1
0
Fork 0
alistair23-linux/drivers/scsi/fcoe/fcoe_sysfs.c

1072 lines
28 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
[SCSI] libfcoe: Add fcoe_sysfs This patch adds a 'fcoe bus' infrastructure to the kernel that is driven by changes to libfcoe which allow LLDs to present FIP (FCoE Initialization Protocol) discovered entities and their attributes to user space via sysfs. This patch adds the following APIs- fcoe_ctlr_device_add fcoe_ctlr_device_delete fcoe_fcf_device_add fcoe_fcf_device_delete They allow the LLD to expose the FCoE ENode Controller and any discovered FCFs (Fibre Channel Forwarders, e.g. FCoE switches) to the user. Each of these new devices has their own bus_type so that they are grouped together for easy lookup from a user space application. Each new class has an attribute_group to expose attributes for any created instances. The attributes are- fcoe_ctlr_device * fcf_dev_loss_tmo * lesb_link_fail * lesb_vlink_fail * lesb_miss_fka * lesb_symb_err * lesb_err_block * lesb_fcs_error fcoe_fcf_device * fabric_name * switch_name * priority * selected * fc_map * vfid * mac * fka_peroid * fabric_state * dev_loss_tmo A device loss infrastructre similar to the FC Transport's is also added by this patch. It is nice to have so that a link flapping adapter doesn't continually advance the count used to identify the discovered FCF. FCFs will exist in a "Disconnected" state until either the timer expires or the FCF is rediscovered and becomes "Connected." This patch generates a few checkpatch.pl WARNINGS that I'm not sure what to do about. They're macros modeled around the FC Transport attribute building macros, which have the same 'feature' where the caller can ommit a cast in the argument list and no cast occurs in the code. I'm not sure how to keep the code condensed while keeping the macros. Any advice would be appreciated. Signed-off-by: Robert Love <robert.w.love@intel.com> Tested-by: Ross Brattain <ross.b.brattain@intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2012-05-22 20:06:21 -06:00
/*
* Copyright(c) 2011 - 2012 Intel Corporation. All rights reserved.
*
* Maintained at www.Open-FCoE.org
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/etherdevice.h>
libfcoe, fcoe, bnx2fc: Add new fcoe control interface This patch does a few things. 1) Makes /sys/bus/fcoe/ctlr_{create,destroy} interfaces. These interfaces take an <ifname> and will either create an FCoE Controller or destroy an FCoE Controller depending on which file is written to. The new FCoE Controller will start in a DISABLED state and will not do discovery or login until it is ENABLED. This pause will allow us to configure the FCoE Controller before enabling it. 2) Makes the 'mode' attribute of a fcoe_ctlr_device writale. This allows the user to configure the mode in which the FCoE Controller will start in when it is ENABLED. Possible modes are 'Fabric', or 'VN2VN'. The default mode for a fcoe_ctlr{,_device} is 'Fabric'. Drivers must implement the set_fcoe_ctlr_mode routine to support this feature. libfcoe offers an exported routine to set a FCoE Controller's mode. The mode can only be changed when the FCoE Controller is DISABLED. This patch also removes the get_fcoe_ctlr_mode pointer in the fcoe_sysfs function template, the code in fcoe_ctlr.c to get the mode and the assignment of the fcoe_sysfs function pointer to the fcoe_ctlr.c implementation (in fcoe and bnx2fc). fcoe_sysfs can return that value for the mode without consulting the LLD. 3) Make a 'enabled' attribute of a fcoe_ctlr_device. On a read, fcoe_sysfs will return the attribute's value. On a write, fcoe_sysfs will call the LLD (if there is a callback) to notifiy that the enalbed state has changed. This patch maintains the old FCoE control interfaces as module parameters, but it adds comments pointing out that the old interfaces are deprecated. Signed-off-by: Robert Love <robert.w.love@intel.com> Acked-by: Neil Horman <nhorman@tuxdriver.com>
2012-11-26 23:53:30 -07:00
#include <linux/ctype.h>
[SCSI] libfcoe: Add fcoe_sysfs This patch adds a 'fcoe bus' infrastructure to the kernel that is driven by changes to libfcoe which allow LLDs to present FIP (FCoE Initialization Protocol) discovered entities and their attributes to user space via sysfs. This patch adds the following APIs- fcoe_ctlr_device_add fcoe_ctlr_device_delete fcoe_fcf_device_add fcoe_fcf_device_delete They allow the LLD to expose the FCoE ENode Controller and any discovered FCFs (Fibre Channel Forwarders, e.g. FCoE switches) to the user. Each of these new devices has their own bus_type so that they are grouped together for easy lookup from a user space application. Each new class has an attribute_group to expose attributes for any created instances. The attributes are- fcoe_ctlr_device * fcf_dev_loss_tmo * lesb_link_fail * lesb_vlink_fail * lesb_miss_fka * lesb_symb_err * lesb_err_block * lesb_fcs_error fcoe_fcf_device * fabric_name * switch_name * priority * selected * fc_map * vfid * mac * fka_peroid * fabric_state * dev_loss_tmo A device loss infrastructre similar to the FC Transport's is also added by this patch. It is nice to have so that a link flapping adapter doesn't continually advance the count used to identify the discovered FCF. FCFs will exist in a "Disconnected" state until either the timer expires or the FCF is rediscovered and becomes "Connected." This patch generates a few checkpatch.pl WARNINGS that I'm not sure what to do about. They're macros modeled around the FC Transport attribute building macros, which have the same 'feature' where the caller can ommit a cast in the argument list and no cast occurs in the code. I'm not sure how to keep the code condensed while keeping the macros. Any advice would be appreciated. Signed-off-by: Robert Love <robert.w.love@intel.com> Tested-by: Ross Brattain <ross.b.brattain@intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2012-05-22 20:06:21 -06:00
#include <scsi/fcoe_sysfs.h>
libfcoe, fcoe, bnx2fc: Add new fcoe control interface This patch does a few things. 1) Makes /sys/bus/fcoe/ctlr_{create,destroy} interfaces. These interfaces take an <ifname> and will either create an FCoE Controller or destroy an FCoE Controller depending on which file is written to. The new FCoE Controller will start in a DISABLED state and will not do discovery or login until it is ENABLED. This pause will allow us to configure the FCoE Controller before enabling it. 2) Makes the 'mode' attribute of a fcoe_ctlr_device writale. This allows the user to configure the mode in which the FCoE Controller will start in when it is ENABLED. Possible modes are 'Fabric', or 'VN2VN'. The default mode for a fcoe_ctlr{,_device} is 'Fabric'. Drivers must implement the set_fcoe_ctlr_mode routine to support this feature. libfcoe offers an exported routine to set a FCoE Controller's mode. The mode can only be changed when the FCoE Controller is DISABLED. This patch also removes the get_fcoe_ctlr_mode pointer in the fcoe_sysfs function template, the code in fcoe_ctlr.c to get the mode and the assignment of the fcoe_sysfs function pointer to the fcoe_ctlr.c implementation (in fcoe and bnx2fc). fcoe_sysfs can return that value for the mode without consulting the LLD. 3) Make a 'enabled' attribute of a fcoe_ctlr_device. On a read, fcoe_sysfs will return the attribute's value. On a write, fcoe_sysfs will call the LLD (if there is a callback) to notifiy that the enalbed state has changed. This patch maintains the old FCoE control interfaces as module parameters, but it adds comments pointing out that the old interfaces are deprecated. Signed-off-by: Robert Love <robert.w.love@intel.com> Acked-by: Neil Horman <nhorman@tuxdriver.com>
2012-11-26 23:53:30 -07:00
#include <scsi/libfcoe.h>
[SCSI] libfcoe: Add fcoe_sysfs This patch adds a 'fcoe bus' infrastructure to the kernel that is driven by changes to libfcoe which allow LLDs to present FIP (FCoE Initialization Protocol) discovered entities and their attributes to user space via sysfs. This patch adds the following APIs- fcoe_ctlr_device_add fcoe_ctlr_device_delete fcoe_fcf_device_add fcoe_fcf_device_delete They allow the LLD to expose the FCoE ENode Controller and any discovered FCFs (Fibre Channel Forwarders, e.g. FCoE switches) to the user. Each of these new devices has their own bus_type so that they are grouped together for easy lookup from a user space application. Each new class has an attribute_group to expose attributes for any created instances. The attributes are- fcoe_ctlr_device * fcf_dev_loss_tmo * lesb_link_fail * lesb_vlink_fail * lesb_miss_fka * lesb_symb_err * lesb_err_block * lesb_fcs_error fcoe_fcf_device * fabric_name * switch_name * priority * selected * fc_map * vfid * mac * fka_peroid * fabric_state * dev_loss_tmo A device loss infrastructre similar to the FC Transport's is also added by this patch. It is nice to have so that a link flapping adapter doesn't continually advance the count used to identify the discovered FCF. FCFs will exist in a "Disconnected" state until either the timer expires or the FCF is rediscovered and becomes "Connected." This patch generates a few checkpatch.pl WARNINGS that I'm not sure what to do about. They're macros modeled around the FC Transport attribute building macros, which have the same 'feature' where the caller can ommit a cast in the argument list and no cast occurs in the code. I'm not sure how to keep the code condensed while keeping the macros. Any advice would be appreciated. Signed-off-by: Robert Love <robert.w.love@intel.com> Tested-by: Ross Brattain <ross.b.brattain@intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2012-05-22 20:06:21 -06:00
/*
* OK to include local libfcoe.h for debug_logging, but cannot include
* <scsi/libfcoe.h> otherwise non-netdev based fcoe solutions would have
* have to include more than fcoe_sysfs.h.
*/
#include "libfcoe.h"
[SCSI] libfcoe: Add fcoe_sysfs This patch adds a 'fcoe bus' infrastructure to the kernel that is driven by changes to libfcoe which allow LLDs to present FIP (FCoE Initialization Protocol) discovered entities and their attributes to user space via sysfs. This patch adds the following APIs- fcoe_ctlr_device_add fcoe_ctlr_device_delete fcoe_fcf_device_add fcoe_fcf_device_delete They allow the LLD to expose the FCoE ENode Controller and any discovered FCFs (Fibre Channel Forwarders, e.g. FCoE switches) to the user. Each of these new devices has their own bus_type so that they are grouped together for easy lookup from a user space application. Each new class has an attribute_group to expose attributes for any created instances. The attributes are- fcoe_ctlr_device * fcf_dev_loss_tmo * lesb_link_fail * lesb_vlink_fail * lesb_miss_fka * lesb_symb_err * lesb_err_block * lesb_fcs_error fcoe_fcf_device * fabric_name * switch_name * priority * selected * fc_map * vfid * mac * fka_peroid * fabric_state * dev_loss_tmo A device loss infrastructre similar to the FC Transport's is also added by this patch. It is nice to have so that a link flapping adapter doesn't continually advance the count used to identify the discovered FCF. FCFs will exist in a "Disconnected" state until either the timer expires or the FCF is rediscovered and becomes "Connected." This patch generates a few checkpatch.pl WARNINGS that I'm not sure what to do about. They're macros modeled around the FC Transport attribute building macros, which have the same 'feature' where the caller can ommit a cast in the argument list and no cast occurs in the code. I'm not sure how to keep the code condensed while keeping the macros. Any advice would be appreciated. Signed-off-by: Robert Love <robert.w.love@intel.com> Tested-by: Ross Brattain <ross.b.brattain@intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2012-05-22 20:06:21 -06:00
static atomic_t ctlr_num;
static atomic_t fcf_num;
/*
* fcoe_fcf_dev_loss_tmo: the default number of seconds that fcoe sysfs
* should insulate the loss of a fcf.
*/
static unsigned int fcoe_fcf_dev_loss_tmo = 1800; /* seconds */
module_param_named(fcf_dev_loss_tmo, fcoe_fcf_dev_loss_tmo,
uint, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(fcf_dev_loss_tmo,
"Maximum number of seconds that libfcoe should"
" insulate the loss of a fcf. Once this value is"
" exceeded, the fcf is removed.");
/*
* These are used by the fcoe_*_show_function routines, they
* are intentionally placed in the .c file as they're not intended
* for use throughout the code.
