1
0
Fork 0
alistair23-linux/include/linux/iommu.h

695 lines
21 KiB
C
Raw Normal View History

/*
* Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
* Author: Joerg Roedel <joerg.roedel@amd.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef __LINUX_IOMMU_H
#define __LINUX_IOMMU_H
#include <linux/scatterlist.h>
#include <linux/device.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/of.h>
#define IOMMU_READ (1 << 0)
#define IOMMU_WRITE (1 << 1)
#define IOMMU_CACHE (1 << 2) /* DMA cache coherency */
#define IOMMU_NOEXEC (1 << 3)
#define IOMMU_MMIO (1 << 4) /* e.g. things like MSI doorbells */
/*
* Where the bus hardware includes a privilege level as part of its access type
* markings, and certain devices are capable of issuing transactions marked as
* either 'supervisor' or 'user', the IOMMU_PRIV flag requests that the other
* given permission flags only apply to accesses at the higher privilege level,
* and that unprivileged transactions should have as little access as possible.
* This would usually imply the same permissions as kernel mappings on the CPU,
* if the IOMMU page table format is equivalent.
*/
#define IOMMU_PRIV (1 << 5)
struct iommu_ops;
iommu: IOMMU Groups IOMMU device groups are currently a rather vague associative notion with assembly required by the user or user level driver provider to do anything useful. This patch intends to grow the IOMMU group concept into something a bit more consumable. To do this, we first create an object representing the group, struct iommu_group. This structure is allocated (iommu_group_alloc) and filled (iommu_group_add_device) by the iommu driver. The iommu driver is free to add devices to the group using it's own set of policies. This allows inclusion of devices based on physical hardware or topology limitations of the platform, as well as soft requirements, such as multi-function trust levels or peer-to-peer protection of the interconnects. Each device may only belong to a single iommu group, which is linked from struct device.iommu_group. IOMMU groups are maintained using kobject reference counting, allowing for automatic removal of empty, unreferenced groups. It is the responsibility of the iommu driver to remove devices from the group (iommu_group_remove_device). IOMMU groups also include a userspace representation in sysfs under /sys/kernel/iommu_groups. When allocated, each group is given a dynamically assign ID (int). The ID is managed by the core IOMMU group code to support multiple heterogeneous iommu drivers, which could potentially collide in group naming/numbering. This also keeps group IDs to small, easily managed values. A directory is created under /sys/kernel/iommu_groups for each group. A further subdirectory named "devices" contains links to each device within the group. The iommu_group file in the device's sysfs directory, which formerly contained a group number when read, is now a link to the iommu group. Example: $ ls -l /sys/kernel/iommu_groups/26/devices/ total 0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 -> ../../../../devices/pci0000:00/0000:00:1e.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1 $ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group [truncating perms/owner/timestamp] /sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group -> ../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group -> ../../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group -> ../../../../kernel/iommu_groups/26 Groups also include several exported functions for use by user level driver providers, for example VFIO. These include: iommu_group_get(): Acquires a reference to a group from a device iommu_group_put(): Releases reference iommu_group_for_each_dev(): Iterates over group devices using callback iommu_group_[un]register_notifier(): Allows notification of device add and remove operations relevant to the group iommu_group_id(): Return the group number This patch also extends the IOMMU API to allow attaching groups to domains. This is currently a simple wrapper for iterating through devices within a group, but it's expected that the IOMMU API may eventually make groups a more integral part of domains. Groups intentionally do not try to manage group ownership. A user level driver provider must independently acquire ownership for each device within a group before making use of the group as a whole. This may change in the future if group usage becomes more pervasive across both DMA and IOMMU ops. Groups intentionally do not provide a mechanism for driver locking or otherwise manipulating driver matching/probing of devices within the group. Such interfaces are generic to devices and beyond the scope of IOMMU groups. If implemented, user level providers have ready access via iommu_group_for_each_dev and group notifiers. iommu_device_group() is removed here as it has no users. The replacement is: group = iommu_group_get(dev); id = iommu_group_id(group); iommu_group_put(group); AMD-Vi & Intel VT-d support re-added in following patches. Signed-off-by: Alex Williamson <alex.williamson@redhat.com> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-30 14:18:53 -06:00
struct iommu_group;
struct bus_type;
struct device;
struct iommu_domain;
struct notifier_block;
/* iommu fault flags */
#define IOMMU_FAULT_READ 0x0
#define IOMMU_FAULT_WRITE 0x1
typedef int (*iommu_fault_handler_t)(struct iommu_domain *,
struct device *, unsigned long, int, void *);
struct iommu_domain_geometry {
dma_addr_t aperture_start; /* First address that can be mapped */
dma_addr_t aperture_end; /* Last address that can be mapped */
bool force_aperture; /* DMA only allowed in mappable range? */
};
/* Domain feature flags */
#define __IOMMU_DOMAIN_PAGING (1U << 0) /* Support for iommu_map/unmap */
#define __IOMMU_DOMAIN_DMA_API (1U << 1) /* Domain for use in DMA-API
implementation */
#define __IOMMU_DOMAIN_PT (1U << 2) /* Domain is identity mapped */
/*
* This are the possible domain-types
*
* IOMMU_DOMAIN_BLOCKED - All DMA is blocked, can be used to isolate
* devices
* IOMMU_DOMAIN_IDENTITY - DMA addresses are system physical addresses
* IOMMU_DOMAIN_UNMANAGED - DMA mappings managed by IOMMU-API user, used
* for VMs
* IOMMU_DOMAIN_DMA - Internally used for DMA-API implementations.
* This flag allows IOMMU drivers to implement
* certain optimizations for these domains
*/
#define IOMMU_DOMAIN_BLOCKED (0U)
#define IOMMU_DOMAIN_IDENTITY (__IOMMU_DOMAIN_PT)
#define IOMMU_DOMAIN_UNMANAGED (__IOMMU_DOMAIN_PAGING)
#define IOMMU_DOMAIN_DMA (__IOMMU_DOMAIN_PAGING | \
__IOMMU_DOMAIN_DMA_API)
struct iommu_domain {
unsigned type;
const struct iommu_ops *ops;
unsigned long pgsize_bitmap; /* Bitmap of page sizes in use */
iommu_fault_handler_t handler;
void *handler_token;
struct iommu_domain_geometry geometry;
void *iova_cookie;
};
enum iommu_cap {
IOMMU_CAP_CACHE_COHERENCY, /* IOMMU can enforce cache coherent DMA
transactions */
IOMMU_CAP_INTR_REMAP, /* IOMMU supports interrupt isolation */
IOMMU_CAP_NOEXEC, /* IOMMU_NOEXEC flag */
};
/*
* Following constraints are specifc to FSL_PAMUV1:
* -aperture must be power of 2, and naturally aligned
* -number of windows must be power of 2, and address space size
* of each window is determined by aperture size / # of windows
* -the actual size of the mapped region of a window must be power
* of 2 starting with 4KB and physical address must be naturally
* aligned.
* DOMAIN_ATTR_FSL_PAMUV1 corresponds to the above mentioned contraints.
* The caller can invoke iommu_domain_get_attr to check if the underlying
* iommu implementation supports these constraints.
*/
enum iommu_attr {
DOMAIN_ATTR_GEOMETRY,
DOMAIN_ATTR_PAGING,
DOMAIN_ATTR_WINDOWS,
DOMAIN_ATTR_FSL_PAMU_STASH,
DOMAIN_ATTR_FSL_PAMU_ENABLE,
DOMAIN_ATTR_FSL_PAMUV1,
DOMAIN_ATTR_NESTING, /* two stages of translation */
DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE,
DOMAIN_ATTR_MAX,
};
/* These are the possible reserved region types */
iommu: Disambiguate MSI region types The introduction of reserved regions has left a couple of rough edges which we could do with sorting out sooner rather than later. Since we are not yet addressing the potential dynamic aspect of software-managed reservations and presenting them at arbitrary fixed addresses, it is incongruous that we end up displaying hardware vs. software-managed MSI regions to userspace differently, especially since ARM-based systems may actually require one or the other, or even potentially both at once, (which iommu-dma currently has no hope of dealing with at all). Let's resolve the former user-visible inconsistency ASAP before the ABI has been baked into a kernel release, in a way that also lays the groundwork for the latter shortcoming to be addressed by follow-up patches. For clarity, rename the software-managed type to IOMMU_RESV_SW_MSI, use IOMMU_RESV_MSI to describe the hardware type, and document everything a little bit. Since the x86 MSI remapping hardware falls squarely under this meaning of IOMMU_RESV_MSI, apply that type to their regions as well, so that we tell the same story to userspace across all platforms. Secondly, as the various region types require quite different handling, and it really makes little sense to ever try combining them, convert the bitfield-esque #defines to a plain enum in the process before anyone gets the wrong impression. Fixes: d30ddcaa7b02 ("iommu: Add a new type field in iommu_resv_region") Reviewed-by: Eric Auger <eric.auger@redhat.com> CC: Alex Williamson <alex.williamson@redhat.com> CC: David Woodhouse <dwmw2@infradead.org> CC: kvm@vger.kernel.org Signed-off-by: Robin Murphy <robin.murphy@arm.com> Signed-off-by: Joerg Roedel <jroedel@suse.de>
2017-03-16 11:00:16 -06:00
enum iommu_resv_type {
/* Memory regions which must be mapped 1:1 at all times */
IOMMU_RESV_DIRECT,
/* Arbitrary "never map this or give it to a device" address ranges */
IOMMU_RESV_RESERVED,
/* Hardware MSI region (untranslated) */
IOMMU_RESV_MSI,
/* Software-managed MSI translation window */
IOMMU_RESV_SW_MSI,
};
/**
* struct iommu_resv_region - descriptor for a reserved memory region
* @list: Linked list pointers
* @start: System physical start address of the region
* @length: Length of the region in bytes
* @prot: IOMMU Protection flags (READ/WRITE/...)
