alistair23-linux/include/uapi/drm/i915_drm.h

1106 lines
34 KiB
C
Raw Normal View History

/*
* Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#ifndef _UAPI_I915_DRM_H_
#define _UAPI_I915_DRM_H_
#include <drm/drm.h>
/* Please note that modifications to all structs defined here are
* subject to backwards-compatibility constraints.
*/
/**
* DOC: uevents generated by i915 on it's device node
*
* I915_L3_PARITY_UEVENT - Generated when the driver receives a parity mismatch
* event from the gpu l3 cache. Additional information supplied is ROW,
* BANK, SUBBANK, SLICE of the affected cacheline. Userspace should keep
* track of these events and if a specific cache-line seems to have a
* persistent error remap it with the l3 remapping tool supplied in
* intel-gpu-tools. The value supplied with the event is always 1.
*
* I915_ERROR_UEVENT - Generated upon error detection, currently only via
* hangcheck. The error detection event is a good indicator of when things
* began to go badly. The value supplied with the event is a 1 upon error
* detection, and a 0 upon reset completion, signifying no more error
* exists. NOTE: Disabling hangcheck or reset via module parameter will
* cause the related events to not be seen.
*
* I915_RESET_UEVENT - Event is generated just before an attempt to reset the
* the GPU. The value supplied with the event is always 1. NOTE: Disable
* reset via module parameter will cause this event to not be seen.
*/
#define I915_L3_PARITY_UEVENT "L3_PARITY_ERROR"
#define I915_ERROR_UEVENT "ERROR"
#define I915_RESET_UEVENT "RESET"
/* Each region is a minimum of 16k, and there are at most 255 of them.
*/
#define I915_NR_TEX_REGIONS 255 /* table size 2k - maximum due to use
* of chars for next/prev indices */
#define I915_LOG_MIN_TEX_REGION_SIZE 14
typedef struct _drm_i915_init {
enum {
I915_INIT_DMA = 0x01,
I915_CLEANUP_DMA = 0x02,
I915_RESUME_DMA = 0x03
} func;
unsigned int mmio_offset;
int sarea_priv_offset;
unsigned int ring_start;
unsigned int ring_end;
unsigned int ring_size;
unsigned int front_offset;
unsigned int back_offset;
unsigned int depth_offset;
unsigned int w;
unsigned int h;
unsigned int pitch;
unsigned int pitch_bits;
unsigned int back_pitch;
unsigned int depth_pitch;
unsigned int cpp;
unsigned int chipset;
} drm_i915_init_t;
typedef struct _drm_i915_sarea {
struct drm_tex_region texList[I915_NR_TEX_REGIONS + 1];
int last_upload; /* last time texture was uploaded */
int last_enqueue; /* last time a buffer was enqueued */
int last_dispatch; /* age of the most recently dispatched buffer */
int ctxOwner; /* last context to upload state */
int texAge;
int pf_enabled; /* is pageflipping allowed? */
int pf_active;
int pf_current_page; /* which buffer is being displayed? */
int perf_boxes; /* performance boxes to be displayed */
int width, height; /* screen size in pixels */
drm_handle_t front_handle;
int front_offset;
int front_size;
drm_handle_t back_handle;
int back_offset;
int back_size;
drm_handle_t depth_handle;
int depth_offset;
int depth_size;
drm_handle_t tex_handle;
int tex_offset;
int tex_size;
int log_tex_granularity;
int pitch;
int rotation; /* 0, 90, 180 or 270 */
int rotated_offset;
int rotated_size;
int rotated_pitch;
int virtualX, virtualY;
unsigned int front_tiled;
unsigned int back_tiled;
unsigned int depth_tiled;
unsigned int rotated_tiled;
unsigned int rotated2_tiled;
int pipeA_x;
int pipeA_y;
int pipeA_w;
int pipeA_h;
int pipeB_x;
int pipeB_y;
int pipeB_w;
int pipeB_h;
/* fill out some space for old userspace triple buffer */
drm_handle_t unused_handle;
__u32 unused1, unused2, unused3;
/* buffer object handles for static buffers. May change
* over the lifetime of the client.
*/
__u32 front_bo_handle;
__u32 back_bo_handle;
__u32 unused_bo_handle;
__u32 depth_bo_handle;
} drm_i915_sarea_t;
/* due to userspace building against these headers we need some compat here */
#define planeA_x pipeA_x
#define planeA_y pipeA_y
#define planeA_w pipeA_w
#define planeA_h pipeA_h
#define planeB_x pipeB_x
#define planeB_y pipeB_y
#define planeB_w pipeB_w
#define planeB_h pipeB_h
/* Flags for perf_boxes
*/
#define I915_BOX_RING_EMPTY 0x1
#define I915_BOX_FLIP 0x2
#define I915_BOX_WAIT 0x4
#define I915_BOX_TEXTURE_LOAD 0x8
#define I915_BOX_LOST_CONTEXT 0x10
/* I915 specific ioctls
* The device specific ioctl range is 0x40 to 0x79.
