1
0
Fork 0
alistair23-linux/net/netfilter/nfnetlink_cthelper.c

800 lines
19 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
/*
* (C) 2012 Pablo Neira Ayuso <pablo@netfilter.org>
*
* This software has been sponsored by Vyatta Inc. <http://www.vyatta.com>
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/skbuff.h>
#include <linux/netlink.h>
#include <linux/rculist.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/list.h>
#include <linux/errno.h>
#include <linux/capability.h>
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
#include <net/netlink.h>
#include <net/sock.h>
#include <net/netfilter/nf_conntrack_helper.h>
#include <net/netfilter/nf_conntrack_expect.h>
#include <net/netfilter/nf_conntrack_ecache.h>
#include <linux/netfilter/nfnetlink.h>
#include <linux/netfilter/nfnetlink_conntrack.h>
#include <linux/netfilter/nfnetlink_cthelper.h>
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Pablo Neira Ayuso <pablo@netfilter.org>");
MODULE_DESCRIPTION("nfnl_cthelper: User-space connection tracking helpers");
struct nfnl_cthelper {
struct list_head list;
struct nf_conntrack_helper helper;
};
static LIST_HEAD(nfnl_cthelper_list);
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
static int
nfnl_userspace_cthelper(struct sk_buff *skb, unsigned int protoff,
struct nf_conn *ct, enum ip_conntrack_info ctinfo)
{
const struct nf_conn_help *help;
struct nf_conntrack_helper *helper;
help = nfct_help(ct);
if (help == NULL)
return NF_DROP;
/* rcu_read_lock()ed by nf_hook_thresh */
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
helper = rcu_dereference(help->helper);
if (helper == NULL)
return NF_DROP;
/* This is a user-space helper not yet configured, skip. */
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
if ((helper->flags &
(NF_CT_HELPER_F_USERSPACE | NF_CT_HELPER_F_CONFIGURED)) ==
NF_CT_HELPER_F_USERSPACE)
return NF_ACCEPT;
/* If the user-space helper is not available, don't block traffic. */
return NF_QUEUE_NR(helper->queue_num) | NF_VERDICT_FLAG_QUEUE_BYPASS;
}
static const struct nla_policy nfnl_cthelper_tuple_pol[NFCTH_TUPLE_MAX+1] = {
[NFCTH_TUPLE_L3PROTONUM] = { .type = NLA_U16, },
[NFCTH_TUPLE_L4PROTONUM] = { .type = NLA_U8, },
};
static int
nfnl_cthelper_parse_tuple(struct nf_conntrack_tuple *tuple,
const struct nlattr *attr)
{
int err;
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
struct nlattr *tb[NFCTH_TUPLE_MAX+1];
netlink: make validation more configurable for future strictness We currently have two levels of strict validation: 1) liberal (default) - undefined (type >= max) & NLA_UNSPEC attributes accepted - attribute length >= expected accepted - garbage at end of message accepted 2) strict (opt-in) - NLA_UNSPEC attributes accepted - attribute length >= expected accepted Split out parsing strictness into four different options: * TRAILING - check that there's no trailing data after parsing attributes (in message or nested) * MAXTYPE - reject attrs > max known type * UNSPEC - reject attributes with NLA_UNSPEC policy entries * STRICT_ATTRS - strictly validate attribute size The default for future things should be *everything*. The current *_strict() is a combination of TRAILING and MAXTYPE, and is renamed to _deprecated_strict(). The current regular parsing has none of this, and is renamed to *_parse_deprecated(). Additionally it allows us to selectively set one of the new flags even on old policies. Notably, the UNSPEC flag could be useful in this case, since it can be arranged (by filling in the policy) to not be an incompatible userspace ABI change, but would then going forward prevent forgetting attribute entries. Similar can apply to the POLICY flag. We end up with the following renames: * nla_parse -> nla_parse_deprecated * nla_parse_strict -> nla_parse_deprecated_strict * nlmsg_parse -> nlmsg_parse_deprecated * nlmsg_parse_strict -> nlmsg_parse_deprecated_strict * nla_parse_nested -> nla_parse_nested_deprecated * nla_validate_nested -> nla_validate_nested_deprecated Using spatch, of course: @@ expression TB, MAX, HEAD, LEN, POL, EXT; @@ -nla_parse(TB, MAX, HEAD, LEN, POL, EXT) +nla_parse_deprecated(TB, MAX, HEAD, LEN, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse_strict(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated_strict(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression TB, MAX, NLA, POL, EXT; @@ -nla_parse_nested(TB, MAX, NLA, POL, EXT) +nla_parse_nested_deprecated(TB, MAX, NLA, POL, EXT) @@ expression START, MAX, POL, EXT; @@ -nla_validate_nested(START, MAX, POL, EXT) +nla_validate_nested_deprecated(START, MAX, POL, EXT) @@ expression NLH, HDRLEN, MAX, POL, EXT; @@ -nlmsg_validate(NLH, HDRLEN, MAX, POL, EXT) +nlmsg_validate_deprecated(NLH, HDRLEN, MAX, POL, EXT) For this patch, don't actually add the strict, non-renamed versions yet so that it breaks compile if I get it wrong. Also, while at it, make nla_validate and nla_parse go down to a common __nla_validate_parse() function to avoid code duplication. Ultimately, this allows us to have very strict validation for every new caller of nla_parse()/nlmsg_parse() etc as re-introduced in the next patch, while existing things will continue to work as is. In effect then, this adds fully strict validation for any new command. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-26 06:07:28 -06:00
