alistair23-linux/arch/x86/kernel/machine_kexec_64.c

536 lines
13 KiB
C
Raw Normal View History

/*
* handle transition of Linux booting another kernel
* Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com>
*
* This source code is licensed under the GNU General Public License,
* Version 2. See the file COPYING for more details.
*/
#define pr_fmt(fmt) "kexec: " fmt
#include <linux/mm.h>
#include <linux/kexec.h>
#include <linux/string.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 02:04:11 -06:00
#include <linux/gfp.h>
#include <linux/reboot.h>
#include <linux/numa.h>
#include <linux/ftrace.h>
#include <linux/io.h>
#include <linux/suspend.h>
#include <asm/init.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <asm/mmu_context.h>
#include <asm/debugreg.h>
#include <asm/kexec-bzimage64.h>
kexec: create a new config option CONFIG_KEXEC_FILE for new syscall Currently new system call kexec_file_load() and all the associated code compiles if CONFIG_KEXEC=y. But new syscall also compiles purgatory code which currently uses gcc option -mcmodel=large. This option seems to be available only gcc 4.4 onwards. Hiding new functionality behind a new config option will not break existing users of old gcc. Those who wish to enable new functionality will require new gcc. Having said that, I am trying to figure out how can I move away from using -mcmodel=large but that can take a while. I think there are other advantages of introducing this new config option. As this option will be enabled only on x86_64, other arches don't have to compile generic kexec code which will never be used. This new code selects CRYPTO=y and CRYPTO_SHA256=y. And all other arches had to do this for CONFIG_KEXEC. Now with introduction of new config option, we can remove crypto dependency from other arches. Now CONFIG_KEXEC_FILE is available only on x86_64. So whereever I had CONFIG_X86_64 defined, I got rid of that. For CONFIG_KEXEC_FILE, instead of doing select CRYPTO=y, I changed it to "depends on CRYPTO=y". This should be safer as "select" is not recursive. Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: H. Peter Anvin <hpa@zytor.com> Tested-by: Shaun Ruffell <sruffell@digium.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-29 16:18:46 -06:00
#ifdef CONFIG_KEXEC_FILE
static struct kexec_file_ops *kexec_file_loaders[] = {
&kexec_bzImage64_ops,
};
kexec: create a new config option CONFIG_KEXEC_FILE for new syscall Currently new system call kexec_file_load() and all the associated code compiles if CONFIG_KEXEC=y. But new syscall also compiles purgatory code which currently uses gcc option -mcmodel=large. This option seems to be available only gcc 4.4 onwards. Hiding new functionality behind a new config option will not break existing users of old gcc. Those who wish to enable new functionality will require new gcc. Having said that, I am trying to figure out how can I move away from using -mcmodel=large but that can take a while. I think there are other advantages of introducing this new config option. As this option will be enabled only on x86_64, other arches don't have to compile generic kexec code which will never be used. This new code selects CRYPTO=y and CRYPTO_SHA256=y. And all other arches had to do this for CONFIG_KEXEC. Now with introduction of new config option, we can remove crypto dependency from other arches. Now CONFIG_KEXEC_FILE is available only on x86_64. So whereever I had CONFIG_X86_64 defined, I got rid of that. For CONFIG_KEXEC_FILE, instead of doing select CRYPTO=y, I changed it to "depends on CRYPTO=y". This should be safer as "select" is not recursive. Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: H. Peter Anvin <hpa@zytor.com> Tested-by: Shaun Ruffell <sruffell@digium.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-29 16:18:46 -06:00
#endif
static void free_transition_pgtable(struct kimage *image)
{
free_page((unsigned long)image->arch.pud);
free_page((unsigned long)image->arch.pmd);
free_page((unsigned long)image->arch.pte);
}
static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
{
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
unsigned long vaddr, paddr;
int result = -ENOMEM;
vaddr = (unsigned long)relocate_kernel;
paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
pgd += pgd_index(vaddr);
if (!pgd_present(*pgd)) {
pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
if (!pud)
goto err;
image->arch.pud = pud;
set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
}
pud = pud_offset(pgd, vaddr);
if (!pud_present(*pud)) {
pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
if (!pmd)
goto err;
image->arch.pmd = pmd;
set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
}
pmd = pmd_offset(pud, vaddr);
if (!pmd_present(*pmd)) {
pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
if (!pte)
goto err;
image->arch.pte = pte;
set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
}
pte = pte_offset_kernel(pmd, vaddr);
set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC));
return 0;
err:
free_transition_pgtable(image);
return result;
}
static void *alloc_pgt_page(void *data)
{
struct kimage *image = (struct kimage *)data;
struct page *page;
void *p = NULL;
page = kimage_alloc_control_pages(image, 0);
if (page) {
p = page_address(page);
clear_page(p);
}
return p;
}
static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
{
struct x86_mapping_info info = {
.alloc_pgt_page = alloc_pgt_page,
.context = image,
.pmd_flag = __PAGE_KERNEL_LARGE_EXEC,
};
unsigned long mstart, mend;
pgd_t *level4p;
int result;
int i;
level4p = (pgd_t *)__va(start_pgtable);
clear_page(level4p);
for (i = 0; i < nr_pfn_mapped; i++) {
mstart = pfn_mapped[i].start << PAGE_SHIFT;
mend = pfn_mapped[i].end << PAGE_SHIFT;
result = kernel_ident_mapping_init(&info,
level4p, mstart, mend);
if (result)
return result;
}
/*
* segments's mem ranges could be outside 0 ~ max_pfn,
* for example when jump back to original kernel from kexeced kernel.
