design to be set and get symmetrically. VF_PORTS is a list of VF_PORTs, one for each VF, when dealing with an SR-IOV device. PORT_SELF is for the PF of the SR-IOV device, in case it wants to also have a port-profile, or for the case where the VF==PF, like in enic patch 2/2 of this patch set. A port-profile is used to configure/enable the external switch virtual port backing the netdev interface, not to configure the host-facing side of the netdev. A port-profile is an identifier known to the switch. How port- profiles are installed on the switch or how available port-profiles are made know to the host is outside the scope of this patch. There are two types of port-profiles specs in the netlink msg. The first spec is for 802.1Qbg (pre-)standard, VDP protocol. The second spec is for devices that run a similar protocol as VDP but in firmware, thus hiding the protocol details. In either case, the specs have much in common and makes sense to define the netlink msg as the union of the two specs. For example, both specs have a notition of associating/deassociating a port-profile. And both specs require some information from the hypervisor manager, such as client port instance ID. The general flow is the port-profile is applied to a host netdev interface using RTM_SETLINK, the receiver of the RTM_SETLINK msg communicates with the switch, and the switch virtual port backing the host netdev interface is configured/enabled based on the settings defined by the port-profile. What those settings comprise, and how those settings are managed is again outside the scope of this patch, since this patch only deals with the first step in the flow. Signed-off-by: Scott Feldman <scofeldm@cisco.com> Signed-off-by: Roopa Prabhu <roprabhu@cisco.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-05-17 23:49:55 -06:00
{
size_t port_size = nla_total_size(4) /* PORT_VF */
+ nla_total_size(PORT_PROFILE_MAX) /* PORT_PROFILE */
+ nla_total_size(PORT_UUID_MAX) /* PORT_INSTANCE_UUID */
+ nla_total_size(PORT_UUID_MAX) /* PORT_HOST_UUID */
+ nla_total_size(1) /* PROT_VDP_REQUEST */
+ nla_total_size(2); /* PORT_VDP_RESPONSE */
size_t vf_ports_size = nla_total_size(sizeof(struct nlattr));
size_t vf_port_size = nla_total_size(sizeof(struct nlattr))
+ port_size;
size_t port_self_size = nla_total_size(sizeof(struct nlattr))
+ port_size;
rtnetlink: Only supply IFLA_VF_PORTS information when RTEXT_FILTER_VF is set Since 115c9b81928360d769a76c632bae62d15206a94a (rtnetlink: Fix problem with buffer allocation), RTM_NEWLINK messages only contain the IFLA_VFINFO_LIST attribute if they were solicited by a GETLINK message containing an IFLA_EXT_MASK attribute with the RTEXT_FILTER_VF flag. That was done because some user programs broke when they received more data than expected - because IFLA_VFINFO_LIST contains information for each VF it can become large if there are many VFs. However, the IFLA_VF_PORTS attribute, supplied for devices which implement ndo_get_vf_port (currently the 'enic' driver only), has the same problem. It supplies per-VF information and can therefore become large, but it is not currently conditional on the IFLA_EXT_MASK value. Worse, it interacts badly with the existing EXT_MASK handling. When IFLA_EXT_MASK is not supplied, the buffer for netlink replies is fixed at NLMSG_GOODSIZE. If the information for IFLA_VF_PORTS exceeds this, then rtnl_fill_ifinfo() returns -EMSGSIZE on the first message in a packet. netlink_dump() will misinterpret this as having finished the listing and omit data for this interface and all subsequent ones. That can cause getifaddrs(3) to enter an infinite loop. This patch addresses the problem by only supplying IFLA_VF_PORTS when IFLA_EXT_MASK is supplied with the RTEXT_FILTER_VF flag set. Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-04-23 18:22:36 -06:00
if (!dev->netdev_ops->ndo_get_vf_port || !dev->dev.parent ||
!(ext_filter_mask & RTEXT_FILTER_VF))
net: Add netlink support for virtual port management (was iovnl) Add new netdev ops ndo_{set|get}_vf_port to allow setting of port-profile on a netdev interface. Extends netlink socket RTM_SETLINK/ RTM_GETLINK with two new sub msgs called IFLA_VF_PORTS and IFLA_PORT_SELF (added to end of IFLA_cmd list). These are both nested atrtibutes using this layout: [IFLA_NUM_VF] [IFLA_VF_PORTS] [IFLA_VF_PORT] [IFLA_PORT_*], ... [IFLA_VF_PORT] [IFLA_PORT_*], ... ... [IFLA_PORT_SELF] [IFLA_PORT_*], ... These attributes are design to be set and get symmetrically. VF_PORTS is a list of VF_PORTs, one for each VF, when dealing with an SR-IOV device. PORT_SELF is for the PF of the SR-IOV device, in case it wants to also have a port-profile, or for the case where the VF==PF, like in enic patch 2/2 of this patch set. A port-profile is used to configure/enable the external switch virtual port backing the netdev interface, not to configure the host-facing side of the netdev. A port-profile is an identifier known to the switch. How port- profiles are installed on the switch or how available port-profiles are made know to the host is outside the scope of this patch. There are two types of port-profiles specs in the netlink msg. The first spec is for 802.1Qbg (pre-)standard, VDP protocol. The second spec is for devices that run a similar protocol as VDP but in firmware, thus hiding the protocol details. In either case, the specs have much in common and makes sense to define the netlink msg as the union of the two specs. For example, both specs have a notition of associating/deassociating a port-profile. And both specs require some information from the hypervisor manager, such as client port instance ID. The general flow is the port-profile is applied to a host netdev interface using RTM_SETLINK, the receiver of the RTM_SETLINK msg communicates with the switch, and the switch virtual port backing the host netdev interface is configured/enabled based on the settings defined by the port-profile. What those settings comprise, and how those settings are managed is again outside the scope of this patch, since this patch only deals with the first step in the flow. Signed-off-by: Scott Feldman <scofeldm@cisco.com> Signed-off-by: Roopa Prabhu <roprabhu@cisco.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-05-17 23:49:55 -06:00
return 0;
if (dev_num_vf(dev->dev.parent))
return port_self_size + vf_ports_size +
vf_port_size * dev_num_vf(dev->dev.parent);
else
return port_self_size;
}
net: Generic XDP This provides a generic SKB based non-optimized XDP path which is used if either the driver lacks a specific XDP implementation, or the user requests it via a new IFLA_XDP_FLAGS value named XDP_FLAGS_SKB_MODE. It is arguable that perhaps I should have required something like this as part of the initial XDP feature merge. I believe this is critical for two reasons: 1) Accessibility. More people can play with XDP with less dependencies. Yes I know we have XDP support in virtio_net, but that just creates another depedency for learning how to use this facility. I wrote this to make life easier for the XDP newbies. 2) As a model for what the expected semantics are. If there is a pure generic core implementation, it serves as a semantic example for driver folks adding XDP support. One thing I have not tried to address here is the issue of XDP_PACKET_HEADROOM, thanks to Daniel for spotting that. It seems incredibly expensive to do a skb_cow(skb, XDP_PACKET_HEADROOM) or whatever even if the XDP program doesn't try to push headers at all. I think we really need the verifier to somehow propagate whether certain XDP helpers are used or not. v5: - Handle both negative and positive offset after running prog - Fix mac length in XDP_TX case (Alexei) - Use rcu_dereference_protected() in free_netdev (kbuild test robot) v4: - Fix MAC header adjustmnet before calling prog (David Ahern) - Disable LRO when generic XDP is installed (Michael Chan) - Bypass qdisc et al. on XDP_TX and record the event (Alexei) - Do not perform generic XDP on reinjected packets (DaveM) v3: - Make sure XDP program sees packet at MAC header, push back MAC header if we do XDP_TX. (Alexei) - Elide GRO when generic XDP is in use. (Alexei) - Add XDP_FLAG_SKB_MODE flag which the user can use to request generic XDP even if the driver has an XDP implementation. (Alexei) - Report whether SKB mode is in use in rtnl_xdp_fill() via XDP_FLAGS attribute. (Daniel) v2: - Add some "fall through" comments in switch statements based upon feedback from Andrew Lunn - Use RCU for generic xdp_prog, thanks to Johannes Berg. Tested-by: Andy Gospodarek <andy@greyhouse.net> Tested-by: Jesper Dangaard Brouer <brouer@redhat.com> Tested-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-18 13:36:58 -06:00
static size_t rtnl_xdp_size(void)
{
size_t xdp_size = nla_total_size(0) + /* nest IFLA_XDP */
nla_total_size(1) + /* XDP_ATTACHED */
nla_total_size(4) + /* XDP_PROG_ID (or 1st mode) */
nla_total_size(4); /* XDP_<mode>_PROG_ID */
net: Generic XDP This provides a generic SKB based non-optimized XDP path which is used if either the driver lacks a specific XDP implementation, or the user requests it via a new IFLA_XDP_FLAGS value named XDP_FLAGS_SKB_MODE. It is arguable that perhaps I should have required something like this as part of the initial XDP feature merge. I believe this is critical for two reasons: 1) Accessibility. More people can play with XDP with less dependencies. Yes I know we have XDP support in virtio_net, but that just creates another depedency for learning how to use this facility. I wrote this to make life easier for the XDP newbies. 2) As a model for what the expected semantics are. If there is a pure generic core implementation, it serves as a semantic example for driver folks adding XDP support. One thing I have not tried to address here is the issue of XDP_PACKET_HEADROOM, thanks to Daniel for spotting that. It seems incredibly expensive to do a skb_cow(skb, XDP_PACKET_HEADROOM) or whatever even if the XDP program doesn't try to push headers at all. I think we really need the verifier to somehow propagate whether certain XDP helpers are used or not. v5: - Handle both negative and positive offset after running prog - Fix mac length in XDP_TX case (Alexei) - Use rcu_dereference_protected() in free_netdev (kbuild test robot) v4: - Fix MAC header adjustmnet before calling prog (David Ahern) - Disable LRO when generic XDP is installed (Michael Chan) - Bypass qdisc et al. on XDP_TX and record the event (Alexei) - Do not perform generic XDP on reinjected packets (DaveM) v3: - Make sure XDP program sees packet at MAC header, push back MAC header if we do XDP_TX. (Alexei) - Elide GRO when generic XDP is in use. (Alexei) - Add XDP_FLAG_SKB_MODE flag which the user can use to request generic XDP even if the driver has an XDP implementation. (Alexei) - Report whether SKB mode is in use in rtnl_xdp_fill() via XDP_FLAGS attribute. (Daniel) v2: - Add some "fall through" comments in switch statements based upon feedback from Andrew Lunn - Use RCU for generic xdp_prog, thanks to Johannes Berg. Tested-by: Andy Gospodarek <andy@greyhouse.net> Tested-by: Jesper Dangaard Brouer <brouer@redhat.com> Tested-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-18 13:36:58 -06:00
return xdp_size;
}
static noinline size_t if_nlmsg_size(const struct net_device *dev,
u32 ext_filter_mask)
{
return NLMSG_ALIGN(sizeof(struct ifinfomsg))
+ nla_total_size(IFNAMSIZ) /* IFLA_IFNAME */
+ nla_total_size(IFALIASZ) /* IFLA_IFALIAS */
+ nla_total_size(IFNAMSIZ) /* IFLA_QDISC */
+ nla_total_size_64bit(sizeof(struct rtnl_link_ifmap))
+ nla_total_size(sizeof(struct rtnl_link_stats))
+ nla_total_size_64bit(sizeof(struct rtnl_link_stats64))
+ nla_total_size(MAX_ADDR_LEN) /* IFLA_ADDRESS */
+ nla_total_size(MAX_ADDR_LEN) /* IFLA_BROADCAST */
+ nla_total_size(4) /* IFLA_TXQLEN */
+ nla_total_size(4) /* IFLA_WEIGHT */
+ nla_total_size(4) /* IFLA_MTU */
+ nla_total_size(4) /* IFLA_LINK */
+ nla_total_size(4) /* IFLA_MASTER */
+ nla_total_size(1) /* IFLA_CARRIER */
+ nla_total_size(4) /* IFLA_PROMISCUITY */
+ nla_total_size(4) /* IFLA_NUM_TX_QUEUES */
+ nla_total_size(4) /* IFLA_NUM_RX_QUEUES */
+ nla_total_size(4) /* IFLA_GSO_MAX_SEGS */
+ nla_total_size(4) /* IFLA_GSO_MAX_SIZE */
+ nla_total_size(1) /* IFLA_OPERSTATE */
+ nla_total_size(1) /* IFLA_LINKMODE */
+ nla_total_size(4) /* IFLA_CARRIER_CHANGES */
+ nla_total_size(4) /* IFLA_LINK_NETNSID */
+ nla_total_size(4) /* IFLA_GROUP */
+ nla_total_size(ext_filter_mask
& RTEXT_FILTER_VF ? 4 : 0) /* IFLA_NUM_VF */
+ rtnl_vfinfo_size(dev, ext_filter_mask) /* IFLA_VFINFO_LIST */
rtnetlink: Only supply IFLA_VF_PORTS information when RTEXT_FILTER_VF is set Since 115c9b81928360d769a76c632bae62d15206a94a (rtnetlink: Fix problem with buffer allocation), RTM_NEWLINK messages only contain the IFLA_VFINFO_LIST attribute if they were solicited by a GETLINK message containing an IFLA_EXT_MASK attribute with the RTEXT_FILTER_VF flag. That was done because some user programs broke when they received more data than expected - because IFLA_VFINFO_LIST contains information for each VF it can become large if there are many VFs. However, the IFLA_VF_PORTS attribute, supplied for devices which implement ndo_get_vf_port (currently the 'enic' driver only), has the same problem. It supplies per-VF information and can therefore become large, but it is not currently conditional on the IFLA_EXT_MASK value. Worse, it interacts badly with the existing EXT_MASK handling. When IFLA_EXT_MASK is not supplied, the buffer for netlink replies is fixed at NLMSG_GOODSIZE. If the information for IFLA_VF_PORTS exceeds this, then rtnl_fill_ifinfo() returns -EMSGSIZE on the first message in a packet. netlink_dump() will misinterpret this as having finished the listing and omit data for this interface and all subsequent ones. That can cause getifaddrs(3) to enter an infinite loop. This patch addresses the problem by only supplying IFLA_VF_PORTS when IFLA_EXT_MASK is supplied with the RTEXT_FILTER_VF flag set. Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-04-23 18:22:36 -06:00
+ rtnl_port_size(dev, ext_filter_mask) /* IFLA_VF_PORTS + IFLA_PORT_SELF */
+ rtnl_link_get_size(dev) /* IFLA_LINKINFO */
+ rtnl_link_get_af_size(dev, ext_filter_mask) /* IFLA_AF_SPEC */
+ nla_total_size(MAX_PHYS_ITEM_ID_LEN) /* IFLA_PHYS_PORT_ID */
+ nla_total_size(MAX_PHYS_ITEM_ID_LEN) /* IFLA_PHYS_SWITCH_ID */
+ nla_total_size(IFNAMSIZ) /* IFLA_PHYS_PORT_NAME */
net: Generic XDP This provides a generic SKB based non-optimized XDP path which is used if either the driver lacks a specific XDP implementation, or the user requests it via a new IFLA_XDP_FLAGS value named XDP_FLAGS_SKB_MODE. It is arguable that perhaps I should have required something like this as part of the initial XDP feature merge. I believe this is critical for two reasons: 1) Accessibility. More people can play with XDP with less dependencies. Yes I know we have XDP support in virtio_net, but that just creates another depedency for learning how to use this facility. I wrote this to make life easier for the XDP newbies. 2) As a model for what the expected semantics are. If there is a pure generic core implementation, it serves as a semantic example for driver folks adding XDP support. One thing I have not tried to address here is the issue of XDP_PACKET_HEADROOM, thanks to Daniel for spotting that. It seems incredibly expensive to do a skb_cow(skb, XDP_PACKET_HEADROOM) or whatever even if the XDP program doesn't try to push headers at all. I think we really need the verifier to somehow propagate whether certain XDP helpers are used or not. v5: - Handle both negative and positive offset after running prog - Fix mac length in XDP_TX case (Alexei) - Use rcu_dereference_protected() in free_netdev (kbuild test robot) v4: - Fix MAC header adjustmnet before calling prog (David Ahern) - Disable LRO when generic XDP is installed (Michael Chan) - Bypass qdisc et al. on XDP_TX and record the event (Alexei) - Do not perform generic XDP on reinjected packets (DaveM) v3: - Make sure XDP program sees packet at MAC header, push back MAC header if we do XDP_TX. (Alexei) - Elide GRO when generic XDP is in use. (Alexei) - Add XDP_FLAG_SKB_MODE flag which the user can use to request generic XDP even if the driver has an XDP implementation. (Alexei) - Report whether SKB mode is in use in rtnl_xdp_fill() via XDP_FLAGS attribute. (Daniel) v2: - Add some "fall through" comments in switch statements based upon feedback from Andrew Lunn - Use RCU for generic xdp_prog, thanks to Johannes Berg. Tested-by: Andy Gospodarek <andy@greyhouse.net> Tested-by: Jesper Dangaard Brouer <brouer@redhat.com> Tested-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-18 13:36:58 -06:00
+ rtnl_xdp_size() /* IFLA_XDP */
+ nla_total_size(4) /* IFLA_EVENT */
+ nla_total_size(4) /* IFLA_NEW_NETNSID */
+ nla_total_size(4) /* IFLA_NEW_IFINDEX */
+ nla_total_size(1) /* IFLA_PROTO_DOWN */
+ nla_total_size(4) /* IFLA_TARGET_NETNSID */
+ nla_total_size(4) /* IFLA_CARRIER_UP_COUNT */
+ nla_total_size(4) /* IFLA_CARRIER_DOWN_COUNT */
+ nla_total_size(4) /* IFLA_MIN_MTU */
+ nla_total_size(4) /* IFLA_MAX_MTU */
+ 0;
}
net: Add netlink support for virtual port management (was iovnl) Add new netdev ops ndo_{set|get}_vf_port to allow setting of port-profile on a netdev interface. Extends netlink socket RTM_SETLINK/ RTM_GETLINK with two new sub msgs called IFLA_VF_PORTS and IFLA_PORT_SELF (added to end of IFLA_cmd list). These are both nested atrtibutes using this layout: [IFLA_NUM_VF] [IFLA_VF_PORTS] [IFLA_VF_PORT] [IFLA_PORT_*], ... [IFLA_VF_PORT] [IFLA_PORT_*], ... ... [IFLA_PORT_SELF] [IFLA_PORT_*], ... These attributes are design to be set and get symmetrically. VF_PORTS is a list of VF_PORTs, one for each VF, when dealing with an SR-IOV device. PORT_SELF is for the PF of the SR-IOV device, in case it wants to also have a port-profile, or for the case where the VF==PF, like in enic patch 2/2 of this patch set. A port-profile is used to configure/enable the external switch virtual port backing the netdev interface, not to configure the host-facing side of the netdev. A port-profile is an identifier known to the switch. How port- profiles are installed on the switch or how available port-profiles are made know to the host is outside the scope of this patch. There are two types of port-profiles specs in the netlink msg. The first spec is for 802.1Qbg (pre-)standard, VDP protocol. The second spec is for devices that run a similar protocol as VDP but in firmware, thus hiding the protocol details. In either case, the specs have much in common and makes sense to define the netlink msg as the union of the two specs. For example, both specs have a notition of associating/deassociating a port-profile. And both specs require some information from the hypervisor manager, such as client port instance ID. The general flow is the port-profile is applied to a host netdev interface using RTM_SETLINK, the receiver of the RTM_SETLINK msg communicates with the switch, and the switch virtual port backing the host netdev interface is configured/enabled based on the settings defined by the port-profile. What those settings comprise, and how those settings are managed is again outside the scope of this patch, since this patch only deals with the first step in the flow. Signed-off-by: Scott Feldman <scofeldm@cisco.com> Signed-off-by: Roopa Prabhu <roprabhu@cisco.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-05-17 23:49:55 -06:00
static int rtnl_vf_ports_fill(struct sk_buff *skb, struct net_device *dev)
{
struct nlattr *vf_ports;
struct nlattr *vf_port;
int vf;
int err;
vf_ports = nla_nest_start(skb, IFLA_VF_PORTS);
if (!vf_ports)
return -EMSGSIZE;
for (vf = 0; vf < dev_num_vf(dev->dev.parent); vf++) {
vf_port = nla_nest_start(skb, IFLA_VF_PORT);
if (!vf_port)
goto nla_put_failure;
if (nla_put_u32(skb, IFLA_PORT_VF, vf))
goto nla_put_failure;
net: Add netlink support for virtual port management (was iovnl) Add new netdev ops ndo_{set|get}_vf_port to allow setting of port-profile on a netdev interface. Extends netlink socket RTM_SETLINK/ RTM_GETLINK with two new sub msgs called IFLA_VF_PORTS and IFLA_PORT_SELF (added to end of IFLA_cmd list). These are both nested atrtibutes using this layout: [IFLA_NUM_VF] [IFLA_VF_PORTS] [IFLA_VF_PORT] [IFLA_PORT_*], ... [IFLA_VF_PORT] [IFLA_PORT_*], ... ... [IFLA_PORT_SELF] [IFLA_PORT_*], ... These attributes are design to be set and get symmetrically. VF_PORTS is a list of VF_PORTs, one for each VF, when dealing with an SR-IOV device. PORT_SELF is for the PF of the SR-IOV device, in case it wants to also have a port-profile, or for the case where the VF==PF, like in enic patch 2/2 of this patch set. A port-profile is used to configure/enable the external switch virtual port backing the netdev interface, not to configure the host-facing side of the netdev. A port-profile is an identifier known to the switch. How port- profiles are installed on the switch or how available port-profiles are made know to the host is outside the scope of this patch. There are two types of port-profiles specs in the netlink msg. The first spec is for 802.1Qbg (pre-)standard, VDP protocol. The second spec is for devices that run a similar protocol as VDP but in firmware, thus hiding the protocol details. In either case, the specs have much in common and makes sense to define the netlink msg as the union of the two specs. For example, both specs have a notition of associating/deassociating a port-profile. And both specs require some information from the hypervisor manager, such as client port instance ID. The general flow is the port-profile is applied to a host netdev interface using RTM_SETLINK, the receiver of the RTM_SETLINK msg communicates with the switch, and the switch virtual port backing the host netdev interface is configured/enabled based on the settings defined by the port-profile. What those settings comprise, and how those settings are managed is again outside the scope of this patch, since this patch only deals with the first step in the flow. Signed-off-by: Scott Feldman <scofeldm@cisco.com> Signed-off-by: Roopa Prabhu <roprabhu@cisco.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-05-17 23:49:55 -06:00
err = dev->netdev_ops->ndo_get_vf_port(dev, vf, skb);
if (err == -EMSGSIZE)
goto nla_put_failure;
net: Add netlink support for virtual port management (was iovnl) Add new netdev ops ndo_{set|get}_vf_port to allow setting of port-profile on a netdev interface. Extends netlink socket RTM_SETLINK/ RTM_GETLINK with two new sub msgs called IFLA_VF_PORTS and IFLA_PORT_SELF (added to end of IFLA_cmd list). These are both nested atrtibutes using this layout: [IFLA_NUM_VF] [IFLA_VF_PORTS] [IFLA_VF_PORT] [IFLA_PORT_*], ... [IFLA_VF_PORT] [IFLA_PORT_*], ... ... [IFLA_PORT_SELF] [IFLA_PORT_*], ... These attributes are design to be set and get symmetrically. VF_PORTS is a list of VF_PORTs, one for each VF, when dealing with an SR-IOV device. PORT_SELF is for the PF of the SR-IOV device, in case it wants to also have a port-profile, or for the case where the VF==PF, like in enic patch 2/2 of this patch set. A port-profile is used to configure/enable the external switch virtual port backing the netdev interface, not to configure the host-facing side of the netdev. A port-profile is an identifier known to the switch. How port- profiles are installed on the switch or how available port-profiles are made know to the host is outside the scope of this patch. There are two types of port-profiles specs in the netlink msg. The first spec is for 802.1Qbg (pre-)standard, VDP protocol. The second spec is for devices that run a similar protocol as VDP but in firmware, thus hiding the protocol details. In either case, the specs have much in common and makes sense to define the netlink msg as the union of the two specs. For example, both specs have a notition of associating/deassociating a port-profile. And both specs require some information from the hypervisor manager, such as client port instance ID. The general flow is the port-profile is applied to a host netdev interface using RTM_SETLINK, the receiver of the RTM_SETLINK msg communicates with the switch, and the switch virtual port backing the host netdev interface is configured/enabled based on the settings defined by the port-profile. What those settings comprise, and how those settings are managed is again outside the scope of this patch, since this patch only deals with the first step in the flow. Signed-off-by: Scott Feldman <scofeldm@cisco.com> Signed-off-by: Roopa Prabhu <roprabhu@cisco.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-05-17 23:49:55 -06:00
if (err) {
nla_nest_cancel(skb, vf_port);
continue;
}
nla_nest_end(skb, vf_port);
}
nla_nest_end(skb, vf_ports);
return 0;
nla_put_failure:
nla_nest_cancel(skb, vf_ports);
return -EMSGSIZE;
net: Add netlink support for virtual port management (was iovnl) Add new netdev ops ndo_{set|get}_vf_port to allow setting of port-profile on a netdev interface. Extends netlink socket RTM_SETLINK/ RTM_GETLINK with two new sub msgs called IFLA_VF_PORTS and IFLA_PORT_SELF (added to end of IFLA_cmd list). These are both nested atrtibutes using this layout: [IFLA_NUM_VF] [IFLA_VF_PORTS] [IFLA_VF_PORT] [IFLA_PORT_*], ... [IFLA_VF_PORT] [IFLA_PORT_*], ... ... [IFLA_PORT_SELF] [IFLA_PORT_*], ... These attributes are design to be set and get symmetrically. VF_PORTS is a list of VF_PORTs, one for each VF, when dealing with an SR-IOV device. PORT_SELF is for the PF of the SR-IOV device, in case it wants to also have a port-profile, or for the case where the VF==PF, like in enic patch 2/2 of this patch set. A port-profile is used to configure/enable the external switch virtual port backing the netdev interface, not to configure the host-facing side of the netdev. A port-profile is an identifier known to the switch. How port- profiles are installed on the switch or how available port-profiles are made know to the host is outside the scope of this patch. There are two types of port-profiles specs in the netlink msg. The first spec is for 802.1Qbg (pre-)standard, VDP protocol. The second spec is for devices that run a similar protocol as VDP but in firmware, thus hiding the protocol details. In either case, the specs have much in common and makes sense to define the netlink msg as the union of the two specs. For example, both specs have a notition of associating/deassociating a port-profile. And both specs require some information from the hypervisor manager, such as client port instance ID. The general flow is the port-profile is applied to a host netdev interface using RTM_SETLINK, the receiver of the RTM_SETLINK msg communicates with the switch, and the switch virtual port backing the host netdev interface is configured/enabled based on the settings defined by the port-profile. What those settings comprise, and how those settings are managed is again outside the scope of this patch, since this patch only deals with the first step in the flow. Signed-off-by: Scott Feldman <scofeldm@cisco.com> Signed-off-by: Roopa Prabhu <roprabhu@cisco.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-05-17 23:49:55 -06:00
}
static int rtnl_port_self_fill(struct sk_buff *skb, struct net_device *dev)
{
struct nlattr *port_self;
int err;
port_self = nla_nest_start(skb, IFLA_PORT_SELF);
if (!port_self)
return -EMSGSIZE;
err = dev->netdev_ops->ndo_get_vf_port(dev, PORT_SELF_VF, skb);
if (err) {
nla_nest_cancel(skb, port_self);
return (err == -EMSGSIZE) ? err : 0;
net: Add netlink support for virtual port management (was iovnl) Add new netdev ops ndo_{set|get}_vf_port to allow setting of port-profile on a netdev interface. Extends netlink socket RTM_SETLINK/ RTM_GETLINK with two new sub msgs called IFLA_VF_PORTS and IFLA_PORT_SELF (added to end of IFLA_cmd list). These are both nested atrtibutes using this layout: [IFLA_NUM_VF] [IFLA_VF_PORTS] [IFLA_VF_PORT] [IFLA_PORT_*], ... [IFLA_VF_PORT] [IFLA_PORT_*], ... ... [IFLA_PORT_SELF] [IFLA_PORT_*], ... These attributes are design to be set and get symmetrically. VF_PORTS is a list of VF_PORTs, one for each VF, when dealing with an SR-IOV device. PORT_SELF is for the PF of the SR-IOV device, in case it wants to also have a port-profile, or for the case where the VF==PF, like in enic patch 2/2 of this patch set. A port-profile is used to configure/enable the external switch virtual port backing the netdev interface, not to configure the host-facing side of the netdev. A port-profile is an identifier known to the switch. How port- profiles are installed on the switch or how available port-profiles are made know to the host is outside the scope of this patch. There are two types of port-profiles specs in the netlink msg. The first spec is for 802.1Qbg (pre-)standard, VDP protocol. The second spec is for devices that run a similar protocol as VDP but in firmware, thus hiding the protocol details. In either case, the specs have much in common and makes sense to define the netlink msg as the union of the two specs. For example, both specs have a notition of associating/deassociating a port-profile. And both specs require some information from the hypervisor manager, such as client port instance ID. The general flow is the port-profile is applied to a host netdev interface using RTM_SETLINK, the receiver of the RTM_SETLINK msg communicates with the switch, and the switch virtual port backing the host netdev interface is configured/enabled based on the settings defined by the port-profile. What those settings comprise, and how those settings are managed is again outside the scope of this patch, since this patch only deals with the first step in the flow. Signed-off-by: Scott Feldman <scofeldm@cisco.com> Signed-off-by: Roopa Prabhu <roprabhu@cisco.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-05-17 23:49:55 -06:00
}
nla_nest_end(skb, port_self);
return 0;
}
rtnetlink: Only supply IFLA_VF_PORTS information when RTEXT_FILTER_VF is set Since 115c9b81928360d769a76c632bae62d15206a94a (rtnetlink: Fix problem with buffer allocation), RTM_NEWLINK messages only contain the IFLA_VFINFO_LIST attribute if they were solicited by a GETLINK message containing an IFLA_EXT_MASK attribute with the RTEXT_FILTER_VF flag. That was done because some user programs broke when they received more data than expected - because IFLA_VFINFO_LIST contains information for each VF it can become large if there are many VFs. However, the IFLA_VF_PORTS attribute, supplied for devices which implement ndo_get_vf_port (currently the 'enic' driver only), has the same problem. It supplies per-VF information and can therefore become large, but it is not currently conditional on the IFLA_EXT_MASK value. Worse, it interacts badly with the existing EXT_MASK handling. When IFLA_EXT_MASK is not supplied, the buffer for netlink replies is fixed at NLMSG_GOODSIZE. If the information for IFLA_VF_PORTS exceeds this, then rtnl_fill_ifinfo() returns -EMSGSIZE on the first message in a packet. netlink_dump() will misinterpret this as having finished the listing and omit data for this interface and all subsequent ones. That can cause getifaddrs(3) to enter an infinite loop. This patch addresses the problem by only supplying IFLA_VF_PORTS when IFLA_EXT_MASK is supplied with the RTEXT_FILTER_VF flag set. Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-04-23 18:22:36 -06:00
static int rtnl_port_fill(struct sk_buff *skb, struct net_device *dev,
u32 ext_filter_mask)
net: Add netlink support for virtual port management (was iovnl) Add new netdev ops ndo_{set|get}_vf_port to allow setting of port-profile on a netdev interface. Extends netlink socket RTM_SETLINK/ RTM_GETLINK with two new sub msgs called IFLA_VF_PORTS and IFLA_PORT_SELF (added to end of IFLA_cmd list). These are both nested atrtibutes using this layout: [IFLA_NUM_VF] [IFLA_VF_PORTS] [IFLA_VF_PORT] [IFLA_PORT_*], ... [IFLA_VF_PORT] [IFLA_PORT_*], ... ... [IFLA_PORT_SELF] [IFLA_PORT_*], ... These attributes are design to be set and get symmetrically. VF_PORTS is a list of VF_PORTs, one for each VF, when dealing with an SR-IOV device. PORT_SELF is for the PF of the SR-IOV device, in case it wants to also have a port-profile, or for the case where the VF==PF, like in enic patch 2/2 of this patch set. A port-profile is used to configure/enable the external switch virtual port backing the netdev interface, not to configure the host-facing side of the netdev. A port-profile is an identifier known to the switch. How port- profiles are installed on the switch or how available port-profiles are made know to the host is outside the scope of this patch. There are two types of port-profiles specs in the netlink msg. The first spec is for 802.1Qbg (pre-)standard, VDP protocol. The second spec is for devices that run a similar protocol as VDP but in firmware, thus hiding the protocol details. In either case, the specs have much in common and makes sense to define the netlink msg as the union of the two specs. For example, both specs have a notition of associating/deassociating a port-profile. And both specs require some information from the hypervisor manager, such as client port instance ID. The general flow is the port-profile is applied to a host netdev interface using RTM_SETLINK, the receiver of the RTM_SETLINK msg communicates with the switch, and the switch virtual port backing the host netdev interface is configured/enabled based on the settings defined by the port-profile. What those settings comprise, and how those settings are managed is again outside the scope of this patch, since this patch only deals with the first step in the flow. Signed-off-by: Scott Feldman <scofeldm@cisco.com> Signed-off-by: Roopa Prabhu <roprabhu@cisco.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-05-17 23:49:55 -06:00
{
int err;
rtnetlink: Only supply IFLA_VF_PORTS information when RTEXT_FILTER_VF is set Since 115c9b81928360d769a76c632bae62d15206a94a (rtnetlink: Fix problem with buffer allocation), RTM_NEWLINK messages only contain the IFLA_VFINFO_LIST attribute if they were solicited by a GETLINK message containing an IFLA_EXT_MASK attribute with the RTEXT_FILTER_VF flag. That was done because some user programs broke when they received more data than expected - because IFLA_VFINFO_LIST contains information for each VF it can become large if there are many VFs. However, the IFLA_VF_PORTS attribute, supplied for devices which implement ndo_get_vf_port (currently the 'enic' driver only), has the same problem. It supplies per-VF information and can therefore become large, but it is not currently conditional on the IFLA_EXT_MASK value. Worse, it interacts badly with the existing EXT_MASK handling. When IFLA_EXT_MASK is not supplied, the buffer for netlink replies is fixed at NLMSG_GOODSIZE. If the information for IFLA_VF_PORTS exceeds this, then rtnl_fill_ifinfo() returns -EMSGSIZE on the first message in a packet. netlink_dump() will misinterpret this as having finished the listing and omit data for this interface and all subsequent ones. That can cause getifaddrs(3) to enter an infinite loop. This patch addresses the problem by only supplying IFLA_VF_PORTS when IFLA_EXT_MASK is supplied with the RTEXT_FILTER_VF flag set. Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-04-23 18:22:36 -06:00
if (!dev->netdev_ops->ndo_get_vf_port || !dev->dev.parent ||
!(ext_filter_mask & RTEXT_FILTER_VF))
net: Add netlink support for virtual port management (was iovnl) Add new netdev ops ndo_{set|get}_vf_port to allow setting of port-profile on a netdev interface. Extends netlink socket RTM_SETLINK/ RTM_GETLINK with two new sub msgs called IFLA_VF_PORTS and IFLA_PORT_SELF (added to end of IFLA_cmd list). These are both nested atrtibutes using this layout: [IFLA_NUM_VF] [IFLA_VF_PORTS] [IFLA_VF_PORT] [IFLA_PORT_*], ... [IFLA_VF_PORT] [IFLA_PORT_*], ... ... [IFLA_PORT_SELF] [IFLA_PORT_*], ... These attributes are design to be set and get symmetrically. VF_PORTS is a list of VF_PORTs, one for each VF, when dealing with an SR-IOV device. PORT_SELF is for the PF of the SR-IOV device, in case it wants to also have a port-profile, or for the case where the VF==PF, like in enic patch 2/2 of this patch set. A port-profile is used to configure/enable the external switch virtual port backing the netdev interface, not to configure the host-facing side of the netdev. A port-profile is an identifier known to the switch. How port- profiles are installed on the switch or how available port-profiles are made know to the host is outside the scope of this patch. There are two types of port-profiles specs in the netlink msg. The first spec is for 802.1Qbg (pre-)standard, VDP protocol. The second spec is for devices that run a similar protocol as VDP but in firmware, thus hiding the protocol details. In either case, the specs have much in common and makes sense to define the netlink msg as the union of the two specs. For example, both specs have a notition of associating/deassociating a port-profile. And both specs require some information from the hypervisor manager, such as client port instance ID. The general flow is the port-profile is applied to a host netdev interface using RTM_SETLINK, the receiver of the RTM_SETLINK msg communicates with the switch, and the switch virtual port backing the host netdev interface is configured/enabled based on the settings defined by the port-profile. What those settings comprise, and how those settings are managed is again outside the scope of this patch, since this patch only deals with the first step in the flow. Signed-off-by: Scott Feldman <scofeldm@cisco.com> Signed-off-by: Roopa Prabhu <roprabhu@cisco.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-05-17 23:49:55 -06:00
return 0;
err = rtnl_port_self_fill(skb, dev);
if (err)
return err;
if (dev_num_vf(dev->dev.parent)) {
err = rtnl_vf_ports_fill(skb, dev);
if (err)
return err;
}
return 0;
}
static int rtnl_phys_port_id_fill(struct sk_buff *skb, struct net_device *dev)
{
int err;
struct netdev_phys_item_id ppid;
err = dev_get_phys_port_id(dev, &ppid);
if (err) {
if (err == -EOPNOTSUPP)
return 0;
return err;
}
if (nla_put(skb, IFLA_PHYS_PORT_ID, ppid.id_len, ppid.id))
return -EMSGSIZE;
return 0;
}
static int rtnl_phys_port_name_fill(struct sk_buff *skb, struct net_device *dev)
{
char name[IFNAMSIZ];
int err;
err = dev_get_phys_port_name(dev, name, sizeof(name));
if (err) {
if (err == -EOPNOTSUPP)
return 0;
return err;
}
if (nla_put_string(skb, IFLA_PHYS_PORT_NAME, name))
return -EMSGSIZE;
return 0;
}
static int rtnl_phys_switch_id_fill(struct sk_buff *skb, struct net_device *dev)
{
int err;
struct switchdev_attr attr = {
.orig_dev = dev,
.id = SWITCHDEV_ATTR_ID_PORT_PARENT_ID,
.flags = SWITCHDEV_F_NO_RECURSE,
};
err = switchdev_port_attr_get(dev, &attr);
if (err) {
if (err == -EOPNOTSUPP)
return 0;
return err;
}
if (nla_put(skb, IFLA_PHYS_SWITCH_ID, attr.u.ppid.id_len,
attr.u.ppid.id))
return -EMSGSIZE;
return 0;
}
static noinline_for_stack int rtnl_fill_stats(struct sk_buff *skb,
struct net_device *dev)
{
struct rtnl_link_stats64 *sp;
struct nlattr *attr;
attr = nla_reserve_64bit(skb, IFLA_STATS64,
sizeof(struct rtnl_link_stats64), IFLA_PAD);
if (!attr)
return -EMSGSIZE;
sp = nla_data(attr);
dev_get_stats(dev, sp);
attr = nla_reserve(skb, IFLA_STATS,
sizeof(struct rtnl_link_stats));
if (!attr)
return -EMSGSIZE;
copy_rtnl_link_stats(nla_data(attr), sp);
return 0;
}
static noinline_for_stack int rtnl_fill_vfinfo(struct sk_buff *skb,
struct net_device *dev,
int vfs_num,
struct nlattr *vfinfo)
{
struct ifla_vf_rss_query_en vf_rss_query_en;
struct nlattr *vf, *vfstats, *vfvlanlist;
struct ifla_vf_link_state vf_linkstate;
struct ifla_vf_vlan_info vf_vlan_info;
struct ifla_vf_spoofchk vf_spoofchk;
struct ifla_vf_tx_rate vf_tx_rate;
struct ifla_vf_stats vf_stats;
struct ifla_vf_trust vf_trust;
struct ifla_vf_vlan vf_vlan;
struct ifla_vf_rate vf_rate;
struct ifla_vf_mac vf_mac;
struct ifla_vf_info ivi;
memset(&ivi, 0, sizeof(ivi));
/* Not all SR-IOV capable drivers support the
* spoofcheck and "RSS query enable" query. Preset to
* -1 so the user space tool can detect that the driver
* didn't report anything.
*/
ivi.spoofchk = -1;
ivi.rss_query_en = -1;
ivi.trusted = -1;
/* The default value for VF link state is "auto"
* IFLA_VF_LINK_STATE_AUTO which equals zero
*/
ivi.linkstate = 0;
/* VLAN Protocol by default is 802.1Q */
ivi.vlan_proto = htons(ETH_P_8021Q);
if (dev->netdev_ops->ndo_get_vf_config(dev, vfs_num, &ivi))
return 0;
memset(&vf_vlan_info, 0, sizeof(vf_vlan_info));
vf_mac.vf =
vf_vlan.vf =
vf_vlan_info.vf =
vf_rate.vf =
vf_tx_rate.vf =
vf_spoofchk.vf =
vf_linkstate.vf =
vf_rss_query_en.vf =
vf_trust.vf = ivi.vf;
memcpy(vf_mac.mac, ivi.mac, sizeof(ivi.mac));
vf_vlan.vlan = ivi.vlan;
vf_vlan.qos = ivi.qos;
vf_vlan_info.vlan = ivi.vlan;
vf_vlan_info.qos = ivi.qos;
vf_vlan_info.vlan_proto = ivi.vlan_proto;
vf_tx_rate.rate = ivi.max_tx_rate;
vf_rate.min_tx_rate = ivi.min_tx_rate;
vf_rate.max_tx_rate = ivi.max_tx_rate;
vf_spoofchk.setting = ivi.spoofchk;
vf_linkstate.link_state = ivi.linkstate;
vf_rss_query_en.setting = ivi.rss_query_en;
vf_trust.setting = ivi.trusted;
vf = nla_nest_start(skb, IFLA_VF_INFO);
if (!vf)
goto nla_put_vfinfo_failure;
if (nla_put(skb, IFLA_VF_MAC, sizeof(vf_mac), &vf_mac) ||
nla_put(skb, IFLA_VF_VLAN, sizeof(vf_vlan), &vf_vlan) ||
nla_put(skb, IFLA_VF_RATE, sizeof(vf_rate),
&vf_rate) ||
nla_put(skb, IFLA_VF_TX_RATE, sizeof(vf_tx_rate),
&vf_tx_rate) ||
nla_put(skb, IFLA_VF_SPOOFCHK, sizeof(vf_spoofchk),
&vf_spoofchk) ||
nla_put(skb, IFLA_VF_LINK_STATE, sizeof(vf_linkstate),
&vf_linkstate) ||
nla_put(skb, IFLA_VF_RSS_QUERY_EN,
sizeof(vf_rss_query_en),
&vf_rss_query_en) ||
nla_put(skb, IFLA_VF_TRUST,
sizeof(vf_trust), &vf_trust))
goto nla_put_vf_failure;
vfvlanlist = nla_nest_start(skb, IFLA_VF_VLAN_LIST);
if (!vfvlanlist)
goto nla_put_vf_failure;
if (nla_put(skb, IFLA_VF_VLAN_INFO, sizeof(vf_vlan_info),
&vf_vlan_info)) {
nla_nest_cancel(skb, vfvlanlist);
goto nla_put_vf_failure;
}
nla_nest_end(skb, vfvlanlist);
memset(&vf_stats, 0, sizeof(vf_stats));
if (dev->netdev_ops->ndo_get_vf_stats)
dev->netdev_ops->ndo_get_vf_stats(dev, vfs_num,
&vf_stats);
vfstats = nla_nest_start(skb, IFLA_VF_STATS);
if (!vfstats)
goto nla_put_vf_failure;
if (nla_put_u64_64bit(skb, IFLA_VF_STATS_RX_PACKETS,
vf_stats.rx_packets, IFLA_VF_STATS_PAD) ||
nla_put_u64_64bit(skb, IFLA_VF_STATS_TX_PACKETS,
vf_stats.tx_packets, IFLA_VF_STATS_PAD) ||
nla_put_u64_64bit(skb, IFLA_VF_STATS_RX_BYTES,
vf_stats.rx_bytes, IFLA_VF_STATS_PAD) ||
nla_put_u64_64bit(skb, IFLA_VF_STATS_TX_BYTES,
vf_stats.tx_bytes, IFLA_VF_STATS_PAD) ||
nla_put_u64_64bit(skb, IFLA_VF_STATS_BROADCAST,
vf_stats.broadcast, IFLA_VF_STATS_PAD) ||
nla_put_u64_64bit(skb, IFLA_VF_STATS_MULTICAST,
vf_stats.multicast, IFLA_VF_STATS_PAD) ||
nla_put_u64_64bit(skb, IFLA_VF_STATS_RX_DROPPED,
vf_stats.rx_dropped, IFLA_VF_STATS_PAD) ||
nla_put_u64_64bit(skb, IFLA_VF_STATS_TX_DROPPED,
vf_stats.tx_dropped, IFLA_VF_STATS_PAD)) {
nla_nest_cancel(skb, vfstats);
goto nla_put_vf_failure;
}
nla_nest_end(skb, vfstats);
nla_nest_end(skb, vf);
return 0;
nla_put_vf_failure:
nla_nest_cancel(skb, vf);
nla_put_vfinfo_failure:
nla_nest_cancel(skb, vfinfo);
return -EMSGSIZE;
}
static noinline_for_stack int rtnl_fill_vf(struct sk_buff *skb,
struct net_device *dev,
u32 ext_filter_mask)
{
struct nlattr *vfinfo;
int i, num_vfs;
if (!dev->dev.parent || ((ext_filter_mask & RTEXT_FILTER_VF) == 0))
return 0;
num_vfs = dev_num_vf(dev->dev.parent);
if (nla_put_u32(skb, IFLA_NUM_VF, num_vfs))
return -EMSGSIZE;
if (!dev->netdev_ops->ndo_get_vf_config)
return 0;
vfinfo = nla_nest_start(skb, IFLA_VFINFO_LIST);
if (!vfinfo)
return -EMSGSIZE;
for (i = 0; i < num_vfs; i++) {
if (rtnl_fill_vfinfo(skb, dev, i, vfinfo))
return -EMSGSIZE;
}
nla_nest_end(skb, vfinfo);
return 0;
}
static int rtnl_fill_link_ifmap(struct sk_buff *skb, struct net_device *dev)
{
struct rtnl_link_ifmap map;
memset(&map, 0, sizeof(map));
map.mem_start = dev->mem_start;
map.mem_end = dev->mem_end;
map.base_addr = dev->base_addr;
map.irq = dev->irq;
map.dma = dev->dma;
map.port = dev->if_port;
if (nla_put_64bit(skb, IFLA_MAP, sizeof(map), &map, IFLA_PAD))
return -EMSGSIZE;
return 0;
}
static u32 rtnl_xdp_prog_skb(struct net_device *dev)
xdp: refine xdp api with regards to generic xdp While working on the iproute2 generic XDP frontend, I noticed that as of right now it's possible to have native *and* generic XDP programs loaded both at the same time for the case when a driver supports native XDP. The intended model for generic XDP from b5cdae3291f7 ("net: Generic XDP") is, however, that only one out of the two can be present at once which is also indicated as such in the XDP netlink dump part. The main rationale for generic XDP is to ease accessibility (in case a driver does not yet have XDP support) and to generically provide a semantical model as an example for driver developers wanting to add XDP support. The generic XDP option for an XDP aware driver can still be useful for comparing and testing both implementations. However, it is not intended to have a second XDP processing stage or layer with exactly the same functionality of the first native stage. Only reason could be to have a partial fallback for future XDP features that are not supported yet in the native implementation and we probably also shouldn't strive for such fallback and instead encourage native feature support in the first place. Given there's currently no such fallback issue or use case, lets not go there yet if we don't need to. Therefore, change semantics for loading XDP and bail out if the user tries to load a generic XDP program when a native one is present and vice versa. Another alternative to bailing out would be to handle the transition from one flavor to another gracefully, but that would require to bring the device down, exchange both types of programs, and bring it up again in order to avoid a tiny window where a packet could hit both hooks. Given this complicates the logic for just a debugging feature in the native case, I went with the simpler variant. For the dump, remove IFLA_XDP_FLAGS that was added with b5cdae3291f7 and reuse IFLA_XDP_ATTACHED for indicating the mode. Dumping all or just a subset of flags that were used for loading the XDP prog is suboptimal in the long run since not all flags are useful for dumping and if we start to reuse the same flag definitions for load and dump, then we'll waste bit space. What we really just want is to dump the mode for now. Current IFLA_XDP_ATTACHED semantics are: nothing was installed (0), a program is running at the native driver layer (1). Thus, add a mode that says that a program is running at generic XDP layer (2). Applications will handle this fine in that older binaries will just indicate that something is attached at XDP layer, effectively this is similar to IFLA_XDP_FLAGS attr that we would have had modulo the redundancy. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-05-11 17:04:46 -06:00
{
const struct bpf_prog *generic_xdp_prog;
xdp: refine xdp api with regards to generic xdp While working on the iproute2 generic XDP frontend, I noticed that as of right now it's possible to have native *and* generic XDP programs loaded both at the same time for the case when a driver supports native XDP. The intended model for generic XDP from b5cdae3291f7 ("net: Generic XDP") is, however, that only one out of the two can be present at once which is also indicated as such in the XDP netlink dump part. The main rationale for generic XDP is to ease accessibility (in case a driver does not yet have XDP support) and to generically provide a semantical model as an example for driver developers wanting to add XDP support. The generic XDP option for an XDP aware driver can still be useful for comparing and testing both implementations. However, it is not intended to have a second XDP processing stage or layer with exactly the same functionality of the first native stage. Only reason could be to have a partial fallback for future XDP features that are not supported yet in the native implementation and we probably also shouldn't strive for such fallback and instead encourage native feature support in the first place. Given there's currently no such fallback issue or use case, lets not go there yet if we don't need to. Therefore, change semantics for loading XDP and bail out if the user tries to load a generic XDP program when a native one is present and vice versa. Another alternative to bailing out would be to handle the transition from one flavor to another gracefully, but that would require to bring the device down, exchange both types of programs, and bring it up again in order to avoid a tiny window where a packet could hit both hooks. Given this complicates the logic for just a debugging feature in the native case, I went with the simpler variant. For the dump, remove IFLA_XDP_FLAGS that was added with b5cdae3291f7 and reuse IFLA_XDP_ATTACHED for indicating the mode. Dumping all or just a subset of flags that were used for loading the XDP prog is suboptimal in the long run since not all flags are useful for dumping and if we start to reuse the same flag definitions for load and dump, then we'll waste bit space. What we really just want is to dump the mode for now. Current IFLA_XDP_ATTACHED semantics are: nothing was installed (0), a program is running at the native driver layer (1). Thus, add a mode that says that a program is running at generic XDP layer (2). Applications will handle this fine in that older binaries will just indicate that something is attached at XDP layer, effectively this is similar to IFLA_XDP_FLAGS attr that we would have had modulo the redundancy. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-05-11 17:04:46 -06:00
ASSERT_RTNL();
generic_xdp_prog = rtnl_dereference(dev->xdp_prog);
if (!generic_xdp_prog)
return 0;
return generic_xdp_prog->aux->id;
}
xdp: refine xdp api with regards to generic xdp While working on the iproute2 generic XDP frontend, I noticed that as of right now it's possible to have native *and* generic XDP programs loaded both at the same time for the case when a driver supports native XDP. The intended model for generic XDP from b5cdae3291f7 ("net: Generic XDP") is, however, that only one out of the two can be present at once which is also indicated as such in the XDP netlink dump part. The main rationale for generic XDP is to ease accessibility (in case a driver does not yet have XDP support) and to generically provide a semantical model as an example for driver developers wanting to add XDP support. The generic XDP option for an XDP aware driver can still be useful for comparing and testing both implementations. However, it is not intended to have a second XDP processing stage or layer with exactly the same functionality of the first native stage. Only reason could be to have a partial fallback for future XDP features that are not supported yet in the native implementation and we probably also shouldn't strive for such fallback and instead encourage native feature support in the first place. Given there's currently no such fallback issue or use case, lets not go there yet if we don't need to. Therefore, change semantics for loading XDP and bail out if the user tries to load a generic XDP program when a native one is present and vice versa. Another alternative to bailing out would be to handle the transition from one flavor to another gracefully, but that would require to bring the device down, exchange both types of programs, and bring it up again in order to avoid a tiny window where a packet could hit both hooks. Given this complicates the logic for just a debugging feature in the native case, I went with the simpler variant. For the dump, remove IFLA_XDP_FLAGS that was added with b5cdae3291f7 and reuse IFLA_XDP_ATTACHED for indicating the mode. Dumping all or just a subset of flags that were used for loading the XDP prog is suboptimal in the long run since not all flags are useful for dumping and if we start to reuse the same flag definitions for load and dump, then we'll waste bit space. What we really just want is to dump the mode for now. Current IFLA_XDP_ATTACHED semantics are: nothing was installed (0), a program is running at the native driver layer (1). Thus, add a mode that says that a program is running at generic XDP layer (2). Applications will handle this fine in that older binaries will just indicate that something is attached at XDP layer, effectively this is similar to IFLA_XDP_FLAGS attr that we would have had modulo the redundancy. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-05-11 17:04:46 -06:00
static u32 rtnl_xdp_prog_drv(struct net_device *dev)
{
return __dev_xdp_query(dev, dev->netdev_ops->ndo_bpf, XDP_QUERY_PROG);
}
static u32 rtnl_xdp_prog_hw(struct net_device *dev)
{
return __dev_xdp_query(dev, dev->netdev_ops->ndo_bpf,
XDP_QUERY_PROG_HW);
}
static int rtnl_xdp_report_one(struct sk_buff *skb, struct net_device *dev,
u32 *prog_id, u8 *mode, u8 tgt_mode, u32 attr,
u32 (*get_prog_id)(struct net_device *dev))
{
u32 curr_id;
int err;
curr_id = get_prog_id(dev);
if (!curr_id)
return 0;
*prog_id = curr_id;
err = nla_put_u32(skb, attr, curr_id);
if (err)
return err;
xdp: refine xdp api with regards to generic xdp While working on the iproute2 generic XDP frontend, I noticed that as of right now it's possible to have native *and* generic XDP programs loaded both at the same time for the case when a driver supports native XDP. The intended model for generic XDP from b5cdae3291f7 ("net: Generic XDP") is, however, that only one out of the two can be present at once which is also indicated as such in the XDP netlink dump part. The main rationale for generic XDP is to ease accessibility (in case a driver does not yet have XDP support) and to generically provide a semantical model as an example for driver developers wanting to add XDP support. The generic XDP option for an XDP aware driver can still be useful for comparing and testing both implementations. However, it is not intended to have a second XDP processing stage or layer with exactly the same functionality of the first native stage. Only reason could be to have a partial fallback for future XDP features that are not supported yet in the native implementation and we probably also shouldn't strive for such fallback and instead encourage native feature support in the first place. Given there's currently no such fallback issue or use case, lets not go there yet if we don't need to. Therefore, change semantics for loading XDP and bail out if the user tries to load a generic XDP program when a native one is present and vice versa. Another alternative to bailing out would be to handle the transition from one flavor to another gracefully, but that would require to bring the device down, exchange both types of programs, and bring it up again in order to avoid a tiny window where a packet could hit both hooks. Given this complicates the logic for just a debugging feature in the native case, I went with the simpler variant. For the dump, remove IFLA_XDP_FLAGS that was added with b5cdae3291f7 and reuse IFLA_XDP_ATTACHED for indicating the mode. Dumping all or just a subset of flags that were used for loading the XDP prog is suboptimal in the long run since not all flags are useful for dumping and if we start to reuse the same flag definitions for load and dump, then we'll waste bit space. What we really just want is to dump the mode for now. Current IFLA_XDP_ATTACHED semantics are: nothing was installed (0), a program is running at the native driver layer (1). Thus, add a mode that says that a program is running at generic XDP layer (2). Applications will handle this fine in that older binaries will just indicate that something is attached at XDP layer, effectively this is similar to IFLA_XDP_FLAGS attr that we would have had modulo the redundancy. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-05-11 17:04:46 -06:00
if (*mode != XDP_ATTACHED_NONE)
*mode = XDP_ATTACHED_MULTI;
else
*mode = tgt_mode;
return 0;
xdp: refine xdp api with regards to generic xdp While working on the iproute2 generic XDP frontend, I noticed that as of right now it's possible to have native *and* generic XDP programs loaded both at the same time for the case when a driver supports native XDP. The intended model for generic XDP from b5cdae3291f7 ("net: Generic XDP") is, however, that only one out of the two can be present at once which is also indicated as such in the XDP netlink dump part. The main rationale for generic XDP is to ease accessibility (in case a driver does not yet have XDP support) and to generically provide a semantical model as an example for driver developers wanting to add XDP support. The generic XDP option for an XDP aware driver can still be useful for comparing and testing both implementations. However, it is not intended to have a second XDP processing stage or layer with exactly the same functionality of the first native stage. Only reason could be to have a partial fallback for future XDP features that are not supported yet in the native implementation and we probably also shouldn't strive for such fallback and instead encourage native feature support in the first place. Given there's currently no such fallback issue or use case, lets not go there yet if we don't need to. Therefore, change semantics for loading XDP and bail out if the user tries to load a generic XDP program when a native one is present and vice versa. Another alternative to bailing out would be to handle the transition from one flavor to another gracefully, but that would require to bring the device down, exchange both types of programs, and bring it up again in order to avoid a tiny window where a packet could hit both hooks. Given this complicates the logic for just a debugging feature in the native case, I went with the simpler variant. For the dump, remove IFLA_XDP_FLAGS that was added with b5cdae3291f7 and reuse IFLA_XDP_ATTACHED for indicating the mode. Dumping all or just a subset of flags that were used for loading the XDP prog is suboptimal in the long run since not all flags are useful for dumping and if we start to reuse the same flag definitions for load and dump, then we'll waste bit space. What we really just want is to dump the mode for now. Current IFLA_XDP_ATTACHED semantics are: nothing was installed (0), a program is running at the native driver layer (1). Thus, add a mode that says that a program is running at generic XDP layer (2). Applications will handle this fine in that older binaries will just indicate that something is attached at XDP layer, effectively this is similar to IFLA_XDP_FLAGS attr that we would have had modulo the redundancy. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-05-11 17:04:46 -06:00
}
static int rtnl_xdp_fill(struct sk_buff *skb, struct net_device *dev)
{
struct nlattr *xdp;
u32 prog_id;
int err;
u8 mode;
xdp = nla_nest_start(skb, IFLA_XDP);
if (!xdp)
return -EMSGSIZE;
xdp: refine xdp api with regards to generic xdp While working on the iproute2 generic XDP frontend, I noticed that as of right now it's possible to have native *and* generic XDP programs loaded both at the same time for the case when a driver supports native XDP. The intended model for generic XDP from b5cdae3291f7 ("net: Generic XDP") is, however, that only one out of the two can be present at once which is also indicated as such in the XDP netlink dump part. The main rationale for generic XDP is to ease accessibility (in case a driver does not yet have XDP support) and to generically provide a semantical model as an example for driver developers wanting to add XDP support. The generic XDP option for an XDP aware driver can still be useful for comparing and testing both implementations. However, it is not intended to have a second XDP processing stage or layer with exactly the same functionality of the first native stage. Only reason could be to have a partial fallback for future XDP features that are not supported yet in the native implementation and we probably also shouldn't strive for such fallback and instead encourage native feature support in the first place. Given there's currently no such fallback issue or use case, lets not go there yet if we don't need to. Therefore, change semantics for loading XDP and bail out if the user tries to load a generic XDP program when a native one is present and vice versa. Another alternative to bailing out would be to handle the transition from one flavor to another gracefully, but that would require to bring the device down, exchange both types of programs, and bring it up again in order to avoid a tiny window where a packet could hit both hooks. Given this complicates the logic for just a debugging feature in the native case, I went with the simpler variant. For the dump, remove IFLA_XDP_FLAGS that was added with b5cdae3291f7 and reuse IFLA_XDP_ATTACHED for indicating the mode. Dumping all or just a subset of flags that were used for loading the XDP prog is suboptimal in the long run since not all flags are useful for dumping and if we start to reuse the same flag definitions for load and dump, then we'll waste bit space. What we really just want is to dump the mode for now. Current IFLA_XDP_ATTACHED semantics are: nothing was installed (0), a program is running at the native driver layer (1). Thus, add a mode that says that a program is running at generic XDP layer (2). Applications will handle this fine in that older binaries will just indicate that something is attached at XDP layer, effectively this is similar to IFLA_XDP_FLAGS attr that we would have had modulo the redundancy. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-05-11 17:04:46 -06:00
prog_id = 0;
mode = XDP_ATTACHED_NONE;
err = rtnl_xdp_report_one(skb, dev, &prog_id, &mode, XDP_ATTACHED_SKB,
IFLA_XDP_SKB_PROG_ID, rtnl_xdp_prog_skb);
if (err)
goto err_cancel;
err = rtnl_xdp_report_one(skb, dev, &prog_id, &mode, XDP_ATTACHED_DRV,
IFLA_XDP_DRV_PROG_ID, rtnl_xdp_prog_drv);
if (err)
goto err_cancel;
err = rtnl_xdp_report_one(skb, dev, &prog_id, &mode, XDP_ATTACHED_HW,
IFLA_XDP_HW_PROG_ID, rtnl_xdp_prog_hw);
if (err)
goto err_cancel;
err = nla_put_u8(skb, IFLA_XDP_ATTACHED, mode);
if (err)
goto err_cancel;
if (prog_id && mode != XDP_ATTACHED_MULTI) {
err = nla_put_u32(skb, IFLA_XDP_PROG_ID, prog_id);
if (err)
goto err_cancel;
}
nla_nest_end(skb, xdp);
return 0;
err_cancel:
nla_nest_cancel(skb, xdp);
return err;
}
static u32 rtnl_get_event(unsigned long event)
{
u32 rtnl_event_type = IFLA_EVENT_NONE;
switch (event) {
case NETDEV_REBOOT:
rtnl_event_type = IFLA_EVENT_REBOOT;
break;
case NETDEV_FEAT_CHANGE:
rtnl_event_type = IFLA_EVENT_FEATURES;
break;
case NETDEV_BONDING_FAILOVER:
rtnl_event_type = IFLA_EVENT_BONDING_FAILOVER;
break;
case NETDEV_NOTIFY_PEERS:
rtnl_event_type = IFLA_EVENT_NOTIFY_PEERS;
break;
case NETDEV_RESEND_IGMP:
rtnl_event_type = IFLA_EVENT_IGMP_RESEND;
break;
case NETDEV_CHANGEINFODATA:
rtnl_event_type = IFLA_EVENT_BONDING_OPTIONS;
break;
default:
break;
}
return rtnl_event_type;
}
static int put_master_ifindex(struct sk_buff *skb, struct net_device *dev)
{
const struct net_device *upper_dev;
int ret = 0;
rcu_read_lock();
upper_dev = netdev_master_upper_dev_get_rcu(dev);
if (upper_dev)
ret = nla_put_u32(skb, IFLA_MASTER, upper_dev->ifindex);
rcu_read_unlock();
return ret;
}
static int nla_put_iflink(struct sk_buff *skb, const struct net_device *dev)
{
int ifindex = dev_get_iflink(dev);
if (dev->ifindex == ifindex)
return 0;
return nla_put_u32(skb, IFLA_LINK, ifindex);
}
static noinline_for_stack int nla_put_ifalias(struct sk_buff *skb,
struct net_device *dev)
{
char buf[IFALIASZ];
int ret;
ret = dev_get_alias(dev, buf, sizeof(buf));
return ret > 0 ? nla_put_string(skb, IFLA_IFALIAS, buf) : 0;
}
static int rtnl_fill_link_netnsid(struct sk_buff *skb,
const struct net_device *dev,
struct net *src_net)
{
if (dev->rtnl_link_ops && dev->rtnl_link_ops->get_link_net) {
struct net *link_net = dev->rtnl_link_ops->get_link_net(dev);
if (!net_eq(dev_net(dev), link_net)) {
int id = peernet2id_alloc(src_net, link_net);
if (nla_put_s32(skb, IFLA_LINK_NETNSID, id))
return -EMSGSIZE;
}
}
return 0;
}
static int rtnl_fill_link_af(struct sk_buff *skb,
const struct net_device *dev,
u32 ext_filter_mask)
{
const struct rtnl_af_ops *af_ops;
struct nlattr *af_spec;
af_spec = nla_nest_start(skb, IFLA_AF_SPEC);
if (!af_spec)
return -EMSGSIZE;
list_for_each_entry_rcu(af_ops, &rtnl_af_ops, list) {
struct nlattr *af;
int err;
if (!af_ops->fill_link_af)
continue;
af = nla_nest_start(skb, af_ops->family);
if (!af)
return -EMSGSIZE;
err = af_ops->fill_link_af(skb, dev, ext_filter_mask);
/*
* Caller may return ENODATA to indicate that there
* was no data to be dumped. This is not an error, it
* means we should trim the attribute header and
* continue.
