alistair23-linux/drivers/staging/lirc/lirc_sasem.c

940 lines
22 KiB
C
Raw Normal View History

/*
* lirc_sasem.c - USB remote support for LIRC
* Version 0.5
*
* Copyright (C) 2004-2005 Oliver Stabel <oliver.stabel@gmx.de>
* Tim Davies <tim@opensystems.net.au>
*
* This driver was derived from:
* Venky Raju <dev@venky.ws>
* "lirc_imon - "LIRC/VFD driver for Ahanix/Soundgraph IMON IR/VFD"
* Paul Miller <pmiller9@users.sourceforge.net>'s 2003-2004
* "lirc_atiusb - USB remote support for LIRC"
* Culver Consulting Services <henry@culcon.com>'s 2003
* "Sasem OnAir VFD/IR USB driver"
*
*
* NOTE - The LCDproc iMon driver should work with this module. More info at
* http://www.frogstorm.info/sasem
*/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/usb.h>
#include <media/lirc.h>
#include <media/lirc_dev.h>
#define MOD_AUTHOR "Oliver Stabel <oliver.stabel@gmx.de>, " \
"Tim Davies <tim@opensystems.net.au>"
#define MOD_DESC "USB Driver for Sasem Remote Controller V1.1"
#define MOD_NAME "lirc_sasem"
#define MOD_VERSION "0.5"
#define VFD_MINOR_BASE 144 /* Same as LCD */
#define DEVICE_NAME "lcd%d"
#define BUF_CHUNK_SIZE 8
#define BUF_SIZE 128
#define IOCTL_LCD_CONTRAST 1
/*** P R O T O T Y P E S ***/
/* USB Callback prototypes */
static int sasem_probe(struct usb_interface *interface,
const struct usb_device_id *id);
static void sasem_disconnect(struct usb_interface *interface);
static void usb_rx_callback(struct urb *urb);
static void usb_tx_callback(struct urb *urb);
/* VFD file_operations function prototypes */
static int vfd_open(struct inode *inode, struct file *file);
static long vfd_ioctl(struct file *file, unsigned cmd, unsigned long arg);
static int vfd_close(struct inode *inode, struct file *file);
static ssize_t vfd_write(struct file *file, const char *buf,
size_t n_bytes, loff_t *pos);
/* LIRC driver function prototypes */
static int ir_open(void *data);
static void ir_close(void *data);
/* Driver init/exit prototypes */
static int __init sasem_init(void);
static void __exit sasem_exit(void);
/*** G L O B A L S ***/
#define SASEM_DATA_BUF_SZ 32
struct sasem_context {
struct usb_device *dev;
int vfd_isopen; /* VFD port has been opened */
unsigned int vfd_contrast; /* VFD contrast */
int ir_isopen; /* IR port has been opened */
int dev_present; /* USB device presence */
struct mutex ctx_lock; /* to lock this object */
wait_queue_head_t remove_ok; /* For unexpected USB disconnects */
struct lirc_driver *driver;
struct usb_endpoint_descriptor *rx_endpoint;
struct usb_endpoint_descriptor *tx_endpoint;
struct urb *rx_urb;
struct urb *tx_urb;
unsigned char usb_rx_buf[8];
unsigned char usb_tx_buf[8];
struct tx_t {
unsigned char data_buf[SASEM_DATA_BUF_SZ]; /* user data buffer */
struct completion finished; /* wait for write to finish */
atomic_t busy; /* write in progress */
int status; /* status of tx completion */
} tx;
/* for dealing with repeat codes (wish there was a toggle bit!) */
struct timeval presstime;
char lastcode[8];
int codesaved;
};
/* VFD file operations */
static const struct file_operations vfd_fops = {
.owner = THIS_MODULE,
.open = &vfd_open,
.write = &vfd_write,
.unlocked_ioctl = &vfd_ioctl,
.release = &vfd_close,
llseek: automatically add .llseek fop All file_operations should get a .llseek operation so we can make nonseekable_open the default for future file operations without a .llseek pointer. The three cases that we can automatically detect are no_llseek, seq_lseek and default_llseek. For cases where we can we can automatically prove that the file offset is always ignored, we use noop_llseek, which maintains the current behavior of not returning an error from a seek. New drivers should normally not use noop_llseek but instead use no_llseek and call nonseekable_open at open time. Existing drivers can be converted to do the same when the maintainer knows for certain that no user code relies on calling seek on the device file. The generated code is often incorrectly indented and right now contains comments that clarify for each added line why a specific variant was chosen. In the version that gets submitted upstream, the comments will be gone and I will manually fix the indentation, because there does not seem to be a way to do