* or first kernel is booted with user mem map, and second kernel
* could be loaded out of that range.
*/
for (i = 0; i < image->nr_segments; i++) {
mstart = image->segment[i].mem;
mend = mstart + image->segment[i].memsz;
result = kernel_ident_mapping_init(&info,
level4p, mstart, mend);
if (result)
return result;
}
return init_transition_pgtable(image, level4p);
}
static void set_idt(void *newidt, u16 limit)
{
struct desc_ptr curidt;
/* x86-64 supports unaliged loads & stores */
curidt.size = limit;
curidt.address = (unsigned long)newidt;
__asm__ __volatile__ (
"lidtq %0\n"
: : "m" (curidt)
);
};
static void set_gdt(void *newgdt, u16 limit)
{
struct desc_ptr curgdt;
/* x86-64 supports unaligned loads & stores */
curgdt.size = limit;
curgdt.address = (unsigned long)newgdt;
__asm__ __volatile__ (
"lgdtq %0\n"
: : "m" (curgdt)
);
};
static void load_segments(void)
{
__asm__ __volatile__ (
"\tmovl %0,%%ds\n"
"\tmovl %0,%%es\n"
"\tmovl %0,%%ss\n"
"\tmovl %0,%%fs\n"
"\tmovl %0,%%gs\n"
: : "a" (__KERNEL_DS) : "memory"
);
}
kexec: create a new config option CONFIG_KEXEC_FILE for new syscall Currently new system call kexec_file_load() and all the associated code compiles if CONFIG_KEXEC=y. But new syscall also compiles purgatory code which currently uses gcc option -mcmodel=large. This option seems to be available only gcc 4.4 onwards. Hiding new functionality behind a new config option will not break existing users of old gcc. Those who wish to enable new functionality will require new gcc. Having said that, I am trying to figure out how can I move away from using -mcmodel=large but that can take a while. I think there are other advantages of introducing this new config option. As this option will be enabled only on x86_64, other arches don't have to compile generic kexec code which will never be used. This new code selects CRYPTO=y and CRYPTO_SHA256=y. And all other arches had to do this for CONFIG_KEXEC. Now with introduction of new config option, we can remove crypto dependency from other arches. Now CONFIG_KEXEC_FILE is available only on x86_64. So whereever I had CONFIG_X86_64 defined, I got rid of that. For CONFIG_KEXEC_FILE, instead of doing select CRYPTO=y, I changed it to "depends on CRYPTO=y". This should be safer as "select" is not recursive. Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: H. Peter Anvin <hpa@zytor.com> Tested-by: Shaun Ruffell <sruffell@digium.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-29 16:18:46 -06:00
#ifdef CONFIG_KEXEC_FILE
/* Update purgatory as needed after various image segments have been prepared */
static int arch_update_purgatory(struct kimage *image)
{
int ret = 0;
if (!image->file_mode)
return 0;
/* Setup copying of backup region */
if (image->type == KEXEC_TYPE_CRASH) {
ret = kexec_purgatory_get_set_symbol(image, "backup_dest",
&image->arch.backup_load_addr,
sizeof(image->arch.backup_load_addr), 0);
if (ret)
return ret;
ret = kexec_purgatory_get_set_symbol(image, "backup_src",
&image->arch.backup_src_start,
sizeof(image->arch.backup_src_start), 0);
if (ret)
return ret;
ret = kexec_purgatory_get_set_symbol(image, "backup_sz",
&image->arch.backup_src_sz,
sizeof(image->arch.backup_src_sz), 0);
if (ret)
return ret;
}
return ret;
}
kexec: create a new config option CONFIG_KEXEC_FILE for new syscall Currently new system call kexec_file_load() and all the associated code compiles if CONFIG_KEXEC=y. But new syscall also compiles purgatory code which currently uses gcc option -mcmodel=large. This option seems to be available only gcc 4.4 onwards. Hiding new functionality behind a new config option will not break existing users of old gcc. Those who wish to enable new functionality will require new gcc. Having said that, I am trying to figure out how can I move away from using -mcmodel=large but that can take a while. I think there are other advantages of introducing this new config option. As this option will be enabled only on x86_64, other arches don't have to compile generic kexec code which will never be used. This new code selects CRYPTO=y and CRYPTO_SHA256=y. And all other arches had to do this for CONFIG_KEXEC. Now with introduction of new config option, we can remove crypto dependency from other arches. Now CONFIG_KEXEC_FILE is available only on x86_64. So whereever I had CONFIG_X86_64 defined, I got rid of that. For CONFIG_KEXEC_FILE, instead of doing select CRYPTO=y, I changed it to "depends on CRYPTO=y". This should be safer as "select" is not recursive. Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: H. Peter Anvin <hpa@zytor.com> Tested-by: Shaun Ruffell <sruffell@digium.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-29 16:18:46 -06:00