*/
if (err == -ENODATA)
nla_nest_cancel(skb, af);
else if (err < 0)
return -EMSGSIZE;
nla_nest_end(skb, af);
}
nla_nest_end(skb, af_spec);
return 0;
}
static int rtnl_fill_ifinfo(struct sk_buff *skb,
struct net_device *dev, struct net *src_net,
int type, u32 pid, u32 seq, u32 change,
unsigned int flags, u32 ext_filter_mask,
u32 event, int *new_nsid, int new_ifindex,
int tgt_netnsid)
{
struct ifinfomsg *ifm;
struct nlmsghdr *nlh;
ASSERT_RTNL();
nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ifm), flags);
if (nlh == NULL)
return -EMSGSIZE;
ifm = nlmsg_data(nlh);
ifm->ifi_family = AF_UNSPEC;
ifm->__ifi_pad = 0;
ifm->ifi_type = dev->type;
ifm->ifi_index = dev->ifindex;
ifm->ifi_flags = dev_get_flags(dev);
ifm->ifi_change = change;
if (tgt_netnsid >= 0 && nla_put_s32(skb, IFLA_TARGET_NETNSID, tgt_netnsid))
goto nla_put_failure;
if (nla_put_string(skb, IFLA_IFNAME, dev->name) ||
nla_put_u32(skb, IFLA_TXQLEN, dev->tx_queue_len) ||
nla_put_u8(skb, IFLA_OPERSTATE,
netif_running(dev) ? dev->operstate : IF_OPER_DOWN) ||
nla_put_u8(skb, IFLA_LINKMODE, dev->link_mode) ||
nla_put_u32(skb, IFLA_MTU, dev->mtu) ||
nla_put_u32(skb, IFLA_MIN_MTU, dev->min_mtu) ||
nla_put_u32(skb, IFLA_MAX_MTU, dev->max_mtu) ||
nla_put_u32(skb, IFLA_GROUP, dev->group) ||
nla_put_u32(skb, IFLA_PROMISCUITY, dev->promiscuity) ||
nla_put_u32(skb, IFLA_NUM_TX_QUEUES, dev->num_tx_queues) ||
nla_put_u32(skb, IFLA_GSO_MAX_SEGS, dev->gso_max_segs) ||
nla_put_u32(skb, IFLA_GSO_MAX_SIZE, dev->gso_max_size) ||
#ifdef CONFIG_RPS
nla_put_u32(skb, IFLA_NUM_RX_QUEUES, dev->num_rx_queues) ||
#endif
nla_put_iflink(skb, dev) ||
put_master_ifindex(skb, dev) ||
nla_put_u8(skb, IFLA_CARRIER, netif_carrier_ok(dev)) ||
(dev->qdisc &&
nla_put_string(skb, IFLA_QDISC, dev->qdisc->ops->id)) ||
nla_put_ifalias(skb, dev) ||
nla_put_u32(skb, IFLA_CARRIER_CHANGES,
atomic_read(&dev->carrier_up_count) +
atomic_read(&dev->carrier_down_count)) ||
nla_put_u8(skb, IFLA_PROTO_DOWN, dev->proto_down) ||
nla_put_u32(skb, IFLA_CARRIER_UP_COUNT,
atomic_read(&dev->carrier_up_count)) ||
nla_put_u32(skb, IFLA_CARRIER_DOWN_COUNT,
atomic_read(&dev->carrier_down_count)))
goto nla_put_failure;
if (event != IFLA_EVENT_NONE) {
if (nla_put_u32(skb, IFLA_EVENT, event))
goto nla_put_failure;
}
if (rtnl_fill_link_ifmap(skb, dev))
goto nla_put_failure;
if (dev->addr_len) {
if (nla_put(skb, IFLA_ADDRESS, dev->addr_len, dev->dev_addr) ||
nla_put(skb, IFLA_BROADCAST, dev->addr_len, dev->broadcast))
goto nla_put_failure;
}
if (rtnl_phys_port_id_fill(skb, dev))
goto nla_put_failure;
if (rtnl_phys_port_name_fill(skb, dev))
goto nla_put_failure;
if (rtnl_phys_switch_id_fill(skb, dev))
goto nla_put_failure;
if (rtnl_fill_stats(skb, dev))
goto nla_put_failure;
if (rtnl_fill_vf(skb, dev, ext_filter_mask))
goto nla_put_failure;
net: Add netlink support for virtual port management (was iovnl) Add new netdev ops ndo_{set|get}_vf_port to allow setting of port-profile on a netdev interface. Extends netlink socket RTM_SETLINK/ RTM_GETLINK with two new sub msgs called IFLA_VF_PORTS and IFLA_PORT_SELF (added to end of IFLA_cmd list). These are both nested atrtibutes using this layout: [IFLA_NUM_VF] [IFLA_VF_PORTS] [IFLA_VF_PORT] [IFLA_PORT_*], ... [IFLA_VF_PORT] [IFLA_PORT_*], ... ... [IFLA_PORT_SELF] [IFLA_PORT_*], ... These attributes are design to be set and get symmetrically. VF_PORTS is a list of VF_PORTs, one for each VF, when dealing with an SR-IOV device. PORT_SELF is for the PF of the SR-IOV device, in case it wants to also have a port-profile, or for the case where the VF==PF, like in enic patch 2/2 of this patch set. A port-profile is used to configure/enable the external switch virtual port backing the netdev interface, not to configure the host-facing side of the netdev. A port-profile is an identifier known to the switch. How port- profiles are installed on the switch or how available port-profiles are made know to the host is outside the scope of this patch. There are two types of port-profiles specs in the netlink msg. The first spec is for 802.1Qbg (pre-)standard, VDP protocol. The second spec is for devices that run a similar protocol as VDP but in firmware, thus hiding the protocol details. In either case, the specs have much in common and makes sense to define the netlink msg as the union of the two specs. For example, both specs have a notition of associating/deassociating a port-profile. And both specs require some information from the hypervisor manager, such as client port instance ID. The general flow is the port-profile is applied to a host netdev interface using RTM_SETLINK, the receiver of the RTM_SETLINK msg communicates with the switch, and the switch virtual port backing the host netdev interface is configured/enabled based on the settings defined by the port-profile. What those settings comprise, and how those settings are managed is again outside the scope of this patch, since this patch only deals with the first step in the flow. Signed-off-by: Scott Feldman <scofeldm@cisco.com> Signed-off-by: Roopa Prabhu <roprabhu@cisco.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-05-17 23:49:55 -06:00
rtnetlink: Only supply IFLA_VF_PORTS information when RTEXT_FILTER_VF is set Since 115c9b81928360d769a76c632bae62d15206a94a (rtnetlink: Fix problem with buffer allocation), RTM_NEWLINK messages only contain the IFLA_VFINFO_LIST attribute if they were solicited by a GETLINK message containing an IFLA_EXT_MASK attribute with the RTEXT_FILTER_VF flag. That was done because some user programs broke when they received more data than expected - because IFLA_VFINFO_LIST contains information for each VF it can become large if there are many VFs. However, the IFLA_VF_PORTS attribute, supplied for devices which implement ndo_get_vf_port (currently the 'enic' driver only), has the same problem. It supplies per-VF information and can therefore become large, but it is not currently conditional on the IFLA_EXT_MASK value. Worse, it interacts badly with the existing EXT_MASK handling. When IFLA_EXT_MASK is not supplied, the buffer for netlink replies is fixed at NLMSG_GOODSIZE. If the information for IFLA_VF_PORTS exceeds this, then rtnl_fill_ifinfo() returns -EMSGSIZE on the first message in a packet. netlink_dump() will misinterpret this as having finished the listing and omit data for this interface and all subsequent ones. That can cause getifaddrs(3) to enter an infinite loop. This patch addresses the problem by only supplying IFLA_VF_PORTS when IFLA_EXT_MASK is supplied with the RTEXT_FILTER_VF flag set. Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-04-23 18:22:36 -06:00
if (rtnl_port_fill(skb, dev, ext_filter_mask))
net: Add netlink support for virtual port management (was iovnl) Add new netdev ops ndo_{set|get}_vf_port to allow setting of port-profile on a netdev interface. Extends netlink socket RTM_SETLINK/ RTM_GETLINK with two new sub msgs called IFLA_VF_PORTS and IFLA_PORT_SELF (added to end of IFLA_cmd list). These are both nested atrtibutes using this layout: [IFLA_NUM_VF] [IFLA_VF_PORTS] [IFLA_VF_PORT] [IFLA_PORT_*], ... [IFLA_VF_PORT] [IFLA_PORT_*], ... ... [IFLA_PORT_SELF] [IFLA_PORT_*], ... These attributes are design to be set and get symmetrically. VF_PORTS is a list of VF_PORTs, one for each VF, when dealing with an SR-IOV device. PORT_SELF is for the PF of the SR-IOV device, in case it wants to also have a port-profile, or for the case where the VF==PF, like in enic patch 2/2 of this patch set. A port-profile is used to configure/enable the external switch virtual port backing the netdev interface, not to configure the host-facing side of the netdev. A port-profile is an identifier known to the switch. How port- profiles are installed on the switch or how available port-profiles are made know to the host is outside the scope of this patch. There are two types of port-profiles specs in the netlink msg. The first spec is for 802.1Qbg (pre-)standard, VDP protocol. The second spec is for devices that run a similar protocol as VDP but in firmware, thus hiding the protocol details. In either case, the specs have much in common and makes sense to define the netlink msg as the union of the two specs. For example, both specs have a notition of associating/deassociating a port-profile. And both specs require some information from the hypervisor manager, such as client port instance ID. The general flow is the port-profile is applied to a host netdev interface using RTM_SETLINK, the receiver of the RTM_SETLINK msg communicates with the switch, and the switch virtual port backing the host netdev interface is configured/enabled based on the settings defined by the port-profile. What those settings comprise, and how those settings are managed is again outside the scope of this patch, since this patch only deals with the first step in the flow. Signed-off-by: Scott Feldman <scofeldm@cisco.com> Signed-off-by: Roopa Prabhu <roprabhu@cisco.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-05-17 23:49:55 -06:00
goto nla_put_failure;
if (rtnl_xdp_fill(skb, dev))
goto nla_put_failure;
if (dev->rtnl_link_ops || rtnl_have_link_slave_info(dev)) {
if (rtnl_link_fill(skb, dev) < 0)
goto nla_put_failure;
}
if (rtnl_fill_link_netnsid(skb, dev, src_net))
goto nla_put_failure;
if (new_nsid &&
nla_put_s32(skb, IFLA_NEW_NETNSID, *new_nsid) < 0)
goto nla_put_failure;
if (new_ifindex &&
nla_put_s32(skb, IFLA_NEW_IFINDEX, new_ifindex) < 0)
goto nla_put_failure;
rcu_read_lock();
if (rtnl_fill_link_af(skb, dev, ext_filter_mask))
goto nla_put_failure_rcu;
rcu_read_unlock();
netlink: make nlmsg_end() and genlmsg_end() void Contrary to common expectations for an "int" return, these functions return only a positive value -- if used correctly they cannot even return 0 because the message header will necessarily be in the skb. This makes the very common pattern of if (genlmsg_end(...) < 0) { ... } be a whole bunch of dead code. Many places also simply do return nlmsg_end(...); and the caller is expected to deal with it. This also commonly (at least for me) causes errors, because it is very common to write if (my_function(...)) /* error condition */ and if my_function() does "return nlmsg_end()" this is of course wrong. Additionally, there's not a single place in the kernel that actually needs the message length returned, and if anyone needs it later then it'll be very easy to just use skb->len there. Remove this, and make the functions void. This removes a bunch of dead code as described above. The patch adds lines because I did - return nlmsg_end(...); + nlmsg_end(...); + return 0; I could have preserved all the function's return values by returning skb->len, but instead I've audited all the places calling the affected functions and found that none cared. A few places actually compared the return value with <= 0 in dump functionality, but that could just be changed to < 0 with no change in behaviour, so I opted for the more efficient version. One instance of the error I've made numerous times now is also present in net/phonet/pn_netlink.c in the route_dumpit() function - it didn't check for <0 or <=0 and thus broke out of the loop every single time. I've preserved this since it will (I think) have caused the messages to userspace to be formatted differently with just a single message for every SKB returned to userspace. It's possible that this isn't needed for the tools that actually use this, but I don't even know what they are so couldn't test that changing this behaviour would be acceptable. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-16 14:09:00 -07:00
nlmsg_end(skb, nlh);
return 0;
nla_put_failure_rcu:
rcu_read_unlock();
nla_put_failure:
nlmsg_cancel(skb, nlh);
return -EMSGSIZE;
}
static const struct nla_policy ifla_policy[IFLA_MAX+1] = {
[IFLA_IFNAME] = { .type = NLA_STRING, .len = IFNAMSIZ-1 },
[IFLA_ADDRESS] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
[IFLA_BROADCAST] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
[IFLA_MAP] = { .len = sizeof(struct rtnl_link_ifmap) },
[IFLA_MTU] = { .type = NLA_U32 },
[IFLA_LINK] = { .type = NLA_U32 },
[IFLA_MASTER] = { .type = NLA_U32 },
[IFLA_CARRIER] = { .type = NLA_U8 },
[IFLA_TXQLEN] = { .type = NLA_U32 },
[IFLA_WEIGHT] = { .type = NLA_U32 },
[IFLA_OPERSTATE] = { .type = NLA_U8 },
[IFLA_LINKMODE] = { .type = NLA_U8 },
[IFLA_LINKINFO] = { .type = NLA_NESTED },
[IFLA_NET_NS_PID] = { .type = NLA_U32 },
[IFLA_NET_NS_FD] = { .type = NLA_U32 },
/* IFLA_IFALIAS is a string, but policy is set to NLA_BINARY to
* allow 0-length string (needed to remove an alias).
*/
[IFLA_IFALIAS] = { .type = NLA_BINARY, .len = IFALIASZ - 1 },
[IFLA_VFINFO_LIST] = {. type = NLA_NESTED },
net: Add netlink support for virtual port management (was iovnl) Add new netdev ops ndo_{set|get}_vf_port to allow setting of port-profile on a netdev interface. Extends netlink socket RTM_SETLINK/ RTM_GETLINK with two new sub msgs called IFLA_VF_PORTS and IFLA_PORT_SELF (added to end of IFLA_cmd list). These are both nested atrtibutes using this layout: [IFLA_NUM_VF] [IFLA_VF_PORTS] [IFLA_VF_PORT] [IFLA_PORT_*], ... [IFLA_VF_PORT] [IFLA_PORT_*], ... ... [IFLA_PORT_SELF] [IFLA_PORT_*], ... These attributes are design to be set and get symmetrically. VF_PORTS is a list of VF_PORTs, one for each VF, when dealing with an SR-IOV device. PORT_SELF is for the PF of the SR-IOV device, in case it wants to also have a port-profile, or for the case where the VF==PF, like in enic patch 2/2 of this patch set. A port-profile is used to configure/enable the external switch virtual port backing the netdev interface, not to configure the host-facing side of the netdev. A port-profile is an identifier known to the switch. How port- profiles are installed on the switch or how available port-profiles are made know to the host is outside the scope of this patch. There are two types of port-profiles specs in the netlink msg. The first spec is for 802.1Qbg (pre-)standard, VDP protocol. The second spec is for devices that run a similar protocol as VDP but in firmware, thus hiding the protocol details. In either case, the specs have much in common and makes sense to define the netlink msg as the union of the two specs. For example, both specs have a notition of associating/deassociating a port-profile. And both specs require some information from the hypervisor manager, such as client port instance ID. The general flow is the port-profile is applied to a host netdev interface using RTM_SETLINK, the receiver of the RTM_SETLINK msg communicates with the switch, and the switch virtual port backing the host netdev interface is configured/enabled based on the settings defined by the port-profile. What those settings comprise, and how those settings are managed is again outside the scope of this patch, since this patch only deals with the first step in the flow. Signed-off-by: Scott Feldman <scofeldm@cisco.com> Signed-off-by: Roopa Prabhu <roprabhu@cisco.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-05-17 23:49:55 -06:00
[IFLA_VF_PORTS] = { .type = NLA_NESTED },
[IFLA_PORT_SELF] = { .type = NLA_NESTED },
[IFLA_AF_SPEC] = { .type = NLA_NESTED },
[IFLA_EXT_MASK] = { .type = NLA_U32 },
[IFLA_PROMISCUITY] = { .type = NLA_U32 },
[IFLA_NUM_TX_QUEUES] = { .type = NLA_U32 },
[IFLA_NUM_RX_QUEUES] = { .type = NLA_U32 },
[IFLA_GSO_MAX_SEGS] = { .type = NLA_U32 },
[IFLA_GSO_MAX_SIZE] = { .type = NLA_U32 },
[IFLA_PHYS_PORT_ID] = { .type = NLA_BINARY, .len = MAX_PHYS_ITEM_ID_LEN },
[IFLA_CARRIER_CHANGES] = { .type = NLA_U32 }, /* ignored */
[IFLA_PHYS_SWITCH_ID] = { .type = NLA_BINARY, .len = MAX_PHYS_ITEM_ID_LEN },
[IFLA_LINK_NETNSID] = { .type = NLA_S32 },
[IFLA_PROTO_DOWN] = { .type = NLA_U8 },
[IFLA_XDP] = { .type = NLA_NESTED },
[IFLA_EVENT] = { .type = NLA_U32 },
[IFLA_GROUP] = { .type = NLA_U32 },
[IFLA_TARGET_NETNSID] = { .type = NLA_S32 },
[IFLA_CARRIER_UP_COUNT] = { .type = NLA_U32 },
[IFLA_CARRIER_DOWN_COUNT] = { .type = NLA_U32 },
[IFLA_MIN_MTU] = { .type = NLA_U32 },
[IFLA_MAX_MTU] = { .type = NLA_U32 },
};
static const struct nla_policy ifla_info_policy[IFLA_INFO_MAX+1] = {
[IFLA_INFO_KIND] = { .type = NLA_STRING },
[IFLA_INFO_DATA] = { .type = NLA_NESTED },
[IFLA_INFO_SLAVE_KIND] = { .type = NLA_STRING },
[IFLA_INFO_SLAVE_DATA] = { .type = NLA_NESTED },
};
static const struct nla_policy ifla_vf_policy[IFLA_VF_MAX+1] = {
[IFLA_VF_MAC] = { .len = sizeof(struct ifla_vf_mac) },
[IFLA_VF_VLAN] = { .len = sizeof(struct ifla_vf_vlan) },
[IFLA_VF_VLAN_LIST] = { .type = NLA_NESTED },
[IFLA_VF_TX_RATE] = { .len = sizeof(struct ifla_vf_tx_rate) },
[IFLA_VF_SPOOFCHK] = { .len = sizeof(struct ifla_vf_spoofchk) },
[IFLA_VF_RATE] = { .len = sizeof(struct ifla_vf_rate) },
[IFLA_VF_LINK_STATE] = { .len = sizeof(struct ifla_vf_link_state) },
[IFLA_VF_RSS_QUERY_EN] = { .len = sizeof(struct ifla_vf_rss_query_en) },
[IFLA_VF_STATS] = { .type = NLA_NESTED },
[IFLA_VF_TRUST] = { .len = sizeof(struct ifla_vf_trust) },
[IFLA_VF_IB_NODE_GUID] = { .len = sizeof(struct ifla_vf_guid) },
[IFLA_VF_IB_PORT_GUID] = { .len = sizeof(struct ifla_vf_guid) },
};
net: Add netlink support for virtual port management (was iovnl) Add new netdev ops ndo_{set|get}_vf_port to allow setting of port-profile on a netdev interface. Extends netlink socket RTM_SETLINK/ RTM_GETLINK with two new sub msgs called IFLA_VF_PORTS and IFLA_PORT_SELF (added to end of IFLA_cmd list). These are both nested atrtibutes using this layout: [IFLA_NUM_VF] [IFLA_VF_PORTS] [IFLA_VF_PORT] [IFLA_PORT_*], ... [IFLA_VF_PORT] [IFLA_PORT_*], ... ... [IFLA_PORT_SELF] [IFLA_PORT_*], ... These attributes are design to be set and get symmetrically. VF_PORTS is a list of VF_PORTs, one for each VF, when dealing with an SR-IOV device. PORT_SELF is for the PF of the SR-IOV device, in case it wants to also have a port-profile, or for the case where the VF==PF, like in enic patch 2/2 of this patch set. A port-profile is used to configure/enable the external switch virtual port backing the netdev interface, not to configure the host-facing side of the netdev. A port-profile is an identifier known to the switch. How port- profiles are installed on the switch or how available port-profiles are made know to the host is outside the scope of this patch. There are two types of port-profiles specs in the netlink msg. The first spec is for 802.1Qbg (pre-)standard, VDP protocol. The second spec is for devices that run a similar protocol as VDP but in firmware, thus hiding the protocol details. In either case, the specs have much in common and makes sense to define the netlink msg as the union of the two specs. For example, both specs have a notition of associating/deassociating a port-profile. And both specs require some information from the hypervisor manager, such as client port instance ID. The general flow is the port-profile is applied to a host netdev interface using RTM_SETLINK, the receiver of the RTM_SETLINK msg communicates with the switch, and the switch virtual port backing the host netdev interface is configured/enabled based on the settings defined by the port-profile. What those settings comprise, and how those settings are managed is again outside the scope of this patch, since this patch only deals with the first step in the flow. Signed-off-by: Scott Feldman <scofeldm@cisco.com> Signed-off-by: Roopa Prabhu <roprabhu@cisco.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-05-17 23:49:55 -06:00
static const struct nla_policy ifla_port_policy[IFLA_PORT_MAX+1] = {
[IFLA_PORT_VF] = { .type = NLA_U32 },
[IFLA_PORT_PROFILE] = { .type = NLA_STRING,
.len = PORT_PROFILE_MAX },
[IFLA_PORT_INSTANCE_UUID] = { .type = NLA_BINARY,
.len = PORT_UUID_MAX },
[IFLA_PORT_HOST_UUID] = { .type = NLA_STRING,
.len = PORT_UUID_MAX },
[IFLA_PORT_REQUEST] = { .type = NLA_U8, },
[IFLA_PORT_RESPONSE] = { .type = NLA_U16, },
/* Unused, but we need to keep it here since user space could
* fill it. It's also broken with regard to NLA_BINARY use in
* combination with structs.
*/
[IFLA_PORT_VSI_TYPE] = { .type = NLA_BINARY,
.len = sizeof(struct ifla_port_vsi) },
net: Add netlink support for virtual port management (was iovnl) Add new netdev ops ndo_{set|get}_vf_port to allow setting of port-profile on a netdev interface. Extends netlink socket RTM_SETLINK/ RTM_GETLINK with two new sub msgs called IFLA_VF_PORTS and IFLA_PORT_SELF (added to end of IFLA_cmd list). These are both nested atrtibutes using this layout: [IFLA_NUM_VF] [IFLA_VF_PORTS] [IFLA_VF_PORT] [IFLA_PORT_*], ... [IFLA_VF_PORT] [IFLA_PORT_*], ... ... [IFLA_PORT_SELF] [IFLA_PORT_*], ... These attributes are design to be set and get symmetrically. VF_PORTS is a list of VF_PORTs, one for each VF, when dealing with an SR-IOV device. PORT_SELF is for the PF of the SR-IOV device, in case it wants to also have a port-profile, or for the case where the VF==PF, like in enic patch 2/2 of this patch set. A port-profile is used to configure/enable the external switch virtual port backing the netdev interface, not to configure the host-facing side of the netdev. A port-profile is an identifier known to the switch. How port- profiles are installed on the switch or how available port-profiles are made know to the host is outside the scope of this patch. There are two types of port-profiles specs in the netlink msg. The first spec is for 802.1Qbg (pre-)standard, VDP protocol. The second spec is for devices that run a similar protocol as VDP but in firmware, thus hiding the protocol details. In either case, the specs have much in common and makes sense to define the netlink msg as the union of the two specs. For example, both specs have a notition of associating/deassociating a port-profile. And both specs require some information from the hypervisor manager, such as client port instance ID. The general flow is the port-profile is applied to a host netdev interface using RTM_SETLINK, the receiver of the RTM_SETLINK msg communicates with the switch, and the switch virtual port backing the host netdev interface is configured/enabled based on the settings defined by the port-profile. What those settings comprise, and how those settings are managed is again outside the scope of this patch, since this patch only deals with the first step in the flow. Signed-off-by: Scott Feldman <scofeldm@cisco.com> Signed-off-by: Roopa Prabhu <roprabhu@cisco.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-05-17 23:49:55 -06:00
};
static const struct nla_policy ifla_xdp_policy[IFLA_XDP_MAX + 1] = {
[IFLA_XDP_FD] = { .type = NLA_S32 },
[IFLA_XDP_ATTACHED] = { .type = NLA_U8 },
[IFLA_XDP_FLAGS] = { .type = NLA_U32 },
[IFLA_XDP_PROG_ID] = { .type = NLA_U32 },
};
static const struct rtnl_link_ops *linkinfo_to_kind_ops(const struct nlattr *nla)
{
const struct rtnl_link_ops *ops = NULL;
struct nlattr *linfo[IFLA_INFO_MAX + 1];
if (nla_parse_nested(linfo, IFLA_INFO_MAX, nla,
ifla_info_policy, NULL) < 0)
return NULL;
if (linfo[IFLA_INFO_KIND]) {
char kind[MODULE_NAME_LEN];
nla_strlcpy(kind, linfo[IFLA_INFO_KIND], sizeof(kind));
ops = rtnl_link_ops_get(kind);
}
return ops;
}
static bool link_master_filtered(struct net_device *dev, int master_idx)
{
struct net_device *master;
if (!master_idx)
return false;
master = netdev_master_upper_dev_get(dev);
if (!master || master->ifindex != master_idx)
return true;
return false;
}
static bool link_kind_filtered(const struct net_device *dev,
const struct rtnl_link_ops *kind_ops)
{
if (kind_ops && dev->rtnl_link_ops != kind_ops)
return true;
return false;
}
static bool link_dump_filtered(struct net_device *dev,
int master_idx,
const struct rtnl_link_ops *kind_ops)
{
if (link_master_filtered(dev, master_idx) ||
link_kind_filtered(dev, kind_ops))
return true;
return false;
}
/**
* rtnl_get_net_ns_capable - Get netns if sufficiently privileged.
* @sk: netlink socket
* @netnsid: network namespace identifier
*
* Returns the network namespace identified by netnsid on success or an error
* pointer on failure.
*/
struct net *rtnl_get_net_ns_capable(struct sock *sk, int netnsid)
{
struct net *net;
rtnetlink: give a user socket to get_target_net() This function is used from two places: rtnl_dump_ifinfo and rtnl_getlink. In rtnl_getlink(), we give a request skb into get_target_net(), but in rtnl_dump_ifinfo, we give a response skb into get_target_net(). The problem here is that NETLINK_CB() isn't initialized for the response skb. In both cases we can get a user socket and give it instead of skb into get_target_net(). This bug was found by syzkaller with this call-trace: kasan: GPF could be caused by NULL-ptr deref or user memory access general protection fault: 0000 [#1] SMP KASAN Modules linked in: CPU: 1 PID: 3149 Comm: syzkaller140561 Not tainted 4.15.0-rc4-mm1+ #47 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:__netlink_ns_capable+0x8b/0x120 net/netlink/af_netlink.c:868 RSP: 0018:ffff8801c880f348 EFLAGS: 00010206 RAX: dffffc0000000000 RBX: 0000000000000000 RCX: ffffffff8443f900 RDX: 000000000000007b RSI: ffffffff86510f40 RDI: 00000000000003d8 RBP: ffff8801c880f360 R08: 0000000000000000 R09: 1ffff10039101e4f R10: 0000000000000000 R11: 0000000000000001 R12: ffffffff86510f40 R13: 000000000000000c R14: 0000000000000004 R15: 0000000000000011 FS: 0000000001a1a880(0000) GS:ffff8801db300000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000020151000 CR3: 00000001c9511005 CR4: 00000000001606e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: netlink_ns_capable+0x26/0x30 net/netlink/af_netlink.c:886 get_target_net+0x9d/0x120 net/core/rtnetlink.c:1765 rtnl_dump_ifinfo+0x2e5/0xee0 net/core/rtnetlink.c:1806 netlink_dump+0x48c/0xce0 net/netlink/af_netlink.c:2222 __netlink_dump_start+0x4f0/0x6d0 net/netlink/af_netlink.c:2319 netlink_dump_start include/linux/netlink.h:214 [inline] rtnetlink_rcv_msg+0x7f0/0xb10 net/core/rtnetlink.c:4485 netlink_rcv_skb+0x21e/0x460 net/netlink/af_netlink.c:2441 rtnetlink_rcv+0x1c/0x20 net/core/rtnetlink.c:4540 netlink_unicast_kernel net/netlink/af_netlink.c:1308 [inline] netlink_unicast+0x4be/0x6a0 net/netlink/af_netlink.c:1334 netlink_sendmsg+0xa4a/0xe60 net/netlink/af_netlink.c:1897 Cc: Jiri Benc <jbenc@redhat.com> Fixes: 79e1ad148c84 ("rtnetlink: use netnsid to query interface") Signed-off-by: Andrei Vagin <avagin@openvz.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-01-03 00:27:33 -07:00
net = get_net_ns_by_id(sock_net(sk), netnsid);
if (!net)
return ERR_PTR(-EINVAL);
/* For now, the caller is required to have CAP_NET_ADMIN in
* the user namespace owning the target net ns.
*/
rtnetlink: give a user socket to get_target_net() This function is used from two places: rtnl_dump_ifinfo and rtnl_getlink. In rtnl_getlink(), we give a request skb into get_target_net(), but in rtnl_dump_ifinfo, we give a response skb into get_target_net(). The problem here is that NETLINK_CB() isn't initialized for the response skb. In both cases we can get a user socket and give it instead of skb into get_target_net(). This bug was found by syzkaller with this call-trace: kasan: GPF could be caused by NULL-ptr deref or user memory access general protection fault: 0000 [#1] SMP KASAN Modules linked in: CPU: 1 PID: 3149 Comm: syzkaller140561 Not tainted 4.15.0-rc4-mm1+ #47 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:__netlink_ns_capable+0x8b/0x120 net/netlink/af_netlink.c:868 RSP: 0018:ffff8801c880f348 EFLAGS: 00010206 RAX: dffffc0000000000 RBX: 0000000000000000 RCX: ffffffff8443f900 RDX: 000000000000007b RSI: ffffffff86510f40 RDI: 00000000000003d8 RBP: ffff8801c880f360 R08: 0000000000000000 R09: 1ffff10039101e4f R10: 0000000000000000 R11: 0000000000000001 R12: ffffffff86510f40 R13: 000000000000000c R14: 0000000000000004 R15: 0000000000000011 FS: 0000000001a1a880(0000) GS:ffff8801db300000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000020151000 CR3: 00000001c9511005 CR4: 00000000001606e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: netlink_ns_capable+0x26/0x30 net/netlink/af_netlink.c:886 get_target_net+0x9d/0x120 net/core/rtnetlink.c:1765 rtnl_dump_ifinfo+0x2e5/0xee0 net/core/rtnetlink.c:1806 netlink_dump+0x48c/0xce0 net/netlink/af_netlink.c:2222 __netlink_dump_start+0x4f0/0x6d0 net/netlink/af_netlink.c:2319 netlink_dump_start include/linux/netlink.h:214 [inline] rtnetlink_rcv_msg+0x7f0/0xb10 net/core/rtnetlink.c:4485 netlink_rcv_skb+0x21e/0x460 net/netlink/af_netlink.c:2441 rtnetlink_rcv+0x1c/0x20 net/core/rtnetlink.c:4540 netlink_unicast_kernel net/netlink/af_netlink.c:1308 [inline] netlink_unicast+0x4be/0x6a0 net/netlink/af_netlink.c:1334 netlink_sendmsg+0xa4a/0xe60 net/netlink/af_netlink.c:1897 Cc: Jiri Benc <jbenc@redhat.com> Fixes: 79e1ad148c84 ("rtnetlink: use netnsid to query interface") Signed-off-by: Andrei Vagin <avagin@openvz.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-01-03 00:27:33 -07:00
if (!sk_ns_capable(sk, net->user_ns, CAP_NET_ADMIN)) {
put_net(net);
return ERR_PTR(-EACCES);
}
return net;
}
EXPORT_SYMBOL_GPL(rtnl_get_net_ns_capable);
static int rtnl_valid_dump_ifinfo_req(const struct nlmsghdr *nlh,
bool strict_check, struct nlattr **tb,
struct netlink_ext_ack *extack)
{
int hdrlen;
if (strict_check) {
struct ifinfomsg *ifm;
if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ifm))) {
NL_SET_ERR_MSG(extack, "Invalid header for link dump");
return -EINVAL;
}
ifm = nlmsg_data(nlh);
if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags ||
ifm->ifi_change) {
NL_SET_ERR_MSG(extack, "Invalid values in header for link dump request");
return -EINVAL;
}
if (ifm->ifi_index) {
NL_SET_ERR_MSG(extack, "Filter by device index not supported for link dumps");
return -EINVAL;
}
return nlmsg_parse_strict(nlh, sizeof(*ifm), tb, IFLA_MAX,
ifla_policy, extack);
}
/* A hack to preserve kernel<->userspace interface.
* The correct header is ifinfomsg. It is consistent with rtnl_getlink.
* However, before Linux v3.9 the code here assumed rtgenmsg and that's
* what iproute2 < v3.9.0 used.
* We can detect the old iproute2. Even including the IFLA_EXT_MASK
* attribute, its netlink message is shorter than struct ifinfomsg.
*/
hdrlen = nlmsg_len(nlh) < sizeof(struct ifinfomsg) ?
sizeof(struct rtgenmsg) : sizeof(struct ifinfomsg);
return nlmsg_parse(nlh, hdrlen, tb, IFLA_MAX, ifla_policy, extack);
}
static int rtnl_dump_ifinfo(struct sk_buff *skb, struct netlink_callback *cb)
{
struct netlink_ext_ack *extack = cb->extack;
const struct nlmsghdr *nlh = cb->nlh;
struct net *net = sock_net(skb->sk);
struct net *tgt_net = net;
int h, s_h;
int idx = 0, s_idx;
struct net_device *dev;
struct hlist_head *head;
struct nlattr *tb[IFLA_MAX+1];
u32 ext_filter_mask = 0;
const struct rtnl_link_ops *kind_ops = NULL;
unsigned int flags = NLM_F_MULTI;
int master_idx = 0;
int netnsid = -1;
int err, i;
s_h = cb->args[0];
s_idx = cb->args[1];
err = rtnl_valid_dump_ifinfo_req(nlh, cb->strict_check, tb, extack);
if (err < 0) {
if (cb->strict_check)
return err;
goto walk_entries;
}
for (i = 0; i <= IFLA_MAX; ++i) {
if (!tb[i])
continue;
/* new attributes should only be added with strict checking */
switch (i) {
case IFLA_TARGET_NETNSID:
netnsid = nla_get_s32(tb[i]);
tgt_net = rtnl_get_net_ns_capable(skb->sk, netnsid);
if (IS_ERR(tgt_net)) {
NL_SET_ERR_MSG(extack, "Invalid target network namespace id");
return PTR_ERR(tgt_net);
}
break;
case IFLA_EXT_MASK:
ext_filter_mask = nla_get_u32(tb[i]);
break;
case IFLA_MASTER:
master_idx = nla_get_u32(tb[i]);
break;
case IFLA_LINKINFO:
kind_ops = linkinfo_to_kind_ops(tb[i]);
break;
default:
if (cb->strict_check) {
NL_SET_ERR_MSG(extack, "Unsupported attribute in link dump request");
return -EINVAL;
}
}
}
if (master_idx || kind_ops)
flags |= NLM_F_DUMP_FILTERED;
walk_entries:
for (h = s_h; h < NETDEV_HASHENTRIES; h++, s_idx = 0) {
idx = 0;
head = &tgt_net->dev_index_head[h];
net: do not use rcu in rtnl_dump_ifinfo() We did a failed attempt in the past to only use rcu in rtnl dump operations (commit e67f88dd12f6 "net: dont hold rtnl mutex during netlink dump callbacks") Now that dumps are holding RTNL anyway, there is no need to also use rcu locking, as it forbids any scheduling ability, like GFP_KERNEL allocations that controlling path should use instead of GFP_ATOMIC whenever possible. This should fix following splat Cong Wang reported : [ INFO: suspicious RCU usage. ] 3.19.0+ #805 Tainted: G W include/linux/rcupdate.h:538 Illegal context switch in RCU read-side critical section! other info that might help us debug this: rcu_scheduler_active = 1, debug_locks = 0 2 locks held by ip/771: #0: (rtnl_mutex){+.+.+.}, at: [<ffffffff8182b8f4>] netlink_dump+0x21/0x26c #1: (rcu_read_lock){......}, at: [<ffffffff817d785b>] rcu_read_lock+0x0/0x6e stack backtrace: CPU: 3 PID: 771 Comm: ip Tainted: G W 3.19.0+ #805 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 0000000000000001 ffff8800d51e7718 ffffffff81a27457 0000000029e729e6 ffff8800d6108000 ffff8800d51e7748 ffffffff810b539b ffffffff820013dd 00000000000001c8 0000000000000000 ffff8800d7448088 ffff8800d51e7758 Call Trace: [<ffffffff81a27457>] dump_stack+0x4c/0x65 [<ffffffff810b539b>] lockdep_rcu_suspicious+0x107/0x110 [<ffffffff8109796f>] rcu_preempt_sleep_check+0x45/0x47 [<ffffffff8109e457>] ___might_sleep+0x1d/0x1cb [<ffffffff8109e67d>] __might_sleep+0x78/0x80 [<ffffffff814b9b1f>] idr_alloc+0x45/0xd1 [<ffffffff810cb7ab>] ? rcu_read_lock_held+0x3b/0x3d [<ffffffff814b9f9d>] ? idr_for_each+0x53/0x101 [<ffffffff817c1383>] alloc_netid+0x61/0x69 [<ffffffff817c14c3>] __peernet2id+0x79/0x8d [<ffffffff817c1ab7>] peernet2id+0x13/0x1f [<ffffffff817d8673>] rtnl_fill_ifinfo+0xa8d/0xc20 [<ffffffff810b17d9>] ? __lock_is_held+0x39/0x52 [<ffffffff817d894f>] rtnl_dump_ifinfo+0x149/0x213 [<ffffffff8182b9c2>] netlink_dump+0xef/0x26c [<ffffffff8182bcba>] netlink_recvmsg+0x17b/0x2c5 [<ffffffff817b0adc>] __sock_recvmsg+0x4e/0x59 [<ffffffff817b1b40>] sock_recvmsg+0x3f/0x51 [<ffffffff817b1f9a>] ___sys_recvmsg+0xf6/0x1d9 [<ffffffff8115dc67>] ? handle_pte_fault+0x6e1/0xd3d [<ffffffff8100a3a0>] ? native_sched_clock+0x35/0x37 [<ffffffff8109f45b>] ? sched_clock_local+0x12/0x72 [<ffffffff8109f6ac>] ? sched_clock_cpu+0x9e/0xb7 [<ffffffff810cb7ab>] ? rcu_read_lock_held+0x3b/0x3d [<ffffffff811abde8>] ? __fcheck_files+0x4c/0x58 [<ffffffff811ac556>] ? __fget_light+0x2d/0x52 [<ffffffff817b376f>] __sys_recvmsg+0x42/0x60 [<ffffffff817b379f>] SyS_recvmsg+0x12/0x1c Signed-off-by: Eric Dumazet <edumazet@google.com> Fixes: 0c7aecd4bde4b7302 ("netns: add rtnl cmd to add and get peer netns ids") Cc: Nicolas Dichtel <nicolas.dichtel@6wind.com> Reported-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-27 10:42:50 -07:00
hlist_for_each_entry(dev, head, index_hlist) {
if (link_dump_filtered(dev, master_idx, kind_ops))
goto cont;
if (idx < s_idx)
goto cont;
err = rtnl_fill_ifinfo(skb, dev, net,
RTM_NEWLINK,
NETLINK_CB(cb->skb).portid,
nlh->nlmsg_seq, 0, flags,
ext_filter_mask, 0, NULL, 0,
netnsid);
if (err < 0) {
if (likely(skb->len))
goto out;
goto out_err;
}
cont:
idx++;
}
}
out:
err = skb->len;
out_err:
cb->args[1] = idx;
cb->args[0] = h;
cb->seq = net->dev_base_seq;
nl_dump_check_consistent(cb, nlmsg_hdr(skb));
if (netnsid >= 0)
put_net(tgt_net);
return err;
}
int rtnl_nla_parse_ifla(struct nlattr **tb, const struct nlattr *head, int len,
struct netlink_ext_ack *exterr)
{
return nla_parse(tb, IFLA_MAX, head, len, ifla_policy, exterr);
}
EXPORT_SYMBOL(rtnl_nla_parse_ifla);
struct net *rtnl_link_get_net(struct net *src_net, struct nlattr *tb[])
{
struct net *net;
/* Examine the link attributes and figure out which
* network namespace we are talking about.
*/
if (tb[IFLA_NET_NS_PID])
net = get_net_ns_by_pid(nla_get_u32(tb[IFLA_NET_NS_PID]));
else if (tb[IFLA_NET_NS_FD])
net = get_net_ns_by_fd(nla_get_u32(tb[IFLA_NET_NS_FD]));
else
net = get_net(src_net);
return net;
}
EXPORT_SYMBOL(rtnl_link_get_net);
/* Figure out which network namespace we are talking about by
* examining the link attributes in the following order:
*
* 1. IFLA_NET_NS_PID
* 2. IFLA_NET_NS_FD
* 3. IFLA_TARGET_NETNSID
*/
static struct net *rtnl_link_get_net_by_nlattr(struct net *src_net,
struct nlattr *tb[])
{
struct net *net;
if (tb[IFLA_NET_NS_PID] || tb[IFLA_NET_NS_FD])
return rtnl_link_get_net(src_net, tb);
if (!tb[IFLA_TARGET_NETNSID])
return get_net(src_net);
net = get_net_ns_by_id(src_net, nla_get_u32(tb[IFLA_TARGET_NETNSID]));
if (!net)
return ERR_PTR(-EINVAL);
return net;
}
static struct net *rtnl_link_get_net_capable(const struct sk_buff *skb,
struct net *src_net,
struct nlattr *tb[], int cap)
{
struct net *net;
net = rtnl_link_get_net_by_nlattr(src_net, tb);
if (IS_ERR(net))
return net;
if (!netlink_ns_capable(skb, net->user_ns, cap)) {
put_net(net);
return ERR_PTR(-EPERM);
}
return net;
}
/* Verify that rtnetlink requests do not pass additional properties
* potentially referring to different network namespaces.
*/
static int rtnl_ensure_unique_netns(struct nlattr *tb[],
struct netlink_ext_ack *extack,
bool netns_id_only)
{
if (netns_id_only) {
if (!tb[IFLA_NET_NS_PID] && !tb[IFLA_NET_NS_FD])
return 0;
NL_SET_ERR_MSG(extack, "specified netns attribute not supported");
return -EOPNOTSUPP;
}
if (tb[IFLA_TARGET_NETNSID] && (tb[IFLA_NET_NS_PID] || tb[IFLA_NET_NS_FD]))
goto invalid_attr;
if (tb[IFLA_NET_NS_PID] && (tb[IFLA_TARGET_NETNSID] || tb[IFLA_NET_NS_FD]))
goto invalid_attr;
if (tb[IFLA_NET_NS_FD] && (tb[IFLA_TARGET_NETNSID] || tb[IFLA_NET_NS_PID]))
goto invalid_attr;
return 0;
invalid_attr:
NL_SET_ERR_MSG(extack, "multiple netns identifying attributes specified");
return -EINVAL;
}
static int validate_linkmsg(struct net_device *dev, struct nlattr *tb[])
{
if (dev) {
if (tb[IFLA_ADDRESS] &&
nla_len(tb[IFLA_ADDRESS]) < dev->addr_len)
return -EINVAL;
if (tb[IFLA_BROADCAST] &&
nla_len(tb[IFLA_BROADCAST]) < dev->addr_len)
return -EINVAL;
}
if (tb[IFLA_AF_SPEC]) {
struct nlattr *af;
int rem, err;
nla_for_each_nested(af, tb[IFLA_AF_SPEC], rem) {
const struct rtnl_af_ops *af_ops;
rcu_read_lock();
af_ops = rtnl_af_lookup(nla_type(af));
if (!af_ops) {
rcu_read_unlock();
return -EAFNOSUPPORT;
}
if (!af_ops->set_link_af) {
rcu_read_unlock();
return -EOPNOTSUPP;
}
if (af_ops->validate_link_af) {
err = af_ops->validate_link_af(dev, af);
if (err < 0) {
rcu_read_unlock();
return err;
}
}
rcu_read_unlock();
}
}
return 0;
}
static int handle_infiniband_guid(struct net_device *dev, struct ifla_vf_guid *ivt,
int guid_type)
{
const struct net_device_ops *ops = dev->netdev_ops;
return ops->ndo_set_vf_guid(dev, ivt->vf, ivt->guid, guid_type);
}
static int handle_vf_guid(struct net_device *dev, struct ifla_vf_guid *ivt, int guid_type)
{
if (dev->type != ARPHRD_INFINIBAND)
return -EOPNOTSUPP;
return handle_infiniband_guid(dev, ivt, guid_type);
}
rtnetlink: verify IFLA_VF_INFO attributes before passing them to driver Jason Gunthorpe reported that since commit c02db8c6290b ("rtnetlink: make SR-IOV VF interface symmetric"), we don't verify IFLA_VF_INFO attributes anymore with respect to their policy, that is, ifla_vfinfo_policy[]. Before, they were part of ifla_policy[], but they have been nested since placed under IFLA_VFINFO_LIST, that contains the attribute IFLA_VF_INFO, which is another nested attribute for the actual VF attributes such as IFLA_VF_MAC, IFLA_VF_VLAN, etc. Despite the policy being split out from ifla_policy[] in this commit, it's never applied anywhere. nla_for_each_nested() only does basic nla_ok() testing for struct nlattr, but it doesn't know about the data context and their requirements. Fix, on top of Jason's initial work, does 1) parsing of the attributes with the right policy, and 2) using the resulting parsed attribute table from 1) instead of the nla_for_each_nested() loop (just like we used to do when still part of ifla_policy[]). Reference: http://thread.gmane.org/gmane.linux.network/368913 Fixes: c02db8c6290b ("rtnetlink: make SR-IOV VF interface symmetric") Reported-by: Jason Gunthorpe <jgunthorpe@obsidianresearch.com> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Sucheta Chakraborty <sucheta.chakraborty@qlogic.com> Cc: Greg Rose <gregory.v.rose@intel.com> Cc: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Cc: Rony Efraim <ronye@mellanox.com> Cc: Vlad Zolotarov <vladz@cloudius-systems.com> Cc: Nicolas Dichtel <nicolas.dichtel@6wind.com> Cc: Thomas Graf <tgraf@suug.ch> Signed-off-by: Jason Gunthorpe <jgunthorpe@obsidianresearch.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Vlad Zolotarov <vladz@cloudius-systems.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-06 16:07:52 -06:00
static int do_setvfinfo(struct net_device *dev, struct nlattr **tb)
{
const struct net_device_ops *ops = dev->netdev_ops;
rtnetlink: verify IFLA_VF_INFO attributes before passing them to driver Jason Gunthorpe reported that since commit c02db8c6290b ("rtnetlink: make SR-IOV VF interface symmetric"), we don't verify IFLA_VF_INFO attributes anymore with respect to their policy, that is, ifla_vfinfo_policy[]. Before, they were part of ifla_policy[], but they have been nested since placed under IFLA_VFINFO_LIST, that contains the attribute IFLA_VF_INFO, which is another nested attribute for the actual VF attributes such as IFLA_VF_MAC, IFLA_VF_VLAN, etc. Despite the policy being split out from ifla_policy[] in this commit, it's never applied anywhere. nla_for_each_nested() only does basic nla_ok() testing for struct nlattr, but it doesn't know about the data context and their requirements. Fix, on top of Jason's initial work, does 1) parsing of the attributes with the right policy, and 2) using the resulting parsed attribute table from 1) instead of the nla_for_each_nested() loop (just like we used to do when still part of ifla_policy[]). Reference: http://thread.gmane.org/gmane.linux.network/368913 Fixes: c02db8c6290b ("rtnetlink: make SR-IOV VF interface symmetric") Reported-by: Jason Gunthorpe <jgunthorpe@obsidianresearch.com> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Sucheta Chakraborty <sucheta.chakraborty@qlogic.com> Cc: Greg Rose <gregory.v.rose@intel.com> Cc: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Cc: Rony Efraim <ronye@mellanox.com> Cc: Vlad Zolotarov <vladz@cloudius-systems.com> Cc: Nicolas Dichtel <nicolas.dichtel@6wind.com> Cc: Thomas Graf <tgraf@suug.ch> Signed-off-by: Jason Gunthorpe <jgunthorpe@obsidianresearch.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Vlad Zolotarov <vladz@cloudius-systems.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-06 16:07:52 -06:00
int err = -EINVAL;
rtnetlink: verify IFLA_VF_INFO attributes before passing them to driver Jason Gunthorpe reported that since commit c02db8c6290b ("rtnetlink: make SR-IOV VF interface symmetric"), we don't verify IFLA_VF_INFO attributes anymore with respect to their policy, that is, ifla_vfinfo_policy[]. Before, they were part of ifla_policy[], but they have been nested since placed under IFLA_VFINFO_LIST, that contains the attribute IFLA_VF_INFO, which is another nested attribute for the actual VF attributes such as IFLA_VF_MAC, IFLA_VF_VLAN, etc. Despite the policy being split out from ifla_policy[] in this commit, it's never applied anywhere. nla_for_each_nested() only does basic nla_ok() testing for struct nlattr, but it doesn't know about the data context and their requirements. Fix, on top of Jason's initial work, does 1) parsing of the attributes with the right policy, and 2) using the resulting parsed attribute table from 1) instead of the nla_for_each_nested() loop (just like we used to do when still part of ifla_policy[]). Reference: http://thread.gmane.org/gmane.linux.network/368913 Fixes: c02db8c6290b ("rtnetlink: make SR-IOV VF interface symmetric") Reported-by: Jason Gunthorpe <jgunthorpe@obsidianresearch.com> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Sucheta Chakraborty <sucheta.chakraborty@qlogic.com> Cc: Greg Rose <gregory.v.rose@intel.com> Cc: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Cc: Rony Efraim <ronye@mellanox.com> Cc: Vlad Zolotarov <vladz@cloudius-systems.com> Cc: Nicolas Dichtel <nicolas.dichtel@6wind.com> Cc: Thomas Graf <tgraf@suug.ch> Signed-off-by: Jason Gunthorpe <jgunthorpe@obsidianresearch.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Vlad Zolotarov <vladz@cloudius-systems.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-06 16:07:52 -06:00
if (tb[IFLA_VF_MAC]) {
struct ifla_vf_mac *ivm = nla_data(tb[IFLA_VF_MAC]);
rtnetlink: verify IFLA_VF_INFO attributes before passing them to driver Jason Gunthorpe reported that since commit c02db8c6290b ("rtnetlink: make SR-IOV VF interface symmetric"), we don't verify IFLA_VF_INFO attributes anymore with respect to their policy, that is, ifla_vfinfo_policy[]. Before, they were part of ifla_policy[], but they have been nested since placed under IFLA_VFINFO_LIST, that contains the attribute IFLA_VF_INFO, which is another nested attribute for the actual VF attributes such as IFLA_VF_MAC, IFLA_VF_VLAN, etc. Despite the policy being split out from ifla_policy[] in this commit, it's never applied anywhere. nla_for_each_nested() only does basic nla_ok() testing for struct nlattr, but it doesn't know about the data context and their requirements. Fix, on top of Jason's initial work, does 1) parsing of the attributes with the right policy, and 2) using the resulting parsed attribute table from 1) instead of the nla_for_each_nested() loop (just like we used to do when still part of ifla_policy[]). Reference: http://thread.gmane.org/gmane.linux.network/368913 Fixes: c02db8c6290b ("rtnetlink: make SR-IOV VF interface symmetric") Reported-by: Jason Gunthorpe <jgunthorpe@obsidianresearch.com> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Sucheta Chakraborty <sucheta.chakraborty@qlogic.com> Cc: Greg Rose <gregory.v.rose@intel.com> Cc: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Cc: Rony Efraim <ronye@mellanox.com> Cc: Vlad Zolotarov <vladz@cloudius-systems.com> Cc: Nicolas Dichtel <nicolas.dichtel@6wind.com> Cc: Thomas Graf <tgraf@suug.ch> Signed-off-by: Jason Gunthorpe <jgunthorpe@obsidianresearch.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Vlad Zolotarov <vladz@cloudius-systems.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-06 16:07:52 -06:00
err = -EOPNOTSUPP;
if (ops->ndo_set_vf_mac)
err = ops->ndo_set_vf_mac(dev, ivm->vf,
ivm->mac);
if (err < 0)
return err;
}
if (tb[IFLA_VF_VLAN]) {
struct ifla_vf_vlan *ivv = nla_data(tb[IFLA_VF_VLAN]);
err = -EOPNOTSUPP;
if (ops->ndo_set_vf_vlan)
err = ops->ndo_set_vf_vlan(dev, ivv->vf, ivv->vlan,
ivv->qos,
htons(ETH_P_8021Q));
if (err < 0)
return err;
}
if (tb[IFLA_VF_VLAN_LIST]) {
struct ifla_vf_vlan_info *ivvl[MAX_VLAN_LIST_LEN];
struct nlattr *attr;
int rem, len = 0;
err = -EOPNOTSUPP;
if (!ops->ndo_set_vf_vlan)
return err;
nla_for_each_nested(attr, tb[IFLA_VF_VLAN_LIST], rem) {
if (nla_type(attr) != IFLA_VF_VLAN_INFO ||
nla_len(attr) < NLA_HDRLEN) {
return -EINVAL;
}
if (len >= MAX_VLAN_LIST_LEN)
return -EOPNOTSUPP;
ivvl[len] = nla_data(attr);
len++;
}
if (len == 0)
return -EINVAL;
err = ops->ndo_set_vf_vlan(dev, ivvl[0]->vf, ivvl[0]->vlan,
ivvl[0]->qos, ivvl[0]->vlan_proto);
rtnetlink: verify IFLA_VF_INFO attributes before passing them to driver Jason Gunthorpe reported that since commit c02db8c6290b ("rtnetlink: make SR-IOV VF interface symmetric"), we don't verify IFLA_VF_INFO attributes anymore with respect to their policy, that is, ifla_vfinfo_policy[]. Before, they were part of ifla_policy[], but they have been nested since placed under IFLA_VFINFO_LIST, that contains the attribute IFLA_VF_INFO, which is another nested attribute for the actual VF attributes such as IFLA_VF_MAC, IFLA_VF_VLAN, etc. Despite the policy being split out from ifla_policy[] in this commit, it's never applied anywhere. nla_for_each_nested() only does basic nla_ok() testing for struct nlattr, but it doesn't know about the data context and their requirements. Fix, on top of Jason's initial work, does 1) parsing of the attributes with the right policy, and 2) using the resulting parsed attribute table from 1) instead of the nla_for_each_nested() loop (just like we used to do when still part of ifla_policy[]). Reference: http://thread.gmane.org/gmane.linux.network/368913 Fixes: c02db8c6290b ("rtnetlink: make SR-IOV VF interface symmetric") Reported-by: Jason Gunthorpe <jgunthorpe@obsidianresearch.com> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Sucheta Chakraborty <sucheta.chakraborty@qlogic.com> Cc: Greg Rose <gregory.v.rose@intel.com> Cc: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Cc: Rony Efraim <ronye@mellanox.com> Cc: Vlad Zolotarov <vladz@cloudius-systems.com> Cc: Nicolas Dichtel <nicolas.dichtel@6wind.com> Cc: Thomas Graf <tgraf@suug.ch> Signed-off-by: Jason Gunthorpe <jgunthorpe@obsidianresearch.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Vlad Zolotarov <vladz@cloudius-systems.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-06 16:07:52 -06:00
if (err < 0)
return err;
}
rtnetlink: verify IFLA_VF_INFO attributes before passing them to driver Jason Gunthorpe reported that since commit c02db8c6290b ("rtnetlink: make SR-IOV VF interface symmetric"), we don't verify IFLA_VF_INFO attributes anymore with respect to their policy, that is, ifla_vfinfo_policy[]. Before, they were part of ifla_policy[], but they have been nested since placed under IFLA_VFINFO_LIST, that contains the attribute IFLA_VF_INFO, which is another nested attribute for the actual VF attributes such as IFLA_VF_MAC, IFLA_VF_VLAN, etc. Despite the policy being split out from ifla_policy[] in this commit, it's never applied anywhere. nla_for_each_nested() only does basic nla_ok() testing for struct nlattr, but it doesn't know about the data context and their requirements. Fix, on top of Jason's initial work, does 1) parsing of the attributes with the right policy, and 2) using the resulting parsed attribute table from 1) instead of the nla_for_each_nested() loop (just like we used to do when still part of ifla_policy[]). Reference: http://thread.gmane.org/gmane.linux.network/368913 Fixes: c02db8c6290b ("rtnetlink: make SR-IOV VF interface symmetric") Reported-by: Jason Gunthorpe <jgunthorpe@obsidianresearch.com> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Sucheta Chakraborty <sucheta.chakraborty@qlogic.com> Cc: Greg Rose <gregory.v.rose@intel.com> Cc: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Cc: Rony Efraim <ronye@mellanox.com> Cc: Vlad Zolotarov <vladz@cloudius-systems.com> Cc: Nicolas Dichtel <nicolas.dichtel@6wind.com> Cc: Thomas Graf <tgraf@suug.ch> Signed-off-by: Jason Gunthorpe <jgunthorpe@obsidianresearch.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Vlad Zolotarov <vladz@cloudius-systems.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-06 16:07:52 -06:00
if (tb[IFLA_VF_TX_RATE]) {
struct ifla_vf_tx_rate *ivt = nla_data(tb[IFLA_VF_TX_RATE]);
struct ifla_vf_info ivf;
err = -EOPNOTSUPP;
if (ops->ndo_get_vf_config)
err = ops->ndo_get_vf_config(dev, ivt->vf, &ivf);
if (err < 0)
return err;
err = -EOPNOTSUPP;
if (ops->ndo_set_vf_rate)
err = ops->ndo_set_vf_rate(dev, ivt->vf,
ivf.min_tx_rate,
ivt->rate);
if (err < 0)
return err;
}
if (tb[IFLA_VF_RATE]) {
struct ifla_vf_rate *ivt = nla_data(tb[IFLA_VF_RATE]);
err = -EOPNOTSUPP;
if (ops->ndo_set_vf_rate)
err = ops->ndo_set_vf_rate(dev, ivt->vf,
ivt->min_tx_rate,
ivt->max_tx_rate);
if (err < 0)
return err;
}
if (tb[IFLA_VF_SPOOFCHK]) {
struct ifla_vf_spoofchk *ivs = nla_data(tb[IFLA_VF_SPOOFCHK]);
err = -EOPNOTSUPP;
if (ops->ndo_set_vf_spoofchk)
err = ops->ndo_set_vf_spoofchk(dev, ivs->vf,
ivs->setting);
if (err < 0)
return err;
}
if (tb[IFLA_VF_LINK_STATE]) {
struct ifla_vf_link_state *ivl = nla_data(tb[IFLA_VF_LINK_STATE]);
err = -EOPNOTSUPP;
if (ops->ndo_set_vf_link_state)
err = ops->ndo_set_vf_link_state(dev, ivl->vf,
ivl->link_state);
if (err < 0)
return err;
}
if (tb[IFLA_VF_RSS_QUERY_EN]) {
struct ifla_vf_rss_query_en *ivrssq_en;
err = -EOPNOTSUPP;
ivrssq_en = nla_data(tb[IFLA_VF_RSS_QUERY_EN]);
if (ops->ndo_set_vf_rss_query_en)
err = ops->ndo_set_vf_rss_query_en(dev, ivrssq_en->vf,
ivrssq_en->setting);
if (err < 0)
return err;
}
if (tb[IFLA_VF_TRUST]) {
struct ifla_vf_trust *ivt = nla_data(tb[IFLA_VF_TRUST]);
err = -EOPNOTSUPP;
if (ops->ndo_set_vf_trust)
err = ops->ndo_set_vf_trust(dev, ivt->vf, ivt->setting);
if (err < 0)
return err;
}
if (tb[IFLA_VF_IB_NODE_GUID]) {
struct ifla_vf_guid *ivt = nla_data(tb[IFLA_VF_IB_NODE_GUID]);
if (!ops->ndo_set_vf_guid)
return -EOPNOTSUPP;
return handle_vf_guid(dev, ivt, IFLA_VF_IB_NODE_GUID);
}
if (tb[IFLA_VF_IB_PORT_GUID]) {
struct ifla_vf_guid *ivt = nla_data(tb[IFLA_VF_IB_PORT_GUID]);
if (!ops->ndo_set_vf_guid)
return -EOPNOTSUPP;
return handle_vf_guid(dev, ivt, IFLA_VF_IB_PORT_GUID);
}
return err;
}
static int do_set_master(struct net_device *dev, int ifindex,
struct netlink_ext_ack *extack)
{
struct net_device *upper_dev = netdev_master_upper_dev_get(dev);
const struct net_device_ops *ops;
int err;
if (upper_dev) {
if (upper_dev->ifindex == ifindex)
return 0;
ops = upper_dev->netdev_ops;
if (ops->ndo_del_slave) {
err = ops->ndo_del_slave(upper_dev, dev);
if (err)
return err;
} else {
return -EOPNOTSUPP;
}
}
if (ifindex) {
upper_dev = __dev_get_by_index(dev_net(dev), ifindex);
if (!upper_dev)
return -EINVAL;
ops = upper_dev->netdev_ops;
if (ops->ndo_add_slave) {
err = ops->ndo_add_slave(upper_dev, dev, extack);
if (err)
return err;
} else {
return -EOPNOTSUPP;
}
}
return 0;
}
#define DO_SETLINK_MODIFIED 0x01
/* notify flag means notify + modified. */
#define DO_SETLINK_NOTIFY 0x03
static int do_setlink(const struct sk_buff *skb,
struct net_device *dev, struct ifinfomsg *ifm,
struct netlink_ext_ack *extack,
struct nlattr **tb, char *ifname, int status)
{
const struct net_device_ops *ops = dev->netdev_ops;
int err;
rtnetlink: validate attributes in do_setlink() It seems that rtnl_group_changelink() can call do_setlink while a prior call to validate_linkmsg(dev = NULL, ...) could not validate IFLA_ADDRESS / IFLA_BROADCAST Make sure do_setlink() calls validate_linkmsg() instead of letting its callers having this responsibility. With help from Dmitry Vyukov, thanks a lot ! BUG: KMSAN: uninit-value in is_valid_ether_addr include/linux/etherdevice.h:199 [inline] BUG: KMSAN: uninit-value in eth_prepare_mac_addr_change net/ethernet/eth.c:275 [inline] BUG: KMSAN: uninit-value in eth_mac_addr+0x203/0x2b0 net/ethernet/eth.c:308 CPU: 1 PID: 8695 Comm: syz-executor3 Not tainted 4.17.0-rc5+ #103 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x185/0x1d0 lib/dump_stack.c:113 kmsan_report+0x149/0x260 mm/kmsan/kmsan.c:1084 __msan_warning_32+0x6e/0xc0 mm/kmsan/kmsan_instr.c:686 is_valid_ether_addr include/linux/etherdevice.h:199 [inline] eth_prepare_mac_addr_change net/ethernet/eth.c:275 [inline] eth_mac_addr+0x203/0x2b0 net/ethernet/eth.c:308 dev_set_mac_address+0x261/0x530 net/core/dev.c:7157 do_setlink+0xbc3/0x5fc0 net/core/rtnetlink.c:2317 rtnl_group_changelink net/core/rtnetlink.c:2824 [inline] rtnl_newlink+0x1fe9/0x37a0 net/core/rtnetlink.c:2976 rtnetlink_rcv_msg+0xa32/0x1560 net/core/rtnetlink.c:4646 netlink_rcv_skb+0x378/0x600 net/netlink/af_netlink.c:2448 rtnetlink_rcv+0x50/0x60 net/core/rtnetlink.c:4664 netlink_unicast_kernel net/netlink/af_netlink.c:1310 [inline] netlink_unicast+0x1678/0x1750 net/netlink/af_netlink.c:1336 netlink_sendmsg+0x104f/0x1350 net/netlink/af_netlink.c:1901 sock_sendmsg_nosec net/socket.c:629 [inline] sock_sendmsg net/socket.c:639 [inline] ___sys_sendmsg+0xec0/0x1310 net/socket.c:2117 __sys_sendmsg net/socket.c:2155 [inline] __do_sys_sendmsg net/socket.c:2164 [inline] __se_sys_sendmsg net/socket.c:2162 [inline] __x64_sys_sendmsg+0x331/0x460 net/socket.c:2162 do_syscall_64+0x152/0x230 arch/x86/entry/common.c:287 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x455a09 RSP: 002b:00007fc07480ec68 EFLAGS: 00000246 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 00007fc07480f6d4 RCX: 0000000000455a09 RDX: 0000000000000000 RSI: 00000000200003c0 RDI: 0000000000000014 RBP: 000000000072bea0 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 00000000ffffffff R13: 00000000000005d0 R14: 00000000006fdc20 R15: 0000000000000000 Uninit was stored to memory at: kmsan_save_stack_with_flags mm/kmsan/kmsan.c:279 [inline] kmsan_save_stack mm/kmsan/kmsan.c:294 [inline] kmsan_internal_chain_origin+0x12b/0x210 mm/kmsan/kmsan.c:685 kmsan_memcpy_origins+0x11d/0x170 mm/kmsan/kmsan.c:527 __msan_memcpy+0x109/0x160 mm/kmsan/kmsan_instr.c:478 do_setlink+0xb84/0x5fc0 net/core/rtnetlink.c:2315 rtnl_group_changelink net/core/rtnetlink.c:2824 [inline] rtnl_newlink+0x1fe9/0x37a0 net/core/rtnetlink.c:2976 rtnetlink_rcv_msg+0xa32/0x1560 net/core/rtnetlink.c:4646 netlink_rcv_skb+0x378/0x600 net/netlink/af_netlink.c:2448 rtnetlink_rcv+0x50/0x60 net/core/rtnetlink.c:4664 netlink_unicast_kernel net/netlink/af_netlink.c:1310 [inline] netlink_unicast+0x1678/0x1750 net/netlink/af_netlink.c:1336 netlink_sendmsg+0x104f/0x1350 net/netlink/af_netlink.c:1901 sock_sendmsg_nosec net/socket.c:629 [inline] sock_sendmsg net/socket.c:639 [inline] ___sys_sendmsg+0xec0/0x1310 net/socket.c:2117 __sys_sendmsg net/socket.c:2155 [inline] __do_sys_sendmsg net/socket.c:2164 [inline] __se_sys_sendmsg net/socket.c:2162 [inline] __x64_sys_sendmsg+0x331/0x460 net/socket.c:2162 do_syscall_64+0x152/0x230 arch/x86/entry/common.c:287 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Uninit was created at: kmsan_save_stack_with_flags mm/kmsan/kmsan.c:279 [inline] kmsan_internal_poison_shadow+0xb8/0x1b0 mm/kmsan/kmsan.c:189 kmsan_kmalloc+0x94/0x100 mm/kmsan/kmsan.c:315 kmsan_slab_alloc+0x10/0x20 mm/kmsan/kmsan.c:322 slab_post_alloc_hook mm/slab.h:446 [inline] slab_alloc_node mm/slub.c:2753 [inline] __kmalloc_node_track_caller+0xb32/0x11b0 mm/slub.c:4395 __kmalloc_reserve net/core/skbuff.c:138 [inline] __alloc_skb+0x2cb/0x9e0 net/core/skbuff.c:206 alloc_skb include/linux/skbuff.h:988 [inline] netlink_alloc_large_skb net/netlink/af_netlink.c:1182 [inline] netlink_sendmsg+0x76e/0x1350 net/netlink/af_netlink.c:1876 sock_sendmsg_nosec net/socket.c:629 [inline] sock_sendmsg net/socket.c:639 [inline] ___sys_sendmsg+0xec0/0x1310 net/socket.c:2117 __sys_sendmsg net/socket.c:2155 [inline] __do_sys_sendmsg net/socket.c:2164 [inline] __se_sys_sendmsg net/socket.c:2162 [inline] __x64_sys_sendmsg+0x331/0x460 net/socket.c:2162 do_syscall_64+0x152/0x230 arch/x86/entry/common.c:287 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Fixes: e7ed828f10bd ("netlink: support setting devgroup parameters") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Cc: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-06-05 10:25:19 -06:00
err = validate_linkmsg(dev, tb);
if (err < 0)
return err;
if (tb[IFLA_NET_NS_PID] || tb[IFLA_NET_NS_FD] || tb[IFLA_TARGET_NETNSID]) {
struct net *net = rtnl_link_get_net_capable(skb, dev_net(dev),
tb, CAP_NET_ADMIN);
if (IS_ERR(net)) {
err = PTR_ERR(net);
goto errout;
}
err = dev_change_net_namespace(dev, net, ifname);
put_net(net);
if (err)
goto errout;
status |= DO_SETLINK_MODIFIED;
}
if (tb[IFLA_MAP]) {
struct rtnl_link_ifmap *u_map;
struct ifmap k_map;
if (!ops->ndo_set_config) {
err = -EOPNOTSUPP;
goto errout;
}
if (!netif_device_present(dev)) {
err = -ENODEV;
goto errout;
}
u_map = nla_data(tb[IFLA_MAP]);
k_map.mem_start = (unsigned long) u_map->mem_start;
k_map.mem_end = (unsigned long) u_map->mem_end;
k_map.base_addr = (unsigned short) u_map->base_addr;
k_map.irq = (unsigned char) u_map->irq;
k_map.dma = (unsigned char) u_map->dma;
k_map.port = (unsigned char) u_map->port;
err = ops->ndo_set_config(dev, &k_map);
if (err < 0)
goto errout;
status |= DO_SETLINK_NOTIFY;
}
if (tb[IFLA_ADDRESS]) {
struct sockaddr *sa;
int len;
len = sizeof(sa_family_t) + max_t(size_t, dev->addr_len,
sizeof(*sa));
sa = kmalloc(len, GFP_KERNEL);
if (!sa) {
err = -ENOMEM;
goto errout;
}
sa->sa_family = dev->type;
memcpy(sa->sa_data, nla_data(tb[IFLA_ADDRESS]),
dev->addr_len);
err = dev_set_mac_address(dev, sa);
kfree(sa);
if (err)
goto errout;
status |= DO_SETLINK_MODIFIED;
}
if (tb[IFLA_MTU]) {
err = dev_set_mtu_ext(dev, nla_get_u32(tb[IFLA_MTU]), extack);
if (err < 0)
goto errout;
status |= DO_SETLINK_MODIFIED;
}
if (tb[IFLA_GROUP]) {
dev_set_group(dev, nla_get_u32(tb[IFLA_GROUP]));
status |= DO_SETLINK_NOTIFY;
}
/*
* Interface selected by interface index but interface
* name provided implies that a name change has been
* requested.
