1
0
Fork 0
alistair23-linux/drivers/nvdimm/pmem.c

671 lines
18 KiB
C
Raw Normal View History

/*
* Persistent Memory Driver
*
* Copyright (c) 2014-2015, Intel Corporation.
* Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
* Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#include <asm/cacheflush.h>
#include <linux/blkdev.h>
#include <linux/hdreg.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/badblocks.h>
#include <linux/memremap.h>
#include <linux/vmalloc.h>
#include <linux/pfn_t.h>
#include <linux/slab.h>
#include <linux/pmem.h>
#include <linux/nd.h>
#include "pfn.h"
#include "nd.h"
struct pmem_device {
struct request_queue *pmem_queue;
struct gendisk *pmem_disk;
struct nd_namespace_common *ndns;
/* One contiguous memory region per device */
phys_addr_t phys_addr;
/* when non-zero this device is hosting a 'pfn' instance */
phys_addr_t data_offset;
u64 pfn_flags;
void __pmem *virt_addr;
/* immutable base size of the namespace */
size_t size;
/* trim size when namespace capacity has been section aligned */
u32 pfn_pad;
struct badblocks bb;
};
static bool is_bad_pmem(struct badblocks *bb, sector_t sector, unsigned int len)
{
if (bb->count) {
sector_t first_bad;
int num_bad;
return !!badblocks_check(bb, sector, len / 512, &first_bad,
&num_bad);
}
return false;
}
static void pmem_clear_poison(struct pmem_device *pmem, phys_addr_t offset,
unsigned int len)
{
struct device *dev = disk_to_dev(pmem->pmem_disk);
sector_t sector;
long cleared;
sector = (offset - pmem->data_offset) / 512;
cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
if (cleared > 0 && cleared / 512) {
dev_dbg(dev, "%s: %llx clear %ld sector%s\n",
__func__, (unsigned long long) sector,
cleared / 512, cleared / 512 > 1 ? "s" : "");
badblocks_clear(&pmem->bb, sector, cleared / 512);
}
invalidate_pmem(pmem->virt_addr + offset, len);
}
static int pmem_do_bvec(struct pmem_device *pmem, struct page *page,
unsigned int len, unsigned int off, int rw,
sector_t sector)
{
int rc = 0;
bool bad_pmem = false;
void *mem = kmap_atomic(page);
phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
void __pmem *pmem_addr = pmem->virt_addr + pmem_off;
if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
bad_pmem = true;
if (rw == READ) {
if (unlikely(bad_pmem))
rc = -EIO;
else {
rc = memcpy_from_pmem(mem + off, pmem_addr, len);
flush_dcache_page(page);
}
} else {
/*
* Note that we write the data both before and after
* clearing poison. The write before clear poison
* handles situations where the latest written data is
* preserved and the clear poison operation simply marks
* the address range as valid without changing the data.
* In this case application software can assume that an
* interrupted write will either return the new good
* data or an error.
*
* However, if pmem_clear_poison() leaves the data in an
* indeterminate state we need to perform the write
* after clear poison.
*/
flush_dcache_page(page);
memcpy_to_pmem(pmem_addr, mem + off, len);
if (unlikely(bad_pmem)) {
pmem_clear_poison(pmem, pmem_off, len);
memcpy_to_pmem(pmem_addr, mem + off, len);
}
}
kunmap_atomic(mem);
return rc;
}
static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
{
int rc = 0;
bool do_acct;
unsigned long start;
struct bio_vec bvec;
struct bvec_iter iter;
struct block_device *bdev = bio->bi_bdev;
struct pmem_device *pmem = bdev->bd_disk->private_data;
do_acct = nd_iostat_start(bio, &start);
bio_for_each_segment(bvec, bio, iter) {
rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
bvec.bv_offset, bio_data_dir(bio),
iter.bi_sector);
if (rc) {
bio->bi_error = rc;
break;
}
}
if (do_acct)
nd_iostat_end(bio, start);
if (bio_data_dir(bio))
wmb_pmem();
bio_endio(bio);
return BLK_QC_T_NONE;
}
static int pmem_rw_page(struct block_device *bdev, sector_t sector,
struct page *page, int rw)
{
struct pmem_device *pmem = bdev->bd_disk->private_data;
int rc;
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 06:29:47 -06:00
rc = pmem_do_bvec(pmem, page, PAGE_SIZE, 0, rw, sector);
if (rw & WRITE)
wmb_pmem();
/*
* The ->rw_page interface is subtle and tricky. The core
* retries on any error, so we can only invoke page_endio() in
* the successful completion case. Otherwise, we'll see crashes
* caused by double completion.