err = nla_parse_nested_deprecated(tb, NFCTH_TUPLE_MAX, attr,
nfnl_cthelper_tuple_pol, NULL);
if (err < 0)
return err;
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
if (!tb[NFCTH_TUPLE_L3PROTONUM] || !tb[NFCTH_TUPLE_L4PROTONUM])
return -EINVAL;
/* Not all fields are initialized so first zero the tuple */
memset(tuple, 0, sizeof(struct nf_conntrack_tuple));
tuple->src.l3num = ntohs(nla_get_be16(tb[NFCTH_TUPLE_L3PROTONUM]));
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
tuple->dst.protonum = nla_get_u8(tb[NFCTH_TUPLE_L4PROTONUM]);
return 0;
}
static int
nfnl_cthelper_from_nlattr(struct nlattr *attr, struct nf_conn *ct)
{
struct nf_conn_help *help = nfct_help(ct);
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
if (attr == NULL)
return -EINVAL;
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
if (help->helper->data_len == 0)
return -EINVAL;
nla_memcpy(help->data, nla_data(attr), sizeof(help->data));
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
return 0;
}
static int
nfnl_cthelper_to_nlattr(struct sk_buff *skb, const struct nf_conn *ct)
{
const struct nf_conn_help *help = nfct_help(ct);
if (help->helper->data_len &&
nla_put(skb, CTA_HELP_INFO, help->helper->data_len, &help->data))
goto nla_put_failure;
return 0;
nla_put_failure:
return -ENOSPC;
}
static const struct nla_policy nfnl_cthelper_expect_pol[NFCTH_POLICY_MAX+1] = {
[NFCTH_POLICY_NAME] = { .type = NLA_NUL_STRING,
.len = NF_CT_HELPER_NAME_LEN-1 },
[NFCTH_POLICY_EXPECT_MAX] = { .type = NLA_U32, },
[NFCTH_POLICY_EXPECT_TIMEOUT] = { .type = NLA_U32, },
};
static int
nfnl_cthelper_expect_policy(struct nf_conntrack_expect_policy *expect_policy,
const struct nlattr *attr)
{
int err;
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
struct nlattr *tb[NFCTH_POLICY_MAX+1];
netlink: make validation more configurable for future strictness We currently have two levels of strict validation: 1) liberal (default) - undefined (type >= max) & NLA_UNSPEC attributes accepted - attribute length >= expected accepted - garbage at end of message accepted 2) strict (opt-in) - NLA_UNSPEC attributes accepted - attribute length >= expected accepted Split out parsing strictness into four different options: * TRAILING - check that there's no trailing data after parsing attributes (in message or nested) * MAXTYPE - reject attrs > max known type * UNSPEC - reject attributes with NLA_UNSPEC policy entries * STRICT_ATTRS - strictly validate attribute size The default for future things should be *everything*. The current *_strict() is a combination of TRAILING and MAXTYPE, and is renamed to _deprecated_strict(). The current regular parsing has none of this, and is renamed to *_parse_deprecated(). Additionally it allows us to selectively set one of the new flags even on old policies. Notably, the UNSPEC flag could be useful in this case, since it can be arranged (by filling in the policy) to not be an incompatible userspace ABI change, but would then going forward prevent forgetting attribute entries. Similar can apply to the POLICY flag. We end up with the following renames: * nla_parse -> nla_parse_deprecated * nla_parse_strict -> nla_parse_deprecated_strict * nlmsg_parse -> nlmsg_parse_deprecated * nlmsg_parse_strict -> nlmsg_parse_deprecated_strict * nla_parse_nested -> nla_parse_nested_deprecated * nla_validate_nested -> nla_validate_nested_deprecated Using spatch, of course: @@ expression TB, MAX, HEAD, LEN, POL, EXT; @@ -nla_parse(TB, MAX, HEAD, LEN, POL, EXT) +nla_parse_deprecated(TB, MAX, HEAD, LEN, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse_strict(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated_strict(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression TB, MAX, NLA, POL, EXT; @@ -nla_parse_nested(TB, MAX, NLA, POL, EXT) +nla_parse_nested_deprecated(TB, MAX, NLA, POL, EXT) @@ expression START, MAX, POL, EXT; @@ -nla_validate_nested(START, MAX, POL, EXT) +nla_validate_nested_deprecated(START, MAX, POL, EXT) @@ expression NLH, HDRLEN, MAX, POL, EXT; @@ -nlmsg_validate(NLH, HDRLEN, MAX, POL, EXT) +nlmsg_validate_deprecated(NLH, HDRLEN, MAX, POL, EXT) For this patch, don't actually add the strict, non-renamed versions yet so that it breaks compile if I get it wrong. Also, while at it, make nla_validate and nla_parse go down to a common __nla_validate_parse() function to avoid code duplication. Ultimately, this allows us to have very strict validation for every new caller of nla_parse()/nlmsg_parse() etc as re-introduced in the next patch, while existing things will continue to work as is. In effect then, this adds fully strict validation for any new command. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-26 06:07:28 -06:00