*/
#define fcoe_ctlr_id(x) \
((x)->id)
#define fcoe_ctlr_work_q_name(x) \
((x)->work_q_name)
#define fcoe_ctlr_work_q(x) \
((x)->work_q)
#define fcoe_ctlr_devloss_work_q_name(x) \
((x)->devloss_work_q_name)
#define fcoe_ctlr_devloss_work_q(x) \
((x)->devloss_work_q)
#define fcoe_ctlr_mode(x) \
((x)->mode)
#define fcoe_ctlr_fcf_dev_loss_tmo(x) \
((x)->fcf_dev_loss_tmo)
#define fcoe_ctlr_link_fail(x) \
((x)->lesb.lesb_link_fail)
#define fcoe_ctlr_vlink_fail(x) \
((x)->lesb.lesb_vlink_fail)
#define fcoe_ctlr_miss_fka(x) \
((x)->lesb.lesb_miss_fka)
#define fcoe_ctlr_symb_err(x) \
((x)->lesb.lesb_symb_err)
#define fcoe_ctlr_err_block(x) \
((x)->lesb.lesb_err_block)
#define fcoe_ctlr_fcs_error(x) \
((x)->lesb.lesb_fcs_error)
libfcoe, fcoe, bnx2fc: Add new fcoe control interface This patch does a few things. 1) Makes /sys/bus/fcoe/ctlr_{create,destroy} interfaces. These interfaces take an <ifname> and will either create an FCoE Controller or destroy an FCoE Controller depending on which file is written to. The new FCoE Controller will start in a DISABLED state and will not do discovery or login until it is ENABLED. This pause will allow us to configure the FCoE Controller before enabling it. 2) Makes the 'mode' attribute of a fcoe_ctlr_device writale. This allows the user to configure the mode in which the FCoE Controller will start in when it is ENABLED. Possible modes are 'Fabric', or 'VN2VN'. The default mode for a fcoe_ctlr{,_device} is 'Fabric'. Drivers must implement the set_fcoe_ctlr_mode routine to support this feature. libfcoe offers an exported routine to set a FCoE Controller's mode. The mode can only be changed when the FCoE Controller is DISABLED. This patch also removes the get_fcoe_ctlr_mode pointer in the fcoe_sysfs function template, the code in fcoe_ctlr.c to get the mode and the assignment of the fcoe_sysfs function pointer to the fcoe_ctlr.c implementation (in fcoe and bnx2fc). fcoe_sysfs can return that value for the mode without consulting the LLD. 3) Make a 'enabled' attribute of a fcoe_ctlr_device. On a read, fcoe_sysfs will return the attribute's value. On a write, fcoe_sysfs will call the LLD (if there is a callback) to notifiy that the enalbed state has changed. This patch maintains the old FCoE control interfaces as module parameters, but it adds comments pointing out that the old interfaces are deprecated. Signed-off-by: Robert Love <robert.w.love@intel.com> Acked-by: Neil Horman <nhorman@tuxdriver.com>
2012-11-26 23:53:30 -07:00
#define fcoe_ctlr_enabled(x) \
((x)->enabled)
[SCSI] libfcoe: Add fcoe_sysfs This patch adds a 'fcoe bus' infrastructure to the kernel that is driven by changes to libfcoe which allow LLDs to present FIP (FCoE Initialization Protocol) discovered entities and their attributes to user space via sysfs. This patch adds the following APIs- fcoe_ctlr_device_add fcoe_ctlr_device_delete fcoe_fcf_device_add fcoe_fcf_device_delete They allow the LLD to expose the FCoE ENode Controller and any discovered FCFs (Fibre Channel Forwarders, e.g. FCoE switches) to the user. Each of these new devices has their own bus_type so that they are grouped together for easy lookup from a user space application. Each new class has an attribute_group to expose attributes for any created instances. The attributes are- fcoe_ctlr_device * fcf_dev_loss_tmo * lesb_link_fail * lesb_vlink_fail * lesb_miss_fka * lesb_symb_err * lesb_err_block * lesb_fcs_error fcoe_fcf_device * fabric_name * switch_name * priority * selected * fc_map * vfid * mac * fka_peroid * fabric_state * dev_loss_tmo A device loss infrastructre similar to the FC Transport's is also added by this patch. It is nice to have so that a link flapping adapter doesn't continually advance the count used to identify the discovered FCF. FCFs will exist in a "Disconnected" state until either the timer expires or the FCF is rediscovered and becomes "Connected." This patch generates a few checkpatch.pl WARNINGS that I'm not sure what to do about. They're macros modeled around the FC Transport attribute building macros, which have the same 'feature' where the caller can ommit a cast in the argument list and no cast occurs in the code. I'm not sure how to keep the code condensed while keeping the macros. Any advice would be appreciated. Signed-off-by: Robert Love <robert.w.love@intel.com> Tested-by: Ross Brattain <ross.b.brattain@intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2012-05-22 20:06:21 -06:00
#define fcoe_fcf_state(x) \
((x)->state)
#define fcoe_fcf_fabric_name(x) \
((x)->fabric_name)
#define fcoe_fcf_switch_name(x) \
((x)->switch_name)
#define fcoe_fcf_fc_map(x) \
((x)->fc_map)
#define fcoe_fcf_vfid(x) \
((x)->vfid)
#define fcoe_fcf_mac(x) \
((x)->mac)
#define fcoe_fcf_priority(x) \
((x)->priority)
#define fcoe_fcf_fka_period(x) \
((x)->fka_period)
#define fcoe_fcf_dev_loss_tmo(x) \
((x)->dev_loss_tmo)
#define fcoe_fcf_selected(x) \
((x)->selected)
#define fcoe_fcf_vlan_id(x) \
((x)->vlan_id)
/*
* dev_loss_tmo attribute
*/
static int fcoe_str_to_dev_loss(const char *buf, unsigned long *val)
{
int ret;
ret = kstrtoul(buf, 0, val);
if (ret)
[SCSI] libfcoe: Add fcoe_sysfs This patch adds a 'fcoe bus' infrastructure to the kernel that is driven by changes to libfcoe which allow LLDs to present FIP (FCoE Initialization Protocol) discovered entities and their attributes to user space via sysfs. This patch adds the following APIs- fcoe_ctlr_device_add fcoe_ctlr_device_delete fcoe_fcf_device_add fcoe_fcf_device_delete They allow the LLD to expose the FCoE ENode Controller and any discovered FCFs (Fibre Channel Forwarders, e.g. FCoE switches) to the user. Each of these new devices has their own bus_type so that they are grouped together for easy lookup from a user space application. Each new class has an attribute_group to expose attributes for any created instances. The attributes are- fcoe_ctlr_device * fcf_dev_loss_tmo * lesb_link_fail * lesb_vlink_fail * lesb_miss_fka * lesb_symb_err * lesb_err_block * lesb_fcs_error fcoe_fcf_device * fabric_name * switch_name * priority * selected * fc_map * vfid * mac * fka_peroid * fabric_state * dev_loss_tmo A device loss infrastructre similar to the FC Transport's is also added by this patch. It is nice to have so that a link flapping adapter doesn't continually advance the count used to identify the discovered FCF. FCFs will exist in a "Disconnected" state until either the timer expires or the FCF is rediscovered and becomes "Connected." This patch generates a few checkpatch.pl WARNINGS that I'm not sure what to do about. They're macros modeled around the FC Transport attribute building macros, which have the same 'feature' where the caller can ommit a cast in the argument list and no cast occurs in the code. I'm not sure how to keep the code condensed while keeping the macros. Any advice would be appreciated. Signed-off-by: Robert Love <robert.w.love@intel.com> Tested-by: Ross Brattain <ross.b.brattain@intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2012-05-22 20:06:21 -06:00
return -EINVAL;
/*
* Check for overflow; dev_loss_tmo is u32
*/
if (*val > UINT_MAX)
return -EINVAL;
return 0;
}
static int fcoe_fcf_set_dev_loss_tmo(struct fcoe_fcf_device *fcf,
unsigned long val)
{
if ((fcf->state == FCOE_FCF_STATE_UNKNOWN) ||
(fcf->state == FCOE_FCF_STATE_DISCONNECTED) ||
(fcf->state == FCOE_FCF_STATE_DELETED))
return -EBUSY;
/*
* Check for overflow; dev_loss_tmo is u32
*/
if (val > UINT_MAX)
return -EINVAL;
fcoe_fcf_dev_loss_tmo(fcf) = val;
return 0;
}
#define FCOE_DEVICE_ATTR(_prefix, _name, _mode, _show, _store) \
struct device_attribute device_attr_fcoe_##_prefix##_##_name = \
__ATTR(_name, _mode, _show, _store)
#define fcoe_ctlr_show_function(field, format_string, sz, cast) \
static ssize_t show_fcoe_ctlr_device_##field(struct device *dev, \
struct device_attribute *attr, \
char *buf) \
{ \
struct fcoe_ctlr_device *ctlr = dev_to_ctlr(dev); \
if (ctlr->f->get_fcoe_ctlr_##field) \
ctlr->f->get_fcoe_ctlr_##field(ctlr); \
return snprintf(buf, sz, format_string, \
cast fcoe_ctlr_##field(ctlr)); \
}
#define fcoe_fcf_show_function(field, format_string, sz, cast) \
static ssize_t show_fcoe_fcf_device_##field(struct device *dev, \
struct device_attribute *attr, \
char *buf) \
{ \
struct fcoe_fcf_device *fcf = dev_to_fcf(dev); \
struct fcoe_ctlr_device *ctlr = fcoe_fcf_dev_to_ctlr_dev(fcf); \
if (ctlr->f->get_fcoe_fcf_##field) \
ctlr->f->get_fcoe_fcf_##field(fcf); \
return snprintf(buf, sz, format_string, \
cast fcoe_fcf_##field(fcf)); \
}
#define fcoe_ctlr_private_show_function(field, format_string, sz, cast) \
static ssize_t show_fcoe_ctlr_device_##field(struct device *dev, \
struct device_attribute *attr, \
char *buf) \
{ \
struct fcoe_ctlr_device *ctlr = dev_to_ctlr(dev); \
return snprintf(buf, sz, format_string, cast fcoe_ctlr_##field(ctlr)); \
}
#define fcoe_fcf_private_show_function(field, format_string, sz, cast) \
static ssize_t show_fcoe_fcf_device_##field(struct device *dev, \
struct device_attribute *attr, \
char *buf) \
{ \
struct fcoe_fcf_device *fcf = dev_to_fcf(dev); \
return snprintf(buf, sz, format_string, cast fcoe_fcf_##field(fcf)); \
}
#define fcoe_ctlr_private_rd_attr(field, format_string, sz) \
fcoe_ctlr_private_show_function(field, format_string, sz, ) \
static FCOE_DEVICE_ATTR(ctlr, field, S_IRUGO, \
show_fcoe_ctlr_device_##field, NULL)
#define fcoe_ctlr_rd_attr(field, format_string, sz) \
fcoe_ctlr_show_function(field, format_string, sz, ) \
static FCOE_DEVICE_ATTR(ctlr, field, S_IRUGO, \
show_fcoe_ctlr_device_##field, NULL)
#define fcoe_fcf_rd_attr(field, format_string, sz) \
fcoe_fcf_show_function(field, format_string, sz, ) \
static FCOE_DEVICE_ATTR(fcf, field, S_IRUGO, \
show_fcoe_fcf_device_##field, NULL)
#define fcoe_fcf_private_rd_attr(field, format_string, sz) \
fcoe_fcf_private_show_function(field, format_string, sz, ) \
static FCOE_DEVICE_ATTR(fcf, field, S_IRUGO, \
show_fcoe_fcf_device_##field, NULL)
#define fcoe_ctlr_private_rd_attr_cast(field, format_string, sz, cast) \
fcoe_ctlr_private_show_function(field, format_string, sz, (cast)) \
static FCOE_DEVICE_ATTR(ctlr, field, S_IRUGO, \
show_fcoe_ctlr_device_##field, NULL)
#define fcoe_fcf_private_rd_attr_cast(field, format_string, sz, cast) \
fcoe_fcf_private_show_function(field, format_string, sz, (cast)) \
static FCOE_DEVICE_ATTR(fcf, field, S_IRUGO, \
show_fcoe_fcf_device_##field, NULL)
#define fcoe_enum_name_search(title, table_type, table) \
static const char *get_fcoe_##title##_name(enum table_type table_key) \
{ \
if (table_key < 0 || table_key >= ARRAY_SIZE(table)) \
return NULL; \
return table[table_key]; \
[SCSI] libfcoe: Add fcoe_sysfs This patch adds a 'fcoe bus' infrastructure to the kernel that is driven by changes to libfcoe which allow LLDs to present FIP (FCoE Initialization Protocol) discovered entities and their attributes to user space via sysfs. This patch adds the following APIs- fcoe_ctlr_device_add fcoe_ctlr_device_delete fcoe_fcf_device_add fcoe_fcf_device_delete They allow the LLD to expose the FCoE ENode Controller and any discovered FCFs (Fibre Channel Forwarders, e.g. FCoE switches) to the user. Each of these new devices has their own bus_type so that they are grouped together for easy lookup from a user space application. Each new class has an attribute_group to expose attributes for any created instances. The attributes are- fcoe_ctlr_device * fcf_dev_loss_tmo * lesb_link_fail * lesb_vlink_fail * lesb_miss_fka * lesb_symb_err * lesb_err_block * lesb_fcs_error fcoe_fcf_device * fabric_name * switch_name * priority * selected * fc_map * vfid * mac * fka_peroid * fabric_state * dev_loss_tmo A device loss infrastructre similar to the FC Transport's is also added by this patch. It is nice to have so that a link flapping adapter doesn't continually advance the count used to identify the discovered FCF. FCFs will exist in a "Disconnected" state until either the timer expires or the FCF is rediscovered and becomes "Connected." This patch generates a few checkpatch.pl WARNINGS that I'm not sure what to do about. They're macros modeled around the FC Transport attribute building macros, which have the same 'feature' where the caller can ommit a cast in the argument list and no cast occurs in the code. I'm not sure how to keep the code condensed while keeping the macros. Any advice would be appreciated. Signed-off-by: Robert Love <robert.w.love@intel.com> Tested-by: Ross Brattain <ross.b.brattain@intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2012-05-22 20:06:21 -06:00
}
static char *fip_conn_type_names[] = {
[ FIP_CONN_TYPE_UNKNOWN ] = "Unknown",
[ FIP_CONN_TYPE_FABRIC ] = "Fabric",
[ FIP_CONN_TYPE_VN2VN ] = "VN2VN",
};
fcoe_enum_name_search(ctlr_mode, fip_conn_type, fip_conn_type_names)
libfcoe, fcoe, bnx2fc: Add new fcoe control interface This patch does a few things. 1) Makes /sys/bus/fcoe/ctlr_{create,destroy} interfaces. These interfaces take an <ifname> and will either create an FCoE Controller or destroy an FCoE Controller depending on which file is written to. The new FCoE Controller will start in a DISABLED state and will not do discovery or login until it is ENABLED. This pause will allow us to configure the FCoE Controller before enabling it. 2) Makes the 'mode' attribute of a fcoe_ctlr_device writale. This allows the user to configure the mode in which the FCoE Controller will start in when it is ENABLED. Possible modes are 'Fabric', or 'VN2VN'. The default mode for a fcoe_ctlr{,_device} is 'Fabric'. Drivers must implement the set_fcoe_ctlr_mode routine to support this feature. libfcoe offers an exported routine to set a FCoE Controller's mode. The mode can only be changed when the FCoE Controller is DISABLED. This patch also removes the get_fcoe_ctlr_mode pointer in the fcoe_sysfs function template, the code in fcoe_ctlr.c to get the mode and the assignment of the fcoe_sysfs function pointer to the fcoe_ctlr.c implementation (in fcoe and bnx2fc). fcoe_sysfs can return that value for the mode without consulting the LLD. 3) Make a 'enabled' attribute of a fcoe_ctlr_device. On a read, fcoe_sysfs will return the attribute's value. On a write, fcoe_sysfs will call the LLD (if there is a callback) to notifiy that the enalbed state has changed. This patch maintains the old FCoE control interfaces as module parameters, but it adds comments pointing out that the old interfaces are deprecated. Signed-off-by: Robert Love <robert.w.love@intel.com> Acked-by: Neil Horman <nhorman@tuxdriver.com>