* @type: Type of the reserved region
*/
struct iommu_resv_region {
struct list_head list;
phys_addr_t start;
size_t length;
int prot;
iommu: Disambiguate MSI region types The introduction of reserved regions has left a couple of rough edges which we could do with sorting out sooner rather than later. Since we are not yet addressing the potential dynamic aspect of software-managed reservations and presenting them at arbitrary fixed addresses, it is incongruous that we end up displaying hardware vs. software-managed MSI regions to userspace differently, especially since ARM-based systems may actually require one or the other, or even potentially both at once, (which iommu-dma currently has no hope of dealing with at all). Let's resolve the former user-visible inconsistency ASAP before the ABI has been baked into a kernel release, in a way that also lays the groundwork for the latter shortcoming to be addressed by follow-up patches. For clarity, rename the software-managed type to IOMMU_RESV_SW_MSI, use IOMMU_RESV_MSI to describe the hardware type, and document everything a little bit. Since the x86 MSI remapping hardware falls squarely under this meaning of IOMMU_RESV_MSI, apply that type to their regions as well, so that we tell the same story to userspace across all platforms. Secondly, as the various region types require quite different handling, and it really makes little sense to ever try combining them, convert the bitfield-esque #defines to a plain enum in the process before anyone gets the wrong impression. Fixes: d30ddcaa7b02 ("iommu: Add a new type field in iommu_resv_region") Reviewed-by: Eric Auger <eric.auger@redhat.com> CC: Alex Williamson <alex.williamson@redhat.com> CC: David Woodhouse <dwmw2@infradead.org> CC: kvm@vger.kernel.org Signed-off-by: Robin Murphy <robin.murphy@arm.com> Signed-off-by: Joerg Roedel <jroedel@suse.de>
2017-03-16 11:00:16 -06:00
enum iommu_resv_type type;
};
#ifdef CONFIG_IOMMU_API
iommu/core: split mapping to page sizes as supported by the hardware When mapping a memory region, split it to page sizes as supported by the iommu hardware. Always prefer bigger pages, when possible, in order to reduce the TLB pressure. The logic to do that is now added to the IOMMU core, so neither the iommu drivers themselves nor users of the IOMMU API have to duplicate it. This allows a more lenient granularity of mappings; traditionally the IOMMU API took 'order' (of a page) as a mapping size, and directly let the low level iommu drivers handle the mapping, but now that the IOMMU core can split arbitrary memory regions into pages, we can remove this limitation, so users don't have to split those regions by themselves. Currently the supported page sizes are advertised once and they then remain static. That works well for OMAP and MSM but it would probably not fly well with intel's hardware, where the page size capabilities seem to have the potential to be different between several DMA remapping devices. register_iommu() currently sets a default pgsize behavior, so we can convert the IOMMU drivers in subsequent patches. After all the drivers are converted, the temporary default settings will be removed. Mainline users of the IOMMU API (kvm and omap-iovmm) are adopted to deal with bytes instead of page order. Many thanks to Joerg Roedel <Joerg.Roedel@amd.com> for significant review! Signed-off-by: Ohad Ben-Cohen <ohad@wizery.com> Cc: David Brown <davidb@codeaurora.org> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Joerg Roedel <Joerg.Roedel@amd.com> Cc: Stepan Moskovchenko <stepanm@codeaurora.org> Cc: KyongHo Cho <pullip.cho@samsung.com> Cc: Hiroshi DOYU <hdoyu@nvidia.com> Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Cc: kvm@vger.kernel.org Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2011-11-10 02:32:26 -07:00
/**
* struct iommu_ops - iommu ops and capabilities
* @capable: check capability
* @domain_alloc: allocate iommu domain
* @domain_free: free iommu domain
iommu/core: split mapping to page sizes as supported by the hardware When mapping a memory region, split it to page sizes as supported by the iommu hardware. Always prefer bigger pages, when possible, in order to reduce the TLB pressure. The logic to do that is now added to the IOMMU core, so neither the iommu drivers themselves nor users of the IOMMU API have to duplicate it. This allows a more lenient granularity of mappings; traditionally the IOMMU API took 'order' (of a page) as a mapping size, and directly let the low level iommu drivers handle the mapping, but now that the IOMMU core can split arbitrary memory regions into pages, we can remove this limitation, so users don't have to split those regions by themselves. Currently the supported page sizes are advertised once and they then remain static. That works well for OMAP and MSM but it would probably not fly well with intel's hardware, where the page size capabilities seem to have the potential to be different between several DMA remapping devices. register_iommu() currently sets a default pgsize behavior, so we can convert the IOMMU drivers in subsequent patches. After all the drivers are converted, the temporary default settings will be removed. Mainline users of the IOMMU API (kvm and omap-iovmm) are adopted to deal with bytes instead of page order. Many thanks to Joerg Roedel <Joerg.Roedel@amd.com> for significant review! Signed-off-by: Ohad Ben-Cohen <ohad@wizery.com> Cc: David Brown <davidb@codeaurora.org> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Joerg Roedel <Joerg.Roedel@amd.com> Cc: Stepan Moskovchenko <stepanm@codeaurora.org> Cc: KyongHo Cho <pullip.cho@samsung.com> Cc: Hiroshi DOYU <hdoyu@nvidia.com> Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Cc: kvm@vger.kernel.org Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2011-11-10 02:32:26 -07:00
* @attach_dev: attach device to an iommu domain
* @detach_dev: detach device from an iommu domain
* @map: map a physically contiguous memory region to an iommu domain
* @unmap: unmap a physically contiguous memory region from an iommu domain
* @flush_tlb_all: Synchronously flush all hardware TLBs for this domain
* @iotlb_range_add: Add a given iova range to the flush queue for this domain
* @iotlb_sync: Flush all queued ranges from the hardware TLBs and empty flush
* queue
iommu/core: split mapping to page sizes as supported by the hardware When mapping a memory region, split it to page sizes as supported by the iommu hardware. Always prefer bigger pages, when possible, in order to reduce the TLB pressure. The logic to do that is now added to the IOMMU core, so neither the iommu drivers themselves nor users of the IOMMU API have to duplicate it. This allows a more lenient granularity of mappings; traditionally the IOMMU API took 'order' (of a page) as a mapping size, and directly let the low level iommu drivers handle the mapping, but now that the IOMMU core can split arbitrary memory regions into pages, we can remove this limitation, so users don't have to split those regions by themselves. Currently the supported page sizes are advertised once and they then remain static. That works well for OMAP and MSM but it would probably not fly well with intel's hardware, where the page size capabilities seem to have the potential to be different between several DMA remapping devices. register_iommu() currently sets a default pgsize behavior, so we can convert the IOMMU drivers in subsequent patches. After all the drivers are converted, the temporary default settings will be removed. Mainline users of the IOMMU API (kvm and omap-iovmm) are adopted to deal with bytes instead of page order. Many thanks to Joerg Roedel <Joerg.Roedel@amd.com> for significant review! Signed-off-by: Ohad Ben-Cohen <ohad@wizery.com> Cc: David Brown <davidb@codeaurora.org> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Joerg Roedel <Joerg.Roedel@amd.com> Cc: Stepan Moskovchenko <stepanm@codeaurora.org> Cc: KyongHo Cho <pullip.cho@samsung.com> Cc: Hiroshi DOYU <hdoyu@nvidia.com> Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Cc: kvm@vger.kernel.org Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2011-11-10 02:32:26 -07:00
* @iova_to_phys: translate iova to physical address
iommu: IOMMU Groups IOMMU device groups are currently a rather vague associative notion with assembly required by the user or user level driver provider to do anything useful. This patch intends to grow the IOMMU group concept into something a bit more consumable. To do this, we first create an object representing the group, struct iommu_group. This structure is allocated (iommu_group_alloc) and filled (iommu_group_add_device) by the iommu driver. The iommu driver is free to add devices to the group using it's own set of policies. This allows inclusion of devices based on physical hardware or topology limitations of the platform, as well as soft requirements, such as multi-function trust levels or peer-to-peer protection of the interconnects. Each device may only belong to a single iommu group, which is linked from struct device.iommu_group. IOMMU groups are maintained using kobject reference counting, allowing for automatic removal of empty, unreferenced groups. It is the responsibility of the iommu driver to remove devices from the group (iommu_group_remove_device). IOMMU groups also include a userspace representation in sysfs under /sys/kernel/iommu_groups. When allocated, each group is given a dynamically assign ID (int). The ID is managed by the core IOMMU group code to support multiple heterogeneous iommu drivers, which could potentially collide in group naming/numbering. This also keeps group IDs to small, easily managed values. A directory is created under /sys/kernel/iommu_groups for each group. A further subdirectory named "devices" contains links to each device within the group. The iommu_group file in the device's sysfs directory, which formerly contained a group number when read, is now a link to the iommu group. Example: $ ls -l /sys/kernel/iommu_groups/26/devices/ total 0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 -> ../../../../devices/pci0000:00/0000:00:1e.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1 $ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group [truncating perms/owner/timestamp] /sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group -> ../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group -> ../../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group -> ../../../../kernel/iommu_groups/26 Groups also include several exported functions for use by user level driver providers, for example VFIO. These include: iommu_group_get(): Acquires a reference to a group from a device iommu_group_put(): Releases reference iommu_group_for_each_dev(): Iterates over group devices using callback iommu_group_[un]register_notifier(): Allows notification of device add and remove operations relevant to the group iommu_group_id(): Return the group number This patch also extends the IOMMU API to allow attaching groups to domains. This is currently a simple wrapper for iterating through devices within a group, but it's expected that the IOMMU API may eventually make groups a more integral part of domains. Groups intentionally do not try to manage group ownership. A user level driver provider must independently acquire ownership for each device within a group before making use of the group as a whole. This may change in the future if group usage becomes more pervasive across both DMA and IOMMU ops. Groups intentionally do not provide a mechanism for driver locking or otherwise manipulating driver matching/probing of devices within the group. Such interfaces are generic to devices and beyond the scope of IOMMU groups. If implemented, user level providers have ready access via iommu_group_for_each_dev and group notifiers. iommu_device_group() is removed here as it has no users. The replacement is: group = iommu_group_get(dev); id = iommu_group_id(group); iommu_group_put(group); AMD-Vi & Intel VT-d support re-added in following patches. Signed-off-by: Alex Williamson <alex.williamson@redhat.com> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-30 14:18:53 -06:00
* @add_device: add device to iommu grouping
* @remove_device: remove device from iommu grouping
* @device_group: find iommu group for a particular device
* @domain_get_attr: Query domain attributes
* @domain_set_attr: Change domain attributes
* @get_resv_regions: Request list of reserved regions for a device
* @put_resv_regions: Free list of reserved regions for a device
* @apply_resv_region: Temporary helper call-back for iova reserved ranges
* @domain_window_enable: Configure and enable a particular window for a domain
* @domain_window_disable: Disable a particular window for a domain
* @of_xlate: add OF master IDs to iommu grouping
* @pgsize_bitmap: bitmap of all possible supported page sizes
iommu/core: split mapping to page sizes as supported by the hardware When mapping a memory region, split it to page sizes as supported by the iommu hardware. Always prefer bigger pages, when possible, in order to reduce the TLB pressure. The logic to do that is now added to the IOMMU core, so neither the iommu drivers themselves nor users of the IOMMU API have to duplicate it. This allows a more lenient granularity of mappings; traditionally the IOMMU API took 'order' (of a page) as a mapping size, and directly let the low level iommu drivers handle the mapping, but now that the IOMMU core can split arbitrary memory regions into pages, we can remove this limitation, so users don't have to split those regions by themselves. Currently the supported page sizes are advertised once and they then remain static. That works well for OMAP and MSM but it would probably not fly well with intel's hardware, where the page size capabilities seem to have the potential to be different between several DMA remapping devices. register_iommu() currently sets a default pgsize behavior, so we can convert the IOMMU drivers in subsequent patches. After all the drivers are converted, the temporary default settings will be removed. Mainline users of the IOMMU API (kvm and omap-iovmm) are adopted to deal with bytes instead of page order. Many thanks to Joerg Roedel <Joerg.Roedel@amd.com> for significant review! Signed-off-by: Ohad Ben-Cohen <ohad@wizery.com> Cc: David Brown <davidb@codeaurora.org> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Joerg Roedel <Joerg.Roedel@amd.com> Cc: Stepan Moskovchenko <stepanm@codeaurora.org> Cc: KyongHo Cho <pullip.cho@samsung.com> Cc: Hiroshi DOYU <hdoyu@nvidia.com> Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Cc: kvm@vger.kernel.org Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2011-11-10 02:32:26 -07:00
*/
struct iommu_ops {
bool (*capable)(enum iommu_cap);
/* Domain allocation and freeing by the iommu driver */
struct iommu_domain *(*domain_alloc)(unsigned iommu_domain_type);
void (*domain_free)(struct iommu_domain *);
int (*attach_dev)(struct iommu_domain *domain, struct device *dev);
void (*detach_dev)(struct iommu_domain *domain, struct device *dev);
int (*map)(struct iommu_domain *domain, unsigned long iova,
phys_addr_t paddr, size_t size, int prot);
size_t (*unmap)(struct iommu_domain *domain, unsigned long iova,
size_t size);
void (*flush_iotlb_all)(struct iommu_domain *domain);
void (*iotlb_range_add)(struct iommu_domain *domain,
unsigned long iova, size_t size);
void (*iotlb_sync)(struct iommu_domain *domain);
phys_addr_t (*iova_to_phys)(struct iommu_domain *domain, dma_addr_t iova);