*/
#define DRM_I915_INIT 0x00
#define DRM_I915_FLUSH 0x01
#define DRM_I915_FLIP 0x02
#define DRM_I915_BATCHBUFFER 0x03
#define DRM_I915_IRQ_EMIT 0x04
#define DRM_I915_IRQ_WAIT 0x05
#define DRM_I915_GETPARAM 0x06
#define DRM_I915_SETPARAM 0x07
#define DRM_I915_ALLOC 0x08
#define DRM_I915_FREE 0x09
#define DRM_I915_INIT_HEAP 0x0a
#define DRM_I915_CMDBUFFER 0x0b
#define DRM_I915_DESTROY_HEAP 0x0c
#define DRM_I915_SET_VBLANK_PIPE 0x0d
#define DRM_I915_GET_VBLANK_PIPE 0x0e
#define DRM_I915_VBLANK_SWAP 0x0f
#define DRM_I915_HWS_ADDR 0x11
#define DRM_I915_GEM_INIT 0x13
#define DRM_I915_GEM_EXECBUFFER 0x14
#define DRM_I915_GEM_PIN 0x15
#define DRM_I915_GEM_UNPIN 0x16
#define DRM_I915_GEM_BUSY 0x17
#define DRM_I915_GEM_THROTTLE 0x18
#define DRM_I915_GEM_ENTERVT 0x19
#define DRM_I915_GEM_LEAVEVT 0x1a
#define DRM_I915_GEM_CREATE 0x1b
#define DRM_I915_GEM_PREAD 0x1c
#define DRM_I915_GEM_PWRITE 0x1d
#define DRM_I915_GEM_MMAP 0x1e
#define DRM_I915_GEM_SET_DOMAIN 0x1f
#define DRM_I915_GEM_SW_FINISH 0x20
#define DRM_I915_GEM_SET_TILING 0x21
#define DRM_I915_GEM_GET_TILING 0x22
#define DRM_I915_GEM_GET_APERTURE 0x23
#define DRM_I915_GEM_MMAP_GTT 0x24
#define DRM_I915_GET_PIPE_FROM_CRTC_ID 0x25
#define DRM_I915_GEM_MADVISE 0x26
#define DRM_I915_OVERLAY_PUT_IMAGE 0x27
#define DRM_I915_OVERLAY_ATTRS 0x28
#define DRM_I915_GEM_EXECBUFFER2 0x29
#define DRM_I915_GET_SPRITE_COLORKEY 0x2a
#define DRM_I915_SET_SPRITE_COLORKEY 0x2b
#define DRM_I915_GEM_WAIT 0x2c
#define DRM_I915_GEM_CONTEXT_CREATE 0x2d
#define DRM_I915_GEM_CONTEXT_DESTROY 0x2e
#define DRM_I915_GEM_SET_CACHING 0x2f
#define DRM_I915_GEM_GET_CACHING 0x30
#define DRM_I915_REG_READ 0x31
#define DRM_I915_GET_RESET_STATS 0x32
drm/i915: Introduce mapping of user pages into video memory (userptr) ioctl By exporting the ability to map user address and inserting PTEs representing their backing pages into the GTT, we can exploit UMA in order to utilize normal application data as a texture source or even as a render target (depending upon the capabilities of the chipset). This has a number of uses, with zero-copy downloads to the GPU and efficient readback making the intermixed streaming of CPU and GPU operations fairly efficient. This ability has many widespread implications from faster rendering of client-side software rasterisers (chromium), mitigation of stalls due to read back (firefox) and to faster pipelining of texture data (such as pixel buffer objects in GL or data blobs in CL). v2: Compile with CONFIG_MMU_NOTIFIER v3: We can sleep while performing invalidate-range, which we can utilise to drop our page references prior to the kernel manipulating the vma (for either discard or cloning) and so protect normal users. v4: Only run the invalidate notifier if the range intercepts the bo. v5: Prevent userspace from attempting to GTT mmap non-page aligned buffers v6: Recheck after reacquire mutex for lost mmu. v7: Fix implicit padding of ioctl struct by rounding to next 64bit boundary. v8: Fix rebasing error after forwarding porting the back port. v9: Limit the userptr to page aligned entries. We now expect userspace to handle all the offset-in-page adjustments itself. v10: Prevent vma from being copied across fork to avoid issues with cow. v11: Drop vma behaviour changes -- locking is nigh on impossible. Use a worker to load user pages to avoid lock inversions. v12: Use get_task_mm()/mmput() for correct refcounting of mm. v13: Use a worker to release the mmu_notifier to avoid lock inversion v14: Decouple mmu_notifier from struct_mutex using a custom mmu_notifer with its own locking and tree of objects for each mm/mmu_notifier. v15: Prevent overlapping userptr objects, and invalidate all objects within the mmu_notifier range v16: Fix a typo for iterating over multiple objects in the range and rearrange error path to destroy the mmu_notifier locklessly. Also close a race between invalidate_range and the get_pages_worker. v17: Close a race between get_pages_worker/invalidate_range and fresh allocations of the same userptr range - and notice that struct_mutex was presumed to be held when during creation it wasn't. v18: Sigh. Fix the refactor of st_set_pages() to allocate enough memory for the struct sg_table and to clear it before reporting an error. v19: Always error out on read-only userptr requests as we don't have the hardware infrastructure to support them at the moment. v20: Refuse to implement read-only support until we have the required infrastructure - but reserve the bit in flags for future use. v21: use_mm() is not required for get_user_pages(). It is only meant to be used to fix up the kernel thread's current->mm for use with copy_user(). v22: Use sg_alloc_table_from_pages for that chunky feeling v23: Export a function for sanity checking dma-buf rather than encode userptr details elsewhere, and clean up comments based on suggestions by Bradley. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Cc: "Gong, Zhipeng" <zhipeng.gong@intel.com> Cc: Akash Goel <akash.goel@intel.com> Cc: "Volkin, Bradley D" <bradley.d.volkin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Reviewed-by: Brad Volkin <bradley.d.volkin@intel.com> [danvet: Frob ioctl allocation to pick the next one - will cause a bit of fuss with create2 apparently, but such are the rules.] [danvet2: oops, forgot to git add after manual patch application] [danvet3: Appease sparse.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-05-16 07:22:37 -06:00