that using coccinelle. Some amount of new code is currently sitting in linux-next that should get the same modifications, which I will do at the end of the merge window. Many thanks to Julia Lawall for helping me learn to write a semantic patch that does all this. ===== begin semantic patch ===== // This adds an llseek= method to all file operations, // as a preparation for making no_llseek the default. // // The rules are // - use no_llseek explicitly if we do nonseekable_open // - use seq_lseek for sequential files // - use default_llseek if we know we access f_pos // - use noop_llseek if we know we don't access f_pos, // but we still want to allow users to call lseek // @ open1 exists @ identifier nested_open; @@ nested_open(...) { <+... nonseekable_open(...) ...+> } @ open exists@ identifier open_f; identifier i, f; identifier open1.nested_open; @@ int open_f(struct inode *i, struct file *f) { <+... ( nonseekable_open(...) | nested_open(...) ) ...+> } @ read disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ read_no_fpos disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { ... when != off } @ write @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ write_no_fpos @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { ... when != off } @ fops0 @ identifier fops; @@ struct file_operations fops = { ... }; @ has_llseek depends on fops0 @ identifier fops0.fops; identifier llseek_f; @@ struct file_operations fops = { ... .llseek = llseek_f, ... }; @ has_read depends on fops0 @ identifier fops0.fops; identifier read_f; @@ struct file_operations fops = { ... .read = read_f, ... }; @ has_write depends on fops0 @ identifier fops0.fops; identifier write_f; @@ struct file_operations fops = { ... .write = write_f, ... }; @ has_open depends on fops0 @ identifier fops0.fops; identifier open_f; @@ struct file_operations fops = { ... .open = open_f, ... }; // use no_llseek if we call nonseekable_open //////////////////////////////////////////// @ nonseekable1 depends on !has_llseek && has_open @ identifier fops0.fops; identifier nso ~= "nonseekable_open"; @@ struct file_operations fops = { ... .open = nso, ... +.llseek = no_llseek, /* nonseekable */ }; @ nonseekable2 depends on !has_llseek @ identifier fops0.fops; identifier open.open_f; @@ struct file_operations fops = { ... .open = open_f, ... +.llseek = no_llseek, /* open uses nonseekable */ }; // use seq_lseek for sequential files ///////////////////////////////////// @ seq depends on !has_llseek @ identifier fops0.fops; identifier sr ~= "seq_read"; @@ struct file_operations fops = { ... .read = sr, ... +.llseek = seq_lseek, /* we have seq_read */ }; // use default_llseek if there is a readdir /////////////////////////////////////////// @ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier readdir_e; @@ // any other fop is used that changes pos struct file_operations fops = { ... .readdir = readdir_e, ... +.llseek = default_llseek, /* readdir is present */ }; // use default_llseek if at least one of read/write touches f_pos ///////////////////////////////////////////////////////////////// @ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read.read_f; @@ // read fops use offset struct file_operations fops = { ... .read = read_f, ... +.llseek = default_llseek, /* read accesses f_pos */ }; @ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, ... + .llseek = default_llseek, /* write accesses f_pos */ }; // Use noop_llseek if neither read nor write accesses f_pos /////////////////////////////////////////////////////////// @ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; identifier write_no_fpos.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, .read = read_f, ... +.llseek = noop_llseek, /* read and write both use no f_pos */ }; @ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write_no_fpos.write_f; @@ struct file_operations fops = { ... .write = write_f, ... +.llseek = noop_llseek, /* write uses no f_pos */ }; @ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; @@ struct file_operations fops = { ... .read = read_f, ... +.llseek = noop_llseek, /* read uses no f_pos */ }; @ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; @@ struct file_operations fops = { ... +.llseek = noop_llseek, /* no read or write fn */ }; ===== End semantic patch ===== Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Julia Lawall <julia@diku.dk> Cc: Christoph Hellwig <hch@infradead.org>