err = nla_parse_nested_deprecated(tb, NFCTH_POLICY_MAX, attr,
nfnl_cthelper_expect_pol, NULL);
if (err < 0)
return err;
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
if (!tb[NFCTH_POLICY_NAME] ||
!tb[NFCTH_POLICY_EXPECT_MAX] ||
!tb[NFCTH_POLICY_EXPECT_TIMEOUT])
return -EINVAL;
nla_strlcpy(expect_policy->name,
netfilter: provide correct argument to nla_strlcpy() Recent patch forgot to remove nla_data(), upsetting syzkaller a bit. BUG: KASAN: slab-out-of-bounds in nla_strlcpy+0x13d/0x150 lib/nlattr.c:314 Read of size 1 at addr ffff8801ad1f4fdd by task syz-executor189/4509 CPU: 1 PID: 4509 Comm: syz-executor189 Not tainted 4.17.0-rc6+ #62 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x1b9/0x294 lib/dump_stack.c:113 print_address_description+0x6c/0x20b mm/kasan/report.c:256 kasan_report_error mm/kasan/report.c:354 [inline] kasan_report.cold.7+0x242/0x2fe mm/kasan/report.c:412 __asan_report_load1_noabort+0x14/0x20 mm/kasan/report.c:430 nla_strlcpy+0x13d/0x150 lib/nlattr.c:314 nfnl_acct_new+0x574/0xc50 net/netfilter/nfnetlink_acct.c:118 nfnetlink_rcv_msg+0xdb5/0xff0 net/netfilter/nfnetlink.c:212 netlink_rcv_skb+0x172/0x440 net/netlink/af_netlink.c:2448 nfnetlink_rcv+0x1fe/0x1ba0 net/netfilter/nfnetlink.c:513 netlink_unicast_kernel net/netlink/af_netlink.c:1310 [inline] netlink_unicast+0x58b/0x740 net/netlink/af_netlink.c:1336 netlink_sendmsg+0x9f0/0xfa0 net/netlink/af_netlink.c:1901 sock_sendmsg_nosec net/socket.c:629 [inline] sock_sendmsg+0xd5/0x120 net/socket.c:639 sock_write_iter+0x35a/0x5a0 net/socket.c:908 call_write_iter include/linux/fs.h:1784 [inline] new_sync_write fs/read_write.c:474 [inline] __vfs_write+0x64d/0x960 fs/read_write.c:487 vfs_write+0x1f8/0x560 fs/read_write.c:549 ksys_write+0xf9/0x250 fs/read_write.c:598 __do_sys_write fs/read_write.c:610 [inline] __se_sys_write fs/read_write.c:607 [inline] __x64_sys_write+0x73/0xb0 fs/read_write.c:607 Fixes: 4e09fc873d92 ("netfilter: prefer nla_strlcpy for dealing with NLA_STRING attributes") Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Florian Westphal <fw@strlen.de> Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2018-05-21 17:35:24 -06:00
tb[NFCTH_POLICY_NAME], NF_CT_HELPER_NAME_LEN);
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
expect_policy->max_expected =
ntohl(nla_get_be32(tb[NFCTH_POLICY_EXPECT_MAX]));
if (expect_policy->max_expected > NF_CT_EXPECT_MAX_CNT)
return -EINVAL;
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
expect_policy->timeout =
ntohl(nla_get_be32(tb[NFCTH_POLICY_EXPECT_TIMEOUT]));
return 0;
}
static const struct nla_policy
nfnl_cthelper_expect_policy_set[NFCTH_POLICY_SET_MAX+1] = {
[NFCTH_POLICY_SET_NUM] = { .type = NLA_U32, },
};
static int
nfnl_cthelper_parse_expect_policy(struct nf_conntrack_helper *helper,
const struct nlattr *attr)
{
int i, ret;
struct nf_conntrack_expect_policy *expect_policy;
struct nlattr *tb[NFCTH_POLICY_SET_MAX+1];
unsigned int class_max;
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
netlink: make validation more configurable for future strictness We currently have two levels of strict validation: 1) liberal (default) - undefined (type >= max) & NLA_UNSPEC attributes accepted - attribute length >= expected accepted - garbage at end of message accepted 2) strict (opt-in) - NLA_UNSPEC attributes accepted - attribute length >= expected accepted Split out parsing strictness into four different options: * TRAILING - check that there's no trailing data after parsing attributes (in message or nested) * MAXTYPE - reject attrs > max known type * UNSPEC - reject attributes with NLA_UNSPEC policy entries * STRICT_ATTRS - strictly validate attribute size The default for future things should be *everything*. The current *_strict() is a combination of TRAILING and MAXTYPE, and is renamed to _deprecated_strict(). The current regular parsing has none of this, and is renamed to *_parse_deprecated(). Additionally it allows us to selectively set one of the new flags even on old policies. Notably, the UNSPEC flag could be useful in this case, since it can be arranged (by filling in the policy) to not be an incompatible userspace ABI change, but would then going forward prevent forgetting attribute entries. Similar can apply to the POLICY flag. We end up with the following renames: * nla_parse -> nla_parse_deprecated * nla_parse_strict -> nla_parse_deprecated_strict * nlmsg_parse -> nlmsg_parse_deprecated * nlmsg_parse_strict -> nlmsg_parse_deprecated_strict * nla_parse_nested -> nla_parse_nested_deprecated * nla_validate_nested -> nla_validate_nested_deprecated Using spatch, of course: @@ expression TB, MAX, HEAD, LEN, POL, EXT; @@ -nla_parse(TB, MAX, HEAD, LEN, POL, EXT) +nla_parse_deprecated(TB, MAX, HEAD, LEN, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse_strict(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated_strict(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression TB, MAX, NLA, POL, EXT; @@ -nla_parse_nested(TB, MAX, NLA, POL, EXT) +nla_parse_nested_deprecated(TB, MAX, NLA, POL, EXT) @@ expression START, MAX, POL, EXT; @@ -nla_validate_nested(START, MAX, POL, EXT) +nla_validate_nested_deprecated(START, MAX, POL, EXT) @@ expression NLH, HDRLEN, MAX, POL, EXT; @@ -nlmsg_validate(NLH, HDRLEN, MAX, POL, EXT) +nlmsg_validate_deprecated(NLH, HDRLEN, MAX, POL, EXT) For this patch, don't actually add the strict, non-renamed versions yet so that it breaks compile if I get it wrong. Also, while at it, make nla_validate and nla_parse go down to a common __nla_validate_parse() function to avoid code duplication. Ultimately, this allows us to have very strict validation for every new caller of nla_parse()/nlmsg_parse() etc as re-introduced in the next patch, while existing things will continue to work as is. In effect then, this adds fully strict validation for any new command. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-26 06:07:28 -06:00
ret = nla_parse_nested_deprecated(tb, NFCTH_POLICY_SET_MAX, attr,
nfnl_cthelper_expect_policy_set,
NULL);
if (ret < 0)
return ret;
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
if (!tb[NFCTH_POLICY_SET_NUM])
return -EINVAL;
class_max = ntohl(nla_get_be32(tb[NFCTH_POLICY_SET_NUM]));
if (class_max == 0)
return -EINVAL;
if (class_max > NF_CT_MAX_EXPECT_CLASSES)
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
return -EOVERFLOW;
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 15:03:40 -06:00
expect_policy = kcalloc(class_max,
sizeof(struct nf_conntrack_expect_policy),
GFP_KERNEL);
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
if (expect_policy == NULL)
return -ENOMEM;
for (i = 0; i < class_max; i++) {
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
if (!tb[NFCTH_POLICY_SET+i])
goto err;
ret = nfnl_cthelper_expect_policy(&expect_policy[i],
tb[NFCTH_POLICY_SET+i]);
if (ret < 0)
goto err;
}
helper->expect_class_max = class_max - 1;
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
helper->expect_policy = expect_policy;
return 0;
err:
kfree(expect_policy);
return -EINVAL;
}
static int
nfnl_cthelper_create(const struct nlattr * const tb[],
struct nf_conntrack_tuple *tuple)
{
struct nf_conntrack_helper *helper;
struct nfnl_cthelper *nfcth;
unsigned int size;
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
int ret;
if (!tb[NFCTH_TUPLE] || !tb[NFCTH_POLICY] || !tb[NFCTH_PRIV_DATA_LEN])
return -EINVAL;
nfcth = kzalloc(sizeof(*nfcth), GFP_KERNEL);
if (nfcth == NULL)
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
return -ENOMEM;
helper = &nfcth->helper;
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
ret = nfnl_cthelper_parse_expect_policy(helper, tb[NFCTH_POLICY]);
if (ret < 0)
goto err1;
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
nla_strlcpy(helper->name,
netfilter: provide correct argument to nla_strlcpy() Recent patch forgot to remove nla_data(), upsetting syzkaller a bit. BUG: KASAN: slab-out-of-bounds in nla_strlcpy+0x13d/0x150 lib/nlattr.c:314 Read of size 1 at addr ffff8801ad1f4fdd by task syz-executor189/4509 CPU: 1 PID: 4509 Comm: syz-executor189 Not tainted 4.17.0-rc6+ #62 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x1b9/0x294 lib/dump_stack.c:113 print_address_description+0x6c/0x20b mm/kasan/report.c:256 kasan_report_error mm/kasan/report.c:354 [inline] kasan_report.cold.7+0x242/0x2fe mm/kasan/report.c:412 __asan_report_load1_noabort+0x14/0x20 mm/kasan/report.c:430 nla_strlcpy+0x13d/0x150 lib/nlattr.c:314 nfnl_acct_new+0x574/0xc50 net/netfilter/nfnetlink_acct.c:118 nfnetlink_rcv_msg+0xdb5/0xff0 net/netfilter/nfnetlink.c:212 netlink_rcv_skb+0x172/0x440 net/netlink/af_netlink.c:2448 nfnetlink_rcv+0x1fe/0x1ba0 net/netfilter/nfnetlink.c:513 netlink_unicast_kernel net/netlink/af_netlink.c:1310 [inline] netlink_unicast+0x58b/0x740 net/netlink/af_netlink.c:1336 netlink_sendmsg+0x9f0/0xfa0 net/netlink/af_netlink.c:1901 sock_sendmsg_nosec net/socket.c:629 [inline] sock_sendmsg+0xd5/0x120 net/socket.c:639 sock_write_iter+0x35a/0x5a0 net/socket.c:908 call_write_iter include/linux/fs.h:1784 [inline] new_sync_write fs/read_write.c:474 [inline] __vfs_write+0x64d/0x960 fs/read_write.c:487 vfs_write+0x1f8/0x560 fs/read_write.c:549 ksys_write+0xf9/0x250 fs/read_write.c:598 __do_sys_write fs/read_write.c:610 [inline] __se_sys_write fs/read_write.c:607 [inline] __x64_sys_write+0x73/0xb0 fs/read_write.c:607 Fixes: 4e09fc873d92 ("netfilter: prefer nla_strlcpy for dealing with NLA_STRING attributes") Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Florian Westphal <fw@strlen.de> Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2018-05-21 17:35:24 -06:00
tb[NFCTH_NAME], NF_CT_HELPER_NAME_LEN);
size = ntohl(nla_get_be32(tb[NFCTH_PRIV_DATA_LEN]));
if (size > sizeof_field(struct nf_conn_help, data)) {
ret = -ENOMEM;
goto err2;
}
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
helper->flags |= NF_CT_HELPER_F_USERSPACE;
memcpy(&helper->tuple, tuple, sizeof(struct nf_conntrack_tuple));
helper->me = THIS_MODULE;
helper->help = nfnl_userspace_cthelper;