2012-11-26 23:53:30 -07:00
static enum fip_conn_type fcoe_parse_mode(const char *buf)
{
int i;
for (i = 0; i < ARRAY_SIZE(fip_conn_type_names); i++) {
if (strcasecmp(buf, fip_conn_type_names[i]) == 0)
return i;
}
return FIP_CONN_TYPE_UNKNOWN;
}
static char *fcf_state_names[] = {
[ FCOE_FCF_STATE_UNKNOWN ] = "Unknown",
[ FCOE_FCF_STATE_DISCONNECTED ] = "Disconnected",
[ FCOE_FCF_STATE_CONNECTED ] = "Connected",
[SCSI] libfcoe: Add fcoe_sysfs This patch adds a 'fcoe bus' infrastructure to the kernel that is driven by changes to libfcoe which allow LLDs to present FIP (FCoE Initialization Protocol) discovered entities and their attributes to user space via sysfs. This patch adds the following APIs- fcoe_ctlr_device_add fcoe_ctlr_device_delete fcoe_fcf_device_add fcoe_fcf_device_delete They allow the LLD to expose the FCoE ENode Controller and any discovered FCFs (Fibre Channel Forwarders, e.g. FCoE switches) to the user. Each of these new devices has their own bus_type so that they are grouped together for easy lookup from a user space application. Each new class has an attribute_group to expose attributes for any created instances. The attributes are- fcoe_ctlr_device * fcf_dev_loss_tmo * lesb_link_fail * lesb_vlink_fail * lesb_miss_fka * lesb_symb_err * lesb_err_block * lesb_fcs_error fcoe_fcf_device * fabric_name * switch_name * priority * selected * fc_map * vfid * mac * fka_peroid * fabric_state * dev_loss_tmo A device loss infrastructre similar to the FC Transport's is also added by this patch. It is nice to have so that a link flapping adapter doesn't continually advance the count used to identify the discovered FCF. FCFs will exist in a "Disconnected" state until either the timer expires or the FCF is rediscovered and becomes "Connected." This patch generates a few checkpatch.pl WARNINGS that I'm not sure what to do about. They're macros modeled around the FC Transport attribute building macros, which have the same 'feature' where the caller can ommit a cast in the argument list and no cast occurs in the code. I'm not sure how to keep the code condensed while keeping the macros. Any advice would be appreciated. Signed-off-by: Robert Love <robert.w.love@intel.com> Tested-by: Ross Brattain <ross.b.brattain@intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2012-05-22 20:06:21 -06:00
};
fcoe_enum_name_search(fcf_state, fcf_state, fcf_state_names)
#define FCOE_FCF_STATE_MAX_NAMELEN 50
static ssize_t show_fcf_state(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct fcoe_fcf_device *fcf = dev_to_fcf(dev);
const char *name;
name = get_fcoe_fcf_state_name(fcf->state);
if (!name)
return -EINVAL;
return snprintf(buf, FCOE_FCF_STATE_MAX_NAMELEN, "%s\n", name);
}
static FCOE_DEVICE_ATTR(fcf, state, S_IRUGO, show_fcf_state, NULL);
#define FCOE_MAX_MODENAME_LEN 20
[SCSI] libfcoe: Add fcoe_sysfs This patch adds a 'fcoe bus' infrastructure to the kernel that is driven by changes to libfcoe which allow LLDs to present FIP (FCoE Initialization Protocol) discovered entities and their attributes to user space via sysfs. This patch adds the following APIs- fcoe_ctlr_device_add fcoe_ctlr_device_delete fcoe_fcf_device_add fcoe_fcf_device_delete They allow the LLD to expose the FCoE ENode Controller and any discovered FCFs (Fibre Channel Forwarders, e.g. FCoE switches) to the user. Each of these new devices has their own bus_type so that they are grouped together for easy lookup from a user space application. Each new class has an attribute_group to expose attributes for any created instances. The attributes are- fcoe_ctlr_device * fcf_dev_loss_tmo * lesb_link_fail * lesb_vlink_fail * lesb_miss_fka * lesb_symb_err * lesb_err_block * lesb_fcs_error fcoe_fcf_device * fabric_name * switch_name * priority * selected * fc_map * vfid * mac * fka_peroid * fabric_state * dev_loss_tmo A device loss infrastructre similar to the FC Transport's is also added by this patch. It is nice to have so that a link flapping adapter doesn't continually advance the count used to identify the discovered FCF. FCFs will exist in a "Disconnected" state until either the timer expires or the FCF is rediscovered and becomes "Connected." This patch generates a few checkpatch.pl WARNINGS that I'm not sure what to do about. They're macros modeled around the FC Transport attribute building macros, which have the same 'feature' where the caller can ommit a cast in the argument list and no cast occurs in the code. I'm not sure how to keep the code condensed while keeping the macros. Any advice would be appreciated. Signed-off-by: Robert Love <robert.w.love@intel.com> Tested-by: Ross Brattain <ross.b.brattain@intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2012-05-22 20:06:21 -06:00
static ssize_t show_ctlr_mode(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct fcoe_ctlr_device *ctlr = dev_to_ctlr(dev);
const char *name;
name = get_fcoe_ctlr_mode_name(ctlr->mode);
if (!name)
return -EINVAL;
libfcoe, fcoe, bnx2fc: Add new fcoe control interface This patch does a few things. 1) Makes /sys/bus/fcoe/ctlr_{create,destroy} interfaces. These interfaces take an <ifname> and will either create an FCoE Controller or destroy an FCoE Controller depending on which file is written to. The new FCoE Controller will start in a DISABLED state and will not do discovery or login until it is ENABLED. This pause will allow us to configure the FCoE Controller before enabling it. 2) Makes the 'mode' attribute of a fcoe_ctlr_device writale. This allows the user to configure the mode in which the FCoE Controller will start in when it is ENABLED. Possible modes are 'Fabric', or 'VN2VN'. The default mode for a fcoe_ctlr{,_device} is 'Fabric'. Drivers must implement the set_fcoe_ctlr_mode routine to support this feature. libfcoe offers an exported routine to set a FCoE Controller's mode. The mode can only be changed when the FCoE Controller is DISABLED. This patch also removes the get_fcoe_ctlr_mode pointer in the fcoe_sysfs function template, the code in fcoe_ctlr.c to get the mode and the assignment of the fcoe_sysfs function pointer to the fcoe_ctlr.c implementation (in fcoe and bnx2fc). fcoe_sysfs can return that value for the mode without consulting the LLD. 3) Make a 'enabled' attribute of a fcoe_ctlr_device. On a read, fcoe_sysfs will return the attribute's value. On a write, fcoe_sysfs will call the LLD (if there is a callback) to notifiy that the enalbed state has changed. This patch maintains the old FCoE control interfaces as module parameters, but it adds comments pointing out that the old interfaces are deprecated. Signed-off-by: Robert Love <robert.w.love@intel.com> Acked-by: Neil Horman <nhorman@tuxdriver.com>
2012-11-26 23:53:30 -07:00
return snprintf(buf, FCOE_MAX_MODENAME_LEN,
"%s\n", name);
}
static ssize_t store_ctlr_mode(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct fcoe_ctlr_device *ctlr = dev_to_ctlr(dev);
char mode[FCOE_MAX_MODENAME_LEN + 1];
if (count > FCOE_MAX_MODENAME_LEN)
return -EINVAL;
strncpy(mode, buf, count);
if (mode[count - 1] == '\n')
mode[count - 1] = '\0';
else
mode[count] = '\0';
switch (ctlr->enabled) {
case FCOE_CTLR_ENABLED:
LIBFCOE_SYSFS_DBG(ctlr, "Cannot change mode when enabled.\n");
libfcoe, fcoe, bnx2fc: Add new fcoe control interface This patch does a few things. 1) Makes /sys/bus/fcoe/ctlr_{create,destroy} interfaces. These interfaces take an <ifname> and will either create an FCoE Controller or destroy an FCoE Controller depending on which file is written to. The new FCoE Controller will start in a DISABLED state and will not do discovery or login until it is ENABLED. This pause will allow us to configure the FCoE Controller before enabling it. 2) Makes the 'mode' attribute of a fcoe_ctlr_device writale. This allows the user to configure the mode in which the FCoE Controller will start in when it is ENABLED. Possible modes are 'Fabric', or 'VN2VN'. The default mode for a fcoe_ctlr{,_device} is 'Fabric'. Drivers must implement the set_fcoe_ctlr_mode routine to support this feature. libfcoe offers an exported routine to set a FCoE Controller's mode. The mode can only be changed when the FCoE Controller is DISABLED. This patch also removes the get_fcoe_ctlr_mode pointer in the fcoe_sysfs function template, the code in fcoe_ctlr.c to get the mode and the assignment of the fcoe_sysfs function pointer to the fcoe_ctlr.c implementation (in fcoe and bnx2fc). fcoe_sysfs can return that value for the mode without consulting the LLD. 3) Make a 'enabled' attribute of a fcoe_ctlr_device. On a read, fcoe_sysfs will return the attribute's value. On a write, fcoe_sysfs will call the LLD (if there is a callback) to notifiy that the enalbed state has changed. This patch maintains the old FCoE control interfaces as module parameters, but it adds comments pointing out that the old interfaces are deprecated. Signed-off-by: Robert Love <robert.w.love@intel.com> Acked-by: Neil Horman <nhorman@tuxdriver.com>
2012-11-26 23:53:30 -07:00
return -EBUSY;
case FCOE_CTLR_DISABLED:
if (!ctlr->f->set_fcoe_ctlr_mode) {
LIBFCOE_SYSFS_DBG(ctlr,
"Mode change not supported by LLD.\n");
libfcoe, fcoe, bnx2fc: Add new fcoe control interface This patch does a few things. 1) Makes /sys/bus/fcoe/ctlr_{create,destroy} interfaces. These interfaces take an <ifname> and will either create an FCoE Controller or destroy an FCoE Controller depending on which file is written to. The new FCoE Controller will start in a DISABLED state and will not do discovery or login until it is ENABLED. This pause will allow us to configure the FCoE Controller before enabling it. 2) Makes the 'mode' attribute of a fcoe_ctlr_device writale. This allows the user to configure the mode in which the FCoE Controller will start in when it is ENABLED. Possible modes are 'Fabric', or 'VN2VN'. The default mode for a fcoe_ctlr{,_device} is 'Fabric'. Drivers must implement the set_fcoe_ctlr_mode routine to support this feature. libfcoe offers an exported routine to set a FCoE Controller's mode. The mode can only be changed when the FCoE Controller is DISABLED. This patch also removes the get_fcoe_ctlr_mode pointer in the fcoe_sysfs function template, the code in fcoe_ctlr.c to get the mode and the assignment of the fcoe_sysfs function pointer to the fcoe_ctlr.c implementation (in fcoe and bnx2fc). fcoe_sysfs can return that value for the mode without consulting the LLD. 3) Make a 'enabled' attribute of a fcoe_ctlr_device. On a read, fcoe_sysfs will return the attribute's value. On a write, fcoe_sysfs will call the LLD (if there is a callback) to notifiy that the enalbed state has changed. This patch maintains the old FCoE control interfaces as module parameters, but it adds comments pointing out that the old interfaces are deprecated. Signed-off-by: Robert Love <robert.w.love@intel.com> Acked-by: Neil Horman <nhorman@tuxdriver.com>
2012-11-26 23:53:30 -07:00
return -ENOTSUPP;
}
ctlr->mode = fcoe_parse_mode(mode);
if (ctlr->mode == FIP_CONN_TYPE_UNKNOWN) {
LIBFCOE_SYSFS_DBG(ctlr, "Unknown mode %s provided.\n",
buf);
libfcoe, fcoe, bnx2fc: Add new fcoe control interface This patch does a few things. 1) Makes /sys/bus/fcoe/ctlr_{create,destroy} interfaces. These interfaces take an <ifname> and will either create an FCoE Controller or destroy an FCoE Controller depending on which file is written to. The new FCoE Controller will start in a DISABLED state and will not do discovery or login until it is ENABLED. This pause will allow us to configure the FCoE Controller before enabling it. 2) Makes the 'mode' attribute of a fcoe_ctlr_device writale. This allows the user to configure the mode in which the FCoE Controller will start in when it is ENABLED. Possible modes are 'Fabric', or 'VN2VN'. The default mode for a fcoe_ctlr{,_device} is 'Fabric'. Drivers must implement the set_fcoe_ctlr_mode routine to support this feature. libfcoe offers an exported routine to set a FCoE Controller's mode. The mode can only be changed when the FCoE Controller is DISABLED. This patch also removes the get_fcoe_ctlr_mode pointer in the fcoe_sysfs function template, the code in fcoe_ctlr.c to get the mode and the assignment of the fcoe_sysfs function pointer to the fcoe_ctlr.c implementation (in fcoe and bnx2fc). fcoe_sysfs can return that value for the mode without consulting the LLD. 3) Make a 'enabled' attribute of a fcoe_ctlr_device. On a read, fcoe_sysfs will return the attribute's value. On a write, fcoe_sysfs will call the LLD (if there is a callback) to notifiy that the enalbed state has changed. This patch maintains the old FCoE control interfaces as module parameters, but it adds comments pointing out that the old interfaces are deprecated. Signed-off-by: Robert Love <robert.w.love@intel.com> Acked-by: Neil Horman <nhorman@tuxdriver.com>
2012-11-26 23:53:30 -07:00
return -EINVAL;
}
ctlr->f->set_fcoe_ctlr_mode(ctlr);
LIBFCOE_SYSFS_DBG(ctlr, "Mode changed to %s.\n", buf);
libfcoe, fcoe, bnx2fc: Add new fcoe control interface This patch does a few things. 1) Makes /sys/bus/fcoe/ctlr_{create,destroy} interfaces. These interfaces take an <ifname> and will either create an FCoE Controller or destroy an FCoE Controller depending on which file is written to. The new FCoE Controller will start in a DISABLED state and will not do discovery or login until it is ENABLED. This pause will allow us to configure the FCoE Controller before enabling it. 2) Makes the 'mode' attribute of a fcoe_ctlr_device writale. This allows the user to configure the mode in which the FCoE Controller will start in when it is ENABLED. Possible modes are 'Fabric', or 'VN2VN'. The default mode for a fcoe_ctlr{,_device} is 'Fabric'. Drivers must implement the set_fcoe_ctlr_mode routine to support this feature. libfcoe offers an exported routine to set a FCoE Controller's mode. The mode can only be changed when the FCoE Controller is DISABLED. This patch also removes the get_fcoe_ctlr_mode pointer in the fcoe_sysfs function template, the code in fcoe_ctlr.c to get the mode and the assignment of the fcoe_sysfs function pointer to the fcoe_ctlr.c implementation (in fcoe and bnx2fc). fcoe_sysfs can return that value for the mode without consulting the LLD. 3) Make a 'enabled' attribute of a fcoe_ctlr_device. On a read, fcoe_sysfs will return the attribute's value. On a write, fcoe_sysfs will call the LLD (if there is a callback) to notifiy that the enalbed state has changed. This patch maintains the old FCoE control interfaces as module parameters, but it adds comments pointing out that the old interfaces are deprecated. Signed-off-by: Robert Love <robert.w.love@intel.com> Acked-by: Neil Horman <nhorman@tuxdriver.com>