#else /* !CONFIG_KEXEC_FILE */
static inline int arch_update_purgatory(struct kimage *image)
{
return 0;
}
#endif /* CONFIG_KEXEC_FILE */
int machine_kexec_prepare(struct kimage *image)
{
unsigned long start_pgtable;
int result;
/* Calculate the offsets */
start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
/* Setup the identity mapped 64bit page table */
result = init_pgtable(image, start_pgtable);
if (result)
return result;
/* update purgatory as needed */
result = arch_update_purgatory(image);
if (result)
return result;
return 0;
}
void machine_kexec_cleanup(struct kimage *image)
{
free_transition_pgtable(image);
}
/*
* Do not allocate memory (or fail in any way) in machine_kexec().
* We are past the point of no return, committed to rebooting now.
*/
kexec jump This patch provides an enhancement to kexec/kdump. It implements the following features: - Backup/restore memory used by the original kernel before/after kexec. - Save/restore CPU state before/after kexec. The features of this patch can be used as a general method to call program in physical mode (paging turning off). This can be used to call BIOS code under Linux. kexec-tools needs to be patched to support kexec jump. The patches and the precompiled kexec can be download from the following URL: source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2 patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2 binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10 Usage example of calling some physical mode code and return: 1. Compile and install patched kernel with following options selected: CONFIG_X86_32=y CONFIG_KEXEC=y CONFIG_PM=y CONFIG_KEXEC_JUMP=y 2. Build patched kexec-tool or download the pre-built one. 3. Build some physical mode executable named such as "phy_mode" 4. Boot kernel compiled in step 1. 5. Load physical mode executable with /sbin/kexec. The shell command line can be as follow: /sbin/kexec --load-preserve-context --args-none phy_mode 6. Call physical mode executable with following shell command line: /sbin/kexec -e Implementation point: To support jumping without reserving memory. One shadow backup page (source page) is allocated for each page used by kexeced code image (destination page). When do kexec_load, the image of kexeced code is loaded into source pages, and before executing, the destination pages and the source pages are swapped, so the contents of destination pages are backupped. Before jumping to the kexeced code image and after jumping back to the original kernel, the destination pages and the source pages are swapped too. C ABI (calling convention) is used as communication protocol between kernel and called code. A flag named KEXEC_PRESERVE_CONTEXT for sys_kexec_load is added to indicate that the loaded kernel image is used for jumping back. Now, only the i386 architecture is supported. Signed-off-by: Huang Ying <ying.huang@intel.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Nigel Cunningham <nigel@nigel.suspend2.net> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25 20:45:07 -06:00
void machine_kexec(struct kimage *image)
{
unsigned long page_list[PAGES_NR];
void *control_page;
int save_ftrace_enabled;
#ifdef CONFIG_KEXEC_JUMP
if (image->preserve_context)
save_processor_state();
#endif
save_ftrace_enabled = __ftrace_enabled_save();
/* Interrupts aren't acceptable while we reboot */
local_irq_disable();
hw_breakpoint_disable();
if (image->preserve_context) {
#ifdef CONFIG_X86_IO_APIC
/*
* We need to put APICs in legacy mode so that we can
* get timer interrupts in second kernel. kexec/kdump
* paths already have calls to disable_IO_APIC() in
* one form or other. kexec jump path also need
* one.