*/
if (rc == 0)
page_endio(page, rw & WRITE, 0);
return rc;
}
static long pmem_direct_access(struct block_device *bdev, sector_t sector,
void __pmem **kaddr, pfn_t *pfn)
{
struct pmem_device *pmem = bdev->bd_disk->private_data;
resource_size_t offset = sector * 512 + pmem->data_offset;
*kaddr = pmem->virt_addr + offset;
*pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
return pmem->size - pmem->pfn_pad - offset;
}
static const struct block_device_operations pmem_fops = {
.owner = THIS_MODULE,
.rw_page = pmem_rw_page,
.direct_access = pmem_direct_access,
.revalidate_disk = nvdimm_revalidate_disk,
};
static struct pmem_device *pmem_alloc(struct device *dev,
struct resource *res, int id)
{
struct pmem_device *pmem;
struct request_queue *q;
pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
if (!pmem)
return ERR_PTR(-ENOMEM);
pmem->phys_addr = res->start;
pmem->size = resource_size(res);
x86, pmem: clarify that ARCH_HAS_PMEM_API implies PMEM mapped WB Given that a write-back (WB) mapping plus non-temporal stores is expected to be the most efficient way to access PMEM, update the definition of ARCH_HAS_PMEM_API to imply arch support for WB-mapped-PMEM. This is needed as a pre-requisite for adding PMEM to the direct map and mapping it with struct page. The above clarification for X86_64 means that memcpy_to_pmem() is permitted to use the non-temporal arch_memcpy_to_pmem() rather than needlessly fall back to default_memcpy_to_pmem() when the pcommit instruction is not available. When arch_memcpy_to_pmem() is not guaranteed to flush writes out of cache, i.e. on older X86_32 implementations where non-temporal stores may just dirty cache, ARCH_HAS_PMEM_API is simply disabled. The default fall back for persistent memory handling remains. Namely, map it with the WT (write-through) cache-type and hope for the best. arch_has_pmem_api() is updated to only indicate whether the arch provides the proper helpers to meet the minimum "writes are visible outside the cache hierarchy after memcpy_to_pmem() + wmb_pmem()". Code that cares whether wmb_pmem() actually flushes writes to pmem must now call arch_has_wmb_pmem() directly. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com> [hch: set ARCH_HAS_PMEM_API=n on x86_32] Reviewed-by: Christoph Hellwig <hch@lst.de> [toshi: x86_32 compile fixes] Signed-off-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-08-24 16:29:38 -06:00
if (!arch_has_wmb_pmem())
dev_warn(dev, "unable to guarantee persistence of writes\n");
if (!devm_request_mem_region(dev, pmem->phys_addr, pmem->size,
dev_name(dev))) {
dev_warn(dev, "could not reserve region [0x%pa:0x%zx]\n",
&pmem->phys_addr, pmem->size);
return ERR_PTR(-EBUSY);
}
q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
if (!q)
return ERR_PTR(-ENOMEM);
pmem->pfn_flags = PFN_DEV;
if (pmem_should_map_pages(dev)) {
pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, res,
mm, dax, pmem: introduce {get|put}_dev_pagemap() for dax-gup get_dev_page() enables paths like get_user_pages() to pin a dynamically mapped pfn-range (devm_memremap_pages()) while the resulting struct page objects are in use. Unlike get_page() it may fail if the device is, or is in the process of being, disabled. While the initial lookup of the range may be an expensive list walk, the result is cached to speed up subsequent lookups which are likely to be in the same mapped range. devm_memremap_pages() now requires a reference counter to be specified at init time. For pmem this means moving request_queue allocation into pmem_alloc() so the existing queue usage counter can track "device pages". ZONE_DEVICE