2012-11-26 23:53:30 -07:00
return count;
case FCOE_CTLR_UNUSED:
default:
LIBFCOE_SYSFS_DBG(ctlr, "Mode change not supported.\n");
libfcoe, fcoe, bnx2fc: Add new fcoe control interface This patch does a few things. 1) Makes /sys/bus/fcoe/ctlr_{create,destroy} interfaces. These interfaces take an <ifname> and will either create an FCoE Controller or destroy an FCoE Controller depending on which file is written to. The new FCoE Controller will start in a DISABLED state and will not do discovery or login until it is ENABLED. This pause will allow us to configure the FCoE Controller before enabling it. 2) Makes the 'mode' attribute of a fcoe_ctlr_device writale. This allows the user to configure the mode in which the FCoE Controller will start in when it is ENABLED. Possible modes are 'Fabric', or 'VN2VN'. The default mode for a fcoe_ctlr{,_device} is 'Fabric'. Drivers must implement the set_fcoe_ctlr_mode routine to support this feature. libfcoe offers an exported routine to set a FCoE Controller's mode. The mode can only be changed when the FCoE Controller is DISABLED. This patch also removes the get_fcoe_ctlr_mode pointer in the fcoe_sysfs function template, the code in fcoe_ctlr.c to get the mode and the assignment of the fcoe_sysfs function pointer to the fcoe_ctlr.c implementation (in fcoe and bnx2fc). fcoe_sysfs can return that value for the mode without consulting the LLD. 3) Make a 'enabled' attribute of a fcoe_ctlr_device. On a read, fcoe_sysfs will return the attribute's value. On a write, fcoe_sysfs will call the LLD (if there is a callback) to notifiy that the enalbed state has changed. This patch maintains the old FCoE control interfaces as module parameters, but it adds comments pointing out that the old interfaces are deprecated. Signed-off-by: Robert Love <robert.w.love@intel.com> Acked-by: Neil Horman <nhorman@tuxdriver.com>
2012-11-26 23:53:30 -07:00
return -ENOTSUPP;
};
}
static FCOE_DEVICE_ATTR(ctlr, mode, S_IRUGO | S_IWUSR,
show_ctlr_mode, store_ctlr_mode);
static ssize_t store_ctlr_enabled(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct fcoe_ctlr_device *ctlr = dev_to_ctlr(dev);
bool enabled;
libfcoe, fcoe, bnx2fc: Add new fcoe control interface This patch does a few things. 1) Makes /sys/bus/fcoe/ctlr_{create,destroy} interfaces. These interfaces take an <ifname> and will either create an FCoE Controller or destroy an FCoE Controller depending on which file is written to. The new FCoE Controller will start in a DISABLED state and will not do discovery or login until it is ENABLED. This pause will allow us to configure the FCoE Controller before enabling it. 2) Makes the 'mode' attribute of a fcoe_ctlr_device writale. This allows the user to configure the mode in which the FCoE Controller will start in when it is ENABLED. Possible modes are 'Fabric', or 'VN2VN'. The default mode for a fcoe_ctlr{,_device} is 'Fabric'. Drivers must implement the set_fcoe_ctlr_mode routine to support this feature. libfcoe offers an exported routine to set a FCoE Controller's mode. The mode can only be changed when the FCoE Controller is DISABLED. This patch also removes the get_fcoe_ctlr_mode pointer in the fcoe_sysfs function template, the code in fcoe_ctlr.c to get the mode and the assignment of the fcoe_sysfs function pointer to the fcoe_ctlr.c implementation (in fcoe and bnx2fc). fcoe_sysfs can return that value for the mode without consulting the LLD. 3) Make a 'enabled' attribute of a fcoe_ctlr_device. On a read, fcoe_sysfs will return the attribute's value. On a write, fcoe_sysfs will call the LLD (if there is a callback) to notifiy that the enalbed state has changed. This patch maintains the old FCoE control interfaces as module parameters, but it adds comments pointing out that the old interfaces are deprecated. Signed-off-by: Robert Love <robert.w.love@intel.com> Acked-by: Neil Horman <nhorman@tuxdriver.com>
2012-11-26 23:53:30 -07:00
int rc;
if (*buf == '1')
enabled = true;
else if (*buf == '0')
enabled = false;
else
return -EINVAL;
libfcoe, fcoe, bnx2fc: Add new fcoe control interface This patch does a few things. 1) Makes /sys/bus/fcoe/ctlr_{create,destroy} interfaces. These interfaces take an <ifname> and will either create an FCoE Controller or destroy an FCoE Controller depending on which file is written to. The new FCoE Controller will start in a DISABLED state and will not do discovery or login until it is ENABLED. This pause will allow us to configure the FCoE Controller before enabling it. 2) Makes the 'mode' attribute of a fcoe_ctlr_device writale. This allows the user to configure the mode in which the FCoE Controller will start in when it is ENABLED. Possible modes are 'Fabric', or 'VN2VN'. The default mode for a fcoe_ctlr{,_device} is 'Fabric'. Drivers must implement the set_fcoe_ctlr_mode routine to support this feature. libfcoe offers an exported routine to set a FCoE Controller's mode. The mode can only be changed when the FCoE Controller is DISABLED. This patch also removes the get_fcoe_ctlr_mode pointer in the fcoe_sysfs function template, the code in fcoe_ctlr.c to get the mode and the assignment of the fcoe_sysfs function pointer to the fcoe_ctlr.c implementation (in fcoe and bnx2fc). fcoe_sysfs can return that value for the mode without consulting the LLD. 3) Make a 'enabled' attribute of a fcoe_ctlr_device. On a read, fcoe_sysfs will return the attribute's value. On a write, fcoe_sysfs will call the LLD (if there is a callback) to notifiy that the enalbed state has changed. This patch maintains the old FCoE control interfaces as module parameters, but it adds comments pointing out that the old interfaces are deprecated. Signed-off-by: Robert Love <robert.w.love@intel.com> Acked-by: Neil Horman <nhorman@tuxdriver.com>
2012-11-26 23:53:30 -07:00
switch (ctlr->enabled) {
case FCOE_CTLR_ENABLED:
if (enabled)
libfcoe, fcoe, bnx2fc: Add new fcoe control interface This patch does a few things. 1) Makes /sys/bus/fcoe/ctlr_{create,destroy} interfaces. These interfaces take an <ifname> and will either create an FCoE Controller or destroy an FCoE Controller depending on which file is written to. The new FCoE Controller will start in a DISABLED state and will not do discovery or login until it is ENABLED. This pause will allow us to configure the FCoE Controller before enabling it. 2) Makes the 'mode' attribute of a fcoe_ctlr_device writale. This allows the user to configure the mode in which the FCoE Controller will start in when it is ENABLED. Possible modes are 'Fabric', or 'VN2VN'. The default mode for a fcoe_ctlr{,_device} is 'Fabric'. Drivers must implement the set_fcoe_ctlr_mode routine to support this feature. libfcoe offers an exported routine to set a FCoE Controller's mode. The mode can only be changed when the FCoE Controller is DISABLED. This patch also removes the get_fcoe_ctlr_mode pointer in the fcoe_sysfs function template, the code in fcoe_ctlr.c to get the mode and the assignment of the fcoe_sysfs function pointer to the fcoe_ctlr.c implementation (in fcoe and bnx2fc). fcoe_sysfs can return that value for the mode without consulting the LLD. 3) Make a 'enabled' attribute of a fcoe_ctlr_device. On a read, fcoe_sysfs will return the attribute's value. On a write, fcoe_sysfs will call the LLD (if there is a callback) to notifiy that the enalbed state has changed. This patch maintains the old FCoE control interfaces as module parameters, but it adds comments pointing out that the old interfaces are deprecated. Signed-off-by: Robert Love <robert.w.love@intel.com> Acked-by: Neil Horman <nhorman@tuxdriver.com>
2012-11-26 23:53:30 -07:00
return count;
ctlr->enabled = FCOE_CTLR_DISABLED;
break;
case FCOE_CTLR_DISABLED:
if (!enabled)
libfcoe, fcoe, bnx2fc: Add new fcoe control interface This patch does a few things. 1) Makes /sys/bus/fcoe/ctlr_{create,destroy} interfaces. These interfaces take an <ifname> and will either create an FCoE Controller or destroy an FCoE Controller depending on which file is written to. The new FCoE Controller will start in a DISABLED state and will not do discovery or login until it is ENABLED. This pause will allow us to configure the FCoE Controller before enabling it. 2) Makes the 'mode' attribute of a fcoe_ctlr_device writale. This allows the user to configure the mode in which the FCoE Controller will start in when it is ENABLED. Possible modes are 'Fabric', or 'VN2VN'. The default mode for a fcoe_ctlr{,_device} is 'Fabric'. Drivers must implement the set_fcoe_ctlr_mode routine to support this feature. libfcoe offers an exported routine to set a FCoE Controller's mode. The mode can only be changed when the FCoE Controller is DISABLED. This patch also removes the get_fcoe_ctlr_mode pointer in the fcoe_sysfs function template, the code in fcoe_ctlr.c to get the mode and the assignment of the fcoe_sysfs function pointer to the fcoe_ctlr.c implementation (in fcoe and bnx2fc). fcoe_sysfs can return that value for the mode without consulting the LLD. 3) Make a 'enabled' attribute of a fcoe_ctlr_device. On a read, fcoe_sysfs will return the attribute's value. On a write, fcoe_sysfs will call the LLD (if there is a callback) to notifiy that the enalbed state has changed. This patch maintains the old FCoE control interfaces as module parameters, but it adds comments pointing out that the old interfaces are deprecated. Signed-off-by: Robert Love <robert.w.love@intel.com> Acked-by: Neil Horman <nhorman@tuxdriver.com>
2012-11-26 23:53:30 -07:00
return count;
ctlr->enabled = FCOE_CTLR_ENABLED;
break;
case FCOE_CTLR_UNUSED:
return -ENOTSUPP;
};
rc = ctlr->f->set_fcoe_ctlr_enabled(ctlr);
if (rc)
return rc;
return count;
}
static char *ctlr_enabled_state_names[] = {
[ FCOE_CTLR_ENABLED ] = "1",
[ FCOE_CTLR_DISABLED ] = "0",
};
fcoe_enum_name_search(ctlr_enabled_state, ctlr_enabled_state,
ctlr_enabled_state_names)
#define FCOE_CTLR_ENABLED_MAX_NAMELEN 50
static ssize_t show_ctlr_enabled_state(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct fcoe_ctlr_device *ctlr = dev_to_ctlr(dev);
const char *name;
name = get_fcoe_ctlr_enabled_state_name(ctlr->enabled);
if (!name)
return -EINVAL;
return snprintf(buf, FCOE_CTLR_ENABLED_MAX_NAMELEN,
[SCSI] libfcoe: Add fcoe_sysfs This patch adds a 'fcoe bus' infrastructure to the kernel that is driven by changes to libfcoe which allow LLDs to present FIP (FCoE Initialization Protocol) discovered entities and their attributes to user space via sysfs. This patch adds the following APIs- fcoe_ctlr_device_add fcoe_ctlr_device_delete fcoe_fcf_device_add fcoe_fcf_device_delete They allow the LLD to expose the FCoE ENode Controller and any discovered FCFs (Fibre Channel Forwarders, e.g. FCoE switches) to the user. Each of these new devices has their own bus_type so that they are grouped together for easy lookup from a user space application. Each new class has an attribute_group to expose attributes for any created instances. The attributes are- fcoe_ctlr_device * fcf_dev_loss_tmo * lesb_link_fail * lesb_vlink_fail * lesb_miss_fka * lesb_symb_err * lesb_err_block * lesb_fcs_error fcoe_fcf_device * fabric_name * switch_name * priority * selected * fc_map * vfid * mac * fka_peroid * fabric_state * dev_loss_tmo A device loss infrastructre similar to the FC Transport's is also added by this patch. It is nice to have so that a link flapping adapter doesn't continually advance the count used to identify the discovered FCF. FCFs will exist in a "Disconnected" state until either the timer expires or the FCF is rediscovered and becomes "Connected." This patch generates a few checkpatch.pl WARNINGS that I'm not sure what to do about. They're macros modeled around the FC Transport attribute building macros, which have the same 'feature' where the caller can ommit a cast in the argument list and no cast occurs in the code. I'm not sure how to keep the code condensed while keeping the macros. Any advice would be appreciated. Signed-off-by: Robert Love <robert.w.love@intel.com> Tested-by: Ross Brattain <ross.b.brattain@intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2012-05-22 20:06:21 -06:00
"%s\n", name);
}
libfcoe, fcoe, bnx2fc: Add new fcoe control interface This patch does a few things. 1) Makes /sys/bus/fcoe/ctlr_{create,destroy} interfaces. These interfaces take an <ifname> and will either create an FCoE Controller or destroy an FCoE Controller depending on which file is written to. The new FCoE Controller will start in a DISABLED state and will not do discovery or login until it is ENABLED. This pause will allow us to configure the FCoE Controller before enabling it. 2) Makes the 'mode' attribute of a fcoe_ctlr_device writale. This allows the user to configure the mode in which the FCoE Controller will start in when it is ENABLED. Possible modes are 'Fabric', or 'VN2VN'. The default mode for a fcoe_ctlr{,_device} is 'Fabric'. Drivers must implement the set_fcoe_ctlr_mode routine to support this feature. libfcoe offers an exported routine to set a FCoE Controller's mode. The mode can only be changed when the FCoE Controller is DISABLED. This patch also removes the get_fcoe_ctlr_mode pointer in the fcoe_sysfs function template, the code in fcoe_ctlr.c to get the mode and the assignment of the fcoe_sysfs function pointer to the fcoe_ctlr.c implementation (in fcoe and bnx2fc). fcoe_sysfs can return that value for the mode without consulting the LLD. 3) Make a 'enabled' attribute of a fcoe_ctlr_device. On a read, fcoe_sysfs will return the attribute's value. On a write, fcoe_sysfs will call the LLD (if there is a callback) to notifiy that the enalbed state has changed. This patch maintains the old FCoE control interfaces as module parameters, but it adds comments pointing out that the old interfaces are deprecated. Signed-off-by: Robert Love <robert.w.love@intel.com> Acked-by: Neil Horman <nhorman@tuxdriver.com>