*/
if (ifm->ifi_index > 0 && ifname[0]) {
err = dev_change_name(dev, ifname);
if (err < 0)
goto errout;
status |= DO_SETLINK_MODIFIED;
}
if (tb[IFLA_IFALIAS]) {
err = dev_set_alias(dev, nla_data(tb[IFLA_IFALIAS]),
nla_len(tb[IFLA_IFALIAS]));
if (err < 0)
goto errout;
status |= DO_SETLINK_NOTIFY;
}
if (tb[IFLA_BROADCAST]) {
nla_memcpy(dev->broadcast, tb[IFLA_BROADCAST], dev->addr_len);
call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
}
if (ifm->ifi_flags || ifm->ifi_change) {
rtnetlink: support specifying device flags on device creation commit e8469ed959c373c2ff9e6f488aa5a14971aebe1f Author: Patrick McHardy <kaber@trash.net> Date: Tue Feb 23 20:41:30 2010 +0100 Support specifying the initial device flags when creating a device though rtnl_link. Devices allocated by rtnl_create_link() are marked as INITIALIZING in order to surpress netlink registration notifications. To complete setup, rtnl_configure_link() must be called, which performs the device flag changes and invokes the deferred notifiers if everything went well. Two examples: # add macvlan to eth0 # $ ip link add link eth0 up allmulticast on type macvlan [LINK]11: macvlan0@eth0: <BROADCAST,MULTICAST,ALLMULTI,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN link/ether 26:f8:84:02:f9:2a brd ff:ff:ff:ff:ff:ff [ROUTE]ff00::/8 dev macvlan0 table local metric 256 mtu 1500 advmss 1440 hoplimit 0 [ROUTE]fe80::/64 dev macvlan0 proto kernel metric 256 mtu 1500 advmss 1440 hoplimit 0 [LINK]11: macvlan0@eth0: <BROADCAST,MULTICAST,ALLMULTI,UP,LOWER_UP> mtu 1500 link/ether 26:f8:84:02:f9:2a [ADDR]11: macvlan0 inet6 fe80::24f8:84ff:fe02:f92a/64 scope link valid_lft forever preferred_lft forever [ROUTE]local fe80::24f8:84ff:fe02:f92a via :: dev lo table local proto none metric 0 mtu 16436 advmss 16376 hoplimit 0 [ROUTE]default via fe80::215:e9ff:fef0:10f8 dev macvlan0 proto kernel metric 1024 mtu 1500 advmss 1440 hoplimit 0 [NEIGH]fe80::215:e9ff:fef0:10f8 dev macvlan0 lladdr 00:15:e9:f0:10:f8 router STALE [ROUTE]2001:6f8:974::/64 dev macvlan0 proto kernel metric 256 expires 0sec mtu 1500 advmss 1440 hoplimit 0 [PREFIX]prefix 2001:6f8:974::/64 dev macvlan0 onlink autoconf valid 14400 preferred 131084 [ADDR]11: macvlan0 inet6 2001:6f8:974:0:24f8:84ff:fe02:f92a/64 scope global dynamic valid_lft 86399sec preferred_lft 14399sec # add VLAN to eth1, eth1 is down # $ ip link add link eth1 up type vlan id 1000 RTNETLINK answers: Network is down <no events> Signed-off-by: Patrick McHardy <kaber@trash.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-02-25 23:34:54 -07:00
err = dev_change_flags(dev, rtnl_dev_combine_flags(dev, ifm));
if (err < 0)
goto errout;
}
if (tb[IFLA_MASTER]) {
err = do_set_master(dev, nla_get_u32(tb[IFLA_MASTER]), extack);
if (err)
goto errout;
status |= DO_SETLINK_MODIFIED;
}
if (tb[IFLA_CARRIER]) {
err = dev_change_carrier(dev, nla_get_u8(tb[IFLA_CARRIER]));
if (err)
goto errout;
status |= DO_SETLINK_MODIFIED;
}
if (tb[IFLA_TXQLEN]) {
unsigned int value = nla_get_u32(tb[IFLA_TXQLEN]);
err = dev_change_tx_queue_len(dev, value);
if (err)
goto errout;
status |= DO_SETLINK_MODIFIED;
}
if (tb[IFLA_GSO_MAX_SIZE]) {
u32 max_size = nla_get_u32(tb[IFLA_GSO_MAX_SIZE]);
if (max_size > GSO_MAX_SIZE) {
err = -EINVAL;
goto errout;
}
if (dev->gso_max_size ^ max_size) {
netif_set_gso_max_size(dev, max_size);
status |= DO_SETLINK_MODIFIED;
}
}
if (tb[IFLA_GSO_MAX_SEGS]) {
u32 max_segs = nla_get_u32(tb[IFLA_GSO_MAX_SEGS]);
if (max_segs > GSO_MAX_SEGS) {
err = -EINVAL;
goto errout;
}
if (dev->gso_max_segs ^ max_segs) {
dev->gso_max_segs = max_segs;
status |= DO_SETLINK_MODIFIED;
}
}
if (tb[IFLA_OPERSTATE])
set_operstate(dev, nla_get_u8(tb[IFLA_OPERSTATE]));
if (tb[IFLA_LINKMODE]) {
unsigned char value = nla_get_u8(tb[IFLA_LINKMODE]);
write_lock_bh(&dev_base_lock);
if (dev->link_mode ^ value)
status |= DO_SETLINK_NOTIFY;
dev->link_mode = value;
write_unlock_bh(&dev_base_lock);
}
if (tb[IFLA_VFINFO_LIST]) {
rtnetlink: verify IFLA_VF_INFO attributes before passing them to driver Jason Gunthorpe reported that since commit c02db8c6290b ("rtnetlink: make SR-IOV VF interface symmetric"), we don't verify IFLA_VF_INFO attributes anymore with respect to their policy, that is, ifla_vfinfo_policy[]. Before, they were part of ifla_policy[], but they have been nested since placed under IFLA_VFINFO_LIST, that contains the attribute IFLA_VF_INFO, which is another nested attribute for the actual VF attributes such as IFLA_VF_MAC, IFLA_VF_VLAN, etc. Despite the policy being split out from ifla_policy[] in this commit, it's never applied anywhere. nla_for_each_nested() only does basic nla_ok() testing for struct nlattr, but it doesn't know about the data context and their requirements. Fix, on top of Jason's initial work, does 1) parsing of the attributes with the right policy, and 2) using the resulting parsed attribute table from 1) instead of the nla_for_each_nested() loop (just like we used to do when still part of ifla_policy[]). Reference: http://thread.gmane.org/gmane.linux.network/368913 Fixes: c02db8c6290b ("rtnetlink: make SR-IOV VF interface symmetric") Reported-by: Jason Gunthorpe <jgunthorpe@obsidianresearch.com> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Sucheta Chakraborty <sucheta.chakraborty@qlogic.com> Cc: Greg Rose <gregory.v.rose@intel.com> Cc: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Cc: Rony Efraim <ronye@mellanox.com> Cc: Vlad Zolotarov <vladz@cloudius-systems.com> Cc: Nicolas Dichtel <nicolas.dichtel@6wind.com> Cc: Thomas Graf <tgraf@suug.ch> Signed-off-by: Jason Gunthorpe <jgunthorpe@obsidianresearch.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Vlad Zolotarov <vladz@cloudius-systems.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-06 16:07:52 -06:00
struct nlattr *vfinfo[IFLA_VF_MAX + 1];
struct nlattr *attr;
int rem;
rtnetlink: verify IFLA_VF_INFO attributes before passing them to driver Jason Gunthorpe reported that since commit c02db8c6290b ("rtnetlink: make SR-IOV VF interface symmetric"), we don't verify IFLA_VF_INFO attributes anymore with respect to their policy, that is, ifla_vfinfo_policy[]. Before, they were part of ifla_policy[], but they have been nested since placed under IFLA_VFINFO_LIST, that contains the attribute IFLA_VF_INFO, which is another nested attribute for the actual VF attributes such as IFLA_VF_MAC, IFLA_VF_VLAN, etc. Despite the policy being split out from ifla_policy[] in this commit, it's never applied anywhere. nla_for_each_nested() only does basic nla_ok() testing for struct nlattr, but it doesn't know about the data context and their requirements. Fix, on top of Jason's initial work, does 1) parsing of the attributes with the right policy, and 2) using the resulting parsed attribute table from 1) instead of the nla_for_each_nested() loop (just like we used to do when still part of ifla_policy[]). Reference: http://thread.gmane.org/gmane.linux.network/368913 Fixes: c02db8c6290b ("rtnetlink: make SR-IOV VF interface symmetric") Reported-by: Jason Gunthorpe <jgunthorpe@obsidianresearch.com> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Sucheta Chakraborty <sucheta.chakraborty@qlogic.com> Cc: Greg Rose <gregory.v.rose@intel.com> Cc: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Cc: Rony Efraim <ronye@mellanox.com> Cc: Vlad Zolotarov <vladz@cloudius-systems.com> Cc: Nicolas Dichtel <nicolas.dichtel@6wind.com> Cc: Thomas Graf <tgraf@suug.ch> Signed-off-by: Jason Gunthorpe <jgunthorpe@obsidianresearch.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Vlad Zolotarov <vladz@cloudius-systems.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-06 16:07:52 -06:00
nla_for_each_nested(attr, tb[IFLA_VFINFO_LIST], rem) {
rtnetlink: verify IFLA_VF_INFO attributes before passing them to driver Jason Gunthorpe reported that since commit c02db8c6290b ("rtnetlink: make SR-IOV VF interface symmetric"), we don't verify IFLA_VF_INFO attributes anymore with respect to their policy, that is, ifla_vfinfo_policy[]. Before, they were part of ifla_policy[], but they have been nested since placed under IFLA_VFINFO_LIST, that contains the attribute IFLA_VF_INFO, which is another nested attribute for the actual VF attributes such as IFLA_VF_MAC, IFLA_VF_VLAN, etc. Despite the policy being split out from ifla_policy[] in this commit, it's never applied anywhere. nla_for_each_nested() only does basic nla_ok() testing for struct nlattr, but it doesn't know about the data context and their requirements. Fix, on top of Jason's initial work, does 1) parsing of the attributes with the right policy, and 2) using the resulting parsed attribute table from 1) instead of the nla_for_each_nested() loop (just like we used to do when still part of ifla_policy[]). Reference: http://thread.gmane.org/gmane.linux.network/368913 Fixes: c02db8c6290b ("rtnetlink: make SR-IOV VF interface symmetric") Reported-by: Jason Gunthorpe <jgunthorpe@obsidianresearch.com> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Sucheta Chakraborty <sucheta.chakraborty@qlogic.com> Cc: Greg Rose <gregory.v.rose@intel.com> Cc: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Cc: Rony Efraim <ronye@mellanox.com> Cc: Vlad Zolotarov <vladz@cloudius-systems.com> Cc: Nicolas Dichtel <nicolas.dichtel@6wind.com> Cc: Thomas Graf <tgraf@suug.ch> Signed-off-by: Jason Gunthorpe <jgunthorpe@obsidianresearch.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Vlad Zolotarov <vladz@cloudius-systems.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-06 16:07:52 -06:00
if (nla_type(attr) != IFLA_VF_INFO ||
nla_len(attr) < NLA_HDRLEN) {
err = -EINVAL;
goto errout;
}
rtnetlink: verify IFLA_VF_INFO attributes before passing them to driver Jason Gunthorpe reported that since commit c02db8c6290b ("rtnetlink: make SR-IOV VF interface symmetric"), we don't verify IFLA_VF_INFO attributes anymore with respect to their policy, that is, ifla_vfinfo_policy[]. Before, they were part of ifla_policy[], but they have been nested since placed under IFLA_VFINFO_LIST, that contains the attribute IFLA_VF_INFO, which is another nested attribute for the actual VF attributes such as IFLA_VF_MAC, IFLA_VF_VLAN, etc. Despite the policy being split out from ifla_policy[] in this commit, it's never applied anywhere. nla_for_each_nested() only does basic nla_ok() testing for struct nlattr, but it doesn't know about the data context and their requirements. Fix, on top of Jason's initial work, does 1) parsing of the attributes with the right policy, and 2) using the resulting parsed attribute table from 1) instead of the nla_for_each_nested() loop (just like we used to do when still part of ifla_policy[]). Reference: http://thread.gmane.org/gmane.linux.network/368913 Fixes: c02db8c6290b ("rtnetlink: make SR-IOV VF interface symmetric") Reported-by: Jason Gunthorpe <jgunthorpe@obsidianresearch.com> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Sucheta Chakraborty <sucheta.chakraborty@qlogic.com> Cc: Greg Rose <gregory.v.rose@intel.com> Cc: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Cc: Rony Efraim <ronye@mellanox.com> Cc: Vlad Zolotarov <vladz@cloudius-systems.com> Cc: Nicolas Dichtel <nicolas.dichtel@6wind.com> Cc: Thomas Graf <tgraf@suug.ch> Signed-off-by: Jason Gunthorpe <jgunthorpe@obsidianresearch.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Vlad Zolotarov <vladz@cloudius-systems.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-06 16:07:52 -06:00
err = nla_parse_nested(vfinfo, IFLA_VF_MAX, attr,
ifla_vf_policy, NULL);
rtnetlink: verify IFLA_VF_INFO attributes before passing them to driver Jason Gunthorpe reported that since commit c02db8c6290b ("rtnetlink: make SR-IOV VF interface symmetric"), we don't verify IFLA_VF_INFO attributes anymore with respect to their policy, that is, ifla_vfinfo_policy[]. Before, they were part of ifla_policy[], but they have been nested since placed under IFLA_VFINFO_LIST, that contains the attribute IFLA_VF_INFO, which is another nested attribute for the actual VF attributes such as IFLA_VF_MAC, IFLA_VF_VLAN, etc. Despite the policy being split out from ifla_policy[] in this commit, it's never applied anywhere. nla_for_each_nested() only does basic nla_ok() testing for struct nlattr, but it doesn't know about the data context and their requirements. Fix, on top of Jason's initial work, does 1) parsing of the attributes with the right policy, and 2) using the resulting parsed attribute table from 1) instead of the nla_for_each_nested() loop (just like we used to do when still part of ifla_policy[]). Reference: http://thread.gmane.org/gmane.linux.network/368913 Fixes: c02db8c6290b ("rtnetlink: make SR-IOV VF interface symmetric") Reported-by: Jason Gunthorpe <jgunthorpe@obsidianresearch.com> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Sucheta Chakraborty <sucheta.chakraborty@qlogic.com> Cc: Greg Rose <gregory.v.rose@intel.com> Cc: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Cc: Rony Efraim <ronye@mellanox.com> Cc: Vlad Zolotarov <vladz@cloudius-systems.com> Cc: Nicolas Dichtel <nicolas.dichtel@6wind.com> Cc: Thomas Graf <tgraf@suug.ch> Signed-off-by: Jason Gunthorpe <jgunthorpe@obsidianresearch.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Vlad Zolotarov <vladz@cloudius-systems.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-06 16:07:52 -06:00
if (err < 0)
goto errout;
err = do_setvfinfo(dev, vfinfo);
if (err < 0)
goto errout;
status |= DO_SETLINK_NOTIFY;
}
}
err = 0;
net: Add netlink support for virtual port management (was iovnl) Add new netdev ops ndo_{set|get}_vf_port to allow setting of port-profile on a netdev interface. Extends netlink socket RTM_SETLINK/ RTM_GETLINK with two new sub msgs called IFLA_VF_PORTS and IFLA_PORT_SELF (added to end of IFLA_cmd list). These are both nested atrtibutes using this layout: [IFLA_NUM_VF] [IFLA_VF_PORTS] [IFLA_VF_PORT] [IFLA_PORT_*], ... [IFLA_VF_PORT] [IFLA_PORT_*], ... ... [IFLA_PORT_SELF] [IFLA_PORT_*], ... These attributes are design to be set and get symmetrically. VF_PORTS is a list of VF_PORTs, one for each VF, when dealing with an SR-IOV device. PORT_SELF is for the PF of the SR-IOV device, in case it wants to also have a port-profile, or for the case where the VF==PF, like in enic patch 2/2 of this patch set. A port-profile is used to configure/enable the external switch virtual port backing the netdev interface, not to configure the host-facing side of the netdev. A port-profile is an identifier known to the switch. How port- profiles are installed on the switch or how available port-profiles are made know to the host is outside the scope of this patch. There are two types of port-profiles specs in the netlink msg. The first spec is for 802.1Qbg (pre-)standard, VDP protocol. The second spec is for devices that run a similar protocol as VDP but in firmware, thus hiding the protocol details. In either case, the specs have much in common and makes sense to define the netlink msg as the union of the two specs. For example, both specs have a notition of associating/deassociating a port-profile. And both specs require some information from the hypervisor manager, such as client port instance ID. The general flow is the port-profile is applied to a host netdev interface using RTM_SETLINK, the receiver of the RTM_SETLINK msg communicates with the switch, and the switch virtual port backing the host netdev interface is configured/enabled based on the settings defined by the port-profile. What those settings comprise, and how those settings are managed is again outside the scope of this patch, since this patch only deals with the first step in the flow. Signed-off-by: Scott Feldman <scofeldm@cisco.com> Signed-off-by: Roopa Prabhu <roprabhu@cisco.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-05-17 23:49:55 -06:00
if (tb[IFLA_VF_PORTS]) {
struct nlattr *port[IFLA_PORT_MAX+1];
struct nlattr *attr;
int vf;
int rem;
err = -EOPNOTSUPP;
if (!ops->ndo_set_vf_port)
goto errout;
nla_for_each_nested(attr, tb[IFLA_VF_PORTS], rem) {
if (nla_type(attr) != IFLA_VF_PORT ||
nla_len(attr) < NLA_HDRLEN) {
err = -EINVAL;
goto errout;
}
err = nla_parse_nested(port, IFLA_PORT_MAX, attr,
ifla_port_policy, NULL);
net: Add netlink support for virtual port management (was iovnl) Add new netdev ops ndo_{set|get}_vf_port to allow setting of port-profile on a netdev interface. Extends netlink socket RTM_SETLINK/ RTM_GETLINK with two new sub msgs called IFLA_VF_PORTS and IFLA_PORT_SELF (added to end of IFLA_cmd list). These are both nested atrtibutes using this layout: [IFLA_NUM_VF] [IFLA_VF_PORTS] [IFLA_VF_PORT] [IFLA_PORT_*], ... [IFLA_VF_PORT] [IFLA_PORT_*], ... ... [IFLA_PORT_SELF] [IFLA_PORT_*], ... These attributes are design to be set and get symmetrically. VF_PORTS is a list of VF_PORTs, one for each VF, when dealing with an SR-IOV device. PORT_SELF is for the PF of the SR-IOV device, in case it wants to also have a port-profile, or for the case where the VF==PF, like in enic patch 2/2 of this patch set. A port-profile is used to configure/enable the external switch virtual port backing the netdev interface, not to configure the host-facing side of the netdev. A port-profile is an identifier known to the switch. How port- profiles are installed on the switch or how available port-profiles are made know to the host is outside the scope of this patch. There are two types of port-profiles specs in the netlink msg. The first spec is for 802.1Qbg (pre-)standard, VDP protocol. The second spec is for devices that run a similar protocol as VDP but in firmware, thus hiding the protocol details. In either case, the specs have much in common and makes sense to define the netlink msg as the union of the two specs. For example, both specs have a notition of associating/deassociating a port-profile. And both specs require some information from the hypervisor manager, such as client port instance ID. The general flow is the port-profile is applied to a host netdev interface using RTM_SETLINK, the receiver of the RTM_SETLINK msg communicates with the switch, and the switch virtual port backing the host netdev interface is configured/enabled based on the settings defined by the port-profile. What those settings comprise, and how those settings are managed is again outside the scope of this patch, since this patch only deals with the first step in the flow. Signed-off-by: Scott Feldman <scofeldm@cisco.com> Signed-off-by: Roopa Prabhu <roprabhu@cisco.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-05-17 23:49:55 -06:00
if (err < 0)
goto errout;
if (!port[IFLA_PORT_VF]) {
err = -EOPNOTSUPP;
goto errout;
}
vf = nla_get_u32(port[IFLA_PORT_VF]);
err = ops->ndo_set_vf_port(dev, vf, port);
if (err < 0)
goto errout;
status |= DO_SETLINK_NOTIFY;
net: Add netlink support for virtual port management (was iovnl) Add new netdev ops ndo_{set|get}_vf_port to allow setting of port-profile on a netdev interface. Extends netlink socket RTM_SETLINK/ RTM_GETLINK with two new sub msgs called IFLA_VF_PORTS and IFLA_PORT_SELF (added to end of IFLA_cmd list). These are both nested atrtibutes using this layout: [IFLA_NUM_VF] [IFLA_VF_PORTS] [IFLA_VF_PORT] [IFLA_PORT_*], ... [IFLA_VF_PORT] [IFLA_PORT_*], ... ... [IFLA_PORT_SELF] [IFLA_PORT_*], ... These attributes are design to be set and get symmetrically. VF_PORTS is a list of VF_PORTs, one for each VF, when dealing with an SR-IOV device. PORT_SELF is for the PF of the SR-IOV device, in case it wants to also have a port-profile, or for the case where the VF==PF, like in enic patch 2/2 of this patch set. A port-profile is used to configure/enable the external switch virtual port backing the netdev interface, not to configure the host-facing side of the netdev. A port-profile is an identifier known to the switch. How port- profiles are installed on the switch or how available port-profiles are made know to the host is outside the scope of this patch. There are two types of port-profiles specs in the netlink msg. The first spec is for 802.1Qbg (pre-)standard, VDP protocol. The second spec is for devices that run a similar protocol as VDP but in firmware, thus hiding the protocol details. In either case, the specs have much in common and makes sense to define the netlink msg as the union of the two specs. For example, both specs have a notition of associating/deassociating a port-profile. And both specs require some information from the hypervisor manager, such as client port instance ID. The general flow is the port-profile is applied to a host netdev interface using RTM_SETLINK, the receiver of the RTM_SETLINK msg communicates with the switch, and the switch virtual port backing the host netdev interface is configured/enabled based on the settings defined by the port-profile. What those settings comprise, and how those settings are managed is again outside the scope of this patch, since this patch only deals with the first step in the flow. Signed-off-by: Scott Feldman <scofeldm@cisco.com> Signed-off-by: Roopa Prabhu <roprabhu@cisco.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-05-17 23:49:55 -06:00
}
}
err = 0;
if (tb[IFLA_PORT_SELF]) {
struct nlattr *port[IFLA_PORT_MAX+1];
err = nla_parse_nested(port, IFLA_PORT_MAX,
tb[IFLA_PORT_SELF], ifla_port_policy,
NULL);
net: Add netlink support for virtual port management (was iovnl) Add new netdev ops ndo_{set|get}_vf_port to allow setting of port-profile on a netdev interface. Extends netlink socket RTM_SETLINK/ RTM_GETLINK with two new sub msgs called IFLA_VF_PORTS and IFLA_PORT_SELF (added to end of IFLA_cmd list). These are both nested atrtibutes using this layout: [IFLA_NUM_VF] [IFLA_VF_PORTS] [IFLA_VF_PORT] [IFLA_PORT_*], ... [IFLA_VF_PORT] [IFLA_PORT_*], ... ... [IFLA_PORT_SELF] [IFLA_PORT_*], ... These attributes are design to be set and get symmetrically. VF_PORTS is a list of VF_PORTs, one for each VF, when dealing with an SR-IOV device. PORT_SELF is for the PF of the SR-IOV device, in case it wants to also have a port-profile, or for the case where the VF==PF, like in enic patch 2/2 of this patch set. A port-profile is used to configure/enable the external switch virtual port backing the netdev interface, not to configure the host-facing side of the netdev. A port-profile is an identifier known to the switch. How port- profiles are installed on the switch or how available port-profiles are made know to the host is outside the scope of this patch. There are two types of port-profiles specs in the netlink msg. The first spec is for 802.1Qbg (pre-)standard, VDP protocol. The second spec is for devices that run a similar protocol as VDP but in firmware, thus hiding the protocol details. In either case, the specs have much in common and makes sense to define the netlink msg as the union of the two specs. For example, both specs have a notition of associating/deassociating a port-profile. And both specs require some information from the hypervisor manager, such as client port instance ID. The general flow is the port-profile is applied to a host netdev interface using RTM_SETLINK, the receiver of the RTM_SETLINK msg communicates with the switch, and the switch virtual port backing the host netdev interface is configured/enabled based on the settings defined by the port-profile. What those settings comprise, and how those settings are managed is again outside the scope of this patch, since this patch only deals with the first step in the flow. Signed-off-by: Scott Feldman <scofeldm@cisco.com> Signed-off-by: Roopa Prabhu <roprabhu@cisco.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-05-17 23:49:55 -06:00
if (err < 0)
goto errout;
err = -EOPNOTSUPP;
if (ops->ndo_set_vf_port)
err = ops->ndo_set_vf_port(dev, PORT_SELF_VF, port);
if (err < 0)
goto errout;
status |= DO_SETLINK_NOTIFY;
net: Add netlink support for virtual port management (was iovnl) Add new netdev ops ndo_{set|get}_vf_port to allow setting of port-profile on a netdev interface. Extends netlink socket RTM_SETLINK/ RTM_GETLINK with two new sub msgs called IFLA_VF_PORTS and IFLA_PORT_SELF (added to end of IFLA_cmd list). These are both nested atrtibutes using this layout: [IFLA_NUM_VF] [IFLA_VF_PORTS] [IFLA_VF_PORT] [IFLA_PORT_*], ... [IFLA_VF_PORT] [IFLA_PORT_*], ... ... [IFLA_PORT_SELF] [IFLA_PORT_*], ... These attributes are design to be set and get symmetrically. VF_PORTS is a list of VF_PORTs, one for each VF, when dealing with an SR-IOV device. PORT_SELF is for the PF of the SR-IOV device, in case it wants to also have a port-profile, or for the case where the VF==PF, like in enic patch 2/2 of this patch set. A port-profile is used to configure/enable the external switch virtual port backing the netdev interface, not to configure the host-facing side of the netdev. A port-profile is an identifier known to the switch. How port- profiles are installed on the switch or how available port-profiles are made know to the host is outside the scope of this patch. There are two types of port-profiles specs in the netlink msg. The first spec is for 802.1Qbg (pre-)standard, VDP protocol. The second spec is for devices that run a similar protocol as VDP but in firmware, thus hiding the protocol details. In either case, the specs have much in common and makes sense to define the netlink msg as the union of the two specs. For example, both specs have a notition of associating/deassociating a port-profile. And both specs require some information from the hypervisor manager, such as client port instance ID. The general flow is the port-profile is applied to a host netdev interface using RTM_SETLINK, the receiver of the RTM_SETLINK msg communicates with the switch, and the switch virtual port backing the host netdev interface is configured/enabled based on the settings defined by the port-profile. What those settings comprise, and how those settings are managed is again outside the scope of this patch, since this patch only deals with the first step in the flow. Signed-off-by: Scott Feldman <scofeldm@cisco.com> Signed-off-by: Roopa Prabhu <roprabhu@cisco.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-05-17 23:49:55 -06:00
}
if (tb[IFLA_AF_SPEC]) {
struct nlattr *af;
int rem;
nla_for_each_nested(af, tb[IFLA_AF_SPEC], rem) {
const struct rtnl_af_ops *af_ops;
rcu_read_lock();
BUG_ON(!(af_ops = rtnl_af_lookup(nla_type(af))));
err = af_ops->set_link_af(dev, af);
if (err < 0) {
rcu_read_unlock();
goto errout;
}
rcu_read_unlock();
status |= DO_SETLINK_NOTIFY;
}
}
net: Add netlink support for virtual port management (was iovnl) Add new netdev ops ndo_{set|get}_vf_port to allow setting of port-profile on a netdev interface. Extends netlink socket RTM_SETLINK/ RTM_GETLINK with two new sub msgs called IFLA_VF_PORTS and IFLA_PORT_SELF (added to end of IFLA_cmd list). These are both nested atrtibutes using this layout: [IFLA_NUM_VF] [IFLA_VF_PORTS] [IFLA_VF_PORT] [IFLA_PORT_*], ... [IFLA_VF_PORT] [IFLA_PORT_*], ... ... [IFLA_PORT_SELF] [IFLA_PORT_*], ... These attributes are design to be set and get symmetrically. VF_PORTS is a list of VF_PORTs, one for each VF, when dealing with an SR-IOV device. PORT_SELF is for the PF of the SR-IOV device, in case it wants to also have a port-profile, or for the case where the VF==PF, like in enic patch 2/2 of this patch set. A port-profile is used to configure/enable the external switch virtual port backing the netdev interface, not to configure the host-facing side of the netdev. A port-profile is an identifier known to the switch. How port- profiles are installed on the switch or how available port-profiles are made know to the host is outside the scope of this patch. There are two types of port-profiles specs in the netlink msg. The first spec is for 802.1Qbg (pre-)standard, VDP protocol. The second spec is for devices that run a similar protocol as VDP but in firmware, thus hiding the protocol details. In either case, the specs have much in common and makes sense to define the netlink msg as the union of the two specs. For example, both specs have a notition of associating/deassociating a port-profile. And both specs require some information from the hypervisor manager, such as client port instance ID. The general flow is the port-profile is applied to a host netdev interface using RTM_SETLINK, the receiver of the RTM_SETLINK msg communicates with the switch, and the switch virtual port backing the host netdev interface is configured/enabled based on the settings defined by the port-profile. What those settings comprise, and how those settings are managed is again outside the scope of this patch, since this patch only deals with the first step in the flow. Signed-off-by: Scott Feldman <scofeldm@cisco.com> Signed-off-by: Roopa Prabhu <roprabhu@cisco.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-05-17 23:49:55 -06:00
err = 0;
if (tb[IFLA_PROTO_DOWN]) {
err = dev_change_proto_down(dev,
nla_get_u8(tb[IFLA_PROTO_DOWN]));
if (err)
goto errout;
status |= DO_SETLINK_NOTIFY;
}
if (tb[IFLA_XDP]) {
struct nlattr *xdp[IFLA_XDP_MAX + 1];
u32 xdp_flags = 0;
err = nla_parse_nested(xdp, IFLA_XDP_MAX, tb[IFLA_XDP],
ifla_xdp_policy, NULL);
if (err < 0)
goto errout;
if (xdp[IFLA_XDP_ATTACHED] || xdp[IFLA_XDP_PROG_ID]) {
err = -EINVAL;
goto errout;
}
if (xdp[IFLA_XDP_FLAGS]) {
xdp_flags = nla_get_u32(xdp[IFLA_XDP_FLAGS]);
if (xdp_flags & ~XDP_FLAGS_MASK) {
err = -EINVAL;
goto errout;
}
if (hweight32(xdp_flags & XDP_FLAGS_MODES) > 1) {
err = -EINVAL;
goto errout;
}
}
if (xdp[IFLA_XDP_FD]) {
err = dev_change_xdp_fd(dev, extack,
nla_get_s32(xdp[IFLA_XDP_FD]),
xdp_flags);
if (err)
goto errout;
status |= DO_SETLINK_NOTIFY;
}
}
errout:
if (status & DO_SETLINK_MODIFIED) {
if ((status & DO_SETLINK_NOTIFY) == DO_SETLINK_NOTIFY)
netdev_state_change(dev);
if (err < 0)
net_warn_ratelimited("A link change request failed with some changes committed already. Interface %s may have been left with an inconsistent configuration, please check.\n",
dev->name);
}
return err;
}
static int rtnl_setlink(struct sk_buff *skb, struct nlmsghdr *nlh,
struct netlink_ext_ack *extack)
{
struct net *net = sock_net(skb->sk);
struct ifinfomsg *ifm;
struct net_device *dev;
int err;
struct nlattr *tb[IFLA_MAX+1];
char ifname[IFNAMSIZ];
err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy,
extack);
if (err < 0)
goto errout;
err = rtnl_ensure_unique_netns(tb, extack, false);
if (err < 0)
goto errout;
if (tb[IFLA_IFNAME])
nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
else
ifname[0] = '\0';
err = -EINVAL;
ifm = nlmsg_data(nlh);
if (ifm->ifi_index > 0)
dev = __dev_get_by_index(net, ifm->ifi_index);
else if (tb[IFLA_IFNAME])
dev = __dev_get_by_name(net, ifname);
else
goto errout;
if (dev == NULL) {
err = -ENODEV;
goto errout;
}
err = do_setlink(skb, dev, ifm, extack, tb, ifname, 0);
errout:
return err;
}
static int rtnl_group_dellink(const struct net *net, int group)
{
struct net_device *dev, *aux;
LIST_HEAD(list_kill);
bool found = false;
if (!group)
return -EPERM;
for_each_netdev(net, dev) {
if (dev->group == group) {
const struct rtnl_link_ops *ops;
found = true;
ops = dev->rtnl_link_ops;
if (!ops || !ops->dellink)
return -EOPNOTSUPP;
}
}
if (!found)
return -ENODEV;
for_each_netdev_safe(net, dev, aux) {
if (dev->group == group) {
const struct rtnl_link_ops *ops;
ops = dev->rtnl_link_ops;
ops->dellink(dev, &list_kill);
}
}
unregister_netdevice_many(&list_kill);
return 0;
}
int rtnl_delete_link(struct net_device *dev)
{
const struct rtnl_link_ops *ops;
LIST_HEAD(list_kill);
ops = dev->rtnl_link_ops;
if (!ops || !ops->dellink)
return -EOPNOTSUPP;
ops->dellink(dev, &list_kill);
unregister_netdevice_many(&list_kill);
return 0;
}
EXPORT_SYMBOL_GPL(rtnl_delete_link);
static int rtnl_dellink(struct sk_buff *skb, struct nlmsghdr *nlh,
struct netlink_ext_ack *extack)
{
struct net *net = sock_net(skb->sk);
struct net *tgt_net = net;
struct net_device *dev = NULL;
struct ifinfomsg *ifm;
char ifname[IFNAMSIZ];
struct nlattr *tb[IFLA_MAX+1];
int err;
int netnsid = -1;
err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy, extack);
if (err < 0)
return err;
err = rtnl_ensure_unique_netns(tb, extack, true);
if (err < 0)
return err;
if (tb[IFLA_IFNAME])
nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
if (tb[IFLA_TARGET_NETNSID]) {
netnsid = nla_get_s32(tb[IFLA_TARGET_NETNSID]);
tgt_net = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, netnsid);
if (IS_ERR(tgt_net))
return PTR_ERR(tgt_net);
}
err = -EINVAL;
ifm = nlmsg_data(nlh);
if (ifm->ifi_index > 0)
dev = __dev_get_by_index(tgt_net, ifm->ifi_index);
else if (tb[IFLA_IFNAME])
dev = __dev_get_by_name(tgt_net, ifname);
else if (tb[IFLA_GROUP])
err = rtnl_group_dellink(tgt_net, nla_get_u32(tb[IFLA_GROUP]));
else
goto out;
if (!dev) {
if (tb[IFLA_IFNAME] || ifm->ifi_index > 0)
err = -ENODEV;
goto out;
}
err = rtnl_delete_link(dev);
out:
if (netnsid >= 0)
put_net(tgt_net);
return err;
}
rtnetlink: support specifying device flags on device creation commit e8469ed959c373c2ff9e6f488aa5a14971aebe1f Author: Patrick McHardy <kaber@trash.net> Date: Tue Feb 23 20:41:30 2010 +0100 Support specifying the initial device flags when creating a device though rtnl_link. Devices allocated by rtnl_create_link() are marked as INITIALIZING in order to surpress netlink registration notifications. To complete setup, rtnl_configure_link() must be called, which performs the device flag changes and invokes the deferred notifiers if everything went well. Two examples: # add macvlan to eth0 # $ ip link add link eth0 up allmulticast on type macvlan [LINK]11: macvlan0@eth0: <BROADCAST,MULTICAST,ALLMULTI,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN link/ether 26:f8:84:02:f9:2a brd ff:ff:ff:ff:ff:ff [ROUTE]ff00::/8 dev macvlan0 table local metric 256 mtu 1500 advmss 1440 hoplimit 0 [ROUTE]fe80::/64 dev macvlan0 proto kernel metric 256 mtu 1500 advmss 1440 hoplimit 0 [LINK]11: macvlan0@eth0: <BROADCAST,MULTICAST,ALLMULTI,UP,LOWER_UP> mtu 1500 link/ether 26:f8:84:02:f9:2a [ADDR]11: macvlan0 inet6 fe80::24f8:84ff:fe02:f92a/64 scope link valid_lft forever preferred_lft forever [ROUTE]local fe80::24f8:84ff:fe02:f92a via :: dev lo table local proto none metric 0 mtu 16436 advmss 16376 hoplimit 0 [ROUTE]default via fe80::215:e9ff:fef0:10f8 dev macvlan0 proto kernel metric 1024 mtu 1500 advmss 1440 hoplimit 0 [NEIGH]fe80::215:e9ff:fef0:10f8 dev macvlan0 lladdr 00:15:e9:f0:10:f8 router STALE [ROUTE]2001:6f8:974::/64 dev macvlan0 proto kernel metric 256 expires 0sec mtu 1500 advmss 1440 hoplimit 0 [PREFIX]prefix 2001:6f8:974::/64 dev macvlan0 onlink autoconf valid 14400 preferred 131084 [ADDR]11: macvlan0 inet6 2001:6f8:974:0:24f8:84ff:fe02:f92a/64 scope global dynamic valid_lft 86399sec preferred_lft 14399sec # add VLAN to eth1, eth1 is down # $ ip link add link eth1 up type vlan id 1000 RTNETLINK answers: Network is down <no events> Signed-off-by: Patrick McHardy <kaber@trash.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-02-25 23:34:54 -07:00
int rtnl_configure_link(struct net_device *dev, const struct ifinfomsg *ifm)
{
unsigned int old_flags;
int err;
old_flags = dev->flags;
if (ifm && (ifm->ifi_flags || ifm->ifi_change)) {
err = __dev_change_flags(dev, rtnl_dev_combine_flags(dev, ifm));
if (err < 0)
return err;
}
if (dev->rtnl_link_state == RTNL_LINK_INITIALIZED) {
__dev_notify_flags(dev, old_flags, (old_flags ^ dev->flags));
} else {
dev->rtnl_link_state = RTNL_LINK_INITIALIZED;
__dev_notify_flags(dev, old_flags, ~0U);
}
rtnetlink: support specifying device flags on device creation commit e8469ed959c373c2ff9e6f488aa5a14971aebe1f Author: Patrick McHardy <kaber@trash.net> Date: Tue Feb 23 20:41:30 2010 +0100 Support specifying the initial device flags when creating a device though rtnl_link. Devices allocated by rtnl_create_link() are marked as INITIALIZING in order to surpress netlink registration notifications. To complete setup, rtnl_configure_link() must be called, which performs the device flag changes and invokes the deferred notifiers if everything went well. Two examples: # add macvlan to eth0 # $ ip link add link eth0 up allmulticast on type macvlan [LINK]11: macvlan0@eth0: <BROADCAST,MULTICAST,ALLMULTI,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN link/ether 26:f8:84:02:f9:2a brd ff:ff:ff:ff:ff:ff [ROUTE]ff00::/8 dev macvlan0 table local metric 256 mtu 1500 advmss 1440 hoplimit 0 [ROUTE]fe80::/64 dev macvlan0 proto kernel metric 256 mtu 1500 advmss 1440 hoplimit 0 [LINK]11: macvlan0@eth0: <BROADCAST,MULTICAST,ALLMULTI,UP,LOWER_UP> mtu 1500 link/ether 26:f8:84:02:f9:2a [ADDR]11: macvlan0 inet6 fe80::24f8:84ff:fe02:f92a/64 scope link valid_lft forever preferred_lft forever [ROUTE]local fe80::24f8:84ff:fe02:f92a via :: dev lo table local proto none metric 0 mtu 16436 advmss 16376 hoplimit 0 [ROUTE]default via fe80::215:e9ff:fef0:10f8 dev macvlan0 proto kernel metric 1024 mtu 1500 advmss 1440 hoplimit 0 [NEIGH]fe80::215:e9ff:fef0:10f8 dev macvlan0 lladdr 00:15:e9:f0:10:f8 router STALE [ROUTE]2001:6f8:974::/64 dev macvlan0 proto kernel metric 256 expires 0sec mtu 1500 advmss 1440 hoplimit 0 [PREFIX]prefix 2001:6f8:974::/64 dev macvlan0 onlink autoconf valid 14400 preferred 131084 [ADDR]11: macvlan0 inet6 2001:6f8:974:0:24f8:84ff:fe02:f92a/64 scope global dynamic valid_lft 86399sec preferred_lft 14399sec # add VLAN to eth1, eth1 is down # $ ip link add link eth1 up type vlan id 1000 RTNETLINK answers: Network is down <no events> Signed-off-by: Patrick McHardy <kaber@trash.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-02-25 23:34:54 -07:00
return 0;
}
EXPORT_SYMBOL(rtnl_configure_link);
struct net_device *rtnl_create_link(struct net *net,
const char *ifname, unsigned char name_assign_type,
const struct rtnl_link_ops *ops, struct nlattr *tb[])
{
struct net_device *dev;
unsigned int num_tx_queues = 1;
unsigned int num_rx_queues = 1;
if (tb[IFLA_NUM_TX_QUEUES])
num_tx_queues = nla_get_u32(tb[IFLA_NUM_TX_QUEUES]);
else if (ops->get_num_tx_queues)
num_tx_queues = ops->get_num_tx_queues();
if (tb[IFLA_NUM_RX_QUEUES])
num_rx_queues = nla_get_u32(tb[IFLA_NUM_RX_QUEUES]);
else if (ops->get_num_rx_queues)
num_rx_queues = ops->get_num_rx_queues();
if (num_tx_queues < 1 || num_tx_queues > 4096)
return ERR_PTR(-EINVAL);
if (num_rx_queues < 1 || num_rx_queues > 4096)
return ERR_PTR(-EINVAL);
dev = alloc_netdev_mqs(ops->priv_size, ifname, name_assign_type,
ops->setup, num_tx_queues, num_rx_queues);
if (!dev)
return ERR_PTR(-ENOMEM);
dev_net_set(dev, net);
dev->rtnl_link_ops = ops;
rtnetlink: support specifying device flags on device creation commit e8469ed959c373c2ff9e6f488aa5a14971aebe1f Author: Patrick McHardy <kaber@trash.net> Date: Tue Feb 23 20:41:30 2010 +0100 Support specifying the initial device flags when creating a device though rtnl_link. Devices allocated by rtnl_create_link() are marked as INITIALIZING in order to surpress netlink registration notifications. To complete setup, rtnl_configure_link() must be called, which performs the device flag changes and invokes the deferred notifiers if everything went well. Two examples: # add macvlan to eth0 # $ ip link add link eth0 up allmulticast on type macvlan [LINK]11: macvlan0@eth0: <BROADCAST,MULTICAST,ALLMULTI,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN link/ether 26:f8:84:02:f9:2a brd ff:ff:ff:ff:ff:ff [ROUTE]ff00::/8 dev macvlan0 table local metric 256 mtu 1500 advmss 1440 hoplimit 0 [ROUTE]fe80::/64 dev macvlan0 proto kernel metric 256 mtu 1500 advmss 1440 hoplimit 0 [LINK]11: macvlan0@eth0: <BROADCAST,MULTICAST,ALLMULTI,UP,LOWER_UP> mtu 1500 link/ether 26:f8:84:02:f9:2a [ADDR]11: macvlan0 inet6 fe80::24f8:84ff:fe02:f92a/64 scope link valid_lft forever preferred_lft forever [ROUTE]local fe80::24f8:84ff:fe02:f92a via :: dev lo table local proto none metric 0 mtu 16436 advmss 16376 hoplimit 0 [ROUTE]default via fe80::215:e9ff:fef0:10f8 dev macvlan0 proto kernel metric 1024 mtu 1500 advmss 1440 hoplimit 0 [NEIGH]fe80::215:e9ff:fef0:10f8 dev macvlan0 lladdr 00:15:e9:f0:10:f8 router STALE [ROUTE]2001:6f8:974::/64 dev macvlan0 proto kernel metric 256 expires 0sec mtu 1500 advmss 1440 hoplimit 0 [PREFIX]prefix 2001:6f8:974::/64 dev macvlan0 onlink autoconf valid 14400 preferred 131084 [ADDR]11: macvlan0 inet6 2001:6f8:974:0:24f8:84ff:fe02:f92a/64 scope global dynamic valid_lft 86399sec preferred_lft 14399sec # add VLAN to eth1, eth1 is down # $ ip link add link eth1 up type vlan id 1000 RTNETLINK answers: Network is down <no events> Signed-off-by: Patrick McHardy <kaber@trash.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-02-25 23:34:54 -07:00
dev->rtnl_link_state = RTNL_LINK_INITIALIZING;
if (tb[IFLA_MTU])
dev->mtu = nla_get_u32(tb[IFLA_MTU]);
if (tb[IFLA_ADDRESS]) {
memcpy(dev->dev_addr, nla_data(tb[IFLA_ADDRESS]),
nla_len(tb[IFLA_ADDRESS]));
dev->addr_assign_type = NET_ADDR_SET;
}
if (tb[IFLA_BROADCAST])
memcpy(dev->broadcast, nla_data(tb[IFLA_BROADCAST]),
nla_len(tb[IFLA_BROADCAST]));
if (tb[IFLA_TXQLEN])
dev->tx_queue_len = nla_get_u32(tb[IFLA_TXQLEN]);
if (tb[IFLA_OPERSTATE])
set_operstate(dev, nla_get_u8(tb[IFLA_OPERSTATE]));
if (tb[IFLA_LINKMODE])
dev->link_mode = nla_get_u8(tb[IFLA_LINKMODE]);
if (tb[IFLA_GROUP])
dev_set_group(dev, nla_get_u32(tb[IFLA_GROUP]));
if (tb[IFLA_GSO_MAX_SIZE])
netif_set_gso_max_size(dev, nla_get_u32(tb[IFLA_GSO_MAX_SIZE]));
if (tb[IFLA_GSO_MAX_SEGS])
dev->gso_max_segs = nla_get_u32(tb[IFLA_GSO_MAX_SEGS]);
return dev;
}
EXPORT_SYMBOL(rtnl_create_link);
static int rtnl_group_changelink(const struct sk_buff *skb,
struct net *net, int group,
struct ifinfomsg *ifm,
struct netlink_ext_ack *extack,
struct nlattr **tb)
{
net: use for_each_netdev_safe() in rtnl_group_changelink() In case we move the whole dev group to another netns, we should call for_each_netdev_safe(), otherwise we get a soft lockup: NMI watchdog: BUG: soft lockup - CPU#0 stuck for 22s! [ip:798] irq event stamp: 255424 hardirqs last enabled at (255423): [<ffffffff81a2aa95>] restore_args+0x0/0x30 hardirqs last disabled at (255424): [<ffffffff81a2ad5a>] apic_timer_interrupt+0x6a/0x80 softirqs last enabled at (255422): [<ffffffff81079ebc>] __do_softirq+0x2c1/0x3a9 softirqs last disabled at (255417): [<ffffffff8107a190>] irq_exit+0x41/0x95 CPU: 0 PID: 798 Comm: ip Not tainted 4.0.0-rc4+ #881 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 task: ffff8800d1b88000 ti: ffff880119530000 task.ti: ffff880119530000 RIP: 0010:[<ffffffff810cad11>] [<ffffffff810cad11>] debug_lockdep_rcu_enabled+0x28/0x30 RSP: 0018:ffff880119533778 EFLAGS: 00000246 RAX: ffff8800d1b88000 RBX: 0000000000000002 RCX: 0000000000000038 RDX: 0000000000000000 RSI: ffff8800d1b888c8 RDI: ffff8800d1b888c8 RBP: ffff880119533778 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 000000000000b5c2 R12: 0000000000000246 R13: ffff880119533708 R14: 00000000001d5a40 R15: ffff88011a7d5a40 FS: 00007fc01315f740(0000) GS:ffff88011a600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 00007f367a120988 CR3: 000000011849c000 CR4: 00000000000007f0 Stack: ffff880119533798 ffffffff811ac868 ffffffff811ac831 ffffffff811ac828 ffff8801195337c8 ffffffff811ac8c9 ffff8801195339b0 ffff8801197633e0 0000000000000000 ffff8801195339b0 ffff8801195337d8 ffffffff811ad2d7 Call Trace: [<ffffffff811ac868>] rcu_read_lock+0x37/0x6e [<ffffffff811ac831>] ? rcu_read_unlock+0x5f/0x5f [<ffffffff811ac828>] ? rcu_read_unlock+0x56/0x5f [<ffffffff811ac8c9>] __fget+0x2a/0x7a [<ffffffff811ad2d7>] fget+0x13/0x15 [<ffffffff811be732>] proc_ns_fget+0xe/0x38 [<ffffffff817c7714>] get_net_ns_by_fd+0x11/0x59 [<ffffffff817df359>] rtnl_link_get_net+0x33/0x3e [<ffffffff817df3d7>] do_setlink+0x73/0x87b [<ffffffff810b28ce>] ? trace_hardirqs_off+0xd/0xf [<ffffffff81a2aa95>] ? retint_restore_args+0xe/0xe [<ffffffff817e0301>] rtnl_newlink+0x40c/0x699 [<ffffffff817dffe0>] ? rtnl_newlink+0xeb/0x699 [<ffffffff81a29246>] ? _raw_spin_unlock+0x28/0x33 [<ffffffff8143ed1e>] ? security_capable+0x18/0x1a [<ffffffff8107da51>] ? ns_capable+0x4d/0x65 [<ffffffff817de5ce>] rtnetlink_rcv_msg+0x181/0x194 [<ffffffff817de407>] ? rtnl_lock+0x17/0x19 [<ffffffff817de407>] ? rtnl_lock+0x17/0x19 [<ffffffff817de44d>] ? __rtnl_unlock+0x17/0x17 [<ffffffff818327c6>] netlink_rcv_skb+0x4d/0x93 [<ffffffff817de42f>] rtnetlink_rcv+0x26/0x2d [<ffffffff81830f18>] netlink_unicast+0xcb/0x150 [<ffffffff8183198e>] netlink_sendmsg+0x501/0x523 [<ffffffff8115cba9>] ? might_fault+0x59/0xa9 [<ffffffff817b5398>] ? copy_from_user+0x2a/0x2c [<ffffffff817b7b74>] sock_sendmsg+0x34/0x3c [<ffffffff817b7f6d>] ___sys_sendmsg+0x1b8/0x255 [<ffffffff8115c5eb>] ? handle_pte_fault+0xbd5/0xd4a [<ffffffff8100a2b0>] ? native_sched_clock+0x35/0x37 [<ffffffff8109e94b>] ? sched_clock_local+0x12/0x72 [<ffffffff8109eb9c>] ? sched_clock_cpu+0x9e/0xb7 [<ffffffff810cadbf>] ? rcu_read_lock_held+0x3b/0x3d [<ffffffff811ac1d8>] ? __fcheck_files+0x4c/0x58 [<ffffffff811ac946>] ? __fget_light+0x2d/0x52 [<ffffffff817b8adc>] __sys_sendmsg+0x42/0x60 [<ffffffff817b8b0c>] SyS_sendmsg+0x12/0x1c [<ffffffff81a29e32>] system_call_fastpath+0x12/0x17 Fixes: e7ed828f10bd8 ("netlink: support setting devgroup parameters") Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-23 17:31:09 -06:00
struct net_device *dev, *aux;
int err;
net: use for_each_netdev_safe() in rtnl_group_changelink() In case we move the whole dev group to another netns, we should call for_each_netdev_safe(), otherwise we get a soft lockup: NMI watchdog: BUG: soft lockup - CPU#0 stuck for 22s! [ip:798] irq event stamp: 255424 hardirqs last enabled at (255423): [<ffffffff81a2aa95>] restore_args+0x0/0x30 hardirqs last disabled at (255424): [<ffffffff81a2ad5a>] apic_timer_interrupt+0x6a/0x80 softirqs last enabled at (255422): [<ffffffff81079ebc>] __do_softirq+0x2c1/0x3a9 softirqs last disabled at (255417): [<ffffffff8107a190>] irq_exit+0x41/0x95 CPU: 0 PID: 798 Comm: ip Not tainted 4.0.0-rc4+ #881 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 task: ffff8800d1b88000 ti: ffff880119530000 task.ti: ffff880119530000 RIP: 0010:[<ffffffff810cad11>] [<ffffffff810cad11>] debug_lockdep_rcu_enabled+0x28/0x30 RSP: 0018:ffff880119533778 EFLAGS: 00000246 RAX: ffff8800d1b88000 RBX: 0000000000000002 RCX: 0000000000000038 RDX: 0000000000000000 RSI: ffff8800d1b888c8 RDI: ffff8800d1b888c8 RBP: ffff880119533778 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 000000000000b5c2 R12: 0000000000000246 R13: ffff880119533708 R14: 00000000001d5a40 R15: ffff88011a7d5a40 FS: 00007fc01315f740(0000) GS:ffff88011a600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 00007f367a120988 CR3: 000000011849c000 CR4: 00000000000007f0 Stack: ffff880119533798 ffffffff811ac868 ffffffff811ac831 ffffffff811ac828 ffff8801195337c8 ffffffff811ac8c9 ffff8801195339b0 ffff8801197633e0 0000000000000000 ffff8801195339b0 ffff8801195337d8 ffffffff811ad2d7 Call Trace: [<ffffffff811ac868>] rcu_read_lock+0x37/0x6e [<ffffffff811ac831>] ? rcu_read_unlock+0x5f/0x5f [<ffffffff811ac828>] ? rcu_read_unlock+0x56/0x5f [<ffffffff811ac8c9>] __fget+0x2a/0x7a [<ffffffff811ad2d7>] fget+0x13/0x15 [<ffffffff811be732>] proc_ns_fget+0xe/0x38 [<ffffffff817c7714>] get_net_ns_by_fd+0x11/0x59 [<ffffffff817df359>] rtnl_link_get_net+0x33/0x3e [<ffffffff817df3d7>] do_setlink+0x73/0x87b [<ffffffff810b28ce>] ? trace_hardirqs_off+0xd/0xf [<ffffffff81a2aa95>] ? retint_restore_args+0xe/0xe [<ffffffff817e0301>] rtnl_newlink+0x40c/0x699 [<ffffffff817dffe0>] ? rtnl_newlink+0xeb/0x699 [<ffffffff81a29246>] ? _raw_spin_unlock+0x28/0x33 [<ffffffff8143ed1e>] ? security_capable+0x18/0x1a [<ffffffff8107da51>] ? ns_capable+0x4d/0x65 [<ffffffff817de5ce>] rtnetlink_rcv_msg+0x181/0x194 [<ffffffff817de407>] ? rtnl_lock+0x17/0x19 [<ffffffff817de407>] ? rtnl_lock+0x17/0x19 [<ffffffff817de44d>] ? __rtnl_unlock+0x17/0x17 [<ffffffff818327c6>] netlink_rcv_skb+0x4d/0x93 [<ffffffff817de42f>] rtnetlink_rcv+0x26/0x2d [<ffffffff81830f18>] netlink_unicast+0xcb/0x150 [<ffffffff8183198e>] netlink_sendmsg+0x501/0x523 [<ffffffff8115cba9>] ? might_fault+0x59/0xa9 [<ffffffff817b5398>] ? copy_from_user+0x2a/0x2c [<ffffffff817b7b74>] sock_sendmsg+0x34/0x3c [<ffffffff817b7f6d>] ___sys_sendmsg+0x1b8/0x255 [<ffffffff8115c5eb>] ? handle_pte_fault+0xbd5/0xd4a [<ffffffff8100a2b0>] ? native_sched_clock+0x35/0x37 [<ffffffff8109e94b>] ? sched_clock_local+0x12/0x72 [<ffffffff8109eb9c>] ? sched_clock_cpu+0x9e/0xb7 [<ffffffff810cadbf>] ? rcu_read_lock_held+0x3b/0x3d [<ffffffff811ac1d8>] ? __fcheck_files+0x4c/0x58 [<ffffffff811ac946>] ? __fget_light+0x2d/0x52 [<ffffffff817b8adc>] __sys_sendmsg+0x42/0x60 [<ffffffff817b8b0c>] SyS_sendmsg+0x12/0x1c [<ffffffff81a29e32>] system_call_fastpath+0x12/0x17 Fixes: e7ed828f10bd8 ("netlink: support setting devgroup parameters") Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-23 17:31:09 -06:00
for_each_netdev_safe(net, dev, aux) {
if (dev->group == group) {
err = do_setlink(skb, dev, ifm, extack, tb, NULL, 0);
if (err < 0)
return err;
}
}
return 0;
}
static int rtnl_newlink(struct sk_buff *skb, struct nlmsghdr *nlh,
struct netlink_ext_ack *extack)
{
struct net *net = sock_net(skb->sk);
const struct rtnl_link_ops *ops;
const struct rtnl_link_ops *m_ops = NULL;
struct net_device *dev;
struct net_device *master_dev = NULL;
struct ifinfomsg *ifm;
char kind[MODULE_NAME_LEN];
char ifname[IFNAMSIZ];
struct nlattr *tb[IFLA_MAX+1];
struct nlattr *linkinfo[IFLA_INFO_MAX+1];
unsigned char name_assign_type = NET_NAME_USER;
int err;
#ifdef CONFIG_MODULES
replay:
#endif
err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy, extack);
if (err < 0)
return err;
err = rtnl_ensure_unique_netns(tb, extack, false);
if (err < 0)
return err;
if (tb[IFLA_IFNAME])
nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
else
ifname[0] = '\0';
ifm = nlmsg_data(nlh);
if (ifm->ifi_index > 0)
[NET]: Make the device list and device lookups per namespace. This patch makes most of the generic device layer network namespace safe. This patch makes dev_base_head a network namespace variable, and then it picks up a few associated variables. The functions: dev_getbyhwaddr dev_getfirsthwbytype dev_get_by_flags dev_get_by_name __dev_get_by_name dev_get_by_index __dev_get_by_index dev_ioctl dev_ethtool dev_load wireless_process_ioctl were modified to take a network namespace argument, and deal with it. vlan_ioctl_set and brioctl_set were modified so their hooks will receive a network namespace argument. So basically anthing in the core of the network stack that was affected to by the change of dev_base was modified to handle multiple network namespaces. The rest of the network stack was simply modified to explicitly use &init_net the initial network namespace. This can be fixed when those components of the network stack are modified to handle multiple network namespaces. For now the ifindex generator is left global. Fundametally ifindex numbers are per namespace, or else we will have corner case problems with migration when we get that far. At the same time there are assumptions in the network stack that the ifindex of a network device won't change. Making the ifindex number global seems a good compromise until the network stack can cope with ifindex changes when you change namespaces, and the like. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-09-17 12:56:21 -06:00
dev = __dev_get_by_index(net, ifm->ifi_index);
else {
if (ifname[0])
dev = __dev_get_by_name(net, ifname);
else
dev = NULL;
}
if (dev) {
master_dev = netdev_master_upper_dev_get(dev);
if (master_dev)
m_ops = master_dev->rtnl_link_ops;
}
err = validate_linkmsg(dev, tb);
if (err < 0)
return err;
if (tb[IFLA_LINKINFO]) {
err = nla_parse_nested(linkinfo, IFLA_INFO_MAX,
tb[IFLA_LINKINFO], ifla_info_policy,
NULL);
if (err < 0)
return err;
} else
memset(linkinfo, 0, sizeof(linkinfo));
if (linkinfo[IFLA_INFO_KIND]) {
nla_strlcpy(kind, linkinfo[IFLA_INFO_KIND], sizeof(kind));
ops = rtnl_link_ops_get(kind);
} else {
kind[0] = '\0';
ops = NULL;
}
if (1) {
struct nlattr *attr[RTNL_MAX_TYPE + 1];
struct nlattr *slave_attr[RTNL_SLAVE_MAX_TYPE + 1];
struct nlattr **data = NULL;
struct nlattr **slave_data = NULL;
struct net *dest_net, *link_net = NULL;
if (ops) {
if (ops->maxtype > RTNL_MAX_TYPE)
return -EINVAL;
if (ops->maxtype && linkinfo[IFLA_INFO_DATA]) {
err = nla_parse_nested(attr, ops->maxtype,
linkinfo[IFLA_INFO_DATA],
ops->policy, NULL);
if (err < 0)
return err;
data = attr;
}
if (ops->validate) {
err = ops->validate(tb, data, extack);
if (err < 0)
return err;
}
}
if (m_ops) {
if (m_ops->slave_maxtype > RTNL_SLAVE_MAX_TYPE)
return -EINVAL;
if (m_ops->slave_maxtype &&
linkinfo[IFLA_INFO_SLAVE_DATA]) {
err = nla_parse_nested(slave_attr,
m_ops->slave_maxtype,
linkinfo[IFLA_INFO_SLAVE_DATA],
m_ops->slave_policy,
NULL);
if (err < 0)
return err;
slave_data = slave_attr;
}
}
if (dev) {
int status = 0;
if (nlh->nlmsg_flags & NLM_F_EXCL)
return -EEXIST;
if (nlh->nlmsg_flags & NLM_F_REPLACE)
return -EOPNOTSUPP;
if (linkinfo[IFLA_INFO_DATA]) {
if (!ops || ops != dev->rtnl_link_ops ||
!ops->changelink)
return -EOPNOTSUPP;
err = ops->changelink(dev, tb, data, extack);
if (err < 0)
return err;
status |= DO_SETLINK_NOTIFY;
}
if (linkinfo[IFLA_INFO_SLAVE_DATA]) {
if (!m_ops || !m_ops->slave_changelink)
return -EOPNOTSUPP;
err = m_ops->slave_changelink(master_dev, dev,
tb, slave_data,
extack);
if (err < 0)
return err;
status |= DO_SETLINK_NOTIFY;
}
return do_setlink(skb, dev, ifm, extack, tb, ifname,
status);
}
if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
if (ifm->ifi_index == 0 && tb[IFLA_GROUP])
return rtnl_group_changelink(skb, net,
nla_get_u32(tb[IFLA_GROUP]),
ifm, extack, tb);
return -ENODEV;
}
if (tb[IFLA_MAP] || tb[IFLA_PROTINFO])
return -EOPNOTSUPP;
if (!ops) {
#ifdef CONFIG_MODULES
if (kind[0]) {
__rtnl_unlock();
request_module("rtnl-link-%s", kind);
rtnl_lock();
ops = rtnl_link_ops_get(kind);
if (ops)
goto replay;
}
#endif
return -EOPNOTSUPP;
}
if (!ops->setup)
return -EOPNOTSUPP;
if (!ifname[0]) {
snprintf(ifname, IFNAMSIZ, "%s%%d", ops->kind);
name_assign_type = NET_NAME_ENUM;
}
dest_net = rtnl_link_get_net_capable(skb, net, tb, CAP_NET_ADMIN);
net: Fix ip link add netns oops Ed Swierk <eswierk@bigswitch.com> writes: > On 2.6.35.7 > ip link add link eth0 netns 9999 type macvlan > where 9999 is a nonexistent PID triggers an oops and causes all network functions to hang: > [10663.821898] BUG: unable to handle kernel NULL pointer dereference at 000000000000006d > [10663.821917] IP: [<ffffffff8149c2fa>] __dev_alloc_name+0x9a/0x170 > [10663.821933] PGD 1d3927067 PUD 22f5c5067 PMD 0 > [10663.821944] Oops: 0000 [#1] SMP > [10663.821953] last sysfs file: /sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq > [10663.821959] CPU 3 > [10663.821963] Modules linked in: macvlan ip6table_filter ip6_tables rfcomm ipt_MASQUERADE binfmt_misc iptable_nat nf_nat nf_conntrack_ipv4 nf_defrag_ipv4 xt_state nf_conntrack sco ipt_REJECT bnep l2cap xt_tcpudp iptable_filter ip_tables x_tables bridge stp vboxnetadp vboxnetflt vboxdrv kvm_intel kvm parport_pc ppdev snd_hda_codec_intelhdmi snd_hda_codec_conexant arc4 iwlagn iwlcore mac80211 snd_hda_intel snd_hda_codec snd_hwdep snd_pcm snd_seq_midi snd_rawmidi i915 snd_seq_midi_event snd_seq thinkpad_acpi drm_kms_helper btusb tpm_tis nvram uvcvideo snd_timer snd_seq_device bluetooth videodev v4l1_compat v4l2_compat_ioctl32 tpm drm tpm_bios snd cfg80211 psmouse serio_raw intel_ips soundcore snd_page_alloc intel_agp i2c_algo_bit video output netconsole configfs lp parport usbhid hid e1000e sdhci_pci ahci libahci sdhci led_class > [10663.822155] > [10663.822161] Pid: 6000, comm: ip Not tainted 2.6.35-23-generic #41-Ubuntu 2901CTO/2901CTO > [10663.822167] RIP: 0010:[<ffffffff8149c2fa>] [<ffffffff8149c2fa>] __dev_alloc_name+0x9a/0x170 > [10663.822177] RSP: 0018:ffff88014aebf7b8 EFLAGS: 00010286 > [10663.822182] RAX: 00000000fffffff4 RBX: ffff8801ad900800 RCX: 0000000000000000 > [10663.822187] RDX: ffff880000000000 RSI: 0000000000000000 RDI: ffff88014ad63000 > [10663.822191] RBP: ffff88014aebf808 R08: 0000000000000041 R09: 0000000000000041 > [10663.822196] R10: 0000000000000000 R11: dead000000200200 R12: ffff88014aebf818 > [10663.822201] R13: fffffffffffffffd R14: ffff88014aebf918 R15: ffff88014ad62000 > [10663.822207] FS: 00007f00c487f700(0000) GS:ffff880001f80000(0000) knlGS:0000000000000000 > [10663.822212] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 > [10663.822216] CR2: 000000000000006d CR3: 0000000231f19000 CR4: 00000000000026e0 > [10663.822221] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 > [10663.822226] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 > [10663.822231] Process ip (pid: 6000, threadinfo ffff88014aebe000, task ffff88014afb16e0) > [10663.822236] Stack: > [10663.822240] ffff88014aebf808 ffffffff814a2bb5 ffff88014aebf7e8 00000000a00ee8d6 > [10663.822251] <0> 0000000000000000 ffffffffa00ef940 ffff8801ad900800 ffff88014aebf818 > [10663.822265] <0> ffff88014aebf918 ffff8801ad900800 ffff88014aebf858 ffffffff8149c413 > [10663.822281] Call Trace: > [10663.822290] [<ffffffff814a2bb5>] ? dev_addr_init+0x75/0xb0 > [10663.822298] [<ffffffff8149c413>] dev_alloc_name+0x43/0x90 > [10663.822307] [<ffffffff814a85ee>] rtnl_create_link+0xbe/0x1b0 > [10663.822314] [<ffffffff814ab2aa>] rtnl_newlink+0x48a/0x570 > [10663.822321] [<ffffffff814aafcc>] ? rtnl_newlink+0x1ac/0x570 > [10663.822332] [<ffffffff81030064>] ? native_x2apic_icr_read+0x4/0x20 > [10663.822339] [<ffffffff814a8c17>] rtnetlink_rcv_msg+0x177/0x290 > [10663.822346] [<ffffffff814a8aa0>] ? rtnetlink_rcv_msg+0x0/0x290 > [10663.822354] [<ffffffff814c25d9>] netlink_rcv_skb+0xa9/0xd0 > [10663.822360] [<ffffffff814a8a85>] rtnetlink_rcv+0x25/0x40 > [10663.822367] [<ffffffff814c223e>] netlink_unicast+0x2de/0x2f0 > [10663.822374] [<ffffffff814c303e>] netlink_sendmsg+0x1fe/0x2e0 > [10663.822383] [<ffffffff81488533>] sock_sendmsg+0xf3/0x120 > [10663.822391] [<ffffffff815899fe>] ? _raw_spin_lock+0xe/0x20 > [10663.822400] [<ffffffff81168656>] ? __d_lookup+0x136/0x150 > [10663.822406] [<ffffffff815899fe>] ? _raw_spin_lock+0xe/0x20 > [10663.822414] [<ffffffff812b7a0d>] ? _atomic_dec_and_lock+0x4d/0x80 > [10663.822422] [<ffffffff8116ea90>] ? mntput_no_expire+0x30/0x110 > [10663.822429] [<ffffffff81486ff5>] ? move_addr_to_kernel+0x65/0x70 > [10663.822435] [<ffffffff81493308>] ? verify_iovec+0x88/0xe0 > [10663.822442] [<ffffffff81489020>] sys_sendmsg+0x240/0x3a0 > [10663.822450] [<ffffffff8111e2a9>] ? __do_fault+0x479/0x560 > [10663.822457] [<ffffffff815899fe>] ? _raw_spin_lock+0xe/0x20 > [10663.822465] [<ffffffff8116cf4a>] ? alloc_fd+0x10a/0x150 > [10663.822473] [<ffffffff8158d76e>] ? do_page_fault+0x15e/0x350 > [10663.822482] [<ffffffff8100a0f2>] system_call_fastpath+0x16/0x1b > [10663.822487] Code: 90 48 8d 78 02 be 25 00 00 00 e8 92 1d e2 ff 48 85 c0 75 cf bf 20 00 00 00 e8 c3 b1 c6 ff 49 89 c7 b8 f4 ff ff ff 4d 85 ff 74 bd <4d> 8b 75 70 49 8d 45 70 48 89 45 b8 49 83 ee 58 eb 28 48 8d 55 > [10663.822618] RIP [<ffffffff8149c2fa>] __dev_alloc_name+0x9a/0x170 > [10663.822627] RSP <ffff88014aebf7b8> > [10663.822631] CR2: 000000000000006d > [10663.822636] ---[ end trace 3dfd6c3ad5327ca7 ]--- This bug was introduced in: commit 81adee47dfb608df3ad0b91d230fb3cef75f0060 Author: Eric W. Biederman <ebiederm@aristanetworks.com> Date: Sun Nov 8 00:53:51 2009 -0800 net: Support specifying the network namespace upon device creation. There is no good reason to not support userspace specifying the network namespace during device creation, and it makes it easier to create a network device and pass it to a child network namespace with a well known name. We have to be careful to ensure that the target network namespace for the new device exists through the life of the call. To keep that logic clear I have factored out the network namespace grabbing logic into rtnl_link_get_net. In addtion we need to continue to pass the source network namespace to the rtnl_link_ops.newlink method so that we can find the base device source network namespace. Signed-off-by: Eric W. Biederman <ebiederm@aristanetworks.com> Acked-by: Eric Dumazet <eric.dumazet@gmail.com> Where apparently I forgot to add error handling to the path where we create a new network device in a new network namespace, and pass in an invalid pid. Cc: stable@kernel.org Reported-by: Ed Swierk <eswierk@bigswitch.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-29 07:57:22 -07:00
if (IS_ERR(dest_net))
return PTR_ERR(dest_net);
if (tb[IFLA_LINK_NETNSID]) {
int id = nla_get_s32(tb[IFLA_LINK_NETNSID]);
link_net = get_net_ns_by_id(dest_net, id);
if (!link_net) {
err = -EINVAL;
goto out;
}
err = -EPERM;
if (!netlink_ns_capable(skb, link_net->user_ns, CAP_NET_ADMIN))
goto out;
}
dev = rtnl_create_link(link_net ? : dest_net, ifname,
name_assign_type, ops, tb);
if (IS_ERR(dev)) {
err = PTR_ERR(dev);
goto out;
}
dev->ifindex = ifm->ifi_index;
if (ops->newlink) {
err = ops->newlink(link_net ? : net, dev, tb, data,
extack);
/* Drivers should call free_netdev() in ->destructor
* and unregister it on failure after registration
* so that device could be finally freed in rtnl_unlock.