#define DRM_I915_GEM_USERPTR 0x33
#define DRM_I915_GEM_CONTEXT_GETPARAM 0x34
#define DRM_I915_GEM_CONTEXT_SETPARAM 0x35
#define DRM_IOCTL_I915_INIT DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT, drm_i915_init_t)
#define DRM_IOCTL_I915_FLUSH DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLUSH)
#define DRM_IOCTL_I915_FLIP DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLIP)
#define DRM_IOCTL_I915_BATCHBUFFER DRM_IOW( DRM_COMMAND_BASE + DRM_I915_BATCHBUFFER, drm_i915_batchbuffer_t)
#define DRM_IOCTL_I915_IRQ_EMIT DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_IRQ_EMIT, drm_i915_irq_emit_t)
#define DRM_IOCTL_I915_IRQ_WAIT DRM_IOW( DRM_COMMAND_BASE + DRM_I915_IRQ_WAIT, drm_i915_irq_wait_t)
#define DRM_IOCTL_I915_GETPARAM DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GETPARAM, drm_i915_getparam_t)
#define DRM_IOCTL_I915_SETPARAM DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SETPARAM, drm_i915_setparam_t)
#define DRM_IOCTL_I915_ALLOC DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_ALLOC, drm_i915_mem_alloc_t)
#define DRM_IOCTL_I915_FREE DRM_IOW( DRM_COMMAND_BASE + DRM_I915_FREE, drm_i915_mem_free_t)
#define DRM_IOCTL_I915_INIT_HEAP DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT_HEAP, drm_i915_mem_init_heap_t)
#define DRM_IOCTL_I915_CMDBUFFER DRM_IOW( DRM_COMMAND_BASE + DRM_I915_CMDBUFFER, drm_i915_cmdbuffer_t)
#define DRM_IOCTL_I915_DESTROY_HEAP DRM_IOW( DRM_COMMAND_BASE + DRM_I915_DESTROY_HEAP, drm_i915_mem_destroy_heap_t)
#define DRM_IOCTL_I915_SET_VBLANK_PIPE DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
#define DRM_IOCTL_I915_GET_VBLANK_PIPE DRM_IOR( DRM_COMMAND_BASE + DRM_I915_GET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
#define DRM_IOCTL_I915_VBLANK_SWAP DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_VBLANK_SWAP, drm_i915_vblank_swap_t)
#define DRM_IOCTL_I915_HWS_ADDR DRM_IOW(DRM_COMMAND_BASE + DRM_I915_HWS_ADDR, struct drm_i915_gem_init)
#define DRM_IOCTL_I915_GEM_INIT DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_INIT, struct drm_i915_gem_init)
#define DRM_IOCTL_I915_GEM_EXECBUFFER DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER, struct drm_i915_gem_execbuffer)
#define DRM_IOCTL_I915_GEM_EXECBUFFER2 DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2, struct drm_i915_gem_execbuffer2)
#define DRM_IOCTL_I915_GEM_PIN DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_PIN, struct drm_i915_gem_pin)
#define DRM_IOCTL_I915_GEM_UNPIN DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_UNPIN, struct drm_i915_gem_unpin)
#define DRM_IOCTL_I915_GEM_BUSY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_BUSY, struct drm_i915_gem_busy)
#define DRM_IOCTL_I915_GEM_SET_CACHING DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_SET_CACHING, struct drm_i915_gem_caching)
#define DRM_IOCTL_I915_GEM_GET_CACHING DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_GET_CACHING, struct drm_i915_gem_caching)
#define DRM_IOCTL_I915_GEM_THROTTLE DRM_IO ( DRM_COMMAND_BASE + DRM_I915_GEM_THROTTLE)
#define DRM_IOCTL_I915_GEM_ENTERVT DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_ENTERVT)
#define DRM_IOCTL_I915_GEM_LEAVEVT DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_LEAVEVT)
#define DRM_IOCTL_I915_GEM_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE, struct drm_i915_gem_create)
#define DRM_IOCTL_I915_GEM_PREAD DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PREAD, struct drm_i915_gem_pread)
#define DRM_IOCTL_I915_GEM_PWRITE DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PWRITE, struct drm_i915_gem_pwrite)
#define DRM_IOCTL_I915_GEM_MMAP DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP, struct drm_i915_gem_mmap)
#define DRM_IOCTL_I915_GEM_MMAP_GTT DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_gtt)
#define DRM_IOCTL_I915_GEM_SET_DOMAIN DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SET_DOMAIN, struct drm_i915_gem_set_domain)
#define DRM_IOCTL_I915_GEM_SW_FINISH DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SW_FINISH, struct drm_i915_gem_sw_finish)
#define DRM_IOCTL_I915_GEM_SET_TILING DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_SET_TILING, struct drm_i915_gem_set_tiling)
#define DRM_IOCTL_I915_GEM_GET_TILING DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_TILING, struct drm_i915_gem_get_tiling)
#define DRM_IOCTL_I915_GEM_GET_APERTURE DRM_IOR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_APERTURE, struct drm_i915_gem_get_aperture)
#define DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_PIPE_FROM_CRTC_ID, struct drm_i915_get_pipe_from_crtc_id)
#define DRM_IOCTL_I915_GEM_MADVISE DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MADVISE, struct drm_i915_gem_madvise)
#define DRM_IOCTL_I915_OVERLAY_PUT_IMAGE DRM_IOW(DRM_COMMAND_BASE + DRM_I915_OVERLAY_PUT_IMAGE, struct drm_intel_overlay_put_image)
#define DRM_IOCTL_I915_OVERLAY_ATTRS DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_OVERLAY_ATTRS, struct drm_intel_overlay_attrs)