helper->from_nlattr = nfnl_cthelper_from_nlattr;
helper->to_nlattr = nfnl_cthelper_to_nlattr;
/* Default to queue number zero, this can be updated at any time. */
if (tb[NFCTH_QUEUE_NUM])
helper->queue_num = ntohl(nla_get_be32(tb[NFCTH_QUEUE_NUM]));
if (tb[NFCTH_STATUS]) {
int status = ntohl(nla_get_be32(tb[NFCTH_STATUS]));
switch(status) {
case NFCT_HELPER_STATUS_ENABLED:
helper->flags |= NF_CT_HELPER_F_CONFIGURED;
break;
case NFCT_HELPER_STATUS_DISABLED:
helper->flags &= ~NF_CT_HELPER_F_CONFIGURED;
break;
}
}
ret = nf_conntrack_helper_register(helper);
if (ret < 0)
goto err2;
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
list_add_tail(&nfcth->list, &nfnl_cthelper_list);
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
return 0;
err2:
kfree(helper->expect_policy);
err1:
kfree(nfcth);
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
return ret;
}
static int
nfnl_cthelper_update_policy_one(const struct nf_conntrack_expect_policy *policy,
struct nf_conntrack_expect_policy *new_policy,
const struct nlattr *attr)
{
struct nlattr *tb[NFCTH_POLICY_MAX + 1];
int err;
netlink: make validation more configurable for future strictness We currently have two levels of strict validation: 1) liberal (default) - undefined (type >= max) & NLA_UNSPEC attributes accepted - attribute length >= expected accepted - garbage at end of message accepted 2) strict (opt-in) - NLA_UNSPEC attributes accepted - attribute length >= expected accepted Split out parsing strictness into four different options: * TRAILING - check that there's no trailing data after parsing attributes (in message or nested) * MAXTYPE - reject attrs > max known type * UNSPEC - reject attributes with NLA_UNSPEC policy entries * STRICT_ATTRS - strictly validate attribute size The default for future things should be *everything*. The current *_strict() is a combination of TRAILING and MAXTYPE, and is renamed to _deprecated_strict(). The current regular parsing has none of this, and is renamed to *_parse_deprecated(). Additionally it allows us to selectively set one of the new flags even on old policies. Notably, the UNSPEC flag could be useful in this case, since it can be arranged (by filling in the policy) to not be an incompatible userspace ABI change, but would then going forward prevent forgetting attribute entries. Similar can apply to the POLICY flag. We end up with the following renames: * nla_parse -> nla_parse_deprecated * nla_parse_strict -> nla_parse_deprecated_strict * nlmsg_parse -> nlmsg_parse_deprecated * nlmsg_parse_strict -> nlmsg_parse_deprecated_strict * nla_parse_nested -> nla_parse_nested_deprecated * nla_validate_nested -> nla_validate_nested_deprecated Using spatch, of course: @@ expression TB, MAX, HEAD, LEN, POL, EXT; @@ -nla_parse(TB, MAX, HEAD, LEN, POL, EXT) +nla_parse_deprecated(TB, MAX, HEAD, LEN, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse_strict(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated_strict(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression TB, MAX, NLA, POL, EXT; @@ -nla_parse_nested(TB, MAX, NLA, POL, EXT) +nla_parse_nested_deprecated(TB, MAX, NLA, POL, EXT) @@ expression START, MAX, POL, EXT; @@ -nla_validate_nested(START, MAX, POL, EXT) +nla_validate_nested_deprecated(START, MAX, POL, EXT) @@ expression NLH, HDRLEN, MAX, POL, EXT; @@ -nlmsg_validate(NLH, HDRLEN, MAX, POL, EXT) +nlmsg_validate_deprecated(NLH, HDRLEN, MAX, POL, EXT) For this patch, don't actually add the strict, non-renamed versions yet so that it breaks compile if I get it wrong. Also, while at it, make nla_validate and nla_parse go down to a common __nla_validate_parse() function to avoid code duplication. Ultimately, this allows us to have very strict validation for every new caller of nla_parse()/nlmsg_parse() etc as re-introduced in the next patch, while existing things will continue to work as is. In effect then, this adds fully strict validation for any new command. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-26 06:07:28 -06:00
err = nla_parse_nested_deprecated(tb, NFCTH_POLICY_MAX, attr,
nfnl_cthelper_expect_pol, NULL);
if (err < 0)
return err;
if (!tb[NFCTH_POLICY_NAME] ||
!tb[NFCTH_POLICY_EXPECT_MAX] ||
!tb[NFCTH_POLICY_EXPECT_TIMEOUT])
return -EINVAL;
if (nla_strcmp(tb[NFCTH_POLICY_NAME], policy->name))
return -EBUSY;
new_policy->max_expected =
ntohl(nla_get_be32(tb[NFCTH_POLICY_EXPECT_MAX]));
if (new_policy->max_expected > NF_CT_EXPECT_MAX_CNT)
return -EINVAL;
new_policy->timeout =
ntohl(nla_get_be32(tb[NFCTH_POLICY_EXPECT_TIMEOUT]));
return 0;
}
static int nfnl_cthelper_update_policy_all(struct nlattr *tb[],
struct nf_conntrack_helper *helper)
{
struct nf_conntrack_expect_policy *new_policy;
struct nf_conntrack_expect_policy *policy;
int i, ret = 0;
new_policy = kmalloc_array(helper->expect_class_max + 1,
sizeof(*new_policy), GFP_KERNEL);
if (!new_policy)
return -ENOMEM;
/* Check first that all policy attributes are well-formed, so we don't
* leave things in inconsistent state on errors.