2010-08-15 10:52:59 -06:00
.llseek = noop_llseek,
};
/* USB Device ID for Sasem USB Control Board */
static struct usb_device_id sasem_usb_id_table[] = {
/* Sasem USB Control Board */
{ USB_DEVICE(0x11ba, 0x0101) },
/* Terminating entry */
{}
};
/* USB Device data */
static struct usb_driver sasem_driver = {
.name = MOD_NAME,
.probe = sasem_probe,
.disconnect = sasem_disconnect,
.id_table = sasem_usb_id_table,
};
static struct usb_class_driver sasem_class = {
.name = DEVICE_NAME,
.fops = &vfd_fops,
.minor_base = VFD_MINOR_BASE,
};
/* to prevent races between open() and disconnect() */
static DEFINE_MUTEX(disconnect_lock);
static int debug;
/*** M O D U L E C O D E ***/
MODULE_AUTHOR(MOD_AUTHOR);
MODULE_DESCRIPTION(MOD_DESC);
MODULE_LICENSE("GPL");
module_param(debug, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(debug, "Debug messages: 0=no, 1=yes (default: no)");
static void delete_context(struct sasem_context *context)
{
usb_free_urb(context->tx_urb); /* VFD */
usb_free_urb(context->rx_urb); /* IR */
lirc_buffer_free(context->driver->rbuf);
kfree(context->driver->rbuf);
kfree(context->driver);
kfree(context);
if (debug)
printk(KERN_INFO "%s: context deleted\n", __func__);
}
static void deregister_from_lirc(struct sasem_context *context)
{
int retval;
int minor = context->driver->minor;
retval = lirc_unregister_driver(minor);
if (retval)
err("%s: unable to deregister from lirc (%d)",
__func__, retval);
else
printk(KERN_INFO "Deregistered Sasem driver (minor:%d)\n",
minor);
}
/**
* Called when the VFD device (e.g. /dev/usb/lcd)
* is opened by the application.
*/
static int vfd_open(struct inode *inode, struct file *file)
{
struct usb_interface *interface;
struct sasem_context *context = NULL;
int subminor;
int retval = 0;
/* prevent races with disconnect */
mutex_lock(&disconnect_lock);
subminor = iminor(inode);
interface = usb_find_interface(&sasem_driver, subminor);
if (!interface) {
err("%s: could not find interface for minor %d",
__func__, subminor);
retval = -ENODEV;
goto exit;
}
context = usb_get_intfdata(interface);
if (!context) {
err("%s: no context found for minor %d",
__func__, subminor);
retval = -ENODEV;
goto exit;
}
mutex_lock(&context->ctx_lock);
if (context->vfd_isopen) {
err("%s: VFD port is already open", __func__);
retval = -EBUSY;
} else {
context->vfd_isopen = 1;
file->private_data = context;
printk(KERN_INFO "VFD port opened\n");
}
mutex_unlock(&context->ctx_lock);
exit:
mutex_unlock(&disconnect_lock);
return retval;
}
/**
* Called when the VFD device (e.g. /dev/usb/lcd)
* is closed by the application.
*/
static long vfd_ioctl(struct file *file, unsigned cmd, unsigned long arg)
{
struct sasem_context *context = NULL;
context = (struct sasem_context *) file->private_data;
if (!context) {
err("%s: no context for device", __func__);
return -ENODEV;
}
mutex_lock(&context->ctx_lock);
switch (cmd) {
case IOCTL_LCD_CONTRAST:
if (arg > 1000)
arg = 1000;
context->vfd_contrast = (unsigned int)arg;
break;
default:
printk(KERN_INFO "Unknown IOCTL command\n");
mutex_unlock(&context->ctx_lock);
return -ENOIOCTLCMD; /* not supported */
}
mutex_unlock(&context->ctx_lock);
return 0;
}
/**
* Called when the VFD device (e.g. /dev/usb/lcd)
* is closed by the application.
*/
static int vfd_close(struct inode *inode, struct file *file)
{
struct sasem_context *context = NULL;
int retval = 0;
context = (struct sasem_context *) file->private_data;
if (!context) {
err("%s: no context for device", __func__);
return -ENODEV;
}
mutex_lock(&context->ctx_lock);
if (!context->vfd_isopen) {
err("%s: VFD is not open", __func__);
retval = -EIO;
} else {
context->vfd_isopen = 0;
printk(KERN_INFO "VFD port closed\n");
if (!context->dev_present && !context->ir_isopen) {
/* Device disconnected before close and IR port is
* not open. If IR port is open, context will be
* deleted by ir_close. */
mutex_unlock(&context->ctx_lock);
delete_context(context);
return retval;
}
}
mutex_unlock(&context->ctx_lock);
return retval;
}
/**
* Sends a packet to the VFD.