*/
if (err < 0) {
/* If device is not registered at all, free it now */
if (dev->reg_state == NETREG_UNINITIALIZED)
free_netdev(dev);
goto out;
}
} else {
err = register_netdevice(dev);
if (err < 0) {
free_netdev(dev);
goto out;
}
}
rtnetlink: support specifying device flags on device creation commit e8469ed959c373c2ff9e6f488aa5a14971aebe1f Author: Patrick McHardy <kaber@trash.net> Date: Tue Feb 23 20:41:30 2010 +0100 Support specifying the initial device flags when creating a device though rtnl_link. Devices allocated by rtnl_create_link() are marked as INITIALIZING in order to surpress netlink registration notifications. To complete setup, rtnl_configure_link() must be called, which performs the device flag changes and invokes the deferred notifiers if everything went well. Two examples: # add macvlan to eth0 # $ ip link add link eth0 up allmulticast on type macvlan [LINK]11: macvlan0@eth0: <BROADCAST,MULTICAST,ALLMULTI,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN link/ether 26:f8:84:02:f9:2a brd ff:ff:ff:ff:ff:ff [ROUTE]ff00::/8 dev macvlan0 table local metric 256 mtu 1500 advmss 1440 hoplimit 0 [ROUTE]fe80::/64 dev macvlan0 proto kernel metric 256 mtu 1500 advmss 1440 hoplimit 0 [LINK]11: macvlan0@eth0: <BROADCAST,MULTICAST,ALLMULTI,UP,LOWER_UP> mtu 1500 link/ether 26:f8:84:02:f9:2a [ADDR]11: macvlan0 inet6 fe80::24f8:84ff:fe02:f92a/64 scope link valid_lft forever preferred_lft forever [ROUTE]local fe80::24f8:84ff:fe02:f92a via :: dev lo table local proto none metric 0 mtu 16436 advmss 16376 hoplimit 0 [ROUTE]default via fe80::215:e9ff:fef0:10f8 dev macvlan0 proto kernel metric 1024 mtu 1500 advmss 1440 hoplimit 0 [NEIGH]fe80::215:e9ff:fef0:10f8 dev macvlan0 lladdr 00:15:e9:f0:10:f8 router STALE [ROUTE]2001:6f8:974::/64 dev macvlan0 proto kernel metric 256 expires 0sec mtu 1500 advmss 1440 hoplimit 0 [PREFIX]prefix 2001:6f8:974::/64 dev macvlan0 onlink autoconf valid 14400 preferred 131084 [ADDR]11: macvlan0 inet6 2001:6f8:974:0:24f8:84ff:fe02:f92a/64 scope global dynamic valid_lft 86399sec preferred_lft 14399sec # add VLAN to eth1, eth1 is down # $ ip link add link eth1 up type vlan id 1000 RTNETLINK answers: Network is down <no events> Signed-off-by: Patrick McHardy <kaber@trash.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-02-25 23:34:54 -07:00
err = rtnl_configure_link(dev, ifm);
if (err < 0)
goto out_unregister;
if (link_net) {
err = dev_change_net_namespace(dev, dest_net, ifname);
if (err < 0)
goto out_unregister;
}
if (tb[IFLA_MASTER]) {
err = do_set_master(dev, nla_get_u32(tb[IFLA_MASTER]),
extack);
if (err)
goto out_unregister;
}
rtnetlink: support specifying device flags on device creation commit e8469ed959c373c2ff9e6f488aa5a14971aebe1f Author: Patrick McHardy <kaber@trash.net> Date: Tue Feb 23 20:41:30 2010 +0100 Support specifying the initial device flags when creating a device though rtnl_link. Devices allocated by rtnl_create_link() are marked as INITIALIZING in order to surpress netlink registration notifications. To complete setup, rtnl_configure_link() must be called, which performs the device flag changes and invokes the deferred notifiers if everything went well. Two examples: # add macvlan to eth0 # $ ip link add link eth0 up allmulticast on type macvlan [LINK]11: macvlan0@eth0: <BROADCAST,MULTICAST,ALLMULTI,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN link/ether 26:f8:84:02:f9:2a brd ff:ff:ff:ff:ff:ff [ROUTE]ff00::/8 dev macvlan0 table local metric 256 mtu 1500 advmss 1440 hoplimit 0 [ROUTE]fe80::/64 dev macvlan0 proto kernel metric 256 mtu 1500 advmss 1440 hoplimit 0 [LINK]11: macvlan0@eth0: <BROADCAST,MULTICAST,ALLMULTI,UP,LOWER_UP> mtu 1500 link/ether 26:f8:84:02:f9:2a [ADDR]11: macvlan0 inet6 fe80::24f8:84ff:fe02:f92a/64 scope link valid_lft forever preferred_lft forever [ROUTE]local fe80::24f8:84ff:fe02:f92a via :: dev lo table local proto none metric 0 mtu 16436 advmss 16376 hoplimit 0 [ROUTE]default via fe80::215:e9ff:fef0:10f8 dev macvlan0 proto kernel metric 1024 mtu 1500 advmss 1440 hoplimit 0 [NEIGH]fe80::215:e9ff:fef0:10f8 dev macvlan0 lladdr 00:15:e9:f0:10:f8 router STALE [ROUTE]2001:6f8:974::/64 dev macvlan0 proto kernel metric 256 expires 0sec mtu 1500 advmss 1440 hoplimit 0 [PREFIX]prefix 2001:6f8:974::/64 dev macvlan0 onlink autoconf valid 14400 preferred 131084 [ADDR]11: macvlan0 inet6 2001:6f8:974:0:24f8:84ff:fe02:f92a/64 scope global dynamic valid_lft 86399sec preferred_lft 14399sec # add VLAN to eth1, eth1 is down # $ ip link add link eth1 up type vlan id 1000 RTNETLINK answers: Network is down <no events> Signed-off-by: Patrick McHardy <kaber@trash.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-02-25 23:34:54 -07:00
out:
if (link_net)
put_net(link_net);
put_net(dest_net);
return err;
out_unregister:
if (ops->newlink) {
LIST_HEAD(list_kill);
ops->dellink(dev, &list_kill);
unregister_netdevice_many(&list_kill);
} else {
unregister_netdevice(dev);
}
goto out;
}
}
static int rtnl_getlink(struct sk_buff *skb, struct nlmsghdr *nlh,
struct netlink_ext_ack *extack)
{
struct net *net = sock_net(skb->sk);
struct net *tgt_net = net;
struct ifinfomsg *ifm;
char ifname[IFNAMSIZ];
struct nlattr *tb[IFLA_MAX+1];
struct net_device *dev = NULL;
struct sk_buff *nskb;
int netnsid = -1;
int err;
u32 ext_filter_mask = 0;
err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy, extack);
if (err < 0)
return err;
err = rtnl_ensure_unique_netns(tb, extack, true);
if (err < 0)
return err;
if (tb[IFLA_TARGET_NETNSID]) {
netnsid = nla_get_s32(tb[IFLA_TARGET_NETNSID]);
tgt_net = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, netnsid);
if (IS_ERR(tgt_net))
return PTR_ERR(tgt_net);
}
if (tb[IFLA_IFNAME])
nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
if (tb[IFLA_EXT_MASK])
ext_filter_mask = nla_get_u32(tb[IFLA_EXT_MASK]);
err = -EINVAL;
ifm = nlmsg_data(nlh);
if (ifm->ifi_index > 0)
dev = __dev_get_by_index(tgt_net, ifm->ifi_index);
else if (tb[IFLA_IFNAME])
dev = __dev_get_by_name(tgt_net, ifname);
else
goto out;
err = -ENODEV;
if (dev == NULL)
goto out;
err = -ENOBUFS;
nskb = nlmsg_new(if_nlmsg_size(dev, ext_filter_mask), GFP_KERNEL);
if (nskb == NULL)
goto out;
err = rtnl_fill_ifinfo(nskb, dev, net,
RTM_NEWLINK, NETLINK_CB(skb).portid,
nlh->nlmsg_seq, 0, 0, ext_filter_mask,
0, NULL, 0, netnsid);
if (err < 0) {
/* -EMSGSIZE implies BUG in if_nlmsg_size */
WARN_ON(err == -EMSGSIZE);
kfree_skb(nskb);
} else
err = rtnl_unicast(nskb, net, NETLINK_CB(skb).portid);
out:
if (netnsid >= 0)
put_net(tgt_net);
return err;
}
static u16 rtnl_calcit(struct sk_buff *skb, struct nlmsghdr *nlh)
{
struct net *net = sock_net(skb->sk);
struct net_device *dev;
struct nlattr *tb[IFLA_MAX+1];
u32 ext_filter_mask = 0;
u16 min_ifinfo_dump_size = 0;
int hdrlen;
/* Same kernel<->userspace interface hack as in rtnl_dump_ifinfo. */
hdrlen = nlmsg_len(nlh) < sizeof(struct ifinfomsg) ?
sizeof(struct rtgenmsg) : sizeof(struct ifinfomsg);
if (nlmsg_parse(nlh, hdrlen, tb, IFLA_MAX, ifla_policy, NULL) >= 0) {
if (tb[IFLA_EXT_MASK])
ext_filter_mask = nla_get_u32(tb[IFLA_EXT_MASK]);
}
if (!ext_filter_mask)
return NLMSG_GOODSIZE;
/*
* traverse the list of net devices and compute the minimum
* buffer size based upon the filter mask.
*/
rcu_read_lock();
for_each_netdev_rcu(net, dev) {
min_ifinfo_dump_size = max_t(u16, min_ifinfo_dump_size,
if_nlmsg_size(dev,
ext_filter_mask));
}
rcu_read_unlock();
return nlmsg_total_size(min_ifinfo_dump_size);
}
static int rtnl_dump_all(struct sk_buff *skb, struct netlink_callback *cb)
{
int idx;
int s_idx = cb->family;
int type = cb->nlh->nlmsg_type - RTM_BASE;
int ret = 0;
if (s_idx == 0)
s_idx = 1;
for (idx = 1; idx <= RTNL_FAMILY_MAX; idx++) {
struct rtnl_link **tab;
struct rtnl_link *link;
rtnl_dumpit_func dumpit;
if (idx < s_idx || idx == PF_PACKET)
continue;
if (type < 0 || type >= RTM_NR_MSGTYPES)
continue;
tab = rcu_dereference_rtnl(rtnl_msg_handlers[idx]);
if (!tab)
continue;
link = tab[type];
if (!link)
continue;
dumpit = link->dumpit;
if (!dumpit)
continue;
if (idx > s_idx) {
memset(&cb->args[0], 0, sizeof(cb->args));
cb->prev_seq = 0;
cb->seq = 0;
}
ret = dumpit(skb, cb);
rtnetlink: restore handling of dumpit return value in rtnl_dump_all() For non-zero return from dumpit() we should break the loop in rtnl_dump_all() and return the result. Otherwise, e.g., we could get the memory leak in inet6_dump_fib() [1]. The pointer to the allocated struct fib6_walker there (saved in cb->args) can be lost, reset on the next iteration. Fix it by partially restoring the previous behavior before commit c63586dc9b3e ("net: rtnl_dump_all needs to propagate error from dumpit function"). The returned error from dumpit() is still passed further. [1]: unreferenced object 0xffff88001322a200 (size 96): comm "sshd", pid 1484, jiffies 4296032768 (age 1432.542s) hex dump (first 32 bytes): 00 01 00 00 00 00 ad de 00 02 00 00 00 00 ad de ................ 18 09 41 36 00 88 ff ff 18 09 41 36 00 88 ff ff ..A6......A6.... backtrace: [<0000000095846b39>] kmem_cache_alloc_trace+0x151/0x220 [<000000007d12709f>] inet6_dump_fib+0x68d/0x940 [<000000002775a316>] rtnl_dump_all+0x1d9/0x2d0 [<00000000d7cd302b>] netlink_dump+0x945/0x11a0 [<000000002f43485f>] __netlink_dump_start+0x55d/0x800 [<00000000f76bbeec>] rtnetlink_rcv_msg+0x4fa/0xa00 [<000000009b5761f3>] netlink_rcv_skb+0x29c/0x420 [<0000000087a1dae1>] rtnetlink_rcv+0x15/0x20 [<00000000691b703b>] netlink_unicast+0x4e3/0x6c0 [<00000000b5be0204>] netlink_sendmsg+0x7f2/0xba0 [<0000000096d2aa60>] sock_sendmsg+0xba/0xf0 [<000000008c1b786f>] __sys_sendto+0x1e4/0x330 [<0000000019587b3f>] __x64_sys_sendto+0xe1/0x1a0 [<00000000071f4d56>] do_syscall_64+0x9f/0x300 [<000000002737577f>] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [<0000000057587684>] 0xffffffffffffffff Fixes: c63586dc9b3e ("net: rtnl_dump_all needs to propagate error from dumpit function") Signed-off-by: Alexey Kodanev <alexey.kodanev@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-11-02 10:11:04 -06:00
if (ret)
break;
}
cb->family = idx;
return skb->len ? : ret;
}
rtnetlink: delay RTM_DELLINK notification until after ndo_uninit() The commit 56bfa7ee7c ("unregister_netdevice : move RTM_DELLINK to until after ndo_uninit") tried to do this ealier but while doing so it created a problem. Unfortunately the delayed rtmsg_ifinfo() also delayed call to fill_info(). So this translated into asking driver to remove private state and then query it's private state. This could have catastropic consequences. This change breaks the rtmsg_ifinfo() into two parts - one takes the precise snapshot of the device by called fill_info() before calling the ndo_uninit() and the second part sends the notification using collected snapshot. It was brought to notice when last link is deleted from an ipvlan device when it has free-ed the port and the subsequent .fill_info() call is trying to get the info from the port. kernel: [ 255.139429] ------------[ cut here ]------------ kernel: [ 255.139439] WARNING: CPU: 12 PID: 11173 at net/core/rtnetlink.c:2238 rtmsg_ifinfo+0x100/0x110() kernel: [ 255.139493] Modules linked in: ipvlan bonding w1_therm ds2482 wire cdc_acm ehci_pci ehci_hcd i2c_dev i2c_i801 i2c_core msr cpuid bnx2x ptp pps_core mdio libcrc32c kernel: [ 255.139513] CPU: 12 PID: 11173 Comm: ip Not tainted 3.18.0-smp-DEV #167 kernel: [ 255.139514] Hardware name: Intel RML,PCH/Ibis_QC_18, BIOS 1.0.10 05/15/2012 kernel: [ 255.139515] 0000000000000009 ffff880851b6b828 ffffffff815d87f4 00000000000000e0 kernel: [ 255.139516] 0000000000000000 ffff880851b6b868 ffffffff8109c29c 0000000000000000 kernel: [ 255.139518] 00000000ffffffa6 00000000000000d0 ffffffff81aaf580 0000000000000011 kernel: [ 255.139520] Call Trace: kernel: [ 255.139527] [<ffffffff815d87f4>] dump_stack+0x46/0x58 kernel: [ 255.139531] [<ffffffff8109c29c>] warn_slowpath_common+0x8c/0xc0 kernel: [ 255.139540] [<ffffffff8109c2ea>] warn_slowpath_null+0x1a/0x20 kernel: [ 255.139544] [<ffffffff8150d570>] rtmsg_ifinfo+0x100/0x110 kernel: [ 255.139547] [<ffffffff814f78b5>] rollback_registered_many+0x1d5/0x2d0 kernel: [ 255.139549] [<ffffffff814f79cf>] unregister_netdevice_many+0x1f/0xb0 kernel: [ 255.139551] [<ffffffff8150acab>] rtnl_dellink+0xbb/0x110 kernel: [ 255.139553] [<ffffffff8150da90>] rtnetlink_rcv_msg+0xa0/0x240 kernel: [ 255.139557] [<ffffffff81329283>] ? rhashtable_lookup_compare+0x43/0x80 kernel: [ 255.139558] [<ffffffff8150d9f0>] ? __rtnl_unlock+0x20/0x20 kernel: [ 255.139562] [<ffffffff8152cb11>] netlink_rcv_skb+0xb1/0xc0 kernel: [ 255.139563] [<ffffffff8150a495>] rtnetlink_rcv+0x25/0x40 kernel: [ 255.139565] [<ffffffff8152c398>] netlink_unicast+0x178/0x230 kernel: [ 255.139567] [<ffffffff8152c75f>] netlink_sendmsg+0x30f/0x420 kernel: [ 255.139571] [<ffffffff814e0b0c>] sock_sendmsg+0x9c/0xd0 kernel: [ 255.139575] [<ffffffff811d1d7f>] ? rw_copy_check_uvector+0x6f/0x130 kernel: [ 255.139577] [<ffffffff814e11c9>] ? copy_msghdr_from_user+0x139/0x1b0 kernel: [ 255.139578] [<ffffffff814e1774>] ___sys_sendmsg+0x304/0x310 kernel: [ 255.139581] [<ffffffff81198723>] ? handle_mm_fault+0xca3/0xde0 kernel: [ 255.139585] [<ffffffff811ebc4c>] ? destroy_inode+0x3c/0x70 kernel: [ 255.139589] [<ffffffff8108e6ec>] ? __do_page_fault+0x20c/0x500 kernel: [ 255.139597] [<ffffffff811e8336>] ? dput+0xb6/0x190 kernel: [ 255.139606] [<ffffffff811f05f6>] ? mntput+0x26/0x40 kernel: [ 255.139611] [<ffffffff811d2b94>] ? __fput+0x174/0x1e0 kernel: [ 255.139613] [<ffffffff814e2129>] __sys_sendmsg+0x49/0x90 kernel: [ 255.139615] [<ffffffff814e2182>] SyS_sendmsg+0x12/0x20 kernel: [ 255.139617] [<ffffffff815df092>] system_call_fastpath+0x12/0x17 kernel: [ 255.139619] ---[ end trace 5e6703e87d984f6b ]--- Signed-off-by: Mahesh Bandewar <maheshb@google.com> Reported-by: Toshiaki Makita <makita.toshiaki@lab.ntt.co.jp> Cc: Eric Dumazet <edumazet@google.com> Cc: Roopa Prabhu <roopa@cumulusnetworks.com> Cc: David S. Miller <davem@davemloft.net> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Thomas Graf <tgraf@suug.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-12-03 14:46:24 -07:00
struct sk_buff *rtmsg_ifinfo_build_skb(int type, struct net_device *dev,
unsigned int change,
u32 event, gfp_t flags, int *new_nsid,
int new_ifindex)
{
struct net *net = dev_net(dev);
struct sk_buff *skb;
int err = -ENOBUFS;
size_t if_info_size;
net: fix rtnl notification in atomic context commit 991fb3f74c "dev: always advertise rx_flags changes via netlink" introduced rtnl notification from __dev_set_promiscuity(), which can be called in atomic context. Steps to reproduce: ip tuntap add dev tap1 mode tap ifconfig tap1 up tcpdump -nei tap1 & ip tuntap del dev tap1 mode tap [ 271.627994] device tap1 left promiscuous mode [ 271.639897] BUG: sleeping function called from invalid context at mm/slub.c:940 [ 271.664491] in_atomic(): 1, irqs_disabled(): 0, pid: 3394, name: ip [ 271.677525] INFO: lockdep is turned off. [ 271.690503] CPU: 0 PID: 3394 Comm: ip Tainted: G W 3.12.0-rc3+ #73 [ 271.703996] Hardware name: System manufacturer System Product Name/P8Z77 WS, BIOS 3007 07/26/2012 [ 271.731254] ffffffff81a58506 ffff8807f0d57a58 ffffffff817544e5 ffff88082fa0f428 [ 271.760261] ffff8808071f5f40 ffff8807f0d57a88 ffffffff8108bad1 ffffffff81110ff8 [ 271.790683] 0000000000000010 00000000000000d0 00000000000000d0 ffff8807f0d57af8 [ 271.822332] Call Trace: [ 271.838234] [<ffffffff817544e5>] dump_stack+0x55/0x76 [ 271.854446] [<ffffffff8108bad1>] __might_sleep+0x181/0x240 [ 271.870836] [<ffffffff81110ff8>] ? rcu_irq_exit+0x68/0xb0 [ 271.887076] [<ffffffff811a80be>] kmem_cache_alloc_node+0x4e/0x2a0 [ 271.903368] [<ffffffff810b4ddc>] ? vprintk_emit+0x1dc/0x5a0 [ 271.919716] [<ffffffff81614d67>] ? __alloc_skb+0x57/0x2a0 [ 271.936088] [<ffffffff810b4de0>] ? vprintk_emit+0x1e0/0x5a0 [ 271.952504] [<ffffffff81614d67>] __alloc_skb+0x57/0x2a0 [ 271.968902] [<ffffffff8163a0b2>] rtmsg_ifinfo+0x52/0x100 [ 271.985302] [<ffffffff8162ac6d>] __dev_notify_flags+0xad/0xc0 [ 272.001642] [<ffffffff8162ad0c>] __dev_set_promiscuity+0x8c/0x1c0 [ 272.017917] [<ffffffff81731ea5>] ? packet_notifier+0x5/0x380 [ 272.033961] [<ffffffff8162b109>] dev_set_promiscuity+0x29/0x50 [ 272.049855] [<ffffffff8172e937>] packet_dev_mc+0x87/0xc0 [ 272.065494] [<ffffffff81732052>] packet_notifier+0x1b2/0x380 [ 272.080915] [<ffffffff81731ea5>] ? packet_notifier+0x5/0x380 [ 272.096009] [<ffffffff81761c66>] notifier_call_chain+0x66/0x150 [ 272.110803] [<ffffffff8108503e>] __raw_notifier_call_chain+0xe/0x10 [ 272.125468] [<ffffffff81085056>] raw_notifier_call_chain+0x16/0x20 [ 272.139984] [<ffffffff81620190>] call_netdevice_notifiers_info+0x40/0x70 [ 272.154523] [<ffffffff816201d6>] call_netdevice_notifiers+0x16/0x20 [ 272.168552] [<ffffffff816224c5>] rollback_registered_many+0x145/0x240 [ 272.182263] [<ffffffff81622641>] rollback_registered+0x31/0x40 [ 272.195369] [<ffffffff816229c8>] unregister_netdevice_queue+0x58/0x90 [ 272.208230] [<ffffffff81547ca0>] __tun_detach+0x140/0x340 [ 272.220686] [<ffffffff81547ed6>] tun_chr_close+0x36/0x60 Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Acked-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-10-23 17:02:42 -06:00
skb = nlmsg_new((if_info_size = if_nlmsg_size(dev, 0)), flags);
if (skb == NULL)
goto errout;
err = rtnl_fill_ifinfo(skb, dev, dev_net(dev),
type, 0, 0, change, 0, 0, event,
new_nsid, new_ifindex, -1);
if (err < 0) {
/* -EMSGSIZE implies BUG in if_nlmsg_size() */
WARN_ON(err == -EMSGSIZE);
kfree_skb(skb);
goto errout;
}
rtnetlink: delay RTM_DELLINK notification until after ndo_uninit() The commit 56bfa7ee7c ("unregister_netdevice : move RTM_DELLINK to until after ndo_uninit") tried to do this ealier but while doing so it created a problem. Unfortunately the delayed rtmsg_ifinfo() also delayed call to fill_info(). So this translated into asking driver to remove private state and then query it's private state. This could have catastropic consequences. This change breaks the rtmsg_ifinfo() into two parts - one takes the precise snapshot of the device by called fill_info() before calling the ndo_uninit() and the second part sends the notification using collected snapshot. It was brought to notice when last link is deleted from an ipvlan device when it has free-ed the port and the subsequent .fill_info() call is trying to get the info from the port. kernel: [ 255.139429] ------------[ cut here ]------------ kernel: [ 255.139439] WARNING: CPU: 12 PID: 11173 at net/core/rtnetlink.c:2238 rtmsg_ifinfo+0x100/0x110() kernel: [ 255.139493] Modules linked in: ipvlan bonding w1_therm ds2482 wire cdc_acm ehci_pci ehci_hcd i2c_dev i2c_i801 i2c_core msr cpuid bnx2x ptp pps_core mdio libcrc32c kernel: [ 255.139513] CPU: 12 PID: 11173 Comm: ip Not tainted 3.18.0-smp-DEV #167 kernel: [ 255.139514] Hardware name: Intel RML,PCH/Ibis_QC_18, BIOS 1.0.10 05/15/2012 kernel: [ 255.139515] 0000000000000009 ffff880851b6b828 ffffffff815d87f4 00000000000000e0 kernel: [ 255.139516] 0000000000000000 ffff880851b6b868 ffffffff8109c29c 0000000000000000 kernel: [ 255.139518] 00000000ffffffa6 00000000000000d0 ffffffff81aaf580 0000000000000011 kernel: [ 255.139520] Call Trace: kernel: [ 255.139527] [<ffffffff815d87f4>] dump_stack+0x46/0x58 kernel: [ 255.139531] [<ffffffff8109c29c>] warn_slowpath_common+0x8c/0xc0 kernel: [ 255.139540] [<ffffffff8109c2ea>] warn_slowpath_null+0x1a/0x20 kernel: [ 255.139544] [<ffffffff8150d570>] rtmsg_ifinfo+0x100/0x110 kernel: [ 255.139547] [<ffffffff814f78b5>] rollback_registered_many+0x1d5/0x2d0 kernel: [ 255.139549] [<ffffffff814f79cf>] unregister_netdevice_many+0x1f/0xb0 kernel: [ 255.139551] [<ffffffff8150acab>] rtnl_dellink+0xbb/0x110 kernel: [ 255.139553] [<ffffffff8150da90>] rtnetlink_rcv_msg+0xa0/0x240 kernel: [ 255.139557] [<ffffffff81329283>] ? rhashtable_lookup_compare+0x43/0x80 kernel: [ 255.139558] [<ffffffff8150d9f0>] ? __rtnl_unlock+0x20/0x20 kernel: [ 255.139562] [<ffffffff8152cb11>] netlink_rcv_skb+0xb1/0xc0 kernel: [ 255.139563] [<ffffffff8150a495>] rtnetlink_rcv+0x25/0x40 kernel: [ 255.139565] [<ffffffff8152c398>] netlink_unicast+0x178/0x230 kernel: [ 255.139567] [<ffffffff8152c75f>] netlink_sendmsg+0x30f/0x420 kernel: [ 255.139571] [<ffffffff814e0b0c>] sock_sendmsg+0x9c/0xd0 kernel: [ 255.139575] [<ffffffff811d1d7f>] ? rw_copy_check_uvector+0x6f/0x130 kernel: [ 255.139577] [<ffffffff814e11c9>] ? copy_msghdr_from_user+0x139/0x1b0 kernel: [ 255.139578] [<ffffffff814e1774>] ___sys_sendmsg+0x304/0x310 kernel: [ 255.139581] [<ffffffff81198723>] ? handle_mm_fault+0xca3/0xde0 kernel: [ 255.139585] [<ffffffff811ebc4c>] ? destroy_inode+0x3c/0x70 kernel: [ 255.139589] [<ffffffff8108e6ec>] ? __do_page_fault+0x20c/0x500 kernel: [ 255.139597] [<ffffffff811e8336>] ? dput+0xb6/0x190 kernel: [ 255.139606] [<ffffffff811f05f6>] ? mntput+0x26/0x40 kernel: [ 255.139611] [<ffffffff811d2b94>] ? __fput+0x174/0x1e0 kernel: [ 255.139613] [<ffffffff814e2129>] __sys_sendmsg+0x49/0x90 kernel: [ 255.139615] [<ffffffff814e2182>] SyS_sendmsg+0x12/0x20 kernel: [ 255.139617] [<ffffffff815df092>] system_call_fastpath+0x12/0x17 kernel: [ 255.139619] ---[ end trace 5e6703e87d984f6b ]--- Signed-off-by: Mahesh Bandewar <maheshb@google.com> Reported-by: Toshiaki Makita <makita.toshiaki@lab.ntt.co.jp> Cc: Eric Dumazet <edumazet@google.com> Cc: Roopa Prabhu <roopa@cumulusnetworks.com> Cc: David S. Miller <davem@davemloft.net> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Thomas Graf <tgraf@suug.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-12-03 14:46:24 -07:00
return skb;
errout:
if (err < 0)
rtnl_set_sk_err(net, RTNLGRP_LINK, err);
rtnetlink: delay RTM_DELLINK notification until after ndo_uninit() The commit 56bfa7ee7c ("unregister_netdevice : move RTM_DELLINK to until after ndo_uninit") tried to do this ealier but while doing so it created a problem. Unfortunately the delayed rtmsg_ifinfo() also delayed call to fill_info(). So this translated into asking driver to remove private state and then query it's private state. This could have catastropic consequences. This change breaks the rtmsg_ifinfo() into two parts - one takes the precise snapshot of the device by called fill_info() before calling the ndo_uninit() and the second part sends the notification using collected snapshot. It was brought to notice when last link is deleted from an ipvlan device when it has free-ed the port and the subsequent .fill_info() call is trying to get the info from the port. kernel: [ 255.139429] ------------[ cut here ]------------ kernel: [ 255.139439] WARNING: CPU: 12 PID: 11173 at net/core/rtnetlink.c:2238 rtmsg_ifinfo+0x100/0x110() kernel: [ 255.139493] Modules linked in: ipvlan bonding w1_therm ds2482 wire cdc_acm ehci_pci ehci_hcd i2c_dev i2c_i801 i2c_core msr cpuid bnx2x ptp pps_core mdio libcrc32c kernel: [ 255.139513] CPU: 12 PID: 11173 Comm: ip Not tainted 3.18.0-smp-DEV #167 kernel: [ 255.139514] Hardware name: Intel RML,PCH/Ibis_QC_18, BIOS 1.0.10 05/15/2012 kernel: [ 255.139515] 0000000000000009 ffff880851b6b828 ffffffff815d87f4 00000000000000e0 kernel: [ 255.139516] 0000000000000000 ffff880851b6b868 ffffffff8109c29c 0000000000000000 kernel: [ 255.139518] 00000000ffffffa6 00000000000000d0 ffffffff81aaf580 0000000000000011 kernel: [ 255.139520] Call Trace: kernel: [ 255.139527] [<ffffffff815d87f4>] dump_stack+0x46/0x58 kernel: [ 255.139531] [<ffffffff8109c29c>] warn_slowpath_common+0x8c/0xc0 kernel: [ 255.139540] [<ffffffff8109c2ea>] warn_slowpath_null+0x1a/0x20 kernel: [ 255.139544] [<ffffffff8150d570>] rtmsg_ifinfo+0x100/0x110 kernel: [ 255.139547] [<ffffffff814f78b5>] rollback_registered_many+0x1d5/0x2d0 kernel: [ 255.139549] [<ffffffff814f79cf>] unregister_netdevice_many+0x1f/0xb0 kernel: [ 255.139551] [<ffffffff8150acab>] rtnl_dellink+0xbb/0x110 kernel: [ 255.139553] [<ffffffff8150da90>] rtnetlink_rcv_msg+0xa0/0x240 kernel: [ 255.139557] [<ffffffff81329283>] ? rhashtable_lookup_compare+0x43/0x80 kernel: [ 255.139558] [<ffffffff8150d9f0>] ? __rtnl_unlock+0x20/0x20 kernel: [ 255.139562] [<ffffffff8152cb11>] netlink_rcv_skb+0xb1/0xc0 kernel: [ 255.139563] [<ffffffff8150a495>] rtnetlink_rcv+0x25/0x40 kernel: [ 255.139565] [<ffffffff8152c398>] netlink_unicast+0x178/0x230 kernel: [ 255.139567] [<ffffffff8152c75f>] netlink_sendmsg+0x30f/0x420 kernel: [ 255.139571] [<ffffffff814e0b0c>] sock_sendmsg+0x9c/0xd0 kernel: [ 255.139575] [<ffffffff811d1d7f>] ? rw_copy_check_uvector+0x6f/0x130 kernel: [ 255.139577] [<ffffffff814e11c9>] ? copy_msghdr_from_user+0x139/0x1b0 kernel: [ 255.139578] [<ffffffff814e1774>] ___sys_sendmsg+0x304/0x310 kernel: [ 255.139581] [<ffffffff81198723>] ? handle_mm_fault+0xca3/0xde0 kernel: [ 255.139585] [<ffffffff811ebc4c>] ? destroy_inode+0x3c/0x70 kernel: [ 255.139589] [<ffffffff8108e6ec>] ? __do_page_fault+0x20c/0x500 kernel: [ 255.139597] [<ffffffff811e8336>] ? dput+0xb6/0x190 kernel: [ 255.139606] [<ffffffff811f05f6>] ? mntput+0x26/0x40 kernel: [ 255.139611] [<ffffffff811d2b94>] ? __fput+0x174/0x1e0 kernel: [ 255.139613] [<ffffffff814e2129>] __sys_sendmsg+0x49/0x90 kernel: [ 255.139615] [<ffffffff814e2182>] SyS_sendmsg+0x12/0x20 kernel: [ 255.139617] [<ffffffff815df092>] system_call_fastpath+0x12/0x17 kernel: [ 255.139619] ---[ end trace 5e6703e87d984f6b ]--- Signed-off-by: Mahesh Bandewar <maheshb@google.com> Reported-by: Toshiaki Makita <makita.toshiaki@lab.ntt.co.jp> Cc: Eric Dumazet <edumazet@google.com> Cc: Roopa Prabhu <roopa@cumulusnetworks.com> Cc: David S. Miller <davem@davemloft.net> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Thomas Graf <tgraf@suug.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-12-03 14:46:24 -07:00
return NULL;
}
void rtmsg_ifinfo_send(struct sk_buff *skb, struct net_device *dev, gfp_t flags)
{
struct net *net = dev_net(dev);
rtnl_notify(skb, net, 0, RTNLGRP_LINK, NULL, flags);
}
static void rtmsg_ifinfo_event(int type, struct net_device *dev,
unsigned int change, u32 event,
gfp_t flags, int *new_nsid, int new_ifindex)
rtnetlink: delay RTM_DELLINK notification until after ndo_uninit() The commit 56bfa7ee7c ("unregister_netdevice : move RTM_DELLINK to until after ndo_uninit") tried to do this ealier but while doing so it created a problem. Unfortunately the delayed rtmsg_ifinfo() also delayed call to fill_info(). So this translated into asking driver to remove private state and then query it's private state. This could have catastropic consequences. This change breaks the rtmsg_ifinfo() into two parts - one takes the precise snapshot of the device by called fill_info() before calling the ndo_uninit() and the second part sends the notification using collected snapshot. It was brought to notice when last link is deleted from an ipvlan device when it has free-ed the port and the subsequent .fill_info() call is trying to get the info from the port. kernel: [ 255.139429] ------------[ cut here ]------------ kernel: [ 255.139439] WARNING: CPU: 12 PID: 11173 at net/core/rtnetlink.c:2238 rtmsg_ifinfo+0x100/0x110() kernel: [ 255.139493] Modules linked in: ipvlan bonding w1_therm ds2482 wire cdc_acm ehci_pci ehci_hcd i2c_dev i2c_i801 i2c_core msr cpuid bnx2x ptp pps_core mdio libcrc32c kernel: [ 255.139513] CPU: 12 PID: 11173 Comm: ip Not tainted 3.18.0-smp-DEV #167 kernel: [ 255.139514] Hardware name: Intel RML,PCH/Ibis_QC_18, BIOS 1.0.10 05/15/2012 kernel: [ 255.139515] 0000000000000009 ffff880851b6b828 ffffffff815d87f4 00000000000000e0 kernel: [ 255.139516] 0000000000000000 ffff880851b6b868 ffffffff8109c29c 0000000000000000 kernel: [ 255.139518] 00000000ffffffa6 00000000000000d0 ffffffff81aaf580 0000000000000011 kernel: [ 255.139520] Call Trace: kernel: [ 255.139527] [<ffffffff815d87f4>] dump_stack+0x46/0x58 kernel: [ 255.139531] [<ffffffff8109c29c>] warn_slowpath_common+0x8c/0xc0 kernel: [ 255.139540] [<ffffffff8109c2ea>] warn_slowpath_null+0x1a/0x20 kernel: [ 255.139544] [<ffffffff8150d570>] rtmsg_ifinfo+0x100/0x110 kernel: [ 255.139547] [<ffffffff814f78b5>] rollback_registered_many+0x1d5/0x2d0 kernel: [ 255.139549] [<ffffffff814f79cf>] unregister_netdevice_many+0x1f/0xb0 kernel: [ 255.139551] [<ffffffff8150acab>] rtnl_dellink+0xbb/0x110 kernel: [ 255.139553] [<ffffffff8150da90>] rtnetlink_rcv_msg+0xa0/0x240 kernel: [ 255.139557] [<ffffffff81329283>] ? rhashtable_lookup_compare+0x43/0x80 kernel: [ 255.139558] [<ffffffff8150d9f0>] ? __rtnl_unlock+0x20/0x20 kernel: [ 255.139562] [<ffffffff8152cb11>] netlink_rcv_skb+0xb1/0xc0 kernel: [ 255.139563] [<ffffffff8150a495>] rtnetlink_rcv+0x25/0x40 kernel: [ 255.139565] [<ffffffff8152c398>] netlink_unicast+0x178/0x230 kernel: [ 255.139567] [<ffffffff8152c75f>] netlink_sendmsg+0x30f/0x420 kernel: [ 255.139571] [<ffffffff814e0b0c>] sock_sendmsg+0x9c/0xd0 kernel: [ 255.139575] [<ffffffff811d1d7f>] ? rw_copy_check_uvector+0x6f/0x130 kernel: [ 255.139577] [<ffffffff814e11c9>] ? copy_msghdr_from_user+0x139/0x1b0 kernel: [ 255.139578] [<ffffffff814e1774>] ___sys_sendmsg+0x304/0x310 kernel: [ 255.139581] [<ffffffff81198723>] ? handle_mm_fault+0xca3/0xde0 kernel: [ 255.139585] [<ffffffff811ebc4c>] ? destroy_inode+0x3c/0x70 kernel: [ 255.139589] [<ffffffff8108e6ec>] ? __do_page_fault+0x20c/0x500 kernel: [ 255.139597] [<ffffffff811e8336>] ? dput+0xb6/0x190 kernel: [ 255.139606] [<ffffffff811f05f6>] ? mntput+0x26/0x40 kernel: [ 255.139611] [<ffffffff811d2b94>] ? __fput+0x174/0x1e0 kernel: [ 255.139613] [<ffffffff814e2129>] __sys_sendmsg+0x49/0x90 kernel: [ 255.139615] [<ffffffff814e2182>] SyS_sendmsg+0x12/0x20 kernel: [ 255.139617] [<ffffffff815df092>] system_call_fastpath+0x12/0x17 kernel: [ 255.139619] ---[ end trace 5e6703e87d984f6b ]--- Signed-off-by: Mahesh Bandewar <maheshb@google.com> Reported-by: Toshiaki Makita <makita.toshiaki@lab.ntt.co.jp> Cc: Eric Dumazet <edumazet@google.com> Cc: Roopa Prabhu <roopa@cumulusnetworks.com> Cc: David S. Miller <davem@davemloft.net> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Thomas Graf <tgraf@suug.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-12-03 14:46:24 -07:00
{
struct sk_buff *skb;
if (dev->reg_state != NETREG_REGISTERED)
return;
skb = rtmsg_ifinfo_build_skb(type, dev, change, event, flags, new_nsid,
new_ifindex);
rtnetlink: delay RTM_DELLINK notification until after ndo_uninit() The commit 56bfa7ee7c ("unregister_netdevice : move RTM_DELLINK to until after ndo_uninit") tried to do this ealier but while doing so it created a problem. Unfortunately the delayed rtmsg_ifinfo() also delayed call to fill_info(). So this translated into asking driver to remove private state and then query it's private state. This could have catastropic consequences. This change breaks the rtmsg_ifinfo() into two parts - one takes the precise snapshot of the device by called fill_info() before calling the ndo_uninit() and the second part sends the notification using collected snapshot. It was brought to notice when last link is deleted from an ipvlan device when it has free-ed the port and the subsequent .fill_info() call is trying to get the info from the port. kernel: [ 255.139429] ------------[ cut here ]------------ kernel: [ 255.139439] WARNING: CPU: 12 PID: 11173 at net/core/rtnetlink.c:2238 rtmsg_ifinfo+0x100/0x110() kernel: [ 255.139493] Modules linked in: ipvlan bonding w1_therm ds2482 wire cdc_acm ehci_pci ehci_hcd i2c_dev i2c_i801 i2c_core msr cpuid bnx2x ptp pps_core mdio libcrc32c kernel: [ 255.139513] CPU: 12 PID: 11173 Comm: ip Not tainted 3.18.0-smp-DEV #167 kernel: [ 255.139514] Hardware name: Intel RML,PCH/Ibis_QC_18, BIOS 1.0.10 05/15/2012 kernel: [ 255.139515] 0000000000000009 ffff880851b6b828 ffffffff815d87f4 00000000000000e0 kernel: [ 255.139516] 0000000000000000 ffff880851b6b868 ffffffff8109c29c 0000000000000000 kernel: [ 255.139518] 00000000ffffffa6 00000000000000d0 ffffffff81aaf580 0000000000000011 kernel: [ 255.139520] Call Trace: kernel: [ 255.139527] [<ffffffff815d87f4>] dump_stack+0x46/0x58 kernel: [ 255.139531] [<ffffffff8109c29c>] warn_slowpath_common+0x8c/0xc0 kernel: [ 255.139540] [<ffffffff8109c2ea>] warn_slowpath_null+0x1a/0x20 kernel: [ 255.139544] [<ffffffff8150d570>] rtmsg_ifinfo+0x100/0x110 kernel: [ 255.139547] [<ffffffff814f78b5>] rollback_registered_many+0x1d5/0x2d0 kernel: [ 255.139549] [<ffffffff814f79cf>] unregister_netdevice_many+0x1f/0xb0 kernel: [ 255.139551] [<ffffffff8150acab>] rtnl_dellink+0xbb/0x110 kernel: [ 255.139553] [<ffffffff8150da90>] rtnetlink_rcv_msg+0xa0/0x240 kernel: [ 255.139557] [<ffffffff81329283>] ? rhashtable_lookup_compare+0x43/0x80 kernel: [ 255.139558] [<ffffffff8150d9f0>] ? __rtnl_unlock+0x20/0x20 kernel: [ 255.139562] [<ffffffff8152cb11>] netlink_rcv_skb+0xb1/0xc0 kernel: [ 255.139563] [<ffffffff8150a495>] rtnetlink_rcv+0x25/0x40 kernel: [ 255.139565] [<ffffffff8152c398>] netlink_unicast+0x178/0x230 kernel: [ 255.139567] [<ffffffff8152c75f>] netlink_sendmsg+0x30f/0x420 kernel: [ 255.139571] [<ffffffff814e0b0c>] sock_sendmsg+0x9c/0xd0 kernel: [ 255.139575] [<ffffffff811d1d7f>] ? rw_copy_check_uvector+0x6f/0x130 kernel: [ 255.139577] [<ffffffff814e11c9>] ? copy_msghdr_from_user+0x139/0x1b0 kernel: [ 255.139578] [<ffffffff814e1774>] ___sys_sendmsg+0x304/0x310 kernel: [ 255.139581] [<ffffffff81198723>] ? handle_mm_fault+0xca3/0xde0 kernel: [ 255.139585] [<ffffffff811ebc4c>] ? destroy_inode+0x3c/0x70 kernel: [ 255.139589] [<ffffffff8108e6ec>] ? __do_page_fault+0x20c/0x500 kernel: [ 255.139597] [<ffffffff811e8336>] ? dput+0xb6/0x190 kernel: [ 255.139606] [<ffffffff811f05f6>] ? mntput+0x26/0x40 kernel: [ 255.139611] [<ffffffff811d2b94>] ? __fput+0x174/0x1e0 kernel: [ 255.139613] [<ffffffff814e2129>] __sys_sendmsg+0x49/0x90 kernel: [ 255.139615] [<ffffffff814e2182>] SyS_sendmsg+0x12/0x20 kernel: [ 255.139617] [<ffffffff815df092>] system_call_fastpath+0x12/0x17 kernel: [ 255.139619] ---[ end trace 5e6703e87d984f6b ]--- Signed-off-by: Mahesh Bandewar <maheshb@google.com> Reported-by: Toshiaki Makita <makita.toshiaki@lab.ntt.co.jp> Cc: Eric Dumazet <edumazet@google.com> Cc: Roopa Prabhu <roopa@cumulusnetworks.com> Cc: David S. Miller <davem@davemloft.net> Acked-by: Eric Dumazet <edumazet@google.com> Acked-by: Thomas Graf <tgraf@suug.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-12-03 14:46:24 -07:00
if (skb)
rtmsg_ifinfo_send(skb, dev, flags);
}
void rtmsg_ifinfo(int type, struct net_device *dev, unsigned int change,
gfp_t flags)
{
rtmsg_ifinfo_event(type, dev, change, rtnl_get_event(0), flags,
NULL, 0);
}
void rtmsg_ifinfo_newnet(int type, struct net_device *dev, unsigned int change,
gfp_t flags, int *new_nsid, int new_ifindex)
{
rtmsg_ifinfo_event(type, dev, change, rtnl_get_event(0), flags,
new_nsid, new_ifindex);
}
static int nlmsg_populate_fdb_fill(struct sk_buff *skb,
struct net_device *dev,
u8 *addr, u16 vid, u32 pid, u32 seq,
int type, unsigned int flags,
int nlflags, u16 ndm_state)
{
struct nlmsghdr *nlh;
struct ndmsg *ndm;
nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), nlflags);
if (!nlh)
return -EMSGSIZE;
ndm = nlmsg_data(nlh);
ndm->ndm_family = AF_BRIDGE;
ndm->ndm_pad1 = 0;
ndm->ndm_pad2 = 0;
ndm->ndm_flags = flags;
ndm->ndm_type = 0;
ndm->ndm_ifindex = dev->ifindex;
ndm->ndm_state = ndm_state;
if (nla_put(skb, NDA_LLADDR, ETH_ALEN, addr))
goto nla_put_failure;
if (vid)
if (nla_put(skb, NDA_VLAN, sizeof(u16), &vid))
goto nla_put_failure;
netlink: make nlmsg_end() and genlmsg_end() void Contrary to common expectations for an "int" return, these functions return only a positive value -- if used correctly they cannot even return 0 because the message header will necessarily be in the skb. This makes the very common pattern of if (genlmsg_end(...) < 0) { ... } be a whole bunch of dead code. Many places also simply do return nlmsg_end(...); and the caller is expected to deal with it. This also commonly (at least for me) causes errors, because it is very common to write if (my_function(...)) /* error condition */ and if my_function() does "return nlmsg_end()" this is of course wrong. Additionally, there's not a single place in the kernel that actually needs the message length returned, and if anyone needs it later then it'll be very easy to just use skb->len there. Remove this, and make the functions void. This removes a bunch of dead code as described above. The patch adds lines because I did - return nlmsg_end(...); + nlmsg_end(...); + return 0; I could have preserved all the function's return values by returning skb->len, but instead I've audited all the places calling the affected functions and found that none cared. A few places actually compared the return value with <= 0 in dump functionality, but that could just be changed to < 0 with no change in behaviour, so I opted for the more efficient version. One instance of the error I've made numerous times now is also present in net/phonet/pn_netlink.c in the route_dumpit() function - it didn't check for <0 or <=0 and thus broke out of the loop every single time. I've preserved this since it will (I think) have caused the messages to userspace to be formatted differently with just a single message for every SKB returned to userspace. It's possible that this isn't needed for the tools that actually use this, but I don't even know what they are so couldn't test that changing this behaviour would be acceptable. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-16 14:09:00 -07:00
nlmsg_end(skb, nlh);
return 0;
nla_put_failure:
nlmsg_cancel(skb, nlh);
return -EMSGSIZE;
}
static inline size_t rtnl_fdb_nlmsg_size(void)
{
return NLMSG_ALIGN(sizeof(struct ndmsg)) +
nla_total_size(ETH_ALEN) + /* NDA_LLADDR */
nla_total_size(sizeof(u16)) + /* NDA_VLAN */
0;
}
static void rtnl_fdb_notify(struct net_device *dev, u8 *addr, u16 vid, int type,
u16 ndm_state)
{
struct net *net = dev_net(dev);
struct sk_buff *skb;
int err = -ENOBUFS;
skb = nlmsg_new(rtnl_fdb_nlmsg_size(), GFP_ATOMIC);
if (!skb)
goto errout;
err = nlmsg_populate_fdb_fill(skb, dev, addr, vid,
0, 0, type, NTF_SELF, 0, ndm_state);
if (err < 0) {
kfree_skb(skb);
goto errout;
}
rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
return;
errout:
rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
}
/**
* ndo_dflt_fdb_add - default netdevice operation to add an FDB entry
*/
int ndo_dflt_fdb_add(struct ndmsg *ndm,
struct nlattr *tb[],
struct net_device *dev,
const unsigned char *addr, u16 vid,
u16 flags)
{
int err = -EINVAL;
/* If aging addresses are supported device will need to
* implement its own handler for this.
*/
if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
pr_info("%s: FDB only supports static addresses\n", dev->name);
return err;
}
if (vid) {
pr_info("%s: vlans aren't supported yet for dev_uc|mc_add()\n", dev->name);
return err;
}
if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
err = dev_uc_add_excl(dev, addr);
else if (is_multicast_ether_addr(addr))
err = dev_mc_add_excl(dev, addr);
/* Only return duplicate errors if NLM_F_EXCL is set */
if (err == -EEXIST && !(flags & NLM_F_EXCL))
err = 0;
return err;
}
EXPORT_SYMBOL(ndo_dflt_fdb_add);
static int fdb_vid_parse(struct nlattr *vlan_attr, u16 *p_vid,
struct netlink_ext_ack *extack)
{
u16 vid = 0;
if (vlan_attr) {
if (nla_len(vlan_attr) != sizeof(u16)) {
NL_SET_ERR_MSG(extack, "invalid vlan attribute size");
return -EINVAL;
}
vid = nla_get_u16(vlan_attr);
if (!vid || vid >= VLAN_VID_MASK) {
NL_SET_ERR_MSG(extack, "invalid vlan id");
return -EINVAL;
}
}
*p_vid = vid;
return 0;
}
static int rtnl_fdb_add(struct sk_buff *skb, struct nlmsghdr *nlh,
struct netlink_ext_ack *extack)
net: add generic PF_BRIDGE:RTM_ FDB hooks This adds two new flags NTF_MASTER and NTF_SELF that can now be used to specify where PF_BRIDGE netlink commands should be sent. NTF_MASTER sends the commands to the 'dev->master' device for parsing. Typically this will be the linux net/bridge, or open-vswitch devices. Also without any flags set the command will be handled by the master device as well so that current user space tools continue to work as expected. The NTF_SELF flag will push the PF_BRIDGE commands to the device. In the basic example below the commands are then parsed and programmed in the embedded bridge. Note if both NTF_SELF and NTF_MASTER bits are set then the command will be sent to both 'dev->master' and 'dev' this allows user space to easily keep the embedded bridge and software bridge in sync. There is a slight complication in the case with both flags set when an error occurs. To resolve this the rtnl handler clears the NTF_ flag in the netlink ack to indicate which sets completed successfully. The add/del handlers will abort as soon as any error occurs. To support this new net device ops were added to call into the device and the existing bridging code was refactored to use these. There should be no required changes in user space to support the current bridge behavior. A basic setup with a SR-IOV enabled NIC looks like this, veth0 veth2 | | ------------ | bridge0 | <---- software bridging ------------ / / ethx.y ethx VF PF \ \ <---- propagate FDB entries to HW \ \ -------------------- | Embedded Bridge | <---- hardware offloaded switching -------------------- In this case the embedded bridge must be managed to allow 'veth0' to communicate with 'ethx.y' correctly. At present drivers managing the embedded bridge either send frames onto the network which then get dropped by the switch OR the embedded bridge will flood these frames. With this patch we have a mechanism to manage the embedded bridge correctly from user space. This example is specific to SR-IOV but replacing the VF with another PF or dropping this into the DSA framework generates similar management issues. Examples session using the 'br'[1] tool to add, dump and then delete a mac address with a new "embedded" option and enabled ixgbe driver: # br fdb add 22:35:19:ac:60:59 dev eth3 # br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static #br fdb add 22:35:19:ac:60:59 embedded dev eth3 #br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static eth3 22:35:19:ac:60:59 local embedded #br fdb del 22:35:19:ac:60:59 embedded dev eth3 I added a couple lines to 'br' to set the flags correctly is all. It is my opinion that the merit of this patch is now embedded and SW bridges can both be modeled correctly in user space using very nearly the same message passing. [1] 'br' tool was published as an RFC here and will be renamed 'bridge' http://patchwork.ozlabs.org/patch/117664/ Thanks to Jamal Hadi Salim, Stephen Hemminger and Ben Hutchings for valuable feedback, suggestions, and review. v2: fixed api descriptions and error case with both NTF_SELF and NTF_MASTER set plus updated patch description. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-15 00:43:56 -06:00
{
struct net *net = sock_net(skb->sk);
struct ndmsg *ndm;
struct nlattr *tb[NDA_MAX+1];
struct net_device *dev;
u8 *addr;
u16 vid;
net: add generic PF_BRIDGE:RTM_ FDB hooks This adds two new flags NTF_MASTER and NTF_SELF that can now be used to specify where PF_BRIDGE netlink commands should be sent. NTF_MASTER sends the commands to the 'dev->master' device for parsing. Typically this will be the linux net/bridge, or open-vswitch devices. Also without any flags set the command will be handled by the master device as well so that current user space tools continue to work as expected. The NTF_SELF flag will push the PF_BRIDGE commands to the device. In the basic example below the commands are then parsed and programmed in the embedded bridge. Note if both NTF_SELF and NTF_MASTER bits are set then the command will be sent to both 'dev->master' and 'dev' this allows user space to easily keep the embedded bridge and software bridge in sync. There is a slight complication in the case with both flags set when an error occurs. To resolve this the rtnl handler clears the NTF_ flag in the netlink ack to indicate which sets completed successfully. The add/del handlers will abort as soon as any error occurs. To support this new net device ops were added to call into the device and the existing bridging code was refactored to use these. There should be no required changes in user space to support the current bridge behavior. A basic setup with a SR-IOV enabled NIC looks like this, veth0 veth2 | | ------------ | bridge0 | <---- software bridging ------------ / / ethx.y ethx VF PF \ \ <---- propagate FDB entries to HW \ \ -------------------- | Embedded Bridge | <---- hardware offloaded switching -------------------- In this case the embedded bridge must be managed to allow 'veth0' to communicate with 'ethx.y' correctly. At present drivers managing the embedded bridge either send frames onto the network which then get dropped by the switch OR the embedded bridge will flood these frames. With this patch we have a mechanism to manage the embedded bridge correctly from user space. This example is specific to SR-IOV but replacing the VF with another PF or dropping this into the DSA framework generates similar management issues. Examples session using the 'br'[1] tool to add, dump and then delete a mac address with a new "embedded" option and enabled ixgbe driver: # br fdb add 22:35:19:ac:60:59 dev eth3 # br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static #br fdb add 22:35:19:ac:60:59 embedded dev eth3 #br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static eth3 22:35:19:ac:60:59 local embedded #br fdb del 22:35:19:ac:60:59 embedded dev eth3 I added a couple lines to 'br' to set the flags correctly is all. It is my opinion that the merit of this patch is now embedded and SW bridges can both be modeled correctly in user space using very nearly the same message passing. [1] 'br' tool was published as an RFC here and will be renamed 'bridge' http://patchwork.ozlabs.org/patch/117664/ Thanks to Jamal Hadi Salim, Stephen Hemminger and Ben Hutchings for valuable feedback, suggestions, and review. v2: fixed api descriptions and error case with both NTF_SELF and NTF_MASTER set plus updated patch description. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-15 00:43:56 -06:00
int err;
err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL, extack);
net: add generic PF_BRIDGE:RTM_ FDB hooks This adds two new flags NTF_MASTER and NTF_SELF that can now be used to specify where PF_BRIDGE netlink commands should be sent. NTF_MASTER sends the commands to the 'dev->master' device for parsing. Typically this will be the linux net/bridge, or open-vswitch devices. Also without any flags set the command will be handled by the master device as well so that current user space tools continue to work as expected. The NTF_SELF flag will push the PF_BRIDGE commands to the device. In the basic example below the commands are then parsed and programmed in the embedded bridge. Note if both NTF_SELF and NTF_MASTER bits are set then the command will be sent to both 'dev->master' and 'dev' this allows user space to easily keep the embedded bridge and software bridge in sync. There is a slight complication in the case with both flags set when an error occurs. To resolve this the rtnl handler clears the NTF_ flag in the netlink ack to indicate which sets completed successfully. The add/del handlers will abort as soon as any error occurs. To support this new net device ops were added to call into the device and the existing bridging code was refactored to use these. There should be no required changes in user space to support the current bridge behavior. A basic setup with a SR-IOV enabled NIC looks like this, veth0 veth2 | | ------------ | bridge0 | <---- software bridging ------------ / / ethx.y ethx VF PF \ \ <---- propagate FDB entries to HW \ \ -------------------- | Embedded Bridge | <---- hardware offloaded switching -------------------- In this case the embedded bridge must be managed to allow 'veth0' to communicate with 'ethx.y' correctly. At present drivers managing the embedded bridge either send frames onto the network which then get dropped by the switch OR the embedded bridge will flood these frames. With this patch we have a mechanism to manage the embedded bridge correctly from user space. This example is specific to SR-IOV but replacing the VF with another PF or dropping this into the DSA framework generates similar management issues. Examples session using the 'br'[1] tool to add, dump and then delete a mac address with a new "embedded" option and enabled ixgbe driver: # br fdb add 22:35:19:ac:60:59 dev eth3 # br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static #br fdb add 22:35:19:ac:60:59 embedded dev eth3 #br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static eth3 22:35:19:ac:60:59 local embedded #br fdb del 22:35:19:ac:60:59 embedded dev eth3 I added a couple lines to 'br' to set the flags correctly is all. It is my opinion that the merit of this patch is now embedded and SW bridges can both be modeled correctly in user space using very nearly the same message passing. [1] 'br' tool was published as an RFC here and will be renamed 'bridge' http://patchwork.ozlabs.org/patch/117664/ Thanks to Jamal Hadi Salim, Stephen Hemminger and Ben Hutchings for valuable feedback, suggestions, and review. v2: fixed api descriptions and error case with both NTF_SELF and NTF_MASTER set plus updated patch description. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-15 00:43:56 -06:00
if (err < 0)
return err;
ndm = nlmsg_data(nlh);
if (ndm->ndm_ifindex == 0) {
NL_SET_ERR_MSG(extack, "invalid ifindex");
net: add generic PF_BRIDGE:RTM_ FDB hooks This adds two new flags NTF_MASTER and NTF_SELF that can now be used to specify where PF_BRIDGE netlink commands should be sent. NTF_MASTER sends the commands to the 'dev->master' device for parsing. Typically this will be the linux net/bridge, or open-vswitch devices. Also without any flags set the command will be handled by the master device as well so that current user space tools continue to work as expected. The NTF_SELF flag will push the PF_BRIDGE commands to the device. In the basic example below the commands are then parsed and programmed in the embedded bridge. Note if both NTF_SELF and NTF_MASTER bits are set then the command will be sent to both 'dev->master' and 'dev' this allows user space to easily keep the embedded bridge and software bridge in sync. There is a slight complication in the case with both flags set when an error occurs. To resolve this the rtnl handler clears the NTF_ flag in the netlink ack to indicate which sets completed successfully. The add/del handlers will abort as soon as any error occurs. To support this new net device ops were added to call into the device and the existing bridging code was refactored to use these. There should be no required changes in user space to support the current bridge behavior. A basic setup with a SR-IOV enabled NIC looks like this, veth0 veth2 | | ------------ | bridge0 | <---- software bridging ------------ / / ethx.y ethx VF PF \ \ <---- propagate FDB entries to HW \ \ -------------------- | Embedded Bridge | <---- hardware offloaded switching -------------------- In this case the embedded bridge must be managed to allow 'veth0' to communicate with 'ethx.y' correctly. At present drivers managing the embedded bridge either send frames onto the network which then get dropped by the switch OR the embedded bridge will flood these frames. With this patch we have a mechanism to manage the embedded bridge correctly from user space. This example is specific to SR-IOV but replacing the VF with another PF or dropping this into the DSA framework generates similar management issues. Examples session using the 'br'[1] tool to add, dump and then delete a mac address with a new "embedded" option and enabled ixgbe driver: # br fdb add 22:35:19:ac:60:59 dev eth3 # br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static #br fdb add 22:35:19:ac:60:59 embedded dev eth3 #br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static eth3 22:35:19:ac:60:59 local embedded #br fdb del 22:35:19:ac:60:59 embedded dev eth3 I added a couple lines to 'br' to set the flags correctly is all. It is my opinion that the merit of this patch is now embedded and SW bridges can both be modeled correctly in user space using very nearly the same message passing. [1] 'br' tool was published as an RFC here and will be renamed 'bridge' http://patchwork.ozlabs.org/patch/117664/ Thanks to Jamal Hadi Salim, Stephen Hemminger and Ben Hutchings for valuable feedback, suggestions, and review. v2: fixed api descriptions and error case with both NTF_SELF and NTF_MASTER set plus updated patch description. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-15 00:43:56 -06:00
return -EINVAL;
}
dev = __dev_get_by_index(net, ndm->ndm_ifindex);
if (dev == NULL) {
NL_SET_ERR_MSG(extack, "unknown ifindex");
net: add generic PF_BRIDGE:RTM_ FDB hooks This adds two new flags NTF_MASTER and NTF_SELF that can now be used to specify where PF_BRIDGE netlink commands should be sent. NTF_MASTER sends the commands to the 'dev->master' device for parsing. Typically this will be the linux net/bridge, or open-vswitch devices. Also without any flags set the command will be handled by the master device as well so that current user space tools continue to work as expected. The NTF_SELF flag will push the PF_BRIDGE commands to the device. In the basic example below the commands are then parsed and programmed in the embedded bridge. Note if both NTF_SELF and NTF_MASTER bits are set then the command will be sent to both 'dev->master' and 'dev' this allows user space to easily keep the embedded bridge and software bridge in sync. There is a slight complication in the case with both flags set when an error occurs. To resolve this the rtnl handler clears the NTF_ flag in the netlink ack to indicate which sets completed successfully. The add/del handlers will abort as soon as any error occurs. To support this new net device ops were added to call into the device and the existing bridging code was refactored to use these. There should be no required changes in user space to support the current bridge behavior. A basic setup with a SR-IOV enabled NIC looks like this, veth0 veth2 | | ------------ | bridge0 | <---- software bridging ------------ / / ethx.y ethx VF PF \ \ <---- propagate FDB entries to HW \ \ -------------------- | Embedded Bridge | <---- hardware offloaded switching -------------------- In this case the embedded bridge must be managed to allow 'veth0' to communicate with 'ethx.y' correctly. At present drivers managing the embedded bridge either send frames onto the network which then get dropped by the switch OR the embedded bridge will flood these frames. With this patch we have a mechanism to manage the embedded bridge correctly from user space. This example is specific to SR-IOV but replacing the VF with another PF or dropping this into the DSA framework generates similar management issues. Examples session using the 'br'[1] tool to add, dump and then delete a mac address with a new "embedded" option and enabled ixgbe driver: # br fdb add 22:35:19:ac:60:59 dev eth3 # br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static #br fdb add 22:35:19:ac:60:59 embedded dev eth3 #br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static eth3 22:35:19:ac:60:59 local embedded #br fdb del 22:35:19:ac:60:59 embedded dev eth3 I added a couple lines to 'br' to set the flags correctly is all. It is my opinion that the merit of this patch is now embedded and SW bridges can both be modeled correctly in user space using very nearly the same message passing. [1] 'br' tool was published as an RFC here and will be renamed 'bridge' http://patchwork.ozlabs.org/patch/117664/ Thanks to Jamal Hadi Salim, Stephen Hemminger and Ben Hutchings for valuable feedback, suggestions, and review. v2: fixed api descriptions and error case with both NTF_SELF and NTF_MASTER set plus updated patch description. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-15 00:43:56 -06:00
return -ENODEV;
}
if (!tb[NDA_LLADDR] || nla_len(tb[NDA_LLADDR]) != ETH_ALEN) {
NL_SET_ERR_MSG(extack, "invalid address");
net: add generic PF_BRIDGE:RTM_ FDB hooks This adds two new flags NTF_MASTER and NTF_SELF that can now be used to specify where PF_BRIDGE netlink commands should be sent. NTF_MASTER sends the commands to the 'dev->master' device for parsing. Typically this will be the linux net/bridge, or open-vswitch devices. Also without any flags set the command will be handled by the master device as well so that current user space tools continue to work as expected. The NTF_SELF flag will push the PF_BRIDGE commands to the device. In the basic example below the commands are then parsed and programmed in the embedded bridge. Note if both NTF_SELF and NTF_MASTER bits are set then the command will be sent to both 'dev->master' and 'dev' this allows user space to easily keep the embedded bridge and software bridge in sync. There is a slight complication in the case with both flags set when an error occurs. To resolve this the rtnl handler clears the NTF_ flag in the netlink ack to indicate which sets completed successfully. The add/del handlers will abort as soon as any error occurs. To support this new net device ops were added to call into the device and the existing bridging code was refactored to use these. There should be no required changes in user space to support the current bridge behavior. A basic setup with a SR-IOV enabled NIC looks like this, veth0 veth2 | | ------------ | bridge0 | <---- software bridging ------------ / / ethx.y ethx VF PF \ \ <---- propagate FDB entries to HW \ \ -------------------- | Embedded Bridge | <---- hardware offloaded switching -------------------- In this case the embedded bridge must be managed to allow 'veth0' to communicate with 'ethx.y' correctly. At present drivers managing the embedded bridge either send frames onto the network which then get dropped by the switch OR the embedded bridge will flood these frames. With this patch we have a mechanism to manage the embedded bridge correctly from user space. This example is specific to SR-IOV but replacing the VF with another PF or dropping this into the DSA framework generates similar management issues. Examples session using the 'br'[1] tool to add, dump and then delete a mac address with a new "embedded" option and enabled ixgbe driver: # br fdb add 22:35:19:ac:60:59 dev eth3 # br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static #br fdb add 22:35:19:ac:60:59 embedded dev eth3 #br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static eth3 22:35:19:ac:60:59 local embedded #br fdb del 22:35:19:ac:60:59 embedded dev eth3 I added a couple lines to 'br' to set the flags correctly is all. It is my opinion that the merit of this patch is now embedded and SW bridges can both be modeled correctly in user space using very nearly the same message passing. [1] 'br' tool was published as an RFC here and will be renamed 'bridge' http://patchwork.ozlabs.org/patch/117664/ Thanks to Jamal Hadi Salim, Stephen Hemminger and Ben Hutchings for valuable feedback, suggestions, and review. v2: fixed api descriptions and error case with both NTF_SELF and NTF_MASTER set plus updated patch description. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-15 00:43:56 -06:00
return -EINVAL;
}
rtnetlink: Disallow FDB configuration for non-Ethernet device When an FDB entry is configured, the address is validated to have the length of an Ethernet address, but the device for which the address is configured can be of any type. The above can result in the use of uninitialized memory when the address is later compared against existing addresses since 'dev->addr_len' is used and it may be greater than ETH_ALEN, as with ip6tnl devices. Fix this by making sure that FDB entries are only configured for Ethernet devices. BUG: KMSAN: uninit-value in memcmp+0x11d/0x180 lib/string.c:863 CPU: 1 PID: 4318 Comm: syz-executor998 Not tainted 4.19.0-rc3+ #49 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x14b/0x190 lib/dump_stack.c:113 kmsan_report+0x183/0x2b0 mm/kmsan/kmsan.c:956 __msan_warning+0x70/0xc0 mm/kmsan/kmsan_instr.c:645 memcmp+0x11d/0x180 lib/string.c:863 dev_uc_add_excl+0x165/0x7b0 net/core/dev_addr_lists.c:464 ndo_dflt_fdb_add net/core/rtnetlink.c:3463 [inline] rtnl_fdb_add+0x1081/0x1270 net/core/rtnetlink.c:3558 rtnetlink_rcv_msg+0xa0b/0x1530 net/core/rtnetlink.c:4715 netlink_rcv_skb+0x36e/0x5f0 net/netlink/af_netlink.c:2454 rtnetlink_rcv+0x50/0x60 net/core/rtnetlink.c:4733 netlink_unicast_kernel net/netlink/af_netlink.c:1317 [inline] netlink_unicast+0x1638/0x1720 net/netlink/af_netlink.c:1343 netlink_sendmsg+0x1205/0x1290 net/netlink/af_netlink.c:1908 sock_sendmsg_nosec net/socket.c:621 [inline] sock_sendmsg net/socket.c:631 [inline] ___sys_sendmsg+0xe70/0x1290 net/socket.c:2114 __sys_sendmsg net/socket.c:2152 [inline] __do_sys_sendmsg net/socket.c:2161 [inline] __se_sys_sendmsg+0x2a3/0x3d0 net/socket.c:2159 __x64_sys_sendmsg+0x4a/0x70 net/socket.c:2159 do_syscall_64+0xb8/0x100 arch/x86/entry/common.c:291 entry_SYSCALL_64_after_hwframe+0x63/0xe7 RIP: 0033:0x440ee9 Code: e8 cc ab 02 00 48 83 c4 18 c3 0f 1f 80 00 00 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 bb 0a fc ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007fff6a93b518 EFLAGS: 00000213 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 0000000000440ee9 RDX: 0000000000000000 RSI: 0000000020000240 RDI: 0000000000000003 RBP: 0000000000000000 R08: 00000000004002c8 R09: 00000000004002c8 R10: 00000000004002c8 R11: 0000000000000213 R12: 000000000000b4b0 R13: 0000000000401ec0 R14: 0000000000000000 R15: 0000000000000000 Uninit was created at: kmsan_save_stack_with_flags mm/kmsan/kmsan.c:256 [inline] kmsan_internal_poison_shadow+0xb8/0x1b0 mm/kmsan/kmsan.c:181 kmsan_kmalloc+0x98/0x100 mm/kmsan/kmsan_hooks.c:91 kmsan_slab_alloc+0x10/0x20 mm/kmsan/kmsan_hooks.c:100 slab_post_alloc_hook mm/slab.h:446 [inline] slab_alloc_node mm/slub.c:2718 [inline] __kmalloc_node_track_caller+0x9e7/0x1160 mm/slub.c:4351 __kmalloc_reserve net/core/skbuff.c:138 [inline] __alloc_skb+0x2f5/0x9e0 net/core/skbuff.c:206 alloc_skb include/linux/skbuff.h:996 [inline] netlink_alloc_large_skb net/netlink/af_netlink.c:1189 [inline] netlink_sendmsg+0xb49/0x1290 net/netlink/af_netlink.c:1883 sock_sendmsg_nosec net/socket.c:621 [inline] sock_sendmsg net/socket.c:631 [inline] ___sys_sendmsg+0xe70/0x1290 net/socket.c:2114 __sys_sendmsg net/socket.c:2152 [inline] __do_sys_sendmsg net/socket.c:2161 [inline] __se_sys_sendmsg+0x2a3/0x3d0 net/socket.c:2159 __x64_sys_sendmsg+0x4a/0x70 net/socket.c:2159 do_syscall_64+0xb8/0x100 arch/x86/entry/common.c:291 entry_SYSCALL_64_after_hwframe+0x63/0xe7 v2: * Make error message more specific (David) Fixes: 090096bf3db1 ("net: generic fdb support for drivers without ndo_fdb_<op>") Signed-off-by: Ido Schimmel <idosch@mellanox.com> Reported-and-tested-by: syzbot+3a288d5f5530b901310e@syzkaller.appspotmail.com Reported-and-tested-by: syzbot+d53ab4e92a1db04110ff@syzkaller.appspotmail.com Cc: Vlad Yasevich <vyasevich@gmail.com> Cc: David Ahern <dsahern@gmail.com> Reviewed-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-29 14:36:43 -06:00
if (dev->type != ARPHRD_ETHER) {
NL_SET_ERR_MSG(extack, "FDB add only supported for Ethernet devices");
return -EINVAL;
}
net: add generic PF_BRIDGE:RTM_ FDB hooks This adds two new flags NTF_MASTER and NTF_SELF that can now be used to specify where PF_BRIDGE netlink commands should be sent. NTF_MASTER sends the commands to the 'dev->master' device for parsing. Typically this will be the linux net/bridge, or open-vswitch devices. Also without any flags set the command will be handled by the master device as well so that current user space tools continue to work as expected. The NTF_SELF flag will push the PF_BRIDGE commands to the device. In the basic example below the commands are then parsed and programmed in the embedded bridge. Note if both NTF_SELF and NTF_MASTER bits are set then the command will be sent to both 'dev->master' and 'dev' this allows user space to easily keep the embedded bridge and software bridge in sync. There is a slight complication in the case with both flags set when an error occurs. To resolve this the rtnl handler clears the NTF_ flag in the netlink ack to indicate which sets completed successfully. The add/del handlers will abort as soon as any error occurs. To support this new net device ops were added to call into the device and the existing bridging code was refactored to use these. There should be no required changes in user space to support the current bridge behavior. A basic setup with a SR-IOV enabled NIC looks like this, veth0 veth2 | | ------------ | bridge0 | <---- software bridging ------------ / / ethx.y ethx VF PF \ \ <---- propagate FDB entries to HW \ \ -------------------- | Embedded Bridge | <---- hardware offloaded switching -------------------- In this case the embedded bridge must be managed to allow 'veth0' to communicate with 'ethx.y' correctly. At present drivers managing the embedded bridge either send frames onto the network which then get dropped by the switch OR the embedded bridge will flood these frames. With this patch we have a mechanism to manage the embedded bridge correctly from user space. This example is specific to SR-IOV but replacing the VF with another PF or dropping this into the DSA framework generates similar management issues. Examples session using the 'br'[1] tool to add, dump and then delete a mac address with a new "embedded" option and enabled ixgbe driver: # br fdb add 22:35:19:ac:60:59 dev eth3 # br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static #br fdb add 22:35:19:ac:60:59 embedded dev eth3 #br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static eth3 22:35:19:ac:60:59 local embedded #br fdb del 22:35:19:ac:60:59 embedded dev eth3 I added a couple lines to 'br' to set the flags correctly is all. It is my opinion that the merit of this patch is now embedded and SW bridges can both be modeled correctly in user space using very nearly the same message passing. [1] 'br' tool was published as an RFC here and will be renamed 'bridge' http://patchwork.ozlabs.org/patch/117664/ Thanks to Jamal Hadi Salim, Stephen Hemminger and Ben Hutchings for valuable feedback, suggestions, and review. v2: fixed api descriptions and error case with both NTF_SELF and NTF_MASTER set plus updated patch description. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-15 00:43:56 -06:00
addr = nla_data(tb[NDA_LLADDR]);
err = fdb_vid_parse(tb[NDA_VLAN], &vid, extack);
if (err)
return err;
net: add generic PF_BRIDGE:RTM_ FDB hooks This adds two new flags NTF_MASTER and NTF_SELF that can now be used to specify where PF_BRIDGE netlink commands should be sent. NTF_MASTER sends the commands to the 'dev->master' device for parsing. Typically this will be the linux net/bridge, or open-vswitch devices. Also without any flags set the command will be handled by the master device as well so that current user space tools continue to work as expected. The NTF_SELF flag will push the PF_BRIDGE commands to the device. In the basic example below the commands are then parsed and programmed in the embedded bridge. Note if both NTF_SELF and NTF_MASTER bits are set then the command will be sent to both 'dev->master' and 'dev' this allows user space to easily keep the embedded bridge and software bridge in sync. There is a slight complication in the case with both flags set when an error occurs. To resolve this the rtnl handler clears the NTF_ flag in the netlink ack to indicate which sets completed successfully. The add/del handlers will abort as soon as any error occurs. To support this new net device ops were added to call into the device and the existing bridging code was refactored to use these. There should be no required changes in user space to support the current bridge behavior. A basic setup with a SR-IOV enabled NIC looks like this, veth0 veth2 | | ------------ | bridge0 | <---- software bridging ------------ / / ethx.y ethx VF PF \ \ <---- propagate FDB entries to HW \ \ -------------------- | Embedded Bridge | <---- hardware offloaded switching -------------------- In this case the embedded bridge must be managed to allow 'veth0' to communicate with 'ethx.y' correctly. At present drivers managing the embedded bridge either send frames onto the network which then get dropped by the switch OR the embedded bridge will flood these frames. With this patch we have a mechanism to manage the embedded bridge correctly from user space. This example is specific to SR-IOV but replacing the VF with another PF or dropping this into the DSA framework generates similar management issues. Examples session using the 'br'[1] tool to add, dump and then delete a mac address with a new "embedded" option and enabled ixgbe driver: # br fdb add 22:35:19:ac:60:59 dev eth3 # br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static #br fdb add 22:35:19:ac:60:59 embedded dev eth3 #br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static eth3 22:35:19:ac:60:59 local embedded #br fdb del 22:35:19:ac:60:59 embedded dev eth3 I added a couple lines to 'br' to set the flags correctly is all. It is my opinion that the merit of this patch is now embedded and SW bridges can both be modeled correctly in user space using very nearly the same message passing. [1] 'br' tool was published as an RFC here and will be renamed 'bridge' http://patchwork.ozlabs.org/patch/117664/ Thanks to Jamal Hadi Salim, Stephen Hemminger and Ben Hutchings for valuable feedback, suggestions, and review. v2: fixed api descriptions and error case with both NTF_SELF and NTF_MASTER set plus updated patch description. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-15 00:43:56 -06:00
err = -EOPNOTSUPP;
/* Support fdb on master device the net/bridge default case */
if ((!ndm->ndm_flags || ndm->ndm_flags & NTF_MASTER) &&
(dev->priv_flags & IFF_BRIDGE_PORT)) {
struct net_device *br_dev = netdev_master_upper_dev_get(dev);
const struct net_device_ops *ops = br_dev->netdev_ops;
err = ops->ndo_fdb_add(ndm, tb, dev, addr, vid,
nlh->nlmsg_flags);
net: add generic PF_BRIDGE:RTM_ FDB hooks This adds two new flags NTF_MASTER and NTF_SELF that can now be used to specify where PF_BRIDGE netlink commands should be sent. NTF_MASTER sends the commands to the 'dev->master' device for parsing. Typically this will be the linux net/bridge, or open-vswitch devices. Also without any flags set the command will be handled by the master device as well so that current user space tools continue to work as expected. The NTF_SELF flag will push the PF_BRIDGE commands to the device. In the basic example below the commands are then parsed and programmed in the embedded bridge. Note if both NTF_SELF and NTF_MASTER bits are set then the command will be sent to both 'dev->master' and 'dev' this allows user space to easily keep the embedded bridge and software bridge in sync. There is a slight complication in the case with both flags set when an error occurs. To resolve this the rtnl handler clears the NTF_ flag in the netlink ack to indicate which sets completed successfully. The add/del handlers will abort as soon as any error occurs. To support this new net device ops were added to call into the device and the existing bridging code was refactored to use these. There should be no required changes in user space to support the current bridge behavior. A basic setup with a SR-IOV enabled NIC looks like this, veth0 veth2 | | ------------ | bridge0 | <---- software bridging ------------ / / ethx.y ethx VF PF \ \ <---- propagate FDB entries to HW \ \ -------------------- | Embedded Bridge | <---- hardware offloaded switching -------------------- In this case the embedded bridge must be managed to allow 'veth0' to communicate with 'ethx.y' correctly. At present drivers managing the embedded bridge either send frames onto the network which then get dropped by the switch OR the embedded bridge will flood these frames. With this patch we have a mechanism to manage the embedded bridge correctly from user space. This example is specific to SR-IOV but replacing the VF with another PF or dropping this into the DSA framework generates similar management issues. Examples session using the 'br'[1] tool to add, dump and then delete a mac address with a new "embedded" option and enabled ixgbe driver: # br fdb add 22:35:19:ac:60:59 dev eth3 # br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static #br fdb add 22:35:19:ac:60:59 embedded dev eth3 #br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static eth3 22:35:19:ac:60:59 local embedded #br fdb del 22:35:19:ac:60:59 embedded dev eth3 I added a couple lines to 'br' to set the flags correctly is all. It is my opinion that the merit of this patch is now embedded and SW bridges can both be modeled correctly in user space using very nearly the same message passing. [1] 'br' tool was published as an RFC here and will be renamed 'bridge' http://patchwork.ozlabs.org/patch/117664/ Thanks to Jamal Hadi Salim, Stephen Hemminger and Ben Hutchings for valuable feedback, suggestions, and review. v2: fixed api descriptions and error case with both NTF_SELF and NTF_MASTER set plus updated patch description. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-15 00:43:56 -06:00
if (err)
goto out;
else
ndm->ndm_flags &= ~NTF_MASTER;
}
/* Embedded bridge, macvlan, and any other device support */
if ((ndm->ndm_flags & NTF_SELF)) {
if (dev->netdev_ops->ndo_fdb_add)
err = dev->netdev_ops->ndo_fdb_add(ndm, tb, dev, addr,
vid,
nlh->nlmsg_flags);
else
err = ndo_dflt_fdb_add(ndm, tb, dev, addr, vid,
nlh->nlmsg_flags);
net: add generic PF_BRIDGE:RTM_ FDB hooks This adds two new flags NTF_MASTER and NTF_SELF that can now be used to specify where PF_BRIDGE netlink commands should be sent. NTF_MASTER sends the commands to the 'dev->master' device for parsing. Typically this will be the linux net/bridge, or open-vswitch devices. Also without any flags set the command will be handled by the master device as well so that current user space tools continue to work as expected. The NTF_SELF flag will push the PF_BRIDGE commands to the device. In the basic example below the commands are then parsed and programmed in the embedded bridge. Note if both NTF_SELF and NTF_MASTER bits are set then the command will be sent to both 'dev->master' and 'dev' this allows user space to easily keep the embedded bridge and software bridge in sync. There is a slight complication in the case with both flags set when an error occurs. To resolve this the rtnl handler clears the NTF_ flag in the netlink ack to indicate which sets completed successfully. The add/del handlers will abort as soon as any error occurs. To support this new net device ops were added to call into the device and the existing bridging code was refactored to use these. There should be no required changes in user space to support the current bridge behavior. A basic setup with a SR-IOV enabled NIC looks like this, veth0 veth2 | | ------------ | bridge0 | <---- software bridging ------------ / / ethx.y ethx VF PF \ \ <---- propagate FDB entries to HW \ \ -------------------- | Embedded Bridge | <---- hardware offloaded switching -------------------- In this case the embedded bridge must be managed to allow 'veth0' to communicate with 'ethx.y' correctly. At present drivers managing the embedded bridge either send frames onto the network which then get dropped by the switch OR the embedded bridge will flood these frames. With this patch we have a mechanism to manage the embedded bridge correctly from user space. This example is specific to SR-IOV but replacing the VF with another PF or dropping this into the DSA framework generates similar management issues. Examples session using the 'br'[1] tool to add, dump and then delete a mac address with a new "embedded" option and enabled ixgbe driver: # br fdb add 22:35:19:ac:60:59 dev eth3 # br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static #br fdb add 22:35:19:ac:60:59 embedded dev eth3 #br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static eth3 22:35:19:ac:60:59 local embedded #br fdb del 22:35:19:ac:60:59 embedded dev eth3 I added a couple lines to 'br' to set the flags correctly is all. It is my opinion that the merit of this patch is now embedded and SW bridges can both be modeled correctly in user space using very nearly the same message passing. [1] 'br' tool was published as an RFC here and will be renamed 'bridge' http://patchwork.ozlabs.org/patch/117664/ Thanks to Jamal Hadi Salim, Stephen Hemminger and Ben Hutchings for valuable feedback, suggestions, and review. v2: fixed api descriptions and error case with both NTF_SELF and NTF_MASTER set plus updated patch description. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-15 00:43:56 -06:00
if (!err) {
rtnl_fdb_notify(dev, addr, vid, RTM_NEWNEIGH,
ndm->ndm_state);
net: add generic PF_BRIDGE:RTM_ FDB hooks This adds two new flags NTF_MASTER and NTF_SELF that can now be used to specify where PF_BRIDGE netlink commands should be sent. NTF_MASTER sends the commands to the 'dev->master' device for parsing. Typically this will be the linux net/bridge, or open-vswitch devices. Also without any flags set the command will be handled by the master device as well so that current user space tools continue to work as expected. The NTF_SELF flag will push the PF_BRIDGE commands to the device. In the basic example below the commands are then parsed and programmed in the embedded bridge. Note if both NTF_SELF and NTF_MASTER bits are set then the command will be sent to both 'dev->master' and 'dev' this allows user space to easily keep the embedded bridge and software bridge in sync. There is a slight complication in the case with both flags set when an error occurs. To resolve this the rtnl handler clears the NTF_ flag in the netlink ack to indicate which sets completed successfully. The add/del handlers will abort as soon as any error occurs. To support this new net device ops were added to call into the device and the existing bridging code was refactored to use these. There should be no required changes in user space to support the current bridge behavior. A basic setup with a SR-IOV enabled NIC looks like this, veth0 veth2 | | ------------ | bridge0 | <---- software bridging ------------ / / ethx.y ethx VF PF \ \ <---- propagate FDB entries to HW \ \ -------------------- | Embedded Bridge | <---- hardware offloaded switching -------------------- In this case the embedded bridge must be managed to allow 'veth0' to communicate with 'ethx.y' correctly. At present drivers managing the embedded bridge either send frames onto the network which then get dropped by the switch OR the embedded bridge will flood these frames. With this patch we have a mechanism to manage the embedded bridge correctly from user space. This example is specific to SR-IOV but replacing the VF with another PF or dropping this into the DSA framework generates similar management issues. Examples session using the 'br'[1] tool to add, dump and then delete a mac address with a new "embedded" option and enabled ixgbe driver: # br fdb add 22:35:19:ac:60:59 dev eth3 # br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static #br fdb add 22:35:19:ac:60:59 embedded dev eth3 #br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static eth3 22:35:19:ac:60:59 local embedded #br fdb del 22:35:19:ac:60:59 embedded dev eth3 I added a couple lines to 'br' to set the flags correctly is all. It is my opinion that the merit of this patch is now embedded and SW bridges can both be modeled correctly in user space using very nearly the same message passing. [1] 'br' tool was published as an RFC here and will be renamed 'bridge' http://patchwork.ozlabs.org/patch/117664/ Thanks to Jamal Hadi Salim, Stephen Hemminger and Ben Hutchings for valuable feedback, suggestions, and review. v2: fixed api descriptions and error case with both NTF_SELF and NTF_MASTER set plus updated patch description. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-15 00:43:56 -06:00
ndm->ndm_flags &= ~NTF_SELF;
}
net: add generic PF_BRIDGE:RTM_ FDB hooks This adds two new flags NTF_MASTER and NTF_SELF that can now be used to specify where PF_BRIDGE netlink commands should be sent. NTF_MASTER sends the commands to the 'dev->master' device for parsing. Typically this will be the linux net/bridge, or open-vswitch devices. Also without any flags set the command will be handled by the master device as well so that current user space tools continue to work as expected. The NTF_SELF flag will push the PF_BRIDGE commands to the device. In the basic example below the commands are then parsed and programmed in the embedded bridge. Note if both NTF_SELF and NTF_MASTER bits are set then the command will be sent to both 'dev->master' and 'dev' this allows user space to easily keep the embedded bridge and software bridge in sync. There is a slight complication in the case with both flags set when an error occurs. To resolve this the rtnl handler clears the NTF_ flag in the netlink ack to indicate which sets completed successfully. The add/del handlers will abort as soon as any error occurs. To support this new net device ops were added to call into the device and the existing bridging code was refactored to use these. There should be no required changes in user space to support the current bridge behavior. A basic setup with a SR-IOV enabled NIC looks like this, veth0 veth2 | | ------------ | bridge0 | <---- software bridging ------------ / / ethx.y ethx VF PF \ \ <---- propagate FDB entries to HW \ \ -------------------- | Embedded Bridge | <---- hardware offloaded switching -------------------- In this case the embedded bridge must be managed to allow 'veth0' to communicate with 'ethx.y' correctly. At present drivers managing the embedded bridge either send frames onto the network which then get dropped by the switch OR the embedded bridge will flood these frames. With this patch we have a mechanism to manage the embedded bridge correctly from user space. This example is specific to SR-IOV but replacing the VF with another PF or dropping this into the DSA framework generates similar management issues. Examples session using the 'br'[1] tool to add, dump and then delete a mac address with a new "embedded" option and enabled ixgbe driver: # br fdb add 22:35:19:ac:60:59 dev eth3 # br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static #br fdb add 22:35:19:ac:60:59 embedded dev eth3 #br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static eth3 22:35:19:ac:60:59 local embedded #br fdb del 22:35:19:ac:60:59 embedded dev eth3 I added a couple lines to 'br' to set the flags correctly is all. It is my opinion that the merit of this patch is now embedded and SW bridges can both be modeled correctly in user space using very nearly the same message passing. [1] 'br' tool was published as an RFC here and will be renamed 'bridge' http://patchwork.ozlabs.org/patch/117664/ Thanks to Jamal Hadi Salim, Stephen Hemminger and Ben Hutchings for valuable feedback, suggestions, and review. v2: fixed api descriptions and error case with both NTF_SELF and NTF_MASTER set plus updated patch description. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-15 00:43:56 -06:00
}
out:
return err;
}
/**
* ndo_dflt_fdb_del - default netdevice operation to delete an FDB entry
*/
int ndo_dflt_fdb_del(struct ndmsg *ndm,
struct nlattr *tb[],
struct net_device *dev,
const unsigned char *addr, u16 vid)
{
int err = -EINVAL;
/* If aging addresses are supported device will need to
* implement its own handler for this.