pages always have an elevated count and will never be on an lru reclaim list. That space in 'struct page' can be redirected for other uses, but for safety introduce a poison value that will always trip __list_add() to assert. This allows half of the struct list_head storage to be reclaimed with some assurance to back up the assumption that the page count never goes to zero and a list_add() is never attempted. Signed-off-by: Dan Williams <dan.j.williams@intel.com> Tested-by: Logan Gunthorpe <logang@deltatee.com> Cc: Dave Hansen <dave@sr71.net> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:49 -07:00
&q->q_usage_counter, NULL);
pmem->pfn_flags |= PFN_MAP;
} else
pmem->virt_addr = (void __pmem *) devm_memremap(dev,
pmem->phys_addr, pmem->size,
ARCH_MEMREMAP_PMEM);
if (IS_ERR(pmem->virt_addr)) {
blk_cleanup_queue(q);
return (void __force *) pmem->virt_addr;
}
pmem->pmem_queue = q;
return pmem;
}
static void pmem_detach_disk(struct pmem_device *pmem)
{
if (!pmem->pmem_disk)
return;
del_gendisk(pmem->pmem_disk);
put_disk(pmem->pmem_disk);
blk_cleanup_queue(pmem->pmem_queue);
}
static int pmem_attach_disk(struct device *dev,
struct nd_namespace_common *ndns, struct pmem_device *pmem)
{
struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
int nid = dev_to_node(dev);
struct resource bb_res;
struct gendisk *disk;
blk_queue_make_request(pmem->pmem_queue, pmem_make_request);
blk_queue_physical_block_size(pmem->pmem_queue, PAGE_SIZE);
blk_queue_max_hw_sectors(pmem->pmem_queue, UINT_MAX);
blk_queue_bounce_limit(pmem->pmem_queue, BLK_BOUNCE_ANY);
queue_flag_set_unlocked(QUEUE_FLAG_NONROT, pmem->pmem_queue);
disk = alloc_disk_node(0, nid);
if (!disk) {
blk_cleanup_queue(pmem->pmem_queue);
return -ENOMEM;
}
disk->fops = &pmem_fops;
disk->private_data = pmem;
disk->queue = pmem->pmem_queue;
disk->flags = GENHD_FL_EXT_DEVT;
nd_btt: atomic sector updates BTT stands for Block Translation Table, and is a way to provide power fail sector atomicity semantics for block devices that have the ability to perform byte granularity IO. It relies on the capability of libnvdimm namespace devices to do byte aligned IO. The BTT works as a stacked blocked device, and reserves a chunk of space from the backing device for its accounting metadata. It is a bio-based driver because all IO is done synchronously, and there is no queuing or asynchronous completions at either the device or the driver level. The BTT uses 'lanes' to index into various 'on-disk' data structures, and lanes also act as a synchronization mechanism in case there are more CPUs than available lanes. We did a comparison between two lane lock strategies - first where we kept an atomic counter around that tracked which was the last lane that was used, and 'our' lane was determined by atomically incrementing that. That way, for the nr_cpus > nr_lanes case, theoretically, no CPU would be blocked waiting for a lane. The other strategy was to use the cpu number we're scheduled on to and hash it to a lane number. Theoretically, this could block an IO that could've otherwise run using a different, free lane. But some fio workloads showed that the direct cpu -> lane hash performed faster than tracking 'last lane' - my reasoning is the cache thrash caused by moving the atomic variable made that approach slower than simply waiting out the in-progress IO. This supports the conclusion that the driver can be a very simple bio-based one that does synchronous IOs instead of queuing. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Boaz Harrosh <boaz@plexistor.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jens Axboe <axboe@fb.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Neil Brown <neilb@suse.de> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg KH <gregkh@linuxfoundation.org> [jmoyer: fix nmi watchdog timeout in btt_map_init] [jmoyer: move btt initialization to module load path] [jmoyer: fix memory leak in the btt initialization path] [jmoyer: Don't overwrite corrupted arenas] Signed-off-by: Vishal Verma <vishal.l.verma@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-25 02:20:32 -06:00