*/
for (i = 0; i < helper->expect_class_max + 1; i++) {
if (!tb[NFCTH_POLICY_SET + i]) {
ret = -EINVAL;
goto err;
}
ret = nfnl_cthelper_update_policy_one(&helper->expect_policy[i],
&new_policy[i],
tb[NFCTH_POLICY_SET + i]);
if (ret < 0)
goto err;
}
/* Now we can safely update them. */
for (i = 0; i < helper->expect_class_max + 1; i++) {
policy = (struct nf_conntrack_expect_policy *)
&helper->expect_policy[i];
policy->max_expected = new_policy->max_expected;
policy->timeout = new_policy->timeout;
}
err:
kfree(new_policy);
return ret;
}
static int nfnl_cthelper_update_policy(struct nf_conntrack_helper *helper,
const struct nlattr *attr)
{
struct nlattr *tb[NFCTH_POLICY_SET_MAX + 1];
unsigned int class_max;
int err;
netlink: make validation more configurable for future strictness We currently have two levels of strict validation: 1) liberal (default) - undefined (type >= max) & NLA_UNSPEC attributes accepted - attribute length >= expected accepted - garbage at end of message accepted 2) strict (opt-in) - NLA_UNSPEC attributes accepted - attribute length >= expected accepted Split out parsing strictness into four different options: * TRAILING - check that there's no trailing data after parsing attributes (in message or nested) * MAXTYPE - reject attrs > max known type * UNSPEC - reject attributes with NLA_UNSPEC policy entries * STRICT_ATTRS - strictly validate attribute size The default for future things should be *everything*. The current *_strict() is a combination of TRAILING and MAXTYPE, and is renamed to _deprecated_strict(). The current regular parsing has none of this, and is renamed to *_parse_deprecated(). Additionally it allows us to selectively set one of the new flags even on old policies. Notably, the UNSPEC flag could be useful in this case, since it can be arranged (by filling in the policy) to not be an incompatible userspace ABI change, but would then going forward prevent forgetting attribute entries. Similar can apply to the POLICY flag. We end up with the following renames: * nla_parse -> nla_parse_deprecated * nla_parse_strict -> nla_parse_deprecated_strict * nlmsg_parse -> nlmsg_parse_deprecated * nlmsg_parse_strict -> nlmsg_parse_deprecated_strict * nla_parse_nested -> nla_parse_nested_deprecated * nla_validate_nested -> nla_validate_nested_deprecated Using spatch, of course: @@ expression TB, MAX, HEAD, LEN, POL, EXT; @@ -nla_parse(TB, MAX, HEAD, LEN, POL, EXT) +nla_parse_deprecated(TB, MAX, HEAD, LEN, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse_strict(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated_strict(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression TB, MAX, NLA, POL, EXT; @@ -nla_parse_nested(TB, MAX, NLA, POL, EXT) +nla_parse_nested_deprecated(TB, MAX, NLA, POL, EXT) @@ expression START, MAX, POL, EXT; @@ -nla_validate_nested(START, MAX, POL, EXT) +nla_validate_nested_deprecated(START, MAX, POL, EXT) @@ expression NLH, HDRLEN, MAX, POL, EXT; @@ -nlmsg_validate(NLH, HDRLEN, MAX, POL, EXT) +nlmsg_validate_deprecated(NLH, HDRLEN, MAX, POL, EXT) For this patch, don't actually add the strict, non-renamed versions yet so that it breaks compile if I get it wrong. Also, while at it, make nla_validate and nla_parse go down to a common __nla_validate_parse() function to avoid code duplication. Ultimately, this allows us to have very strict validation for every new caller of nla_parse()/nlmsg_parse() etc as re-introduced in the next patch, while existing things will continue to work as is. In effect then, this adds fully strict validation for any new command. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-26 06:07:28 -06:00
err = nla_parse_nested_deprecated(tb, NFCTH_POLICY_SET_MAX, attr,
nfnl_cthelper_expect_policy_set,
NULL);
if (err < 0)
return err;
if (!tb[NFCTH_POLICY_SET_NUM])
return -EINVAL;
class_max = ntohl(nla_get_be32(tb[NFCTH_POLICY_SET_NUM]));
if (helper->expect_class_max + 1 != class_max)
return -EBUSY;
return nfnl_cthelper_update_policy_all(tb, helper);
}
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
static int
nfnl_cthelper_update(const struct nlattr * const tb[],
struct nf_conntrack_helper *helper)
{
int ret;
if (tb[NFCTH_PRIV_DATA_LEN])
return -EBUSY;
if (tb[NFCTH_POLICY]) {
ret = nfnl_cthelper_update_policy(helper, tb[NFCTH_POLICY]);
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
if (ret < 0)
return ret;
}
if (tb[NFCTH_QUEUE_NUM])
helper->queue_num = ntohl(nla_get_be32(tb[NFCTH_QUEUE_NUM]));
if (tb[NFCTH_STATUS]) {
int status = ntohl(nla_get_be32(tb[NFCTH_STATUS]));
switch(status) {
case NFCT_HELPER_STATUS_ENABLED:
helper->flags |= NF_CT_HELPER_F_CONFIGURED;
break;
case NFCT_HELPER_STATUS_DISABLED:
helper->flags &= ~NF_CT_HELPER_F_CONFIGURED;
break;
}
}
return 0;
}
static int nfnl_cthelper_new(struct net *net, struct sock *nfnl,
struct sk_buff *skb, const struct nlmsghdr *nlh,
const struct nlattr * const tb[],
struct netlink_ext_ack *extack)
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
{
const char *helper_name;
struct nf_conntrack_helper *cur, *helper = NULL;
struct nf_conntrack_tuple tuple;
struct nfnl_cthelper *nlcth;
int ret = 0;
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