*/
static int send_packet(struct sasem_context *context)
{
unsigned int pipe;
int interval = 0;
int retval = 0;
pipe = usb_sndintpipe(context->dev,
context->tx_endpoint->bEndpointAddress);
interval = context->tx_endpoint->bInterval;
usb_fill_int_urb(context->tx_urb, context->dev, pipe,
context->usb_tx_buf, sizeof(context->usb_tx_buf),
usb_tx_callback, context, interval);
context->tx_urb->actual_length = 0;
init_completion(&context->tx.finished);
atomic_set(&(context->tx.busy), 1);
retval = usb_submit_urb(context->tx_urb, GFP_KERNEL);
if (retval) {
atomic_set(&(context->tx.busy), 0);
err("%s: error submitting urb (%d)", __func__, retval);
} else {
/* Wait for transmission to complete (or abort) */
mutex_unlock(&context->ctx_lock);
wait_for_completion(&context->tx.finished);
mutex_lock(&context->ctx_lock);
retval = context->tx.status;
if (retval)
err("%s: packet tx failed (%d)", __func__, retval);
}
return retval;
}
/**
* Writes data to the VFD. The Sasem VFD is 2x16 characters
* and requires data in 9 consecutive USB interrupt packets,
* each packet carrying 8 bytes.
*/
static ssize_t vfd_write(struct file *file, const char *buf,
size_t n_bytes, loff_t *pos)
{
int i;
int retval = 0;
struct sasem_context *context;
int *data_buf = NULL;
context = (struct sasem_context *) file->private_data;
if (!context) {
err("%s: no context for device", __func__);
return -ENODEV;
}
mutex_lock(&context->ctx_lock);
if (!context->dev_present) {
err("%s: no Sasem device present", __func__);
retval = -ENODEV;
goto exit;
}
if (n_bytes <= 0 || n_bytes > SASEM_DATA_BUF_SZ) {
err("%s: invalid payload size", __func__);
retval = -EINVAL;
goto exit;
}
data_buf = memdup_user(buf, n_bytes);
if (IS_ERR(data_buf)) {
retval = PTR_ERR(data_buf);
goto exit;
}
memcpy(context->tx.data_buf, data_buf, n_bytes);
/* Pad with spaces */
for (i = n_bytes; i < SASEM_DATA_BUF_SZ; ++i)
context->tx.data_buf[i] = ' ';
/* Nine 8 byte packets to be sent */
/* NOTE: "\x07\x01\0\0\0\0\0\0" or "\x0c\0\0\0\0\0\0\0"
* will clear the VFD */
for (i = 0; i < 9; i++) {
switch (i) {
case 0:
memcpy(context->usb_tx_buf, "\x07\0\0\0\0\0\0\0", 8);
context->usb_tx_buf[1] = (context->vfd_contrast) ?