2012-11-26 23:53:30 -07:00
static FCOE_DEVICE_ATTR(ctlr, enabled, S_IRUGO | S_IWUSR,
show_ctlr_enabled_state,
store_ctlr_enabled);
[SCSI] libfcoe: Add fcoe_sysfs This patch adds a 'fcoe bus' infrastructure to the kernel that is driven by changes to libfcoe which allow LLDs to present FIP (FCoE Initialization Protocol) discovered entities and their attributes to user space via sysfs. This patch adds the following APIs- fcoe_ctlr_device_add fcoe_ctlr_device_delete fcoe_fcf_device_add fcoe_fcf_device_delete They allow the LLD to expose the FCoE ENode Controller and any discovered FCFs (Fibre Channel Forwarders, e.g. FCoE switches) to the user. Each of these new devices has their own bus_type so that they are grouped together for easy lookup from a user space application. Each new class has an attribute_group to expose attributes for any created instances. The attributes are- fcoe_ctlr_device * fcf_dev_loss_tmo * lesb_link_fail * lesb_vlink_fail * lesb_miss_fka * lesb_symb_err * lesb_err_block * lesb_fcs_error fcoe_fcf_device * fabric_name * switch_name * priority * selected * fc_map * vfid * mac * fka_peroid * fabric_state * dev_loss_tmo A device loss infrastructre similar to the FC Transport's is also added by this patch. It is nice to have so that a link flapping adapter doesn't continually advance the count used to identify the discovered FCF. FCFs will exist in a "Disconnected" state until either the timer expires or the FCF is rediscovered and becomes "Connected." This patch generates a few checkpatch.pl WARNINGS that I'm not sure what to do about. They're macros modeled around the FC Transport attribute building macros, which have the same 'feature' where the caller can ommit a cast in the argument list and no cast occurs in the code. I'm not sure how to keep the code condensed while keeping the macros. Any advice would be appreciated. Signed-off-by: Robert Love <robert.w.love@intel.com> Tested-by: Ross Brattain <ross.b.brattain@intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2012-05-22 20:06:21 -06:00
static ssize_t store_ctlr_fip_resp(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct fcoe_ctlr_device *ctlr = dev_to_ctlr(dev);
struct fcoe_ctlr *fip = fcoe_ctlr_device_priv(ctlr);
mutex_lock(&fip->ctlr_mutex);
if ((buf[1] == '\0') || ((buf[1] == '\n') && (buf[2] == '\0'))) {
if (buf[0] == '1') {
fip->fip_resp = 1;
mutex_unlock(&fip->ctlr_mutex);
return count;
}
if (buf[0] == '0') {
fip->fip_resp = 0;
mutex_unlock(&fip->ctlr_mutex);
return count;
}
}
mutex_unlock(&fip->ctlr_mutex);
return -EINVAL;
}
static ssize_t show_ctlr_fip_resp(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct fcoe_ctlr_device *ctlr = dev_to_ctlr(dev);
struct fcoe_ctlr *fip = fcoe_ctlr_device_priv(ctlr);
return sprintf(buf, "%d\n", fip->fip_resp ? 1 : 0);
}
static FCOE_DEVICE_ATTR(ctlr, fip_vlan_responder, S_IRUGO | S_IWUSR,
show_ctlr_fip_resp,
store_ctlr_fip_resp);
static ssize_t
fcoe_ctlr_var_store(u32 *var, const char *buf, size_t count)
{
int err;
unsigned long v;
err = kstrtoul(buf, 10, &v);
if (err || v > UINT_MAX)
return -EINVAL;
*var = v;
return count;
}
static ssize_t store_ctlr_r_a_tov(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct fcoe_ctlr_device *ctlr_dev = dev_to_ctlr(dev);
struct fcoe_ctlr *ctlr = fcoe_ctlr_device_priv(ctlr_dev);
if (ctlr_dev->enabled == FCOE_CTLR_ENABLED)
return -EBUSY;
if (ctlr_dev->enabled == FCOE_CTLR_DISABLED)
return fcoe_ctlr_var_store(&ctlr->lp->r_a_tov, buf, count);
return -ENOTSUPP;
}
static ssize_t show_ctlr_r_a_tov(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct fcoe_ctlr_device *ctlr_dev = dev_to_ctlr(dev);
struct fcoe_ctlr *ctlr = fcoe_ctlr_device_priv(ctlr_dev);
return sprintf(buf, "%d\n", ctlr->lp->r_a_tov);
}
static FCOE_DEVICE_ATTR(ctlr, r_a_tov, S_IRUGO | S_IWUSR,
show_ctlr_r_a_tov, store_ctlr_r_a_tov);
static ssize_t store_ctlr_e_d_tov(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct fcoe_ctlr_device *ctlr_dev = dev_to_ctlr(dev);
struct fcoe_ctlr *ctlr = fcoe_ctlr_device_priv(ctlr_dev);
if (ctlr_dev->enabled == FCOE_CTLR_ENABLED)
return -EBUSY;
if (ctlr_dev->enabled == FCOE_CTLR_DISABLED)
return fcoe_ctlr_var_store(&ctlr->lp->e_d_tov, buf, count);
return -ENOTSUPP;
}
static ssize_t show_ctlr_e_d_tov(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct fcoe_ctlr_device *ctlr_dev = dev_to_ctlr(dev);
struct fcoe_ctlr *ctlr = fcoe_ctlr_device_priv(ctlr_dev);
return sprintf(buf, "%d\n", ctlr->lp->e_d_tov);
}
static FCOE_DEVICE_ATTR(ctlr, e_d_tov, S_IRUGO | S_IWUSR,
show_ctlr_e_d_tov, store_ctlr_e_d_tov);
[SCSI] libfcoe: Add fcoe_sysfs This patch adds a 'fcoe bus' infrastructure to the kernel that is driven by changes to libfcoe which allow LLDs to present FIP (FCoE Initialization Protocol) discovered entities and their attributes to user space via sysfs. This patch adds the following APIs- fcoe_ctlr_device_add fcoe_ctlr_device_delete fcoe_fcf_device_add fcoe_fcf_device_delete They allow the LLD to expose the FCoE ENode Controller and any discovered FCFs (Fibre Channel Forwarders, e.g. FCoE switches) to the user. Each of these new devices has their own bus_type so that they are grouped together for easy lookup from a user space application. Each new class has an attribute_group to expose attributes for any created instances. The attributes are- fcoe_ctlr_device * fcf_dev_loss_tmo * lesb_link_fail * lesb_vlink_fail * lesb_miss_fka * lesb_symb_err * lesb_err_block * lesb_fcs_error fcoe_fcf_device * fabric_name * switch_name * priority * selected * fc_map * vfid * mac * fka_peroid * fabric_state * dev_loss_tmo A device loss infrastructre similar to the FC Transport's is also added by this patch. It is nice to have so that a link flapping adapter doesn't continually advance the count used to identify the discovered FCF. FCFs will exist in a "Disconnected" state until either the timer expires or the FCF is rediscovered and becomes "Connected." This patch generates a few checkpatch.pl WARNINGS that I'm not sure what to do about. They're macros modeled around the FC Transport attribute building macros, which have the same 'feature' where the caller can ommit a cast in the argument list and no cast occurs in the code. I'm not sure how to keep the code condensed while keeping the macros. Any advice would be appreciated. Signed-off-by: Robert Love <robert.w.love@intel.com> Tested-by: Ross Brattain <ross.b.brattain@intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2012-05-22 20:06:21 -06:00
static ssize_t
store_private_fcoe_ctlr_fcf_dev_loss_tmo(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct fcoe_ctlr_device *ctlr = dev_to_ctlr(dev);
struct fcoe_fcf_device *fcf;
unsigned long val;
int rc;
rc = fcoe_str_to_dev_loss(buf, &val);
if (rc)
return rc;
fcoe_ctlr_fcf_dev_loss_tmo(ctlr) = val;
mutex_lock(&ctlr->lock);
list_for_each_entry(fcf, &ctlr->fcfs, peers)
fcoe_fcf_set_dev_loss_tmo(fcf, val);
mutex_unlock(&ctlr->lock);
return count;
}
fcoe_ctlr_private_show_function(fcf_dev_loss_tmo, "%d\n", 20, );
static FCOE_DEVICE_ATTR(ctlr, fcf_dev_loss_tmo, S_IRUGO | S_IWUSR,
show_fcoe_ctlr_device_fcf_dev_loss_tmo,
store_private_fcoe_ctlr_fcf_dev_loss_tmo);
/* Link Error Status Block (LESB) */
fcoe_ctlr_rd_attr(link_fail, "%u\n", 20);
fcoe_ctlr_rd_attr(vlink_fail, "%u\n", 20);
fcoe_ctlr_rd_attr(miss_fka, "%u\n", 20);
fcoe_ctlr_rd_attr(symb_err, "%u\n", 20);
fcoe_ctlr_rd_attr(err_block, "%u\n", 20);
fcoe_ctlr_rd_attr(fcs_error, "%u\n", 20);
fcoe_fcf_private_rd_attr_cast(fabric_name, "0x%llx\n", 20, unsigned long long);
fcoe_fcf_private_rd_attr_cast(switch_name, "0x%llx\n", 20, unsigned long long);
fcoe_fcf_private_rd_attr(priority, "%u\n", 20);
fcoe_fcf_private_rd_attr(fc_map, "0x%x\n", 20);
fcoe_fcf_private_rd_attr(vfid, "%u\n", 20);
fcoe_fcf_private_rd_attr(mac, "%pM\n", 20);
fcoe_fcf_private_rd_attr(fka_period, "%u\n", 20);
fcoe_fcf_rd_attr(selected, "%u\n", 20);
fcoe_fcf_rd_attr(vlan_id, "%u\n", 20);
fcoe_fcf_private_show_function(dev_loss_tmo, "%d\n", 20, )
static ssize_t
store_fcoe_fcf_dev_loss_tmo(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct fcoe_fcf_device *fcf = dev_to_fcf(dev);
unsigned long val;
int rc;
rc = fcoe_str_to_dev_loss(buf, &val);
if (rc)
return rc;
rc = fcoe_fcf_set_dev_loss_tmo(fcf, val);
if (rc)
return rc;
return count;
}
static FCOE_DEVICE_ATTR(fcf, dev_loss_tmo, S_IRUGO | S_IWUSR,
show_fcoe_fcf_device_dev_loss_tmo,
store_fcoe_fcf_dev_loss_tmo);
static struct attribute *fcoe_ctlr_lesb_attrs[] = {
&device_attr_fcoe_ctlr_link_fail.attr,
&device_attr_fcoe_ctlr_vlink_fail.attr,
&device_attr_fcoe_ctlr_miss_fka.attr,
&device_attr_fcoe_ctlr_symb_err.attr,
&device_attr_fcoe_ctlr_err_block.attr,
&device_attr_fcoe_ctlr_fcs_error.attr,
NULL,
};
static struct attribute_group fcoe_ctlr_lesb_attr_group = {
.name = "lesb",
.attrs = fcoe_ctlr_lesb_attrs,
};
static struct attribute *fcoe_ctlr_attrs[] = {
&device_attr_fcoe_ctlr_fip_vlan_responder.attr,
[SCSI] libfcoe: Add fcoe_sysfs This patch adds a 'fcoe bus' infrastructure to the kernel that is driven by changes to libfcoe which allow LLDs to present FIP (FCoE Initialization Protocol) discovered entities and their attributes to user space via sysfs. This patch adds the following APIs- fcoe_ctlr_device_add fcoe_ctlr_device_delete fcoe_fcf_device_add fcoe_fcf_device_delete They allow the LLD to expose the FCoE ENode Controller and any discovered FCFs (Fibre Channel Forwarders, e.g. FCoE switches) to the user. Each of these new devices has their own bus_type so that they are grouped together for easy lookup from a user space application. Each new class has an attribute_group to expose attributes for any created instances. The attributes are- fcoe_ctlr_device * fcf_dev_loss_tmo * lesb_link_fail * lesb_vlink_fail * lesb_miss_fka * lesb_symb_err * lesb_err_block * lesb_fcs_error fcoe_fcf_device * fabric_name * switch_name * priority * selected * fc_map * vfid * mac * fka_peroid * fabric_state * dev_loss_tmo A device loss infrastructre similar to the FC Transport's is also added by this patch. It is nice to have so that a link flapping adapter doesn't continually advance the count used to identify the discovered FCF. FCFs will exist in a "Disconnected" state until either the timer expires or the FCF is rediscovered and becomes "Connected." This patch generates a few checkpatch.pl WARNINGS that I'm not sure what to do about. They're macros modeled around the FC Transport attribute building macros, which have the same 'feature' where the caller can ommit a cast in the argument list and no cast occurs in the code. I'm not sure how to keep the code condensed while keeping the macros. Any advice would be appreciated. Signed-off-by: Robert Love <robert.w.love@intel.com> Tested-by: Ross Brattain <ross.b.brattain@intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2012-05-22 20:06:21 -06:00
&device_attr_fcoe_ctlr_fcf_dev_loss_tmo.attr,
&device_attr_fcoe_ctlr_r_a_tov.attr,
&device_attr_fcoe_ctlr_e_d_tov.attr,
libfcoe, fcoe, bnx2fc: Add new fcoe control interface This patch does a few things. 1) Makes /sys/bus/fcoe/ctlr_{create,destroy} interfaces. These interfaces take an <ifname> and will either create an FCoE Controller or destroy an FCoE Controller depending on which file is written to. The new FCoE Controller will start in a DISABLED state and will not do discovery or login until it is ENABLED. This pause will allow us to configure the FCoE Controller before enabling it. 2) Makes the 'mode' attribute of a fcoe_ctlr_device writale. This allows the user to configure the mode in which the FCoE Controller will start in when it is ENABLED. Possible modes are 'Fabric', or 'VN2VN'. The default mode for a fcoe_ctlr{,_device} is 'Fabric'. Drivers must implement the set_fcoe_ctlr_mode routine to support this feature. libfcoe offers an exported routine to set a FCoE Controller's mode. The mode can only be changed when the FCoE Controller is DISABLED. This patch also removes the get_fcoe_ctlr_mode pointer in the fcoe_sysfs function template, the code in fcoe_ctlr.c to get the mode and the assignment of the fcoe_sysfs function pointer to the fcoe_ctlr.c implementation (in fcoe and bnx2fc). fcoe_sysfs can return that value for the mode without consulting the LLD. 3) Make a 'enabled' attribute of a fcoe_ctlr_device. On a read, fcoe_sysfs will return the attribute's value. On a write, fcoe_sysfs will call the LLD (if there is a callback) to notifiy that the enalbed state has changed. This patch maintains the old FCoE control interfaces as module parameters, but it adds comments pointing out that the old interfaces are deprecated. Signed-off-by: Robert Love <robert.w.love@intel.com> Acked-by: Neil Horman <nhorman@tuxdriver.com>
2012-11-26 23:53:30 -07:00
&device_attr_fcoe_ctlr_enabled.attr,
[SCSI] libfcoe: Add fcoe_sysfs This patch adds a 'fcoe bus' infrastructure to the kernel that is driven by changes to libfcoe which allow LLDs to present FIP (FCoE Initialization Protocol) discovered entities and their attributes to user space via sysfs. This patch adds the following APIs- fcoe_ctlr_device_add fcoe_ctlr_device_delete fcoe_fcf_device_add fcoe_fcf_device_delete They allow the LLD to expose the FCoE ENode Controller and any discovered FCFs (Fibre Channel Forwarders, e.g. FCoE switches) to the user. Each of these new devices has their own bus_type so that they are grouped together for easy lookup from a user space application. Each new class has an attribute_group to expose attributes for any created instances. The attributes are- fcoe_ctlr_device * fcf_dev_loss_tmo * lesb_link_fail * lesb_vlink_fail * lesb_miss_fka * lesb_symb_err * lesb_err_block * lesb_fcs_error fcoe_fcf_device * fabric_name * switch_name * priority * selected * fc_map * vfid * mac * fka_peroid * fabric_state * dev_loss_tmo A device loss infrastructre similar to the FC Transport's is also added by this patch. It is nice to have so that a link flapping adapter doesn't continually advance the count used to identify the discovered FCF. FCFs will exist in a "Disconnected" state until either the timer expires or the FCF is rediscovered and becomes "Connected." This patch generates a few checkpatch.pl WARNINGS that I'm not sure what to do about. They're macros modeled around the FC Transport attribute building macros, which have the same 'feature' where the caller can ommit a cast in the argument list and no cast occurs in the code. I'm not sure how to keep the code condensed while keeping the macros. Any advice would be appreciated. Signed-off-by: Robert Love <robert.w.love@intel.com> Tested-by: Ross Brattain <ross.b.brattain@intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2012-05-22 20:06:21 -06:00