if (!capable(CAP_NET_ADMIN))
return -EPERM;
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
if (!tb[NFCTH_NAME] || !tb[NFCTH_TUPLE])
return -EINVAL;
helper_name = nla_data(tb[NFCTH_NAME]);
ret = nfnl_cthelper_parse_tuple(&tuple, tb[NFCTH_TUPLE]);
if (ret < 0)
return ret;
list_for_each_entry(nlcth, &nfnl_cthelper_list, list) {
cur = &nlcth->helper;
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
if (strncmp(cur->name, helper_name, NF_CT_HELPER_NAME_LEN))
continue;
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
if ((tuple.src.l3num != cur->tuple.src.l3num ||
tuple.dst.protonum != cur->tuple.dst.protonum))
continue;
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
if (nlh->nlmsg_flags & NLM_F_EXCL)
return -EEXIST;
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
helper = cur;
break;
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
}
if (helper == NULL)
ret = nfnl_cthelper_create(tb, &tuple);
else
ret = nfnl_cthelper_update(tb, helper);
return ret;
}
static int
nfnl_cthelper_dump_tuple(struct sk_buff *skb,
struct nf_conntrack_helper *helper)
{
struct nlattr *nest_parms;
nest_parms = nla_nest_start(skb, NFCTH_TUPLE);
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
if (nest_parms == NULL)
goto nla_put_failure;
if (nla_put_be16(skb, NFCTH_TUPLE_L3PROTONUM,
htons(helper->tuple.src.l3num)))
goto nla_put_failure;
if (nla_put_u8(skb, NFCTH_TUPLE_L4PROTONUM, helper->tuple.dst.protonum))
goto nla_put_failure;
nla_nest_end(skb, nest_parms);
return 0;
nla_put_failure:
return -1;
}
static int
nfnl_cthelper_dump_policy(struct sk_buff *skb,
struct nf_conntrack_helper *helper)
{
int i;
struct nlattr *nest_parms1, *nest_parms2;
nest_parms1 = nla_nest_start(skb, NFCTH_POLICY);
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
if (nest_parms1 == NULL)
goto nla_put_failure;
if (nla_put_be32(skb, NFCTH_POLICY_SET_NUM,
htonl(helper->expect_class_max + 1)))
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
goto nla_put_failure;
for (i = 0; i < helper->expect_class_max + 1; i++) {
nest_parms2 = nla_nest_start(skb, (NFCTH_POLICY_SET + i));
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
if (nest_parms2 == NULL)
goto nla_put_failure;
if (nla_put_string(skb, NFCTH_POLICY_NAME,
helper->expect_policy[i].name))
goto nla_put_failure;
if (nla_put_be32(skb, NFCTH_POLICY_EXPECT_MAX,
htonl(helper->expect_policy[i].max_expected)))
goto nla_put_failure;
if (nla_put_be32(skb, NFCTH_POLICY_EXPECT_TIMEOUT,
htonl(helper->expect_policy[i].timeout)))
goto nla_put_failure;
nla_nest_end(skb, nest_parms2);
}
nla_nest_end(skb, nest_parms1);
return 0;
nla_put_failure:
return -1;
}
static int
nfnl_cthelper_fill_info(struct sk_buff *skb, u32 portid, u32 seq, u32 type,
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
int event, struct nf_conntrack_helper *helper)
{
struct nlmsghdr *nlh;
struct nfgenmsg *nfmsg;
unsigned int flags = portid ? NLM_F_MULTI : 0;
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
int status;
event = nfnl_msg_type(NFNL_SUBSYS_CTHELPER, event);
nlh = nlmsg_put(skb, portid, seq, event, sizeof(*nfmsg), flags);
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
if (nlh == NULL)
goto nlmsg_failure;
nfmsg = nlmsg_data(nlh);
nfmsg->nfgen_family = AF_UNSPEC;
nfmsg->version = NFNETLINK_V0;
nfmsg->res_id = 0;
if (nla_put_string(skb, NFCTH_NAME, helper->name))
goto nla_put_failure;
if (nla_put_be32(skb, NFCTH_QUEUE_NUM, htonl(helper->queue_num)))
goto nla_put_failure;
if (nfnl_cthelper_dump_tuple(skb, helper) < 0)
goto nla_put_failure;
if (nfnl_cthelper_dump_policy(skb, helper) < 0)
goto nla_put_failure;
if (nla_put_be32(skb, NFCTH_PRIV_DATA_LEN, htonl(helper->data_len)))
goto nla_put_failure;
if (helper->flags & NF_CT_HELPER_F_CONFIGURED)
status = NFCT_HELPER_STATUS_ENABLED;
else
status = NFCT_HELPER_STATUS_DISABLED;
if (nla_put_be32(skb, NFCTH_STATUS, htonl(status)))
goto nla_put_failure;
nlmsg_end(skb, nlh);
return skb->len;
nlmsg_failure:
nla_put_failure:
nlmsg_cancel(skb, nlh);
return -1;
}
static int
nfnl_cthelper_dump_table(struct sk_buff *skb, struct netlink_callback *cb)
{
struct nf_conntrack_helper *cur, *last;
rcu_read_lock();
last = (struct nf_conntrack_helper *)cb->args[1];
for (; cb->args[0] < nf_ct_helper_hsize; cb->args[0]++) {
restart:
hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-27 18:06:00 -07:00
hlist_for_each_entry_rcu(cur,
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
&nf_ct_helper_hash[cb->args[0]], hnode) {
/* skip non-userspace conntrack helpers. */
if (!(cur->flags & NF_CT_HELPER_F_USERSPACE))
continue;
if (cb->args[1]) {
if (cur != last)
continue;
cb->args[1] = 0;
}
if (nfnl_cthelper_fill_info(skb,
NETLINK_CB(cb->skb).portid,
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
cb->nlh->nlmsg_seq,
NFNL_MSG_TYPE(cb->nlh->nlmsg_type),
NFNL_MSG_CTHELPER_NEW, cur) < 0) {
cb->args[1] = (unsigned long)cur;
goto out;
}
}
}
if (cb->args[1]) {
cb->args[1] = 0;
goto restart;
}
out:
rcu_read_unlock();
return skb->len;
}
static int nfnl_cthelper_get(struct net *net, struct sock *nfnl,
struct sk_buff *skb, const struct nlmsghdr *nlh,
const struct nlattr * const tb[],
struct netlink_ext_ack *extack)