(0x2B - (context->vfd_contrast - 1) / 250)
: 0x2B;
break;
case 1:
memcpy(context->usb_tx_buf, "\x09\x01\0\0\0\0\0\0", 8);
break;
case 2:
memcpy(context->usb_tx_buf, "\x0b\x01\0\0\0\0\0\0", 8);
break;
case 3:
memcpy(context->usb_tx_buf, context->tx.data_buf, 8);
break;
case 4:
memcpy(context->usb_tx_buf,
context->tx.data_buf + 8, 8);
break;
case 5:
memcpy(context->usb_tx_buf, "\x09\x01\0\0\0\0\0\0", 8);
break;
case 6:
memcpy(context->usb_tx_buf, "\x0b\x02\0\0\0\0\0\0", 8);
break;
case 7:
memcpy(context->usb_tx_buf,
context->tx.data_buf + 16, 8);
break;
case 8:
memcpy(context->usb_tx_buf,
context->tx.data_buf + 24, 8);
break;
}
retval = send_packet(context);
if (retval) {
err("%s: send packet failed for packet #%d",
__func__, i);
goto exit;
}
}
exit:
mutex_unlock(&context->ctx_lock);
kfree(data_buf);
return (!retval) ? n_bytes : retval;
}
/**
* Callback function for USB core API: transmit data
*/
static void usb_tx_callback(struct urb *urb)
{
struct sasem_context *context;
if (!urb)
return;
context = (struct sasem_context *) urb->context;
if (!context)
return;
context->tx.status = urb->status;
/* notify waiters that write has finished */
atomic_set(&context->tx.busy, 0);
complete(&context->tx.finished);
return;
}
/**
* Called by lirc_dev when the application opens /dev/lirc
*/
static int ir_open(void *data)
{
int retval = 0;
struct sasem_context *context;
/* prevent races with disconnect */
mutex_lock(&disconnect_lock);
context = (struct sasem_context *) data;
mutex_lock(&context->ctx_lock);
if (context->ir_isopen) {
err("%s: IR port is already open", __func__);
retval = -EBUSY;
goto exit;
}
usb_fill_int_urb(context->rx_urb, context->dev,
usb_rcvintpipe(context->dev,
context->rx_endpoint->bEndpointAddress),
context->usb_rx_buf, sizeof(context->usb_rx_buf),
usb_rx_callback, context, context->rx_endpoint->bInterval);
retval = usb_submit_urb(context->rx_urb, GFP_KERNEL);
if (retval)
err("%s: usb_submit_urb failed for ir_open (%d)",
__func__, retval);
else {
context->ir_isopen = 1;
printk(KERN_INFO "IR port opened\n");
}
exit:
mutex_unlock(&context->ctx_lock);
mutex_unlock(&disconnect_lock);
return retval;
}
/**
* Called by lirc_dev when the application closes /dev/lirc
*/
static void ir_close(void *data)
{
struct sasem_context *context;
context = (struct sasem_context *)data;
if (!context) {
err("%s: no context for device", __func__);
return;
}
mutex_lock(&context->ctx_lock);
usb_kill_urb(context->rx_urb);
context->ir_isopen = 0;
printk(KERN_INFO "IR port closed\n");
if (!context->dev_present) {
/*
* Device disconnected while IR port was
* still open. Driver was not deregistered
* at disconnect time, so do it now.
*/
deregister_from_lirc(context);
if (!context->vfd_isopen) {
mutex_unlock(&context->ctx_lock);
delete_context(context);
return;
}
/* If VFD port is open, context will be deleted by vfd_close */
}
mutex_unlock(&context->ctx_lock);
return;
}
/**
* Process the incoming packet
*/
static void incoming_packet(struct sasem_context *context,
struct urb *urb)
{
int len = urb->actual_length;
unsigned char *buf = urb->transfer_buffer;
long ms;
struct timeval tv;
int i;
if (len != 8) {
printk(KERN_WARNING "%s: invalid incoming packet size (%d)\n",
__func__, len);
return;
}
if (debug) {
printk(KERN_INFO "Incoming data: ");
for (i = 0; i < 8; ++i)
printk(KERN_CONT "%02x ", buf[i]);
printk(KERN_CONT "\n");
}
/*
* Lirc could deal with the repeat code, but we really need to block it
* if it arrives too late. Otherwise we could repeat the wrong code.