iommu: IOMMU Groups IOMMU device groups are currently a rather vague associative notion with assembly required by the user or user level driver provider to do anything useful. This patch intends to grow the IOMMU group concept into something a bit more consumable. To do this, we first create an object representing the group, struct iommu_group. This structure is allocated (iommu_group_alloc) and filled (iommu_group_add_device) by the iommu driver. The iommu driver is free to add devices to the group using it's own set of policies. This allows inclusion of devices based on physical hardware or topology limitations of the platform, as well as soft requirements, such as multi-function trust levels or peer-to-peer protection of the interconnects. Each device may only belong to a single iommu group, which is linked from struct device.iommu_group. IOMMU groups are maintained using kobject reference counting, allowing for automatic removal of empty, unreferenced groups. It is the responsibility of the iommu driver to remove devices from the group (iommu_group_remove_device). IOMMU groups also include a userspace representation in sysfs under /sys/kernel/iommu_groups. When allocated, each group is given a dynamically assign ID (int). The ID is managed by the core IOMMU group code to support multiple heterogeneous iommu drivers, which could potentially collide in group naming/numbering. This also keeps group IDs to small, easily managed values. A directory is created under /sys/kernel/iommu_groups for each group. A further subdirectory named "devices" contains links to each device within the group. The iommu_group file in the device's sysfs directory, which formerly contained a group number when read, is now a link to the iommu group. Example: $ ls -l /sys/kernel/iommu_groups/26/devices/ total 0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 -> ../../../../devices/pci0000:00/0000:00:1e.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1 $ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group [truncating perms/owner/timestamp] /sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group -> ../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group -> ../../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group -> ../../../../kernel/iommu_groups/26 Groups also include several exported functions for use by user level driver providers, for example VFIO. These include: iommu_group_get(): Acquires a reference to a group from a device iommu_group_put(): Releases reference iommu_group_for_each_dev(): Iterates over group devices using callback iommu_group_[un]register_notifier(): Allows notification of device add and remove operations relevant to the group iommu_group_id(): Return the group number This patch also extends the IOMMU API to allow attaching groups to domains. This is currently a simple wrapper for iterating through devices within a group, but it's expected that the IOMMU API may eventually make groups a more integral part of domains. Groups intentionally do not try to manage group ownership. A user level driver provider must independently acquire ownership for each device within a group before making use of the group as a whole. This may change in the future if group usage becomes more pervasive across both DMA and IOMMU ops. Groups intentionally do not provide a mechanism for driver locking or otherwise manipulating driver matching/probing of devices within the group. Such interfaces are generic to devices and beyond the scope of IOMMU groups. If implemented, user level providers have ready access via iommu_group_for_each_dev and group notifiers. iommu_device_group() is removed here as it has no users. The replacement is: group = iommu_group_get(dev); id = iommu_group_id(group); iommu_group_put(group); AMD-Vi & Intel VT-d support re-added in following patches. Signed-off-by: Alex Williamson <alex.williamson@redhat.com> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-30 14:18:53 -06:00
int (*add_device)(struct device *dev);
void (*remove_device)(struct device *dev);
struct iommu_group *(*device_group)(struct device *dev);
int (*domain_get_attr)(struct iommu_domain *domain,
enum iommu_attr attr, void *data);
int (*domain_set_attr)(struct iommu_domain *domain,
enum iommu_attr attr, void *data);
/* Request/Free a list of reserved regions for a device */
void (*get_resv_regions)(struct device *dev, struct list_head *list);
void (*put_resv_regions)(struct device *dev, struct list_head *list);
void (*apply_resv_region)(struct device *dev,
struct iommu_domain *domain,
struct iommu_resv_region *region);
/* Window handling functions */
int (*domain_window_enable)(struct iommu_domain *domain, u32 wnd_nr,
phys_addr_t paddr, u64 size, int prot);
void (*domain_window_disable)(struct iommu_domain *domain, u32 wnd_nr);
int (*of_xlate)(struct device *dev, struct of_phandle_args *args);
bool (*is_attach_deferred)(struct iommu_domain *domain, struct device *dev);
iommu/core: split mapping to page sizes as supported by the hardware When mapping a memory region, split it to page sizes as supported by the iommu hardware. Always prefer bigger pages, when possible, in order to reduce the TLB pressure. The logic to do that is now added to the IOMMU core, so neither the iommu drivers themselves nor users of the IOMMU API have to duplicate it. This allows a more lenient granularity of mappings; traditionally the IOMMU API took 'order' (of a page) as a mapping size, and directly let the low level iommu drivers handle the mapping, but now that the IOMMU core can split arbitrary memory regions into pages, we can remove this limitation, so users don't have to split those regions by themselves. Currently the supported page sizes are advertised once and they then remain static. That works well for OMAP and MSM but it would probably not fly well with intel's hardware, where the page size capabilities seem to have the potential to be different between several DMA remapping devices. register_iommu() currently sets a default pgsize behavior, so we can convert the IOMMU drivers in subsequent patches. After all the drivers are converted, the temporary default settings will be removed. Mainline users of the IOMMU API (kvm and omap-iovmm) are adopted to deal with bytes instead of page order. Many thanks to Joerg Roedel <Joerg.Roedel@amd.com> for significant review! Signed-off-by: Ohad Ben-Cohen <ohad@wizery.com> Cc: David Brown <davidb@codeaurora.org> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Joerg Roedel <Joerg.Roedel@amd.com> Cc: Stepan Moskovchenko <stepanm@codeaurora.org> Cc: KyongHo Cho <pullip.cho@samsung.com> Cc: Hiroshi DOYU <hdoyu@nvidia.com> Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Cc: kvm@vger.kernel.org Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2011-11-10 02:32:26 -07:00
unsigned long pgsize_bitmap;
};
/**
* struct iommu_device - IOMMU core representation of one IOMMU hardware
* instance
* @list: Used by the iommu-core to keep a list of registered iommus
* @ops: iommu-ops for talking to this iommu
* @dev: struct device for sysfs handling
*/
struct iommu_device {
struct list_head list;
const struct iommu_ops *ops;
struct fwnode_handle *fwnode;
struct device *dev;
};
int iommu_device_register(struct iommu_device *iommu);
void iommu_device_unregister(struct iommu_device *iommu);
int iommu_device_sysfs_add(struct iommu_device *iommu,
struct device *parent,
const struct attribute_group **groups,
const char *fmt, ...) __printf(4, 5);
void iommu_device_sysfs_remove(struct iommu_device *iommu);
int iommu_device_link(struct iommu_device *iommu, struct device *link);
void iommu_device_unlink(struct iommu_device *iommu, struct device *link);
static inline void iommu_device_set_ops(struct iommu_device *iommu,
const struct iommu_ops *ops)
{
iommu->ops = ops;
}
static inline void iommu_device_set_fwnode(struct iommu_device *iommu,
struct fwnode_handle *fwnode)
{
iommu->fwnode = fwnode;
}
static inline struct iommu_device *dev_to_iommu_device(struct device *dev)
{
return (struct iommu_device *)dev_get_drvdata(dev);
}
iommu: IOMMU Groups IOMMU device groups are currently a rather vague associative notion with assembly required by the user or user level driver provider to do anything useful. This patch intends to grow the IOMMU group concept into something a bit more consumable. To do this, we first create an object representing the group, struct iommu_group. This structure is allocated (iommu_group_alloc) and filled (iommu_group_add_device) by the iommu driver. The iommu driver is free to add devices to the group using it's own set of policies. This allows inclusion of devices based on physical hardware or topology limitations of the platform, as well as soft requirements, such as multi-function trust levels or peer-to-peer protection of the interconnects. Each device may only belong to a single iommu group, which is linked from struct device.iommu_group. IOMMU groups are maintained using kobject reference counting, allowing for automatic removal of empty, unreferenced groups. It is the responsibility of the iommu driver to remove devices from the group (iommu_group_remove_device). IOMMU groups also include a userspace representation in sysfs under /sys/kernel/iommu_groups. When allocated, each group is given a dynamically assign ID (int). The ID is managed by the core IOMMU group code to support multiple heterogeneous iommu drivers, which could potentially collide in group naming/numbering. This also keeps group IDs to small, easily managed values. A directory is created under /sys/kernel/iommu_groups for each group. A further subdirectory named "devices" contains links to each device within the group. The iommu_group file in the device's sysfs directory, which formerly contained a group number when read, is now a link to the iommu group. Example: $ ls -l /sys/kernel/iommu_groups/26/devices/ total 0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 -> ../../../../devices/pci0000:00/0000:00:1e.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1 $ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group [truncating perms/owner/timestamp] /sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group -> ../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group -> ../../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group -> ../../../../kernel/iommu_groups/26 Groups also include several exported functions for use by user level driver providers, for example VFIO. These include: iommu_group_get(): Acquires a reference to a group from a device iommu_group_put(): Releases reference iommu_group_for_each_dev(): Iterates over group devices using callback iommu_group_[un]register_notifier(): Allows notification of device add and remove operations relevant to the group iommu_group_id(): Return the group number This patch also extends the IOMMU API to allow attaching groups to domains. This is currently a simple wrapper for iterating through devices within a group, but it's expected that the IOMMU API may eventually make groups a more integral part of domains. Groups intentionally do not try to manage group ownership. A user level driver provider must independently acquire ownership for each device within a group before making use of the group as a whole. This may change in the future if group usage becomes more pervasive across both DMA and IOMMU ops. Groups intentionally do not provide a mechanism for driver locking or otherwise manipulating driver matching/probing of devices within the group. Such interfaces are generic to devices and beyond the scope of IOMMU groups. If implemented, user level providers have ready access via iommu_group_for_each_dev and group notifiers. iommu_device_group() is removed here as it has no users. The replacement is: group = iommu_group_get(dev); id = iommu_group_id(group); iommu_group_put(group); AMD-Vi & Intel VT-d support re-added in following patches. Signed-off-by: Alex Williamson <alex.williamson@redhat.com> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-30 14:18:53 -06:00
#define IOMMU_GROUP_NOTIFY_ADD_DEVICE 1 /* Device added */
#define IOMMU_GROUP_NOTIFY_DEL_DEVICE 2 /* Pre Device removed */
#define IOMMU_GROUP_NOTIFY_BIND_DRIVER 3 /* Pre Driver bind */
#define IOMMU_GROUP_NOTIFY_BOUND_DRIVER 4 /* Post Driver bind */
#define IOMMU_GROUP_NOTIFY_UNBIND_DRIVER 5 /* Pre Driver unbind */
#define IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER 6 /* Post Driver unbind */
extern int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops);
extern bool iommu_present(struct bus_type *bus);
extern bool iommu_capable(struct bus_type *bus, enum iommu_cap cap);
extern struct iommu_domain *iommu_domain_alloc(struct bus_type *bus);
extern struct iommu_group *iommu_group_get_by_id(int id);
extern void iommu_domain_free(struct iommu_domain *domain);
extern int iommu_attach_device(struct iommu_domain *domain,
struct device *dev);
extern void iommu_detach_device(struct iommu_domain *domain,
struct device *dev);
extern struct iommu_domain *iommu_get_domain_for_dev(struct device *dev);
extern struct iommu_domain *iommu_get_dma_domain(struct device *dev);
extern int iommu_map(struct iommu_domain *domain, unsigned long iova,
iommu/core: split mapping to page sizes as supported by the hardware When mapping a memory region, split it to page sizes as supported by the iommu hardware. Always prefer bigger pages, when possible, in order to reduce the TLB pressure. The logic to do that is now added to the IOMMU core, so neither the iommu drivers themselves nor users of the IOMMU API have to duplicate it. This allows a more lenient granularity of mappings; traditionally the IOMMU API took 'order' (of a page) as a mapping size, and directly let the low level iommu drivers handle the mapping, but now that the IOMMU core can split arbitrary memory regions into pages, we can remove this limitation, so users don't have to split those regions by themselves. Currently the supported page sizes are advertised once and they then remain static. That works well for OMAP and MSM but it would probably not fly well with intel's hardware, where the page size capabilities seem to have the potential to be different between several DMA remapping devices. register_iommu() currently sets a default pgsize behavior, so we can convert the IOMMU drivers in subsequent patches. After all the drivers are converted, the temporary default settings will be removed. Mainline users of the IOMMU API (kvm and omap-iovmm) are adopted to deal with bytes instead of page order. Many thanks to Joerg Roedel <Joerg.Roedel@amd.com> for significant review! Signed-off-by: Ohad Ben-Cohen <ohad@wizery.com> Cc: David Brown <davidb@codeaurora.org> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Joerg Roedel <Joerg.Roedel@amd.com> Cc: Stepan Moskovchenko <stepanm@codeaurora.org> Cc: KyongHo Cho <pullip.cho@samsung.com> Cc: Hiroshi DOYU <hdoyu@nvidia.com> Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Cc: kvm@vger.kernel.org Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2011-11-10 02:32:26 -07:00
phys_addr_t paddr, size_t size, int prot);
extern size_t iommu_unmap(struct iommu_domain *domain, unsigned long iova,
size_t size);
extern size_t iommu_unmap_fast(struct iommu_domain *domain,
unsigned long iova, size_t size);
extern size_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
struct scatterlist *sg,unsigned int nents, int prot);
extern phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova);
extern void iommu_set_fault_handler(struct iommu_domain *domain,
iommu_fault_handler_t handler, void *token);