*/
if (!(ndm->ndm_state & NUD_PERMANENT)) {
pr_info("%s: FDB only supports static addresses\n", dev->name);
return err;
}
if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
err = dev_uc_del(dev, addr);
else if (is_multicast_ether_addr(addr))
err = dev_mc_del(dev, addr);
return err;
}
EXPORT_SYMBOL(ndo_dflt_fdb_del);
static int rtnl_fdb_del(struct sk_buff *skb, struct nlmsghdr *nlh,
struct netlink_ext_ack *extack)
net: add generic PF_BRIDGE:RTM_ FDB hooks This adds two new flags NTF_MASTER and NTF_SELF that can now be used to specify where PF_BRIDGE netlink commands should be sent. NTF_MASTER sends the commands to the 'dev->master' device for parsing. Typically this will be the linux net/bridge, or open-vswitch devices. Also without any flags set the command will be handled by the master device as well so that current user space tools continue to work as expected. The NTF_SELF flag will push the PF_BRIDGE commands to the device. In the basic example below the commands are then parsed and programmed in the embedded bridge. Note if both NTF_SELF and NTF_MASTER bits are set then the command will be sent to both 'dev->master' and 'dev' this allows user space to easily keep the embedded bridge and software bridge in sync. There is a slight complication in the case with both flags set when an error occurs. To resolve this the rtnl handler clears the NTF_ flag in the netlink ack to indicate which sets completed successfully. The add/del handlers will abort as soon as any error occurs. To support this new net device ops were added to call into the device and the existing bridging code was refactored to use these. There should be no required changes in user space to support the current bridge behavior. A basic setup with a SR-IOV enabled NIC looks like this, veth0 veth2 | | ------------ | bridge0 | <---- software bridging ------------ / / ethx.y ethx VF PF \ \ <---- propagate FDB entries to HW \ \ -------------------- | Embedded Bridge | <---- hardware offloaded switching -------------------- In this case the embedded bridge must be managed to allow 'veth0' to communicate with 'ethx.y' correctly. At present drivers managing the embedded bridge either send frames onto the network which then get dropped by the switch OR the embedded bridge will flood these frames. With this patch we have a mechanism to manage the embedded bridge correctly from user space. This example is specific to SR-IOV but replacing the VF with another PF or dropping this into the DSA framework generates similar management issues. Examples session using the 'br'[1] tool to add, dump and then delete a mac address with a new "embedded" option and enabled ixgbe driver: # br fdb add 22:35:19:ac:60:59 dev eth3 # br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static #br fdb add 22:35:19:ac:60:59 embedded dev eth3 #br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static eth3 22:35:19:ac:60:59 local embedded #br fdb del 22:35:19:ac:60:59 embedded dev eth3 I added a couple lines to 'br' to set the flags correctly is all. It is my opinion that the merit of this patch is now embedded and SW bridges can both be modeled correctly in user space using very nearly the same message passing. [1] 'br' tool was published as an RFC here and will be renamed 'bridge' http://patchwork.ozlabs.org/patch/117664/ Thanks to Jamal Hadi Salim, Stephen Hemminger and Ben Hutchings for valuable feedback, suggestions, and review. v2: fixed api descriptions and error case with both NTF_SELF and NTF_MASTER set plus updated patch description. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-15 00:43:56 -06:00
{
struct net *net = sock_net(skb->sk);
struct ndmsg *ndm;
struct nlattr *tb[NDA_MAX+1];
net: add generic PF_BRIDGE:RTM_ FDB hooks This adds two new flags NTF_MASTER and NTF_SELF that can now be used to specify where PF_BRIDGE netlink commands should be sent. NTF_MASTER sends the commands to the 'dev->master' device for parsing. Typically this will be the linux net/bridge, or open-vswitch devices. Also without any flags set the command will be handled by the master device as well so that current user space tools continue to work as expected. The NTF_SELF flag will push the PF_BRIDGE commands to the device. In the basic example below the commands are then parsed and programmed in the embedded bridge. Note if both NTF_SELF and NTF_MASTER bits are set then the command will be sent to both 'dev->master' and 'dev' this allows user space to easily keep the embedded bridge and software bridge in sync. There is a slight complication in the case with both flags set when an error occurs. To resolve this the rtnl handler clears the NTF_ flag in the netlink ack to indicate which sets completed successfully. The add/del handlers will abort as soon as any error occurs. To support this new net device ops were added to call into the device and the existing bridging code was refactored to use these. There should be no required changes in user space to support the current bridge behavior. A basic setup with a SR-IOV enabled NIC looks like this, veth0 veth2 | | ------------ | bridge0 | <---- software bridging ------------ / / ethx.y ethx VF PF \ \ <---- propagate FDB entries to HW \ \ -------------------- | Embedded Bridge | <---- hardware offloaded switching -------------------- In this case the embedded bridge must be managed to allow 'veth0' to communicate with 'ethx.y' correctly. At present drivers managing the embedded bridge either send frames onto the network which then get dropped by the switch OR the embedded bridge will flood these frames. With this patch we have a mechanism to manage the embedded bridge correctly from user space. This example is specific to SR-IOV but replacing the VF with another PF or dropping this into the DSA framework generates similar management issues. Examples session using the 'br'[1] tool to add, dump and then delete a mac address with a new "embedded" option and enabled ixgbe driver: # br fdb add 22:35:19:ac:60:59 dev eth3 # br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static #br fdb add 22:35:19:ac:60:59 embedded dev eth3 #br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static eth3 22:35:19:ac:60:59 local embedded #br fdb del 22:35:19:ac:60:59 embedded dev eth3 I added a couple lines to 'br' to set the flags correctly is all. It is my opinion that the merit of this patch is now embedded and SW bridges can both be modeled correctly in user space using very nearly the same message passing. [1] 'br' tool was published as an RFC here and will be renamed 'bridge' http://patchwork.ozlabs.org/patch/117664/ Thanks to Jamal Hadi Salim, Stephen Hemminger and Ben Hutchings for valuable feedback, suggestions, and review. v2: fixed api descriptions and error case with both NTF_SELF and NTF_MASTER set plus updated patch description. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-15 00:43:56 -06:00
struct net_device *dev;
int err = -EINVAL;
__u8 *addr;
u16 vid;
net: add generic PF_BRIDGE:RTM_ FDB hooks This adds two new flags NTF_MASTER and NTF_SELF that can now be used to specify where PF_BRIDGE netlink commands should be sent. NTF_MASTER sends the commands to the 'dev->master' device for parsing. Typically this will be the linux net/bridge, or open-vswitch devices. Also without any flags set the command will be handled by the master device as well so that current user space tools continue to work as expected. The NTF_SELF flag will push the PF_BRIDGE commands to the device. In the basic example below the commands are then parsed and programmed in the embedded bridge. Note if both NTF_SELF and NTF_MASTER bits are set then the command will be sent to both 'dev->master' and 'dev' this allows user space to easily keep the embedded bridge and software bridge in sync. There is a slight complication in the case with both flags set when an error occurs. To resolve this the rtnl handler clears the NTF_ flag in the netlink ack to indicate which sets completed successfully. The add/del handlers will abort as soon as any error occurs. To support this new net device ops were added to call into the device and the existing bridging code was refactored to use these. There should be no required changes in user space to support the current bridge behavior. A basic setup with a SR-IOV enabled NIC looks like this, veth0 veth2 | | ------------ | bridge0 | <---- software bridging ------------ / / ethx.y ethx VF PF \ \ <---- propagate FDB entries to HW \ \ -------------------- | Embedded Bridge | <---- hardware offloaded switching -------------------- In this case the embedded bridge must be managed to allow 'veth0' to communicate with 'ethx.y' correctly. At present drivers managing the embedded bridge either send frames onto the network which then get dropped by the switch OR the embedded bridge will flood these frames. With this patch we have a mechanism to manage the embedded bridge correctly from user space. This example is specific to SR-IOV but replacing the VF with another PF or dropping this into the DSA framework generates similar management issues. Examples session using the 'br'[1] tool to add, dump and then delete a mac address with a new "embedded" option and enabled ixgbe driver: # br fdb add 22:35:19:ac:60:59 dev eth3 # br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static #br fdb add 22:35:19:ac:60:59 embedded dev eth3 #br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static eth3 22:35:19:ac:60:59 local embedded #br fdb del 22:35:19:ac:60:59 embedded dev eth3 I added a couple lines to 'br' to set the flags correctly is all. It is my opinion that the merit of this patch is now embedded and SW bridges can both be modeled correctly in user space using very nearly the same message passing. [1] 'br' tool was published as an RFC here and will be renamed 'bridge' http://patchwork.ozlabs.org/patch/117664/ Thanks to Jamal Hadi Salim, Stephen Hemminger and Ben Hutchings for valuable feedback, suggestions, and review. v2: fixed api descriptions and error case with both NTF_SELF and NTF_MASTER set plus updated patch description. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-15 00:43:56 -06:00
if (!netlink_capable(skb, CAP_NET_ADMIN))
return -EPERM;
err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL, extack);
if (err < 0)
return err;
net: add generic PF_BRIDGE:RTM_ FDB hooks This adds two new flags NTF_MASTER and NTF_SELF that can now be used to specify where PF_BRIDGE netlink commands should be sent. NTF_MASTER sends the commands to the 'dev->master' device for parsing. Typically this will be the linux net/bridge, or open-vswitch devices. Also without any flags set the command will be handled by the master device as well so that current user space tools continue to work as expected. The NTF_SELF flag will push the PF_BRIDGE commands to the device. In the basic example below the commands are then parsed and programmed in the embedded bridge. Note if both NTF_SELF and NTF_MASTER bits are set then the command will be sent to both 'dev->master' and 'dev' this allows user space to easily keep the embedded bridge and software bridge in sync. There is a slight complication in the case with both flags set when an error occurs. To resolve this the rtnl handler clears the NTF_ flag in the netlink ack to indicate which sets completed successfully. The add/del handlers will abort as soon as any error occurs. To support this new net device ops were added to call into the device and the existing bridging code was refactored to use these. There should be no required changes in user space to support the current bridge behavior. A basic setup with a SR-IOV enabled NIC looks like this, veth0 veth2 | | ------------ | bridge0 | <---- software bridging ------------ / / ethx.y ethx VF PF \ \ <---- propagate FDB entries to HW \ \ -------------------- | Embedded Bridge | <---- hardware offloaded switching -------------------- In this case the embedded bridge must be managed to allow 'veth0' to communicate with 'ethx.y' correctly. At present drivers managing the embedded bridge either send frames onto the network which then get dropped by the switch OR the embedded bridge will flood these frames. With this patch we have a mechanism to manage the embedded bridge correctly from user space. This example is specific to SR-IOV but replacing the VF with another PF or dropping this into the DSA framework generates similar management issues. Examples session using the 'br'[1] tool to add, dump and then delete a mac address with a new "embedded" option and enabled ixgbe driver: # br fdb add 22:35:19:ac:60:59 dev eth3 # br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static #br fdb add 22:35:19:ac:60:59 embedded dev eth3 #br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static eth3 22:35:19:ac:60:59 local embedded #br fdb del 22:35:19:ac:60:59 embedded dev eth3 I added a couple lines to 'br' to set the flags correctly is all. It is my opinion that the merit of this patch is now embedded and SW bridges can both be modeled correctly in user space using very nearly the same message passing. [1] 'br' tool was published as an RFC here and will be renamed 'bridge' http://patchwork.ozlabs.org/patch/117664/ Thanks to Jamal Hadi Salim, Stephen Hemminger and Ben Hutchings for valuable feedback, suggestions, and review. v2: fixed api descriptions and error case with both NTF_SELF and NTF_MASTER set plus updated patch description. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-15 00:43:56 -06:00
ndm = nlmsg_data(nlh);
if (ndm->ndm_ifindex == 0) {
NL_SET_ERR_MSG(extack, "invalid ifindex");
net: add generic PF_BRIDGE:RTM_ FDB hooks This adds two new flags NTF_MASTER and NTF_SELF that can now be used to specify where PF_BRIDGE netlink commands should be sent. NTF_MASTER sends the commands to the 'dev->master' device for parsing. Typically this will be the linux net/bridge, or open-vswitch devices. Also without any flags set the command will be handled by the master device as well so that current user space tools continue to work as expected. The NTF_SELF flag will push the PF_BRIDGE commands to the device. In the basic example below the commands are then parsed and programmed in the embedded bridge. Note if both NTF_SELF and NTF_MASTER bits are set then the command will be sent to both 'dev->master' and 'dev' this allows user space to easily keep the embedded bridge and software bridge in sync. There is a slight complication in the case with both flags set when an error occurs. To resolve this the rtnl handler clears the NTF_ flag in the netlink ack to indicate which sets completed successfully. The add/del handlers will abort as soon as any error occurs. To support this new net device ops were added to call into the device and the existing bridging code was refactored to use these. There should be no required changes in user space to support the current bridge behavior. A basic setup with a SR-IOV enabled NIC looks like this, veth0 veth2 | | ------------ | bridge0 | <---- software bridging ------------ / / ethx.y ethx VF PF \ \ <---- propagate FDB entries to HW \ \ -------------------- | Embedded Bridge | <---- hardware offloaded switching -------------------- In this case the embedded bridge must be managed to allow 'veth0' to communicate with 'ethx.y' correctly. At present drivers managing the embedded bridge either send frames onto the network which then get dropped by the switch OR the embedded bridge will flood these frames. With this patch we have a mechanism to manage the embedded bridge correctly from user space. This example is specific to SR-IOV but replacing the VF with another PF or dropping this into the DSA framework generates similar management issues. Examples session using the 'br'[1] tool to add, dump and then delete a mac address with a new "embedded" option and enabled ixgbe driver: # br fdb add 22:35:19:ac:60:59 dev eth3 # br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static #br fdb add 22:35:19:ac:60:59 embedded dev eth3 #br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static eth3 22:35:19:ac:60:59 local embedded #br fdb del 22:35:19:ac:60:59 embedded dev eth3 I added a couple lines to 'br' to set the flags correctly is all. It is my opinion that the merit of this patch is now embedded and SW bridges can both be modeled correctly in user space using very nearly the same message passing. [1] 'br' tool was published as an RFC here and will be renamed 'bridge' http://patchwork.ozlabs.org/patch/117664/ Thanks to Jamal Hadi Salim, Stephen Hemminger and Ben Hutchings for valuable feedback, suggestions, and review. v2: fixed api descriptions and error case with both NTF_SELF and NTF_MASTER set plus updated patch description. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-15 00:43:56 -06:00
return -EINVAL;
}
dev = __dev_get_by_index(net, ndm->ndm_ifindex);
if (dev == NULL) {
NL_SET_ERR_MSG(extack, "unknown ifindex");
net: add generic PF_BRIDGE:RTM_ FDB hooks This adds two new flags NTF_MASTER and NTF_SELF that can now be used to specify where PF_BRIDGE netlink commands should be sent. NTF_MASTER sends the commands to the 'dev->master' device for parsing. Typically this will be the linux net/bridge, or open-vswitch devices. Also without any flags set the command will be handled by the master device as well so that current user space tools continue to work as expected. The NTF_SELF flag will push the PF_BRIDGE commands to the device. In the basic example below the commands are then parsed and programmed in the embedded bridge. Note if both NTF_SELF and NTF_MASTER bits are set then the command will be sent to both 'dev->master' and 'dev' this allows user space to easily keep the embedded bridge and software bridge in sync. There is a slight complication in the case with both flags set when an error occurs. To resolve this the rtnl handler clears the NTF_ flag in the netlink ack to indicate which sets completed successfully. The add/del handlers will abort as soon as any error occurs. To support this new net device ops were added to call into the device and the existing bridging code was refactored to use these. There should be no required changes in user space to support the current bridge behavior. A basic setup with a SR-IOV enabled NIC looks like this, veth0 veth2 | | ------------ | bridge0 | <---- software bridging ------------ / / ethx.y ethx VF PF \ \ <---- propagate FDB entries to HW \ \ -------------------- | Embedded Bridge | <---- hardware offloaded switching -------------------- In this case the embedded bridge must be managed to allow 'veth0' to communicate with 'ethx.y' correctly. At present drivers managing the embedded bridge either send frames onto the network which then get dropped by the switch OR the embedded bridge will flood these frames. With this patch we have a mechanism to manage the embedded bridge correctly from user space. This example is specific to SR-IOV but replacing the VF with another PF or dropping this into the DSA framework generates similar management issues. Examples session using the 'br'[1] tool to add, dump and then delete a mac address with a new "embedded" option and enabled ixgbe driver: # br fdb add 22:35:19:ac:60:59 dev eth3 # br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static #br fdb add 22:35:19:ac:60:59 embedded dev eth3 #br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static eth3 22:35:19:ac:60:59 local embedded #br fdb del 22:35:19:ac:60:59 embedded dev eth3 I added a couple lines to 'br' to set the flags correctly is all. It is my opinion that the merit of this patch is now embedded and SW bridges can both be modeled correctly in user space using very nearly the same message passing. [1] 'br' tool was published as an RFC here and will be renamed 'bridge' http://patchwork.ozlabs.org/patch/117664/ Thanks to Jamal Hadi Salim, Stephen Hemminger and Ben Hutchings for valuable feedback, suggestions, and review. v2: fixed api descriptions and error case with both NTF_SELF and NTF_MASTER set plus updated patch description. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-15 00:43:56 -06:00
return -ENODEV;
}
if (!tb[NDA_LLADDR] || nla_len(tb[NDA_LLADDR]) != ETH_ALEN) {
NL_SET_ERR_MSG(extack, "invalid address");
return -EINVAL;
}
rtnetlink: Disallow FDB configuration for non-Ethernet device When an FDB entry is configured, the address is validated to have the length of an Ethernet address, but the device for which the address is configured can be of any type. The above can result in the use of uninitialized memory when the address is later compared against existing addresses since 'dev->addr_len' is used and it may be greater than ETH_ALEN, as with ip6tnl devices. Fix this by making sure that FDB entries are only configured for Ethernet devices. BUG: KMSAN: uninit-value in memcmp+0x11d/0x180 lib/string.c:863 CPU: 1 PID: 4318 Comm: syz-executor998 Not tainted 4.19.0-rc3+ #49 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x14b/0x190 lib/dump_stack.c:113 kmsan_report+0x183/0x2b0 mm/kmsan/kmsan.c:956 __msan_warning+0x70/0xc0 mm/kmsan/kmsan_instr.c:645 memcmp+0x11d/0x180 lib/string.c:863 dev_uc_add_excl+0x165/0x7b0 net/core/dev_addr_lists.c:464 ndo_dflt_fdb_add net/core/rtnetlink.c:3463 [inline] rtnl_fdb_add+0x1081/0x1270 net/core/rtnetlink.c:3558 rtnetlink_rcv_msg+0xa0b/0x1530 net/core/rtnetlink.c:4715 netlink_rcv_skb+0x36e/0x5f0 net/netlink/af_netlink.c:2454 rtnetlink_rcv+0x50/0x60 net/core/rtnetlink.c:4733 netlink_unicast_kernel net/netlink/af_netlink.c:1317 [inline] netlink_unicast+0x1638/0x1720 net/netlink/af_netlink.c:1343 netlink_sendmsg+0x1205/0x1290 net/netlink/af_netlink.c:1908 sock_sendmsg_nosec net/socket.c:621 [inline] sock_sendmsg net/socket.c:631 [inline] ___sys_sendmsg+0xe70/0x1290 net/socket.c:2114 __sys_sendmsg net/socket.c:2152 [inline] __do_sys_sendmsg net/socket.c:2161 [inline] __se_sys_sendmsg+0x2a3/0x3d0 net/socket.c:2159 __x64_sys_sendmsg+0x4a/0x70 net/socket.c:2159 do_syscall_64+0xb8/0x100 arch/x86/entry/common.c:291 entry_SYSCALL_64_after_hwframe+0x63/0xe7 RIP: 0033:0x440ee9 Code: e8 cc ab 02 00 48 83 c4 18 c3 0f 1f 80 00 00 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 bb 0a fc ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007fff6a93b518 EFLAGS: 00000213 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 0000000000440ee9 RDX: 0000000000000000 RSI: 0000000020000240 RDI: 0000000000000003 RBP: 0000000000000000 R08: 00000000004002c8 R09: 00000000004002c8 R10: 00000000004002c8 R11: 0000000000000213 R12: 000000000000b4b0 R13: 0000000000401ec0 R14: 0000000000000000 R15: 0000000000000000 Uninit was created at: kmsan_save_stack_with_flags mm/kmsan/kmsan.c:256 [inline] kmsan_internal_poison_shadow+0xb8/0x1b0 mm/kmsan/kmsan.c:181 kmsan_kmalloc+0x98/0x100 mm/kmsan/kmsan_hooks.c:91 kmsan_slab_alloc+0x10/0x20 mm/kmsan/kmsan_hooks.c:100 slab_post_alloc_hook mm/slab.h:446 [inline] slab_alloc_node mm/slub.c:2718 [inline] __kmalloc_node_track_caller+0x9e7/0x1160 mm/slub.c:4351 __kmalloc_reserve net/core/skbuff.c:138 [inline] __alloc_skb+0x2f5/0x9e0 net/core/skbuff.c:206 alloc_skb include/linux/skbuff.h:996 [inline] netlink_alloc_large_skb net/netlink/af_netlink.c:1189 [inline] netlink_sendmsg+0xb49/0x1290 net/netlink/af_netlink.c:1883 sock_sendmsg_nosec net/socket.c:621 [inline] sock_sendmsg net/socket.c:631 [inline] ___sys_sendmsg+0xe70/0x1290 net/socket.c:2114 __sys_sendmsg net/socket.c:2152 [inline] __do_sys_sendmsg net/socket.c:2161 [inline] __se_sys_sendmsg+0x2a3/0x3d0 net/socket.c:2159 __x64_sys_sendmsg+0x4a/0x70 net/socket.c:2159 do_syscall_64+0xb8/0x100 arch/x86/entry/common.c:291 entry_SYSCALL_64_after_hwframe+0x63/0xe7 v2: * Make error message more specific (David) Fixes: 090096bf3db1 ("net: generic fdb support for drivers without ndo_fdb_<op>") Signed-off-by: Ido Schimmel <idosch@mellanox.com> Reported-and-tested-by: syzbot+3a288d5f5530b901310e@syzkaller.appspotmail.com Reported-and-tested-by: syzbot+d53ab4e92a1db04110ff@syzkaller.appspotmail.com Cc: Vlad Yasevich <vyasevich@gmail.com> Cc: David Ahern <dsahern@gmail.com> Reviewed-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-29 14:36:43 -06:00
if (dev->type != ARPHRD_ETHER) {
NL_SET_ERR_MSG(extack, "FDB delete only supported for Ethernet devices");
return -EINVAL;
}
addr = nla_data(tb[NDA_LLADDR]);
net: add generic PF_BRIDGE:RTM_ FDB hooks This adds two new flags NTF_MASTER and NTF_SELF that can now be used to specify where PF_BRIDGE netlink commands should be sent. NTF_MASTER sends the commands to the 'dev->master' device for parsing. Typically this will be the linux net/bridge, or open-vswitch devices. Also without any flags set the command will be handled by the master device as well so that current user space tools continue to work as expected. The NTF_SELF flag will push the PF_BRIDGE commands to the device. In the basic example below the commands are then parsed and programmed in the embedded bridge. Note if both NTF_SELF and NTF_MASTER bits are set then the command will be sent to both 'dev->master' and 'dev' this allows user space to easily keep the embedded bridge and software bridge in sync. There is a slight complication in the case with both flags set when an error occurs. To resolve this the rtnl handler clears the NTF_ flag in the netlink ack to indicate which sets completed successfully. The add/del handlers will abort as soon as any error occurs. To support this new net device ops were added to call into the device and the existing bridging code was refactored to use these. There should be no required changes in user space to support the current bridge behavior. A basic setup with a SR-IOV enabled NIC looks like this, veth0 veth2 | | ------------ | bridge0 | <---- software bridging ------------ / / ethx.y ethx VF PF \ \ <---- propagate FDB entries to HW \ \ -------------------- | Embedded Bridge | <---- hardware offloaded switching -------------------- In this case the embedded bridge must be managed to allow 'veth0' to communicate with 'ethx.y' correctly. At present drivers managing the embedded bridge either send frames onto the network which then get dropped by the switch OR the embedded bridge will flood these frames. With this patch we have a mechanism to manage the embedded bridge correctly from user space. This example is specific to SR-IOV but replacing the VF with another PF or dropping this into the DSA framework generates similar management issues. Examples session using the 'br'[1] tool to add, dump and then delete a mac address with a new "embedded" option and enabled ixgbe driver: # br fdb add 22:35:19:ac:60:59 dev eth3 # br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static #br fdb add 22:35:19:ac:60:59 embedded dev eth3 #br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static eth3 22:35:19:ac:60:59 local embedded #br fdb del 22:35:19:ac:60:59 embedded dev eth3 I added a couple lines to 'br' to set the flags correctly is all. It is my opinion that the merit of this patch is now embedded and SW bridges can both be modeled correctly in user space using very nearly the same message passing. [1] 'br' tool was published as an RFC here and will be renamed 'bridge' http://patchwork.ozlabs.org/patch/117664/ Thanks to Jamal Hadi Salim, Stephen Hemminger and Ben Hutchings for valuable feedback, suggestions, and review. v2: fixed api descriptions and error case with both NTF_SELF and NTF_MASTER set plus updated patch description. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-15 00:43:56 -06:00
err = fdb_vid_parse(tb[NDA_VLAN], &vid, extack);
if (err)
return err;
net: add generic PF_BRIDGE:RTM_ FDB hooks This adds two new flags NTF_MASTER and NTF_SELF that can now be used to specify where PF_BRIDGE netlink commands should be sent. NTF_MASTER sends the commands to the 'dev->master' device for parsing. Typically this will be the linux net/bridge, or open-vswitch devices. Also without any flags set the command will be handled by the master device as well so that current user space tools continue to work as expected. The NTF_SELF flag will push the PF_BRIDGE commands to the device. In the basic example below the commands are then parsed and programmed in the embedded bridge. Note if both NTF_SELF and NTF_MASTER bits are set then the command will be sent to both 'dev->master' and 'dev' this allows user space to easily keep the embedded bridge and software bridge in sync. There is a slight complication in the case with both flags set when an error occurs. To resolve this the rtnl handler clears the NTF_ flag in the netlink ack to indicate which sets completed successfully. The add/del handlers will abort as soon as any error occurs. To support this new net device ops were added to call into the device and the existing bridging code was refactored to use these. There should be no required changes in user space to support the current bridge behavior. A basic setup with a SR-IOV enabled NIC looks like this, veth0 veth2 | | ------------ | bridge0 | <---- software bridging ------------ / / ethx.y ethx VF PF \ \ <---- propagate FDB entries to HW \ \ -------------------- | Embedded Bridge | <---- hardware offloaded switching -------------------- In this case the embedded bridge must be managed to allow 'veth0' to communicate with 'ethx.y' correctly. At present drivers managing the embedded bridge either send frames onto the network which then get dropped by the switch OR the embedded bridge will flood these frames. With this patch we have a mechanism to manage the embedded bridge correctly from user space. This example is specific to SR-IOV but replacing the VF with another PF or dropping this into the DSA framework generates similar management issues. Examples session using the 'br'[1] tool to add, dump and then delete a mac address with a new "embedded" option and enabled ixgbe driver: # br fdb add 22:35:19:ac:60:59 dev eth3 # br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static #br fdb add 22:35:19:ac:60:59 embedded dev eth3 #br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static eth3 22:35:19:ac:60:59 local embedded #br fdb del 22:35:19:ac:60:59 embedded dev eth3 I added a couple lines to 'br' to set the flags correctly is all. It is my opinion that the merit of this patch is now embedded and SW bridges can both be modeled correctly in user space using very nearly the same message passing. [1] 'br' tool was published as an RFC here and will be renamed 'bridge' http://patchwork.ozlabs.org/patch/117664/ Thanks to Jamal Hadi Salim, Stephen Hemminger and Ben Hutchings for valuable feedback, suggestions, and review. v2: fixed api descriptions and error case with both NTF_SELF and NTF_MASTER set plus updated patch description. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-15 00:43:56 -06:00
err = -EOPNOTSUPP;
/* Support fdb on master device the net/bridge default case */
if ((!ndm->ndm_flags || ndm->ndm_flags & NTF_MASTER) &&
(dev->priv_flags & IFF_BRIDGE_PORT)) {
struct net_device *br_dev = netdev_master_upper_dev_get(dev);
const struct net_device_ops *ops = br_dev->netdev_ops;
net: add generic PF_BRIDGE:RTM_ FDB hooks This adds two new flags NTF_MASTER and NTF_SELF that can now be used to specify where PF_BRIDGE netlink commands should be sent. NTF_MASTER sends the commands to the 'dev->master' device for parsing. Typically this will be the linux net/bridge, or open-vswitch devices. Also without any flags set the command will be handled by the master device as well so that current user space tools continue to work as expected. The NTF_SELF flag will push the PF_BRIDGE commands to the device. In the basic example below the commands are then parsed and programmed in the embedded bridge. Note if both NTF_SELF and NTF_MASTER bits are set then the command will be sent to both 'dev->master' and 'dev' this allows user space to easily keep the embedded bridge and software bridge in sync. There is a slight complication in the case with both flags set when an error occurs. To resolve this the rtnl handler clears the NTF_ flag in the netlink ack to indicate which sets completed successfully. The add/del handlers will abort as soon as any error occurs. To support this new net device ops were added to call into the device and the existing bridging code was refactored to use these. There should be no required changes in user space to support the current bridge behavior. A basic setup with a SR-IOV enabled NIC looks like this, veth0 veth2 | | ------------ | bridge0 | <---- software bridging ------------ / / ethx.y ethx VF PF \ \ <---- propagate FDB entries to HW \ \ -------------------- | Embedded Bridge | <---- hardware offloaded switching -------------------- In this case the embedded bridge must be managed to allow 'veth0' to communicate with 'ethx.y' correctly. At present drivers managing the embedded bridge either send frames onto the network which then get dropped by the switch OR the embedded bridge will flood these frames. With this patch we have a mechanism to manage the embedded bridge correctly from user space. This example is specific to SR-IOV but replacing the VF with another PF or dropping this into the DSA framework generates similar management issues. Examples session using the 'br'[1] tool to add, dump and then delete a mac address with a new "embedded" option and enabled ixgbe driver: # br fdb add 22:35:19:ac:60:59 dev eth3 # br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static #br fdb add 22:35:19:ac:60:59 embedded dev eth3 #br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static eth3 22:35:19:ac:60:59 local embedded #br fdb del 22:35:19:ac:60:59 embedded dev eth3 I added a couple lines to 'br' to set the flags correctly is all. It is my opinion that the merit of this patch is now embedded and SW bridges can both be modeled correctly in user space using very nearly the same message passing. [1] 'br' tool was published as an RFC here and will be renamed 'bridge' http://patchwork.ozlabs.org/patch/117664/ Thanks to Jamal Hadi Salim, Stephen Hemminger and Ben Hutchings for valuable feedback, suggestions, and review. v2: fixed api descriptions and error case with both NTF_SELF and NTF_MASTER set plus updated patch description. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-15 00:43:56 -06:00
if (ops->ndo_fdb_del)
err = ops->ndo_fdb_del(ndm, tb, dev, addr, vid);
net: add generic PF_BRIDGE:RTM_ FDB hooks This adds two new flags NTF_MASTER and NTF_SELF that can now be used to specify where PF_BRIDGE netlink commands should be sent. NTF_MASTER sends the commands to the 'dev->master' device for parsing. Typically this will be the linux net/bridge, or open-vswitch devices. Also without any flags set the command will be handled by the master device as well so that current user space tools continue to work as expected. The NTF_SELF flag will push the PF_BRIDGE commands to the device. In the basic example below the commands are then parsed and programmed in the embedded bridge. Note if both NTF_SELF and NTF_MASTER bits are set then the command will be sent to both 'dev->master' and 'dev' this allows user space to easily keep the embedded bridge and software bridge in sync. There is a slight complication in the case with both flags set when an error occurs. To resolve this the rtnl handler clears the NTF_ flag in the netlink ack to indicate which sets completed successfully. The add/del handlers will abort as soon as any error occurs. To support this new net device ops were added to call into the device and the existing bridging code was refactored to use these. There should be no required changes in user space to support the current bridge behavior. A basic setup with a SR-IOV enabled NIC looks like this, veth0 veth2 | | ------------ | bridge0 | <---- software bridging ------------ / / ethx.y ethx VF PF \ \ <---- propagate FDB entries to HW \ \ -------------------- | Embedded Bridge | <---- hardware offloaded switching -------------------- In this case the embedded bridge must be managed to allow 'veth0' to communicate with 'ethx.y' correctly. At present drivers managing the embedded bridge either send frames onto the network which then get dropped by the switch OR the embedded bridge will flood these frames. With this patch we have a mechanism to manage the embedded bridge correctly from user space. This example is specific to SR-IOV but replacing the VF with another PF or dropping this into the DSA framework generates similar management issues. Examples session using the 'br'[1] tool to add, dump and then delete a mac address with a new "embedded" option and enabled ixgbe driver: # br fdb add 22:35:19:ac:60:59 dev eth3 # br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static #br fdb add 22:35:19:ac:60:59 embedded dev eth3 #br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static eth3 22:35:19:ac:60:59 local embedded #br fdb del 22:35:19:ac:60:59 embedded dev eth3 I added a couple lines to 'br' to set the flags correctly is all. It is my opinion that the merit of this patch is now embedded and SW bridges can both be modeled correctly in user space using very nearly the same message passing. [1] 'br' tool was published as an RFC here and will be renamed 'bridge' http://patchwork.ozlabs.org/patch/117664/ Thanks to Jamal Hadi Salim, Stephen Hemminger and Ben Hutchings for valuable feedback, suggestions, and review. v2: fixed api descriptions and error case with both NTF_SELF and NTF_MASTER set plus updated patch description. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-15 00:43:56 -06:00
if (err)
goto out;
else
ndm->ndm_flags &= ~NTF_MASTER;
}
/* Embedded bridge, macvlan, and any other device support */
if (ndm->ndm_flags & NTF_SELF) {
if (dev->netdev_ops->ndo_fdb_del)
err = dev->netdev_ops->ndo_fdb_del(ndm, tb, dev, addr,
vid);
else
err = ndo_dflt_fdb_del(ndm, tb, dev, addr, vid);
net: add generic PF_BRIDGE:RTM_ FDB hooks This adds two new flags NTF_MASTER and NTF_SELF that can now be used to specify where PF_BRIDGE netlink commands should be sent. NTF_MASTER sends the commands to the 'dev->master' device for parsing. Typically this will be the linux net/bridge, or open-vswitch devices. Also without any flags set the command will be handled by the master device as well so that current user space tools continue to work as expected. The NTF_SELF flag will push the PF_BRIDGE commands to the device. In the basic example below the commands are then parsed and programmed in the embedded bridge. Note if both NTF_SELF and NTF_MASTER bits are set then the command will be sent to both 'dev->master' and 'dev' this allows user space to easily keep the embedded bridge and software bridge in sync. There is a slight complication in the case with both flags set when an error occurs. To resolve this the rtnl handler clears the NTF_ flag in the netlink ack to indicate which sets completed successfully. The add/del handlers will abort as soon as any error occurs. To support this new net device ops were added to call into the device and the existing bridging code was refactored to use these. There should be no required changes in user space to support the current bridge behavior. A basic setup with a SR-IOV enabled NIC looks like this, veth0 veth2 | | ------------ | bridge0 | <---- software bridging ------------ / / ethx.y ethx VF PF \ \ <---- propagate FDB entries to HW \ \ -------------------- | Embedded Bridge | <---- hardware offloaded switching -------------------- In this case the embedded bridge must be managed to allow 'veth0' to communicate with 'ethx.y' correctly. At present drivers managing the embedded bridge either send frames onto the network which then get dropped by the switch OR the embedded bridge will flood these frames. With this patch we have a mechanism to manage the embedded bridge correctly from user space. This example is specific to SR-IOV but replacing the VF with another PF or dropping this into the DSA framework generates similar management issues. Examples session using the 'br'[1] tool to add, dump and then delete a mac address with a new "embedded" option and enabled ixgbe driver: # br fdb add 22:35:19:ac:60:59 dev eth3 # br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static #br fdb add 22:35:19:ac:60:59 embedded dev eth3 #br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static eth3 22:35:19:ac:60:59 local embedded #br fdb del 22:35:19:ac:60:59 embedded dev eth3 I added a couple lines to 'br' to set the flags correctly is all. It is my opinion that the merit of this patch is now embedded and SW bridges can both be modeled correctly in user space using very nearly the same message passing. [1] 'br' tool was published as an RFC here and will be renamed 'bridge' http://patchwork.ozlabs.org/patch/117664/ Thanks to Jamal Hadi Salim, Stephen Hemminger and Ben Hutchings for valuable feedback, suggestions, and review. v2: fixed api descriptions and error case with both NTF_SELF and NTF_MASTER set plus updated patch description. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-15 00:43:56 -06:00
if (!err) {
rtnl_fdb_notify(dev, addr, vid, RTM_DELNEIGH,
ndm->ndm_state);
net: add generic PF_BRIDGE:RTM_ FDB hooks This adds two new flags NTF_MASTER and NTF_SELF that can now be used to specify where PF_BRIDGE netlink commands should be sent. NTF_MASTER sends the commands to the 'dev->master' device for parsing. Typically this will be the linux net/bridge, or open-vswitch devices. Also without any flags set the command will be handled by the master device as well so that current user space tools continue to work as expected. The NTF_SELF flag will push the PF_BRIDGE commands to the device. In the basic example below the commands are then parsed and programmed in the embedded bridge. Note if both NTF_SELF and NTF_MASTER bits are set then the command will be sent to both 'dev->master' and 'dev' this allows user space to easily keep the embedded bridge and software bridge in sync. There is a slight complication in the case with both flags set when an error occurs. To resolve this the rtnl handler clears the NTF_ flag in the netlink ack to indicate which sets completed successfully. The add/del handlers will abort as soon as any error occurs. To support this new net device ops were added to call into the device and the existing bridging code was refactored to use these. There should be no required changes in user space to support the current bridge behavior. A basic setup with a SR-IOV enabled NIC looks like this, veth0 veth2 | | ------------ | bridge0 | <---- software bridging ------------ / / ethx.y ethx VF PF \ \ <---- propagate FDB entries to HW \ \ -------------------- | Embedded Bridge | <---- hardware offloaded switching -------------------- In this case the embedded bridge must be managed to allow 'veth0' to communicate with 'ethx.y' correctly. At present drivers managing the embedded bridge either send frames onto the network which then get dropped by the switch OR the embedded bridge will flood these frames. With this patch we have a mechanism to manage the embedded bridge correctly from user space. This example is specific to SR-IOV but replacing the VF with another PF or dropping this into the DSA framework generates similar management issues. Examples session using the 'br'[1] tool to add, dump and then delete a mac address with a new "embedded" option and enabled ixgbe driver: # br fdb add 22:35:19:ac:60:59 dev eth3 # br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static #br fdb add 22:35:19:ac:60:59 embedded dev eth3 #br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static eth3 22:35:19:ac:60:59 local embedded #br fdb del 22:35:19:ac:60:59 embedded dev eth3 I added a couple lines to 'br' to set the flags correctly is all. It is my opinion that the merit of this patch is now embedded and SW bridges can both be modeled correctly in user space using very nearly the same message passing. [1] 'br' tool was published as an RFC here and will be renamed 'bridge' http://patchwork.ozlabs.org/patch/117664/ Thanks to Jamal Hadi Salim, Stephen Hemminger and Ben Hutchings for valuable feedback, suggestions, and review. v2: fixed api descriptions and error case with both NTF_SELF and NTF_MASTER set plus updated patch description. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-15 00:43:56 -06:00
ndm->ndm_flags &= ~NTF_SELF;
}
net: add generic PF_BRIDGE:RTM_ FDB hooks This adds two new flags NTF_MASTER and NTF_SELF that can now be used to specify where PF_BRIDGE netlink commands should be sent. NTF_MASTER sends the commands to the 'dev->master' device for parsing. Typically this will be the linux net/bridge, or open-vswitch devices. Also without any flags set the command will be handled by the master device as well so that current user space tools continue to work as expected. The NTF_SELF flag will push the PF_BRIDGE commands to the device. In the basic example below the commands are then parsed and programmed in the embedded bridge. Note if both NTF_SELF and NTF_MASTER bits are set then the command will be sent to both 'dev->master' and 'dev' this allows user space to easily keep the embedded bridge and software bridge in sync. There is a slight complication in the case with both flags set when an error occurs. To resolve this the rtnl handler clears the NTF_ flag in the netlink ack to indicate which sets completed successfully. The add/del handlers will abort as soon as any error occurs. To support this new net device ops were added to call into the device and the existing bridging code was refactored to use these. There should be no required changes in user space to support the current bridge behavior. A basic setup with a SR-IOV enabled NIC looks like this, veth0 veth2 | | ------------ | bridge0 | <---- software bridging ------------ / / ethx.y ethx VF PF \ \ <---- propagate FDB entries to HW \ \ -------------------- | Embedded Bridge | <---- hardware offloaded switching -------------------- In this case the embedded bridge must be managed to allow 'veth0' to communicate with 'ethx.y' correctly. At present drivers managing the embedded bridge either send frames onto the network which then get dropped by the switch OR the embedded bridge will flood these frames. With this patch we have a mechanism to manage the embedded bridge correctly from user space. This example is specific to SR-IOV but replacing the VF with another PF or dropping this into the DSA framework generates similar management issues. Examples session using the 'br'[1] tool to add, dump and then delete a mac address with a new "embedded" option and enabled ixgbe driver: # br fdb add 22:35:19:ac:60:59 dev eth3 # br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static #br fdb add 22:35:19:ac:60:59 embedded dev eth3 #br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static eth3 22:35:19:ac:60:59 local embedded #br fdb del 22:35:19:ac:60:59 embedded dev eth3 I added a couple lines to 'br' to set the flags correctly is all. It is my opinion that the merit of this patch is now embedded and SW bridges can both be modeled correctly in user space using very nearly the same message passing. [1] 'br' tool was published as an RFC here and will be renamed 'bridge' http://patchwork.ozlabs.org/patch/117664/ Thanks to Jamal Hadi Salim, Stephen Hemminger and Ben Hutchings for valuable feedback, suggestions, and review. v2: fixed api descriptions and error case with both NTF_SELF and NTF_MASTER set plus updated patch description. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-15 00:43:56 -06:00
}
out:
return err;
}
static int nlmsg_populate_fdb(struct sk_buff *skb,
struct netlink_callback *cb,
struct net_device *dev,
int *idx,
struct netdev_hw_addr_list *list)
{
struct netdev_hw_addr *ha;
int err;
u32 portid, seq;
portid = NETLINK_CB(cb->skb).portid;
seq = cb->nlh->nlmsg_seq;
list_for_each_entry(ha, &list->list, list) {
rtnetlink: fdb dump: optimize by saving last interface markers fdb dumps spanning multiple skb's currently restart from the first interface again for every skb. This results in unnecessary iterations on the already visited interfaces and their fdb entries. In large scale setups, we have seen this to slow down fdb dumps considerably. On a system with 30k macs we see fdb dumps spanning across more than 300 skbs. To fix the problem, this patch replaces the existing single fdb marker with three markers: netdev hash entries, netdevs and fdb index to continue where we left off instead of restarting from the first netdev. This is consistent with link dumps. In the process of fixing the performance issue, this patch also re-implements fix done by commit 472681d57a5d ("net: ndo_fdb_dump should report -EMSGSIZE to rtnl_fdb_dump") (with an internal fix from Wilson Kok) in the following ways: - change ndo_fdb_dump handlers to return error code instead of the last fdb index - use cb->args strictly for dump frag markers and not error codes. This is consistent with other dump functions. Below results were taken on a system with 1000 netdevs and 35085 fdb entries: before patch: $time bridge fdb show | wc -l 15065 real 1m11.791s user 0m0.070s sys 1m8.395s (existing code does not return all macs) after patch: $time bridge fdb show | wc -l 35085 real 0m2.017s user 0m0.113s sys 0m1.942s Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: Wilson Kok <wkok@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 22:56:45 -06:00
if (*idx < cb->args[2])
goto skip;
err = nlmsg_populate_fdb_fill(skb, dev, ha->addr, 0,
portid, seq,
RTM_NEWNEIGH, NTF_SELF,
NLM_F_MULTI, NUD_PERMANENT);
if (err < 0)
return err;
skip:
*idx += 1;
}
return 0;
}
/**
* ndo_dflt_fdb_dump - default netdevice operation to dump an FDB table.
* @nlh: netlink message header
* @dev: netdevice
*
* Default netdevice operation to dump the existing unicast address list.
* Returns number of addresses from list put in skb.