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
{
int ret = -ENOENT;
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
struct nf_conntrack_helper *cur;
struct sk_buff *skb2;
char *helper_name = NULL;
struct nf_conntrack_tuple tuple;
struct nfnl_cthelper *nlcth;
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
bool tuple_set = false;
if (!capable(CAP_NET_ADMIN))
return -EPERM;
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
if (nlh->nlmsg_flags & NLM_F_DUMP) {
struct netlink_dump_control c = {
.dump = nfnl_cthelper_dump_table,
};
return netlink_dump_start(nfnl, skb, nlh, &c);
}
if (tb[NFCTH_NAME])
helper_name = nla_data(tb[NFCTH_NAME]);
if (tb[NFCTH_TUPLE]) {
ret = nfnl_cthelper_parse_tuple(&tuple, tb[NFCTH_TUPLE]);
if (ret < 0)
return ret;
tuple_set = true;
}
list_for_each_entry(nlcth, &nfnl_cthelper_list, list) {
cur = &nlcth->helper;
if (helper_name &&
strncmp(cur->name, helper_name, NF_CT_HELPER_NAME_LEN))
continue;
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
if (tuple_set &&
(tuple.src.l3num != cur->tuple.src.l3num ||
tuple.dst.protonum != cur->tuple.dst.protonum))
continue;
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
skb2 = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (skb2 == NULL) {
ret = -ENOMEM;
break;
}
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
ret = nfnl_cthelper_fill_info(skb2, NETLINK_CB(skb).portid,
nlh->nlmsg_seq,
NFNL_MSG_TYPE(nlh->nlmsg_type),
NFNL_MSG_CTHELPER_NEW, cur);
if (ret <= 0) {
kfree_skb(skb2);
break;
}
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
ret = netlink_unicast(nfnl, skb2, NETLINK_CB(skb).portid,
MSG_DONTWAIT);
if (ret > 0)
ret = 0;
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
/* this avoids a loop in nfnetlink. */
return ret == -EAGAIN ? -ENOBUFS : ret;
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
}
return ret;
}
static int nfnl_cthelper_del(struct net *net, struct sock *nfnl,
struct sk_buff *skb, const struct nlmsghdr *nlh,
const struct nlattr * const tb[],
struct netlink_ext_ack *extack)
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
{
char *helper_name = NULL;
struct nf_conntrack_helper *cur;
struct nf_conntrack_tuple tuple;
bool tuple_set = false, found = false;
struct nfnl_cthelper *nlcth, *n;
int j = 0, ret;
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
if (!capable(CAP_NET_ADMIN))
return -EPERM;
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
if (tb[NFCTH_NAME])
helper_name = nla_data(tb[NFCTH_NAME]);
if (tb[NFCTH_TUPLE]) {
ret = nfnl_cthelper_parse_tuple(&tuple, tb[NFCTH_TUPLE]);
if (ret < 0)
return ret;
tuple_set = true;
}
ret = -ENOENT;
list_for_each_entry_safe(nlcth, n, &nfnl_cthelper_list, list) {
cur = &nlcth->helper;
j++;
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
if (helper_name &&
strncmp(cur->name, helper_name, NF_CT_HELPER_NAME_LEN))
continue;
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
if (tuple_set &&
(tuple.src.l3num != cur->tuple.src.l3num ||
tuple.dst.protonum != cur->tuple.dst.protonum))
continue;
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
if (refcount_dec_if_one(&cur->refcnt)) {
found = true;
nf_conntrack_helper_unregister(cur);
kfree(cur->expect_policy);
list_del(&nlcth->list);
kfree(nlcth);
} else {
ret = -EBUSY;
}
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
}
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
/* Make sure we return success if we flush and there is no helpers */
return (found || j == 0) ? 0 : ret;
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
}
static const struct nla_policy nfnl_cthelper_policy[NFCTH_MAX+1] = {
[NFCTH_NAME] = { .type = NLA_NUL_STRING,
.len = NF_CT_HELPER_NAME_LEN-1 },
[NFCTH_QUEUE_NUM] = { .type = NLA_U32, },
};
static const struct nfnl_callback nfnl_cthelper_cb[NFNL_MSG_CTHELPER_MAX] = {
[NFNL_MSG_CTHELPER_NEW] = { .call = nfnl_cthelper_new,
.attr_count = NFCTH_MAX,
.policy = nfnl_cthelper_policy },
[NFNL_MSG_CTHELPER_GET] = { .call = nfnl_cthelper_get,
.attr_count = NFCTH_MAX,
.policy = nfnl_cthelper_policy },
[NFNL_MSG_CTHELPER_DEL] = { .call = nfnl_cthelper_del,
.attr_count = NFCTH_MAX,
.policy = nfnl_cthelper_policy },
};
static const struct nfnetlink_subsystem nfnl_cthelper_subsys = {
.name = "cthelper",
.subsys_id = NFNL_SUBSYS_CTHELPER,
.cb_count = NFNL_MSG_CTHELPER_MAX,
.cb = nfnl_cthelper_cb,
};
MODULE_ALIAS_NFNL_SUBSYS(NFNL_SUBSYS_CTHELPER);
static int __init nfnl_cthelper_init(void)
{
int ret;
ret = nfnetlink_subsys_register(&nfnl_cthelper_subsys);
if (ret < 0) {
pr_err("nfnl_cthelper: cannot register with nfnetlink.\n");
goto err_out;
}
return 0;
err_out:
return ret;
}
static void __exit nfnl_cthelper_exit(void)
{
struct nf_conntrack_helper *cur;
struct nfnl_cthelper *nlcth, *n;
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
nfnetlink_subsys_unregister(&nfnl_cthelper_subsys);
list_for_each_entry_safe(nlcth, n, &nfnl_cthelper_list, list) {
cur = &nlcth->helper;
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
nf_conntrack_helper_unregister(cur);
kfree(cur->expect_policy);
kfree(nlcth);
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 13:44:54 -06:00
}
}
module_init(nfnl_cthelper_init);
module_exit(nfnl_cthelper_exit);