iommu: IOMMU Groups IOMMU device groups are currently a rather vague associative notion with assembly required by the user or user level driver provider to do anything useful. This patch intends to grow the IOMMU group concept into something a bit more consumable. To do this, we first create an object representing the group, struct iommu_group. This structure is allocated (iommu_group_alloc) and filled (iommu_group_add_device) by the iommu driver. The iommu driver is free to add devices to the group using it's own set of policies. This allows inclusion of devices based on physical hardware or topology limitations of the platform, as well as soft requirements, such as multi-function trust levels or peer-to-peer protection of the interconnects. Each device may only belong to a single iommu group, which is linked from struct device.iommu_group. IOMMU groups are maintained using kobject reference counting, allowing for automatic removal of empty, unreferenced groups. It is the responsibility of the iommu driver to remove devices from the group (iommu_group_remove_device). IOMMU groups also include a userspace representation in sysfs under /sys/kernel/iommu_groups. When allocated, each group is given a dynamically assign ID (int). The ID is managed by the core IOMMU group code to support multiple heterogeneous iommu drivers, which could potentially collide in group naming/numbering. This also keeps group IDs to small, easily managed values. A directory is created under /sys/kernel/iommu_groups for each group. A further subdirectory named "devices" contains links to each device within the group. The iommu_group file in the device's sysfs directory, which formerly contained a group number when read, is now a link to the iommu group. Example: $ ls -l /sys/kernel/iommu_groups/26/devices/ total 0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 -> ../../../../devices/pci0000:00/0000:00:1e.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1 $ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group [truncating perms/owner/timestamp] /sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group -> ../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group -> ../../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group -> ../../../../kernel/iommu_groups/26 Groups also include several exported functions for use by user level driver providers, for example VFIO. These include: iommu_group_get(): Acquires a reference to a group from a device iommu_group_put(): Releases reference iommu_group_for_each_dev(): Iterates over group devices using callback iommu_group_[un]register_notifier(): Allows notification of device add and remove operations relevant to the group iommu_group_id(): Return the group number This patch also extends the IOMMU API to allow attaching groups to domains. This is currently a simple wrapper for iterating through devices within a group, but it's expected that the IOMMU API may eventually make groups a more integral part of domains. Groups intentionally do not try to manage group ownership. A user level driver provider must independently acquire ownership for each device within a group before making use of the group as a whole. This may change in the future if group usage becomes more pervasive across both DMA and IOMMU ops. Groups intentionally do not provide a mechanism for driver locking or otherwise manipulating driver matching/probing of devices within the group. Such interfaces are generic to devices and beyond the scope of IOMMU groups. If implemented, user level providers have ready access via iommu_group_for_each_dev and group notifiers. iommu_device_group() is removed here as it has no users. The replacement is: group = iommu_group_get(dev); id = iommu_group_id(group); iommu_group_put(group); AMD-Vi & Intel VT-d support re-added in following patches. Signed-off-by: Alex Williamson <alex.williamson@redhat.com> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-30 14:18:53 -06:00
extern void iommu_get_resv_regions(struct device *dev, struct list_head *list);
extern void iommu_put_resv_regions(struct device *dev, struct list_head *list);
extern int iommu_request_dm_for_dev(struct device *dev);
extern struct iommu_resv_region *
iommu: Disambiguate MSI region types The introduction of reserved regions has left a couple of rough edges which we could do with sorting out sooner rather than later. Since we are not yet addressing the potential dynamic aspect of software-managed reservations and presenting them at arbitrary fixed addresses, it is incongruous that we end up displaying hardware vs. software-managed MSI regions to userspace differently, especially since ARM-based systems may actually require one or the other, or even potentially both at once, (which iommu-dma currently has no hope of dealing with at all). Let's resolve the former user-visible inconsistency ASAP before the ABI has been baked into a kernel release, in a way that also lays the groundwork for the latter shortcoming to be addressed by follow-up patches. For clarity, rename the software-managed type to IOMMU_RESV_SW_MSI, use IOMMU_RESV_MSI to describe the hardware type, and document everything a little bit. Since the x86 MSI remapping hardware falls squarely under this meaning of IOMMU_RESV_MSI, apply that type to their regions as well, so that we tell the same story to userspace across all platforms. Secondly, as the various region types require quite different handling, and it really makes little sense to ever try combining them, convert the bitfield-esque #defines to a plain enum in the process before anyone gets the wrong impression. Fixes: d30ddcaa7b02 ("iommu: Add a new type field in iommu_resv_region") Reviewed-by: Eric Auger <eric.auger@redhat.com> CC: Alex Williamson <alex.williamson@redhat.com> CC: David Woodhouse <dwmw2@infradead.org> CC: kvm@vger.kernel.org Signed-off-by: Robin Murphy <robin.murphy@arm.com> Signed-off-by: Joerg Roedel <jroedel@suse.de>
2017-03-16 11:00:16 -06:00
iommu_alloc_resv_region(phys_addr_t start, size_t length, int prot,
enum iommu_resv_type type);
extern int iommu_get_group_resv_regions(struct iommu_group *group,
struct list_head *head);
iommu: IOMMU Groups IOMMU device groups are currently a rather vague associative notion with assembly required by the user or user level driver provider to do anything useful. This patch intends to grow the IOMMU group concept into something a bit more consumable. To do this, we first create an object representing the group, struct iommu_group. This structure is allocated (iommu_group_alloc) and filled (iommu_group_add_device) by the iommu driver. The iommu driver is free to add devices to the group using it's own set of policies. This allows inclusion of devices based on physical hardware or topology limitations of the platform, as well as soft requirements, such as multi-function trust levels or peer-to-peer protection of the interconnects. Each device may only belong to a single iommu group, which is linked from struct device.iommu_group. IOMMU groups are maintained using kobject reference counting, allowing for automatic removal of empty, unreferenced groups. It is the responsibility of the iommu driver to remove devices from the group (iommu_group_remove_device). IOMMU groups also include a userspace representation in sysfs under /sys/kernel/iommu_groups. When allocated, each group is given a dynamically assign ID (int). The ID is managed by the core IOMMU group code to support multiple heterogeneous iommu drivers, which could potentially collide in group naming/numbering. This also keeps group IDs to small, easily managed values. A directory is created under /sys/kernel/iommu_groups for each group. A further subdirectory named "devices" contains links to each device within the group. The iommu_group file in the device's sysfs directory, which formerly contained a group number when read, is now a link to the iommu group. Example: $ ls -l /sys/kernel/iommu_groups/26/devices/ total 0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 -> ../../../../devices/pci0000:00/0000:00:1e.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1 $ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group [truncating perms/owner/timestamp] /sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group -> ../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group -> ../../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group -> ../../../../kernel/iommu_groups/26 Groups also include several exported functions for use by user level driver providers, for example VFIO. These include: iommu_group_get(): Acquires a reference to a group from a device iommu_group_put(): Releases reference iommu_group_for_each_dev(): Iterates over group devices using callback iommu_group_[un]register_notifier(): Allows notification of device add and remove operations relevant to the group iommu_group_id(): Return the group number This patch also extends the IOMMU API to allow attaching groups to domains. This is currently a simple wrapper for iterating through devices within a group, but it's expected that the IOMMU API may eventually make groups a more integral part of domains. Groups intentionally do not try to manage group ownership. A user level driver provider must independently acquire ownership for each device within a group before making use of the group as a whole. This may change in the future if group usage becomes more pervasive across both DMA and IOMMU ops. Groups intentionally do not provide a mechanism for driver locking or otherwise manipulating driver matching/probing of devices within the group. Such interfaces are generic to devices and beyond the scope of IOMMU groups. If implemented, user level providers have ready access via iommu_group_for_each_dev and group notifiers. iommu_device_group() is removed here as it has no users. The replacement is: group = iommu_group_get(dev); id = iommu_group_id(group); iommu_group_put(group); AMD-Vi & Intel VT-d support re-added in following patches. Signed-off-by: Alex Williamson <alex.williamson@redhat.com> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-30 14:18:53 -06:00
extern int iommu_attach_group(struct iommu_domain *domain,
struct iommu_group *group);
extern void iommu_detach_group(struct iommu_domain *domain,
struct iommu_group *group);
extern struct iommu_group *iommu_group_alloc(void);
extern void *iommu_group_get_iommudata(struct iommu_group *group);
extern void iommu_group_set_iommudata(struct iommu_group *group,
void *iommu_data,
void (*release)(void *iommu_data));
extern int iommu_group_set_name(struct iommu_group *group, const char *name);
extern int iommu_group_add_device(struct iommu_group *group,
struct device *dev);
extern void iommu_group_remove_device(struct device *dev);
extern int iommu_group_for_each_dev(struct iommu_group *group, void *data,
int (*fn)(struct device *, void *));
extern struct iommu_group *iommu_group_get(struct device *dev);
extern struct iommu_group *iommu_group_ref_get(struct iommu_group *group);
iommu: IOMMU Groups IOMMU device groups are currently a rather vague associative notion with assembly required by the user or user level driver provider to do anything useful. This patch intends to grow the IOMMU group concept into something a bit more consumable. To do this, we first create an object representing the group, struct iommu_group. This structure is allocated (iommu_group_alloc) and filled (iommu_group_add_device) by the iommu driver. The iommu driver is free to add devices to the group using it's own set of policies. This allows inclusion of devices based on physical hardware or topology limitations of the platform, as well as soft requirements, such as multi-function trust levels or peer-to-peer protection of the interconnects. Each device may only belong to a single iommu group, which is linked from struct device.iommu_group. IOMMU groups are maintained using kobject reference counting, allowing for automatic removal of empty, unreferenced groups. It is the responsibility of the iommu driver to remove devices from the group (iommu_group_remove_device). IOMMU groups also include a userspace representation in sysfs under /sys/kernel/iommu_groups. When allocated, each group is given a dynamically assign ID (int). The ID is managed by the core IOMMU group code to support multiple heterogeneous iommu drivers, which could potentially collide in group naming/numbering. This also keeps group IDs to small, easily managed values. A directory is created under /sys/kernel/iommu_groups for each group. A further subdirectory named "devices" contains links to each device within the group. The iommu_group file in the device's sysfs directory, which formerly contained a group number when read, is now a link to the iommu group. Example: $ ls -l /sys/kernel/iommu_groups/26/devices/ total 0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 -> ../../../../devices/pci0000:00/0000:00:1e.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1 $ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group [truncating perms/owner/timestamp] /sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group -> ../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group -> ../../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group -> ../../../../kernel/iommu_groups/26 Groups also include several exported functions for use by user level driver providers, for example VFIO. These include: iommu_group_get(): Acquires a reference to a group from a device iommu_group_put(): Releases reference iommu_group_for_each_dev(): Iterates over group devices using callback iommu_group_[un]register_notifier(): Allows notification of device add and remove operations relevant to the group iommu_group_id(): Return the group number This patch also extends the IOMMU API to allow attaching groups to domains. This is currently a simple wrapper for iterating through devices within a group, but it's expected that the IOMMU API may eventually make groups a more integral part of domains. Groups intentionally do not try to manage group ownership. A user level driver provider must independently acquire ownership for each device within a group before making use of the group as a whole. This may change in the future if group usage becomes more pervasive across both DMA and IOMMU ops. Groups intentionally do not provide a mechanism for driver locking or otherwise manipulating driver matching/probing of devices within the group. Such interfaces are generic to devices and beyond the scope of IOMMU groups. If implemented, user level providers have ready access via iommu_group_for_each_dev and group notifiers. iommu_device_group() is removed here as it has no users. The replacement is: group = iommu_group_get(dev); id = iommu_group_id(group); iommu_group_put(group); AMD-Vi & Intel VT-d support re-added in following patches. Signed-off-by: Alex Williamson <alex.williamson@redhat.com> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-30 14:18:53 -06:00
extern void iommu_group_put(struct iommu_group *group);
extern int iommu_group_register_notifier(struct iommu_group *group,
struct notifier_block *nb);
extern int iommu_group_unregister_notifier(struct iommu_group *group,
struct notifier_block *nb);
extern int iommu_group_id(struct iommu_group *group);
extern struct iommu_group *iommu_group_get_for_dev(struct device *dev);
extern struct iommu_domain *iommu_group_default_domain(struct iommu_group *);
extern int iommu_domain_get_attr(struct iommu_domain *domain, enum iommu_attr,
void *data);
extern int iommu_domain_set_attr(struct iommu_domain *domain, enum iommu_attr,
void *data);
/* Window handling function prototypes */
extern int iommu_domain_window_enable(struct iommu_domain *domain, u32 wnd_nr,
phys_addr_t offset, u64 size,
int prot);
extern void iommu_domain_window_disable(struct iommu_domain *domain, u32 wnd_nr);
extern int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
unsigned long iova, int flags);
static inline void iommu_flush_tlb_all(struct iommu_domain *domain)
{
if (domain->ops->flush_iotlb_all)
domain->ops->flush_iotlb_all(domain);
}
static inline void iommu_tlb_range_add(struct iommu_domain *domain,
unsigned long iova, size_t size)
{
if (domain->ops->iotlb_range_add)
domain->ops->iotlb_range_add(domain, iova, size);
}
static inline void iommu_tlb_sync(struct iommu_domain *domain)
{
if (domain->ops->iotlb_sync)
domain->ops->iotlb_sync(domain);
}
/* PCI device grouping function */
extern struct iommu_group *pci_device_group(struct device *dev);
/* Generic device grouping function */
extern struct iommu_group *generic_device_group(struct device *dev);
/* FSL-MC device grouping function */
struct iommu_group *fsl_mc_device_group(struct device *dev);
/**
* struct iommu_fwspec - per-device IOMMU instance data
* @ops: ops for this device's IOMMU
* @iommu_fwnode: firmware handle for this device's IOMMU
* @iommu_priv: IOMMU driver private data for this device
* @num_ids: number of associated device IDs
* @ids: IDs which this device may present to the IOMMU
*/
struct iommu_fwspec {
const struct iommu_ops *ops;
struct fwnode_handle *iommu_fwnode;
void *iommu_priv;
unsigned int num_ids;
u32 ids[1];
};
int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode,
const struct iommu_ops *ops);