*/
/* get the time since the last button press */
do_gettimeofday(&tv);
ms = (tv.tv_sec - context->presstime.tv_sec) * 1000 +
(tv.tv_usec - context->presstime.tv_usec) / 1000;
if (memcmp(buf, "\x08\0\0\0\0\0\0\0", 8) == 0) {
/*
* the repeat code is being sent, so we copy
* the old code to LIRC
*/
/*
* NOTE: Only if the last code was less than 250ms ago
* - no one should be able to push another (undetected) button
* in that time and then get a false repeat of the previous
* press but it is long enough for a genuine repeat
*/
if ((ms < 250) && (context->codesaved != 0)) {
memcpy(buf, &context->lastcode, 8);
context->presstime.tv_sec = tv.tv_sec;
context->presstime.tv_usec = tv.tv_usec;
}
} else {
/* save the current valid code for repeats */
memcpy(&context->lastcode, buf, 8);
/*
* set flag to signal a valid code was save;
* just for safety reasons
*/
context->codesaved = 1;
context->presstime.tv_sec = tv.tv_sec;
context->presstime.tv_usec = tv.tv_usec;
}
lirc_buffer_write(context->driver->rbuf, buf);
wake_up(&context->driver->rbuf->wait_poll);
}
/**
* Callback function for USB core API: receive data
*/
static void usb_rx_callback(struct urb *urb)
{
struct sasem_context *context;
if (!urb)
return;
context = (struct sasem_context *) urb->context;
if (!context)
return;
switch (urb->status) {
case -ENOENT: /* usbcore unlink successful! */
return;
case 0:
if (context->ir_isopen)
incoming_packet(context, urb);
break;
default:
printk(KERN_WARNING "%s: status (%d): ignored",
__func__, urb->status);
break;
}
usb_submit_urb(context->rx_urb, GFP_ATOMIC);
return;
}
/**
* Callback function for USB core API: Probe
*/
static int sasem_probe(struct usb_interface *interface,
const struct usb_device_id *id)
{
struct usb_device *dev = NULL;
struct usb_host_interface *iface_desc = NULL;
struct usb_endpoint_descriptor *rx_endpoint = NULL;
struct usb_endpoint_descriptor *tx_endpoint = NULL;
struct urb *rx_urb = NULL;
struct urb *tx_urb = NULL;
struct lirc_driver *driver = NULL;
struct lirc_buffer *rbuf = NULL;
int lirc_minor = 0;
int num_endpoints;
int retval = 0;
int vfd_ep_found;
int ir_ep_found;
int alloc_status;
struct sasem_context *context = NULL;
int i;
printk(KERN_INFO "%s: found Sasem device\n", __func__);
dev = usb_get_dev(interface_to_usbdev(interface));
iface_desc = interface->cur_altsetting;
num_endpoints = iface_desc->desc.bNumEndpoints;
/*
* Scan the endpoint list and set:
* first input endpoint = IR endpoint
* first output endpoint = VFD endpoint
*/
ir_ep_found = 0;
vfd_ep_found = 0;
for (i = 0; i < num_endpoints && !(ir_ep_found && vfd_ep_found); ++i) {
struct usb_endpoint_descriptor *ep;
int ep_dir;
int ep_type;
ep = &iface_desc->endpoint [i].desc;
ep_dir = ep->bEndpointAddress & USB_ENDPOINT_DIR_MASK;
ep_type = ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
if (!ir_ep_found &&
ep_dir == USB_DIR_IN &&
ep_type == USB_ENDPOINT_XFER_INT) {
rx_endpoint = ep;
ir_ep_found = 1;
if (debug)
printk(KERN_INFO "%s: found IR endpoint\n",
__func__);
} else if (!vfd_ep_found &&
ep_dir == USB_DIR_OUT &&
ep_type == USB_ENDPOINT_XFER_INT) {
tx_endpoint = ep;
vfd_ep_found = 1;
if (debug)
printk(KERN_INFO "%s: found VFD endpoint\n",
__func__);
}
}
/* Input endpoint is mandatory */
if (!ir_ep_found) {
err("%s: no valid input (IR) endpoint found.", __func__);
retval = -ENODEV;
goto exit;
}
if (!vfd_ep_found)
printk(KERN_INFO "%s: no valid output (VFD) endpoint found.\n",
__func__);
/* Allocate memory */
alloc_status = 0;
context = kzalloc(sizeof(struct sasem_context), GFP_KERNEL);
if (!context) {
err("%s: kzalloc failed for context", __func__);
alloc_status = 1;
goto alloc_status_switch;
}
driver = kzalloc(sizeof(struct lirc_driver), GFP_KERNEL);
if (!driver) {
err("%s: kzalloc failed for lirc_driver", __func__);