*/
int ndo_dflt_fdb_dump(struct sk_buff *skb,
struct netlink_callback *cb,
struct net_device *dev,
struct net_device *filter_dev,
rtnetlink: fdb dump: optimize by saving last interface markers fdb dumps spanning multiple skb's currently restart from the first interface again for every skb. This results in unnecessary iterations on the already visited interfaces and their fdb entries. In large scale setups, we have seen this to slow down fdb dumps considerably. On a system with 30k macs we see fdb dumps spanning across more than 300 skbs. To fix the problem, this patch replaces the existing single fdb marker with three markers: netdev hash entries, netdevs and fdb index to continue where we left off instead of restarting from the first netdev. This is consistent with link dumps. In the process of fixing the performance issue, this patch also re-implements fix done by commit 472681d57a5d ("net: ndo_fdb_dump should report -EMSGSIZE to rtnl_fdb_dump") (with an internal fix from Wilson Kok) in the following ways: - change ndo_fdb_dump handlers to return error code instead of the last fdb index - use cb->args strictly for dump frag markers and not error codes. This is consistent with other dump functions. Below results were taken on a system with 1000 netdevs and 35085 fdb entries: before patch: $time bridge fdb show | wc -l 15065 real 1m11.791s user 0m0.070s sys 1m8.395s (existing code does not return all macs) after patch: $time bridge fdb show | wc -l 35085 real 0m2.017s user 0m0.113s sys 0m1.942s Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: Wilson Kok <wkok@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 22:56:45 -06:00
int *idx)
{
int err;
netif_addr_lock_bh(dev);
rtnetlink: fdb dump: optimize by saving last interface markers fdb dumps spanning multiple skb's currently restart from the first interface again for every skb. This results in unnecessary iterations on the already visited interfaces and their fdb entries. In large scale setups, we have seen this to slow down fdb dumps considerably. On a system with 30k macs we see fdb dumps spanning across more than 300 skbs. To fix the problem, this patch replaces the existing single fdb marker with three markers: netdev hash entries, netdevs and fdb index to continue where we left off instead of restarting from the first netdev. This is consistent with link dumps. In the process of fixing the performance issue, this patch also re-implements fix done by commit 472681d57a5d ("net: ndo_fdb_dump should report -EMSGSIZE to rtnl_fdb_dump") (with an internal fix from Wilson Kok) in the following ways: - change ndo_fdb_dump handlers to return error code instead of the last fdb index - use cb->args strictly for dump frag markers and not error codes. This is consistent with other dump functions. Below results were taken on a system with 1000 netdevs and 35085 fdb entries: before patch: $time bridge fdb show | wc -l 15065 real 1m11.791s user 0m0.070s sys 1m8.395s (existing code does not return all macs) after patch: $time bridge fdb show | wc -l 35085 real 0m2.017s user 0m0.113s sys 0m1.942s Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: Wilson Kok <wkok@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 22:56:45 -06:00
err = nlmsg_populate_fdb(skb, cb, dev, idx, &dev->uc);
if (err)
goto out;
err = nlmsg_populate_fdb(skb, cb, dev, idx, &dev->mc);
out:
netif_addr_unlock_bh(dev);
rtnetlink: fdb dump: optimize by saving last interface markers fdb dumps spanning multiple skb's currently restart from the first interface again for every skb. This results in unnecessary iterations on the already visited interfaces and their fdb entries. In large scale setups, we have seen this to slow down fdb dumps considerably. On a system with 30k macs we see fdb dumps spanning across more than 300 skbs. To fix the problem, this patch replaces the existing single fdb marker with three markers: netdev hash entries, netdevs and fdb index to continue where we left off instead of restarting from the first netdev. This is consistent with link dumps. In the process of fixing the performance issue, this patch also re-implements fix done by commit 472681d57a5d ("net: ndo_fdb_dump should report -EMSGSIZE to rtnl_fdb_dump") (with an internal fix from Wilson Kok) in the following ways: - change ndo_fdb_dump handlers to return error code instead of the last fdb index - use cb->args strictly for dump frag markers and not error codes. This is consistent with other dump functions. Below results were taken on a system with 1000 netdevs and 35085 fdb entries: before patch: $time bridge fdb show | wc -l 15065 real 1m11.791s user 0m0.070s sys 1m8.395s (existing code does not return all macs) after patch: $time bridge fdb show | wc -l 35085 real 0m2.017s user 0m0.113s sys 0m1.942s Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: Wilson Kok <wkok@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 22:56:45 -06:00
return err;
}
EXPORT_SYMBOL(ndo_dflt_fdb_dump);
static int valid_fdb_dump_strict(const struct nlmsghdr *nlh,
int *br_idx, int *brport_idx,
struct netlink_ext_ack *extack)
{
struct nlattr *tb[NDA_MAX + 1];
struct ndmsg *ndm;
int err, i;
if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndm))) {
NL_SET_ERR_MSG(extack, "Invalid header for fdb dump request");
return -EINVAL;
}
ndm = nlmsg_data(nlh);
if (ndm->ndm_pad1 || ndm->ndm_pad2 || ndm->ndm_state ||
ndm->ndm_flags || ndm->ndm_type) {
NL_SET_ERR_MSG(extack, "Invalid values in header for fbd dump request");
return -EINVAL;
}
err = nlmsg_parse_strict(nlh, sizeof(struct ndmsg), tb, NDA_MAX,
NULL, extack);
if (err < 0)
return err;
*brport_idx = ndm->ndm_ifindex;
for (i = 0; i <= NDA_MAX; ++i) {
if (!tb[i])
continue;
switch (i) {
case NDA_IFINDEX:
if (nla_len(tb[i]) != sizeof(u32)) {
NL_SET_ERR_MSG(extack, "Invalid IFINDEX attribute in fdb dump request");
return -EINVAL;
}
*brport_idx = nla_get_u32(tb[NDA_IFINDEX]);
break;
case NDA_MASTER:
if (nla_len(tb[i]) != sizeof(u32)) {
NL_SET_ERR_MSG(extack, "Invalid MASTER attribute in fdb dump request");
return -EINVAL;
}
*br_idx = nla_get_u32(tb[NDA_MASTER]);
break;
default:
NL_SET_ERR_MSG(extack, "Unsupported attribute in fdb dump request");
return -EINVAL;
}
}
return 0;
}
static int valid_fdb_dump_legacy(const struct nlmsghdr *nlh,
int *br_idx, int *brport_idx,
struct netlink_ext_ack *extack)
net: add generic PF_BRIDGE:RTM_ FDB hooks This adds two new flags NTF_MASTER and NTF_SELF that can now be used to specify where PF_BRIDGE netlink commands should be sent. NTF_MASTER sends the commands to the 'dev->master' device for parsing. Typically this will be the linux net/bridge, or open-vswitch devices. Also without any flags set the command will be handled by the master device as well so that current user space tools continue to work as expected. The NTF_SELF flag will push the PF_BRIDGE commands to the device. In the basic example below the commands are then parsed and programmed in the embedded bridge. Note if both NTF_SELF and NTF_MASTER bits are set then the command will be sent to both 'dev->master' and 'dev' this allows user space to easily keep the embedded bridge and software bridge in sync. There is a slight complication in the case with both flags set when an error occurs. To resolve this the rtnl handler clears the NTF_ flag in the netlink ack to indicate which sets completed successfully. The add/del handlers will abort as soon as any error occurs. To support this new net device ops were added to call into the device and the existing bridging code was refactored to use these. There should be no required changes in user space to support the current bridge behavior. A basic setup with a SR-IOV enabled NIC looks like this, veth0 veth2 | | ------------ | bridge0 | <---- software bridging ------------ / / ethx.y ethx VF PF \ \ <---- propagate FDB entries to HW \ \ -------------------- | Embedded Bridge | <---- hardware offloaded switching -------------------- In this case the embedded bridge must be managed to allow 'veth0' to communicate with 'ethx.y' correctly. At present drivers managing the embedded bridge either send frames onto the network which then get dropped by the switch OR the embedded bridge will flood these frames. With this patch we have a mechanism to manage the embedded bridge correctly from user space. This example is specific to SR-IOV but replacing the VF with another PF or dropping this into the DSA framework generates similar management issues. Examples session using the 'br'[1] tool to add, dump and then delete a mac address with a new "embedded" option and enabled ixgbe driver: # br fdb add 22:35:19:ac:60:59 dev eth3 # br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static #br fdb add 22:35:19:ac:60:59 embedded dev eth3 #br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static eth3 22:35:19:ac:60:59 local embedded #br fdb del 22:35:19:ac:60:59 embedded dev eth3 I added a couple lines to 'br' to set the flags correctly is all. It is my opinion that the merit of this patch is now embedded and SW bridges can both be modeled correctly in user space using very nearly the same message passing. [1] 'br' tool was published as an RFC here and will be renamed 'bridge' http://patchwork.ozlabs.org/patch/117664/ Thanks to Jamal Hadi Salim, Stephen Hemminger and Ben Hutchings for valuable feedback, suggestions, and review. v2: fixed api descriptions and error case with both NTF_SELF and NTF_MASTER set plus updated patch description. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-15 00:43:56 -06:00
{
bridge: netlink dump interface at par with brctl Actually better than brctl showmacs because we can filter by bridge port in the kernel. The current bridge netlink interface doesnt scale when you have many bridges each with large fdbs or even bridges with many bridge ports And now for the science non-fiction novel you have all been waiting for.. //lets see what bridge ports we have root@moja-1:/configs/may30-iprt/bridge# ./bridge link show 8: eth1 state DOWN : <BROADCAST,MULTICAST> mtu 1500 master br0 state disabled priority 32 cost 19 17: sw1-p1 state DOWN : <BROADCAST,NOARP> mtu 1500 master br0 state disabled priority 32 cost 100 // show all.. root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show 33:33:00:00:00:01 dev bond0 self permanent 33:33:00:00:00:01 dev dummy0 self permanent 33:33:00:00:00:01 dev ifb0 self permanent 33:33:00:00:00:01 dev ifb1 self permanent 33:33:00:00:00:01 dev eth0 self permanent 01:00:5e:00:00:01 dev eth0 self permanent 33:33:ff:22:01:01 dev eth0 self permanent 02:00:00:12:01:02 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:05 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:07 dev eth1 self permanent 33:33:00:00:00:01 dev eth1 self permanent 33:33:00:00:00:01 dev gretap0 self permanent da:ac:46:27:d9:53 dev sw1-p1 vlan 0 master br0 permanent 33:33:00:00:00:01 dev sw1-p1 self permanent //filter by bridge root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show br br0 02:00:00:12:01:02 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:05 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:07 dev eth1 self permanent 33:33:00:00:00:01 dev eth1 self permanent da:ac:46:27:d9:53 dev sw1-p1 vlan 0 master br0 permanent 33:33:00:00:00:01 dev sw1-p1 self permanent // bridge sw1 has no ports attached.. root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show br sw1 //filter by port root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show brport eth1 02:00:00:12:01:02 vlan 0 master br0 permanent 00:17:42:8a:b4:05 vlan 0 master br0 permanent 00:17:42:8a:b4:07 self permanent 33:33:00:00:00:01 self permanent // filter by port + bridge root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show br br0 brport sw1-p1 da:ac:46:27:d9:53 vlan 0 master br0 permanent 33:33:00:00:00:01 self permanent // for shits and giggles (as they say in New Brunswick), lets // change the mac that br0 uses // Note: a magical fdb entry with no brport is added ... root@moja-1:/configs/may30-iprt/bridge# ip link set dev br0 address 02:00:00:12:01:04 // lets see if we can see the unicorn .. root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show 33:33:00:00:00:01 dev bond0 self permanent 33:33:00:00:00:01 dev dummy0 self permanent 33:33:00:00:00:01 dev ifb0 self permanent 33:33:00:00:00:01 dev ifb1 self permanent 33:33:00:00:00:01 dev eth0 self permanent 01:00:5e:00:00:01 dev eth0 self permanent 33:33:ff:22:01:01 dev eth0 self permanent 02:00:00:12:01:02 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:05 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:07 dev eth1 self permanent 33:33:00:00:00:01 dev eth1 self permanent 33:33:00:00:00:01 dev gretap0 self permanent 02:00:00:12:01:04 dev br0 vlan 0 master br0 permanent <=== there it is da:ac:46:27:d9:53 dev sw1-p1 vlan 0 master br0 permanent 33:33:00:00:00:01 dev sw1-p1 self permanent //can we see it if we filter by bridge? root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show br br0 02:00:00:12:01:02 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:05 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:07 dev eth1 self permanent 33:33:00:00:00:01 dev eth1 self permanent 02:00:00:12:01:04 dev br0 vlan 0 master br0 permanent <=== there it is da:ac:46:27:d9:53 dev sw1-p1 vlan 0 master br0 permanent 33:33:00:00:00:01 dev sw1-p1 self permanent Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-10 05:01:59 -06:00
struct nlattr *tb[IFLA_MAX+1];
int err;
bridge: netlink dump interface at par with brctl Actually better than brctl showmacs because we can filter by bridge port in the kernel. The current bridge netlink interface doesnt scale when you have many bridges each with large fdbs or even bridges with many bridge ports And now for the science non-fiction novel you have all been waiting for.. //lets see what bridge ports we have root@moja-1:/configs/may30-iprt/bridge# ./bridge link show 8: eth1 state DOWN : <BROADCAST,MULTICAST> mtu 1500 master br0 state disabled priority 32 cost 19 17: sw1-p1 state DOWN : <BROADCAST,NOARP> mtu 1500 master br0 state disabled priority 32 cost 100 // show all.. root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show 33:33:00:00:00:01 dev bond0 self permanent 33:33:00:00:00:01 dev dummy0 self permanent 33:33:00:00:00:01 dev ifb0 self permanent 33:33:00:00:00:01 dev ifb1 self permanent 33:33:00:00:00:01 dev eth0 self permanent 01:00:5e:00:00:01 dev eth0 self permanent 33:33:ff:22:01:01 dev eth0 self permanent 02:00:00:12:01:02 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:05 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:07 dev eth1 self permanent 33:33:00:00:00:01 dev eth1 self permanent 33:33:00:00:00:01 dev gretap0 self permanent da:ac:46:27:d9:53 dev sw1-p1 vlan 0 master br0 permanent 33:33:00:00:00:01 dev sw1-p1 self permanent //filter by bridge root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show br br0 02:00:00:12:01:02 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:05 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:07 dev eth1 self permanent 33:33:00:00:00:01 dev eth1 self permanent da:ac:46:27:d9:53 dev sw1-p1 vlan 0 master br0 permanent 33:33:00:00:00:01 dev sw1-p1 self permanent // bridge sw1 has no ports attached.. root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show br sw1 //filter by port root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show brport eth1 02:00:00:12:01:02 vlan 0 master br0 permanent 00:17:42:8a:b4:05 vlan 0 master br0 permanent 00:17:42:8a:b4:07 self permanent 33:33:00:00:00:01 self permanent // filter by port + bridge root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show br br0 brport sw1-p1 da:ac:46:27:d9:53 vlan 0 master br0 permanent 33:33:00:00:00:01 self permanent // for shits and giggles (as they say in New Brunswick), lets // change the mac that br0 uses // Note: a magical fdb entry with no brport is added ... root@moja-1:/configs/may30-iprt/bridge# ip link set dev br0 address 02:00:00:12:01:04 // lets see if we can see the unicorn .. root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show 33:33:00:00:00:01 dev bond0 self permanent 33:33:00:00:00:01 dev dummy0 self permanent 33:33:00:00:00:01 dev ifb0 self permanent 33:33:00:00:00:01 dev ifb1 self permanent 33:33:00:00:00:01 dev eth0 self permanent 01:00:5e:00:00:01 dev eth0 self permanent 33:33:ff:22:01:01 dev eth0 self permanent 02:00:00:12:01:02 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:05 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:07 dev eth1 self permanent 33:33:00:00:00:01 dev eth1 self permanent 33:33:00:00:00:01 dev gretap0 self permanent 02:00:00:12:01:04 dev br0 vlan 0 master br0 permanent <=== there it is da:ac:46:27:d9:53 dev sw1-p1 vlan 0 master br0 permanent 33:33:00:00:00:01 dev sw1-p1 self permanent //can we see it if we filter by bridge? root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show br br0 02:00:00:12:01:02 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:05 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:07 dev eth1 self permanent 33:33:00:00:00:01 dev eth1 self permanent 02:00:00:12:01:04 dev br0 vlan 0 master br0 permanent <=== there it is da:ac:46:27:d9:53 dev sw1-p1 vlan 0 master br0 permanent 33:33:00:00:00:01 dev sw1-p1 self permanent Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-10 05:01:59 -06:00
rtnetlink: fix rtnl_fdb_dump() for ndmsg header Currently, rtnl_fdb_dump() assumes the family header is 'struct ifinfomsg', which is not always true -- 'struct ndmsg' is used by iproute2 ('ip neigh'). The problem is, the function bails out early if nlmsg_parse() fails, which does occur for iproute2 usage of 'struct ndmsg' because the payload length is shorter than the family header alone (as 'struct ifinfomsg' is assumed). This breaks backward compatibility with userspace -- nothing is sent back. Some examples with iproute2 and netlink library for go [1]: 1) $ bridge fdb show 33:33:00:00:00:01 dev ens3 self permanent 01:00:5e:00:00:01 dev ens3 self permanent 33:33:ff:15:98:30 dev ens3 self permanent This one works, as it uses 'struct ifinfomsg'. fdb_show() @ iproute2/bridge/fdb.c """ .n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ifinfomsg)), ... if (rtnl_dump_request(&rth, RTM_GETNEIGH, [...] """ 2) $ ip --family bridge neigh RTNETLINK answers: Invalid argument Dump terminated This one fails, as it uses 'struct ndmsg'. do_show_or_flush() @ iproute2/ip/ipneigh.c """ .n.nlmsg_type = RTM_GETNEIGH, .n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ndmsg)), """ 3) $ ./neighlist < no output > This one fails, as it uses 'struct ndmsg'-based. neighList() @ netlink/neigh_linux.go """ req := h.newNetlinkRequest(unix.RTM_GETNEIGH, [...] msg := Ndmsg{ """ The actual breakage was introduced by commit 0ff50e83b512 ("net: rtnetlink: bail out from rtnl_fdb_dump() on parse error"), because nlmsg_parse() fails if the payload length (with the _actual_ family header) is less than the family header length alone (which is assumed, in parameter 'hdrlen'). This is true in the examples above with struct ndmsg, with size and payload length shorter than struct ifinfomsg. However, that commit just intends to fix something under the assumption the family header is indeed an 'struct ifinfomsg' - by preventing access to the payload as such (via 'ifm' pointer) if the payload length is not sufficient to actually contain it. The assumption was introduced by commit 5e6d24358799 ("bridge: netlink dump interface at par with brctl"), to support iproute2's 'bridge fdb' command (not 'ip neigh') which indeed uses 'struct ifinfomsg', thus is not broken. So, in order to unbreak the 'struct ndmsg' family headers and still allow 'struct ifinfomsg' to continue to work, check for the known message sizes used with 'struct ndmsg' in iproute2 (with zero or one attribute which is not used in this function anyway) then do not parse the data as ifinfomsg. Same examples with this patch applied (or revert/before the original fix): $ bridge fdb show 33:33:00:00:00:01 dev ens3 self permanent 01:00:5e:00:00:01 dev ens3 self permanent 33:33:ff:15:98:30 dev ens3 self permanent $ ip --family bridge neigh dev ens3 lladdr 33:33:00:00:00:01 PERMANENT dev ens3 lladdr 01:00:5e:00:00:01 PERMANENT dev ens3 lladdr 33:33:ff:15:98:30 PERMANENT $ ./neighlist netlink.Neigh{LinkIndex:2, Family:7, State:128, Type:0, Flags:2, IP:net.IP(nil), HardwareAddr:net.HardwareAddr{0x33, 0x33, 0x0, 0x0, 0x0, 0x1}, LLIPAddr:net.IP(nil), Vlan:0, VNI:0} netlink.Neigh{LinkIndex:2, Family:7, State:128, Type:0, Flags:2, IP:net.IP(nil), HardwareAddr:net.HardwareAddr{0x1, 0x0, 0x5e, 0x0, 0x0, 0x1}, LLIPAddr:net.IP(nil), Vlan:0, VNI:0} netlink.Neigh{LinkIndex:2, Family:7, State:128, Type:0, Flags:2, IP:net.IP(nil), HardwareAddr:net.HardwareAddr{0x33, 0x33, 0xff, 0x15, 0x98, 0x30}, LLIPAddr:net.IP(nil), Vlan:0, VNI:0} Tested on mainline (v4.19-rc6) and net-next (3bd09b05b068). References: [1] netlink library for go (test-case) https://github.com/vishvananda/netlink $ cat ~/go/src/neighlist/main.go package main import ("fmt"; "syscall"; "github.com/vishvananda/netlink") func main() { neighs, _ := netlink.NeighList(0, syscall.AF_BRIDGE) for _, neigh := range neighs { fmt.Printf("%#v\n", neigh) } } $ export GOPATH=~/go $ go get github.com/vishvananda/netlink $ go build neighlist $ ~/go/src/neighlist/neighlist Thanks to David Ahern for suggestions to improve this patch. Fixes: 0ff50e83b512 ("net: rtnetlink: bail out from rtnl_fdb_dump() on parse error") Fixes: 5e6d24358799 ("bridge: netlink dump interface at par with brctl") Reported-by: Aidan Obley <aobley@pivotal.io> Signed-off-by: Mauricio Faria de Oliveira <mfo@canonical.com> Reviewed-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-01 19:46:40 -06:00
/* A hack to preserve kernel<->userspace interface.
* Before Linux v4.12 this code accepted ndmsg since iproute2 v3.3.0.
* However, ndmsg is shorter than ifinfomsg thus nlmsg_parse() bails.
* So, check for ndmsg with an optional u32 attribute (not used here).
* Fortunately these sizes don't conflict with the size of ifinfomsg
* with an optional attribute.
*/
if (nlmsg_len(nlh) != sizeof(struct ndmsg) &&
(nlmsg_len(nlh) != sizeof(struct ndmsg) +
rtnetlink: fix rtnl_fdb_dump() for ndmsg header Currently, rtnl_fdb_dump() assumes the family header is 'struct ifinfomsg', which is not always true -- 'struct ndmsg' is used by iproute2 ('ip neigh'). The problem is, the function bails out early if nlmsg_parse() fails, which does occur for iproute2 usage of 'struct ndmsg' because the payload length is shorter than the family header alone (as 'struct ifinfomsg' is assumed). This breaks backward compatibility with userspace -- nothing is sent back. Some examples with iproute2 and netlink library for go [1]: 1) $ bridge fdb show 33:33:00:00:00:01 dev ens3 self permanent 01:00:5e:00:00:01 dev ens3 self permanent 33:33:ff:15:98:30 dev ens3 self permanent This one works, as it uses 'struct ifinfomsg'. fdb_show() @ iproute2/bridge/fdb.c """ .n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ifinfomsg)), ... if (rtnl_dump_request(&rth, RTM_GETNEIGH, [...] """ 2) $ ip --family bridge neigh RTNETLINK answers: Invalid argument Dump terminated This one fails, as it uses 'struct ndmsg'. do_show_or_flush() @ iproute2/ip/ipneigh.c """ .n.nlmsg_type = RTM_GETNEIGH, .n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ndmsg)), """ 3) $ ./neighlist < no output > This one fails, as it uses 'struct ndmsg'-based. neighList() @ netlink/neigh_linux.go """ req := h.newNetlinkRequest(unix.RTM_GETNEIGH, [...] msg := Ndmsg{ """ The actual breakage was introduced by commit 0ff50e83b512 ("net: rtnetlink: bail out from rtnl_fdb_dump() on parse error"), because nlmsg_parse() fails if the payload length (with the _actual_ family header) is less than the family header length alone (which is assumed, in parameter 'hdrlen'). This is true in the examples above with struct ndmsg, with size and payload length shorter than struct ifinfomsg. However, that commit just intends to fix something under the assumption the family header is indeed an 'struct ifinfomsg' - by preventing access to the payload as such (via 'ifm' pointer) if the payload length is not sufficient to actually contain it. The assumption was introduced by commit 5e6d24358799 ("bridge: netlink dump interface at par with brctl"), to support iproute2's 'bridge fdb' command (not 'ip neigh') which indeed uses 'struct ifinfomsg', thus is not broken. So, in order to unbreak the 'struct ndmsg' family headers and still allow 'struct ifinfomsg' to continue to work, check for the known message sizes used with 'struct ndmsg' in iproute2 (with zero or one attribute which is not used in this function anyway) then do not parse the data as ifinfomsg. Same examples with this patch applied (or revert/before the original fix): $ bridge fdb show 33:33:00:00:00:01 dev ens3 self permanent 01:00:5e:00:00:01 dev ens3 self permanent 33:33:ff:15:98:30 dev ens3 self permanent $ ip --family bridge neigh dev ens3 lladdr 33:33:00:00:00:01 PERMANENT dev ens3 lladdr 01:00:5e:00:00:01 PERMANENT dev ens3 lladdr 33:33:ff:15:98:30 PERMANENT $ ./neighlist netlink.Neigh{LinkIndex:2, Family:7, State:128, Type:0, Flags:2, IP:net.IP(nil), HardwareAddr:net.HardwareAddr{0x33, 0x33, 0x0, 0x0, 0x0, 0x1}, LLIPAddr:net.IP(nil), Vlan:0, VNI:0} netlink.Neigh{LinkIndex:2, Family:7, State:128, Type:0, Flags:2, IP:net.IP(nil), HardwareAddr:net.HardwareAddr{0x1, 0x0, 0x5e, 0x0, 0x0, 0x1}, LLIPAddr:net.IP(nil), Vlan:0, VNI:0} netlink.Neigh{LinkIndex:2, Family:7, State:128, Type:0, Flags:2, IP:net.IP(nil), HardwareAddr:net.HardwareAddr{0x33, 0x33, 0xff, 0x15, 0x98, 0x30}, LLIPAddr:net.IP(nil), Vlan:0, VNI:0} Tested on mainline (v4.19-rc6) and net-next (3bd09b05b068). References: [1] netlink library for go (test-case) https://github.com/vishvananda/netlink $ cat ~/go/src/neighlist/main.go package main import ("fmt"; "syscall"; "github.com/vishvananda/netlink") func main() { neighs, _ := netlink.NeighList(0, syscall.AF_BRIDGE) for _, neigh := range neighs { fmt.Printf("%#v\n", neigh) } } $ export GOPATH=~/go $ go get github.com/vishvananda/netlink $ go build neighlist $ ~/go/src/neighlist/neighlist Thanks to David Ahern for suggestions to improve this patch. Fixes: 0ff50e83b512 ("net: rtnetlink: bail out from rtnl_fdb_dump() on parse error") Fixes: 5e6d24358799 ("bridge: netlink dump interface at par with brctl") Reported-by: Aidan Obley <aobley@pivotal.io> Signed-off-by: Mauricio Faria de Oliveira <mfo@canonical.com> Reviewed-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-01 19:46:40 -06:00
nla_attr_size(sizeof(u32)))) {
struct ifinfomsg *ifm;
err = nlmsg_parse(nlh, sizeof(struct ifinfomsg), tb, IFLA_MAX,
ifla_policy, extack);
rtnetlink: fix rtnl_fdb_dump() for ndmsg header Currently, rtnl_fdb_dump() assumes the family header is 'struct ifinfomsg', which is not always true -- 'struct ndmsg' is used by iproute2 ('ip neigh'). The problem is, the function bails out early if nlmsg_parse() fails, which does occur for iproute2 usage of 'struct ndmsg' because the payload length is shorter than the family header alone (as 'struct ifinfomsg' is assumed). This breaks backward compatibility with userspace -- nothing is sent back. Some examples with iproute2 and netlink library for go [1]: 1) $ bridge fdb show 33:33:00:00:00:01 dev ens3 self permanent 01:00:5e:00:00:01 dev ens3 self permanent 33:33:ff:15:98:30 dev ens3 self permanent This one works, as it uses 'struct ifinfomsg'. fdb_show() @ iproute2/bridge/fdb.c """ .n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ifinfomsg)), ... if (rtnl_dump_request(&rth, RTM_GETNEIGH, [...] """ 2) $ ip --family bridge neigh RTNETLINK answers: Invalid argument Dump terminated This one fails, as it uses 'struct ndmsg'. do_show_or_flush() @ iproute2/ip/ipneigh.c """ .n.nlmsg_type = RTM_GETNEIGH, .n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ndmsg)), """ 3) $ ./neighlist < no output > This one fails, as it uses 'struct ndmsg'-based. neighList() @ netlink/neigh_linux.go """ req := h.newNetlinkRequest(unix.RTM_GETNEIGH, [...] msg := Ndmsg{ """ The actual breakage was introduced by commit 0ff50e83b512 ("net: rtnetlink: bail out from rtnl_fdb_dump() on parse error"), because nlmsg_parse() fails if the payload length (with the _actual_ family header) is less than the family header length alone (which is assumed, in parameter 'hdrlen'). This is true in the examples above with struct ndmsg, with size and payload length shorter than struct ifinfomsg. However, that commit just intends to fix something under the assumption the family header is indeed an 'struct ifinfomsg' - by preventing access to the payload as such (via 'ifm' pointer) if the payload length is not sufficient to actually contain it. The assumption was introduced by commit 5e6d24358799 ("bridge: netlink dump interface at par with brctl"), to support iproute2's 'bridge fdb' command (not 'ip neigh') which indeed uses 'struct ifinfomsg', thus is not broken. So, in order to unbreak the 'struct ndmsg' family headers and still allow 'struct ifinfomsg' to continue to work, check for the known message sizes used with 'struct ndmsg' in iproute2 (with zero or one attribute which is not used in this function anyway) then do not parse the data as ifinfomsg. Same examples with this patch applied (or revert/before the original fix): $ bridge fdb show 33:33:00:00:00:01 dev ens3 self permanent 01:00:5e:00:00:01 dev ens3 self permanent 33:33:ff:15:98:30 dev ens3 self permanent $ ip --family bridge neigh dev ens3 lladdr 33:33:00:00:00:01 PERMANENT dev ens3 lladdr 01:00:5e:00:00:01 PERMANENT dev ens3 lladdr 33:33:ff:15:98:30 PERMANENT $ ./neighlist netlink.Neigh{LinkIndex:2, Family:7, State:128, Type:0, Flags:2, IP:net.IP(nil), HardwareAddr:net.HardwareAddr{0x33, 0x33, 0x0, 0x0, 0x0, 0x1}, LLIPAddr:net.IP(nil), Vlan:0, VNI:0} netlink.Neigh{LinkIndex:2, Family:7, State:128, Type:0, Flags:2, IP:net.IP(nil), HardwareAddr:net.HardwareAddr{0x1, 0x0, 0x5e, 0x0, 0x0, 0x1}, LLIPAddr:net.IP(nil), Vlan:0, VNI:0} netlink.Neigh{LinkIndex:2, Family:7, State:128, Type:0, Flags:2, IP:net.IP(nil), HardwareAddr:net.HardwareAddr{0x33, 0x33, 0xff, 0x15, 0x98, 0x30}, LLIPAddr:net.IP(nil), Vlan:0, VNI:0} Tested on mainline (v4.19-rc6) and net-next (3bd09b05b068). References: [1] netlink library for go (test-case) https://github.com/vishvananda/netlink $ cat ~/go/src/neighlist/main.go package main import ("fmt"; "syscall"; "github.com/vishvananda/netlink") func main() { neighs, _ := netlink.NeighList(0, syscall.AF_BRIDGE) for _, neigh := range neighs { fmt.Printf("%#v\n", neigh) } } $ export GOPATH=~/go $ go get github.com/vishvananda/netlink $ go build neighlist $ ~/go/src/neighlist/neighlist Thanks to David Ahern for suggestions to improve this patch. Fixes: 0ff50e83b512 ("net: rtnetlink: bail out from rtnl_fdb_dump() on parse error") Fixes: 5e6d24358799 ("bridge: netlink dump interface at par with brctl") Reported-by: Aidan Obley <aobley@pivotal.io> Signed-off-by: Mauricio Faria de Oliveira <mfo@canonical.com> Reviewed-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-01 19:46:40 -06:00
if (err < 0) {
return -EINVAL;
} else if (err == 0) {
if (tb[IFLA_MASTER])
*br_idx = nla_get_u32(tb[IFLA_MASTER]);
rtnetlink: fix rtnl_fdb_dump() for ndmsg header Currently, rtnl_fdb_dump() assumes the family header is 'struct ifinfomsg', which is not always true -- 'struct ndmsg' is used by iproute2 ('ip neigh'). The problem is, the function bails out early if nlmsg_parse() fails, which does occur for iproute2 usage of 'struct ndmsg' because the payload length is shorter than the family header alone (as 'struct ifinfomsg' is assumed). This breaks backward compatibility with userspace -- nothing is sent back. Some examples with iproute2 and netlink library for go [1]: 1) $ bridge fdb show 33:33:00:00:00:01 dev ens3 self permanent 01:00:5e:00:00:01 dev ens3 self permanent 33:33:ff:15:98:30 dev ens3 self permanent This one works, as it uses 'struct ifinfomsg'. fdb_show() @ iproute2/bridge/fdb.c """ .n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ifinfomsg)), ... if (rtnl_dump_request(&rth, RTM_GETNEIGH, [...] """ 2) $ ip --family bridge neigh RTNETLINK answers: Invalid argument Dump terminated This one fails, as it uses 'struct ndmsg'. do_show_or_flush() @ iproute2/ip/ipneigh.c """ .n.nlmsg_type = RTM_GETNEIGH, .n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ndmsg)), """ 3) $ ./neighlist < no output > This one fails, as it uses 'struct ndmsg'-based. neighList() @ netlink/neigh_linux.go """ req := h.newNetlinkRequest(unix.RTM_GETNEIGH, [...] msg := Ndmsg{ """ The actual breakage was introduced by commit 0ff50e83b512 ("net: rtnetlink: bail out from rtnl_fdb_dump() on parse error"), because nlmsg_parse() fails if the payload length (with the _actual_ family header) is less than the family header length alone (which is assumed, in parameter 'hdrlen'). This is true in the examples above with struct ndmsg, with size and payload length shorter than struct ifinfomsg. However, that commit just intends to fix something under the assumption the family header is indeed an 'struct ifinfomsg' - by preventing access to the payload as such (via 'ifm' pointer) if the payload length is not sufficient to actually contain it. The assumption was introduced by commit 5e6d24358799 ("bridge: netlink dump interface at par with brctl"), to support iproute2's 'bridge fdb' command (not 'ip neigh') which indeed uses 'struct ifinfomsg', thus is not broken. So, in order to unbreak the 'struct ndmsg' family headers and still allow 'struct ifinfomsg' to continue to work, check for the known message sizes used with 'struct ndmsg' in iproute2 (with zero or one attribute which is not used in this function anyway) then do not parse the data as ifinfomsg. Same examples with this patch applied (or revert/before the original fix): $ bridge fdb show 33:33:00:00:00:01 dev ens3 self permanent 01:00:5e:00:00:01 dev ens3 self permanent 33:33:ff:15:98:30 dev ens3 self permanent $ ip --family bridge neigh dev ens3 lladdr 33:33:00:00:00:01 PERMANENT dev ens3 lladdr 01:00:5e:00:00:01 PERMANENT dev ens3 lladdr 33:33:ff:15:98:30 PERMANENT $ ./neighlist netlink.Neigh{LinkIndex:2, Family:7, State:128, Type:0, Flags:2, IP:net.IP(nil), HardwareAddr:net.HardwareAddr{0x33, 0x33, 0x0, 0x0, 0x0, 0x1}, LLIPAddr:net.IP(nil), Vlan:0, VNI:0} netlink.Neigh{LinkIndex:2, Family:7, State:128, Type:0, Flags:2, IP:net.IP(nil), HardwareAddr:net.HardwareAddr{0x1, 0x0, 0x5e, 0x0, 0x0, 0x1}, LLIPAddr:net.IP(nil), Vlan:0, VNI:0} netlink.Neigh{LinkIndex:2, Family:7, State:128, Type:0, Flags:2, IP:net.IP(nil), HardwareAddr:net.HardwareAddr{0x33, 0x33, 0xff, 0x15, 0x98, 0x30}, LLIPAddr:net.IP(nil), Vlan:0, VNI:0} Tested on mainline (v4.19-rc6) and net-next (3bd09b05b068). References: [1] netlink library for go (test-case) https://github.com/vishvananda/netlink $ cat ~/go/src/neighlist/main.go package main import ("fmt"; "syscall"; "github.com/vishvananda/netlink") func main() { neighs, _ := netlink.NeighList(0, syscall.AF_BRIDGE) for _, neigh := range neighs { fmt.Printf("%#v\n", neigh) } } $ export GOPATH=~/go $ go get github.com/vishvananda/netlink $ go build neighlist $ ~/go/src/neighlist/neighlist Thanks to David Ahern for suggestions to improve this patch. Fixes: 0ff50e83b512 ("net: rtnetlink: bail out from rtnl_fdb_dump() on parse error") Fixes: 5e6d24358799 ("bridge: netlink dump interface at par with brctl") Reported-by: Aidan Obley <aobley@pivotal.io> Signed-off-by: Mauricio Faria de Oliveira <mfo@canonical.com> Reviewed-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-01 19:46:40 -06:00
}
bridge: netlink dump interface at par with brctl Actually better than brctl showmacs because we can filter by bridge port in the kernel. The current bridge netlink interface doesnt scale when you have many bridges each with large fdbs or even bridges with many bridge ports And now for the science non-fiction novel you have all been waiting for.. //lets see what bridge ports we have root@moja-1:/configs/may30-iprt/bridge# ./bridge link show 8: eth1 state DOWN : <BROADCAST,MULTICAST> mtu 1500 master br0 state disabled priority 32 cost 19 17: sw1-p1 state DOWN : <BROADCAST,NOARP> mtu 1500 master br0 state disabled priority 32 cost 100 // show all.. root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show 33:33:00:00:00:01 dev bond0 self permanent 33:33:00:00:00:01 dev dummy0 self permanent 33:33:00:00:00:01 dev ifb0 self permanent 33:33:00:00:00:01 dev ifb1 self permanent 33:33:00:00:00:01 dev eth0 self permanent 01:00:5e:00:00:01 dev eth0 self permanent 33:33:ff:22:01:01 dev eth0 self permanent 02:00:00:12:01:02 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:05 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:07 dev eth1 self permanent 33:33:00:00:00:01 dev eth1 self permanent 33:33:00:00:00:01 dev gretap0 self permanent da:ac:46:27:d9:53 dev sw1-p1 vlan 0 master br0 permanent 33:33:00:00:00:01 dev sw1-p1 self permanent //filter by bridge root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show br br0 02:00:00:12:01:02 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:05 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:07 dev eth1 self permanent 33:33:00:00:00:01 dev eth1 self permanent da:ac:46:27:d9:53 dev sw1-p1 vlan 0 master br0 permanent 33:33:00:00:00:01 dev sw1-p1 self permanent // bridge sw1 has no ports attached.. root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show br sw1 //filter by port root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show brport eth1 02:00:00:12:01:02 vlan 0 master br0 permanent 00:17:42:8a:b4:05 vlan 0 master br0 permanent 00:17:42:8a:b4:07 self permanent 33:33:00:00:00:01 self permanent // filter by port + bridge root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show br br0 brport sw1-p1 da:ac:46:27:d9:53 vlan 0 master br0 permanent 33:33:00:00:00:01 self permanent // for shits and giggles (as they say in New Brunswick), lets // change the mac that br0 uses // Note: a magical fdb entry with no brport is added ... root@moja-1:/configs/may30-iprt/bridge# ip link set dev br0 address 02:00:00:12:01:04 // lets see if we can see the unicorn .. root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show 33:33:00:00:00:01 dev bond0 self permanent 33:33:00:00:00:01 dev dummy0 self permanent 33:33:00:00:00:01 dev ifb0 self permanent 33:33:00:00:00:01 dev ifb1 self permanent 33:33:00:00:00:01 dev eth0 self permanent 01:00:5e:00:00:01 dev eth0 self permanent 33:33:ff:22:01:01 dev eth0 self permanent 02:00:00:12:01:02 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:05 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:07 dev eth1 self permanent 33:33:00:00:00:01 dev eth1 self permanent 33:33:00:00:00:01 dev gretap0 self permanent 02:00:00:12:01:04 dev br0 vlan 0 master br0 permanent <=== there it is da:ac:46:27:d9:53 dev sw1-p1 vlan 0 master br0 permanent 33:33:00:00:00:01 dev sw1-p1 self permanent //can we see it if we filter by bridge? root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show br br0 02:00:00:12:01:02 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:05 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:07 dev eth1 self permanent 33:33:00:00:00:01 dev eth1 self permanent 02:00:00:12:01:04 dev br0 vlan 0 master br0 permanent <=== there it is da:ac:46:27:d9:53 dev sw1-p1 vlan 0 master br0 permanent 33:33:00:00:00:01 dev sw1-p1 self permanent Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-10 05:01:59 -06:00
ifm = nlmsg_data(nlh);
*brport_idx = ifm->ifi_index;
rtnetlink: fix rtnl_fdb_dump() for ndmsg header Currently, rtnl_fdb_dump() assumes the family header is 'struct ifinfomsg', which is not always true -- 'struct ndmsg' is used by iproute2 ('ip neigh'). The problem is, the function bails out early if nlmsg_parse() fails, which does occur for iproute2 usage of 'struct ndmsg' because the payload length is shorter than the family header alone (as 'struct ifinfomsg' is assumed). This breaks backward compatibility with userspace -- nothing is sent back. Some examples with iproute2 and netlink library for go [1]: 1) $ bridge fdb show 33:33:00:00:00:01 dev ens3 self permanent 01:00:5e:00:00:01 dev ens3 self permanent 33:33:ff:15:98:30 dev ens3 self permanent This one works, as it uses 'struct ifinfomsg'. fdb_show() @ iproute2/bridge/fdb.c """ .n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ifinfomsg)), ... if (rtnl_dump_request(&rth, RTM_GETNEIGH, [...] """ 2) $ ip --family bridge neigh RTNETLINK answers: Invalid argument Dump terminated This one fails, as it uses 'struct ndmsg'. do_show_or_flush() @ iproute2/ip/ipneigh.c """ .n.nlmsg_type = RTM_GETNEIGH, .n.nlmsg_len = NLMSG_LENGTH(sizeof(struct ndmsg)), """ 3) $ ./neighlist < no output > This one fails, as it uses 'struct ndmsg'-based. neighList() @ netlink/neigh_linux.go """ req := h.newNetlinkRequest(unix.RTM_GETNEIGH, [...] msg := Ndmsg{ """ The actual breakage was introduced by commit 0ff50e83b512 ("net: rtnetlink: bail out from rtnl_fdb_dump() on parse error"), because nlmsg_parse() fails if the payload length (with the _actual_ family header) is less than the family header length alone (which is assumed, in parameter 'hdrlen'). This is true in the examples above with struct ndmsg, with size and payload length shorter than struct ifinfomsg. However, that commit just intends to fix something under the assumption the family header is indeed an 'struct ifinfomsg' - by preventing access to the payload as such (via 'ifm' pointer) if the payload length is not sufficient to actually contain it. The assumption was introduced by commit 5e6d24358799 ("bridge: netlink dump interface at par with brctl"), to support iproute2's 'bridge fdb' command (not 'ip neigh') which indeed uses 'struct ifinfomsg', thus is not broken. So, in order to unbreak the 'struct ndmsg' family headers and still allow 'struct ifinfomsg' to continue to work, check for the known message sizes used with 'struct ndmsg' in iproute2 (with zero or one attribute which is not used in this function anyway) then do not parse the data as ifinfomsg. Same examples with this patch applied (or revert/before the original fix): $ bridge fdb show 33:33:00:00:00:01 dev ens3 self permanent 01:00:5e:00:00:01 dev ens3 self permanent 33:33:ff:15:98:30 dev ens3 self permanent $ ip --family bridge neigh dev ens3 lladdr 33:33:00:00:00:01 PERMANENT dev ens3 lladdr 01:00:5e:00:00:01 PERMANENT dev ens3 lladdr 33:33:ff:15:98:30 PERMANENT $ ./neighlist netlink.Neigh{LinkIndex:2, Family:7, State:128, Type:0, Flags:2, IP:net.IP(nil), HardwareAddr:net.HardwareAddr{0x33, 0x33, 0x0, 0x0, 0x0, 0x1}, LLIPAddr:net.IP(nil), Vlan:0, VNI:0} netlink.Neigh{LinkIndex:2, Family:7, State:128, Type:0, Flags:2, IP:net.IP(nil), HardwareAddr:net.HardwareAddr{0x1, 0x0, 0x5e, 0x0, 0x0, 0x1}, LLIPAddr:net.IP(nil), Vlan:0, VNI:0} netlink.Neigh{LinkIndex:2, Family:7, State:128, Type:0, Flags:2, IP:net.IP(nil), HardwareAddr:net.HardwareAddr{0x33, 0x33, 0xff, 0x15, 0x98, 0x30}, LLIPAddr:net.IP(nil), Vlan:0, VNI:0} Tested on mainline (v4.19-rc6) and net-next (3bd09b05b068). References: [1] netlink library for go (test-case) https://github.com/vishvananda/netlink $ cat ~/go/src/neighlist/main.go package main import ("fmt"; "syscall"; "github.com/vishvananda/netlink") func main() { neighs, _ := netlink.NeighList(0, syscall.AF_BRIDGE) for _, neigh := range neighs { fmt.Printf("%#v\n", neigh) } } $ export GOPATH=~/go $ go get github.com/vishvananda/netlink $ go build neighlist $ ~/go/src/neighlist/neighlist Thanks to David Ahern for suggestions to improve this patch. Fixes: 0ff50e83b512 ("net: rtnetlink: bail out from rtnl_fdb_dump() on parse error") Fixes: 5e6d24358799 ("bridge: netlink dump interface at par with brctl") Reported-by: Aidan Obley <aobley@pivotal.io> Signed-off-by: Mauricio Faria de Oliveira <mfo@canonical.com> Reviewed-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-10-01 19:46:40 -06:00
}
return 0;
}
static int rtnl_fdb_dump(struct sk_buff *skb, struct netlink_callback *cb)
{
struct net_device *dev;
struct net_device *br_dev = NULL;
const struct net_device_ops *ops = NULL;
const struct net_device_ops *cops = NULL;
struct net *net = sock_net(skb->sk);
struct hlist_head *head;
int brport_idx = 0;
int br_idx = 0;
int h, s_h;
int idx = 0, s_idx;
int err = 0;
int fidx = 0;
if (cb->strict_check)
err = valid_fdb_dump_strict(cb->nlh, &br_idx, &brport_idx,
cb->extack);
else
err = valid_fdb_dump_legacy(cb->nlh, &br_idx, &brport_idx,
cb->extack);
if (err < 0)
return err;
bridge: netlink dump interface at par with brctl Actually better than brctl showmacs because we can filter by bridge port in the kernel. The current bridge netlink interface doesnt scale when you have many bridges each with large fdbs or even bridges with many bridge ports And now for the science non-fiction novel you have all been waiting for.. //lets see what bridge ports we have root@moja-1:/configs/may30-iprt/bridge# ./bridge link show 8: eth1 state DOWN : <BROADCAST,MULTICAST> mtu 1500 master br0 state disabled priority 32 cost 19 17: sw1-p1 state DOWN : <BROADCAST,NOARP> mtu 1500 master br0 state disabled priority 32 cost 100 // show all.. root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show 33:33:00:00:00:01 dev bond0 self permanent 33:33:00:00:00:01 dev dummy0 self permanent 33:33:00:00:00:01 dev ifb0 self permanent 33:33:00:00:00:01 dev ifb1 self permanent 33:33:00:00:00:01 dev eth0 self permanent 01:00:5e:00:00:01 dev eth0 self permanent 33:33:ff:22:01:01 dev eth0 self permanent 02:00:00:12:01:02 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:05 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:07 dev eth1 self permanent 33:33:00:00:00:01 dev eth1 self permanent 33:33:00:00:00:01 dev gretap0 self permanent da:ac:46:27:d9:53 dev sw1-p1 vlan 0 master br0 permanent 33:33:00:00:00:01 dev sw1-p1 self permanent //filter by bridge root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show br br0 02:00:00:12:01:02 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:05 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:07 dev eth1 self permanent 33:33:00:00:00:01 dev eth1 self permanent da:ac:46:27:d9:53 dev sw1-p1 vlan 0 master br0 permanent 33:33:00:00:00:01 dev sw1-p1 self permanent // bridge sw1 has no ports attached.. root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show br sw1 //filter by port root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show brport eth1 02:00:00:12:01:02 vlan 0 master br0 permanent 00:17:42:8a:b4:05 vlan 0 master br0 permanent 00:17:42:8a:b4:07 self permanent 33:33:00:00:00:01 self permanent // filter by port + bridge root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show br br0 brport sw1-p1 da:ac:46:27:d9:53 vlan 0 master br0 permanent 33:33:00:00:00:01 self permanent // for shits and giggles (as they say in New Brunswick), lets // change the mac that br0 uses // Note: a magical fdb entry with no brport is added ... root@moja-1:/configs/may30-iprt/bridge# ip link set dev br0 address 02:00:00:12:01:04 // lets see if we can see the unicorn .. root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show 33:33:00:00:00:01 dev bond0 self permanent 33:33:00:00:00:01 dev dummy0 self permanent 33:33:00:00:00:01 dev ifb0 self permanent 33:33:00:00:00:01 dev ifb1 self permanent 33:33:00:00:00:01 dev eth0 self permanent 01:00:5e:00:00:01 dev eth0 self permanent 33:33:ff:22:01:01 dev eth0 self permanent 02:00:00:12:01:02 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:05 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:07 dev eth1 self permanent 33:33:00:00:00:01 dev eth1 self permanent 33:33:00:00:00:01 dev gretap0 self permanent 02:00:00:12:01:04 dev br0 vlan 0 master br0 permanent <=== there it is da:ac:46:27:d9:53 dev sw1-p1 vlan 0 master br0 permanent 33:33:00:00:00:01 dev sw1-p1 self permanent //can we see it if we filter by bridge? root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show br br0 02:00:00:12:01:02 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:05 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:07 dev eth1 self permanent 33:33:00:00:00:01 dev eth1 self permanent 02:00:00:12:01:04 dev br0 vlan 0 master br0 permanent <=== there it is da:ac:46:27:d9:53 dev sw1-p1 vlan 0 master br0 permanent 33:33:00:00:00:01 dev sw1-p1 self permanent Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-10 05:01:59 -06:00
if (br_idx) {
br_dev = __dev_get_by_index(net, br_idx);
if (!br_dev)
return -ENODEV;
ops = br_dev->netdev_ops;
}
rtnetlink: fdb dump: optimize by saving last interface markers fdb dumps spanning multiple skb's currently restart from the first interface again for every skb. This results in unnecessary iterations on the already visited interfaces and their fdb entries. In large scale setups, we have seen this to slow down fdb dumps considerably. On a system with 30k macs we see fdb dumps spanning across more than 300 skbs. To fix the problem, this patch replaces the existing single fdb marker with three markers: netdev hash entries, netdevs and fdb index to continue where we left off instead of restarting from the first netdev. This is consistent with link dumps. In the process of fixing the performance issue, this patch also re-implements fix done by commit 472681d57a5d ("net: ndo_fdb_dump should report -EMSGSIZE to rtnl_fdb_dump") (with an internal fix from Wilson Kok) in the following ways: - change ndo_fdb_dump handlers to return error code instead of the last fdb index - use cb->args strictly for dump frag markers and not error codes. This is consistent with other dump functions. Below results were taken on a system with 1000 netdevs and 35085 fdb entries: before patch: $time bridge fdb show | wc -l 15065 real 1m11.791s user 0m0.070s sys 1m8.395s (existing code does not return all macs) after patch: $time bridge fdb show | wc -l 35085 real 0m2.017s user 0m0.113s sys 0m1.942s Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: Wilson Kok <wkok@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 22:56:45 -06:00
s_h = cb->args[0];
s_idx = cb->args[1];
bridge: netlink dump interface at par with brctl Actually better than brctl showmacs because we can filter by bridge port in the kernel. The current bridge netlink interface doesnt scale when you have many bridges each with large fdbs or even bridges with many bridge ports And now for the science non-fiction novel you have all been waiting for.. //lets see what bridge ports we have root@moja-1:/configs/may30-iprt/bridge# ./bridge link show 8: eth1 state DOWN : <BROADCAST,MULTICAST> mtu 1500 master br0 state disabled priority 32 cost 19 17: sw1-p1 state DOWN : <BROADCAST,NOARP> mtu 1500 master br0 state disabled priority 32 cost 100 // show all.. root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show 33:33:00:00:00:01 dev bond0 self permanent 33:33:00:00:00:01 dev dummy0 self permanent 33:33:00:00:00:01 dev ifb0 self permanent 33:33:00:00:00:01 dev ifb1 self permanent 33:33:00:00:00:01 dev eth0 self permanent 01:00:5e:00:00:01 dev eth0 self permanent 33:33:ff:22:01:01 dev eth0 self permanent 02:00:00:12:01:02 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:05 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:07 dev eth1 self permanent 33:33:00:00:00:01 dev eth1 self permanent 33:33:00:00:00:01 dev gretap0 self permanent da:ac:46:27:d9:53 dev sw1-p1 vlan 0 master br0 permanent 33:33:00:00:00:01 dev sw1-p1 self permanent //filter by bridge root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show br br0 02:00:00:12:01:02 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:05 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:07 dev eth1 self permanent 33:33:00:00:00:01 dev eth1 self permanent da:ac:46:27:d9:53 dev sw1-p1 vlan 0 master br0 permanent 33:33:00:00:00:01 dev sw1-p1 self permanent // bridge sw1 has no ports attached.. root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show br sw1 //filter by port root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show brport eth1 02:00:00:12:01:02 vlan 0 master br0 permanent 00:17:42:8a:b4:05 vlan 0 master br0 permanent 00:17:42:8a:b4:07 self permanent 33:33:00:00:00:01 self permanent // filter by port + bridge root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show br br0 brport sw1-p1 da:ac:46:27:d9:53 vlan 0 master br0 permanent 33:33:00:00:00:01 self permanent // for shits and giggles (as they say in New Brunswick), lets // change the mac that br0 uses // Note: a magical fdb entry with no brport is added ... root@moja-1:/configs/may30-iprt/bridge# ip link set dev br0 address 02:00:00:12:01:04 // lets see if we can see the unicorn .. root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show 33:33:00:00:00:01 dev bond0 self permanent 33:33:00:00:00:01 dev dummy0 self permanent 33:33:00:00:00:01 dev ifb0 self permanent 33:33:00:00:00:01 dev ifb1 self permanent 33:33:00:00:00:01 dev eth0 self permanent 01:00:5e:00:00:01 dev eth0 self permanent 33:33:ff:22:01:01 dev eth0 self permanent 02:00:00:12:01:02 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:05 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:07 dev eth1 self permanent 33:33:00:00:00:01 dev eth1 self permanent 33:33:00:00:00:01 dev gretap0 self permanent 02:00:00:12:01:04 dev br0 vlan 0 master br0 permanent <=== there it is da:ac:46:27:d9:53 dev sw1-p1 vlan 0 master br0 permanent 33:33:00:00:00:01 dev sw1-p1 self permanent //can we see it if we filter by bridge? root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show br br0 02:00:00:12:01:02 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:05 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:07 dev eth1 self permanent 33:33:00:00:00:01 dev eth1 self permanent 02:00:00:12:01:04 dev br0 vlan 0 master br0 permanent <=== there it is da:ac:46:27:d9:53 dev sw1-p1 vlan 0 master br0 permanent 33:33:00:00:00:01 dev sw1-p1 self permanent Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-10 05:01:59 -06:00
rtnetlink: fdb dump: optimize by saving last interface markers fdb dumps spanning multiple skb's currently restart from the first interface again for every skb. This results in unnecessary iterations on the already visited interfaces and their fdb entries. In large scale setups, we have seen this to slow down fdb dumps considerably. On a system with 30k macs we see fdb dumps spanning across more than 300 skbs. To fix the problem, this patch replaces the existing single fdb marker with three markers: netdev hash entries, netdevs and fdb index to continue where we left off instead of restarting from the first netdev. This is consistent with link dumps. In the process of fixing the performance issue, this patch also re-implements fix done by commit 472681d57a5d ("net: ndo_fdb_dump should report -EMSGSIZE to rtnl_fdb_dump") (with an internal fix from Wilson Kok) in the following ways: - change ndo_fdb_dump handlers to return error code instead of the last fdb index - use cb->args strictly for dump frag markers and not error codes. This is consistent with other dump functions. Below results were taken on a system with 1000 netdevs and 35085 fdb entries: before patch: $time bridge fdb show | wc -l 15065 real 1m11.791s user 0m0.070s sys 1m8.395s (existing code does not return all macs) after patch: $time bridge fdb show | wc -l 35085 real 0m2.017s user 0m0.113s sys 0m1.942s Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: Wilson Kok <wkok@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 22:56:45 -06:00
for (h = s_h; h < NETDEV_HASHENTRIES; h++, s_idx = 0) {
idx = 0;
head = &net->dev_index_head[h];
hlist_for_each_entry(dev, head, index_hlist) {
bridge: netlink dump interface at par with brctl Actually better than brctl showmacs because we can filter by bridge port in the kernel. The current bridge netlink interface doesnt scale when you have many bridges each with large fdbs or even bridges with many bridge ports And now for the science non-fiction novel you have all been waiting for.. //lets see what bridge ports we have root@moja-1:/configs/may30-iprt/bridge# ./bridge link show 8: eth1 state DOWN : <BROADCAST,MULTICAST> mtu 1500 master br0 state disabled priority 32 cost 19 17: sw1-p1 state DOWN : <BROADCAST,NOARP> mtu 1500 master br0 state disabled priority 32 cost 100 // show all.. root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show 33:33:00:00:00:01 dev bond0 self permanent 33:33:00:00:00:01 dev dummy0 self permanent 33:33:00:00:00:01 dev ifb0 self permanent 33:33:00:00:00:01 dev ifb1 self permanent 33:33:00:00:00:01 dev eth0 self permanent 01:00:5e:00:00:01 dev eth0 self permanent 33:33:ff:22:01:01 dev eth0 self permanent 02:00:00:12:01:02 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:05 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:07 dev eth1 self permanent 33:33:00:00:00:01 dev eth1 self permanent 33:33:00:00:00:01 dev gretap0 self permanent da:ac:46:27:d9:53 dev sw1-p1 vlan 0 master br0 permanent 33:33:00:00:00:01 dev sw1-p1 self permanent //filter by bridge root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show br br0 02:00:00:12:01:02 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:05 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:07 dev eth1 self permanent 33:33:00:00:00:01 dev eth1 self permanent da:ac:46:27:d9:53 dev sw1-p1 vlan 0 master br0 permanent 33:33:00:00:00:01 dev sw1-p1 self permanent // bridge sw1 has no ports attached.. root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show br sw1 //filter by port root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show brport eth1 02:00:00:12:01:02 vlan 0 master br0 permanent 00:17:42:8a:b4:05 vlan 0 master br0 permanent 00:17:42:8a:b4:07 self permanent 33:33:00:00:00:01 self permanent // filter by port + bridge root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show br br0 brport sw1-p1 da:ac:46:27:d9:53 vlan 0 master br0 permanent 33:33:00:00:00:01 self permanent // for shits and giggles (as they say in New Brunswick), lets // change the mac that br0 uses // Note: a magical fdb entry with no brport is added ... root@moja-1:/configs/may30-iprt/bridge# ip link set dev br0 address 02:00:00:12:01:04 // lets see if we can see the unicorn .. root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show 33:33:00:00:00:01 dev bond0 self permanent 33:33:00:00:00:01 dev dummy0 self permanent 33:33:00:00:00:01 dev ifb0 self permanent 33:33:00:00:00:01 dev ifb1 self permanent 33:33:00:00:00:01 dev eth0 self permanent 01:00:5e:00:00:01 dev eth0 self permanent 33:33:ff:22:01:01 dev eth0 self permanent 02:00:00:12:01:02 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:05 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:07 dev eth1 self permanent 33:33:00:00:00:01 dev eth1 self permanent 33:33:00:00:00:01 dev gretap0 self permanent 02:00:00:12:01:04 dev br0 vlan 0 master br0 permanent <=== there it is da:ac:46:27:d9:53 dev sw1-p1 vlan 0 master br0 permanent 33:33:00:00:00:01 dev sw1-p1 self permanent //can we see it if we filter by bridge? root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show br br0 02:00:00:12:01:02 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:05 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:07 dev eth1 self permanent 33:33:00:00:00:01 dev eth1 self permanent 02:00:00:12:01:04 dev br0 vlan 0 master br0 permanent <=== there it is da:ac:46:27:d9:53 dev sw1-p1 vlan 0 master br0 permanent 33:33:00:00:00:01 dev sw1-p1 self permanent Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-10 05:01:59 -06:00
rtnetlink: fdb dump: optimize by saving last interface markers fdb dumps spanning multiple skb's currently restart from the first interface again for every skb. This results in unnecessary iterations on the already visited interfaces and their fdb entries. In large scale setups, we have seen this to slow down fdb dumps considerably. On a system with 30k macs we see fdb dumps spanning across more than 300 skbs. To fix the problem, this patch replaces the existing single fdb marker with three markers: netdev hash entries, netdevs and fdb index to continue where we left off instead of restarting from the first netdev. This is consistent with link dumps. In the process of fixing the performance issue, this patch also re-implements fix done by commit 472681d57a5d ("net: ndo_fdb_dump should report -EMSGSIZE to rtnl_fdb_dump") (with an internal fix from Wilson Kok) in the following ways: - change ndo_fdb_dump handlers to return error code instead of the last fdb index - use cb->args strictly for dump frag markers and not error codes. This is consistent with other dump functions. Below results were taken on a system with 1000 netdevs and 35085 fdb entries: before patch: $time bridge fdb show | wc -l 15065 real 1m11.791s user 0m0.070s sys 1m8.395s (existing code does not return all macs) after patch: $time bridge fdb show | wc -l 35085 real 0m2.017s user 0m0.113s sys 0m1.942s Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: Wilson Kok <wkok@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 22:56:45 -06:00
if (brport_idx && (dev->ifindex != brport_idx))
bridge: netlink dump interface at par with brctl Actually better than brctl showmacs because we can filter by bridge port in the kernel. The current bridge netlink interface doesnt scale when you have many bridges each with large fdbs or even bridges with many bridge ports And now for the science non-fiction novel you have all been waiting for.. //lets see what bridge ports we have root@moja-1:/configs/may30-iprt/bridge# ./bridge link show 8: eth1 state DOWN : <BROADCAST,MULTICAST> mtu 1500 master br0 state disabled priority 32 cost 19 17: sw1-p1 state DOWN : <BROADCAST,NOARP> mtu 1500 master br0 state disabled priority 32 cost 100 // show all.. root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show 33:33:00:00:00:01 dev bond0 self permanent 33:33:00:00:00:01 dev dummy0 self permanent 33:33:00:00:00:01 dev ifb0 self permanent 33:33:00:00:00:01 dev ifb1 self permanent 33:33:00:00:00:01 dev eth0 self permanent 01:00:5e:00:00:01 dev eth0 self permanent 33:33:ff:22:01:01 dev eth0 self permanent 02:00:00:12:01:02 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:05 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:07 dev eth1 self permanent 33:33:00:00:00:01 dev eth1 self permanent 33:33:00:00:00:01 dev gretap0 self permanent da:ac:46:27:d9:53 dev sw1-p1 vlan 0 master br0 permanent 33:33:00:00:00:01 dev sw1-p1 self permanent //filter by bridge root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show br br0 02:00:00:12:01:02 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:05 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:07 dev eth1 self permanent 33:33:00:00:00:01 dev eth1 self permanent da:ac:46:27:d9:53 dev sw1-p1 vlan 0 master br0 permanent 33:33:00:00:00:01 dev sw1-p1 self permanent // bridge sw1 has no ports attached.. root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show br sw1 //filter by port root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show brport eth1 02:00:00:12:01:02 vlan 0 master br0 permanent 00:17:42:8a:b4:05 vlan 0 master br0 permanent 00:17:42:8a:b4:07 self permanent 33:33:00:00:00:01 self permanent // filter by port + bridge root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show br br0 brport sw1-p1 da:ac:46:27:d9:53 vlan 0 master br0 permanent 33:33:00:00:00:01 self permanent // for shits and giggles (as they say in New Brunswick), lets // change the mac that br0 uses // Note: a magical fdb entry with no brport is added ... root@moja-1:/configs/may30-iprt/bridge# ip link set dev br0 address 02:00:00:12:01:04 // lets see if we can see the unicorn .. root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show 33:33:00:00:00:01 dev bond0 self permanent 33:33:00:00:00:01 dev dummy0 self permanent 33:33:00:00:00:01 dev ifb0 self permanent 33:33:00:00:00:01 dev ifb1 self permanent 33:33:00:00:00:01 dev eth0 self permanent 01:00:5e:00:00:01 dev eth0 self permanent 33:33:ff:22:01:01 dev eth0 self permanent 02:00:00:12:01:02 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:05 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:07 dev eth1 self permanent 33:33:00:00:00:01 dev eth1 self permanent 33:33:00:00:00:01 dev gretap0 self permanent 02:00:00:12:01:04 dev br0 vlan 0 master br0 permanent <=== there it is da:ac:46:27:d9:53 dev sw1-p1 vlan 0 master br0 permanent 33:33:00:00:00:01 dev sw1-p1 self permanent //can we see it if we filter by bridge? root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show br br0 02:00:00:12:01:02 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:05 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:07 dev eth1 self permanent 33:33:00:00:00:01 dev eth1 self permanent 02:00:00:12:01:04 dev br0 vlan 0 master br0 permanent <=== there it is da:ac:46:27:d9:53 dev sw1-p1 vlan 0 master br0 permanent 33:33:00:00:00:01 dev sw1-p1 self permanent Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-10 05:01:59 -06:00
continue;
rtnetlink: fdb dump: optimize by saving last interface markers fdb dumps spanning multiple skb's currently restart from the first interface again for every skb. This results in unnecessary iterations on the already visited interfaces and their fdb entries. In large scale setups, we have seen this to slow down fdb dumps considerably. On a system with 30k macs we see fdb dumps spanning across more than 300 skbs. To fix the problem, this patch replaces the existing single fdb marker with three markers: netdev hash entries, netdevs and fdb index to continue where we left off instead of restarting from the first netdev. This is consistent with link dumps. In the process of fixing the performance issue, this patch also re-implements fix done by commit 472681d57a5d ("net: ndo_fdb_dump should report -EMSGSIZE to rtnl_fdb_dump") (with an internal fix from Wilson Kok) in the following ways: - change ndo_fdb_dump handlers to return error code instead of the last fdb index - use cb->args strictly for dump frag markers and not error codes. This is consistent with other dump functions. Below results were taken on a system with 1000 netdevs and 35085 fdb entries: before patch: $time bridge fdb show | wc -l 15065 real 1m11.791s user 0m0.070s sys 1m8.395s (existing code does not return all macs) after patch: $time bridge fdb show | wc -l 35085 real 0m2.017s user 0m0.113s sys 0m1.942s Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: Wilson Kok <wkok@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 22:56:45 -06:00
if (!br_idx) { /* user did not specify a specific bridge */
if (dev->priv_flags & IFF_BRIDGE_PORT) {
br_dev = netdev_master_upper_dev_get(dev);
cops = br_dev->netdev_ops;
}
} else {
if (dev != br_dev &&
!(dev->priv_flags & IFF_BRIDGE_PORT))
continue;
bridge: netlink dump interface at par with brctl Actually better than brctl showmacs because we can filter by bridge port in the kernel. The current bridge netlink interface doesnt scale when you have many bridges each with large fdbs or even bridges with many bridge ports And now for the science non-fiction novel you have all been waiting for.. //lets see what bridge ports we have root@moja-1:/configs/may30-iprt/bridge# ./bridge link show 8: eth1 state DOWN : <BROADCAST,MULTICAST> mtu 1500 master br0 state disabled priority 32 cost 19 17: sw1-p1 state DOWN : <BROADCAST,NOARP> mtu 1500 master br0 state disabled priority 32 cost 100 // show all.. root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show 33:33:00:00:00:01 dev bond0 self permanent 33:33:00:00:00:01 dev dummy0 self permanent 33:33:00:00:00:01 dev ifb0 self permanent 33:33:00:00:00:01 dev ifb1 self permanent 33:33:00:00:00:01 dev eth0 self permanent 01:00:5e:00:00:01 dev eth0 self permanent 33:33:ff:22:01:01 dev eth0 self permanent 02:00:00:12:01:02 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:05 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:07 dev eth1 self permanent 33:33:00:00:00:01 dev eth1 self permanent 33:33:00:00:00:01 dev gretap0 self permanent da:ac:46:27:d9:53 dev sw1-p1 vlan 0 master br0 permanent 33:33:00:00:00:01 dev sw1-p1 self permanent //filter by bridge root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show br br0 02:00:00:12:01:02 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:05 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:07 dev eth1 self permanent 33:33:00:00:00:01 dev eth1 self permanent da:ac:46:27:d9:53 dev sw1-p1 vlan 0 master br0 permanent 33:33:00:00:00:01 dev sw1-p1 self permanent // bridge sw1 has no ports attached.. root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show br sw1 //filter by port root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show brport eth1 02:00:00:12:01:02 vlan 0 master br0 permanent 00:17:42:8a:b4:05 vlan 0 master br0 permanent 00:17:42:8a:b4:07 self permanent 33:33:00:00:00:01 self permanent // filter by port + bridge root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show br br0 brport sw1-p1 da:ac:46:27:d9:53 vlan 0 master br0 permanent 33:33:00:00:00:01 self permanent // for shits and giggles (as they say in New Brunswick), lets // change the mac that br0 uses // Note: a magical fdb entry with no brport is added ... root@moja-1:/configs/may30-iprt/bridge# ip link set dev br0 address 02:00:00:12:01:04 // lets see if we can see the unicorn .. root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show 33:33:00:00:00:01 dev bond0 self permanent 33:33:00:00:00:01 dev dummy0 self permanent 33:33:00:00:00:01 dev ifb0 self permanent 33:33:00:00:00:01 dev ifb1 self permanent 33:33:00:00:00:01 dev eth0 self permanent 01:00:5e:00:00:01 dev eth0 self permanent 33:33:ff:22:01:01 dev eth0 self permanent 02:00:00:12:01:02 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:05 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:07 dev eth1 self permanent 33:33:00:00:00:01 dev eth1 self permanent 33:33:00:00:00:01 dev gretap0 self permanent 02:00:00:12:01:04 dev br0 vlan 0 master br0 permanent <=== there it is da:ac:46:27:d9:53 dev sw1-p1 vlan 0 master br0 permanent 33:33:00:00:00:01 dev sw1-p1 self permanent //can we see it if we filter by bridge? root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show br br0 02:00:00:12:01:02 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:05 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:07 dev eth1 self permanent 33:33:00:00:00:01 dev eth1 self permanent 02:00:00:12:01:04 dev br0 vlan 0 master br0 permanent <=== there it is da:ac:46:27:d9:53 dev sw1-p1 vlan 0 master br0 permanent 33:33:00:00:00:01 dev sw1-p1 self permanent Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-10 05:01:59 -06:00
rtnetlink: fdb dump: optimize by saving last interface markers fdb dumps spanning multiple skb's currently restart from the first interface again for every skb. This results in unnecessary iterations on the already visited interfaces and their fdb entries. In large scale setups, we have seen this to slow down fdb dumps considerably. On a system with 30k macs we see fdb dumps spanning across more than 300 skbs. To fix the problem, this patch replaces the existing single fdb marker with three markers: netdev hash entries, netdevs and fdb index to continue where we left off instead of restarting from the first netdev. This is consistent with link dumps. In the process of fixing the performance issue, this patch also re-implements fix done by commit 472681d57a5d ("net: ndo_fdb_dump should report -EMSGSIZE to rtnl_fdb_dump") (with an internal fix from Wilson Kok) in the following ways: - change ndo_fdb_dump handlers to return error code instead of the last fdb index - use cb->args strictly for dump frag markers and not error codes. This is consistent with other dump functions. Below results were taken on a system with 1000 netdevs and 35085 fdb entries: before patch: $time bridge fdb show | wc -l 15065 real 1m11.791s user 0m0.070s sys 1m8.395s (existing code does not return all macs) after patch: $time bridge fdb show | wc -l 35085 real 0m2.017s user 0m0.113s sys 0m1.942s Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: Wilson Kok <wkok@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 22:56:45 -06:00
if (br_dev != netdev_master_upper_dev_get(dev) &&
!(dev->priv_flags & IFF_EBRIDGE))
continue;
cops = ops;
}
net: add generic PF_BRIDGE:RTM_ FDB hooks This adds two new flags NTF_MASTER and NTF_SELF that can now be used to specify where PF_BRIDGE netlink commands should be sent. NTF_MASTER sends the commands to the 'dev->master' device for parsing. Typically this will be the linux net/bridge, or open-vswitch devices. Also without any flags set the command will be handled by the master device as well so that current user space tools continue to work as expected. The NTF_SELF flag will push the PF_BRIDGE commands to the device. In the basic example below the commands are then parsed and programmed in the embedded bridge. Note if both NTF_SELF and NTF_MASTER bits are set then the command will be sent to both 'dev->master' and 'dev' this allows user space to easily keep the embedded bridge and software bridge in sync. There is a slight complication in the case with both flags set when an error occurs. To resolve this the rtnl handler clears the NTF_ flag in the netlink ack to indicate which sets completed successfully. The add/del handlers will abort as soon as any error occurs. To support this new net device ops were added to call into the device and the existing bridging code was refactored to use these. There should be no required changes in user space to support the current bridge behavior. A basic setup with a SR-IOV enabled NIC looks like this, veth0 veth2 | | ------------ | bridge0 | <---- software bridging ------------ / / ethx.y ethx VF PF \ \ <---- propagate FDB entries to HW \ \ -------------------- | Embedded Bridge | <---- hardware offloaded switching -------------------- In this case the embedded bridge must be managed to allow 'veth0' to communicate with 'ethx.y' correctly. At present drivers managing the embedded bridge either send frames onto the network which then get dropped by the switch OR the embedded bridge will flood these frames. With this patch we have a mechanism to manage the embedded bridge correctly from user space. This example is specific to SR-IOV but replacing the VF with another PF or dropping this into the DSA framework generates similar management issues. Examples session using the 'br'[1] tool to add, dump and then delete a mac address with a new "embedded" option and enabled ixgbe driver: # br fdb add 22:35:19:ac:60:59 dev eth3 # br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static #br fdb add 22:35:19:ac:60:59 embedded dev eth3 #br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static eth3 22:35:19:ac:60:59 local embedded #br fdb del 22:35:19:ac:60:59 embedded dev eth3 I added a couple lines to 'br' to set the flags correctly is all. It is my opinion that the merit of this patch is now embedded and SW bridges can both be modeled correctly in user space using very nearly the same message passing. [1] 'br' tool was published as an RFC here and will be renamed 'bridge' http://patchwork.ozlabs.org/patch/117664/ Thanks to Jamal Hadi Salim, Stephen Hemminger and Ben Hutchings for valuable feedback, suggestions, and review. v2: fixed api descriptions and error case with both NTF_SELF and NTF_MASTER set plus updated patch description. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-15 00:43:56 -06:00