void iommu_fwspec_free(struct device *dev);
int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids);
const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode);
#else /* CONFIG_IOMMU_API */
struct iommu_ops {};
iommu: IOMMU Groups IOMMU device groups are currently a rather vague associative notion with assembly required by the user or user level driver provider to do anything useful. This patch intends to grow the IOMMU group concept into something a bit more consumable. To do this, we first create an object representing the group, struct iommu_group. This structure is allocated (iommu_group_alloc) and filled (iommu_group_add_device) by the iommu driver. The iommu driver is free to add devices to the group using it's own set of policies. This allows inclusion of devices based on physical hardware or topology limitations of the platform, as well as soft requirements, such as multi-function trust levels or peer-to-peer protection of the interconnects. Each device may only belong to a single iommu group, which is linked from struct device.iommu_group. IOMMU groups are maintained using kobject reference counting, allowing for automatic removal of empty, unreferenced groups. It is the responsibility of the iommu driver to remove devices from the group (iommu_group_remove_device). IOMMU groups also include a userspace representation in sysfs under /sys/kernel/iommu_groups. When allocated, each group is given a dynamically assign ID (int). The ID is managed by the core IOMMU group code to support multiple heterogeneous iommu drivers, which could potentially collide in group naming/numbering. This also keeps group IDs to small, easily managed values. A directory is created under /sys/kernel/iommu_groups for each group. A further subdirectory named "devices" contains links to each device within the group. The iommu_group file in the device's sysfs directory, which formerly contained a group number when read, is now a link to the iommu group. Example: $ ls -l /sys/kernel/iommu_groups/26/devices/ total 0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 -> ../../../../devices/pci0000:00/0000:00:1e.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1 $ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group [truncating perms/owner/timestamp] /sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group -> ../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group -> ../../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group -> ../../../../kernel/iommu_groups/26 Groups also include several exported functions for use by user level driver providers, for example VFIO. These include: iommu_group_get(): Acquires a reference to a group from a device iommu_group_put(): Releases reference iommu_group_for_each_dev(): Iterates over group devices using callback iommu_group_[un]register_notifier(): Allows notification of device add and remove operations relevant to the group iommu_group_id(): Return the group number This patch also extends the IOMMU API to allow attaching groups to domains. This is currently a simple wrapper for iterating through devices within a group, but it's expected that the IOMMU API may eventually make groups a more integral part of domains. Groups intentionally do not try to manage group ownership. A user level driver provider must independently acquire ownership for each device within a group before making use of the group as a whole. This may change in the future if group usage becomes more pervasive across both DMA and IOMMU ops. Groups intentionally do not provide a mechanism for driver locking or otherwise manipulating driver matching/probing of devices within the group. Such interfaces are generic to devices and beyond the scope of IOMMU groups. If implemented, user level providers have ready access via iommu_group_for_each_dev and group notifiers. iommu_device_group() is removed here as it has no users. The replacement is: group = iommu_group_get(dev); id = iommu_group_id(group); iommu_group_put(group); AMD-Vi & Intel VT-d support re-added in following patches. Signed-off-by: Alex Williamson <alex.williamson@redhat.com> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-30 14:18:53 -06:00
struct iommu_group {};
struct iommu_fwspec {};
struct iommu_device {};
static inline bool iommu_present(struct bus_type *bus)
{
return false;
}
static inline bool iommu_capable(struct bus_type *bus, enum iommu_cap cap)
{
return false;
}
static inline struct iommu_domain *iommu_domain_alloc(struct bus_type *bus)
{
return NULL;
}
static inline struct iommu_group *iommu_group_get_by_id(int id)
{
return NULL;
}
static inline void iommu_domain_free(struct iommu_domain *domain)
{
}
static inline int iommu_attach_device(struct iommu_domain *domain,
struct device *dev)
{
return -ENODEV;
}
static inline void iommu_detach_device(struct iommu_domain *domain,
struct device *dev)
{
}
static inline struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
{
return NULL;
}
static inline int iommu_map(struct iommu_domain *domain, unsigned long iova,
phys_addr_t paddr, size_t size, int prot)
{
return -ENODEV;
}
static inline size_t iommu_unmap(struct iommu_domain *domain,
unsigned long iova, size_t size)
{
return 0;
}
static inline size_t iommu_unmap_fast(struct iommu_domain *domain,
unsigned long iova, int gfp_order)
{
return 0;
}
static inline size_t iommu_map_sg(struct iommu_domain *domain,
unsigned long iova, struct scatterlist *sg,
unsigned int nents, int prot)
{
return 0;
}
static inline void iommu_flush_tlb_all(struct iommu_domain *domain)
{
}
static inline void iommu_tlb_range_add(struct iommu_domain *domain,
unsigned long iova, size_t size)
{
}
static inline void iommu_tlb_sync(struct iommu_domain *domain)
{
}
static inline int iommu_domain_window_enable(struct iommu_domain *domain,
u32 wnd_nr, phys_addr_t paddr,
u64 size, int prot)
{
return -ENODEV;
}
static inline void iommu_domain_window_disable(struct iommu_domain *domain,
u32 wnd_nr)
{
}
static inline phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
{
return 0;
}
static inline void iommu_set_fault_handler(struct iommu_domain *domain,
iommu_fault_handler_t handler, void *token)
{
}
static inline void iommu_get_resv_regions(struct device *dev,
struct list_head *list)
{
}
static inline void iommu_put_resv_regions(struct device *dev,
struct list_head *list)
{
}
static inline int iommu_get_group_resv_regions(struct iommu_group *group,
struct list_head *head)
{
return -ENODEV;
}
static inline int iommu_request_dm_for_dev(struct device *dev)
{
return -ENODEV;
}
static inline int iommu_attach_group(struct iommu_domain *domain,
struct iommu_group *group)
iommu: IOMMU Groups IOMMU device groups are currently a rather vague associative notion with assembly required by the user or user level driver provider to do anything useful. This patch intends to grow the IOMMU group concept into something a bit more consumable. To do this, we first create an object representing the group, struct iommu_group. This structure is allocated (iommu_group_alloc) and filled (iommu_group_add_device) by the iommu driver. The iommu driver is free to add devices to the group using it's own set of policies. This allows inclusion of devices based on physical hardware or topology limitations of the platform, as well as soft requirements, such as multi-function trust levels or peer-to-peer protection of the interconnects. Each device may only belong to a single iommu group, which is linked from struct device.iommu_group. IOMMU groups are maintained using kobject reference counting, allowing for automatic removal of empty, unreferenced groups. It is the responsibility of the iommu driver to remove devices from the group (iommu_group_remove_device). IOMMU groups also include a userspace representation in sysfs under /sys/kernel/iommu_groups. When allocated, each group is given a dynamically assign ID (int). The ID is managed by the core IOMMU group code to support multiple heterogeneous iommu drivers, which could potentially collide in group naming/numbering. This also keeps group IDs to small, easily managed values. A directory is created under /sys/kernel/iommu_groups for each group. A further subdirectory named "devices" contains links to each device within the group. The iommu_group file in the device's sysfs directory, which formerly contained a group number when read, is now a link to the iommu group. Example: $ ls -l /sys/kernel/iommu_groups/26/devices/ total 0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 -> ../../../../devices/pci0000:00/0000:00:1e.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1 $ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group [truncating perms/owner/timestamp] /sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group -> ../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group -> ../../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group -> ../../../../kernel/iommu_groups/26 Groups also include several exported functions for use by user level driver providers, for example VFIO. These include: iommu_group_get(): Acquires a reference to a group from a device iommu_group_put(): Releases reference iommu_group_for_each_dev(): Iterates over group devices using callback iommu_group_[un]register_notifier(): Allows notification of device add and remove operations relevant to the group iommu_group_id(): Return the group number This patch also extends the IOMMU API to allow attaching groups to domains. This is currently a simple wrapper for iterating through devices within a group, but it's expected that the IOMMU API may eventually make groups a more integral part of domains. Groups intentionally do not try to manage group ownership. A user level driver provider must independently acquire ownership for each device within a group before making use of the group as a whole. This may change in the future if group usage becomes more pervasive across both DMA and IOMMU ops. Groups intentionally do not provide a mechanism for driver locking or otherwise manipulating driver matching/probing of devices within the group. Such interfaces are generic to devices and beyond the scope of IOMMU groups. If implemented, user level providers have ready access via iommu_group_for_each_dev and group notifiers. iommu_device_group() is removed here as it has no users. The replacement is: group = iommu_group_get(dev); id = iommu_group_id(group); iommu_group_put(group); AMD-Vi & Intel VT-d support re-added in following patches. Signed-off-by: Alex Williamson <alex.williamson@redhat.com> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-30 14:18:53 -06:00
{
return -ENODEV;
}
static inline void iommu_detach_group(struct iommu_domain *domain,
struct iommu_group *group)
iommu: IOMMU Groups IOMMU device groups are currently a rather vague associative notion with assembly required by the user or user level driver provider to do anything useful. This patch intends to grow the IOMMU group concept into something a bit more consumable. To do this, we first create an object representing the group, struct iommu_group. This structure is allocated (iommu_group_alloc) and filled (iommu_group_add_device) by the iommu driver. The iommu driver is free to add devices to the group using it's own set of policies. This allows inclusion of devices based on physical hardware or topology limitations of the platform, as well as soft requirements, such as multi-function trust levels or peer-to-peer protection of the interconnects. Each device may only belong to a single iommu group, which is linked from struct device.iommu_group. IOMMU groups are maintained using kobject reference counting, allowing for automatic removal of empty, unreferenced groups. It is the responsibility of the iommu driver to remove devices from the group (iommu_group_remove_device). IOMMU groups also include a userspace representation in sysfs under /sys/kernel/iommu_groups. When allocated, each group is given a dynamically assign ID (int). The ID is managed by the core IOMMU group code to support multiple heterogeneous iommu drivers, which could potentially collide in group naming/numbering. This also keeps group IDs to small, easily managed values. A directory is created under /sys/kernel/iommu_groups for each group. A further subdirectory named "devices" contains links to each device within the group. The iommu_group file in the device's sysfs directory, which formerly contained a group number when read, is now a link to the iommu group. Example: $ ls -l /sys/kernel/iommu_groups/26/devices/ total 0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 -> ../../../../devices/pci0000:00/0000:00:1e.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1 $ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group [truncating perms/owner/timestamp] /sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group -> ../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group -> ../../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group -> ../../../../kernel/iommu_groups/26 Groups also include several exported functions for use by user level driver providers, for example VFIO. These include: iommu_group_get(): Acquires a reference to a group from a device iommu_group_put(): Releases reference iommu_group_for_each_dev(): Iterates over group devices using callback iommu_group_[un]register_notifier(): Allows notification of device add and remove operations relevant to the group iommu_group_id(): Return the group number This patch also extends the IOMMU API to allow attaching groups to domains. This is currently a simple wrapper for iterating through devices within a group, but it's expected that the IOMMU API may eventually make groups a more integral part of domains. Groups intentionally do not try to manage group ownership. A user level driver provider must independently acquire ownership for each device within a group before making use of the group as a whole. This may change in the future if group usage becomes more pervasive across both DMA and IOMMU ops. Groups intentionally do not provide a mechanism for driver locking or otherwise manipulating driver matching/probing of devices within the group. Such interfaces are generic to devices and beyond the scope of IOMMU groups. If implemented, user level providers have ready access via iommu_group_for_each_dev and group notifiers. iommu_device_group() is removed here as it has no users. The replacement is: group = iommu_group_get(dev); id = iommu_group_id(group); iommu_group_put(group); AMD-Vi & Intel VT-d support re-added in following patches. Signed-off-by: Alex Williamson <alex.williamson@redhat.com> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-30 14:18:53 -06:00
{
}
static inline struct iommu_group *iommu_group_alloc(void)