*/
disable_IO_APIC();
#endif
}
control_page = page_address(image->control_code_page) + PAGE_SIZE;
memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
page_list[PA_TABLE_PAGE] =
(unsigned long)__pa(page_address(image->control_code_page));
if (image->type == KEXEC_TYPE_DEFAULT)
page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
<< PAGE_SHIFT);
/*
* The segment registers are funny things, they have both a
* visible and an invisible part. Whenever the visible part is
* set to a specific selector, the invisible part is loaded
* with from a table in memory. At no other time is the
* descriptor table in memory accessed.
*
* I take advantage of this here by force loading the
* segments, before I zap the gdt with an invalid value.
*/
load_segments();
/*
* The gdt & idt are now invalid.
* If you want to load them you must set up your own idt & gdt.
*/
set_gdt(phys_to_virt(0), 0);
set_idt(phys_to_virt(0), 0);
/* now call it */
image->start = relocate_kernel((unsigned long)image->head,
(unsigned long)page_list,
image->start,
image->preserve_context);
#ifdef CONFIG_KEXEC_JUMP
if (image->preserve_context)
restore_processor_state();
#endif
__ftrace_enabled_restore(save_ftrace_enabled);
}
void arch_crash_save_vmcoreinfo(void)
{
VMCOREINFO_SYMBOL(phys_base);
VMCOREINFO_SYMBOL(init_level4_pgt);
#ifdef CONFIG_NUMA
VMCOREINFO_SYMBOL(node_data);
VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
#endif
vmcoreinfo_append_str("KERNELOFFSET=%lx\n",
(unsigned long)&_text - __START_KERNEL);
}
/* arch-dependent functionality related to kexec file-based syscall */
kexec: create a new config option CONFIG_KEXEC_FILE for new syscall Currently new system call kexec_file_load() and all the associated code compiles if CONFIG_KEXEC=y. But new syscall also compiles purgatory code which currently uses gcc option -mcmodel=large. This option seems to be available only gcc 4.4 onwards. Hiding new functionality behind a new config option will not break existing users of old gcc. Those who wish to enable new functionality will require new gcc. Having said that, I am trying to figure out how can I move away from using -mcmodel=large but that can take a while. I think there are other advantages of introducing this new config option. As this option will be enabled only on x86_64, other arches don't have to compile generic kexec code which will never be used. This new code selects CRYPTO=y and CRYPTO_SHA256=y. And all other arches had to do this for CONFIG_KEXEC. Now with introduction of new config option, we can remove crypto dependency from other arches. Now CONFIG_KEXEC_FILE is available only on x86_64. So whereever I had CONFIG_X86_64 defined, I got rid of that. For CONFIG_KEXEC_FILE, instead of doing select CRYPTO=y, I changed it to "depends on CRYPTO=y". This should be safer as "select" is not recursive. Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: H. Peter Anvin <hpa@zytor.com> Tested-by: Shaun Ruffell <sruffell@digium.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-29 16:18:46 -06:00
#ifdef CONFIG_KEXEC_FILE
int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
unsigned long buf_len)
{
int i, ret = -ENOEXEC;
struct kexec_file_ops *fops;
for (i = 0; i < ARRAY_SIZE(kexec_file_loaders); i++) {
fops = kexec_file_loaders[i];
if (!fops || !fops->probe)
continue;
ret = fops->probe(buf, buf_len);
if (!ret) {
image->fops = fops;
return ret;
}
}
return ret;
}
void *arch_kexec_kernel_image_load(struct kimage *image)
{
vfree(image->arch.elf_headers);
image->arch.elf_headers = NULL;
if (!image->fops || !image->fops->load)
return ERR_PTR(-ENOEXEC);
return image->fops->load(image, image->kernel_buf,
image->kernel_buf_len, image->initrd_buf,
image->initrd_buf_len, image->cmdline_buf,
image->cmdline_buf_len);
}
int arch_kimage_file_post_load_cleanup(struct kimage *image)
{
if (!image->fops || !image->fops->cleanup)
return 0;
return image->fops->cleanup(image->image_loader_data);
}