#define DRM_IOCTL_I915_SET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_SET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
#define DRM_IOCTL_I915_GET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_SET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
#define DRM_IOCTL_I915_GEM_WAIT DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_WAIT, struct drm_i915_gem_wait)
#define DRM_IOCTL_I915_GEM_CONTEXT_CREATE DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create)
#define DRM_IOCTL_I915_GEM_CONTEXT_DESTROY DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_DESTROY, struct drm_i915_gem_context_destroy)
#define DRM_IOCTL_I915_REG_READ DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_REG_READ, struct drm_i915_reg_read)
#define DRM_IOCTL_I915_GET_RESET_STATS DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GET_RESET_STATS, struct drm_i915_reset_stats)
drm/i915: Introduce mapping of user pages into video memory (userptr) ioctl By exporting the ability to map user address and inserting PTEs representing their backing pages into the GTT, we can exploit UMA in order to utilize normal application data as a texture source or even as a render target (depending upon the capabilities of the chipset). This has a number of uses, with zero-copy downloads to the GPU and efficient readback making the intermixed streaming of CPU and GPU operations fairly efficient. This ability has many widespread implications from faster rendering of client-side software rasterisers (chromium), mitigation of stalls due to read back (firefox) and to faster pipelining of texture data (such as pixel buffer objects in GL or data blobs in CL). v2: Compile with CONFIG_MMU_NOTIFIER v3: We can sleep while performing invalidate-range, which we can utilise to drop our page references prior to the kernel manipulating the vma (for either discard or cloning) and so protect normal users. v4: Only run the invalidate notifier if the range intercepts the bo. v5: Prevent userspace from attempting to GTT mmap non-page aligned buffers v6: Recheck after reacquire mutex for lost mmu. v7: Fix implicit padding of ioctl struct by rounding to next 64bit boundary. v8: Fix rebasing error after forwarding porting the back port. v9: Limit the userptr to page aligned entries. We now expect userspace to handle all the offset-in-page adjustments itself. v10: Prevent vma from being copied across fork to avoid issues with cow. v11: Drop vma behaviour changes -- locking is nigh on impossible. Use a worker to load user pages to avoid lock inversions. v12: Use get_task_mm()/mmput() for correct refcounting of mm. v13: Use a worker to release the mmu_notifier to avoid lock inversion v14: Decouple mmu_notifier from struct_mutex using a custom mmu_notifer with its own locking and tree of objects for each mm/mmu_notifier. v15: Prevent overlapping userptr objects, and invalidate all objects within the mmu_notifier range v16: Fix a typo for iterating over multiple objects in the range and rearrange error path to destroy the mmu_notifier locklessly. Also close a race between invalidate_range and the get_pages_worker. v17: Close a race between get_pages_worker/invalidate_range and fresh allocations of the same userptr range - and notice that struct_mutex was presumed to be held when during creation it wasn't. v18: Sigh. Fix the refactor of st_set_pages() to allocate enough memory for the struct sg_table and to clear it before reporting an error. v19: Always error out on read-only userptr requests as we don't have the hardware infrastructure to support them at the moment. v20: Refuse to implement read-only support until we have the required infrastructure - but reserve the bit in flags for future use. v21: use_mm() is not required for get_user_pages(). It is only meant to be used to fix up the kernel thread's current->mm for use with copy_user(). v22: Use sg_alloc_table_from_pages for that chunky feeling v23: Export a function for sanity checking dma-buf rather than encode userptr details elsewhere, and clean up comments based on suggestions by Bradley. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Cc: "Gong, Zhipeng" <zhipeng.gong@intel.com> Cc: Akash Goel <akash.goel@intel.com> Cc: "Volkin, Bradley D" <bradley.d.volkin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Reviewed-by: Brad Volkin <bradley.d.volkin@intel.com> [danvet: Frob ioctl allocation to pick the next one - will cause a bit of fuss with create2 apparently, but such are the rules.] [danvet2: oops, forgot to git add after manual patch application] [danvet3: Appease sparse.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-05-16 07:22:37 -06:00
#define DRM_IOCTL_I915_GEM_USERPTR DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_USERPTR, struct drm_i915_gem_userptr)
#define DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_GETPARAM, struct drm_i915_gem_context_param)
#define DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_SETPARAM, struct drm_i915_gem_context_param)
/* Allow drivers to submit batchbuffers directly to hardware, relying
* on the security mechanisms provided by hardware.