&device_attr_fcoe_ctlr_mode.attr,
NULL,
};
static struct attribute_group fcoe_ctlr_attr_group = {
.attrs = fcoe_ctlr_attrs,
};
static const struct attribute_group *fcoe_ctlr_attr_groups[] = {
&fcoe_ctlr_attr_group,
&fcoe_ctlr_lesb_attr_group,
NULL,
};
static struct attribute *fcoe_fcf_attrs[] = {
&device_attr_fcoe_fcf_fabric_name.attr,
&device_attr_fcoe_fcf_switch_name.attr,
&device_attr_fcoe_fcf_dev_loss_tmo.attr,
&device_attr_fcoe_fcf_fc_map.attr,
&device_attr_fcoe_fcf_vfid.attr,
&device_attr_fcoe_fcf_mac.attr,
&device_attr_fcoe_fcf_priority.attr,
&device_attr_fcoe_fcf_fka_period.attr,
&device_attr_fcoe_fcf_state.attr,
&device_attr_fcoe_fcf_selected.attr,
&device_attr_fcoe_fcf_vlan_id.attr,
NULL
};
static struct attribute_group fcoe_fcf_attr_group = {
.attrs = fcoe_fcf_attrs,
};
static const struct attribute_group *fcoe_fcf_attr_groups[] = {
&fcoe_fcf_attr_group,
NULL,
};
static struct bus_type fcoe_bus_type;
[SCSI] libfcoe: Add fcoe_sysfs This patch adds a 'fcoe bus' infrastructure to the kernel that is driven by changes to libfcoe which allow LLDs to present FIP (FCoE Initialization Protocol) discovered entities and their attributes to user space via sysfs. This patch adds the following APIs- fcoe_ctlr_device_add fcoe_ctlr_device_delete fcoe_fcf_device_add fcoe_fcf_device_delete They allow the LLD to expose the FCoE ENode Controller and any discovered FCFs (Fibre Channel Forwarders, e.g. FCoE switches) to the user. Each of these new devices has their own bus_type so that they are grouped together for easy lookup from a user space application. Each new class has an attribute_group to expose attributes for any created instances. The attributes are- fcoe_ctlr_device * fcf_dev_loss_tmo * lesb_link_fail * lesb_vlink_fail * lesb_miss_fka * lesb_symb_err * lesb_err_block * lesb_fcs_error fcoe_fcf_device * fabric_name * switch_name * priority * selected * fc_map * vfid * mac * fka_peroid * fabric_state * dev_loss_tmo A device loss infrastructre similar to the FC Transport's is also added by this patch. It is nice to have so that a link flapping adapter doesn't continually advance the count used to identify the discovered FCF. FCFs will exist in a "Disconnected" state until either the timer expires or the FCF is rediscovered and becomes "Connected." This patch generates a few checkpatch.pl WARNINGS that I'm not sure what to do about. They're macros modeled around the FC Transport attribute building macros, which have the same 'feature' where the caller can ommit a cast in the argument list and no cast occurs in the code. I'm not sure how to keep the code condensed while keeping the macros. Any advice would be appreciated. Signed-off-by: Robert Love <robert.w.love@intel.com> Tested-by: Ross Brattain <ross.b.brattain@intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2012-05-22 20:06:21 -06:00
static int fcoe_bus_match(struct device *dev,
struct device_driver *drv)
{
if (dev->bus == &fcoe_bus_type)
return 1;
return 0;
}
/**
* fcoe_ctlr_device_release() - Release the FIP ctlr memory
* @dev: Pointer to the FIP ctlr's embedded device
*
* Called when the last FIP ctlr reference is released.
*/
static void fcoe_ctlr_device_release(struct device *dev)
{
struct fcoe_ctlr_device *ctlr = dev_to_ctlr(dev);
kfree(ctlr);
}
/**
* fcoe_fcf_device_release() - Release the FIP fcf memory
* @dev: Pointer to the fcf's embedded device
*
* Called when the last FIP fcf reference is released.
*/
static void fcoe_fcf_device_release(struct device *dev)
{
struct fcoe_fcf_device *fcf = dev_to_fcf(dev);
kfree(fcf);
}
static const struct device_type fcoe_ctlr_device_type = {
[SCSI] libfcoe: Add fcoe_sysfs This patch adds a 'fcoe bus' infrastructure to the kernel that is driven by changes to libfcoe which allow LLDs to present FIP (FCoE Initialization Protocol) discovered entities and their attributes to user space via sysfs. This patch adds the following APIs- fcoe_ctlr_device_add fcoe_ctlr_device_delete fcoe_fcf_device_add fcoe_fcf_device_delete They allow the LLD to expose the FCoE ENode Controller and any discovered FCFs (Fibre Channel Forwarders, e.g. FCoE switches) to the user. Each of these new devices has their own bus_type so that they are grouped together for easy lookup from a user space application. Each new class has an attribute_group to expose attributes for any created instances. The attributes are- fcoe_ctlr_device * fcf_dev_loss_tmo * lesb_link_fail * lesb_vlink_fail * lesb_miss_fka * lesb_symb_err * lesb_err_block * lesb_fcs_error fcoe_fcf_device * fabric_name * switch_name * priority * selected * fc_map * vfid * mac * fka_peroid * fabric_state * dev_loss_tmo A device loss infrastructre similar to the FC Transport's is also added by this patch. It is nice to have so that a link flapping adapter doesn't continually advance the count used to identify the discovered FCF. FCFs will exist in a "Disconnected" state until either the timer expires or the FCF is rediscovered and becomes "Connected." This patch generates a few checkpatch.pl WARNINGS that I'm not sure what to do about. They're macros modeled around the FC Transport attribute building macros, which have the same 'feature' where the caller can ommit a cast in the argument list and no cast occurs in the code. I'm not sure how to keep the code condensed while keeping the macros. Any advice would be appreciated. Signed-off-by: Robert Love <robert.w.love@intel.com> Tested-by: Ross Brattain <ross.b.brattain@intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2012-05-22 20:06:21 -06:00
.name = "fcoe_ctlr",
.groups = fcoe_ctlr_attr_groups,
.release = fcoe_ctlr_device_release,
};
static const struct device_type fcoe_fcf_device_type = {
[SCSI] libfcoe: Add fcoe_sysfs This patch adds a 'fcoe bus' infrastructure to the kernel that is driven by changes to libfcoe which allow LLDs to present FIP (FCoE Initialization Protocol) discovered entities and their attributes to user space via sysfs. This patch adds the following APIs- fcoe_ctlr_device_add fcoe_ctlr_device_delete fcoe_fcf_device_add fcoe_fcf_device_delete They allow the LLD to expose the FCoE ENode Controller and any discovered FCFs (Fibre Channel Forwarders, e.g. FCoE switches) to the user. Each of these new devices has their own bus_type so that they are grouped together for easy lookup from a user space application. Each new class has an attribute_group to expose attributes for any created instances. The attributes are- fcoe_ctlr_device * fcf_dev_loss_tmo * lesb_link_fail * lesb_vlink_fail * lesb_miss_fka * lesb_symb_err * lesb_err_block * lesb_fcs_error fcoe_fcf_device * fabric_name * switch_name * priority * selected * fc_map * vfid * mac * fka_peroid * fabric_state * dev_loss_tmo A device loss infrastructre similar to the FC Transport's is also added by this patch. It is nice to have so that a link flapping adapter doesn't continually advance the count used to identify the discovered FCF. FCFs will exist in a "Disconnected" state until either the timer expires or the FCF is rediscovered and becomes "Connected." This patch generates a few checkpatch.pl WARNINGS that I'm not sure what to do about. They're macros modeled around the FC Transport attribute building macros, which have the same 'feature' where the caller can ommit a cast in the argument list and no cast occurs in the code. I'm not sure how to keep the code condensed while keeping the macros. Any advice would be appreciated. Signed-off-by: Robert Love <robert.w.love@intel.com> Tested-by: Ross Brattain <ross.b.brattain@intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2012-05-22 20:06:21 -06:00
.name = "fcoe_fcf",
.groups = fcoe_fcf_attr_groups,
.release = fcoe_fcf_device_release,
};
static ssize_t ctlr_create_store(struct bus_type *bus, const char *buf,
size_t count)
{
return fcoe_ctlr_create_store(bus, buf, count);
}
static BUS_ATTR_WO(ctlr_create);
static ssize_t ctlr_destroy_store(struct bus_type *bus, const char *buf,
size_t count)
{
return fcoe_ctlr_destroy_store(bus, buf, count);
}
static BUS_ATTR_WO(ctlr_destroy);
static struct attribute *fcoe_bus_attrs[] = {
&bus_attr_ctlr_create.attr,
&bus_attr_ctlr_destroy.attr,
NULL,
libfcoe, fcoe, bnx2fc: Add new fcoe control interface This patch does a few things. 1) Makes /sys/bus/fcoe/ctlr_{create,destroy} interfaces. These interfaces take an <ifname> and will either create an FCoE Controller or destroy an FCoE Controller depending on which file is written to. The new FCoE Controller will start in a DISABLED state and will not do discovery or login until it is ENABLED. This pause will allow us to configure the FCoE Controller before enabling it. 2) Makes the 'mode' attribute of a fcoe_ctlr_device writale. This allows the user to configure the mode in which the FCoE Controller will start in when it is ENABLED. Possible modes are 'Fabric', or 'VN2VN'. The default mode for a fcoe_ctlr{,_device} is 'Fabric'. Drivers must implement the set_fcoe_ctlr_mode routine to support this feature. libfcoe offers an exported routine to set a FCoE Controller's mode. The mode can only be changed when the FCoE Controller is DISABLED. This patch also removes the get_fcoe_ctlr_mode pointer in the fcoe_sysfs function template, the code in fcoe_ctlr.c to get the mode and the assignment of the fcoe_sysfs function pointer to the fcoe_ctlr.c implementation (in fcoe and bnx2fc). fcoe_sysfs can return that value for the mode without consulting the LLD. 3) Make a 'enabled' attribute of a fcoe_ctlr_device. On a read, fcoe_sysfs will return the attribute's value. On a write, fcoe_sysfs will call the LLD (if there is a callback) to notifiy that the enalbed state has changed. This patch maintains the old FCoE control interfaces as module parameters, but it adds comments pointing out that the old interfaces are deprecated. Signed-off-by: Robert Love <robert.w.love@intel.com> Acked-by: Neil Horman <nhorman@tuxdriver.com>
2012-11-26 23:53:30 -07:00
};
ATTRIBUTE_GROUPS(fcoe_bus);
libfcoe, fcoe, bnx2fc: Add new fcoe control interface This patch does a few things. 1) Makes /sys/bus/fcoe/ctlr_{create,destroy} interfaces. These interfaces take an <ifname> and will either create an FCoE Controller or destroy an FCoE Controller depending on which file is written to. The new FCoE Controller will start in a DISABLED state and will not do discovery or login until it is ENABLED. This pause will allow us to configure the FCoE Controller before enabling it. 2) Makes the 'mode' attribute of a fcoe_ctlr_device writale. This allows the user to configure the mode in which the FCoE Controller will start in when it is ENABLED. Possible modes are 'Fabric', or 'VN2VN'. The default mode for a fcoe_ctlr{,_device} is 'Fabric'. Drivers must implement the set_fcoe_ctlr_mode routine to support this feature. libfcoe offers an exported routine to set a FCoE Controller's mode. The mode can only be changed when the FCoE Controller is DISABLED. This patch also removes the get_fcoe_ctlr_mode pointer in the fcoe_sysfs function template, the code in fcoe_ctlr.c to get the mode and the assignment of the fcoe_sysfs function pointer to the fcoe_ctlr.c implementation (in fcoe and bnx2fc). fcoe_sysfs can return that value for the mode without consulting the LLD. 3) Make a 'enabled' attribute of a fcoe_ctlr_device. On a read, fcoe_sysfs will return the attribute's value. On a write, fcoe_sysfs will call the LLD (if there is a callback) to notifiy that the enalbed state has changed. This patch maintains the old FCoE control interfaces as module parameters, but it adds comments pointing out that the old interfaces are deprecated. Signed-off-by: Robert Love <robert.w.love@intel.com> Acked-by: Neil Horman <nhorman@tuxdriver.com>
2012-11-26 23:53:30 -07:00
static struct bus_type fcoe_bus_type = {
[SCSI] libfcoe: Add fcoe_sysfs This patch adds a 'fcoe bus' infrastructure to the kernel that is driven by changes to libfcoe which allow LLDs to present FIP (FCoE Initialization Protocol) discovered entities and their attributes to user space via sysfs. This patch adds the following APIs- fcoe_ctlr_device_add fcoe_ctlr_device_delete fcoe_fcf_device_add fcoe_fcf_device_delete They allow the LLD to expose the FCoE ENode Controller and any discovered FCFs (Fibre Channel Forwarders, e.g. FCoE switches) to the user. Each of these new devices has their own bus_type so that they are grouped together for easy lookup from a user space application. Each new class has an attribute_group to expose attributes for any created instances. The attributes are- fcoe_ctlr_device * fcf_dev_loss_tmo * lesb_link_fail * lesb_vlink_fail * lesb_miss_fka * lesb_symb_err * lesb_err_block * lesb_fcs_error fcoe_fcf_device * fabric_name * switch_name * priority * selected * fc_map * vfid * mac * fka_peroid * fabric_state * dev_loss_tmo A device loss infrastructre similar to the FC Transport's is also added by this patch. It is nice to have so that a link flapping adapter doesn't continually advance the count used to identify the discovered FCF. FCFs will exist in a "Disconnected" state until either the timer expires or the FCF is rediscovered and becomes "Connected." This patch generates a few checkpatch.pl WARNINGS that I'm not sure what to do about. They're macros modeled around the FC Transport attribute building macros, which have the same 'feature' where the caller can ommit a cast in the argument list and no cast occurs in the code. I'm not sure how to keep the code condensed while keeping the macros. Any advice would be appreciated. Signed-off-by: Robert Love <robert.w.love@intel.com> Tested-by: Ross Brattain <ross.b.brattain@intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2012-05-22 20:06:21 -06:00
.name = "fcoe",
.match = &fcoe_bus_match,
.bus_groups = fcoe_bus_groups,