iommu: IOMMU Groups IOMMU device groups are currently a rather vague associative notion with assembly required by the user or user level driver provider to do anything useful. This patch intends to grow the IOMMU group concept into something a bit more consumable. To do this, we first create an object representing the group, struct iommu_group. This structure is allocated (iommu_group_alloc) and filled (iommu_group_add_device) by the iommu driver. The iommu driver is free to add devices to the group using it's own set of policies. This allows inclusion of devices based on physical hardware or topology limitations of the platform, as well as soft requirements, such as multi-function trust levels or peer-to-peer protection of the interconnects. Each device may only belong to a single iommu group, which is linked from struct device.iommu_group. IOMMU groups are maintained using kobject reference counting, allowing for automatic removal of empty, unreferenced groups. It is the responsibility of the iommu driver to remove devices from the group (iommu_group_remove_device). IOMMU groups also include a userspace representation in sysfs under /sys/kernel/iommu_groups. When allocated, each group is given a dynamically assign ID (int). The ID is managed by the core IOMMU group code to support multiple heterogeneous iommu drivers, which could potentially collide in group naming/numbering. This also keeps group IDs to small, easily managed values. A directory is created under /sys/kernel/iommu_groups for each group. A further subdirectory named "devices" contains links to each device within the group. The iommu_group file in the device's sysfs directory, which formerly contained a group number when read, is now a link to the iommu group. Example: $ ls -l /sys/kernel/iommu_groups/26/devices/ total 0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 -> ../../../../devices/pci0000:00/0000:00:1e.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1 $ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group [truncating perms/owner/timestamp] /sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group -> ../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group -> ../../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group -> ../../../../kernel/iommu_groups/26 Groups also include several exported functions for use by user level driver providers, for example VFIO. These include: iommu_group_get(): Acquires a reference to a group from a device iommu_group_put(): Releases reference iommu_group_for_each_dev(): Iterates over group devices using callback iommu_group_[un]register_notifier(): Allows notification of device add and remove operations relevant to the group iommu_group_id(): Return the group number This patch also extends the IOMMU API to allow attaching groups to domains. This is currently a simple wrapper for iterating through devices within a group, but it's expected that the IOMMU API may eventually make groups a more integral part of domains. Groups intentionally do not try to manage group ownership. A user level driver provider must independently acquire ownership for each device within a group before making use of the group as a whole. This may change in the future if group usage becomes more pervasive across both DMA and IOMMU ops. Groups intentionally do not provide a mechanism for driver locking or otherwise manipulating driver matching/probing of devices within the group. Such interfaces are generic to devices and beyond the scope of IOMMU groups. If implemented, user level providers have ready access via iommu_group_for_each_dev and group notifiers. iommu_device_group() is removed here as it has no users. The replacement is: group = iommu_group_get(dev); id = iommu_group_id(group); iommu_group_put(group); AMD-Vi & Intel VT-d support re-added in following patches. Signed-off-by: Alex Williamson <alex.williamson@redhat.com> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-30 14:18:53 -06:00
{
return ERR_PTR(-ENODEV);
}
static inline void *iommu_group_get_iommudata(struct iommu_group *group)
iommu: IOMMU Groups IOMMU device groups are currently a rather vague associative notion with assembly required by the user or user level driver provider to do anything useful. This patch intends to grow the IOMMU group concept into something a bit more consumable. To do this, we first create an object representing the group, struct iommu_group. This structure is allocated (iommu_group_alloc) and filled (iommu_group_add_device) by the iommu driver. The iommu driver is free to add devices to the group using it's own set of policies. This allows inclusion of devices based on physical hardware or topology limitations of the platform, as well as soft requirements, such as multi-function trust levels or peer-to-peer protection of the interconnects. Each device may only belong to a single iommu group, which is linked from struct device.iommu_group. IOMMU groups are maintained using kobject reference counting, allowing for automatic removal of empty, unreferenced groups. It is the responsibility of the iommu driver to remove devices from the group (iommu_group_remove_device). IOMMU groups also include a userspace representation in sysfs under /sys/kernel/iommu_groups. When allocated, each group is given a dynamically assign ID (int). The ID is managed by the core IOMMU group code to support multiple heterogeneous iommu drivers, which could potentially collide in group naming/numbering. This also keeps group IDs to small, easily managed values. A directory is created under /sys/kernel/iommu_groups for each group. A further subdirectory named "devices" contains links to each device within the group. The iommu_group file in the device's sysfs directory, which formerly contained a group number when read, is now a link to the iommu group. Example: $ ls -l /sys/kernel/iommu_groups/26/devices/ total 0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 -> ../../../../devices/pci0000:00/0000:00:1e.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1 $ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group [truncating perms/owner/timestamp] /sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group -> ../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group -> ../../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group -> ../../../../kernel/iommu_groups/26 Groups also include several exported functions for use by user level driver providers, for example VFIO. These include: iommu_group_get(): Acquires a reference to a group from a device iommu_group_put(): Releases reference iommu_group_for_each_dev(): Iterates over group devices using callback iommu_group_[un]register_notifier(): Allows notification of device add and remove operations relevant to the group iommu_group_id(): Return the group number This patch also extends the IOMMU API to allow attaching groups to domains. This is currently a simple wrapper for iterating through devices within a group, but it's expected that the IOMMU API may eventually make groups a more integral part of domains. Groups intentionally do not try to manage group ownership. A user level driver provider must independently acquire ownership for each device within a group before making use of the group as a whole. This may change in the future if group usage becomes more pervasive across both DMA and IOMMU ops. Groups intentionally do not provide a mechanism for driver locking or otherwise manipulating driver matching/probing of devices within the group. Such interfaces are generic to devices and beyond the scope of IOMMU groups. If implemented, user level providers have ready access via iommu_group_for_each_dev and group notifiers. iommu_device_group() is removed here as it has no users. The replacement is: group = iommu_group_get(dev); id = iommu_group_id(group); iommu_group_put(group); AMD-Vi & Intel VT-d support re-added in following patches. Signed-off-by: Alex Williamson <alex.williamson@redhat.com> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-30 14:18:53 -06:00
{
return NULL;
}
static inline void iommu_group_set_iommudata(struct iommu_group *group,
void *iommu_data,
void (*release)(void *iommu_data))
iommu: IOMMU Groups IOMMU device groups are currently a rather vague associative notion with assembly required by the user or user level driver provider to do anything useful. This patch intends to grow the IOMMU group concept into something a bit more consumable. To do this, we first create an object representing the group, struct iommu_group. This structure is allocated (iommu_group_alloc) and filled (iommu_group_add_device) by the iommu driver. The iommu driver is free to add devices to the group using it's own set of policies. This allows inclusion of devices based on physical hardware or topology limitations of the platform, as well as soft requirements, such as multi-function trust levels or peer-to-peer protection of the interconnects. Each device may only belong to a single iommu group, which is linked from struct device.iommu_group. IOMMU groups are maintained using kobject reference counting, allowing for automatic removal of empty, unreferenced groups. It is the responsibility of the iommu driver to remove devices from the group (iommu_group_remove_device). IOMMU groups also include a userspace representation in sysfs under /sys/kernel/iommu_groups. When allocated, each group is given a dynamically assign ID (int). The ID is managed by the core IOMMU group code to support multiple heterogeneous iommu drivers, which could potentially collide in group naming/numbering. This also keeps group IDs to small, easily managed values. A directory is created under /sys/kernel/iommu_groups for each group. A further subdirectory named "devices" contains links to each device within the group. The iommu_group file in the device's sysfs directory, which formerly contained a group number when read, is now a link to the iommu group. Example: $ ls -l /sys/kernel/iommu_groups/26/devices/ total 0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 -> ../../../../devices/pci0000:00/0000:00:1e.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1 $ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group [truncating perms/owner/timestamp] /sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group -> ../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group -> ../../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group -> ../../../../kernel/iommu_groups/26 Groups also include several exported functions for use by user level driver providers, for example VFIO. These include: iommu_group_get(): Acquires a reference to a group from a device iommu_group_put(): Releases reference iommu_group_for_each_dev(): Iterates over group devices using callback iommu_group_[un]register_notifier(): Allows notification of device add and remove operations relevant to the group iommu_group_id(): Return the group number This patch also extends the IOMMU API to allow attaching groups to domains. This is currently a simple wrapper for iterating through devices within a group, but it's expected that the IOMMU API may eventually make groups a more integral part of domains. Groups intentionally do not try to manage group ownership. A user level driver provider must independently acquire ownership for each device within a group before making use of the group as a whole. This may change in the future if group usage becomes more pervasive across both DMA and IOMMU ops. Groups intentionally do not provide a mechanism for driver locking or otherwise manipulating driver matching/probing of devices within the group. Such interfaces are generic to devices and beyond the scope of IOMMU groups. If implemented, user level providers have ready access via iommu_group_for_each_dev and group notifiers. iommu_device_group() is removed here as it has no users. The replacement is: group = iommu_group_get(dev); id = iommu_group_id(group); iommu_group_put(group); AMD-Vi & Intel VT-d support re-added in following patches. Signed-off-by: Alex Williamson <alex.williamson@redhat.com> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-30 14:18:53 -06:00
{
}
static inline int iommu_group_set_name(struct iommu_group *group,
const char *name)
iommu: IOMMU Groups IOMMU device groups are currently a rather vague associative notion with assembly required by the user or user level driver provider to do anything useful. This patch intends to grow the IOMMU group concept into something a bit more consumable. To do this, we first create an object representing the group, struct iommu_group. This structure is allocated (iommu_group_alloc) and filled (iommu_group_add_device) by the iommu driver. The iommu driver is free to add devices to the group using it's own set of policies. This allows inclusion of devices based on physical hardware or topology limitations of the platform, as well as soft requirements, such as multi-function trust levels or peer-to-peer protection of the interconnects. Each device may only belong to a single iommu group, which is linked from struct device.iommu_group. IOMMU groups are maintained using kobject reference counting, allowing for automatic removal of empty, unreferenced groups. It is the responsibility of the iommu driver to remove devices from the group (iommu_group_remove_device). IOMMU groups also include a userspace representation in sysfs under /sys/kernel/iommu_groups. When allocated, each group is given a dynamically assign ID (int). The ID is managed by the core IOMMU group code to support multiple heterogeneous iommu drivers, which could potentially collide in group naming/numbering. This also keeps group IDs to small, easily managed values. A directory is created under /sys/kernel/iommu_groups for each group. A further subdirectory named "devices" contains links to each device within the group. The iommu_group file in the device's sysfs directory, which formerly contained a group number when read, is now a link to the iommu group. Example: $ ls -l /sys/kernel/iommu_groups/26/devices/ total 0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 -> ../../../../devices/pci0000:00/0000:00:1e.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1 $ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group [truncating perms/owner/timestamp] /sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group -> ../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group -> ../../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group -> ../../../../kernel/iommu_groups/26 Groups also include several exported functions for use by user level driver providers, for example VFIO. These include: iommu_group_get(): Acquires a reference to a group from a device iommu_group_put(): Releases reference iommu_group_for_each_dev(): Iterates over group devices using callback iommu_group_[un]register_notifier(): Allows notification of device add and remove operations relevant to the group iommu_group_id(): Return the group number This patch also extends the IOMMU API to allow attaching groups to domains. This is currently a simple wrapper for iterating through devices within a group, but it's expected that the IOMMU API may eventually make groups a more integral part of domains. Groups intentionally do not try to manage group ownership. A user level driver provider must independently acquire ownership for each device within a group before making use of the group as a whole. This may change in the future if group usage becomes more pervasive across both DMA and IOMMU ops. Groups intentionally do not provide a mechanism for driver locking or otherwise manipulating driver matching/probing of devices within the group. Such interfaces are generic to devices and beyond the scope of IOMMU groups. If implemented, user level providers have ready access via iommu_group_for_each_dev and group notifiers. iommu_device_group() is removed here as it has no users. The replacement is: group = iommu_group_get(dev); id = iommu_group_id(group); iommu_group_put(group); AMD-Vi & Intel VT-d support re-added in following patches. Signed-off-by: Alex Williamson <alex.williamson@redhat.com> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-30 14:18:53 -06:00
{
return -ENODEV;
}
static inline int iommu_group_add_device(struct iommu_group *group,
struct device *dev)