*/
typedef struct drm_i915_batchbuffer {
int start; /* agp offset */
int used; /* nr bytes in use */
int DR1; /* hw flags for GFX_OP_DRAWRECT_INFO */
int DR4; /* window origin for GFX_OP_DRAWRECT_INFO */
int num_cliprects; /* mulitpass with multiple cliprects? */
struct drm_clip_rect __user *cliprects; /* pointer to userspace cliprects */
} drm_i915_batchbuffer_t;
/* As above, but pass a pointer to userspace buffer which can be
* validated by the kernel prior to sending to hardware.
*/
typedef struct _drm_i915_cmdbuffer {
char __user *buf; /* pointer to userspace command buffer */
int sz; /* nr bytes in buf */
int DR1; /* hw flags for GFX_OP_DRAWRECT_INFO */
int DR4; /* window origin for GFX_OP_DRAWRECT_INFO */
int num_cliprects; /* mulitpass with multiple cliprects? */
struct drm_clip_rect __user *cliprects; /* pointer to userspace cliprects */
} drm_i915_cmdbuffer_t;
/* Userspace can request & wait on irq's:
*/
typedef struct drm_i915_irq_emit {
int __user *irq_seq;
} drm_i915_irq_emit_t;
typedef struct drm_i915_irq_wait {
int irq_seq;
} drm_i915_irq_wait_t;
/* Ioctl to query kernel params:
*/
#define I915_PARAM_IRQ_ACTIVE 1
#define I915_PARAM_ALLOW_BATCHBUFFER 2
#define I915_PARAM_LAST_DISPATCH 3
#define I915_PARAM_CHIPSET_ID 4
#define I915_PARAM_HAS_GEM 5
#define I915_PARAM_NUM_FENCES_AVAIL 6
#define I915_PARAM_HAS_OVERLAY 7
#define I915_PARAM_HAS_PAGEFLIPPING 8
#define I915_PARAM_HAS_EXECBUF2 9
#define I915_PARAM_HAS_BSD 10
#define I915_PARAM_HAS_BLT 11
#define I915_PARAM_HAS_RELAXED_FENCING 12
#define I915_PARAM_HAS_COHERENT_RINGS 13
#define I915_PARAM_HAS_EXEC_CONSTANTS 14
#define I915_PARAM_HAS_RELAXED_DELTA 15
#define I915_PARAM_HAS_GEN7_SOL_RESET 16
#define I915_PARAM_HAS_LLC 17
#define I915_PARAM_HAS_ALIASING_PPGTT 18
#define I915_PARAM_HAS_WAIT_TIMEOUT 19
#define I915_PARAM_HAS_SEMAPHORES 20
#define I915_PARAM_HAS_PRIME_VMAP_FLUSH 21
#define I915_PARAM_HAS_VEBOX 22
#define I915_PARAM_HAS_SECURE_BATCHES 23
#define I915_PARAM_HAS_PINNED_BATCHES 24
#define I915_PARAM_HAS_EXEC_NO_RELOC 25
#define I915_PARAM_HAS_EXEC_HANDLE_LUT 26
#define I915_PARAM_HAS_WT 27
#define I915_PARAM_CMD_PARSER_VERSION 28
#define I915_PARAM_HAS_COHERENT_PHYS_GTT 29
drm/i915: Support creation of unbound wc user mappings for objects This patch provides support to create write-combining virtual mappings of GEM object. It intends to provide the same funtionality of 'mmap_gtt' interface without the constraints and contention of a limited aperture space, but requires clients handles the linear to tile conversion on their own. This is for improving the CPU write operation performance, as with such mapping, writes and reads are almost 50% faster than with mmap_gtt. Similar to the GTT mmapping, unlike the regular CPU mmapping, it avoids the cache flush after update from CPU side, when object is passed onto GPU. This type of mapping is specially useful in case of sub-region update, i.e. when only a portion of the object is to be updated. Using a CPU mmap in such cases would normally incur a clflush of the whole object, and using a GTT mmapping would likely require eviction of an active object or fence and thus stall. The write-combining CPU mmap avoids both. To ensure the cache coherency, before using this mapping, the GTT domain has been reused here. This provides the required cache flush if the object is in CPU domain or synchronization against the concurrent rendering. Although the access through an uncached mmap should automatically invalidate the cache lines, this may not be true for non-temporal write instructions and also not all pages of the object may be updated at any given point of time through this mapping. Having a call to get_pages in set_to_gtt_domain function, as added in the earlier patch 'drm/i915: Broaden application of set-domain(GTT)', would