alloc_status = 2;
goto alloc_status_switch;
}
rbuf = kmalloc(sizeof(struct lirc_buffer), GFP_KERNEL);
if (!rbuf) {
err("%s: kmalloc failed for lirc_buffer", __func__);
alloc_status = 3;
goto alloc_status_switch;
}
if (lirc_buffer_init(rbuf, BUF_CHUNK_SIZE, BUF_SIZE)) {
err("%s: lirc_buffer_init failed", __func__);
alloc_status = 4;
goto alloc_status_switch;
}
rx_urb = usb_alloc_urb(0, GFP_KERNEL);
if (!rx_urb) {
err("%s: usb_alloc_urb failed for IR urb", __func__);
alloc_status = 5;
goto alloc_status_switch;
}
if (vfd_ep_found) {
tx_urb = usb_alloc_urb(0, GFP_KERNEL);
if (!tx_urb) {
err("%s: usb_alloc_urb failed for VFD urb",
__func__);
alloc_status = 6;
goto alloc_status_switch;
}
}
mutex_init(&context->ctx_lock);
strcpy(driver->name, MOD_NAME);
driver->minor = -1;
driver->code_length = 64;
driver->sample_rate = 0;
driver->features = LIRC_CAN_REC_LIRCCODE;
driver->data = context;
driver->rbuf = rbuf;
driver->set_use_inc = ir_open;
driver->set_use_dec = ir_close;
driver->dev = &interface->dev;
driver->owner = THIS_MODULE;
mutex_lock(&context->ctx_lock);
lirc_minor = lirc_register_driver(driver);
if (lirc_minor < 0) {
err("%s: lirc_register_driver failed", __func__);
alloc_status = 7;
retval = lirc_minor;
goto unlock;
} else
printk(KERN_INFO "%s: Registered Sasem driver (minor:%d)\n",
__func__, lirc_minor);
alloc_status_switch:
switch (alloc_status) {
case 7:
if (vfd_ep_found)
usb_free_urb(tx_urb);
case 6:
usb_free_urb(rx_urb);
case 5:
lirc_buffer_free(rbuf);
case 4:
kfree(rbuf);
case 3:
kfree(driver);
case 2:
kfree(context);
context = NULL;
case 1:
retval = -ENOMEM;
goto unlock;
}
/* Needed while unregistering! */
driver->minor = lirc_minor;
context->dev = dev;
context->dev_present = 1;
context->rx_endpoint = rx_endpoint;
context->rx_urb = rx_urb;
if (vfd_ep_found) {
context->tx_endpoint = tx_endpoint;
context->tx_urb = tx_urb;
context->vfd_contrast = 1000; /* range 0 - 1000 */
}
context->driver = driver;
usb_set_intfdata(interface, context);
if (vfd_ep_found) {
if (debug)
printk(KERN_INFO "Registering VFD with sysfs\n");
if (usb_register_dev(interface, &sasem_class))
/* Not a fatal error, so ignore */
printk(KERN_INFO "%s: could not get a minor number "
"for VFD\n", __func__);
}
printk(KERN_INFO "%s: Sasem device on usb<%d:%d> initialized\n",
__func__, dev->bus->busnum, dev->devnum);
unlock:
mutex_unlock(&context->ctx_lock);
exit:
return retval;
}
/**
* Callback function for USB core API: disonnect
*/
static void sasem_disconnect(struct usb_interface *interface)
{
struct sasem_context *context;
/* prevent races with ir_open()/vfd_open() */
mutex_lock(&disconnect_lock);
context = usb_get_intfdata(interface);
mutex_lock(&context->ctx_lock);
printk(KERN_INFO "%s: Sasem device disconnected\n", __func__);
usb_set_intfdata(interface, NULL);
context->dev_present = 0;
/* Stop reception */
usb_kill_urb(context->rx_urb);
/* Abort ongoing write */
if (atomic_read(&context->tx.busy)) {
usb_kill_urb(context->tx_urb);
wait_for_completion(&context->tx.finished);
}
/* De-register from lirc_dev if IR port is not open */
if (!context->ir_isopen)
deregister_from_lirc(context);
usb_deregister_dev(interface, &sasem_class);
mutex_unlock(&context->ctx_lock);
if (!context->ir_isopen && !context->vfd_isopen)
delete_context(context);
mutex_unlock(&disconnect_lock);
}
static int __init sasem_init(void)
{
int rc;
printk(KERN_INFO MOD_DESC ", v" MOD_VERSION "\n");
printk(KERN_INFO MOD_AUTHOR "\n");
rc = usb_register(&sasem_driver);
if (rc < 0) {
err("%s: usb register failed (%d)", __func__, rc);
return -ENODEV;
}
return 0;
}
static void __exit sasem_exit(void)
{
usb_deregister(&sasem_driver);
printk(KERN_INFO "module removed. Goodbye!\n");
}
module_init(sasem_init);
module_exit(sasem_exit);