nvdimm_namespace_disk_name(ndns, disk->disk_name);
disk->driverfs_dev = dev;
set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
/ 512);
pmem->pmem_disk = disk;
devm_exit_badblocks(dev, &pmem->bb);
if (devm_init_badblocks(dev, &pmem->bb))
return -ENOMEM;
bb_res.start = nsio->res.start + pmem->data_offset;
bb_res.end = nsio->res.end;
if (is_nd_pfn(dev)) {
struct nd_pfn *nd_pfn = to_nd_pfn(dev);
struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
bb_res.start += __le32_to_cpu(pfn_sb->start_pad);
bb_res.end -= __le32_to_cpu(pfn_sb->end_trunc);
}
nvdimm_badblocks_populate(to_nd_region(dev->parent), &pmem->bb,
&bb_res);
disk->bb = &pmem->bb;
add_disk(disk);
revalidate_disk(disk);
return 0;
}
static int pmem_rw_bytes(struct nd_namespace_common *ndns,
resource_size_t offset, void *buf, size_t size, int rw)
{
struct pmem_device *pmem = dev_get_drvdata(ndns->claim);
if (unlikely(offset + size > pmem->size)) {
dev_WARN_ONCE(&ndns->dev, 1, "request out of range\n");
return -EFAULT;
}
if (rw == READ) {
unsigned int sz_align = ALIGN(size + (offset & (512 - 1)), 512);
if (unlikely(is_bad_pmem(&pmem->bb, offset / 512, sz_align)))
return -EIO;
return memcpy_from_pmem(buf, pmem->virt_addr + offset, size);
} else {
memcpy_to_pmem(pmem->virt_addr + offset, buf, size);
wmb_pmem();
}
return 0;
}
static int nd_pfn_init(struct nd_pfn *nd_pfn)
{
struct nd_pfn_sb *pfn_sb = kzalloc(sizeof(*pfn_sb), GFP_KERNEL);
struct pmem_device *pmem = dev_get_drvdata(&nd_pfn->dev);
struct nd_namespace_common *ndns = nd_pfn->ndns;
u32 start_pad = 0, end_trunc = 0;
resource_size_t start, size;
struct nd_namespace_io *nsio;
struct nd_region *nd_region;
unsigned long npfns;
phys_addr_t offset;
u64 checksum;
int rc;
if (!pfn_sb)
return -ENOMEM;
nd_pfn->pfn_sb = pfn_sb;
rc = nd_pfn_validate(nd_pfn);
if (rc == -ENODEV)
/* no info block, do init */;
else
return rc;
nd_region = to_nd_region(nd_pfn->dev.parent);
if (nd_region->ro) {
dev_info(&nd_pfn->dev,
"%s is read-only, unable to init metadata\n",
dev_name(&nd_region->dev));
goto err;
}
memset(pfn_sb, 0, sizeof(*pfn_sb));
/*
* Check if pmem collides with 'System RAM' when section aligned and
* trim it accordingly
*/
nsio = to_nd_namespace_io(&ndns->dev);
start = PHYS_SECTION_ALIGN_DOWN(nsio->res.start);
size = resource_size(&nsio->res);
if (region_intersects(start, size, IORESOURCE_SYSTEM_RAM,
IORES_DESC_NONE) == REGION_MIXED) {
start = nsio->res.start;
start_pad = PHYS_SECTION_ALIGN_UP(start) - start;
}
start = nsio->res.start;
size = PHYS_SECTION_ALIGN_UP(start + size) - start;
if (region_intersects(start, size, IORESOURCE_SYSTEM_RAM,
IORES_DESC_NONE) == REGION_MIXED) {
size = resource_size(&nsio->res);
end_trunc = start + size - PHYS_SECTION_ALIGN_DOWN(start + size);
}
if (start_pad + end_trunc)
dev_info(&nd_pfn->dev, "%s section collision, truncate %d bytes\n",
dev_name(&ndns->dev), start_pad + end_trunc);
/*
* Note, we use 64 here for the standard size of struct page,
* debugging options may cause it to be larger in which case the
* implementation will limit the pfns advertised through
* ->direct_access() to those that are included in the memmap.