guarantee the clflush and so there will be no cachelines holding the data for the object before it is accessed through this map. The drm_i915_gem_mmap structure (for the DRM_I915_GEM_MMAP_IOCTL) has been extended with a new flags field (defaulting to 0 for existent users). In order for userspace to detect the extended ioctl, a new parameter I915_PARAM_MMAP_VERSION has been added for versioning the ioctl interface. v2: Fix error handling, invalid flag detection, renaming (ickle) v3: Rebase to latest drm-intel-nightly codebase The new mmapping is exercised by igt/gem_mmap_wc, igt/gem_concurrent_blit and igt/gem_gtt_speed. Change-Id: Ie883942f9e689525f72fe9a8d3780c3a9faa769a Signed-off-by: Akash Goel <akash.goel@intel.com> Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-01-02 03:59:30 -07:00
#define I915_PARAM_MMAP_VERSION 30
#define I915_PARAM_HAS_BSD2 31
#define I915_PARAM_REVISION 32
typedef struct drm_i915_getparam {
int param;
int __user *value;
} drm_i915_getparam_t;
/* Ioctl to set kernel params:
*/
#define I915_SETPARAM_USE_MI_BATCHBUFFER_START 1
#define I915_SETPARAM_TEX_LRU_LOG_GRANULARITY 2
#define I915_SETPARAM_ALLOW_BATCHBUFFER 3
#define I915_SETPARAM_NUM_USED_FENCES 4
typedef struct drm_i915_setparam {
int param;
int value;
} drm_i915_setparam_t;
/* A memory manager for regions of shared memory:
*/
#define I915_MEM_REGION_AGP 1
typedef struct drm_i915_mem_alloc {
int region;
int alignment;
int size;
int __user *region_offset; /* offset from start of fb or agp */
} drm_i915_mem_alloc_t;
typedef struct drm_i915_mem_free {
int region;
int region_offset;
} drm_i915_mem_free_t;
typedef struct drm_i915_mem_init_heap {
int region;
int size;
int start;
} drm_i915_mem_init_heap_t;
/* Allow memory manager to be torn down and re-initialized (eg on
* rotate):
*/
typedef struct drm_i915_mem_destroy_heap {
int region;
} drm_i915_mem_destroy_heap_t;
/* Allow X server to configure which pipes to monitor for vblank signals
*/
#define DRM_I915_VBLANK_PIPE_A 1
#define DRM_I915_VBLANK_PIPE_B 2
typedef struct drm_i915_vblank_pipe {
int pipe;
} drm_i915_vblank_pipe_t;
/* Schedule buffer swap at given vertical blank:
*/
typedef struct drm_i915_vblank_swap {
drm_drawable_t drawable;
enum drm_vblank_seq_type seqtype;
unsigned int sequence;
} drm_i915_vblank_swap_t;
typedef struct drm_i915_hws_addr {
__u64 addr;
} drm_i915_hws_addr_t;
struct drm_i915_gem_init {
/**
* Beginning offset in the GTT to be managed by the DRM memory
* manager.
*/
__u64 gtt_start;
/**
* Ending offset in the GTT to be managed by the DRM memory
* manager.
*/
__u64 gtt_end;
};
struct drm_i915_gem_create {
/**
* Requested size for the object.
*
* The (page-aligned) allocated size for the object will be returned.
*/
__u64 size;
/**
* Returned handle for the object.
*
* Object handles are nonzero.
*/
__u32 handle;
__u32 pad;
};
struct drm_i915_gem_pread {
/** Handle for the object being read. */
__u32 handle;
__u32 pad;
/** Offset into the object to read from */
__u64 offset;
/** Length of data to read */
__u64 size;
/**
* Pointer to write the data into.
*
* This is a fixed-size type for 32/64 compatibility.
*/
__u64 data_ptr;
};
struct drm_i915_gem_pwrite {
/** Handle for the object being written to. */
__u32 handle;
__u32 pad;
/** Offset into the object to write to */
__u64 offset;
/** Length of data to write */
__u64 size;
/**
* Pointer to read the data from.
*
* This is a fixed-size type for 32/64 compatibility.
*/
__u64 data_ptr;
};
struct drm_i915_gem_mmap {
/** Handle for the object being mapped. */
__u32 handle;
__u32 pad;
/** Offset in the object to map. */
__u64 offset;
/**
* Length of data to map.
*
* The value will be page-aligned.
*/
__u64 size;
/**
* Returned pointer the data was mapped at.
*
* This is a fixed-size type for 32/64 compatibility.