rtnetlink: fdb dump: optimize by saving last interface markers fdb dumps spanning multiple skb's currently restart from the first interface again for every skb. This results in unnecessary iterations on the already visited interfaces and their fdb entries. In large scale setups, we have seen this to slow down fdb dumps considerably. On a system with 30k macs we see fdb dumps spanning across more than 300 skbs. To fix the problem, this patch replaces the existing single fdb marker with three markers: netdev hash entries, netdevs and fdb index to continue where we left off instead of restarting from the first netdev. This is consistent with link dumps. In the process of fixing the performance issue, this patch also re-implements fix done by commit 472681d57a5d ("net: ndo_fdb_dump should report -EMSGSIZE to rtnl_fdb_dump") (with an internal fix from Wilson Kok) in the following ways: - change ndo_fdb_dump handlers to return error code instead of the last fdb index - use cb->args strictly for dump frag markers and not error codes. This is consistent with other dump functions. Below results were taken on a system with 1000 netdevs and 35085 fdb entries: before patch: $time bridge fdb show | wc -l 15065 real 1m11.791s user 0m0.070s sys 1m8.395s (existing code does not return all macs) after patch: $time bridge fdb show | wc -l 35085 real 0m2.017s user 0m0.113s sys 0m1.942s Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: Wilson Kok <wkok@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 22:56:45 -06:00
if (idx < s_idx)
goto cont;
net: add generic PF_BRIDGE:RTM_ FDB hooks This adds two new flags NTF_MASTER and NTF_SELF that can now be used to specify where PF_BRIDGE netlink commands should be sent. NTF_MASTER sends the commands to the 'dev->master' device for parsing. Typically this will be the linux net/bridge, or open-vswitch devices. Also without any flags set the command will be handled by the master device as well so that current user space tools continue to work as expected. The NTF_SELF flag will push the PF_BRIDGE commands to the device. In the basic example below the commands are then parsed and programmed in the embedded bridge. Note if both NTF_SELF and NTF_MASTER bits are set then the command will be sent to both 'dev->master' and 'dev' this allows user space to easily keep the embedded bridge and software bridge in sync. There is a slight complication in the case with both flags set when an error occurs. To resolve this the rtnl handler clears the NTF_ flag in the netlink ack to indicate which sets completed successfully. The add/del handlers will abort as soon as any error occurs. To support this new net device ops were added to call into the device and the existing bridging code was refactored to use these. There should be no required changes in user space to support the current bridge behavior. A basic setup with a SR-IOV enabled NIC looks like this, veth0 veth2 | | ------------ | bridge0 | <---- software bridging ------------ / / ethx.y ethx VF PF \ \ <---- propagate FDB entries to HW \ \ -------------------- | Embedded Bridge | <---- hardware offloaded switching -------------------- In this case the embedded bridge must be managed to allow 'veth0' to communicate with 'ethx.y' correctly. At present drivers managing the embedded bridge either send frames onto the network which then get dropped by the switch OR the embedded bridge will flood these frames. With this patch we have a mechanism to manage the embedded bridge correctly from user space. This example is specific to SR-IOV but replacing the VF with another PF or dropping this into the DSA framework generates similar management issues. Examples session using the 'br'[1] tool to add, dump and then delete a mac address with a new "embedded" option and enabled ixgbe driver: # br fdb add 22:35:19:ac:60:59 dev eth3 # br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static #br fdb add 22:35:19:ac:60:59 embedded dev eth3 #br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static eth3 22:35:19:ac:60:59 local embedded #br fdb del 22:35:19:ac:60:59 embedded dev eth3 I added a couple lines to 'br' to set the flags correctly is all. It is my opinion that the merit of this patch is now embedded and SW bridges can both be modeled correctly in user space using very nearly the same message passing. [1] 'br' tool was published as an RFC here and will be renamed 'bridge' http://patchwork.ozlabs.org/patch/117664/ Thanks to Jamal Hadi Salim, Stephen Hemminger and Ben Hutchings for valuable feedback, suggestions, and review. v2: fixed api descriptions and error case with both NTF_SELF and NTF_MASTER set plus updated patch description. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-15 00:43:56 -06:00
rtnetlink: fdb dump: optimize by saving last interface markers fdb dumps spanning multiple skb's currently restart from the first interface again for every skb. This results in unnecessary iterations on the already visited interfaces and their fdb entries. In large scale setups, we have seen this to slow down fdb dumps considerably. On a system with 30k macs we see fdb dumps spanning across more than 300 skbs. To fix the problem, this patch replaces the existing single fdb marker with three markers: netdev hash entries, netdevs and fdb index to continue where we left off instead of restarting from the first netdev. This is consistent with link dumps. In the process of fixing the performance issue, this patch also re-implements fix done by commit 472681d57a5d ("net: ndo_fdb_dump should report -EMSGSIZE to rtnl_fdb_dump") (with an internal fix from Wilson Kok) in the following ways: - change ndo_fdb_dump handlers to return error code instead of the last fdb index - use cb->args strictly for dump frag markers and not error codes. This is consistent with other dump functions. Below results were taken on a system with 1000 netdevs and 35085 fdb entries: before patch: $time bridge fdb show | wc -l 15065 real 1m11.791s user 0m0.070s sys 1m8.395s (existing code does not return all macs) after patch: $time bridge fdb show | wc -l 35085 real 0m2.017s user 0m0.113s sys 0m1.942s Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: Wilson Kok <wkok@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 22:56:45 -06:00
if (dev->priv_flags & IFF_BRIDGE_PORT) {
if (cops && cops->ndo_fdb_dump) {
err = cops->ndo_fdb_dump(skb, cb,
br_dev, dev,
&fidx);
if (err == -EMSGSIZE)
goto out;
}
}
bridge: netlink dump interface at par with brctl Actually better than brctl showmacs because we can filter by bridge port in the kernel. The current bridge netlink interface doesnt scale when you have many bridges each with large fdbs or even bridges with many bridge ports And now for the science non-fiction novel you have all been waiting for.. //lets see what bridge ports we have root@moja-1:/configs/may30-iprt/bridge# ./bridge link show 8: eth1 state DOWN : <BROADCAST,MULTICAST> mtu 1500 master br0 state disabled priority 32 cost 19 17: sw1-p1 state DOWN : <BROADCAST,NOARP> mtu 1500 master br0 state disabled priority 32 cost 100 // show all.. root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show 33:33:00:00:00:01 dev bond0 self permanent 33:33:00:00:00:01 dev dummy0 self permanent 33:33:00:00:00:01 dev ifb0 self permanent 33:33:00:00:00:01 dev ifb1 self permanent 33:33:00:00:00:01 dev eth0 self permanent 01:00:5e:00:00:01 dev eth0 self permanent 33:33:ff:22:01:01 dev eth0 self permanent 02:00:00:12:01:02 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:05 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:07 dev eth1 self permanent 33:33:00:00:00:01 dev eth1 self permanent 33:33:00:00:00:01 dev gretap0 self permanent da:ac:46:27:d9:53 dev sw1-p1 vlan 0 master br0 permanent 33:33:00:00:00:01 dev sw1-p1 self permanent //filter by bridge root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show br br0 02:00:00:12:01:02 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:05 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:07 dev eth1 self permanent 33:33:00:00:00:01 dev eth1 self permanent da:ac:46:27:d9:53 dev sw1-p1 vlan 0 master br0 permanent 33:33:00:00:00:01 dev sw1-p1 self permanent // bridge sw1 has no ports attached.. root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show br sw1 //filter by port root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show brport eth1 02:00:00:12:01:02 vlan 0 master br0 permanent 00:17:42:8a:b4:05 vlan 0 master br0 permanent 00:17:42:8a:b4:07 self permanent 33:33:00:00:00:01 self permanent // filter by port + bridge root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show br br0 brport sw1-p1 da:ac:46:27:d9:53 vlan 0 master br0 permanent 33:33:00:00:00:01 self permanent // for shits and giggles (as they say in New Brunswick), lets // change the mac that br0 uses // Note: a magical fdb entry with no brport is added ... root@moja-1:/configs/may30-iprt/bridge# ip link set dev br0 address 02:00:00:12:01:04 // lets see if we can see the unicorn .. root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show 33:33:00:00:00:01 dev bond0 self permanent 33:33:00:00:00:01 dev dummy0 self permanent 33:33:00:00:00:01 dev ifb0 self permanent 33:33:00:00:00:01 dev ifb1 self permanent 33:33:00:00:00:01 dev eth0 self permanent 01:00:5e:00:00:01 dev eth0 self permanent 33:33:ff:22:01:01 dev eth0 self permanent 02:00:00:12:01:02 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:05 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:07 dev eth1 self permanent 33:33:00:00:00:01 dev eth1 self permanent 33:33:00:00:00:01 dev gretap0 self permanent 02:00:00:12:01:04 dev br0 vlan 0 master br0 permanent <=== there it is da:ac:46:27:d9:53 dev sw1-p1 vlan 0 master br0 permanent 33:33:00:00:00:01 dev sw1-p1 self permanent //can we see it if we filter by bridge? root@moja-1:/configs/may30-iprt/bridge# ./bridge fdb show br br0 02:00:00:12:01:02 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:05 dev eth1 vlan 0 master br0 permanent 00:17:42:8a:b4:07 dev eth1 self permanent 33:33:00:00:00:01 dev eth1 self permanent 02:00:00:12:01:04 dev br0 vlan 0 master br0 permanent <=== there it is da:ac:46:27:d9:53 dev sw1-p1 vlan 0 master br0 permanent 33:33:00:00:00:01 dev sw1-p1 self permanent Signed-off-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-10 05:01:59 -06:00
rtnetlink: fdb dump: optimize by saving last interface markers fdb dumps spanning multiple skb's currently restart from the first interface again for every skb. This results in unnecessary iterations on the already visited interfaces and their fdb entries. In large scale setups, we have seen this to slow down fdb dumps considerably. On a system with 30k macs we see fdb dumps spanning across more than 300 skbs. To fix the problem, this patch replaces the existing single fdb marker with three markers: netdev hash entries, netdevs and fdb index to continue where we left off instead of restarting from the first netdev. This is consistent with link dumps. In the process of fixing the performance issue, this patch also re-implements fix done by commit 472681d57a5d ("net: ndo_fdb_dump should report -EMSGSIZE to rtnl_fdb_dump") (with an internal fix from Wilson Kok) in the following ways: - change ndo_fdb_dump handlers to return error code instead of the last fdb index - use cb->args strictly for dump frag markers and not error codes. This is consistent with other dump functions. Below results were taken on a system with 1000 netdevs and 35085 fdb entries: before patch: $time bridge fdb show | wc -l 15065 real 1m11.791s user 0m0.070s sys 1m8.395s (existing code does not return all macs) after patch: $time bridge fdb show | wc -l 35085 real 0m2.017s user 0m0.113s sys 0m1.942s Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: Wilson Kok <wkok@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 22:56:45 -06:00
if (dev->netdev_ops->ndo_fdb_dump)
err = dev->netdev_ops->ndo_fdb_dump(skb, cb,
dev, NULL,
&fidx);
else
err = ndo_dflt_fdb_dump(skb, cb, dev, NULL,
&fidx);
if (err == -EMSGSIZE)
goto out;
cops = NULL;
/* reset fdb offset to 0 for rest of the interfaces */
cb->args[2] = 0;
fidx = 0;
cont:
idx++;
}
net: add generic PF_BRIDGE:RTM_ FDB hooks This adds two new flags NTF_MASTER and NTF_SELF that can now be used to specify where PF_BRIDGE netlink commands should be sent. NTF_MASTER sends the commands to the 'dev->master' device for parsing. Typically this will be the linux net/bridge, or open-vswitch devices. Also without any flags set the command will be handled by the master device as well so that current user space tools continue to work as expected. The NTF_SELF flag will push the PF_BRIDGE commands to the device. In the basic example below the commands are then parsed and programmed in the embedded bridge. Note if both NTF_SELF and NTF_MASTER bits are set then the command will be sent to both 'dev->master' and 'dev' this allows user space to easily keep the embedded bridge and software bridge in sync. There is a slight complication in the case with both flags set when an error occurs. To resolve this the rtnl handler clears the NTF_ flag in the netlink ack to indicate which sets completed successfully. The add/del handlers will abort as soon as any error occurs. To support this new net device ops were added to call into the device and the existing bridging code was refactored to use these. There should be no required changes in user space to support the current bridge behavior. A basic setup with a SR-IOV enabled NIC looks like this, veth0 veth2 | | ------------ | bridge0 | <---- software bridging ------------ / / ethx.y ethx VF PF \ \ <---- propagate FDB entries to HW \ \ -------------------- | Embedded Bridge | <---- hardware offloaded switching -------------------- In this case the embedded bridge must be managed to allow 'veth0' to communicate with 'ethx.y' correctly. At present drivers managing the embedded bridge either send frames onto the network which then get dropped by the switch OR the embedded bridge will flood these frames. With this patch we have a mechanism to manage the embedded bridge correctly from user space. This example is specific to SR-IOV but replacing the VF with another PF or dropping this into the DSA framework generates similar management issues. Examples session using the 'br'[1] tool to add, dump and then delete a mac address with a new "embedded" option and enabled ixgbe driver: # br fdb add 22:35:19:ac:60:59 dev eth3 # br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static #br fdb add 22:35:19:ac:60:59 embedded dev eth3 #br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static eth3 22:35:19:ac:60:59 local embedded #br fdb del 22:35:19:ac:60:59 embedded dev eth3 I added a couple lines to 'br' to set the flags correctly is all. It is my opinion that the merit of this patch is now embedded and SW bridges can both be modeled correctly in user space using very nearly the same message passing. [1] 'br' tool was published as an RFC here and will be renamed 'bridge' http://patchwork.ozlabs.org/patch/117664/ Thanks to Jamal Hadi Salim, Stephen Hemminger and Ben Hutchings for valuable feedback, suggestions, and review. v2: fixed api descriptions and error case with both NTF_SELF and NTF_MASTER set plus updated patch description. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-15 00:43:56 -06:00
}
rtnetlink: fdb dump: optimize by saving last interface markers fdb dumps spanning multiple skb's currently restart from the first interface again for every skb. This results in unnecessary iterations on the already visited interfaces and their fdb entries. In large scale setups, we have seen this to slow down fdb dumps considerably. On a system with 30k macs we see fdb dumps spanning across more than 300 skbs. To fix the problem, this patch replaces the existing single fdb marker with three markers: netdev hash entries, netdevs and fdb index to continue where we left off instead of restarting from the first netdev. This is consistent with link dumps. In the process of fixing the performance issue, this patch also re-implements fix done by commit 472681d57a5d ("net: ndo_fdb_dump should report -EMSGSIZE to rtnl_fdb_dump") (with an internal fix from Wilson Kok) in the following ways: - change ndo_fdb_dump handlers to return error code instead of the last fdb index - use cb->args strictly for dump frag markers and not error codes. This is consistent with other dump functions. Below results were taken on a system with 1000 netdevs and 35085 fdb entries: before patch: $time bridge fdb show | wc -l 15065 real 1m11.791s user 0m0.070s sys 1m8.395s (existing code does not return all macs) after patch: $time bridge fdb show | wc -l 35085 real 0m2.017s user 0m0.113s sys 0m1.942s Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: Wilson Kok <wkok@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 22:56:45 -06:00
out:
cb->args[0] = h;
cb->args[1] = idx;
cb->args[2] = fidx;
net: add generic PF_BRIDGE:RTM_ FDB hooks This adds two new flags NTF_MASTER and NTF_SELF that can now be used to specify where PF_BRIDGE netlink commands should be sent. NTF_MASTER sends the commands to the 'dev->master' device for parsing. Typically this will be the linux net/bridge, or open-vswitch devices. Also without any flags set the command will be handled by the master device as well so that current user space tools continue to work as expected. The NTF_SELF flag will push the PF_BRIDGE commands to the device. In the basic example below the commands are then parsed and programmed in the embedded bridge. Note if both NTF_SELF and NTF_MASTER bits are set then the command will be sent to both 'dev->master' and 'dev' this allows user space to easily keep the embedded bridge and software bridge in sync. There is a slight complication in the case with both flags set when an error occurs. To resolve this the rtnl handler clears the NTF_ flag in the netlink ack to indicate which sets completed successfully. The add/del handlers will abort as soon as any error occurs. To support this new net device ops were added to call into the device and the existing bridging code was refactored to use these. There should be no required changes in user space to support the current bridge behavior. A basic setup with a SR-IOV enabled NIC looks like this, veth0 veth2 | | ------------ | bridge0 | <---- software bridging ------------ / / ethx.y ethx VF PF \ \ <---- propagate FDB entries to HW \ \ -------------------- | Embedded Bridge | <---- hardware offloaded switching -------------------- In this case the embedded bridge must be managed to allow 'veth0' to communicate with 'ethx.y' correctly. At present drivers managing the embedded bridge either send frames onto the network which then get dropped by the switch OR the embedded bridge will flood these frames. With this patch we have a mechanism to manage the embedded bridge correctly from user space. This example is specific to SR-IOV but replacing the VF with another PF or dropping this into the DSA framework generates similar management issues. Examples session using the 'br'[1] tool to add, dump and then delete a mac address with a new "embedded" option and enabled ixgbe driver: # br fdb add 22:35:19:ac:60:59 dev eth3 # br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static #br fdb add 22:35:19:ac:60:59 embedded dev eth3 #br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static eth3 22:35:19:ac:60:59 local embedded #br fdb del 22:35:19:ac:60:59 embedded dev eth3 I added a couple lines to 'br' to set the flags correctly is all. It is my opinion that the merit of this patch is now embedded and SW bridges can both be modeled correctly in user space using very nearly the same message passing. [1] 'br' tool was published as an RFC here and will be renamed 'bridge' http://patchwork.ozlabs.org/patch/117664/ Thanks to Jamal Hadi Salim, Stephen Hemminger and Ben Hutchings for valuable feedback, suggestions, and review. v2: fixed api descriptions and error case with both NTF_SELF and NTF_MASTER set plus updated patch description. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-15 00:43:56 -06:00
return skb->len;
}
static int brport_nla_put_flag(struct sk_buff *skb, u32 flags, u32 mask,
unsigned int attrnum, unsigned int flag)
{
if (mask & flag)
return nla_put_u8(skb, attrnum, !!(flags & flag));
return 0;
}
int ndo_dflt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
struct net_device *dev, u16 mode,
u32 flags, u32 mask, int nlflags,
u32 filter_mask,
int (*vlan_fill)(struct sk_buff *skb,
struct net_device *dev,
u32 filter_mask))
{
struct nlmsghdr *nlh;
struct ifinfomsg *ifm;
struct nlattr *br_afspec;
struct nlattr *protinfo;
u8 operstate = netif_running(dev) ? dev->operstate : IF_OPER_DOWN;
struct net_device *br_dev = netdev_master_upper_dev_get(dev);
int err = 0;
nlh = nlmsg_put(skb, pid, seq, RTM_NEWLINK, sizeof(*ifm), nlflags);
if (nlh == NULL)
return -EMSGSIZE;
ifm = nlmsg_data(nlh);
ifm->ifi_family = AF_BRIDGE;
ifm->__ifi_pad = 0;
ifm->ifi_type = dev->type;
ifm->ifi_index = dev->ifindex;
ifm->ifi_flags = dev_get_flags(dev);
ifm->ifi_change = 0;
if (nla_put_string(skb, IFLA_IFNAME, dev->name) ||
nla_put_u32(skb, IFLA_MTU, dev->mtu) ||
nla_put_u8(skb, IFLA_OPERSTATE, operstate) ||
(br_dev &&
nla_put_u32(skb, IFLA_MASTER, br_dev->ifindex)) ||
(dev->addr_len &&
nla_put(skb, IFLA_ADDRESS, dev->addr_len, dev->dev_addr)) ||
(dev->ifindex != dev_get_iflink(dev) &&
nla_put_u32(skb, IFLA_LINK, dev_get_iflink(dev))))
goto nla_put_failure;
br_afspec = nla_nest_start(skb, IFLA_AF_SPEC);
if (!br_afspec)
goto nla_put_failure;
if (nla_put_u16(skb, IFLA_BRIDGE_FLAGS, BRIDGE_FLAGS_SELF)) {
nla_nest_cancel(skb, br_afspec);
goto nla_put_failure;
}
if (mode != BRIDGE_MODE_UNDEF) {
if (nla_put_u16(skb, IFLA_BRIDGE_MODE, mode)) {
nla_nest_cancel(skb, br_afspec);
goto nla_put_failure;
}
}
if (vlan_fill) {
err = vlan_fill(skb, dev, filter_mask);
if (err) {
nla_nest_cancel(skb, br_afspec);
goto nla_put_failure;
}
}
nla_nest_end(skb, br_afspec);
protinfo = nla_nest_start(skb, IFLA_PROTINFO | NLA_F_NESTED);
if (!protinfo)
goto nla_put_failure;
if (brport_nla_put_flag(skb, flags, mask,
IFLA_BRPORT_MODE, BR_HAIRPIN_MODE) ||
brport_nla_put_flag(skb, flags, mask,
IFLA_BRPORT_GUARD, BR_BPDU_GUARD) ||
brport_nla_put_flag(skb, flags, mask,
IFLA_BRPORT_FAST_LEAVE,
BR_MULTICAST_FAST_LEAVE) ||
brport_nla_put_flag(skb, flags, mask,
IFLA_BRPORT_PROTECT, BR_ROOT_BLOCK) ||
brport_nla_put_flag(skb, flags, mask,
IFLA_BRPORT_LEARNING, BR_LEARNING) ||
brport_nla_put_flag(skb, flags, mask,
IFLA_BRPORT_LEARNING_SYNC, BR_LEARNING_SYNC) ||
brport_nla_put_flag(skb, flags, mask,
IFLA_BRPORT_UNICAST_FLOOD, BR_FLOOD) ||
brport_nla_put_flag(skb, flags, mask,
IFLA_BRPORT_PROXYARP, BR_PROXYARP)) {
nla_nest_cancel(skb, protinfo);
goto nla_put_failure;
}
nla_nest_end(skb, protinfo);
netlink: make nlmsg_end() and genlmsg_end() void Contrary to common expectations for an "int" return, these functions return only a positive value -- if used correctly they cannot even return 0 because the message header will necessarily be in the skb. This makes the very common pattern of if (genlmsg_end(...) < 0) { ... } be a whole bunch of dead code. Many places also simply do return nlmsg_end(...); and the caller is expected to deal with it. This also commonly (at least for me) causes errors, because it is very common to write if (my_function(...)) /* error condition */ and if my_function() does "return nlmsg_end()" this is of course wrong. Additionally, there's not a single place in the kernel that actually needs the message length returned, and if anyone needs it later then it'll be very easy to just use skb->len there. Remove this, and make the functions void. This removes a bunch of dead code as described above. The patch adds lines because I did - return nlmsg_end(...); + nlmsg_end(...); + return 0; I could have preserved all the function's return values by returning skb->len, but instead I've audited all the places calling the affected functions and found that none cared. A few places actually compared the return value with <= 0 in dump functionality, but that could just be changed to < 0 with no change in behaviour, so I opted for the more efficient version. One instance of the error I've made numerous times now is also present in net/phonet/pn_netlink.c in the route_dumpit() function - it didn't check for <0 or <=0 and thus broke out of the loop every single time. I've preserved this since it will (I think) have caused the messages to userspace to be formatted differently with just a single message for every SKB returned to userspace. It's possible that this isn't needed for the tools that actually use this, but I don't even know what they are so couldn't test that changing this behaviour would be acceptable. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-16 14:09:00 -07:00
nlmsg_end(skb, nlh);
return 0;
nla_put_failure:
nlmsg_cancel(skb, nlh);
return err ? err : -EMSGSIZE;
}
EXPORT_SYMBOL_GPL(ndo_dflt_bridge_getlink);
static int valid_bridge_getlink_req(const struct nlmsghdr *nlh,
bool strict_check, u32 *filter_mask,
struct netlink_ext_ack *extack)
{
struct nlattr *tb[IFLA_MAX+1];
int err, i;
if (strict_check) {
struct ifinfomsg *ifm;
if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ifm))) {
NL_SET_ERR_MSG(extack, "Invalid header for bridge link dump");
return -EINVAL;
}
ifm = nlmsg_data(nlh);
if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags ||
ifm->ifi_change || ifm->ifi_index) {
NL_SET_ERR_MSG(extack, "Invalid values in header for bridge link dump request");
return -EINVAL;
}
err = nlmsg_parse_strict(nlh, sizeof(struct ifinfomsg), tb,
IFLA_MAX, ifla_policy, extack);
} else {
err = nlmsg_parse(nlh, sizeof(struct ifinfomsg), tb,
IFLA_MAX, ifla_policy, extack);
}
if (err < 0)
return err;
/* new attributes should only be added with strict checking */
for (i = 0; i <= IFLA_MAX; ++i) {
if (!tb[i])
continue;
switch (i) {
case IFLA_EXT_MASK:
*filter_mask = nla_get_u32(tb[i]);
break;
default:
if (strict_check) {
NL_SET_ERR_MSG(extack, "Unsupported attribute in bridge link dump request");
return -EINVAL;
}
}
}
return 0;
}
static int rtnl_bridge_getlink(struct sk_buff *skb, struct netlink_callback *cb)
{
const struct nlmsghdr *nlh = cb->nlh;
struct net *net = sock_net(skb->sk);
struct net_device *dev;
int idx = 0;
u32 portid = NETLINK_CB(cb->skb).portid;
u32 seq = nlh->nlmsg_seq;
u32 filter_mask = 0;
int err;
err = valid_bridge_getlink_req(nlh, cb->strict_check, &filter_mask,
cb->extack);
if (err < 0 && cb->strict_check)
return err;
rcu_read_lock();
for_each_netdev_rcu(net, dev) {
const struct net_device_ops *ops = dev->netdev_ops;
struct net_device *br_dev = netdev_master_upper_dev_get(dev);
if (br_dev && br_dev->netdev_ops->ndo_bridge_getlink) {
if (idx >= cb->args[0]) {
err = br_dev->netdev_ops->ndo_bridge_getlink(
skb, portid, seq, dev,
filter_mask, NLM_F_MULTI);
if (err < 0 && err != -EOPNOTSUPP) {
if (likely(skb->len))
break;
goto out_err;
}
}
idx++;
}
if (ops->ndo_bridge_getlink) {
if (idx >= cb->args[0]) {
err = ops->ndo_bridge_getlink(skb, portid,
seq, dev,
filter_mask,
NLM_F_MULTI);
if (err < 0 && err != -EOPNOTSUPP) {
if (likely(skb->len))
break;
goto out_err;
}
}
idx++;
}
}
err = skb->len;
out_err:
rcu_read_unlock();
cb->args[0] = idx;
return err;
}
net: set and query VEB/VEPA bridge mode via PF_BRIDGE Hardware switches may support enabling and disabling the loopback switch which puts the device in a VEPA mode defined in the IEEE 802.1Qbg specification. In this mode frames are not switched in the hardware but sent directly to the switch. SR-IOV capable NICs will likely support this mode I am aware of at least two such devices. Also I am told (but don't have any of this hardware available) that there are devices that only support VEPA modes. In these cases it is important at a minimum to be able to query these attributes. This patch adds an additional IFLA_BRIDGE_MODE attribute that can be set and dumped via the PF_BRIDGE:{SET|GET}LINK operations. Also anticipating bridge attributes that may be common for both embedded bridges and software bridges this adds a flags attribute IFLA_BRIDGE_FLAGS currently used to determine if the command or event is being generated to/from an embedded bridge or software bridge. Finally, the event generation is pulled out of the bridge module and into rtnetlink proper. For example using the macvlan driver in VEPA mode on top of an embedded switch requires putting the embedded switch into a VEPA mode to get the expected results. -------- -------- | VEPA | | VEPA | <-- macvlan vepa edge relays -------- -------- | | | | ------------------ | VEPA | <-- embedded switch in NIC ------------------ | | ------------------- | external switch | <-- shiny new physical ------------------- switch with VEPA support A packet sent from the macvlan VEPA at the top could be loopbacked on the embedded switch and never seen by the external switch. So in order for this to work the embedded switch needs to be set in the VEPA state via the above described commands. By making these attributes nested in IFLA_AF_SPEC we allow future extensions to be made as needed. CC: Lennert Buytenhek <buytenh@wantstofly.org> CC: Stephen Hemminger <shemminger@vyatta.com> Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-10-24 02:13:03 -06:00
static inline size_t bridge_nlmsg_size(void)
{
return NLMSG_ALIGN(sizeof(struct ifinfomsg))
+ nla_total_size(IFNAMSIZ) /* IFLA_IFNAME */
+ nla_total_size(MAX_ADDR_LEN) /* IFLA_ADDRESS */
+ nla_total_size(sizeof(u32)) /* IFLA_MASTER */
+ nla_total_size(sizeof(u32)) /* IFLA_MTU */
+ nla_total_size(sizeof(u32)) /* IFLA_LINK */
+ nla_total_size(sizeof(u32)) /* IFLA_OPERSTATE */
+ nla_total_size(sizeof(u8)) /* IFLA_PROTINFO */
+ nla_total_size(sizeof(struct nlattr)) /* IFLA_AF_SPEC */
+ nla_total_size(sizeof(u16)) /* IFLA_BRIDGE_FLAGS */
+ nla_total_size(sizeof(u16)); /* IFLA_BRIDGE_MODE */
}
bridge: fix setlink/dellink notifications problems with bridge getlink/setlink notifications today: - bridge setlink generates two notifications to userspace - one from the bridge driver - one from rtnetlink.c (rtnl_bridge_notify) - dellink generates one notification from rtnetlink.c. Which means bridge setlink and dellink notifications are not consistent - Looking at the code it appears, If both BRIDGE_FLAGS_MASTER and BRIDGE_FLAGS_SELF were set, the size calculation in rtnl_bridge_notify can be wrong. Example: if you set both BRIDGE_FLAGS_MASTER and BRIDGE_FLAGS_SELF in a setlink request to rocker dev, rtnl_bridge_notify will allocate skb for one set of bridge attributes, but, both the bridge driver and rocker dev will try to add attributes resulting in twice the number of attributes being added to the skb. (rocker dev calls ndo_dflt_bridge_getlink) There are multiple options: 1) Generate one notification including all attributes from master and self: But, I don't think it will work, because both master and self may use the same attributes/policy. Cannot pack the same set of attributes in a single notification from both master and slave (duplicate attributes). 2) Generate one notification from master and the other notification from self (This seems to be ideal): For master: the master driver will send notification (bridge in this example) For self: the self driver will send notification (rocker in the above example. It can use helpers from rtnetlink.c to do so. Like the ndo_dflt_bridge_getlink api). This patch implements 2) (leaving the 'rtnl_bridge_notify' around to be used with 'self'). v1->v2 : - rtnl_bridge_notify is now called only for self, so, remove 'BRIDGE_FLAGS_SELF' check and cleanup a few things - rtnl_bridge_dellink used to always send a RTM_NEWLINK msg earlier. So, I have changed the notification from br_dellink to go as RTM_NEWLINK Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-14 21:02:25 -07:00
static int rtnl_bridge_notify(struct net_device *dev)
net: set and query VEB/VEPA bridge mode via PF_BRIDGE Hardware switches may support enabling and disabling the loopback switch which puts the device in a VEPA mode defined in the IEEE 802.1Qbg specification. In this mode frames are not switched in the hardware but sent directly to the switch. SR-IOV capable NICs will likely support this mode I am aware of at least two such devices. Also I am told (but don't have any of this hardware available) that there are devices that only support VEPA modes. In these cases it is important at a minimum to be able to query these attributes. This patch adds an additional IFLA_BRIDGE_MODE attribute that can be set and dumped via the PF_BRIDGE:{SET|GET}LINK operations. Also anticipating bridge attributes that may be common for both embedded bridges and software bridges this adds a flags attribute IFLA_BRIDGE_FLAGS currently used to determine if the command or event is being generated to/from an embedded bridge or software bridge. Finally, the event generation is pulled out of the bridge module and into rtnetlink proper. For example using the macvlan driver in VEPA mode on top of an embedded switch requires putting the embedded switch into a VEPA mode to get the expected results. -------- -------- | VEPA | | VEPA | <-- macvlan vepa edge relays -------- -------- | | | | ------------------ | VEPA | <-- embedded switch in NIC ------------------ | | ------------------- | external switch | <-- shiny new physical ------------------- switch with VEPA support A packet sent from the macvlan VEPA at the top could be loopbacked on the embedded switch and never seen by the external switch. So in order for this to work the embedded switch needs to be set in the VEPA state via the above described commands. By making these attributes nested in IFLA_AF_SPEC we allow future extensions to be made as needed. CC: Lennert Buytenhek <buytenh@wantstofly.org> CC: Stephen Hemminger <shemminger@vyatta.com> Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-10-24 02:13:03 -06:00
{
struct net *net = dev_net(dev);
struct sk_buff *skb;
int err = -EOPNOTSUPP;
bridge: fix setlink/dellink notifications problems with bridge getlink/setlink notifications today: - bridge setlink generates two notifications to userspace - one from the bridge driver - one from rtnetlink.c (rtnl_bridge_notify) - dellink generates one notification from rtnetlink.c. Which means bridge setlink and dellink notifications are not consistent - Looking at the code it appears, If both BRIDGE_FLAGS_MASTER and BRIDGE_FLAGS_SELF were set, the size calculation in rtnl_bridge_notify can be wrong. Example: if you set both BRIDGE_FLAGS_MASTER and BRIDGE_FLAGS_SELF in a setlink request to rocker dev, rtnl_bridge_notify will allocate skb for one set of bridge attributes, but, both the bridge driver and rocker dev will try to add attributes resulting in twice the number of attributes being added to the skb. (rocker dev calls ndo_dflt_bridge_getlink) There are multiple options: 1) Generate one notification including all attributes from master and self: But, I don't think it will work, because both master and self may use the same attributes/policy. Cannot pack the same set of attributes in a single notification from both master and slave (duplicate attributes). 2) Generate one notification from master and the other notification from self (This seems to be ideal): For master: the master driver will send notification (bridge in this example) For self: the self driver will send notification (rocker in the above example. It can use helpers from rtnetlink.c to do so. Like the ndo_dflt_bridge_getlink api). This patch implements 2) (leaving the 'rtnl_bridge_notify' around to be used with 'self'). v1->v2 : - rtnl_bridge_notify is now called only for self, so, remove 'BRIDGE_FLAGS_SELF' check and cleanup a few things - rtnl_bridge_dellink used to always send a RTM_NEWLINK msg earlier. So, I have changed the notification from br_dellink to go as RTM_NEWLINK Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-14 21:02:25 -07:00
if (!dev->netdev_ops->ndo_bridge_getlink)
return 0;
net: set and query VEB/VEPA bridge mode via PF_BRIDGE Hardware switches may support enabling and disabling the loopback switch which puts the device in a VEPA mode defined in the IEEE 802.1Qbg specification. In this mode frames are not switched in the hardware but sent directly to the switch. SR-IOV capable NICs will likely support this mode I am aware of at least two such devices. Also I am told (but don't have any of this hardware available) that there are devices that only support VEPA modes. In these cases it is important at a minimum to be able to query these attributes. This patch adds an additional IFLA_BRIDGE_MODE attribute that can be set and dumped via the PF_BRIDGE:{SET|GET}LINK operations. Also anticipating bridge attributes that may be common for both embedded bridges and software bridges this adds a flags attribute IFLA_BRIDGE_FLAGS currently used to determine if the command or event is being generated to/from an embedded bridge or software bridge. Finally, the event generation is pulled out of the bridge module and into rtnetlink proper. For example using the macvlan driver in VEPA mode on top of an embedded switch requires putting the embedded switch into a VEPA mode to get the expected results. -------- -------- | VEPA | | VEPA | <-- macvlan vepa edge relays -------- -------- | | | | ------------------ | VEPA | <-- embedded switch in NIC ------------------ | | ------------------- | external switch | <-- shiny new physical ------------------- switch with VEPA support A packet sent from the macvlan VEPA at the top could be loopbacked on the embedded switch and never seen by the external switch. So in order for this to work the embedded switch needs to be set in the VEPA state via the above described commands. By making these attributes nested in IFLA_AF_SPEC we allow future extensions to be made as needed. CC: Lennert Buytenhek <buytenh@wantstofly.org> CC: Stephen Hemminger <shemminger@vyatta.com> Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-10-24 02:13:03 -06:00
skb = nlmsg_new(bridge_nlmsg_size(), GFP_ATOMIC);
if (!skb) {
err = -ENOMEM;
goto errout;
}
err = dev->netdev_ops->ndo_bridge_getlink(skb, 0, 0, dev, 0, 0);
bridge: fix setlink/dellink notifications problems with bridge getlink/setlink notifications today: - bridge setlink generates two notifications to userspace - one from the bridge driver - one from rtnetlink.c (rtnl_bridge_notify) - dellink generates one notification from rtnetlink.c. Which means bridge setlink and dellink notifications are not consistent - Looking at the code it appears, If both BRIDGE_FLAGS_MASTER and BRIDGE_FLAGS_SELF were set, the size calculation in rtnl_bridge_notify can be wrong. Example: if you set both BRIDGE_FLAGS_MASTER and BRIDGE_FLAGS_SELF in a setlink request to rocker dev, rtnl_bridge_notify will allocate skb for one set of bridge attributes, but, both the bridge driver and rocker dev will try to add attributes resulting in twice the number of attributes being added to the skb. (rocker dev calls ndo_dflt_bridge_getlink) There are multiple options: 1) Generate one notification including all attributes from master and self: But, I don't think it will work, because both master and self may use the same attributes/policy. Cannot pack the same set of attributes in a single notification from both master and slave (duplicate attributes). 2) Generate one notification from master and the other notification from self (This seems to be ideal): For master: the master driver will send notification (bridge in this example) For self: the self driver will send notification (rocker in the above example. It can use helpers from rtnetlink.c to do so. Like the ndo_dflt_bridge_getlink api). This patch implements 2) (leaving the 'rtnl_bridge_notify' around to be used with 'self'). v1->v2 : - rtnl_bridge_notify is now called only for self, so, remove 'BRIDGE_FLAGS_SELF' check and cleanup a few things - rtnl_bridge_dellink used to always send a RTM_NEWLINK msg earlier. So, I have changed the notification from br_dellink to go as RTM_NEWLINK Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-14 21:02:25 -07:00
if (err < 0)
goto errout;
net: set and query VEB/VEPA bridge mode via PF_BRIDGE Hardware switches may support enabling and disabling the loopback switch which puts the device in a VEPA mode defined in the IEEE 802.1Qbg specification. In this mode frames are not switched in the hardware but sent directly to the switch. SR-IOV capable NICs will likely support this mode I am aware of at least two such devices. Also I am told (but don't have any of this hardware available) that there are devices that only support VEPA modes. In these cases it is important at a minimum to be able to query these attributes. This patch adds an additional IFLA_BRIDGE_MODE attribute that can be set and dumped via the PF_BRIDGE:{SET|GET}LINK operations. Also anticipating bridge attributes that may be common for both embedded bridges and software bridges this adds a flags attribute IFLA_BRIDGE_FLAGS currently used to determine if the command or event is being generated to/from an embedded bridge or software bridge. Finally, the event generation is pulled out of the bridge module and into rtnetlink proper. For example using the macvlan driver in VEPA mode on top of an embedded switch requires putting the embedded switch into a VEPA mode to get the expected results. -------- -------- | VEPA | | VEPA | <-- macvlan vepa edge relays -------- -------- | | | | ------------------ | VEPA | <-- embedded switch in NIC ------------------ | | ------------------- | external switch | <-- shiny new physical ------------------- switch with VEPA support A packet sent from the macvlan VEPA at the top could be loopbacked on the embedded switch and never seen by the external switch. So in order for this to work the embedded switch needs to be set in the VEPA state via the above described commands. By making these attributes nested in IFLA_AF_SPEC we allow future extensions to be made as needed. CC: Lennert Buytenhek <buytenh@wantstofly.org> CC: Stephen Hemminger <shemminger@vyatta.com> Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-10-24 02:13:03 -06:00
if (!skb->len)
goto errout;
net: set and query VEB/VEPA bridge mode via PF_BRIDGE Hardware switches may support enabling and disabling the loopback switch which puts the device in a VEPA mode defined in the IEEE 802.1Qbg specification. In this mode frames are not switched in the hardware but sent directly to the switch. SR-IOV capable NICs will likely support this mode I am aware of at least two such devices. Also I am told (but don't have any of this hardware available) that there are devices that only support VEPA modes. In these cases it is important at a minimum to be able to query these attributes. This patch adds an additional IFLA_BRIDGE_MODE attribute that can be set and dumped via the PF_BRIDGE:{SET|GET}LINK operations. Also anticipating bridge attributes that may be common for both embedded bridges and software bridges this adds a flags attribute IFLA_BRIDGE_FLAGS currently used to determine if the command or event is being generated to/from an embedded bridge or software bridge. Finally, the event generation is pulled out of the bridge module and into rtnetlink proper. For example using the macvlan driver in VEPA mode on top of an embedded switch requires putting the embedded switch into a VEPA mode to get the expected results. -------- -------- | VEPA | | VEPA | <-- macvlan vepa edge relays -------- -------- | | | | ------------------ | VEPA | <-- embedded switch in NIC ------------------ | | ------------------- | external switch | <-- shiny new physical ------------------- switch with VEPA support A packet sent from the macvlan VEPA at the top could be loopbacked on the embedded switch and never seen by the external switch. So in order for this to work the embedded switch needs to be set in the VEPA state via the above described commands. By making these attributes nested in IFLA_AF_SPEC we allow future extensions to be made as needed. CC: Lennert Buytenhek <buytenh@wantstofly.org> CC: Stephen Hemminger <shemminger@vyatta.com> Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-10-24 02:13:03 -06:00
rtnl_notify(skb, net, 0, RTNLGRP_LINK, NULL, GFP_ATOMIC);
return 0;
errout:
WARN_ON(err == -EMSGSIZE);
kfree_skb(skb);
if (err)
rtnl_set_sk_err(net, RTNLGRP_LINK, err);
net: set and query VEB/VEPA bridge mode via PF_BRIDGE Hardware switches may support enabling and disabling the loopback switch which puts the device in a VEPA mode defined in the IEEE 802.1Qbg specification. In this mode frames are not switched in the hardware but sent directly to the switch. SR-IOV capable NICs will likely support this mode I am aware of at least two such devices. Also I am told (but don't have any of this hardware available) that there are devices that only support VEPA modes. In these cases it is important at a minimum to be able to query these attributes. This patch adds an additional IFLA_BRIDGE_MODE attribute that can be set and dumped via the PF_BRIDGE:{SET|GET}LINK operations. Also anticipating bridge attributes that may be common for both embedded bridges and software bridges this adds a flags attribute IFLA_BRIDGE_FLAGS currently used to determine if the command or event is being generated to/from an embedded bridge or software bridge. Finally, the event generation is pulled out of the bridge module and into rtnetlink proper. For example using the macvlan driver in VEPA mode on top of an embedded switch requires putting the embedded switch into a VEPA mode to get the expected results. -------- -------- | VEPA | | VEPA | <-- macvlan vepa edge relays -------- -------- | | | | ------------------ | VEPA | <-- embedded switch in NIC ------------------ | | ------------------- | external switch | <-- shiny new physical ------------------- switch with VEPA support A packet sent from the macvlan VEPA at the top could be loopbacked on the embedded switch and never seen by the external switch. So in order for this to work the embedded switch needs to be set in the VEPA state via the above described commands. By making these attributes nested in IFLA_AF_SPEC we allow future extensions to be made as needed. CC: Lennert Buytenhek <buytenh@wantstofly.org> CC: Stephen Hemminger <shemminger@vyatta.com> Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-10-24 02:13:03 -06:00
return err;
}
static int rtnl_bridge_setlink(struct sk_buff *skb, struct nlmsghdr *nlh,
struct netlink_ext_ack *extack)
{
struct net *net = sock_net(skb->sk);
struct ifinfomsg *ifm;
struct net_device *dev;
net: set and query VEB/VEPA bridge mode via PF_BRIDGE Hardware switches may support enabling and disabling the loopback switch which puts the device in a VEPA mode defined in the IEEE 802.1Qbg specification. In this mode frames are not switched in the hardware but sent directly to the switch. SR-IOV capable NICs will likely support this mode I am aware of at least two such devices. Also I am told (but don't have any of this hardware available) that there are devices that only support VEPA modes. In these cases it is important at a minimum to be able to query these attributes. This patch adds an additional IFLA_BRIDGE_MODE attribute that can be set and dumped via the PF_BRIDGE:{SET|GET}LINK operations. Also anticipating bridge attributes that may be common for both embedded bridges and software bridges this adds a flags attribute IFLA_BRIDGE_FLAGS currently used to determine if the command or event is being generated to/from an embedded bridge or software bridge. Finally, the event generation is pulled out of the bridge module and into rtnetlink proper. For example using the macvlan driver in VEPA mode on top of an embedded switch requires putting the embedded switch into a VEPA mode to get the expected results. -------- -------- | VEPA | | VEPA | <-- macvlan vepa edge relays -------- -------- | | | | ------------------ | VEPA | <-- embedded switch in NIC ------------------ | | ------------------- | external switch | <-- shiny new physical ------------------- switch with VEPA support A packet sent from the macvlan VEPA at the top could be loopbacked on the embedded switch and never seen by the external switch. So in order for this to work the embedded switch needs to be set in the VEPA state via the above described commands. By making these attributes nested in IFLA_AF_SPEC we allow future extensions to be made as needed. CC: Lennert Buytenhek <buytenh@wantstofly.org> CC: Stephen Hemminger <shemminger@vyatta.com> Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-10-24 02:13:03 -06:00
struct nlattr *br_spec, *attr = NULL;
int rem, err = -EOPNOTSUPP;
u16 flags = 0;
bool have_flags = false;
if (nlmsg_len(nlh) < sizeof(*ifm))
return -EINVAL;
ifm = nlmsg_data(nlh);
if (ifm->ifi_family != AF_BRIDGE)
return -EPFNOSUPPORT;
dev = __dev_get_by_index(net, ifm->ifi_index);
if (!dev) {
NL_SET_ERR_MSG(extack, "unknown ifindex");
return -ENODEV;
}
net: set and query VEB/VEPA bridge mode via PF_BRIDGE Hardware switches may support enabling and disabling the loopback switch which puts the device in a VEPA mode defined in the IEEE 802.1Qbg specification. In this mode frames are not switched in the hardware but sent directly to the switch. SR-IOV capable NICs will likely support this mode I am aware of at least two such devices. Also I am told (but don't have any of this hardware available) that there are devices that only support VEPA modes. In these cases it is important at a minimum to be able to query these attributes. This patch adds an additional IFLA_BRIDGE_MODE attribute that can be set and dumped via the PF_BRIDGE:{SET|GET}LINK operations. Also anticipating bridge attributes that may be common for both embedded bridges and software bridges this adds a flags attribute IFLA_BRIDGE_FLAGS currently used to determine if the command or event is being generated to/from an embedded bridge or software bridge. Finally, the event generation is pulled out of the bridge module and into rtnetlink proper. For example using the macvlan driver in VEPA mode on top of an embedded switch requires putting the embedded switch into a VEPA mode to get the expected results. -------- -------- | VEPA | | VEPA | <-- macvlan vepa edge relays -------- -------- | | | | ------------------ | VEPA | <-- embedded switch in NIC ------------------ | | ------------------- | external switch | <-- shiny new physical ------------------- switch with VEPA support A packet sent from the macvlan VEPA at the top could be loopbacked on the embedded switch and never seen by the external switch. So in order for this to work the embedded switch needs to be set in the VEPA state via the above described commands. By making these attributes nested in IFLA_AF_SPEC we allow future extensions to be made as needed. CC: Lennert Buytenhek <buytenh@wantstofly.org> CC: Stephen Hemminger <shemminger@vyatta.com> Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-10-24 02:13:03 -06:00
br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
if (br_spec) {
nla_for_each_nested(attr, br_spec, rem) {
if (nla_type(attr) == IFLA_BRIDGE_FLAGS) {
if (nla_len(attr) < sizeof(flags))
return -EINVAL;
have_flags = true;
net: set and query VEB/VEPA bridge mode via PF_BRIDGE Hardware switches may support enabling and disabling the loopback switch which puts the device in a VEPA mode defined in the IEEE 802.1Qbg specification. In this mode frames are not switched in the hardware but sent directly to the switch. SR-IOV capable NICs will likely support this mode I am aware of at least two such devices. Also I am told (but don't have any of this hardware available) that there are devices that only support VEPA modes. In these cases it is important at a minimum to be able to query these attributes. This patch adds an additional IFLA_BRIDGE_MODE attribute that can be set and dumped via the PF_BRIDGE:{SET|GET}LINK operations. Also anticipating bridge attributes that may be common for both embedded bridges and software bridges this adds a flags attribute IFLA_BRIDGE_FLAGS currently used to determine if the command or event is being generated to/from an embedded bridge or software bridge. Finally, the event generation is pulled out of the bridge module and into rtnetlink proper. For example using the macvlan driver in VEPA mode on top of an embedded switch requires putting the embedded switch into a VEPA mode to get the expected results. -------- -------- | VEPA | | VEPA | <-- macvlan vepa edge relays -------- -------- | | | | ------------------ | VEPA | <-- embedded switch in NIC ------------------ | | ------------------- | external switch | <-- shiny new physical ------------------- switch with VEPA support A packet sent from the macvlan VEPA at the top could be loopbacked on the embedded switch and never seen by the external switch. So in order for this to work the embedded switch needs to be set in the VEPA state via the above described commands. By making these attributes nested in IFLA_AF_SPEC we allow future extensions to be made as needed. CC: Lennert Buytenhek <buytenh@wantstofly.org> CC: Stephen Hemminger <shemminger@vyatta.com> Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-10-24 02:13:03 -06:00
flags = nla_get_u16(attr);
break;
}
}
}
if (!flags || (flags & BRIDGE_FLAGS_MASTER)) {
struct net_device *br_dev = netdev_master_upper_dev_get(dev);
if (!br_dev || !br_dev->netdev_ops->ndo_bridge_setlink) {
net: set and query VEB/VEPA bridge mode via PF_BRIDGE Hardware switches may support enabling and disabling the loopback switch which puts the device in a VEPA mode defined in the IEEE 802.1Qbg specification. In this mode frames are not switched in the hardware but sent directly to the switch. SR-IOV capable NICs will likely support this mode I am aware of at least two such devices. Also I am told (but don't have any of this hardware available) that there are devices that only support VEPA modes. In these cases it is important at a minimum to be able to query these attributes. This patch adds an additional IFLA_BRIDGE_MODE attribute that can be set and dumped via the PF_BRIDGE:{SET|GET}LINK operations. Also anticipating bridge attributes that may be common for both embedded bridges and software bridges this adds a flags attribute IFLA_BRIDGE_FLAGS currently used to determine if the command or event is being generated to/from an embedded bridge or software bridge. Finally, the event generation is pulled out of the bridge module and into rtnetlink proper. For example using the macvlan driver in VEPA mode on top of an embedded switch requires putting the embedded switch into a VEPA mode to get the expected results. -------- -------- | VEPA | | VEPA | <-- macvlan vepa edge relays -------- -------- | | | | ------------------ | VEPA | <-- embedded switch in NIC ------------------ | | ------------------- | external switch | <-- shiny new physical ------------------- switch with VEPA support A packet sent from the macvlan VEPA at the top could be loopbacked on the embedded switch and never seen by the external switch. So in order for this to work the embedded switch needs to be set in the VEPA state via the above described commands. By making these attributes nested in IFLA_AF_SPEC we allow future extensions to be made as needed. CC: Lennert Buytenhek <buytenh@wantstofly.org> CC: Stephen Hemminger <shemminger@vyatta.com> Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-10-24 02:13:03 -06:00
err = -EOPNOTSUPP;
goto out;
}
err = br_dev->netdev_ops->ndo_bridge_setlink(dev, nlh, flags);
if (err)
goto out;
net: set and query VEB/VEPA bridge mode via PF_BRIDGE Hardware switches may support enabling and disabling the loopback switch which puts the device in a VEPA mode defined in the IEEE 802.1Qbg specification. In this mode frames are not switched in the hardware but sent directly to the switch. SR-IOV capable NICs will likely support this mode I am aware of at least two such devices. Also I am told (but don't have any of this hardware available) that there are devices that only support VEPA modes. In these cases it is important at a minimum to be able to query these attributes. This patch adds an additional IFLA_BRIDGE_MODE attribute that can be set and dumped via the PF_BRIDGE:{SET|GET}LINK operations. Also anticipating bridge attributes that may be common for both embedded bridges and software bridges this adds a flags attribute IFLA_BRIDGE_FLAGS currently used to determine if the command or event is being generated to/from an embedded bridge or software bridge. Finally, the event generation is pulled out of the bridge module and into rtnetlink proper. For example using the macvlan driver in VEPA mode on top of an embedded switch requires putting the embedded switch into a VEPA mode to get the expected results. -------- -------- | VEPA | | VEPA | <-- macvlan vepa edge relays -------- -------- | | | | ------------------ | VEPA | <-- embedded switch in NIC ------------------ | | ------------------- | external switch | <-- shiny new physical ------------------- switch with VEPA support A packet sent from the macvlan VEPA at the top could be loopbacked on the embedded switch and never seen by the external switch. So in order for this to work the embedded switch needs to be set in the VEPA state via the above described commands. By making these attributes nested in IFLA_AF_SPEC we allow future extensions to be made as needed. CC: Lennert Buytenhek <buytenh@wantstofly.org> CC: Stephen Hemminger <shemminger@vyatta.com> Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-10-24 02:13:03 -06:00
flags &= ~BRIDGE_FLAGS_MASTER;
}
net: set and query VEB/VEPA bridge mode via PF_BRIDGE Hardware switches may support enabling and disabling the loopback switch which puts the device in a VEPA mode defined in the IEEE 802.1Qbg specification. In this mode frames are not switched in the hardware but sent directly to the switch. SR-IOV capable NICs will likely support this mode I am aware of at least two such devices. Also I am told (but don't have any of this hardware available) that there are devices that only support VEPA modes. In these cases it is important at a minimum to be able to query these attributes. This patch adds an additional IFLA_BRIDGE_MODE attribute that can be set and dumped via the PF_BRIDGE:{SET|GET}LINK operations. Also anticipating bridge attributes that may be common for both embedded bridges and software bridges this adds a flags attribute IFLA_BRIDGE_FLAGS currently used to determine if the command or event is being generated to/from an embedded bridge or software bridge. Finally, the event generation is pulled out of the bridge module and into rtnetlink proper. For example using the macvlan driver in VEPA mode on top of an embedded switch requires putting the embedded switch into a VEPA mode to get the expected results. -------- -------- | VEPA | | VEPA | <-- macvlan vepa edge relays -------- -------- | | | | ------------------ | VEPA | <-- embedded switch in NIC ------------------ | | ------------------- | external switch | <-- shiny new physical ------------------- switch with VEPA support A packet sent from the macvlan VEPA at the top could be loopbacked on the embedded switch and never seen by the external switch. So in order for this to work the embedded switch needs to be set in the VEPA state via the above described commands. By making these attributes nested in IFLA_AF_SPEC we allow future extensions to be made as needed. CC: Lennert Buytenhek <buytenh@wantstofly.org> CC: Stephen Hemminger <shemminger@vyatta.com> Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-10-24 02:13:03 -06:00
if ((flags & BRIDGE_FLAGS_SELF)) {
if (!dev->netdev_ops->ndo_bridge_setlink)
err = -EOPNOTSUPP;
else
err = dev->netdev_ops->ndo_bridge_setlink(dev, nlh,
flags);
bridge: fix setlink/dellink notifications problems with bridge getlink/setlink notifications today: - bridge setlink generates two notifications to userspace - one from the bridge driver - one from rtnetlink.c (rtnl_bridge_notify) - dellink generates one notification from rtnetlink.c. Which means bridge setlink and dellink notifications are not consistent - Looking at the code it appears, If both BRIDGE_FLAGS_MASTER and BRIDGE_FLAGS_SELF were set, the size calculation in rtnl_bridge_notify can be wrong. Example: if you set both BRIDGE_FLAGS_MASTER and BRIDGE_FLAGS_SELF in a setlink request to rocker dev, rtnl_bridge_notify will allocate skb for one set of bridge attributes, but, both the bridge driver and rocker dev will try to add attributes resulting in twice the number of attributes being added to the skb. (rocker dev calls ndo_dflt_bridge_getlink) There are multiple options: 1) Generate one notification including all attributes from master and self: But, I don't think it will work, because both master and self may use the same attributes/policy. Cannot pack the same set of attributes in a single notification from both master and slave (duplicate attributes). 2) Generate one notification from master and the other notification from self (This seems to be ideal): For master: the master driver will send notification (bridge in this example) For self: the self driver will send notification (rocker in the above example. It can use helpers from rtnetlink.c to do so. Like the ndo_dflt_bridge_getlink api). This patch implements 2) (leaving the 'rtnl_bridge_notify' around to be used with 'self'). v1->v2 : - rtnl_bridge_notify is now called only for self, so, remove 'BRIDGE_FLAGS_SELF' check and cleanup a few things - rtnl_bridge_dellink used to always send a RTM_NEWLINK msg earlier. So, I have changed the notification from br_dellink to go as RTM_NEWLINK Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-14 21:02:25 -07:00
if (!err) {
net: set and query VEB/VEPA bridge mode via PF_BRIDGE Hardware switches may support enabling and disabling the loopback switch which puts the device in a VEPA mode defined in the IEEE 802.1Qbg specification. In this mode frames are not switched in the hardware but sent directly to the switch. SR-IOV capable NICs will likely support this mode I am aware of at least two such devices. Also I am told (but don't have any of this hardware available) that there are devices that only support VEPA modes. In these cases it is important at a minimum to be able to query these attributes. This patch adds an additional IFLA_BRIDGE_MODE attribute that can be set and dumped via the PF_BRIDGE:{SET|GET}LINK operations. Also anticipating bridge attributes that may be common for both embedded bridges and software bridges this adds a flags attribute IFLA_BRIDGE_FLAGS currently used to determine if the command or event is being generated to/from an embedded bridge or software bridge. Finally, the event generation is pulled out of the bridge module and into rtnetlink proper. For example using the macvlan driver in VEPA mode on top of an embedded switch requires putting the embedded switch into a VEPA mode to get the expected results. -------- -------- | VEPA | | VEPA | <-- macvlan vepa edge relays -------- -------- | | | | ------------------ | VEPA | <-- embedded switch in NIC ------------------ | | ------------------- | external switch | <-- shiny new physical ------------------- switch with VEPA support A packet sent from the macvlan VEPA at the top could be loopbacked on the embedded switch and never seen by the external switch. So in order for this to work the embedded switch needs to be set in the VEPA state via the above described commands. By making these attributes nested in IFLA_AF_SPEC we allow future extensions to be made as needed. CC: Lennert Buytenhek <buytenh@wantstofly.org> CC: Stephen Hemminger <shemminger@vyatta.com> Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-10-24 02:13:03 -06:00
flags &= ~BRIDGE_FLAGS_SELF;
bridge: fix setlink/dellink notifications problems with bridge getlink/setlink notifications today: - bridge setlink generates two notifications to userspace - one from the bridge driver - one from rtnetlink.c (rtnl_bridge_notify) - dellink generates one notification from rtnetlink.c. Which means bridge setlink and dellink notifications are not consistent - Looking at the code it appears, If both BRIDGE_FLAGS_MASTER and BRIDGE_FLAGS_SELF were set, the size calculation in rtnl_bridge_notify can be wrong. Example: if you set both BRIDGE_FLAGS_MASTER and BRIDGE_FLAGS_SELF in a setlink request to rocker dev, rtnl_bridge_notify will allocate skb for one set of bridge attributes, but, both the bridge driver and rocker dev will try to add attributes resulting in twice the number of attributes being added to the skb. (rocker dev calls ndo_dflt_bridge_getlink) There are multiple options: 1) Generate one notification including all attributes from master and self: But, I don't think it will work, because both master and self may use the same attributes/policy. Cannot pack the same set of attributes in a single notification from both master and slave (duplicate attributes). 2) Generate one notification from master and the other notification from self (This seems to be ideal): For master: the master driver will send notification (bridge in this example) For self: the self driver will send notification (rocker in the above example. It can use helpers from rtnetlink.c to do so. Like the ndo_dflt_bridge_getlink api). This patch implements 2) (leaving the 'rtnl_bridge_notify' around to be used with 'self'). v1->v2 : - rtnl_bridge_notify is now called only for self, so, remove 'BRIDGE_FLAGS_SELF' check and cleanup a few things - rtnl_bridge_dellink used to always send a RTM_NEWLINK msg earlier. So, I have changed the notification from br_dellink to go as RTM_NEWLINK Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-14 21:02:25 -07:00
/* Generate event to notify upper layer of bridge
* change
*/
err = rtnl_bridge_notify(dev);
}
net: set and query VEB/VEPA bridge mode via PF_BRIDGE Hardware switches may support enabling and disabling the loopback switch which puts the device in a VEPA mode defined in the IEEE 802.1Qbg specification. In this mode frames are not switched in the hardware but sent directly to the switch. SR-IOV capable NICs will likely support this mode I am aware of at least two such devices. Also I am told (but don't have any of this hardware available) that there are devices that only support VEPA modes. In these cases it is important at a minimum to be able to query these attributes. This patch adds an additional IFLA_BRIDGE_MODE attribute that can be set and dumped via the PF_BRIDGE:{SET|GET}LINK operations. Also anticipating bridge attributes that may be common for both embedded bridges and software bridges this adds a flags attribute IFLA_BRIDGE_FLAGS currently used to determine if the command or event is being generated to/from an embedded bridge or software bridge. Finally, the event generation is pulled out of the bridge module and into rtnetlink proper. For example using the macvlan driver in VEPA mode on top of an embedded switch requires putting the embedded switch into a VEPA mode to get the expected results. -------- -------- | VEPA | | VEPA | <-- macvlan vepa edge relays -------- -------- | | | | ------------------ | VEPA | <-- embedded switch in NIC ------------------ | | ------------------- | external switch | <-- shiny new physical ------------------- switch with VEPA support A packet sent from the macvlan VEPA at the top could be loopbacked on the embedded switch and never seen by the external switch. So in order for this to work the embedded switch needs to be set in the VEPA state via the above described commands. By making these attributes nested in IFLA_AF_SPEC we allow future extensions to be made as needed. CC: Lennert Buytenhek <buytenh@wantstofly.org> CC: Stephen Hemminger <shemminger@vyatta.com> Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-10-24 02:13:03 -06:00
}
if (have_flags)
net: set and query VEB/VEPA bridge mode via PF_BRIDGE Hardware switches may support enabling and disabling the loopback switch which puts the device in a VEPA mode defined in the IEEE 802.1Qbg specification. In this mode frames are not switched in the hardware but sent directly to the switch. SR-IOV capable NICs will likely support this mode I am aware of at least two such devices. Also I am told (but don't have any of this hardware available) that there are devices that only support VEPA modes. In these cases it is important at a minimum to be able to query these attributes. This patch adds an additional IFLA_BRIDGE_MODE attribute that can be set and dumped via the PF_BRIDGE:{SET|GET}LINK operations. Also anticipating bridge attributes that may be common for both embedded bridges and software bridges this adds a flags attribute IFLA_BRIDGE_FLAGS currently used to determine if the command or event is being generated to/from an embedded bridge or software bridge. Finally, the event generation is pulled out of the bridge module and into rtnetlink proper. For example using the macvlan driver in VEPA mode on top of an embedded switch requires putting the embedded switch into a VEPA mode to get the expected results. -------- -------- | VEPA | | VEPA | <-- macvlan vepa edge relays -------- -------- | | | | ------------------ | VEPA | <-- embedded switch in NIC ------------------ | | ------------------- | external switch | <-- shiny new physical ------------------- switch with VEPA support A packet sent from the macvlan VEPA at the top could be loopbacked on the embedded switch and never seen by the external switch. So in order for this to work the embedded switch needs to be set in the VEPA state via the above described commands. By making these attributes nested in IFLA_AF_SPEC we allow future extensions to be made as needed. CC: Lennert Buytenhek <buytenh@wantstofly.org> CC: Stephen Hemminger <shemminger@vyatta.com> Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-10-24 02:13:03 -06:00
memcpy(nla_data(attr), &flags, sizeof(flags));
out:
return err;
}
static int rtnl_bridge_dellink(struct sk_buff *skb, struct nlmsghdr *nlh,
struct netlink_ext_ack *extack)
{
struct net *net = sock_net(skb->sk);
struct ifinfomsg *ifm;
struct net_device *dev;
struct nlattr *br_spec, *attr = NULL;
int rem, err = -EOPNOTSUPP;
u16 flags = 0;
bool have_flags = false;
if (nlmsg_len(nlh) < sizeof(*ifm))
return -EINVAL;
ifm = nlmsg_data(nlh);
if (ifm->ifi_family != AF_BRIDGE)
return -EPFNOSUPPORT;
dev = __dev_get_by_index(net, ifm->ifi_index);
if (!dev) {
NL_SET_ERR_MSG(extack, "unknown ifindex");
return -ENODEV;
}
br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
if (br_spec) {
nla_for_each_nested(attr, br_spec, rem) {
if (nla_type(attr) == IFLA_BRIDGE_FLAGS) {
if (nla_len(attr) < sizeof(flags))
return -EINVAL;
have_flags = true;
flags = nla_get_u16(attr);
break;
}
}
}
if (!flags || (flags & BRIDGE_FLAGS_MASTER)) {
struct net_device *br_dev = netdev_master_upper_dev_get(dev);
if (!br_dev || !br_dev->netdev_ops->ndo_bridge_dellink) {
err = -EOPNOTSUPP;
goto out;
}
err = br_dev->netdev_ops->ndo_bridge_dellink(dev, nlh, flags);
if (err)
goto out;
flags &= ~BRIDGE_FLAGS_MASTER;
}
if ((flags & BRIDGE_FLAGS_SELF)) {
if (!dev->netdev_ops->ndo_bridge_dellink)
err = -EOPNOTSUPP;
else
err = dev->netdev_ops->ndo_bridge_dellink(dev, nlh,
flags);
bridge: fix setlink/dellink notifications problems with bridge getlink/setlink notifications today: - bridge setlink generates two notifications to userspace - one from the bridge driver - one from rtnetlink.c (rtnl_bridge_notify) - dellink generates one notification from rtnetlink.c. Which means bridge setlink and dellink notifications are not consistent - Looking at the code it appears, If both BRIDGE_FLAGS_MASTER and BRIDGE_FLAGS_SELF were set, the size calculation in rtnl_bridge_notify can be wrong. Example: if you set both BRIDGE_FLAGS_MASTER and BRIDGE_FLAGS_SELF in a setlink request to rocker dev, rtnl_bridge_notify will allocate skb for one set of bridge attributes, but, both the bridge driver and rocker dev will try to add attributes resulting in twice the number of attributes being added to the skb. (rocker dev calls ndo_dflt_bridge_getlink) There are multiple options: 1) Generate one notification including all attributes from master and self: But, I don't think it will work, because both master and self may use the same attributes/policy. Cannot pack the same set of attributes in a single notification from both master and slave (duplicate attributes). 2) Generate one notification from master and the other notification from self (This seems to be ideal): For master: the master driver will send notification (bridge in this example) For self: the self driver will send notification (rocker in the above example. It can use helpers from rtnetlink.c to do so. Like the ndo_dflt_bridge_getlink api). This patch implements 2) (leaving the 'rtnl_bridge_notify' around to be used with 'self'). v1->v2 : - rtnl_bridge_notify is now called only for self, so, remove 'BRIDGE_FLAGS_SELF' check and cleanup a few things - rtnl_bridge_dellink used to always send a RTM_NEWLINK msg earlier. So, I have changed the notification from br_dellink to go as RTM_NEWLINK Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-14 21:02:25 -07:00
if (!err) {
flags &= ~BRIDGE_FLAGS_SELF;
bridge: fix setlink/dellink notifications problems with bridge getlink/setlink notifications today: - bridge setlink generates two notifications to userspace - one from the bridge driver - one from rtnetlink.c (rtnl_bridge_notify) - dellink generates one notification from rtnetlink.c. Which means bridge setlink and dellink notifications are not consistent - Looking at the code it appears, If both BRIDGE_FLAGS_MASTER and BRIDGE_FLAGS_SELF were set, the size calculation in rtnl_bridge_notify can be wrong. Example: if you set both BRIDGE_FLAGS_MASTER and BRIDGE_FLAGS_SELF in a setlink request to rocker dev, rtnl_bridge_notify will allocate skb for one set of bridge attributes, but, both the bridge driver and rocker dev will try to add attributes resulting in twice the number of attributes being added to the skb. (rocker dev calls ndo_dflt_bridge_getlink) There are multiple options: 1) Generate one notification including all attributes from master and self: But, I don't think it will work, because both master and self may use the same attributes/policy. Cannot pack the same set of attributes in a single notification from both master and slave (duplicate attributes). 2) Generate one notification from master and the other notification from self (This seems to be ideal): For master: the master driver will send notification (bridge in this example) For self: the self driver will send notification (rocker in the above example. It can use helpers from rtnetlink.c to do so. Like the ndo_dflt_bridge_getlink api). This patch implements 2) (leaving the 'rtnl_bridge_notify' around to be used with 'self'). v1->v2 : - rtnl_bridge_notify is now called only for self, so, remove 'BRIDGE_FLAGS_SELF' check and cleanup a few things - rtnl_bridge_dellink used to always send a RTM_NEWLINK msg earlier. So, I have changed the notification from br_dellink to go as RTM_NEWLINK Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-14 21:02:25 -07:00