*/
start += start_pad;
npfns = (pmem->size - start_pad - end_trunc - SZ_8K) / SZ_4K;
if (nd_pfn->mode == PFN_MODE_PMEM)
offset = ALIGN(start + SZ_8K + 64 * npfns, nd_pfn->align)
- start;
else if (nd_pfn->mode == PFN_MODE_RAM)
offset = ALIGN(start + SZ_8K, nd_pfn->align) - start;
else
goto err;
if (offset + start_pad + end_trunc >= pmem->size) {
dev_err(&nd_pfn->dev, "%s unable to satisfy requested alignment\n",
dev_name(&ndns->dev));
goto err;
}
npfns = (pmem->size - offset - start_pad - end_trunc) / SZ_4K;
pfn_sb->mode = cpu_to_le32(nd_pfn->mode);
pfn_sb->dataoff = cpu_to_le64(offset);
pfn_sb->npfns = cpu_to_le64(npfns);
memcpy(pfn_sb->signature, PFN_SIG, PFN_SIG_LEN);
memcpy(pfn_sb->uuid, nd_pfn->uuid, 16);
memcpy(pfn_sb->parent_uuid, nd_dev_to_uuid(&ndns->dev), 16);
pfn_sb->version_major = cpu_to_le16(1);
pfn_sb->version_minor = cpu_to_le16(1);
pfn_sb->start_pad = cpu_to_le32(start_pad);
pfn_sb->end_trunc = cpu_to_le32(end_trunc);
checksum = nd_sb_checksum((struct nd_gen_sb *) pfn_sb);
pfn_sb->checksum = cpu_to_le64(checksum);
rc = nvdimm_write_bytes(ndns, SZ_4K, pfn_sb, sizeof(*pfn_sb));
if (rc)
goto err;
return 0;
err:
nd_pfn->pfn_sb = NULL;
kfree(pfn_sb);
return -ENXIO;
}
static int nvdimm_namespace_detach_pfn(struct nd_namespace_common *ndns)
{
struct nd_pfn *nd_pfn = to_nd_pfn(ndns->claim);
struct pmem_device *pmem;
/* free pmem disk */
pmem = dev_get_drvdata(&nd_pfn->dev);
pmem_detach_disk(pmem);
/* release nd_pfn resources */
kfree(nd_pfn->pfn_sb);
nd_pfn->pfn_sb = NULL;
return 0;
}
/*
* We hotplug memory at section granularity, pad the reserved area from
* the previous section base to the namespace base address.