*/
__u64 addr_ptr;
drm/i915: Support creation of unbound wc user mappings for objects This patch provides support to create write-combining virtual mappings of GEM object. It intends to provide the same funtionality of 'mmap_gtt' interface without the constraints and contention of a limited aperture space, but requires clients handles the linear to tile conversion on their own. This is for improving the CPU write operation performance, as with such mapping, writes and reads are almost 50% faster than with mmap_gtt. Similar to the GTT mmapping, unlike the regular CPU mmapping, it avoids the cache flush after update from CPU side, when object is passed onto GPU. This type of mapping is specially useful in case of sub-region update, i.e. when only a portion of the object is to be updated. Using a CPU mmap in such cases would normally incur a clflush of the whole object, and using a GTT mmapping would likely require eviction of an active object or fence and thus stall. The write-combining CPU mmap avoids both. To ensure the cache coherency, before using this mapping, the GTT domain has been reused here. This provides the required cache flush if the object is in CPU domain or synchronization against the concurrent rendering. Although the access through an uncached mmap should automatically invalidate the cache lines, this may not be true for non-temporal write instructions and also not all pages of the object may be updated at any given point of time through this mapping. Having a call to get_pages in set_to_gtt_domain function, as added in the earlier patch 'drm/i915: Broaden application of set-domain(GTT)', would guarantee the clflush and so there will be no cachelines holding the data for the object before it is accessed through this map. The drm_i915_gem_mmap structure (for the DRM_I915_GEM_MMAP_IOCTL) has been extended with a new flags field (defaulting to 0 for existent users). In order for userspace to detect the extended ioctl, a new parameter I915_PARAM_MMAP_VERSION has been added for versioning the ioctl interface. v2: Fix error handling, invalid flag detection, renaming (ickle) v3: Rebase to latest drm-intel-nightly codebase The new mmapping is exercised by igt/gem_mmap_wc, igt/gem_concurrent_blit and igt/gem_gtt_speed. Change-Id: Ie883942f9e689525f72fe9a8d3780c3a9faa769a Signed-off-by: Akash Goel <akash.goel@intel.com> Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-01-02 03:59:30 -07:00
/**
* Flags for extended behaviour.
*
* Added in version 2.
*/
__u64 flags;
#define I915_MMAP_WC 0x1
};
struct drm_i915_gem_mmap_gtt {
/** Handle for the object being mapped. */
__u32 handle;
__u32 pad;
/**
* Fake offset to use for subsequent mmap call
*
* This is a fixed-size type for 32/64 compatibility.
*/
__u64 offset;
};
struct drm_i915_gem_set_domain {
/** Handle for the object */
__u32 handle;
/** New read domains */
__u32 read_domains;
/** New write domain */
__u32 write_domain;
};
struct drm_i915_gem_sw_finish {
/** Handle for the object */
__u32 handle;
};
struct drm_i915_gem_relocation_entry {
/**
* Handle of the buffer being pointed to by this relocation entry.
*
* It's appealing to make this be an index into the mm_validate_entry
* list to refer to the buffer, but this allows the driver to create
* a relocation list for state buffers and not re-write it per
* exec using the buffer.
*/
__u32 target_handle;
/**
* Value to be added to the offset of the target buffer to make up
* the relocation entry.
*/
__u32 delta;
/** Offset in the buffer the relocation entry will be written into */
__u64 offset;
/**
* Offset value of the target buffer that the relocation entry was last
* written as.
*
* If the buffer has the same offset as last time, we can skip syncing
* and writing the relocation. This value is written back out by
* the execbuffer ioctl when the relocation is written.
*/
__u64 presumed_offset;
/**
* Target memory domains read by this operation.
*/
__u32 read_domains;
/**
* Target memory domains written by this operation.
*
* Note that only one domain may be written by the whole
* execbuffer operation, so that where there are conflicts,
* the application will get -EINVAL back.
*/
__u32 write_domain;
};
/** @{
* Intel memory domains
*
* Most of these just align with the various caches in
* the system and are used to flush and invalidate as
* objects end up cached in different domains.
*/
/** CPU cache */
#define I915_GEM_DOMAIN_CPU 0x00000001
/** Render cache, used by 2D and 3D drawing */
#define I915_GEM_DOMAIN_RENDER 0x00000002
/** Sampler cache, used by texture engine */
#define I915_GEM_DOMAIN_SAMPLER 0x00000004
/** Command queue, used to load batch buffers */
#define I915_GEM_DOMAIN_COMMAND 0x00000008
/** Instruction cache, used by shader programs */
#define I915_GEM_DOMAIN_INSTRUCTION 0x00000010
/** Vertex address cache */
#define I915_GEM_DOMAIN_VERTEX 0x00000020
/** GTT domain - aperture and scanout */
#define I915_GEM_DOMAIN_GTT 0x00000040
/** @} */
struct drm_i915_gem_exec_object {
/**
* User's handle for a buffer to be bound into the GTT for this
* operation.
*/
__u32 handle;
/** Number of relocations to be performed on this buffer */
__u32 relocation_count;
/**
* Pointer to array of struct drm_i915_gem_relocation_entry containing
* the relocations to be performed in this buffer.