iommu: IOMMU Groups IOMMU device groups are currently a rather vague associative notion with assembly required by the user or user level driver provider to do anything useful. This patch intends to grow the IOMMU group concept into something a bit more consumable. To do this, we first create an object representing the group, struct iommu_group. This structure is allocated (iommu_group_alloc) and filled (iommu_group_add_device) by the iommu driver. The iommu driver is free to add devices to the group using it's own set of policies. This allows inclusion of devices based on physical hardware or topology limitations of the platform, as well as soft requirements, such as multi-function trust levels or peer-to-peer protection of the interconnects. Each device may only belong to a single iommu group, which is linked from struct device.iommu_group. IOMMU groups are maintained using kobject reference counting, allowing for automatic removal of empty, unreferenced groups. It is the responsibility of the iommu driver to remove devices from the group (iommu_group_remove_device). IOMMU groups also include a userspace representation in sysfs under /sys/kernel/iommu_groups. When allocated, each group is given a dynamically assign ID (int). The ID is managed by the core IOMMU group code to support multiple heterogeneous iommu drivers, which could potentially collide in group naming/numbering. This also keeps group IDs to small, easily managed values. A directory is created under /sys/kernel/iommu_groups for each group. A further subdirectory named "devices" contains links to each device within the group. The iommu_group file in the device's sysfs directory, which formerly contained a group number when read, is now a link to the iommu group. Example: $ ls -l /sys/kernel/iommu_groups/26/devices/ total 0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 -> ../../../../devices/pci0000:00/0000:00:1e.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1 $ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group [truncating perms/owner/timestamp] /sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group -> ../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group -> ../../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group -> ../../../../kernel/iommu_groups/26 Groups also include several exported functions for use by user level driver providers, for example VFIO. These include: iommu_group_get(): Acquires a reference to a group from a device iommu_group_put(): Releases reference iommu_group_for_each_dev(): Iterates over group devices using callback iommu_group_[un]register_notifier(): Allows notification of device add and remove operations relevant to the group iommu_group_id(): Return the group number This patch also extends the IOMMU API to allow attaching groups to domains. This is currently a simple wrapper for iterating through devices within a group, but it's expected that the IOMMU API may eventually make groups a more integral part of domains. Groups intentionally do not try to manage group ownership. A user level driver provider must independently acquire ownership for each device within a group before making use of the group as a whole. This may change in the future if group usage becomes more pervasive across both DMA and IOMMU ops. Groups intentionally do not provide a mechanism for driver locking or otherwise manipulating driver matching/probing of devices within the group. Such interfaces are generic to devices and beyond the scope of IOMMU groups. If implemented, user level providers have ready access via iommu_group_for_each_dev and group notifiers. iommu_device_group() is removed here as it has no users. The replacement is: group = iommu_group_get(dev); id = iommu_group_id(group); iommu_group_put(group); AMD-Vi & Intel VT-d support re-added in following patches. Signed-off-by: Alex Williamson <alex.williamson@redhat.com> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-30 14:18:53 -06:00
{
return -ENODEV;
}
static inline void iommu_group_remove_device(struct device *dev)
iommu: IOMMU Groups IOMMU device groups are currently a rather vague associative notion with assembly required by the user or user level driver provider to do anything useful. This patch intends to grow the IOMMU group concept into something a bit more consumable. To do this, we first create an object representing the group, struct iommu_group. This structure is allocated (iommu_group_alloc) and filled (iommu_group_add_device) by the iommu driver. The iommu driver is free to add devices to the group using it's own set of policies. This allows inclusion of devices based on physical hardware or topology limitations of the platform, as well as soft requirements, such as multi-function trust levels or peer-to-peer protection of the interconnects. Each device may only belong to a single iommu group, which is linked from struct device.iommu_group. IOMMU groups are maintained using kobject reference counting, allowing for automatic removal of empty, unreferenced groups. It is the responsibility of the iommu driver to remove devices from the group (iommu_group_remove_device). IOMMU groups also include a userspace representation in sysfs under /sys/kernel/iommu_groups. When allocated, each group is given a dynamically assign ID (int). The ID is managed by the core IOMMU group code to support multiple heterogeneous iommu drivers, which could potentially collide in group naming/numbering. This also keeps group IDs to small, easily managed values. A directory is created under /sys/kernel/iommu_groups for each group. A further subdirectory named "devices" contains links to each device within the group. The iommu_group file in the device's sysfs directory, which formerly contained a group number when read, is now a link to the iommu group. Example: $ ls -l /sys/kernel/iommu_groups/26/devices/ total 0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 -> ../../../../devices/pci0000:00/0000:00:1e.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1 $ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group [truncating perms/owner/timestamp] /sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group -> ../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group -> ../../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group -> ../../../../kernel/iommu_groups/26 Groups also include several exported functions for use by user level driver providers, for example VFIO. These include: iommu_group_get(): Acquires a reference to a group from a device iommu_group_put(): Releases reference iommu_group_for_each_dev(): Iterates over group devices using callback iommu_group_[un]register_notifier(): Allows notification of device add and remove operations relevant to the group iommu_group_id(): Return the group number This patch also extends the IOMMU API to allow attaching groups to domains. This is currently a simple wrapper for iterating through devices within a group, but it's expected that the IOMMU API may eventually make groups a more integral part of domains. Groups intentionally do not try to manage group ownership. A user level driver provider must independently acquire ownership for each device within a group before making use of the group as a whole. This may change in the future if group usage becomes more pervasive across both DMA and IOMMU ops. Groups intentionally do not provide a mechanism for driver locking or otherwise manipulating driver matching/probing of devices within the group. Such interfaces are generic to devices and beyond the scope of IOMMU groups. If implemented, user level providers have ready access via iommu_group_for_each_dev and group notifiers. iommu_device_group() is removed here as it has no users. The replacement is: group = iommu_group_get(dev); id = iommu_group_id(group); iommu_group_put(group); AMD-Vi & Intel VT-d support re-added in following patches. Signed-off-by: Alex Williamson <alex.williamson@redhat.com> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-30 14:18:53 -06:00
{
}
static inline int iommu_group_for_each_dev(struct iommu_group *group,
void *data,
int (*fn)(struct device *, void *))
iommu: IOMMU Groups IOMMU device groups are currently a rather vague associative notion with assembly required by the user or user level driver provider to do anything useful. This patch intends to grow the IOMMU group concept into something a bit more consumable. To do this, we first create an object representing the group, struct iommu_group. This structure is allocated (iommu_group_alloc) and filled (iommu_group_add_device) by the iommu driver. The iommu driver is free to add devices to the group using it's own set of policies. This allows inclusion of devices based on physical hardware or topology limitations of the platform, as well as soft requirements, such as multi-function trust levels or peer-to-peer protection of the interconnects. Each device may only belong to a single iommu group, which is linked from struct device.iommu_group. IOMMU groups are maintained using kobject reference counting, allowing for automatic removal of empty, unreferenced groups. It is the responsibility of the iommu driver to remove devices from the group (iommu_group_remove_device). IOMMU groups also include a userspace representation in sysfs under /sys/kernel/iommu_groups. When allocated, each group is given a dynamically assign ID (int). The ID is managed by the core IOMMU group code to support multiple heterogeneous iommu drivers, which could potentially collide in group naming/numbering. This also keeps group IDs to small, easily managed values. A directory is created under /sys/kernel/iommu_groups for each group. A further subdirectory named "devices" contains links to each device within the group. The iommu_group file in the device's sysfs directory, which formerly contained a group number when read, is now a link to the iommu group. Example: $ ls -l /sys/kernel/iommu_groups/26/devices/ total 0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 -> ../../../../devices/pci0000:00/0000:00:1e.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1 $ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group [truncating perms/owner/timestamp] /sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group -> ../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group -> ../../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group -> ../../../../kernel/iommu_groups/26 Groups also include several exported functions for use by user level driver providers, for example VFIO. These include: iommu_group_get(): Acquires a reference to a group from a device iommu_group_put(): Releases reference iommu_group_for_each_dev(): Iterates over group devices using callback iommu_group_[un]register_notifier(): Allows notification of device add and remove operations relevant to the group iommu_group_id(): Return the group number This patch also extends the IOMMU API to allow attaching groups to domains. This is currently a simple wrapper for iterating through devices within a group, but it's expected that the IOMMU API may eventually make groups a more integral part of domains. Groups intentionally do not try to manage group ownership. A user level driver provider must independently acquire ownership for each device within a group before making use of the group as a whole. This may change in the future if group usage becomes more pervasive across both DMA and IOMMU ops. Groups intentionally do not provide a mechanism for driver locking or otherwise manipulating driver matching/probing of devices within the group. Such interfaces are generic to devices and beyond the scope of IOMMU groups. If implemented, user level providers have ready access via iommu_group_for_each_dev and group notifiers. iommu_device_group() is removed here as it has no users. The replacement is: group = iommu_group_get(dev); id = iommu_group_id(group); iommu_group_put(group); AMD-Vi & Intel VT-d support re-added in following patches. Signed-off-by: Alex Williamson <alex.williamson@redhat.com> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-30 14:18:53 -06:00
{
return -ENODEV;
}
static inline struct iommu_group *iommu_group_get(struct device *dev)
iommu: IOMMU Groups IOMMU device groups are currently a rather vague associative notion with assembly required by the user or user level driver provider to do anything useful. This patch intends to grow the IOMMU group concept into something a bit more consumable. To do this, we first create an object representing the group, struct iommu_group. This structure is allocated (iommu_group_alloc) and filled (iommu_group_add_device) by the iommu driver. The iommu driver is free to add devices to the group using it's own set of policies. This allows inclusion of devices based on physical hardware or topology limitations of the platform, as well as soft requirements, such as multi-function trust levels or peer-to-peer protection of the interconnects. Each device may only belong to a single iommu group, which is linked from struct device.iommu_group. IOMMU groups are maintained using kobject reference counting, allowing for automatic removal of empty, unreferenced groups. It is the responsibility of the iommu driver to remove devices from the group (iommu_group_remove_device). IOMMU groups also include a userspace representation in sysfs under /sys/kernel/iommu_groups. When allocated, each group is given a dynamically assign ID (int). The ID is managed by the core IOMMU group code to support multiple heterogeneous iommu drivers, which could potentially collide in group naming/numbering. This also keeps group IDs to small, easily managed values. A directory is created under /sys/kernel/iommu_groups for each group. A further subdirectory named "devices" contains links to each device within the group. The iommu_group file in the device's sysfs directory, which formerly contained a group number when read, is now a link to the iommu group. Example: $ ls -l /sys/kernel/iommu_groups/26/devices/ total 0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 -> ../../../../devices/pci0000:00/0000:00:1e.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1 $ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group [truncating perms/owner/timestamp] /sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group -> ../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group -> ../../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group -> ../../../../kernel/iommu_groups/26 Groups also include several exported functions for use by user level driver providers, for example VFIO. These include: iommu_group_get(): Acquires a reference to a group from a device iommu_group_put(): Releases reference iommu_group_for_each_dev(): Iterates over group devices using callback iommu_group_[un]register_notifier(): Allows notification of device add and remove operations relevant to the group iommu_group_id(): Return the group number This patch also extends the IOMMU API to allow attaching groups to domains. This is currently a simple wrapper for iterating through devices within a group, but it's expected that the IOMMU API may eventually make groups a more integral part of domains. Groups intentionally do not try to manage group ownership. A user level driver provider must independently acquire ownership for each device within a group before making use of the group as a whole. This may change in the future if group usage becomes more pervasive across both DMA and IOMMU ops. Groups intentionally do not provide a mechanism for driver locking or otherwise manipulating driver matching/probing of devices within the group. Such interfaces are generic to devices and beyond the scope of IOMMU groups. If implemented, user level providers have ready access via iommu_group_for_each_dev and group notifiers. iommu_device_group() is removed here as it has no users. The replacement is: group = iommu_group_get(dev); id = iommu_group_id(group); iommu_group_put(group); AMD-Vi & Intel VT-d support re-added in following patches. Signed-off-by: Alex Williamson <alex.williamson@redhat.com> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-30 14:18:53 -06:00
{
return NULL;
}
static inline void iommu_group_put(struct iommu_group *group)