/* Generate event to notify upper layer of bridge
* change
*/
err = rtnl_bridge_notify(dev);
}
}
if (have_flags)
memcpy(nla_data(attr), &flags, sizeof(flags));
out:
return err;
}
static bool stats_attr_valid(unsigned int mask, int attrid, int idxattr)
{
return (mask & IFLA_STATS_FILTER_BIT(attrid)) &&
(!idxattr || idxattr == attrid);
}
#define IFLA_OFFLOAD_XSTATS_FIRST (IFLA_OFFLOAD_XSTATS_UNSPEC + 1)
static int rtnl_get_offload_stats_attr_size(int attr_id)
{
switch (attr_id) {
case IFLA_OFFLOAD_XSTATS_CPU_HIT:
return sizeof(struct rtnl_link_stats64);
}
return 0;
}
static int rtnl_get_offload_stats(struct sk_buff *skb, struct net_device *dev,
int *prividx)
{
struct nlattr *attr = NULL;
int attr_id, size;
void *attr_data;
int err;
if (!(dev->netdev_ops && dev->netdev_ops->ndo_has_offload_stats &&
dev->netdev_ops->ndo_get_offload_stats))
return -ENODATA;
for (attr_id = IFLA_OFFLOAD_XSTATS_FIRST;
attr_id <= IFLA_OFFLOAD_XSTATS_MAX; attr_id++) {
if (attr_id < *prividx)
continue;
size = rtnl_get_offload_stats_attr_size(attr_id);
if (!size)
continue;
if (!dev->netdev_ops->ndo_has_offload_stats(dev, attr_id))
continue;
attr = nla_reserve_64bit(skb, attr_id, size,
IFLA_OFFLOAD_XSTATS_UNSPEC);
if (!attr)
goto nla_put_failure;
attr_data = nla_data(attr);
memset(attr_data, 0, size);
err = dev->netdev_ops->ndo_get_offload_stats(attr_id, dev,
attr_data);
if (err)
goto get_offload_stats_failure;
}
if (!attr)
return -ENODATA;
*prividx = 0;
return 0;
nla_put_failure:
err = -EMSGSIZE;
get_offload_stats_failure:
*prividx = attr_id;
return err;
}
static int rtnl_get_offload_stats_size(const struct net_device *dev)
{
int nla_size = 0;
int attr_id;
int size;
if (!(dev->netdev_ops && dev->netdev_ops->ndo_has_offload_stats &&
dev->netdev_ops->ndo_get_offload_stats))
return 0;
for (attr_id = IFLA_OFFLOAD_XSTATS_FIRST;
attr_id <= IFLA_OFFLOAD_XSTATS_MAX; attr_id++) {
if (!dev->netdev_ops->ndo_has_offload_stats(dev, attr_id))
continue;
size = rtnl_get_offload_stats_attr_size(attr_id);
nla_size += nla_total_size_64bit(size);
}
if (nla_size != 0)
nla_size += nla_total_size(0);
return nla_size;
}
rtnetlink: add new RTM_GETSTATS message to dump link stats This patch adds a new RTM_GETSTATS message to query link stats via netlink from the kernel. RTM_NEWLINK also dumps stats today, but RTM_NEWLINK returns a lot more than just stats and is expensive in some cases when frequent polling for stats from userspace is a common operation. RTM_GETSTATS is an attempt to provide a light weight netlink message to explicity query only link stats from the kernel on an interface. The idea is to also keep it extensible so that new kinds of stats can be added to it in the future. This patch adds the following attribute for NETDEV stats: struct nla_policy ifla_stats_policy[IFLA_STATS_MAX + 1] = { [IFLA_STATS_LINK_64] = { .len = sizeof(struct rtnl_link_stats64) }, }; Like any other rtnetlink message, RTM_GETSTATS can be used to get stats of a single interface or all interfaces with NLM_F_DUMP. Future possible new types of stat attributes: link af stats: - IFLA_STATS_LINK_IPV6 (nested. for ipv6 stats) - IFLA_STATS_LINK_MPLS (nested. for mpls/mdev stats) extended stats: - IFLA_STATS_LINK_EXTENDED (nested. extended software netdev stats like bridge, vlan, vxlan etc) - IFLA_STATS_LINK_HW_EXTENDED (nested. extended hardware stats which are available via ethtool today) This patch also declares a filter mask for all stat attributes. User has to provide a mask of stats attributes to query. filter mask can be specified in the new hdr 'struct if_stats_msg' for stats messages. Other important field in the header is the ifindex. This api can also include attributes for global stats (eg tcp) in the future. When global stats are included in a stats msg, the ifindex in the header must be zero. A single stats message cannot contain both global and netdev specific stats. To easily distinguish them, netdev specific stat attributes name are prefixed with IFLA_STATS_LINK_ Without any attributes in the filter_mask, no stats will be returned. This patch has been tested with mofified iproute2 ifstat. Suggested-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-20 09:43:43 -06:00
static int rtnl_fill_statsinfo(struct sk_buff *skb, struct net_device *dev,
int type, u32 pid, u32 seq, u32 change,
unsigned int flags, unsigned int filter_mask,
int *idxattr, int *prividx)
rtnetlink: add new RTM_GETSTATS message to dump link stats This patch adds a new RTM_GETSTATS message to query link stats via netlink from the kernel. RTM_NEWLINK also dumps stats today, but RTM_NEWLINK returns a lot more than just stats and is expensive in some cases when frequent polling for stats from userspace is a common operation. RTM_GETSTATS is an attempt to provide a light weight netlink message to explicity query only link stats from the kernel on an interface. The idea is to also keep it extensible so that new kinds of stats can be added to it in the future. This patch adds the following attribute for NETDEV stats: struct nla_policy ifla_stats_policy[IFLA_STATS_MAX + 1] = { [IFLA_STATS_LINK_64] = { .len = sizeof(struct rtnl_link_stats64) }, }; Like any other rtnetlink message, RTM_GETSTATS can be used to get stats of a single interface or all interfaces with NLM_F_DUMP. Future possible new types of stat attributes: link af stats: - IFLA_STATS_LINK_IPV6 (nested. for ipv6 stats) - IFLA_STATS_LINK_MPLS (nested. for mpls/mdev stats) extended stats: - IFLA_STATS_LINK_EXTENDED (nested. extended software netdev stats like bridge, vlan, vxlan etc) - IFLA_STATS_LINK_HW_EXTENDED (nested. extended hardware stats which are available via ethtool today) This patch also declares a filter mask for all stat attributes. User has to provide a mask of stats attributes to query. filter mask can be specified in the new hdr 'struct if_stats_msg' for stats messages. Other important field in the header is the ifindex. This api can also include attributes for global stats (eg tcp) in the future. When global stats are included in a stats msg, the ifindex in the header must be zero. A single stats message cannot contain both global and netdev specific stats. To easily distinguish them, netdev specific stat attributes name are prefixed with IFLA_STATS_LINK_ Without any attributes in the filter_mask, no stats will be returned. This patch has been tested with mofified iproute2 ifstat. Suggested-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-20 09:43:43 -06:00
{
struct if_stats_msg *ifsm;
struct nlmsghdr *nlh;
struct nlattr *attr;
int s_prividx = *prividx;
int err;
rtnetlink: add new RTM_GETSTATS message to dump link stats This patch adds a new RTM_GETSTATS message to query link stats via netlink from the kernel. RTM_NEWLINK also dumps stats today, but RTM_NEWLINK returns a lot more than just stats and is expensive in some cases when frequent polling for stats from userspace is a common operation. RTM_GETSTATS is an attempt to provide a light weight netlink message to explicity query only link stats from the kernel on an interface. The idea is to also keep it extensible so that new kinds of stats can be added to it in the future. This patch adds the following attribute for NETDEV stats: struct nla_policy ifla_stats_policy[IFLA_STATS_MAX + 1] = { [IFLA_STATS_LINK_64] = { .len = sizeof(struct rtnl_link_stats64) }, }; Like any other rtnetlink message, RTM_GETSTATS can be used to get stats of a single interface or all interfaces with NLM_F_DUMP. Future possible new types of stat attributes: link af stats: - IFLA_STATS_LINK_IPV6 (nested. for ipv6 stats) - IFLA_STATS_LINK_MPLS (nested. for mpls/mdev stats) extended stats: - IFLA_STATS_LINK_EXTENDED (nested. extended software netdev stats like bridge, vlan, vxlan etc) - IFLA_STATS_LINK_HW_EXTENDED (nested. extended hardware stats which are available via ethtool today) This patch also declares a filter mask for all stat attributes. User has to provide a mask of stats attributes to query. filter mask can be specified in the new hdr 'struct if_stats_msg' for stats messages. Other important field in the header is the ifindex. This api can also include attributes for global stats (eg tcp) in the future. When global stats are included in a stats msg, the ifindex in the header must be zero. A single stats message cannot contain both global and netdev specific stats. To easily distinguish them, netdev specific stat attributes name are prefixed with IFLA_STATS_LINK_ Without any attributes in the filter_mask, no stats will be returned. This patch has been tested with mofified iproute2 ifstat. Suggested-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-20 09:43:43 -06:00
ASSERT_RTNL();
nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ifsm), flags);
if (!nlh)
return -EMSGSIZE;
ifsm = nlmsg_data(nlh);
ifsm->family = PF_UNSPEC;
ifsm->pad1 = 0;
ifsm->pad2 = 0;
rtnetlink: add new RTM_GETSTATS message to dump link stats This patch adds a new RTM_GETSTATS message to query link stats via netlink from the kernel. RTM_NEWLINK also dumps stats today, but RTM_NEWLINK returns a lot more than just stats and is expensive in some cases when frequent polling for stats from userspace is a common operation. RTM_GETSTATS is an attempt to provide a light weight netlink message to explicity query only link stats from the kernel on an interface. The idea is to also keep it extensible so that new kinds of stats can be added to it in the future. This patch adds the following attribute for NETDEV stats: struct nla_policy ifla_stats_policy[IFLA_STATS_MAX + 1] = { [IFLA_STATS_LINK_64] = { .len = sizeof(struct rtnl_link_stats64) }, }; Like any other rtnetlink message, RTM_GETSTATS can be used to get stats of a single interface or all interfaces with NLM_F_DUMP. Future possible new types of stat attributes: link af stats: - IFLA_STATS_LINK_IPV6 (nested. for ipv6 stats) - IFLA_STATS_LINK_MPLS (nested. for mpls/mdev stats) extended stats: - IFLA_STATS_LINK_EXTENDED (nested. extended software netdev stats like bridge, vlan, vxlan etc) - IFLA_STATS_LINK_HW_EXTENDED (nested. extended hardware stats which are available via ethtool today) This patch also declares a filter mask for all stat attributes. User has to provide a mask of stats attributes to query. filter mask can be specified in the new hdr 'struct if_stats_msg' for stats messages. Other important field in the header is the ifindex. This api can also include attributes for global stats (eg tcp) in the future. When global stats are included in a stats msg, the ifindex in the header must be zero. A single stats message cannot contain both global and netdev specific stats. To easily distinguish them, netdev specific stat attributes name are prefixed with IFLA_STATS_LINK_ Without any attributes in the filter_mask, no stats will be returned. This patch has been tested with mofified iproute2 ifstat. Suggested-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-20 09:43:43 -06:00
ifsm->ifindex = dev->ifindex;
ifsm->filter_mask = filter_mask;
if (stats_attr_valid(filter_mask, IFLA_STATS_LINK_64, *idxattr)) {
rtnetlink: add new RTM_GETSTATS message to dump link stats This patch adds a new RTM_GETSTATS message to query link stats via netlink from the kernel. RTM_NEWLINK also dumps stats today, but RTM_NEWLINK returns a lot more than just stats and is expensive in some cases when frequent polling for stats from userspace is a common operation. RTM_GETSTATS is an attempt to provide a light weight netlink message to explicity query only link stats from the kernel on an interface. The idea is to also keep it extensible so that new kinds of stats can be added to it in the future. This patch adds the following attribute for NETDEV stats: struct nla_policy ifla_stats_policy[IFLA_STATS_MAX + 1] = { [IFLA_STATS_LINK_64] = { .len = sizeof(struct rtnl_link_stats64) }, }; Like any other rtnetlink message, RTM_GETSTATS can be used to get stats of a single interface or all interfaces with NLM_F_DUMP. Future possible new types of stat attributes: link af stats: - IFLA_STATS_LINK_IPV6 (nested. for ipv6 stats) - IFLA_STATS_LINK_MPLS (nested. for mpls/mdev stats) extended stats: - IFLA_STATS_LINK_EXTENDED (nested. extended software netdev stats like bridge, vlan, vxlan etc) - IFLA_STATS_LINK_HW_EXTENDED (nested. extended hardware stats which are available via ethtool today) This patch also declares a filter mask for all stat attributes. User has to provide a mask of stats attributes to query. filter mask can be specified in the new hdr 'struct if_stats_msg' for stats messages. Other important field in the header is the ifindex. This api can also include attributes for global stats (eg tcp) in the future. When global stats are included in a stats msg, the ifindex in the header must be zero. A single stats message cannot contain both global and netdev specific stats. To easily distinguish them, netdev specific stat attributes name are prefixed with IFLA_STATS_LINK_ Without any attributes in the filter_mask, no stats will be returned. This patch has been tested with mofified iproute2 ifstat. Suggested-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-20 09:43:43 -06:00
struct rtnl_link_stats64 *sp;
attr = nla_reserve_64bit(skb, IFLA_STATS_LINK_64,
sizeof(struct rtnl_link_stats64),
IFLA_STATS_UNSPEC);
rtnetlink: add new RTM_GETSTATS message to dump link stats This patch adds a new RTM_GETSTATS message to query link stats via netlink from the kernel. RTM_NEWLINK also dumps stats today, but RTM_NEWLINK returns a lot more than just stats and is expensive in some cases when frequent polling for stats from userspace is a common operation. RTM_GETSTATS is an attempt to provide a light weight netlink message to explicity query only link stats from the kernel on an interface. The idea is to also keep it extensible so that new kinds of stats can be added to it in the future. This patch adds the following attribute for NETDEV stats: struct nla_policy ifla_stats_policy[IFLA_STATS_MAX + 1] = { [IFLA_STATS_LINK_64] = { .len = sizeof(struct rtnl_link_stats64) }, }; Like any other rtnetlink message, RTM_GETSTATS can be used to get stats of a single interface or all interfaces with NLM_F_DUMP. Future possible new types of stat attributes: link af stats: - IFLA_STATS_LINK_IPV6 (nested. for ipv6 stats) - IFLA_STATS_LINK_MPLS (nested. for mpls/mdev stats) extended stats: - IFLA_STATS_LINK_EXTENDED (nested. extended software netdev stats like bridge, vlan, vxlan etc) - IFLA_STATS_LINK_HW_EXTENDED (nested. extended hardware stats which are available via ethtool today) This patch also declares a filter mask for all stat attributes. User has to provide a mask of stats attributes to query. filter mask can be specified in the new hdr 'struct if_stats_msg' for stats messages. Other important field in the header is the ifindex. This api can also include attributes for global stats (eg tcp) in the future. When global stats are included in a stats msg, the ifindex in the header must be zero. A single stats message cannot contain both global and netdev specific stats. To easily distinguish them, netdev specific stat attributes name are prefixed with IFLA_STATS_LINK_ Without any attributes in the filter_mask, no stats will be returned. This patch has been tested with mofified iproute2 ifstat. Suggested-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-20 09:43:43 -06:00
if (!attr)
goto nla_put_failure;
sp = nla_data(attr);
dev_get_stats(dev, sp);
}
if (stats_attr_valid(filter_mask, IFLA_STATS_LINK_XSTATS, *idxattr)) {
const struct rtnl_link_ops *ops = dev->rtnl_link_ops;
if (ops && ops->fill_linkxstats) {
*idxattr = IFLA_STATS_LINK_XSTATS;
attr = nla_nest_start(skb,
IFLA_STATS_LINK_XSTATS);
if (!attr)
goto nla_put_failure;
err = ops->fill_linkxstats(skb, dev, prividx, *idxattr);
nla_nest_end(skb, attr);
if (err)
goto nla_put_failure;
*idxattr = 0;
}
}
if (stats_attr_valid(filter_mask, IFLA_STATS_LINK_XSTATS_SLAVE,
*idxattr)) {
const struct rtnl_link_ops *ops = NULL;
const struct net_device *master;
master = netdev_master_upper_dev_get(dev);
if (master)
ops = master->rtnl_link_ops;
if (ops && ops->fill_linkxstats) {
*idxattr = IFLA_STATS_LINK_XSTATS_SLAVE;
attr = nla_nest_start(skb,
IFLA_STATS_LINK_XSTATS_SLAVE);
if (!attr)
goto nla_put_failure;
err = ops->fill_linkxstats(skb, dev, prividx, *idxattr);
nla_nest_end(skb, attr);
if (err)
goto nla_put_failure;
*idxattr = 0;
}
}
if (stats_attr_valid(filter_mask, IFLA_STATS_LINK_OFFLOAD_XSTATS,
*idxattr)) {
*idxattr = IFLA_STATS_LINK_OFFLOAD_XSTATS;
attr = nla_nest_start(skb, IFLA_STATS_LINK_OFFLOAD_XSTATS);
if (!attr)
goto nla_put_failure;
err = rtnl_get_offload_stats(skb, dev, prividx);
if (err == -ENODATA)
nla_nest_cancel(skb, attr);
else
nla_nest_end(skb, attr);
if (err && err != -ENODATA)
goto nla_put_failure;
*idxattr = 0;
}
if (stats_attr_valid(filter_mask, IFLA_STATS_AF_SPEC, *idxattr)) {
struct rtnl_af_ops *af_ops;
*idxattr = IFLA_STATS_AF_SPEC;
attr = nla_nest_start(skb, IFLA_STATS_AF_SPEC);
if (!attr)
goto nla_put_failure;
rcu_read_lock();
list_for_each_entry_rcu(af_ops, &rtnl_af_ops, list) {
if (af_ops->fill_stats_af) {
struct nlattr *af;
int err;
af = nla_nest_start(skb, af_ops->family);
if (!af) {
rcu_read_unlock();
goto nla_put_failure;
}
err = af_ops->fill_stats_af(skb, dev);
if (err == -ENODATA) {
nla_nest_cancel(skb, af);
} else if (err < 0) {
rcu_read_unlock();
goto nla_put_failure;
}
nla_nest_end(skb, af);
}
}
rcu_read_unlock();
nla_nest_end(skb, attr);
*idxattr = 0;
}
rtnetlink: add new RTM_GETSTATS message to dump link stats This patch adds a new RTM_GETSTATS message to query link stats via netlink from the kernel. RTM_NEWLINK also dumps stats today, but RTM_NEWLINK returns a lot more than just stats and is expensive in some cases when frequent polling for stats from userspace is a common operation. RTM_GETSTATS is an attempt to provide a light weight netlink message to explicity query only link stats from the kernel on an interface. The idea is to also keep it extensible so that new kinds of stats can be added to it in the future. This patch adds the following attribute for NETDEV stats: struct nla_policy ifla_stats_policy[IFLA_STATS_MAX + 1] = { [IFLA_STATS_LINK_64] = { .len = sizeof(struct rtnl_link_stats64) }, }; Like any other rtnetlink message, RTM_GETSTATS can be used to get stats of a single interface or all interfaces with NLM_F_DUMP. Future possible new types of stat attributes: link af stats: - IFLA_STATS_LINK_IPV6 (nested. for ipv6 stats) - IFLA_STATS_LINK_MPLS (nested. for mpls/mdev stats) extended stats: - IFLA_STATS_LINK_EXTENDED (nested. extended software netdev stats like bridge, vlan, vxlan etc) - IFLA_STATS_LINK_HW_EXTENDED (nested. extended hardware stats which are available via ethtool today) This patch also declares a filter mask for all stat attributes. User has to provide a mask of stats attributes to query. filter mask can be specified in the new hdr 'struct if_stats_msg' for stats messages. Other important field in the header is the ifindex. This api can also include attributes for global stats (eg tcp) in the future. When global stats are included in a stats msg, the ifindex in the header must be zero. A single stats message cannot contain both global and netdev specific stats. To easily distinguish them, netdev specific stat attributes name are prefixed with IFLA_STATS_LINK_ Without any attributes in the filter_mask, no stats will be returned. This patch has been tested with mofified iproute2 ifstat. Suggested-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-20 09:43:43 -06:00
nlmsg_end(skb, nlh);
return 0;
nla_put_failure:
/* not a multi message or no progress mean a real error */
if (!(flags & NLM_F_MULTI) || s_prividx == *prividx)
nlmsg_cancel(skb, nlh);
else
nlmsg_end(skb, nlh);
rtnetlink: add new RTM_GETSTATS message to dump link stats This patch adds a new RTM_GETSTATS message to query link stats via netlink from the kernel. RTM_NEWLINK also dumps stats today, but RTM_NEWLINK returns a lot more than just stats and is expensive in some cases when frequent polling for stats from userspace is a common operation. RTM_GETSTATS is an attempt to provide a light weight netlink message to explicity query only link stats from the kernel on an interface. The idea is to also keep it extensible so that new kinds of stats can be added to it in the future. This patch adds the following attribute for NETDEV stats: struct nla_policy ifla_stats_policy[IFLA_STATS_MAX + 1] = { [IFLA_STATS_LINK_64] = { .len = sizeof(struct rtnl_link_stats64) }, }; Like any other rtnetlink message, RTM_GETSTATS can be used to get stats of a single interface or all interfaces with NLM_F_DUMP. Future possible new types of stat attributes: link af stats: - IFLA_STATS_LINK_IPV6 (nested. for ipv6 stats) - IFLA_STATS_LINK_MPLS (nested. for mpls/mdev stats) extended stats: - IFLA_STATS_LINK_EXTENDED (nested. extended software netdev stats like bridge, vlan, vxlan etc) - IFLA_STATS_LINK_HW_EXTENDED (nested. extended hardware stats which are available via ethtool today) This patch also declares a filter mask for all stat attributes. User has to provide a mask of stats attributes to query. filter mask can be specified in the new hdr 'struct if_stats_msg' for stats messages. Other important field in the header is the ifindex. This api can also include attributes for global stats (eg tcp) in the future. When global stats are included in a stats msg, the ifindex in the header must be zero. A single stats message cannot contain both global and netdev specific stats. To easily distinguish them, netdev specific stat attributes name are prefixed with IFLA_STATS_LINK_ Without any attributes in the filter_mask, no stats will be returned. This patch has been tested with mofified iproute2 ifstat. Suggested-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-20 09:43:43 -06:00
return -EMSGSIZE;
}
static size_t if_nlmsg_stats_size(const struct net_device *dev,
u32 filter_mask)
{
size_t size = 0;
if (stats_attr_valid(filter_mask, IFLA_STATS_LINK_64, 0))
rtnetlink: add new RTM_GETSTATS message to dump link stats This patch adds a new RTM_GETSTATS message to query link stats via netlink from the kernel. RTM_NEWLINK also dumps stats today, but RTM_NEWLINK returns a lot more than just stats and is expensive in some cases when frequent polling for stats from userspace is a common operation. RTM_GETSTATS is an attempt to provide a light weight netlink message to explicity query only link stats from the kernel on an interface. The idea is to also keep it extensible so that new kinds of stats can be added to it in the future. This patch adds the following attribute for NETDEV stats: struct nla_policy ifla_stats_policy[IFLA_STATS_MAX + 1] = { [IFLA_STATS_LINK_64] = { .len = sizeof(struct rtnl_link_stats64) }, }; Like any other rtnetlink message, RTM_GETSTATS can be used to get stats of a single interface or all interfaces with NLM_F_DUMP. Future possible new types of stat attributes: link af stats: - IFLA_STATS_LINK_IPV6 (nested. for ipv6 stats) - IFLA_STATS_LINK_MPLS (nested. for mpls/mdev stats) extended stats: - IFLA_STATS_LINK_EXTENDED (nested. extended software netdev stats like bridge, vlan, vxlan etc) - IFLA_STATS_LINK_HW_EXTENDED (nested. extended hardware stats which are available via ethtool today) This patch also declares a filter mask for all stat attributes. User has to provide a mask of stats attributes to query. filter mask can be specified in the new hdr 'struct if_stats_msg' for stats messages. Other important field in the header is the ifindex. This api can also include attributes for global stats (eg tcp) in the future. When global stats are included in a stats msg, the ifindex in the header must be zero. A single stats message cannot contain both global and netdev specific stats. To easily distinguish them, netdev specific stat attributes name are prefixed with IFLA_STATS_LINK_ Without any attributes in the filter_mask, no stats will be returned. This patch has been tested with mofified iproute2 ifstat. Suggested-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-20 09:43:43 -06:00
size += nla_total_size_64bit(sizeof(struct rtnl_link_stats64));
if (stats_attr_valid(filter_mask, IFLA_STATS_LINK_XSTATS, 0)) {
const struct rtnl_link_ops *ops = dev->rtnl_link_ops;
int attr = IFLA_STATS_LINK_XSTATS;
if (ops && ops->get_linkxstats_size) {
size += nla_total_size(ops->get_linkxstats_size(dev,
attr));
/* for IFLA_STATS_LINK_XSTATS */
size += nla_total_size(0);
}
}
if (stats_attr_valid(filter_mask, IFLA_STATS_LINK_XSTATS_SLAVE, 0)) {
struct net_device *_dev = (struct net_device *)dev;
const struct rtnl_link_ops *ops = NULL;
const struct net_device *master;
/* netdev_master_upper_dev_get can't take const */
master = netdev_master_upper_dev_get(_dev);
if (master)
ops = master->rtnl_link_ops;
if (ops && ops->get_linkxstats_size) {
int attr = IFLA_STATS_LINK_XSTATS_SLAVE;
size += nla_total_size(ops->get_linkxstats_size(dev,
attr));
/* for IFLA_STATS_LINK_XSTATS_SLAVE */
size += nla_total_size(0);
}
}
if (stats_attr_valid(filter_mask, IFLA_STATS_LINK_OFFLOAD_XSTATS, 0))
size += rtnl_get_offload_stats_size(dev);
if (stats_attr_valid(filter_mask, IFLA_STATS_AF_SPEC, 0)) {
struct rtnl_af_ops *af_ops;
/* for IFLA_STATS_AF_SPEC */
size += nla_total_size(0);
rcu_read_lock();
list_for_each_entry_rcu(af_ops, &rtnl_af_ops, list) {
if (af_ops->get_stats_af_size) {
size += nla_total_size(
af_ops->get_stats_af_size(dev));
/* for AF_* */
size += nla_total_size(0);
}
}
rcu_read_unlock();
}
rtnetlink: add new RTM_GETSTATS message to dump link stats This patch adds a new RTM_GETSTATS message to query link stats via netlink from the kernel. RTM_NEWLINK also dumps stats today, but RTM_NEWLINK returns a lot more than just stats and is expensive in some cases when frequent polling for stats from userspace is a common operation. RTM_GETSTATS is an attempt to provide a light weight netlink message to explicity query only link stats from the kernel on an interface. The idea is to also keep it extensible so that new kinds of stats can be added to it in the future. This patch adds the following attribute for NETDEV stats: struct nla_policy ifla_stats_policy[IFLA_STATS_MAX + 1] = { [IFLA_STATS_LINK_64] = { .len = sizeof(struct rtnl_link_stats64) }, }; Like any other rtnetlink message, RTM_GETSTATS can be used to get stats of a single interface or all interfaces with NLM_F_DUMP. Future possible new types of stat attributes: link af stats: - IFLA_STATS_LINK_IPV6 (nested. for ipv6 stats) - IFLA_STATS_LINK_MPLS (nested. for mpls/mdev stats) extended stats: - IFLA_STATS_LINK_EXTENDED (nested. extended software netdev stats like bridge, vlan, vxlan etc) - IFLA_STATS_LINK_HW_EXTENDED (nested. extended hardware stats which are available via ethtool today) This patch also declares a filter mask for all stat attributes. User has to provide a mask of stats attributes to query. filter mask can be specified in the new hdr 'struct if_stats_msg' for stats messages. Other important field in the header is the ifindex. This api can also include attributes for global stats (eg tcp) in the future. When global stats are included in a stats msg, the ifindex in the header must be zero. A single stats message cannot contain both global and netdev specific stats. To easily distinguish them, netdev specific stat attributes name are prefixed with IFLA_STATS_LINK_ Without any attributes in the filter_mask, no stats will be returned. This patch has been tested with mofified iproute2 ifstat. Suggested-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-20 09:43:43 -06:00
return size;
}
static int rtnl_stats_get(struct sk_buff *skb, struct nlmsghdr *nlh,
struct netlink_ext_ack *extack)
rtnetlink: add new RTM_GETSTATS message to dump link stats This patch adds a new RTM_GETSTATS message to query link stats via netlink from the kernel. RTM_NEWLINK also dumps stats today, but RTM_NEWLINK returns a lot more than just stats and is expensive in some cases when frequent polling for stats from userspace is a common operation. RTM_GETSTATS is an attempt to provide a light weight netlink message to explicity query only link stats from the kernel on an interface. The idea is to also keep it extensible so that new kinds of stats can be added to it in the future. This patch adds the following attribute for NETDEV stats: struct nla_policy ifla_stats_policy[IFLA_STATS_MAX + 1] = { [IFLA_STATS_LINK_64] = { .len = sizeof(struct rtnl_link_stats64) }, }; Like any other rtnetlink message, RTM_GETSTATS can be used to get stats of a single interface or all interfaces with NLM_F_DUMP. Future possible new types of stat attributes: link af stats: - IFLA_STATS_LINK_IPV6 (nested. for ipv6 stats) - IFLA_STATS_LINK_MPLS (nested. for mpls/mdev stats) extended stats: - IFLA_STATS_LINK_EXTENDED (nested. extended software netdev stats like bridge, vlan, vxlan etc) - IFLA_STATS_LINK_HW_EXTENDED (nested. extended hardware stats which are available via ethtool today) This patch also declares a filter mask for all stat attributes. User has to provide a mask of stats attributes to query. filter mask can be specified in the new hdr 'struct if_stats_msg' for stats messages. Other important field in the header is the ifindex. This api can also include attributes for global stats (eg tcp) in the future. When global stats are included in a stats msg, the ifindex in the header must be zero. A single stats message cannot contain both global and netdev specific stats. To easily distinguish them, netdev specific stat attributes name are prefixed with IFLA_STATS_LINK_ Without any attributes in the filter_mask, no stats will be returned. This patch has been tested with mofified iproute2 ifstat. Suggested-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-20 09:43:43 -06:00
{
struct net *net = sock_net(skb->sk);
struct net_device *dev = NULL;
int idxattr = 0, prividx = 0;
struct if_stats_msg *ifsm;
rtnetlink: add new RTM_GETSTATS message to dump link stats This patch adds a new RTM_GETSTATS message to query link stats via netlink from the kernel. RTM_NEWLINK also dumps stats today, but RTM_NEWLINK returns a lot more than just stats and is expensive in some cases when frequent polling for stats from userspace is a common operation. RTM_GETSTATS is an attempt to provide a light weight netlink message to explicity query only link stats from the kernel on an interface. The idea is to also keep it extensible so that new kinds of stats can be added to it in the future. This patch adds the following attribute for NETDEV stats: struct nla_policy ifla_stats_policy[IFLA_STATS_MAX + 1] = { [IFLA_STATS_LINK_64] = { .len = sizeof(struct rtnl_link_stats64) }, }; Like any other rtnetlink message, RTM_GETSTATS can be used to get stats of a single interface or all interfaces with NLM_F_DUMP. Future possible new types of stat attributes: link af stats: - IFLA_STATS_LINK_IPV6 (nested. for ipv6 stats) - IFLA_STATS_LINK_MPLS (nested. for mpls/mdev stats) extended stats: - IFLA_STATS_LINK_EXTENDED (nested. extended software netdev stats like bridge, vlan, vxlan etc) - IFLA_STATS_LINK_HW_EXTENDED (nested. extended hardware stats which are available via ethtool today) This patch also declares a filter mask for all stat attributes. User has to provide a mask of stats attributes to query. filter mask can be specified in the new hdr 'struct if_stats_msg' for stats messages. Other important field in the header is the ifindex. This api can also include attributes for global stats (eg tcp) in the future. When global stats are included in a stats msg, the ifindex in the header must be zero. A single stats message cannot contain both global and netdev specific stats. To easily distinguish them, netdev specific stat attributes name are prefixed with IFLA_STATS_LINK_ Without any attributes in the filter_mask, no stats will be returned. This patch has been tested with mofified iproute2 ifstat. Suggested-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-20 09:43:43 -06:00
struct sk_buff *nskb;
u32 filter_mask;
int err;
if (nlmsg_len(nlh) < sizeof(*ifsm))
return -EINVAL;
rtnetlink: add new RTM_GETSTATS message to dump link stats This patch adds a new RTM_GETSTATS message to query link stats via netlink from the kernel. RTM_NEWLINK also dumps stats today, but RTM_NEWLINK returns a lot more than just stats and is expensive in some cases when frequent polling for stats from userspace is a common operation. RTM_GETSTATS is an attempt to provide a light weight netlink message to explicity query only link stats from the kernel on an interface. The idea is to also keep it extensible so that new kinds of stats can be added to it in the future. This patch adds the following attribute for NETDEV stats: struct nla_policy ifla_stats_policy[IFLA_STATS_MAX + 1] = { [IFLA_STATS_LINK_64] = { .len = sizeof(struct rtnl_link_stats64) }, }; Like any other rtnetlink message, RTM_GETSTATS can be used to get stats of a single interface or all interfaces with NLM_F_DUMP. Future possible new types of stat attributes: link af stats: - IFLA_STATS_LINK_IPV6 (nested. for ipv6 stats) - IFLA_STATS_LINK_MPLS (nested. for mpls/mdev stats) extended stats: - IFLA_STATS_LINK_EXTENDED (nested. extended software netdev stats like bridge, vlan, vxlan etc) - IFLA_STATS_LINK_HW_EXTENDED (nested. extended hardware stats which are available via ethtool today) This patch also declares a filter mask for all stat attributes. User has to provide a mask of stats attributes to query. filter mask can be specified in the new hdr 'struct if_stats_msg' for stats messages. Other important field in the header is the ifindex. This api can also include attributes for global stats (eg tcp) in the future. When global stats are included in a stats msg, the ifindex in the header must be zero. A single stats message cannot contain both global and netdev specific stats. To easily distinguish them, netdev specific stat attributes name are prefixed with IFLA_STATS_LINK_ Without any attributes in the filter_mask, no stats will be returned. This patch has been tested with mofified iproute2 ifstat. Suggested-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-20 09:43:43 -06:00
ifsm = nlmsg_data(nlh);
if (ifsm->ifindex > 0)
dev = __dev_get_by_index(net, ifsm->ifindex);
else
return -EINVAL;
if (!dev)
return -ENODEV;
filter_mask = ifsm->filter_mask;
if (!filter_mask)
return -EINVAL;
nskb = nlmsg_new(if_nlmsg_stats_size(dev, filter_mask), GFP_KERNEL);
if (!nskb)
return -ENOBUFS;
err = rtnl_fill_statsinfo(nskb, dev, RTM_NEWSTATS,
NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
0, filter_mask, &idxattr, &prividx);
rtnetlink: add new RTM_GETSTATS message to dump link stats This patch adds a new RTM_GETSTATS message to query link stats via netlink from the kernel. RTM_NEWLINK also dumps stats today, but RTM_NEWLINK returns a lot more than just stats and is expensive in some cases when frequent polling for stats from userspace is a common operation. RTM_GETSTATS is an attempt to provide a light weight netlink message to explicity query only link stats from the kernel on an interface. The idea is to also keep it extensible so that new kinds of stats can be added to it in the future. This patch adds the following attribute for NETDEV stats: struct nla_policy ifla_stats_policy[IFLA_STATS_MAX + 1] = { [IFLA_STATS_LINK_64] = { .len = sizeof(struct rtnl_link_stats64) }, }; Like any other rtnetlink message, RTM_GETSTATS can be used to get stats of a single interface or all interfaces with NLM_F_DUMP. Future possible new types of stat attributes: link af stats: - IFLA_STATS_LINK_IPV6 (nested. for ipv6 stats) - IFLA_STATS_LINK_MPLS (nested. for mpls/mdev stats) extended stats: - IFLA_STATS_LINK_EXTENDED (nested. extended software netdev stats like bridge, vlan, vxlan etc) - IFLA_STATS_LINK_HW_EXTENDED (nested. extended hardware stats which are available via ethtool today) This patch also declares a filter mask for all stat attributes. User has to provide a mask of stats attributes to query. filter mask can be specified in the new hdr 'struct if_stats_msg' for stats messages. Other important field in the header is the ifindex. This api can also include attributes for global stats (eg tcp) in the future. When global stats are included in a stats msg, the ifindex in the header must be zero. A single stats message cannot contain both global and netdev specific stats. To easily distinguish them, netdev specific stat attributes name are prefixed with IFLA_STATS_LINK_ Without any attributes in the filter_mask, no stats will be returned. This patch has been tested with mofified iproute2 ifstat. Suggested-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-20 09:43:43 -06:00
if (err < 0) {
/* -EMSGSIZE implies BUG in if_nlmsg_stats_size */
WARN_ON(err == -EMSGSIZE);
kfree_skb(nskb);
} else {
err = rtnl_unicast(nskb, net, NETLINK_CB(skb).portid);
}
return err;
}
static int rtnl_stats_dump(struct sk_buff *skb, struct netlink_callback *cb)
{
struct netlink_ext_ack *extack = cb->extack;
int h, s_h, err, s_idx, s_idxattr, s_prividx;
rtnetlink: add new RTM_GETSTATS message to dump link stats This patch adds a new RTM_GETSTATS message to query link stats via netlink from the kernel. RTM_NEWLINK also dumps stats today, but RTM_NEWLINK returns a lot more than just stats and is expensive in some cases when frequent polling for stats from userspace is a common operation. RTM_GETSTATS is an attempt to provide a light weight netlink message to explicity query only link stats from the kernel on an interface. The idea is to also keep it extensible so that new kinds of stats can be added to it in the future. This patch adds the following attribute for NETDEV stats: struct nla_policy ifla_stats_policy[IFLA_STATS_MAX + 1] = { [IFLA_STATS_LINK_64] = { .len = sizeof(struct rtnl_link_stats64) }, }; Like any other rtnetlink message, RTM_GETSTATS can be used to get stats of a single interface or all interfaces with NLM_F_DUMP. Future possible new types of stat attributes: link af stats: - IFLA_STATS_LINK_IPV6 (nested. for ipv6 stats) - IFLA_STATS_LINK_MPLS (nested. for mpls/mdev stats) extended stats: - IFLA_STATS_LINK_EXTENDED (nested. extended software netdev stats like bridge, vlan, vxlan etc) - IFLA_STATS_LINK_HW_EXTENDED (nested. extended hardware stats which are available via ethtool today) This patch also declares a filter mask for all stat attributes. User has to provide a mask of stats attributes to query. filter mask can be specified in the new hdr 'struct if_stats_msg' for stats messages. Other important field in the header is the ifindex. This api can also include attributes for global stats (eg tcp) in the future. When global stats are included in a stats msg, the ifindex in the header must be zero. A single stats message cannot contain both global and netdev specific stats. To easily distinguish them, netdev specific stat attributes name are prefixed with IFLA_STATS_LINK_ Without any attributes in the filter_mask, no stats will be returned. This patch has been tested with mofified iproute2 ifstat. Suggested-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-20 09:43:43 -06:00
struct net *net = sock_net(skb->sk);
unsigned int flags = NLM_F_MULTI;
rtnetlink: add new RTM_GETSTATS message to dump link stats This patch adds a new RTM_GETSTATS message to query link stats via netlink from the kernel. RTM_NEWLINK also dumps stats today, but RTM_NEWLINK returns a lot more than just stats and is expensive in some cases when frequent polling for stats from userspace is a common operation. RTM_GETSTATS is an attempt to provide a light weight netlink message to explicity query only link stats from the kernel on an interface. The idea is to also keep it extensible so that new kinds of stats can be added to it in the future. This patch adds the following attribute for NETDEV stats: struct nla_policy ifla_stats_policy[IFLA_STATS_MAX + 1] = { [IFLA_STATS_LINK_64] = { .len = sizeof(struct rtnl_link_stats64) }, }; Like any other rtnetlink message, RTM_GETSTATS can be used to get stats of a single interface or all interfaces with NLM_F_DUMP. Future possible new types of stat attributes: link af stats: - IFLA_STATS_LINK_IPV6 (nested. for ipv6 stats) - IFLA_STATS_LINK_MPLS (nested. for mpls/mdev stats) extended stats: - IFLA_STATS_LINK_EXTENDED (nested. extended software netdev stats like bridge, vlan, vxlan etc) - IFLA_STATS_LINK_HW_EXTENDED (nested. extended hardware stats which are available via ethtool today) This patch also declares a filter mask for all stat attributes. User has to provide a mask of stats attributes to query. filter mask can be specified in the new hdr 'struct if_stats_msg' for stats messages. Other important field in the header is the ifindex. This api can also include attributes for global stats (eg tcp) in the future. When global stats are included in a stats msg, the ifindex in the header must be zero. A single stats message cannot contain both global and netdev specific stats. To easily distinguish them, netdev specific stat attributes name are prefixed with IFLA_STATS_LINK_ Without any attributes in the filter_mask, no stats will be returned. This patch has been tested with mofified iproute2 ifstat. Suggested-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-20 09:43:43 -06:00
struct if_stats_msg *ifsm;
struct hlist_head *head;
struct net_device *dev;
rtnetlink: add new RTM_GETSTATS message to dump link stats This patch adds a new RTM_GETSTATS message to query link stats via netlink from the kernel. RTM_NEWLINK also dumps stats today, but RTM_NEWLINK returns a lot more than just stats and is expensive in some cases when frequent polling for stats from userspace is a common operation. RTM_GETSTATS is an attempt to provide a light weight netlink message to explicity query only link stats from the kernel on an interface. The idea is to also keep it extensible so that new kinds of stats can be added to it in the future. This patch adds the following attribute for NETDEV stats: struct nla_policy ifla_stats_policy[IFLA_STATS_MAX + 1] = { [IFLA_STATS_LINK_64] = { .len = sizeof(struct rtnl_link_stats64) }, }; Like any other rtnetlink message, RTM_GETSTATS can be used to get stats of a single interface or all interfaces with NLM_F_DUMP. Future possible new types of stat attributes: link af stats: - IFLA_STATS_LINK_IPV6 (nested. for ipv6 stats) - IFLA_STATS_LINK_MPLS (nested. for mpls/mdev stats) extended stats: - IFLA_STATS_LINK_EXTENDED (nested. extended software netdev stats like bridge, vlan, vxlan etc) - IFLA_STATS_LINK_HW_EXTENDED (nested. extended hardware stats which are available via ethtool today) This patch also declares a filter mask for all stat attributes. User has to provide a mask of stats attributes to query. filter mask can be specified in the new hdr 'struct if_stats_msg' for stats messages. Other important field in the header is the ifindex. This api can also include attributes for global stats (eg tcp) in the future. When global stats are included in a stats msg, the ifindex in the header must be zero. A single stats message cannot contain both global and netdev specific stats. To easily distinguish them, netdev specific stat attributes name are prefixed with IFLA_STATS_LINK_ Without any attributes in the filter_mask, no stats will be returned. This patch has been tested with mofified iproute2 ifstat. Suggested-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-20 09:43:43 -06:00
u32 filter_mask = 0;
int idx = 0;
rtnetlink: add new RTM_GETSTATS message to dump link stats This patch adds a new RTM_GETSTATS message to query link stats via netlink from the kernel. RTM_NEWLINK also dumps stats today, but RTM_NEWLINK returns a lot more than just stats and is expensive in some cases when frequent polling for stats from userspace is a common operation. RTM_GETSTATS is an attempt to provide a light weight netlink message to explicity query only link stats from the kernel on an interface. The idea is to also keep it extensible so that new kinds of stats can be added to it in the future. This patch adds the following attribute for NETDEV stats: struct nla_policy ifla_stats_policy[IFLA_STATS_MAX + 1] = { [IFLA_STATS_LINK_64] = { .len = sizeof(struct rtnl_link_stats64) }, }; Like any other rtnetlink message, RTM_GETSTATS can be used to get stats of a single interface or all interfaces with NLM_F_DUMP. Future possible new types of stat attributes: link af stats: - IFLA_STATS_LINK_IPV6 (nested. for ipv6 stats) - IFLA_STATS_LINK_MPLS (nested. for mpls/mdev stats) extended stats: - IFLA_STATS_LINK_EXTENDED (nested. extended software netdev stats like bridge, vlan, vxlan etc) - IFLA_STATS_LINK_HW_EXTENDED (nested. extended hardware stats which are available via ethtool today) This patch also declares a filter mask for all stat attributes. User has to provide a mask of stats attributes to query. filter mask can be specified in the new hdr 'struct if_stats_msg' for stats messages. Other important field in the header is the ifindex. This api can also include attributes for global stats (eg tcp) in the future. When global stats are included in a stats msg, the ifindex in the header must be zero. A single stats message cannot contain both global and netdev specific stats. To easily distinguish them, netdev specific stat attributes name are prefixed with IFLA_STATS_LINK_ Without any attributes in the filter_mask, no stats will be returned. This patch has been tested with mofified iproute2 ifstat. Suggested-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-20 09:43:43 -06:00
s_h = cb->args[0];
s_idx = cb->args[1];
s_idxattr = cb->args[2];
s_prividx = cb->args[3];
rtnetlink: add new RTM_GETSTATS message to dump link stats This patch adds a new RTM_GETSTATS message to query link stats via netlink from the kernel. RTM_NEWLINK also dumps stats today, but RTM_NEWLINK returns a lot more than just stats and is expensive in some cases when frequent polling for stats from userspace is a common operation. RTM_GETSTATS is an attempt to provide a light weight netlink message to explicity query only link stats from the kernel on an interface. The idea is to also keep it extensible so that new kinds of stats can be added to it in the future. This patch adds the following attribute for NETDEV stats: struct nla_policy ifla_stats_policy[IFLA_STATS_MAX + 1] = { [IFLA_STATS_LINK_64] = { .len = sizeof(struct rtnl_link_stats64) }, }; Like any other rtnetlink message, RTM_GETSTATS can be used to get stats of a single interface or all interfaces with NLM_F_DUMP. Future possible new types of stat attributes: link af stats: - IFLA_STATS_LINK_IPV6 (nested. for ipv6 stats) - IFLA_STATS_LINK_MPLS (nested. for mpls/mdev stats) extended stats: - IFLA_STATS_LINK_EXTENDED (nested. extended software netdev stats like bridge, vlan, vxlan etc) - IFLA_STATS_LINK_HW_EXTENDED (nested. extended hardware stats which are available via ethtool today) This patch also declares a filter mask for all stat attributes. User has to provide a mask of stats attributes to query. filter mask can be specified in the new hdr 'struct if_stats_msg' for stats messages. Other important field in the header is the ifindex. This api can also include attributes for global stats (eg tcp) in the future. When global stats are included in a stats msg, the ifindex in the header must be zero. A single stats message cannot contain both global and netdev specific stats. To easily distinguish them, netdev specific stat attributes name are prefixed with IFLA_STATS_LINK_ Without any attributes in the filter_mask, no stats will be returned. This patch has been tested with mofified iproute2 ifstat. Suggested-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-20 09:43:43 -06:00
cb->seq = net->dev_base_seq;
if (nlmsg_len(cb->nlh) < sizeof(*ifsm)) {
NL_SET_ERR_MSG(extack, "Invalid header for stats dump");
return -EINVAL;
}
rtnetlink: add new RTM_GETSTATS message to dump link stats This patch adds a new RTM_GETSTATS message to query link stats via netlink from the kernel. RTM_NEWLINK also dumps stats today, but RTM_NEWLINK returns a lot more than just stats and is expensive in some cases when frequent polling for stats from userspace is a common operation. RTM_GETSTATS is an attempt to provide a light weight netlink message to explicity query only link stats from the kernel on an interface. The idea is to also keep it extensible so that new kinds of stats can be added to it in the future. This patch adds the following attribute for NETDEV stats: struct nla_policy ifla_stats_policy[IFLA_STATS_MAX + 1] = { [IFLA_STATS_LINK_64] = { .len = sizeof(struct rtnl_link_stats64) }, }; Like any other rtnetlink message, RTM_GETSTATS can be used to get stats of a single interface or all interfaces with NLM_F_DUMP. Future possible new types of stat attributes: link af stats: - IFLA_STATS_LINK_IPV6 (nested. for ipv6 stats) - IFLA_STATS_LINK_MPLS (nested. for mpls/mdev stats) extended stats: - IFLA_STATS_LINK_EXTENDED (nested. extended software netdev stats like bridge, vlan, vxlan etc) - IFLA_STATS_LINK_HW_EXTENDED (nested. extended hardware stats which are available via ethtool today) This patch also declares a filter mask for all stat attributes. User has to provide a mask of stats attributes to query. filter mask can be specified in the new hdr 'struct if_stats_msg' for stats messages. Other important field in the header is the ifindex. This api can also include attributes for global stats (eg tcp) in the future. When global stats are included in a stats msg, the ifindex in the header must be zero. A single stats message cannot contain both global and netdev specific stats. To easily distinguish them, netdev specific stat attributes name are prefixed with IFLA_STATS_LINK_ Without any attributes in the filter_mask, no stats will be returned. This patch has been tested with mofified iproute2 ifstat. Suggested-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-20 09:43:43 -06:00
ifsm = nlmsg_data(cb->nlh);
/* only requests using strict checks can pass data to influence
* the dump. The legacy exception is filter_mask.
*/
if (cb->strict_check) {
if (ifsm->pad1 || ifsm->pad2 || ifsm->ifindex) {
NL_SET_ERR_MSG(extack, "Invalid values in header for stats dump request");
return -EINVAL;
}
if (nlmsg_attrlen(cb->nlh, sizeof(*ifsm))) {
NL_SET_ERR_MSG(extack, "Invalid attributes after stats header");
return -EINVAL;
}
}
rtnetlink: add new RTM_GETSTATS message to dump link stats This patch adds a new RTM_GETSTATS message to query link stats via netlink from the kernel. RTM_NEWLINK also dumps stats today, but RTM_NEWLINK returns a lot more than just stats and is expensive in some cases when frequent polling for stats from userspace is a common operation. RTM_GETSTATS is an attempt to provide a light weight netlink message to explicity query only link stats from the kernel on an interface. The idea is to also keep it extensible so that new kinds of stats can be added to it in the future. This patch adds the following attribute for NETDEV stats: struct nla_policy ifla_stats_policy[IFLA_STATS_MAX + 1] = { [IFLA_STATS_LINK_64] = { .len = sizeof(struct rtnl_link_stats64) }, }; Like any other rtnetlink message, RTM_GETSTATS can be used to get stats of a single interface or all interfaces with NLM_F_DUMP. Future possible new types of stat attributes: link af stats: - IFLA_STATS_LINK_IPV6 (nested. for ipv6 stats) - IFLA_STATS_LINK_MPLS (nested. for mpls/mdev stats) extended stats: - IFLA_STATS_LINK_EXTENDED (nested. extended software netdev stats like bridge, vlan, vxlan etc) - IFLA_STATS_LINK_HW_EXTENDED (nested. extended hardware stats which are available via ethtool today) This patch also declares a filter mask for all stat attributes. User has to provide a mask of stats attributes to query. filter mask can be specified in the new hdr 'struct if_stats_msg' for stats messages. Other important field in the header is the ifindex. This api can also include attributes for global stats (eg tcp) in the future. When global stats are included in a stats msg, the ifindex in the header must be zero. A single stats message cannot contain both global and netdev specific stats. To easily distinguish them, netdev specific stat attributes name are prefixed with IFLA_STATS_LINK_ Without any attributes in the filter_mask, no stats will be returned. This patch has been tested with mofified iproute2 ifstat. Suggested-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-20 09:43:43 -06:00
filter_mask = ifsm->filter_mask;
if (!filter_mask) {
NL_SET_ERR_MSG(extack, "Filter mask must be set for stats dump");
rtnetlink: add new RTM_GETSTATS message to dump link stats This patch adds a new RTM_GETSTATS message to query link stats via netlink from the kernel. RTM_NEWLINK also dumps stats today, but RTM_NEWLINK returns a lot more than just stats and is expensive in some cases when frequent polling for stats from userspace is a common operation. RTM_GETSTATS is an attempt to provide a light weight netlink message to explicity query only link stats from the kernel on an interface. The idea is to also keep it extensible so that new kinds of stats can be added to it in the future. This patch adds the following attribute for NETDEV stats: struct nla_policy ifla_stats_policy[IFLA_STATS_MAX + 1] = { [IFLA_STATS_LINK_64] = { .len = sizeof(struct rtnl_link_stats64) }, }; Like any other rtnetlink message, RTM_GETSTATS can be used to get stats of a single interface or all interfaces with NLM_F_DUMP. Future possible new types of stat attributes: link af stats: - IFLA_STATS_LINK_IPV6 (nested. for ipv6 stats) - IFLA_STATS_LINK_MPLS (nested. for mpls/mdev stats) extended stats: - IFLA_STATS_LINK_EXTENDED (nested. extended software netdev stats like bridge, vlan, vxlan etc) - IFLA_STATS_LINK_HW_EXTENDED (nested. extended hardware stats which are available via ethtool today) This patch also declares a filter mask for all stat attributes. User has to provide a mask of stats attributes to query. filter mask can be specified in the new hdr 'struct if_stats_msg' for stats messages. Other important field in the header is the ifindex. This api can also include attributes for global stats (eg tcp) in the future. When global stats are included in a stats msg, the ifindex in the header must be zero. A single stats message cannot contain both global and netdev specific stats. To easily distinguish them, netdev specific stat attributes name are prefixed with IFLA_STATS_LINK_ Without any attributes in the filter_mask, no stats will be returned. This patch has been tested with mofified iproute2 ifstat. Suggested-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-20 09:43:43 -06:00
return -EINVAL;
}
rtnetlink: add new RTM_GETSTATS message to dump link stats This patch adds a new RTM_GETSTATS message to query link stats via netlink from the kernel. RTM_NEWLINK also dumps stats today, but RTM_NEWLINK returns a lot more than just stats and is expensive in some cases when frequent polling for stats from userspace is a common operation. RTM_GETSTATS is an attempt to provide a light weight netlink message to explicity query only link stats from the kernel on an interface. The idea is to also keep it extensible so that new kinds of stats can be added to it in the future. This patch adds the following attribute for NETDEV stats: struct nla_policy ifla_stats_policy[IFLA_STATS_MAX + 1] = { [IFLA_STATS_LINK_64] = { .len = sizeof(struct rtnl_link_stats64) }, }; Like any other rtnetlink message, RTM_GETSTATS can be used to get stats of a single interface or all interfaces with NLM_F_DUMP. Future possible new types of stat attributes: link af stats: - IFLA_STATS_LINK_IPV6 (nested. for ipv6 stats) - IFLA_STATS_LINK_MPLS (nested. for mpls/mdev stats) extended stats: - IFLA_STATS_LINK_EXTENDED (nested. extended software netdev stats like bridge, vlan, vxlan etc) - IFLA_STATS_LINK_HW_EXTENDED (nested. extended hardware stats which are available via ethtool today) This patch also declares a filter mask for all stat attributes. User has to provide a mask of stats attributes to query. filter mask can be specified in the new hdr 'struct if_stats_msg' for stats messages. Other important field in the header is the ifindex. This api can also include attributes for global stats (eg tcp) in the future. When global stats are included in a stats msg, the ifindex in the header must be zero. A single stats message cannot contain both global and netdev specific stats. To easily distinguish them, netdev specific stat attributes name are prefixed with IFLA_STATS_LINK_ Without any attributes in the filter_mask, no stats will be returned. This patch has been tested with mofified iproute2 ifstat. Suggested-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-20 09:43:43 -06:00
for (h = s_h; h < NETDEV_HASHENTRIES; h++, s_idx = 0) {
idx = 0;
head = &net->dev_index_head[h];
hlist_for_each_entry(dev, head, index_hlist) {
if (idx < s_idx)
goto cont;
err = rtnl_fill_statsinfo(skb, dev, RTM_NEWSTATS,
NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq, 0,
flags, filter_mask,
&s_idxattr, &s_prividx);
rtnetlink: add new RTM_GETSTATS message to dump link stats This patch adds a new RTM_GETSTATS message to query link stats via netlink from the kernel. RTM_NEWLINK also dumps stats today, but RTM_NEWLINK returns a lot more than just stats and is expensive in some cases when frequent polling for stats from userspace is a common operation. RTM_GETSTATS is an attempt to provide a light weight netlink message to explicity query only link stats from the kernel on an interface. The idea is to also keep it extensible so that new kinds of stats can be added to it in the future. This patch adds the following attribute for NETDEV stats: struct nla_policy ifla_stats_policy[IFLA_STATS_MAX + 1] = { [IFLA_STATS_LINK_64] = { .len = sizeof(struct rtnl_link_stats64) }, }; Like any other rtnetlink message, RTM_GETSTATS can be used to get stats of a single interface or all interfaces with NLM_F_DUMP. Future possible new types of stat attributes: link af stats: - IFLA_STATS_LINK_IPV6 (nested. for ipv6 stats) - IFLA_STATS_LINK_MPLS (nested. for mpls/mdev stats) extended stats: - IFLA_STATS_LINK_EXTENDED (nested. extended software netdev stats like bridge, vlan, vxlan etc) - IFLA_STATS_LINK_HW_EXTENDED (nested. extended hardware stats which are available via ethtool today) This patch also declares a filter mask for all stat attributes. User has to provide a mask of stats attributes to query. filter mask can be specified in the new hdr 'struct if_stats_msg' for stats messages. Other important field in the header is the ifindex. This api can also include attributes for global stats (eg tcp) in the future. When global stats are included in a stats msg, the ifindex in the header must be zero. A single stats message cannot contain both global and netdev specific stats. To easily distinguish them, netdev specific stat attributes name are prefixed with IFLA_STATS_LINK_ Without any attributes in the filter_mask, no stats will be returned. This patch has been tested with mofified iproute2 ifstat. Suggested-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-20 09:43:43 -06:00
/* If we ran out of room on the first message,
* we're in trouble
*/
WARN_ON((err == -EMSGSIZE) && (skb->len == 0));
if (err < 0)
goto out;
s_prividx = 0;
s_idxattr = 0;
rtnetlink: add new RTM_GETSTATS message to dump link stats This patch adds a new RTM_GETSTATS message to query link stats via netlink from the kernel. RTM_NEWLINK also dumps stats today, but RTM_NEWLINK returns a lot more than just stats and is expensive in some cases when frequent polling for stats from userspace is a common operation. RTM_GETSTATS is an attempt to provide a light weight netlink message to explicity query only link stats from the kernel on an interface. The idea is to also keep it extensible so that new kinds of stats can be added to it in the future. This patch adds the following attribute for NETDEV stats: struct nla_policy ifla_stats_policy[IFLA_STATS_MAX + 1] = { [IFLA_STATS_LINK_64] = { .len = sizeof(struct rtnl_link_stats64) }, }; Like any other rtnetlink message, RTM_GETSTATS can be used to get stats of a single interface or all interfaces with NLM_F_DUMP. Future possible new types of stat attributes: link af stats: - IFLA_STATS_LINK_IPV6 (nested. for ipv6 stats) - IFLA_STATS_LINK_MPLS (nested. for mpls/mdev stats) extended stats: - IFLA_STATS_LINK_EXTENDED (nested. extended software netdev stats like bridge, vlan, vxlan etc) - IFLA_STATS_LINK_HW_EXTENDED (nested. extended hardware stats which are available via ethtool today) This patch also declares a filter mask for all stat attributes. User has to provide a mask of stats attributes to query. filter mask can be specified in the new hdr 'struct if_stats_msg' for stats messages. Other important field in the header is the ifindex. This api can also include attributes for global stats (eg tcp) in the future. When global stats are included in a stats msg, the ifindex in the header must be zero. A single stats message cannot contain both global and netdev specific stats. To easily distinguish them, netdev specific stat attributes name are prefixed with IFLA_STATS_LINK_ Without any attributes in the filter_mask, no stats will be returned. This patch has been tested with mofified iproute2 ifstat. Suggested-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-20 09:43:43 -06:00
nl_dump_check_consistent(cb, nlmsg_hdr(skb));
cont:
idx++;
}
}
out:
cb->args[3] = s_prividx;
cb->args[2] = s_idxattr;
rtnetlink: add new RTM_GETSTATS message to dump link stats This patch adds a new RTM_GETSTATS message to query link stats via netlink from the kernel. RTM_NEWLINK also dumps stats today, but RTM_NEWLINK returns a lot more than just stats and is expensive in some cases when frequent polling for stats from userspace is a common operation. RTM_GETSTATS is an attempt to provide a light weight netlink message to explicity query only link stats from the kernel on an interface. The idea is to also keep it extensible so that new kinds of stats can be added to it in the future. This patch adds the following attribute for NETDEV stats: struct nla_policy ifla_stats_policy[IFLA_STATS_MAX + 1] = { [IFLA_STATS_LINK_64] = { .len = sizeof(struct rtnl_link_stats64) }, }; Like any other rtnetlink message, RTM_GETSTATS can be used to get stats of a single interface or all interfaces with NLM_F_DUMP. Future possible new types of stat attributes: link af stats: - IFLA_STATS_LINK_IPV6 (nested. for ipv6 stats) - IFLA_STATS_LINK_MPLS (nested. for mpls/mdev stats) extended stats: - IFLA_STATS_LINK_EXTENDED (nested. extended software netdev stats like bridge, vlan, vxlan etc) - IFLA_STATS_LINK_HW_EXTENDED (nested. extended hardware stats which are available via ethtool today) This patch also declares a filter mask for all stat attributes. User has to provide a mask of stats attributes to query. filter mask can be specified in the new hdr 'struct if_stats_msg' for stats messages. Other important field in the header is the ifindex. This api can also include attributes for global stats (eg tcp) in the future. When global stats are included in a stats msg, the ifindex in the header must be zero. A single stats message cannot contain both global and netdev specific stats. To easily distinguish them, netdev specific stat attributes name are prefixed with IFLA_STATS_LINK_ Without any attributes in the filter_mask, no stats will be returned. This patch has been tested with mofified iproute2 ifstat. Suggested-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-20 09:43:43 -06:00
cb->args[1] = idx;
cb->args[0] = h;
return skb->len;
}
/* Process one rtnetlink message. */
static int rtnetlink_rcv_msg(struct sk_buff *skb, struct nlmsghdr *nlh,
struct netlink_ext_ack *extack)
{
struct net *net = sock_net(skb->sk);
struct rtnl_link *link;
struct module *owner;
int err = -EOPNOTSUPP;
rtnl_doit_func doit;
unsigned int flags;
int kind;
int family;
int type;
type = nlh->nlmsg_type;
if (type > RTM_MAX)
return -EOPNOTSUPP;
type -= RTM_BASE;
/* All the messages must have at least 1 byte length */
if (nlmsg_len(nlh) < sizeof(struct rtgenmsg))
return 0;
family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family;
kind = type&3;
if (kind != 2 && !netlink_net_capable(skb, CAP_NET_ADMIN))
return -EPERM;
rcu_read_lock();
if (kind == 2 && nlh->nlmsg_flags&NLM_F_DUMP) {
struct sock *rtnl;
rtnl_dumpit_func dumpit;
u16 min_dump_alloc = 0;
link = rtnl_get_link(family, type);
if (!link || !link->dumpit) {
family = PF_UNSPEC;
link = rtnl_get_link(family, type);
if (!link || !link->dumpit)
goto err_unlock;
}
owner = link->owner;
dumpit = link->dumpit;
if (type == RTM_GETLINK - RTM_BASE)
min_dump_alloc = rtnl_calcit(skb, nlh);
err = 0;
/* need to do this before rcu_read_unlock() */
if (!try_module_get(owner))
err = -EPROTONOSUPPORT;
rcu_read_unlock();
rtnl = net->rtnl;
if (err == 0) {
struct netlink_dump_control c = {
.dump = dumpit,
.min_dump_alloc = min_dump_alloc,
.module = owner,
};
err = netlink_dump_start(rtnl, skb, nlh, &c);
/* netlink_dump_start() will keep a reference on
* module if dump is still in progress.
*/
module_put(owner);
}
return err;
}
link = rtnl_get_link(family, type);
if (!link || !link->doit) {
family = PF_UNSPEC;
link = rtnl_get_link(PF_UNSPEC, type);
if (!link || !link->doit)
goto out_unlock;
}
owner = link->owner;
if (!try_module_get(owner)) {
err = -EPROTONOSUPPORT;
goto out_unlock;
}
flags = link->flags;
if (flags & RTNL_FLAG_DOIT_UNLOCKED) {
doit = link->doit;
rcu_read_unlock();
if (doit)
err = doit(skb, nlh, extack);
module_put(owner);
return err;
}
rcu_read_unlock();
rtnl_lock();
link = rtnl_get_link(family, type);
if (link && link->doit)
err = link->doit(skb, nlh, extack);
rtnl_unlock();
module_put(owner);
return err;
out_unlock:
rcu_read_unlock();
return err;
err_unlock:
rcu_read_unlock();
return -EOPNOTSUPP;
}
static void rtnetlink_rcv(struct sk_buff *skb)
{
netlink_rcv_skb(skb, &rtnetlink_rcv_msg);
}
static int rtnetlink_bind(struct net *net, int group)
{
switch (group) {
case RTNLGRP_IPV4_MROUTE_R:
case RTNLGRP_IPV6_MROUTE_R:
if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
return -EPERM;
break;
}
return 0;
}
static int rtnetlink_event(struct notifier_block *this, unsigned long event, void *ptr)
{
struct net_device *dev = netdev_notifier_info_to_dev(ptr);
switch (event) {
case NETDEV_REBOOT:
case NETDEV_CHANGEMTU:
case NETDEV_CHANGEADDR:
case NETDEV_CHANGENAME:
case NETDEV_FEAT_CHANGE:
case NETDEV_BONDING_FAILOVER:
case NETDEV_POST_TYPE_CHANGE:
case NETDEV_NOTIFY_PEERS:
case NETDEV_CHANGEUPPER:
case NETDEV_RESEND_IGMP:
case NETDEV_CHANGEINFODATA:
case NETDEV_CHANGELOWERSTATE:
case NETDEV_CHANGE_TX_QUEUE_LEN:
rtmsg_ifinfo_event(RTM_NEWLINK, dev, 0, rtnl_get_event(event),
GFP_KERNEL, NULL, 0);
break;
default:
break;
}
return NOTIFY_DONE;
}
static struct notifier_block rtnetlink_dev_notifier = {
.notifier_call = rtnetlink_event,
};
static int __net_init rtnetlink_net_init(struct net *net)
{
struct sock *sk;
struct netlink_kernel_cfg cfg = {
.groups = RTNLGRP_MAX,
.input = rtnetlink_rcv,
.cb_mutex = &rtnl_mutex,
.flags = NL_CFG_F_NONROOT_RECV,
.bind = rtnetlink_bind,
};
sk = netlink_kernel_create(net, NETLINK_ROUTE, &cfg);
if (!sk)
return -ENOMEM;
net->rtnl = sk;
return 0;
}
static void __net_exit rtnetlink_net_exit(struct net *net)
{
netlink_kernel_release(net->rtnl);
net->rtnl = NULL;
}
static struct pernet_operations rtnetlink_net_ops = {
.init = rtnetlink_net_init,
.exit = rtnetlink_net_exit,
};
void __init rtnetlink_init(void)
{
if (register_pernet_subsys(&rtnetlink_net_ops))
panic("rtnetlink_init: cannot initialize rtnetlink\n");
register_netdevice_notifier(&rtnetlink_dev_notifier);
rtnl_register(PF_UNSPEC, RTM_GETLINK, rtnl_getlink,
rtnl_dump_ifinfo, 0);
rtnl_register(PF_UNSPEC, RTM_SETLINK, rtnl_setlink, NULL, 0);
rtnl_register(PF_UNSPEC, RTM_NEWLINK, rtnl_newlink, NULL, 0);
rtnl_register(PF_UNSPEC, RTM_DELLINK, rtnl_dellink, NULL, 0);
rtnl_register(PF_UNSPEC, RTM_GETADDR, NULL, rtnl_dump_all, 0);
rtnl_register(PF_UNSPEC, RTM_GETROUTE, NULL, rtnl_dump_all, 0);
rtnl_register(PF_UNSPEC, RTM_GETNETCONF, NULL, rtnl_dump_all, 0);
net: add generic PF_BRIDGE:RTM_ FDB hooks This adds two new flags NTF_MASTER and NTF_SELF that can now be used to specify where PF_BRIDGE netlink commands should be sent. NTF_MASTER sends the commands to the 'dev->master' device for parsing. Typically this will be the linux net/bridge, or open-vswitch devices. Also without any flags set the command will be handled by the master device as well so that current user space tools continue to work as expected. The NTF_SELF flag will push the PF_BRIDGE commands to the device. In the basic example below the commands are then parsed and programmed in the embedded bridge. Note if both NTF_SELF and NTF_MASTER bits are set then the command will be sent to both 'dev->master' and 'dev' this allows user space to easily keep the embedded bridge and software bridge in sync. There is a slight complication in the case with both flags set when an error occurs. To resolve this the rtnl handler clears the NTF_ flag in the netlink ack to indicate which sets completed successfully. The add/del handlers will abort as soon as any error occurs. To support this new net device ops were added to call into the device and the existing bridging code was refactored to use these. There should be no required changes in user space to support the current bridge behavior. A basic setup with a SR-IOV enabled NIC looks like this, veth0 veth2 | | ------------ | bridge0 | <---- software bridging ------------ / / ethx.y ethx VF PF \ \ <---- propagate FDB entries to HW \ \ -------------------- | Embedded Bridge | <---- hardware offloaded switching -------------------- In this case the embedded bridge must be managed to allow 'veth0' to communicate with 'ethx.y' correctly. At present drivers managing the embedded bridge either send frames onto the network which then get dropped by the switch OR the embedded bridge will flood these frames. With this patch we have a mechanism to manage the embedded bridge correctly from user space. This example is specific to SR-IOV but replacing the VF with another PF or dropping this into the DSA framework generates similar management issues. Examples session using the 'br'[1] tool to add, dump and then delete a mac address with a new "embedded" option and enabled ixgbe driver: # br fdb add 22:35:19:ac:60:59 dev eth3 # br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static #br fdb add 22:35:19:ac:60:59 embedded dev eth3 #br fdb port mac addr flags veth0 22:35:19:ac:60:58 static veth0 9a:5f:81:f7:f6:ec local eth3 00:1b:21:55:23:59 local eth3 22:35:19:ac:60:59 static veth0 22:35:19:ac:60:57 static eth3 22:35:19:ac:60:59 local embedded #br fdb del 22:35:19:ac:60:59 embedded dev eth3 I added a couple lines to 'br' to set the flags correctly is all. It is my opinion that the merit of this patch is now embedded and SW bridges can both be modeled correctly in user space using very nearly the same message passing. [1] 'br' tool was published as an RFC here and will be renamed 'bridge' http://patchwork.ozlabs.org/patch/117664/ Thanks to Jamal Hadi Salim, Stephen Hemminger and Ben Hutchings for valuable feedback, suggestions, and review. v2: fixed api descriptions and error case with both NTF_SELF and NTF_MASTER set plus updated patch description. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-15 00:43:56 -06:00
rtnl_register(PF_BRIDGE, RTM_NEWNEIGH, rtnl_fdb_add, NULL, 0);
rtnl_register(PF_BRIDGE, RTM_DELNEIGH, rtnl_fdb_del, NULL, 0);
rtnl_register(PF_BRIDGE, RTM_GETNEIGH, NULL, rtnl_fdb_dump, 0);
rtnl_register(PF_BRIDGE, RTM_GETLINK, NULL, rtnl_bridge_getlink, 0);
rtnl_register(PF_BRIDGE, RTM_DELLINK, rtnl_bridge_dellink, NULL, 0);
rtnl_register(PF_BRIDGE, RTM_SETLINK, rtnl_bridge_setlink, NULL, 0);
rtnetlink: add new RTM_GETSTATS message to dump link stats This patch adds a new RTM_GETSTATS message to query link stats via netlink from the kernel. RTM_NEWLINK also dumps stats today, but RTM_NEWLINK returns a lot more than just stats and is expensive in some cases when frequent polling for stats from userspace is a common operation. RTM_GETSTATS is an attempt to provide a light weight netlink message to explicity query only link stats from the kernel on an interface. The idea is to also keep it extensible so that new kinds of stats can be added to it in the future. This patch adds the following attribute for NETDEV stats: struct nla_policy ifla_stats_policy[IFLA_STATS_MAX + 1] = { [IFLA_STATS_LINK_64] = { .len = sizeof(struct rtnl_link_stats64) }, }; Like any other rtnetlink message, RTM_GETSTATS can be used to get stats of a single interface or all interfaces with NLM_F_DUMP. Future possible new types of stat attributes: link af stats: - IFLA_STATS_LINK_IPV6 (nested. for ipv6 stats) - IFLA_STATS_LINK_MPLS (nested. for mpls/mdev stats) extended stats: - IFLA_STATS_LINK_EXTENDED (nested. extended software netdev stats like bridge, vlan, vxlan etc) - IFLA_STATS_LINK_HW_EXTENDED (nested. extended hardware stats which are available via ethtool today) This patch also declares a filter mask for all stat attributes. User has to provide a mask of stats attributes to query. filter mask can be specified in the new hdr 'struct if_stats_msg' for stats messages. Other important field in the header is the ifindex. This api can also include attributes for global stats (eg tcp) in the future. When global stats are included in a stats msg, the ifindex in the header must be zero. A single stats message cannot contain both global and netdev specific stats. To easily distinguish them, netdev specific stat attributes name are prefixed with IFLA_STATS_LINK_ Without any attributes in the filter_mask, no stats will be returned. This patch has been tested with mofified iproute2 ifstat. Suggested-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-20 09:43:43 -06:00
rtnl_register(PF_UNSPEC, RTM_GETSTATS, rtnl_stats_get, rtnl_stats_dump,
0);
}