*/
static unsigned long init_altmap_base(resource_size_t base)
{
unsigned long base_pfn = PHYS_PFN(base);
return PFN_SECTION_ALIGN_DOWN(base_pfn);
}
static unsigned long init_altmap_reserve(resource_size_t base)
{
unsigned long reserve = PHYS_PFN(SZ_8K);
unsigned long base_pfn = PHYS_PFN(base);
reserve += base_pfn - PFN_SECTION_ALIGN_DOWN(base_pfn);
return reserve;
}
static int __nvdimm_namespace_attach_pfn(struct nd_pfn *nd_pfn)
{
int rc;
struct resource res;
struct request_queue *q;
struct pmem_device *pmem;
struct vmem_altmap *altmap;
struct device *dev = &nd_pfn->dev;
struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
struct nd_namespace_common *ndns = nd_pfn->ndns;
u32 start_pad = __le32_to_cpu(pfn_sb->start_pad);
u32 end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
resource_size_t base = nsio->res.start + start_pad;
struct vmem_altmap __altmap = {
.base_pfn = init_altmap_base(base),
.reserve = init_altmap_reserve(base),
};
pmem = dev_get_drvdata(dev);
pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
pmem->pfn_pad = start_pad + end_trunc;
nd_pfn->mode = le32_to_cpu(nd_pfn->pfn_sb->mode);
if (nd_pfn->mode == PFN_MODE_RAM) {
if (pmem->data_offset < SZ_8K)
return -EINVAL;
nd_pfn->npfns = le64_to_cpu(pfn_sb->npfns);
altmap = NULL;
} else if (nd_pfn->mode == PFN_MODE_PMEM) {
nd_pfn->npfns = (pmem->size - pmem->pfn_pad - pmem->data_offset)
/ PAGE_SIZE;
if (le64_to_cpu(nd_pfn->pfn_sb->npfns) > nd_pfn->npfns)
dev_info(&nd_pfn->dev,
"number of pfns truncated from %lld to %ld\n",
le64_to_cpu(nd_pfn->pfn_sb->npfns),
nd_pfn->npfns);
altmap = & __altmap;
altmap->free = PHYS_PFN(pmem->data_offset - SZ_8K);
altmap->alloc = 0;
} else {
rc = -ENXIO;
goto err;
}
/* establish pfn range for lookup, and switch to direct map */
mm, dax, pmem: introduce {get|put}_dev_pagemap() for dax-gup get_dev_page() enables paths like get_user_pages() to pin a dynamically mapped pfn-range (devm_memremap_pages()) while the resulting struct page objects are in use. Unlike get_page() it may fail if the device is, or is in the process of being, disabled. While the initial lookup of the range may be an expensive list walk, the result is cached to speed up subsequent lookups which are likely to be in the same mapped range. devm_memremap_pages() now requires a reference counter to be specified at init time. For pmem this means moving request_queue allocation into pmem_alloc() so the existing queue usage counter can track "device pages". ZONE_DEVICE pages always have an elevated count and will never be on an lru reclaim list. That space in 'struct page' can be redirected for other uses, but for safety introduce a poison value that will always trip __list_add() to assert. This allows half of the struct list_head storage to be reclaimed with some assurance to back up the assumption that the page count never goes to zero and a list_add() is never attempted. Signed-off-by: Dan Williams <dan.j.williams@intel.com> Tested-by: Logan Gunthorpe <logang@deltatee.com> Cc: Dave Hansen <dave@sr71.net> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:49 -07:00
q = pmem->pmem_queue;
memcpy(&res, &nsio->res, sizeof(res));
res.start += start_pad;
res.end -= end_trunc;
devm_memunmap(dev, (void __force *) pmem->virt_addr);
pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, &res,
mm, dax, pmem: introduce {get|put}_dev_pagemap() for dax-gup get_dev_page() enables paths like get_user_pages() to pin a dynamically mapped pfn-range (devm_memremap_pages()) while the resulting struct page objects are in use. Unlike get_page() it may fail if the device is, or is in the process of being, disabled. While the initial lookup of the range may be an expensive list walk, the result is cached to speed up subsequent lookups which are likely to be in the same mapped range. devm_memremap_pages() now requires a reference counter to be specified at init time. For pmem this means moving request_queue allocation into pmem_alloc() so