iommu: IOMMU Groups IOMMU device groups are currently a rather vague associative notion with assembly required by the user or user level driver provider to do anything useful. This patch intends to grow the IOMMU group concept into something a bit more consumable. To do this, we first create an object representing the group, struct iommu_group. This structure is allocated (iommu_group_alloc) and filled (iommu_group_add_device) by the iommu driver. The iommu driver is free to add devices to the group using it's own set of policies. This allows inclusion of devices based on physical hardware or topology limitations of the platform, as well as soft requirements, such as multi-function trust levels or peer-to-peer protection of the interconnects. Each device may only belong to a single iommu group, which is linked from struct device.iommu_group. IOMMU groups are maintained using kobject reference counting, allowing for automatic removal of empty, unreferenced groups. It is the responsibility of the iommu driver to remove devices from the group (iommu_group_remove_device). IOMMU groups also include a userspace representation in sysfs under /sys/kernel/iommu_groups. When allocated, each group is given a dynamically assign ID (int). The ID is managed by the core IOMMU group code to support multiple heterogeneous iommu drivers, which could potentially collide in group naming/numbering. This also keeps group IDs to small, easily managed values. A directory is created under /sys/kernel/iommu_groups for each group. A further subdirectory named "devices" contains links to each device within the group. The iommu_group file in the device's sysfs directory, which formerly contained a group number when read, is now a link to the iommu group. Example: $ ls -l /sys/kernel/iommu_groups/26/devices/ total 0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 -> ../../../../devices/pci0000:00/0000:00:1e.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1 $ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group [truncating perms/owner/timestamp] /sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group -> ../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group -> ../../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group -> ../../../../kernel/iommu_groups/26 Groups also include several exported functions for use by user level driver providers, for example VFIO. These include: iommu_group_get(): Acquires a reference to a group from a device iommu_group_put(): Releases reference iommu_group_for_each_dev(): Iterates over group devices using callback iommu_group_[un]register_notifier(): Allows notification of device add and remove operations relevant to the group iommu_group_id(): Return the group number This patch also extends the IOMMU API to allow attaching groups to domains. This is currently a simple wrapper for iterating through devices within a group, but it's expected that the IOMMU API may eventually make groups a more integral part of domains. Groups intentionally do not try to manage group ownership. A user level driver provider must independently acquire ownership for each device within a group before making use of the group as a whole. This may change in the future if group usage becomes more pervasive across both DMA and IOMMU ops. Groups intentionally do not provide a mechanism for driver locking or otherwise manipulating driver matching/probing of devices within the group. Such interfaces are generic to devices and beyond the scope of IOMMU groups. If implemented, user level providers have ready access via iommu_group_for_each_dev and group notifiers. iommu_device_group() is removed here as it has no users. The replacement is: group = iommu_group_get(dev); id = iommu_group_id(group); iommu_group_put(group); AMD-Vi & Intel VT-d support re-added in following patches. Signed-off-by: Alex Williamson <alex.williamson@redhat.com> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-30 14:18:53 -06:00
{
}
static inline int iommu_group_register_notifier(struct iommu_group *group,
struct notifier_block *nb)
{
return -ENODEV;
}
static inline int iommu_group_unregister_notifier(struct iommu_group *group,
struct notifier_block *nb)
iommu: IOMMU Groups IOMMU device groups are currently a rather vague associative notion with assembly required by the user or user level driver provider to do anything useful. This patch intends to grow the IOMMU group concept into something a bit more consumable. To do this, we first create an object representing the group, struct iommu_group. This structure is allocated (iommu_group_alloc) and filled (iommu_group_add_device) by the iommu driver. The iommu driver is free to add devices to the group using it's own set of policies. This allows inclusion of devices based on physical hardware or topology limitations of the platform, as well as soft requirements, such as multi-function trust levels or peer-to-peer protection of the interconnects. Each device may only belong to a single iommu group, which is linked from struct device.iommu_group. IOMMU groups are maintained using kobject reference counting, allowing for automatic removal of empty, unreferenced groups. It is the responsibility of the iommu driver to remove devices from the group (iommu_group_remove_device). IOMMU groups also include a userspace representation in sysfs under /sys/kernel/iommu_groups. When allocated, each group is given a dynamically assign ID (int). The ID is managed by the core IOMMU group code to support multiple heterogeneous iommu drivers, which could potentially collide in group naming/numbering. This also keeps group IDs to small, easily managed values. A directory is created under /sys/kernel/iommu_groups for each group. A further subdirectory named "devices" contains links to each device within the group. The iommu_group file in the device's sysfs directory, which formerly contained a group number when read, is now a link to the iommu group. Example: $ ls -l /sys/kernel/iommu_groups/26/devices/ total 0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 -> ../../../../devices/pci0000:00/0000:00:1e.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1 $ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group [truncating perms/owner/timestamp] /sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group -> ../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group -> ../../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group -> ../../../../kernel/iommu_groups/26 Groups also include several exported functions for use by user level driver providers, for example VFIO. These include: iommu_group_get(): Acquires a reference to a group from a device iommu_group_put(): Releases reference iommu_group_for_each_dev(): Iterates over group devices using callback iommu_group_[un]register_notifier(): Allows notification of device add and remove operations relevant to the group iommu_group_id(): Return the group number This patch also extends the IOMMU API to allow attaching groups to domains. This is currently a simple wrapper for iterating through devices within a group, but it's expected that the IOMMU API may eventually make groups a more integral part of domains. Groups intentionally do not try to manage group ownership. A user level driver provider must independently acquire ownership for each device within a group before making use of the group as a whole. This may change in the future if group usage becomes more pervasive across both DMA and IOMMU ops. Groups intentionally do not provide a mechanism for driver locking or otherwise manipulating driver matching/probing of devices within the group. Such interfaces are generic to devices and beyond the scope of IOMMU groups. If implemented, user level providers have ready access via iommu_group_for_each_dev and group notifiers. iommu_device_group() is removed here as it has no users. The replacement is: group = iommu_group_get(dev); id = iommu_group_id(group); iommu_group_put(group); AMD-Vi & Intel VT-d support re-added in following patches. Signed-off-by: Alex Williamson <alex.williamson@redhat.com> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-30 14:18:53 -06:00
{
return 0;
}
static inline int iommu_group_id(struct iommu_group *group)
iommu: IOMMU Groups IOMMU device groups are currently a rather vague associative notion with assembly required by the user or user level driver provider to do anything useful. This patch intends to grow the IOMMU group concept into something a bit more consumable. To do this, we first create an object representing the group, struct iommu_group. This structure is allocated (iommu_group_alloc) and filled (iommu_group_add_device) by the iommu driver. The iommu driver is free to add devices to the group using it's own set of policies. This allows inclusion of devices based on physical hardware or topology limitations of the platform, as well as soft requirements, such as multi-function trust levels or peer-to-peer protection of the interconnects. Each device may only belong to a single iommu group, which is linked from struct device.iommu_group. IOMMU groups are maintained using kobject reference counting, allowing for automatic removal of empty, unreferenced groups. It is the responsibility of the iommu driver to remove devices from the group (iommu_group_remove_device). IOMMU groups also include a userspace representation in sysfs under /sys/kernel/iommu_groups. When allocated, each group is given a dynamically assign ID (int). The ID is managed by the core IOMMU group code to support multiple heterogeneous iommu drivers, which could potentially collide in group naming/numbering. This also keeps group IDs to small, easily managed values. A directory is created under /sys/kernel/iommu_groups for each group. A further subdirectory named "devices" contains links to each device within the group. The iommu_group file in the device's sysfs directory, which formerly contained a group number when read, is now a link to the iommu group. Example: $ ls -l /sys/kernel/iommu_groups/26/devices/ total 0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:00:1e.0 -> ../../../../devices/pci0000:00/0000:00:1e.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.0 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0 lrwxrwxrwx. 1 root root 0 Apr 17 12:57 0000:06:0d.1 -> ../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1 $ ls -l /sys/kernel/iommu_groups/26/devices/*/iommu_group [truncating perms/owner/timestamp] /sys/kernel/iommu_groups/26/devices/0000:00:1e.0/iommu_group -> ../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.0/iommu_group -> ../../../../kernel/iommu_groups/26 /sys/kernel/iommu_groups/26/devices/0000:06:0d.1/iommu_group -> ../../../../kernel/iommu_groups/26 Groups also include several exported functions for use by user level driver providers, for example VFIO. These include: iommu_group_get(): Acquires a reference to a group from a device iommu_group_put(): Releases reference iommu_group_for_each_dev(): Iterates over group devices using callback iommu_group_[un]register_notifier(): Allows notification of device add and remove operations relevant to the group iommu_group_id(): Return the group number This patch also extends the IOMMU API to allow attaching groups to domains. This is currently a simple wrapper for iterating through devices within a group, but it's expected that the IOMMU API may eventually make groups a more integral part of domains. Groups intentionally do not try to manage group ownership. A user level driver provider must independently acquire ownership for each device within a group before making use of the group as a whole. This may change in the future if group usage becomes more pervasive across both DMA and IOMMU ops. Groups intentionally do not provide a mechanism for driver locking or otherwise manipulating driver matching/probing of devices within the group. Such interfaces are generic to devices and beyond the scope of IOMMU groups. If implemented, user level providers have ready access via iommu_group_for_each_dev and group notifiers. iommu_device_group() is removed here as it has no users. The replacement is: group = iommu_group_get(dev); id = iommu_group_id(group); iommu_group_put(group); AMD-Vi & Intel VT-d support re-added in following patches. Signed-off-by: Alex Williamson <alex.williamson@redhat.com> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2012-05-30 14:18:53 -06:00
{
return -ENODEV;
}
static inline int iommu_domain_get_attr(struct iommu_domain *domain,
enum iommu_attr attr, void *data)
{
return -EINVAL;
}
static inline int iommu_domain_set_attr(struct iommu_domain *domain,
enum iommu_attr attr, void *data)
{
return -EINVAL;
}
static inline int iommu_device_register(struct iommu_device *iommu)
{
return -ENODEV;
}
static inline void iommu_device_set_ops(struct iommu_device *iommu,
const struct iommu_ops *ops)
{
}
static inline void iommu_device_set_fwnode(struct iommu_device *iommu,
struct fwnode_handle *fwnode)
{
}
static inline struct iommu_device *dev_to_iommu_device(struct device *dev)
{
return NULL;
}
static inline void iommu_device_unregister(struct iommu_device *iommu)
{
}
static inline int iommu_device_sysfs_add(struct iommu_device *iommu,
struct device *parent,
const struct attribute_group **groups,
const char *fmt, ...)
{
return -ENODEV;
}
static inline void iommu_device_sysfs_remove(struct iommu_device *iommu)
{
}
static inline int iommu_device_link(struct device *dev, struct device *link)
{
return -EINVAL;
}
static inline void iommu_device_unlink(struct device *dev, struct device *link)
{
}
static inline int iommu_fwspec_init(struct device *dev,
struct fwnode_handle *iommu_fwnode,
const struct iommu_ops *ops)
{
return -ENODEV;
}
static inline void iommu_fwspec_free(struct device *dev)
{
}
static inline int iommu_fwspec_add_ids(struct device *dev, u32 *ids,
int num_ids)
{
return -ENODEV;
}
iommu: Make of_iommu_set/get_ops() DT agnostic The of_iommu_{set/get}_ops() API is used to associate a device tree node with a specific set of IOMMU operations. The same kernel interface is required on systems booting with ACPI, where devices are not associated with a device tree node, therefore the interface requires generalization. The struct device fwnode member represents the fwnode token associated with the device and the struct it points at is firmware specific; regardless, it is initialized on both ACPI and DT systems and makes an ideal candidate to use it to associate a set of IOMMU operations to a given device, through its struct device.fwnode member pointer, paving the way for representing per-device iommu_ops (ie an iommu instance associated with a device). Convert the DT specific of_iommu_{set/get}_ops() interface to use struct device.fwnode as a look-up token, making the interface usable on ACPI systems and rename the data structures and the registration API so that they are made to represent their usage more clearly. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Robin Murphy <robin.murphy@arm.com> Reviewed-by: Tomasz Nowicki <tn@semihalf.com> Tested-by: Hanjun Guo <hanjun.guo@linaro.org> Tested-by: Tomasz Nowicki <tn@semihalf.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Hanjun Guo <hanjun.guo@linaro.org> Cc: Robin Murphy <robin.murphy@arm.com> Cc: Joerg Roedel <joro@8bytes.org> Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-11-21 03:01:36 -07:00
static inline
const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode)
iommu: Make of_iommu_set/get_ops() DT agnostic The of_iommu_{set/get}_ops() API is used to associate a device tree node with a specific set of IOMMU operations. The same kernel interface is required on systems booting with ACPI, where devices are not associated with a device tree node, therefore the interface requires generalization. The struct device fwnode member represents the fwnode token associated with the device and the struct it points at is firmware specific; regardless, it is initialized on both ACPI and DT systems and makes an ideal candidate to use it to associate a set of IOMMU operations to a given device, through its struct device.fwnode member pointer, paving the way for representing per-device iommu_ops (ie an iommu instance associated with a device). Convert the DT specific of_iommu_{set/get}_ops() interface to use struct device.fwnode as a look-up token, making the interface usable on ACPI systems and rename the data structures and the registration API so that they are made to represent their usage more clearly. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Robin Murphy <robin.murphy@arm.com> Reviewed-by: Tomasz Nowicki <tn@semihalf.com> Tested-by: Hanjun Guo <hanjun.guo@linaro.org> Tested-by: Tomasz Nowicki <tn@semihalf.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Hanjun Guo <hanjun.guo@linaro.org> Cc: Robin Murphy <robin.murphy@arm.com> Cc: Joerg Roedel <joro@8bytes.org> Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-11-21 03:01:36 -07:00
{
return NULL;
}
#endif /* CONFIG_IOMMU_API */
#ifdef CONFIG_IOMMU_DEBUGFS
extern struct dentry *iommu_debugfs_dir;
void iommu_debugfs_setup(void);
#else
static inline void iommu_debugfs_setup(void) {}
#endif
#endif /* __LINUX_IOMMU_H */