[SCSI] libfcoe: Add fcoe_sysfs This patch adds a 'fcoe bus' infrastructure to the kernel that is driven by changes to libfcoe which allow LLDs to present FIP (FCoE Initialization Protocol) discovered entities and their attributes to user space via sysfs. This patch adds the following APIs- fcoe_ctlr_device_add fcoe_ctlr_device_delete fcoe_fcf_device_add fcoe_fcf_device_delete They allow the LLD to expose the FCoE ENode Controller and any discovered FCFs (Fibre Channel Forwarders, e.g. FCoE switches) to the user. Each of these new devices has their own bus_type so that they are grouped together for easy lookup from a user space application. Each new class has an attribute_group to expose attributes for any created instances. The attributes are- fcoe_ctlr_device * fcf_dev_loss_tmo * lesb_link_fail * lesb_vlink_fail * lesb_miss_fka * lesb_symb_err * lesb_err_block * lesb_fcs_error fcoe_fcf_device * fabric_name * switch_name * priority * selected * fc_map * vfid * mac * fka_peroid * fabric_state * dev_loss_tmo A device loss infrastructre similar to the FC Transport's is also added by this patch. It is nice to have so that a link flapping adapter doesn't continually advance the count used to identify the discovered FCF. FCFs will exist in a "Disconnected" state until either the timer expires or the FCF is rediscovered and becomes "Connected." This patch generates a few checkpatch.pl WARNINGS that I'm not sure what to do about. They're macros modeled around the FC Transport attribute building macros, which have the same 'feature' where the caller can ommit a cast in the argument list and no cast occurs in the code. I'm not sure how to keep the code condensed while keeping the macros. Any advice would be appreciated. Signed-off-by: Robert Love <robert.w.love@intel.com> Tested-by: Ross Brattain <ross.b.brattain@intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2012-05-22 20:06:21 -06:00
};
/**
* fcoe_ctlr_device_flush_work() - Flush a FIP ctlr's workqueue
* @ctlr: Pointer to the FIP ctlr whose workqueue is to be flushed
*/
static void fcoe_ctlr_device_flush_work(struct fcoe_ctlr_device *ctlr)
[SCSI] libfcoe: Add fcoe_sysfs This patch adds a 'fcoe bus' infrastructure to the kernel that is driven by changes to libfcoe which allow LLDs to present FIP (FCoE Initialization Protocol) discovered entities and their attributes to user space via sysfs. This patch adds the following APIs- fcoe_ctlr_device_add fcoe_ctlr_device_delete fcoe_fcf_device_add fcoe_fcf_device_delete They allow the LLD to expose the FCoE ENode Controller and any discovered FCFs (Fibre Channel Forwarders, e.g. FCoE switches) to the user. Each of these new devices has their own bus_type so that they are grouped together for easy lookup from a user space application. Each new class has an attribute_group to expose attributes for any created instances. The attributes are- fcoe_ctlr_device * fcf_dev_loss_tmo * lesb_link_fail * lesb_vlink_fail * lesb_miss_fka * lesb_symb_err * lesb_err_block * lesb_fcs_error fcoe_fcf_device * fabric_name * switch_name * priority * selected * fc_map * vfid * mac * fka_peroid * fabric_state * dev_loss_tmo A device loss infrastructre similar to the FC Transport's is also added by this patch. It is nice to have so that a link flapping adapter doesn't continually advance the count used to identify the discovered FCF. FCFs will exist in a "Disconnected" state until either the timer expires or the FCF is rediscovered and becomes "Connected." This patch generates a few checkpatch.pl WARNINGS that I'm not sure what to do about. They're macros modeled around the FC Transport attribute building macros, which have the same 'feature' where the caller can ommit a cast in the argument list and no cast occurs in the code. I'm not sure how to keep the code condensed while keeping the macros. Any advice would be appreciated. Signed-off-by: Robert Love <robert.w.love@intel.com> Tested-by: Ross Brattain <ross.b.brattain@intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2012-05-22 20:06:21 -06:00
{
if (!fcoe_ctlr_work_q(ctlr)) {
printk(KERN_ERR
"ERROR: FIP Ctlr '%d' attempted to flush work, "
"when no workqueue created.\n", ctlr->id);
dump_stack();
return;
}
flush_workqueue(fcoe_ctlr_work_q(ctlr));
}
/**
* fcoe_ctlr_device_queue_work() - Schedule work for a FIP ctlr's workqueue
* @ctlr: Pointer to the FIP ctlr who owns the devloss workqueue
* @work: Work to queue for execution
*
* Return value:
* 1 on success / 0 already queued / < 0 for error
*/
static int fcoe_ctlr_device_queue_work(struct fcoe_ctlr_device *ctlr,
struct work_struct *work)
[SCSI] libfcoe: Add fcoe_sysfs This patch adds a 'fcoe bus' infrastructure to the kernel that is driven by changes to libfcoe which allow LLDs to present FIP (FCoE Initialization Protocol) discovered entities and their attributes to user space via sysfs. This patch adds the following APIs- fcoe_ctlr_device_add fcoe_ctlr_device_delete fcoe_fcf_device_add fcoe_fcf_device_delete They allow the LLD to expose the FCoE ENode Controller and any discovered FCFs (Fibre Channel Forwarders, e.g. FCoE switches) to the user. Each of these new devices has their own bus_type so that they are grouped together for easy lookup from a user space application. Each new class has an attribute_group to expose attributes for any created instances. The attributes are- fcoe_ctlr_device * fcf_dev_loss_tmo * lesb_link_fail * lesb_vlink_fail * lesb_miss_fka * lesb_symb_err * lesb_err_block * lesb_fcs_error fcoe_fcf_device * fabric_name * switch_name * priority * selected * fc_map * vfid * mac * fka_peroid * fabric_state * dev_loss_tmo A device loss infrastructre similar to the FC Transport's is also added by this patch. It is nice to have so that a link flapping adapter doesn't continually advance the count used to identify the discovered FCF. FCFs will exist in a "Disconnected" state until either the timer expires or the FCF is rediscovered and becomes "Connected." This patch generates a few checkpatch.pl WARNINGS that I'm not sure what to do about. They're macros modeled around the FC Transport attribute building macros, which have the same 'feature' where the caller can ommit a cast in the argument list and no cast occurs in the code. I'm not sure how to keep the code condensed while keeping the macros. Any advice would be appreciated. Signed-off-by: Robert Love <robert.w.love@intel.com> Tested-by: Ross Brattain <ross.b.brattain@intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2012-05-22 20:06:21 -06:00
{
if (unlikely(!fcoe_ctlr_work_q(ctlr))) {
printk(KERN_ERR
"ERROR: FIP Ctlr '%d' attempted to queue work, "
"when no workqueue created.\n", ctlr->id);
dump_stack();
return -EINVAL;
}
return queue_work(fcoe_ctlr_work_q(ctlr), work);
}
/**
* fcoe_ctlr_device_flush_devloss() - Flush a FIP ctlr's devloss workqueue
* @ctlr: Pointer to FIP ctlr whose workqueue is to be flushed
*/
static void fcoe_ctlr_device_flush_devloss(struct fcoe_ctlr_device *ctlr)
[SCSI] libfcoe: Add fcoe_sysfs This patch adds a 'fcoe bus' infrastructure to the kernel that is driven by changes to libfcoe which allow LLDs to present FIP (FCoE Initialization Protocol) discovered entities and their attributes to user space via sysfs. This patch adds the following APIs- fcoe_ctlr_device_add fcoe_ctlr_device_delete fcoe_fcf_device_add fcoe_fcf_device_delete They allow the LLD to expose the FCoE ENode Controller and any discovered FCFs (Fibre Channel Forwarders, e.g. FCoE switches) to the user. Each of these new devices has their own bus_type so that they are grouped together for easy lookup from a user space application. Each new class has an attribute_group to expose attributes for any created instances. The attributes are- fcoe_ctlr_device * fcf_dev_loss_tmo * lesb_link_fail * lesb_vlink_fail * lesb_miss_fka * lesb_symb_err * lesb_err_block * lesb_fcs_error fcoe_fcf_device * fabric_name * switch_name * priority * selected * fc_map * vfid * mac * fka_peroid * fabric_state * dev_loss_tmo A device loss infrastructre similar to the FC Transport's is also added by this patch. It is nice to have so that a link flapping adapter doesn't continually advance the count used to identify the discovered FCF. FCFs will exist in a "Disconnected" state until either the timer expires or the FCF is rediscovered and becomes "Connected." This patch generates a few checkpatch.pl WARNINGS that I'm not sure what to do about. They're macros modeled around the FC Transport attribute building macros, which have the same 'feature' where the caller can ommit a cast in the argument list and no cast occurs in the code. I'm not sure how to keep the code condensed while keeping the macros. Any advice would be appreciated. Signed-off-by: Robert Love <robert.w.love@intel.com> Tested-by: Ross Brattain <ross.b.brattain@intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2012-05-22 20:06:21 -06:00
{
if (!fcoe_ctlr_devloss_work_q(ctlr)) {
printk(KERN_ERR
"ERROR: FIP Ctlr '%d' attempted to flush work, "
"when no workqueue created.\n", ctlr->id);
dump_stack();
return;
}
flush_workqueue(fcoe_ctlr_devloss_work_q(ctlr));
}
/**
* fcoe_ctlr_device_queue_devloss_work() - Schedule work for a FIP ctlr's devloss workqueue
* @ctlr: Pointer to the FIP ctlr who owns the devloss workqueue
* @work: Work to queue for execution
* @delay: jiffies to delay the work queuing
*
* Return value:
* 1 on success / 0 already queued / < 0 for error
*/
static int fcoe_ctlr_device_queue_devloss_work(struct fcoe_ctlr_device *ctlr,
struct delayed_work *work,
unsigned long delay)
[SCSI] libfcoe: Add fcoe_sysfs This patch adds a 'fcoe bus' infrastructure to the kernel that is driven by changes to libfcoe which allow LLDs to present FIP (FCoE Initialization Protocol) discovered entities and their attributes to user space via sysfs. This patch adds the following APIs- fcoe_ctlr_device_add fcoe_ctlr_device_delete fcoe_fcf_device_add fcoe_fcf_device_delete They allow the LLD to expose the FCoE ENode Controller and any discovered FCFs (Fibre Channel Forwarders, e.g. FCoE switches) to the user. Each of these new devices has their own bus_type so that they are grouped together for easy lookup from a user space application. Each new class has an attribute_group to expose attributes for any created instances. The attributes are- fcoe_ctlr_device * fcf_dev_loss_tmo * lesb_link_fail * lesb_vlink_fail * lesb_miss_fka * lesb_symb_err * lesb_err_block * lesb_fcs_error fcoe_fcf_device * fabric_name * switch_name * priority * selected * fc_map * vfid * mac * fka_peroid * fabric_state * dev_loss_tmo A device loss infrastructre similar to the FC Transport's is also added by this patch. It is nice to have so that a link flapping adapter doesn't continually advance the count used to identify the discovered FCF. FCFs will exist in a "Disconnected" state until either the timer expires or the FCF is rediscovered and becomes "Connected." This patch generates a few checkpatch.pl WARNINGS that I'm not sure what to do about. They're macros modeled around the FC Transport attribute building macros, which have the same 'feature' where the caller can ommit a cast in the argument list and no cast occurs in the code. I'm not sure how to keep the code condensed while keeping the macros. Any advice would be appreciated. Signed-off-by: Robert Love <robert.w.love@intel.com> Tested-by: Ross Brattain <ross.b.brattain@intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2012-05-22 20:06:21 -06:00
{
if (unlikely(!fcoe_ctlr_devloss_work_q(ctlr))) {
printk(KERN_ERR
"ERROR: FIP Ctlr '%d' attempted to queue work, "
"when no workqueue created.\n", ctlr->id);
dump_stack();
return -EINVAL;
}
return queue_delayed_work(fcoe_ctlr_devloss_work_q(ctlr), work, delay);
}
static int fcoe_fcf_device_match(struct fcoe_fcf_device *new,
struct fcoe_fcf_device *old)
{
if (new->switch_name == old->switch_name &&
new->fabric_name == old->fabric_name &&
new->fc_map == old->fc_map &&
ether_addr_equal(new->mac, old->mac))
[SCSI] libfcoe: Add fcoe_sysfs This patch adds a 'fcoe bus' infrastructure to the kernel that is driven by changes to libfcoe which allow LLDs to present FIP (FCoE Initialization Protocol) discovered entities and their attributes to user space via sysfs. This patch adds the following APIs- fcoe_ctlr_device_add fcoe_ctlr_device_delete fcoe_fcf_device_add fcoe_fcf_device_delete They allow the LLD to expose the FCoE ENode Controller and any discovered FCFs (Fibre Channel Forwarders, e.g. FCoE switches) to the user. Each of these new devices has their own bus_type so that they are grouped together for easy lookup from a user space application. Each new class has an attribute_group to expose attributes for any created instances. The attributes are- fcoe_ctlr_device * fcf_dev_loss_tmo * lesb_link_fail * lesb_vlink_fail * lesb_miss_fka * lesb_symb_err * lesb_err_block * lesb_fcs_error fcoe_fcf_device * fabric_name * switch_name * priority * selected * fc_map * vfid * mac * fka_peroid * fabric_state * dev_loss_tmo A device loss infrastructre similar to the FC Transport's is also added by this patch. It is nice to have so that a link flapping adapter doesn't continually advance the count used to identify the discovered FCF. FCFs will exist in a "Disconnected" state until either the timer expires or the FCF is rediscovered and becomes "Connected." This patch generates a few checkpatch.pl WARNINGS that I'm not sure what to do about. They're macros modeled around the FC Transport attribute building macros, which have the same 'feature' where the caller can ommit a cast in the argument list and no cast occurs in the code. I'm not sure how to keep the code condensed while keeping the macros. Any advice would be appreciated. Signed-off-by: Robert Love <robert.w.love@intel.com> Tested-by: Ross Brattain <ross.b.brattain@intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2012-05-22 20:06:21 -06:00
return 1;
return 0;
}
/**
* fcoe_ctlr_device_add() - Add a FIP ctlr to sysfs
* @parent: The parent device to which the fcoe_ctlr instance
* should be attached
* @f: The LLD's FCoE sysfs function template pointer
* @priv_size: Size to be allocated with the fcoe_ctlr_device for the LLD
*
* This routine allocates a FIP ctlr object with some additional memory
* for the LLD. The FIP ctlr is initialized, added to sysfs and then
* attributes are added to it.