kexec: verify the signature of signed PE bzImage This is the final piece of the puzzle of verifying kernel image signature during kexec_file_load() syscall. This patch calls into PE file routines to verify signature of bzImage. If signature are valid, kexec_file_load() succeeds otherwise it fails. Two new config options have been introduced. First one is CONFIG_KEXEC_VERIFY_SIG. This option enforces that kernel has to be validly signed otherwise kernel load will fail. If this option is not set, no signature verification will be done. Only exception will be when secureboot is enabled. In that case signature verification should be automatically enforced when secureboot is enabled. But that will happen when secureboot patches are merged. Second config option is CONFIG_KEXEC_BZIMAGE_VERIFY_SIG. This option enables signature verification support on bzImage. If this option is not set and previous one is set, kernel image loading will fail because kernel does not have support to verify signature of bzImage. I tested these patches with both "pesign" and "sbsign" signed bzImages. I used signing_key.priv key and signing_key.x509 cert for signing as generated during kernel build process (if module signing is enabled). Used following method to sign bzImage. pesign ====== - Convert DER format cert to PEM format cert openssl x509 -in signing_key.x509 -inform DER -out signing_key.x509.PEM -outform PEM - Generate a .p12 file from existing cert and private key file openssl pkcs12 -export -out kernel-key.p12 -inkey signing_key.priv -in signing_key.x509.PEM - Import .p12 file into pesign db pk12util -i /tmp/kernel-key.p12 -d /etc/pki/pesign - Sign bzImage pesign -i /boot/vmlinuz-3.16.0-rc3+ -o /boot/vmlinuz-3.16.0-rc3+.signed.pesign -c "Glacier signing key - Magrathea" -s sbsign ====== sbsign --key signing_key.priv --cert signing_key.x509.PEM --output /boot/vmlinuz-3.16.0-rc3+.signed.sbsign /boot/vmlinuz-3.16.0-rc3+ Patch details: Well all the hard work is done in previous patches. Now bzImage loader has just call into that code and verify whether bzImage signature are valid or not. Also create two config options. First one is CONFIG_KEXEC_VERIFY_SIG. This option enforces that kernel has to be validly signed otherwise kernel load will fail. If this option is not set, no signature verification will be done. Only exception will be when secureboot is enabled. In that case signature verification should be automatically enforced when secureboot is enabled. But that will happen when secureboot patches are merged. Second config option is CONFIG_KEXEC_BZIMAGE_VERIFY_SIG. This option enables signature verification support on bzImage. If this option is not set and previous one is set, kernel image loading will fail because kernel does not have support to verify signature of bzImage. Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Cc: Borislav Petkov <bp@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Eric Biederman <ebiederm@xmission.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Matthew Garrett <mjg59@srcf.ucam.org> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Dave Young <dyoung@redhat.com> Cc: WANG Chao <chaowang@redhat.com> Cc: Baoquan He <bhe@redhat.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Matt Fleming <matt@console-pimps.org> Cc: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-08 15:26:13 -06:00
int arch_kexec_kernel_verify_sig(struct kimage *image, void *kernel,
unsigned long kernel_len)
{
if (!image->fops || !image->fops->verify_sig) {
pr_debug("kernel loader does not support signature verification.");
return -EKEYREJECTED;
}
return image->fops->verify_sig(kernel, kernel_len);
}
/*
* Apply purgatory relocations.
*
* ehdr: Pointer to elf headers
* sechdrs: Pointer to section headers.
* relsec: section index of SHT_RELA section.
*
* TODO: Some of the code belongs to generic code. Move that in kexec.c.
*/
int arch_kexec_apply_relocations_add(const Elf64_Ehdr *ehdr,
Elf64_Shdr *sechdrs, unsigned int relsec)
{
unsigned int i;
Elf64_Rela *rel;
Elf64_Sym *sym;
void *location;
Elf64_Shdr *section, *symtabsec;
unsigned long address, sec_base, value;
const char *strtab, *name, *shstrtab;
/*
* ->sh_offset has been modified to keep the pointer to section
* contents in memory
*/
rel = (void *)sechdrs[relsec].sh_offset;
/* Section to which relocations apply */
section = &sechdrs[sechdrs[relsec].sh_info];
pr_debug("Applying relocate section %u to %u\n", relsec,
sechdrs[relsec].sh_info);
/* Associated symbol table */
symtabsec = &sechdrs[sechdrs[relsec].sh_link];
/* String table */
if (symtabsec->sh_link >= ehdr->e_shnum) {
/* Invalid strtab section number */
pr_err("Invalid string table section index %d\n",
symtabsec->sh_link);
return -ENOEXEC;
}
strtab = (char *)sechdrs[symtabsec->sh_link].sh_offset;
/* section header string table */
shstrtab = (char *)sechdrs[ehdr->e_shstrndx].sh_offset;
for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
/*
* rel[i].r_offset contains byte offset from beginning
* of section to the storage unit affected.