the existing queue usage counter can track "device pages". ZONE_DEVICE pages always have an elevated count and will never be on an lru reclaim list. That space in 'struct page' can be redirected for other uses, but for safety introduce a poison value that will always trip __list_add() to assert. This allows half of the struct list_head storage to be reclaimed with some assurance to back up the assumption that the page count never goes to zero and a list_add() is never attempted. Signed-off-by: Dan Williams <dan.j.williams@intel.com> Tested-by: Logan Gunthorpe <logang@deltatee.com> Cc: Dave Hansen <dave@sr71.net> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:49 -07:00
&q->q_usage_counter, altmap);
pmem->pfn_flags |= PFN_MAP;
if (IS_ERR(pmem->virt_addr)) {
rc = PTR_ERR(pmem->virt_addr);
goto err;
}
/* attach pmem disk in "pfn-mode" */
rc = pmem_attach_disk(dev, ndns, pmem);
if (rc)
goto err;
return rc;
err:
nvdimm_namespace_detach_pfn(ndns);
return rc;
}
static int nvdimm_namespace_attach_pfn(struct nd_namespace_common *ndns)
{
struct nd_pfn *nd_pfn = to_nd_pfn(ndns->claim);
int rc;
if (!nd_pfn->uuid || !nd_pfn->ndns)
return -ENODEV;
rc = nd_pfn_init(nd_pfn);
if (rc)
return rc;
/* we need a valid pfn_sb before we can init a vmem_altmap */
return __nvdimm_namespace_attach_pfn(nd_pfn);
}
static int nd_pmem_probe(struct device *dev)
{
struct nd_region *nd_region = to_nd_region(dev->parent);
struct nd_namespace_common *ndns;
struct nd_namespace_io *nsio;
struct pmem_device *pmem;
ndns = nvdimm_namespace_common_probe(dev);
if (IS_ERR(ndns))
return PTR_ERR(ndns);
nsio = to_nd_namespace_io(&ndns->dev);
pmem = pmem_alloc(dev, &nsio->res, nd_region->id);
if (IS_ERR(pmem))
return PTR_ERR(pmem);
pmem->ndns = ndns;
dev_set_drvdata(dev, pmem);
ndns->rw_bytes = pmem_rw_bytes;
if (devm_init_badblocks(dev, &pmem->bb))
return -ENOMEM;
nvdimm_badblocks_populate(nd_region, &pmem->bb, &nsio->res);
if (is_nd_btt(dev)) {
/* btt allocates its own request_queue */
blk_cleanup_queue(pmem->pmem_queue);
pmem->pmem_queue = NULL;
return nvdimm_namespace_attach_btt(ndns);
}
if (is_nd_pfn(dev))
return nvdimm_namespace_attach_pfn(ndns);
if (nd_btt_probe(ndns, pmem) == 0 || nd_pfn_probe(ndns, pmem) == 0) {
/*
* We'll come back as either btt-pmem, or pfn-pmem, so
* drop the queue allocation for now.
*/
blk_cleanup_queue(pmem->pmem_queue);
return -ENXIO;
}
return pmem_attach_disk(dev, ndns, pmem);
}
static int nd_pmem_remove(struct device *dev)
{
struct pmem_device *pmem = dev_get_drvdata(dev);
if (is_nd_btt(dev))
nvdimm_namespace_detach_btt(pmem->ndns);
else if (is_nd_pfn(dev))
nvdimm_namespace_detach_pfn(pmem->ndns);
else
pmem_detach_disk(pmem);
return 0;
}
static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
{
struct pmem_device *pmem = dev_get_drvdata(dev);
struct nd_namespace_common *ndns = pmem->ndns;
struct nd_region *nd_region = to_nd_region(dev->parent);
struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
struct resource res = {
.start = nsio->res.start + pmem->data_offset,
.end = nsio->res.end,
};
if (event != NVDIMM_REVALIDATE_POISON)
return;
if (is_nd_pfn(dev)) {
struct nd_pfn *nd_pfn = to_nd_pfn(dev);
struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
res.start += __le32_to_cpu(pfn_sb->start_pad);
res.end -= __le32_to_cpu(pfn_sb->end_trunc);
}
nvdimm_badblocks_populate(nd_region, &pmem->bb, &res);
}
MODULE_ALIAS("pmem");
MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
static struct nd_device_driver nd_pmem_driver = {
.probe = nd_pmem_probe,
.remove = nd_pmem_remove,
.notify = nd_pmem_notify,
.drv = {
.name = "nd_pmem",
},
.type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
};
static int __init pmem_init(void)
{
return nd_driver_register(&nd_pmem_driver);
}
module_init(pmem_init);
static void pmem_exit(void)
{
driver_unregister(&nd_pmem_driver.drv);
}
module_exit(pmem_exit);
MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
MODULE_LICENSE("GPL v2");