*/
struct fcoe_ctlr_device *fcoe_ctlr_device_add(struct device *parent,
struct fcoe_sysfs_function_template *f,
int priv_size)
{
struct fcoe_ctlr_device *ctlr;
int error = 0;
ctlr = kzalloc(sizeof(struct fcoe_ctlr_device) + priv_size,
GFP_KERNEL);
if (!ctlr)
goto out;
ctlr->id = atomic_inc_return(&ctlr_num) - 1;
ctlr->f = f;
libfcoe, fcoe, bnx2fc: Add new fcoe control interface This patch does a few things. 1) Makes /sys/bus/fcoe/ctlr_{create,destroy} interfaces. These interfaces take an <ifname> and will either create an FCoE Controller or destroy an FCoE Controller depending on which file is written to. The new FCoE Controller will start in a DISABLED state and will not do discovery or login until it is ENABLED. This pause will allow us to configure the FCoE Controller before enabling it. 2) Makes the 'mode' attribute of a fcoe_ctlr_device writale. This allows the user to configure the mode in which the FCoE Controller will start in when it is ENABLED. Possible modes are 'Fabric', or 'VN2VN'. The default mode for a fcoe_ctlr{,_device} is 'Fabric'. Drivers must implement the set_fcoe_ctlr_mode routine to support this feature. libfcoe offers an exported routine to set a FCoE Controller's mode. The mode can only be changed when the FCoE Controller is DISABLED. This patch also removes the get_fcoe_ctlr_mode pointer in the fcoe_sysfs function template, the code in fcoe_ctlr.c to get the mode and the assignment of the fcoe_sysfs function pointer to the fcoe_ctlr.c implementation (in fcoe and bnx2fc). fcoe_sysfs can return that value for the mode without consulting the LLD. 3) Make a 'enabled' attribute of a fcoe_ctlr_device. On a read, fcoe_sysfs will return the attribute's value. On a write, fcoe_sysfs will call the LLD (if there is a callback) to notifiy that the enalbed state has changed. This patch maintains the old FCoE control interfaces as module parameters, but it adds comments pointing out that the old interfaces are deprecated. Signed-off-by: Robert Love <robert.w.love@intel.com> Acked-by: Neil Horman <nhorman@tuxdriver.com>
2012-11-26 23:53:30 -07:00
ctlr->mode = FIP_CONN_TYPE_FABRIC;
[SCSI] libfcoe: Add fcoe_sysfs This patch adds a 'fcoe bus' infrastructure to the kernel that is driven by changes to libfcoe which allow LLDs to present FIP (FCoE Initialization Protocol) discovered entities and their attributes to user space via sysfs. This patch adds the following APIs- fcoe_ctlr_device_add fcoe_ctlr_device_delete fcoe_fcf_device_add fcoe_fcf_device_delete They allow the LLD to expose the FCoE ENode Controller and any discovered FCFs (Fibre Channel Forwarders, e.g. FCoE switches) to the user. Each of these new devices has their own bus_type so that they are grouped together for easy lookup from a user space application. Each new class has an attribute_group to expose attributes for any created instances. The attributes are- fcoe_ctlr_device * fcf_dev_loss_tmo * lesb_link_fail * lesb_vlink_fail * lesb_miss_fka * lesb_symb_err * lesb_err_block * lesb_fcs_error fcoe_fcf_device * fabric_name * switch_name * priority * selected * fc_map * vfid * mac * fka_peroid * fabric_state * dev_loss_tmo A device loss infrastructre similar to the FC Transport's is also added by this patch. It is nice to have so that a link flapping adapter doesn't continually advance the count used to identify the discovered FCF. FCFs will exist in a "Disconnected" state until either the timer expires or the FCF is rediscovered and becomes "Connected." This patch generates a few checkpatch.pl WARNINGS that I'm not sure what to do about. They're macros modeled around the FC Transport attribute building macros, which have the same 'feature' where the caller can ommit a cast in the argument list and no cast occurs in the code. I'm not sure how to keep the code condensed while keeping the macros. Any advice would be appreciated. Signed-off-by: Robert Love <robert.w.love@intel.com> Tested-by: Ross Brattain <ross.b.brattain@intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2012-05-22 20:06:21 -06:00
INIT_LIST_HEAD(&ctlr->fcfs);
mutex_init(&ctlr->lock);
ctlr->dev.parent = parent;
ctlr->dev.bus = &fcoe_bus_type;
ctlr->dev.type = &fcoe_ctlr_device_type;
ctlr->fcf_dev_loss_tmo = fcoe_fcf_dev_loss_tmo;
snprintf(ctlr->work_q_name, sizeof(ctlr->work_q_name),
"ctlr_wq_%d", ctlr->id);
ctlr->work_q = create_singlethread_workqueue(
ctlr->work_q_name);
if (!ctlr->work_q)
goto out_del;
snprintf(ctlr->devloss_work_q_name,
sizeof(ctlr->devloss_work_q_name),
"ctlr_dl_wq_%d", ctlr->id);
ctlr->devloss_work_q = create_singlethread_workqueue(
ctlr->devloss_work_q_name);
if (!ctlr->devloss_work_q)
goto out_del_q;
dev_set_name(&ctlr->dev, "ctlr_%d", ctlr->id);
error = device_register(&ctlr->dev);
if (error)
goto out_del_q2;
return ctlr;
out_del_q2:
destroy_workqueue(ctlr->devloss_work_q);
ctlr->devloss_work_q = NULL;
out_del_q:
destroy_workqueue(ctlr->work_q);
ctlr->work_q = NULL;
out_del:
kfree(ctlr);
out:
return NULL;
}
EXPORT_SYMBOL_GPL(fcoe_ctlr_device_add);
/**
* fcoe_ctlr_device_delete() - Delete a FIP ctlr and its subtree from sysfs
* @ctlr: A pointer to the ctlr to be deleted
*
* Deletes a FIP ctlr and any fcfs attached
* to it. Deleting fcfs will cause their childen
* to be deleted as well.
*
* The ctlr is detached from sysfs and it's resources
* are freed (work q), but the memory is not freed
* until its last reference is released.
*
* This routine expects no locks to be held before
* calling.
*
* TODO: Currently there are no callbacks to clean up LLD data
* for a fcoe_fcf_device. LLDs must keep this in mind as they need
* to clean up each of their LLD data for all fcoe_fcf_device before
* calling fcoe_ctlr_device_delete.
*/
void fcoe_ctlr_device_delete(struct fcoe_ctlr_device *ctlr)
{
struct fcoe_fcf_device *fcf, *next;
/* Remove any attached fcfs */
mutex_lock(&ctlr->lock);
list_for_each_entry_safe(fcf, next,
&ctlr->fcfs, peers) {
list_del(&fcf->peers);
fcf->state = FCOE_FCF_STATE_DELETED;
fcoe_ctlr_device_queue_work(ctlr, &fcf->delete_work);
}
mutex_unlock(&ctlr->lock);
fcoe_ctlr_device_flush_work(ctlr);
destroy_workqueue(ctlr->devloss_work_q);
ctlr->devloss_work_q = NULL;
destroy_workqueue(ctlr->work_q);
ctlr->work_q = NULL;
device_unregister(&ctlr->dev);
}
EXPORT_SYMBOL_GPL(fcoe_ctlr_device_delete);
/**
* fcoe_fcf_device_final_delete() - Final delete routine
* @work: The FIP fcf's embedded work struct
*
* It is expected that the fcf has been removed from
* the FIP ctlr's list before calling this routine.
*/
static void fcoe_fcf_device_final_delete(struct work_struct *work)
{
struct fcoe_fcf_device *fcf =
container_of(work, struct fcoe_fcf_device, delete_work);
struct fcoe_ctlr_device *ctlr = fcoe_fcf_dev_to_ctlr_dev(fcf);
/*
* Cancel any outstanding timers. These should really exist
* only when rmmod'ing the LLDD and we're asking for
* immediate termination of the rports
*/
if (!cancel_delayed_work(&fcf->dev_loss_work))
fcoe_ctlr_device_flush_devloss(ctlr);
device_unregister(&fcf->dev);
}
/**
* fip_timeout_deleted_fcf() - Delete a fcf when the devloss timer fires
* @work: The FIP fcf's embedded work struct
*
* Removes the fcf from the FIP ctlr's list of fcfs and
* queues the final deletion.
*/
static void fip_timeout_deleted_fcf(struct work_struct *work)
{
struct fcoe_fcf_device *fcf =
container_of(work, struct fcoe_fcf_device, dev_loss_work.work);
struct fcoe_ctlr_device *ctlr = fcoe_fcf_dev_to_ctlr_dev(fcf);
mutex_lock(&ctlr->lock);
/*
* If the fcf is deleted or reconnected before the timer
* fires the devloss queue will be flushed, but the state will
* either be CONNECTED or DELETED. If that is the case we
* cancel deleting the fcf.
*/
if (fcf->state != FCOE_FCF_STATE_DISCONNECTED)
goto out;
dev_printk(KERN_ERR, &fcf->dev,
"FIP fcf connection time out: removing fcf\n");
list_del(&fcf->peers);
fcf->state = FCOE_FCF_STATE_DELETED;
fcoe_ctlr_device_queue_work(ctlr, &fcf->delete_work);
out:
mutex_unlock(&ctlr->lock);
}
/**
* fcoe_fcf_device_delete() - Delete a FIP fcf
* @fcf: Pointer to the fcf which is to be deleted
*
* Queues the FIP fcf on the devloss workqueue
*
* Expects the ctlr_attrs mutex to be held for fcf
* state change.
*/
void fcoe_fcf_device_delete(struct fcoe_fcf_device *fcf)
{
struct fcoe_ctlr_device *ctlr = fcoe_fcf_dev_to_ctlr_dev(fcf);
int timeout = fcf->dev_loss_tmo;
if (fcf->state != FCOE_FCF_STATE_CONNECTED)
return;
fcf->state = FCOE_FCF_STATE_DISCONNECTED;
/*
* FCF will only be re-connected by the LLD calling
* fcoe_fcf_device_add, and it should be setting up
* priv then.
*/
fcf->priv = NULL;
fcoe_ctlr_device_queue_devloss_work(ctlr, &fcf->dev_loss_work,
timeout * HZ);
}
EXPORT_SYMBOL_GPL(fcoe_fcf_device_delete);
/**
* fcoe_fcf_device_add() - Add a FCoE sysfs fcoe_fcf_device to the system
* @ctlr: The fcoe_ctlr_device that will be the fcoe_fcf_device parent
* @new_fcf: A temporary FCF used for lookups on the current list of fcfs
*
* Expects to be called with the ctlr->lock held
*/
struct fcoe_fcf_device *fcoe_fcf_device_add(struct fcoe_ctlr_device *ctlr,
struct fcoe_fcf_device *new_fcf)
{
struct fcoe_fcf_device *fcf;
int error = 0;
list_for_each_entry(fcf, &ctlr->fcfs, peers) {
if (fcoe_fcf_device_match(new_fcf, fcf)) {
if (fcf->state == FCOE_FCF_STATE_CONNECTED)
return fcf;
fcf->state = FCOE_FCF_STATE_CONNECTED;
if (!cancel_delayed_work(&fcf->dev_loss_work))
fcoe_ctlr_device_flush_devloss(ctlr);
return fcf;
}
}
fcf = kzalloc(sizeof(struct fcoe_fcf_device), GFP_ATOMIC);
if (unlikely(!fcf))
goto out;
INIT_WORK(&fcf->delete_work, fcoe_fcf_device_final_delete);
INIT_DELAYED_WORK(&fcf->dev_loss_work, fip_timeout_deleted_fcf);
fcf->dev.parent = &ctlr->dev;
fcf->dev.bus = &fcoe_bus_type;
fcf->dev.type = &fcoe_fcf_device_type;
fcf->id = atomic_inc_return(&fcf_num) - 1;
fcf->state = FCOE_FCF_STATE_UNKNOWN;
fcf->dev_loss_tmo = ctlr->fcf_dev_loss_tmo;
dev_set_name(&fcf->dev, "fcf_%d", fcf->id);
fcf->fabric_name = new_fcf->fabric_name;
fcf->switch_name = new_fcf->switch_name;
fcf->fc_map = new_fcf->fc_map;
fcf->vfid = new_fcf->vfid;
memcpy(fcf->mac, new_fcf->mac, ETH_ALEN);
fcf->priority = new_fcf->priority;
fcf->fka_period = new_fcf->fka_period;
fcf->selected = new_fcf->selected;
error = device_register(&fcf->dev);
if (error)
goto out_del;
fcf->state = FCOE_FCF_STATE_CONNECTED;
list_add_tail(&fcf->peers, &ctlr->fcfs);
return fcf;
out_del:
kfree(fcf);
out:
return NULL;
}
EXPORT_SYMBOL_GPL(fcoe_fcf_device_add);
int __init fcoe_sysfs_setup(void)
{
int error;
atomic_set(&ctlr_num, 0);
atomic_set(&fcf_num, 0);
error = bus_register(&fcoe_bus_type);
if (error)
return error;
return 0;
}
void __exit fcoe_sysfs_teardown(void)
{
bus_unregister(&fcoe_bus_type);
}