*
* This is location to update (->sh_offset). This is temporary
* buffer where section is currently loaded. This will finally
* be loaded to a different address later, pointed to by
* ->sh_addr. kexec takes care of moving it
* (kexec_load_segment()).
*/
location = (void *)(section->sh_offset + rel[i].r_offset);
/* Final address of the location */
address = section->sh_addr + rel[i].r_offset;
/*
* rel[i].r_info contains information about symbol table index
* w.r.t which relocation must be made and type of relocation
* to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
* these respectively.
*/
sym = (Elf64_Sym *)symtabsec->sh_offset +
ELF64_R_SYM(rel[i].r_info);
if (sym->st_name)
name = strtab + sym->st_name;
else
name = shstrtab + sechdrs[sym->st_shndx].sh_name;
pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
name, sym->st_info, sym->st_shndx, sym->st_value,
sym->st_size);
if (sym->st_shndx == SHN_UNDEF) {
pr_err("Undefined symbol: %s\n", name);
return -ENOEXEC;
}
if (sym->st_shndx == SHN_COMMON) {
pr_err("symbol '%s' in common section\n", name);
return -ENOEXEC;
}
if (sym->st_shndx == SHN_ABS)
sec_base = 0;
else if (sym->st_shndx >= ehdr->e_shnum) {
pr_err("Invalid section %d for symbol %s\n",
sym->st_shndx, name);
return -ENOEXEC;
} else
sec_base = sechdrs[sym->st_shndx].sh_addr;
value = sym->st_value;
value += sec_base;
value += rel[i].r_addend;
switch (ELF64_R_TYPE(rel[i].r_info)) {
case R_X86_64_NONE:
break;
case R_X86_64_64:
*(u64 *)location = value;
break;
case R_X86_64_32:
*(u32 *)location = value;
if (value != *(u32 *)location)
goto overflow;
break;
case R_X86_64_32S:
*(s32 *)location = value;
if ((s64)value != *(s32 *)location)
goto overflow;
break;
case R_X86_64_PC32:
value -= (u64)address;
*(u32 *)location = value;
break;
default:
pr_err("Unknown rela relocation: %llu\n",
ELF64_R_TYPE(rel[i].r_info));
return -ENOEXEC;
}
}
return 0;
overflow:
pr_err("Overflow in relocation type %d value 0x%lx\n",
(int)ELF64_R_TYPE(rel[i].r_info), value);
return -ENOEXEC;
}
kexec: create a new config option CONFIG_KEXEC_FILE for new syscall Currently new system call kexec_file_load() and all the associated code compiles if CONFIG_KEXEC=y. But new syscall also compiles purgatory code which currently uses gcc option -mcmodel=large. This option seems to be available only gcc 4.4 onwards. Hiding new functionality behind a new config option will not break existing users of old gcc. Those who wish to enable new functionality will require new gcc. Having said that, I am trying to figure out how can I move away from using -mcmodel=large but that can take a while. I think there are other advantages of introducing this new config option. As this option will be enabled only on x86_64, other arches don't have to compile generic kexec code which will never be used. This new code selects CRYPTO=y and CRYPTO_SHA256=y. And all other arches had to do this for CONFIG_KEXEC. Now with introduction of new config option, we can remove crypto dependency from other arches. Now CONFIG_KEXEC_FILE is available only on x86_64. So whereever I had CONFIG_X86_64 defined, I got rid of that. For CONFIG_KEXEC_FILE, instead of doing select CRYPTO=y, I changed it to "depends on CRYPTO=y". This should be safer as "select" is not recursive. Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: H. Peter Anvin <hpa@zytor.com> Tested-by: Shaun Ruffell <sruffell@digium.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-29 16:18:46 -06:00
#endif /* CONFIG_KEXEC_FILE */