*/
__u64 relocs_ptr;
/** Required alignment in graphics aperture */
__u64 alignment;
/**
* Returned value of the updated offset of the object, for future
* presumed_offset writes.
*/
__u64 offset;
};
struct drm_i915_gem_execbuffer {
/**
* List of buffers to be validated with their relocations to be
* performend on them.
*
* This is a pointer to an array of struct drm_i915_gem_validate_entry.
*
* These buffers must be listed in an order such that all relocations
* a buffer is performing refer to buffers that have already appeared
* in the validate list.
*/
__u64 buffers_ptr;
__u32 buffer_count;
/** Offset in the batchbuffer to start execution from. */
__u32 batch_start_offset;
/** Bytes used in batchbuffer from batch_start_offset */
__u32 batch_len;
__u32 DR1;
__u32 DR4;
__u32 num_cliprects;
/** This is a struct drm_clip_rect *cliprects */
__u64 cliprects_ptr;
};
struct drm_i915_gem_exec_object2 {
/**
* User's handle for a buffer to be bound into the GTT for this
* operation.
*/
__u32 handle;
/** Number of relocations to be performed on this buffer */
__u32 relocation_count;
/**
* Pointer to array of struct drm_i915_gem_relocation_entry containing
* the relocations to be performed in this buffer.
*/
__u64 relocs_ptr;
/** Required alignment in graphics aperture */
__u64 alignment;
/**
* Returned value of the updated offset of the object, for future
* presumed_offset writes.
*/
__u64 offset;
#define EXEC_OBJECT_NEEDS_FENCE (1<<0)
#define EXEC_OBJECT_NEEDS_GTT (1<<1)
#define EXEC_OBJECT_WRITE (1<<2)
#define __EXEC_OBJECT_UNKNOWN_FLAGS -(EXEC_OBJECT_WRITE<<1)
__u64 flags;
__u64 rsvd1;
__u64 rsvd2;
};
struct drm_i915_gem_execbuffer2 {
/**
* List of gem_exec_object2 structs
*/
__u64 buffers_ptr;
__u32 buffer_count;
/** Offset in the batchbuffer to start execution from. */
__u32 batch_start_offset;
/** Bytes used in batchbuffer from batch_start_offset */
__u32 batch_len;
__u32 DR1;
__u32 DR4;
__u32 num_cliprects;
/** This is a struct drm_clip_rect *cliprects */
__u64 cliprects_ptr;
#define I915_EXEC_RING_MASK (7<<0)
#define I915_EXEC_DEFAULT (0<<0)
#define I915_EXEC_RENDER (1<<0)
#define I915_EXEC_BSD (2<<0)
#define I915_EXEC_BLT (3<<0)
#define I915_EXEC_VEBOX (4<<0)
/* Used for switching the constants addressing mode on gen4+ RENDER ring.
* Gen6+ only supports relative addressing to dynamic state (default) and
* absolute addressing.
*
* These flags are ignored for the BSD and BLT rings.
*/
#define I915_EXEC_CONSTANTS_MASK (3<<6)
#define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */
#define I915_EXEC_CONSTANTS_ABSOLUTE (1<<6)
#define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */
__u64 flags;
__u64 rsvd1; /* now used for context info */
__u64 rsvd2;
};
/** Resets the SO write offset registers for transform feedback on gen7. */
#define I915_EXEC_GEN7_SOL_RESET (1<<8)
/** Request a privileged ("secure") batch buffer. Note only available for
* DRM_ROOT_ONLY | DRM_MASTER processes.
*/
#define I915_EXEC_SECURE (1<<9)
/** Inform the kernel that the batch is and will always be pinned. This
* negates the requirement for a workaround to be performed to avoid
* an incoherent CS (such as can be found on 830/845). If this flag is
* not passed, the kernel will endeavour to make sure the batch is
* coherent with the CS before execution. If this flag is passed,
* userspace assumes the responsibility for ensuring the same.
*/
#define I915_EXEC_IS_PINNED (1<<10)
/** Provide a hint to the kernel that the command stream and auxiliary
* state buffers already holds the correct presumed addresses and so the
* relocation process may be skipped if no buffers need to be moved in
* preparation for the execbuffer.
*/
#define I915_EXEC_NO_RELOC (1<<11)
/** Use the reloc.handle as an index into the exec object array rather
* than as the per-file handle.
*/
#define I915_EXEC_HANDLE_LUT (1<<12)
/** Used for switching BSD rings on the platforms with two BSD rings */
#define I915_EXEC_BSD_MASK (3<<13)
#define I915_EXEC_BSD_DEFAULT (0<<13) /* default ping-pong mode */
#define I915_EXEC_BSD_RING1 (1<<13)
#define I915_EXEC_BSD_RING2 (2<<13)
#define __I915_EXEC_UNKNOWN_FLAGS -(1<<15)
#define I915_EXEC_CONTEXT_ID_MASK (0xffffffff)
#define i915_execbuffer2_set_context_id(eb2, context) \
(eb2).rsvd1 = context & I915_EXEC_CONTEXT_ID_MASK
#define i915_execbuffer2_get_context_id(eb2) \
((eb2).rsvd1 & I915_EXEC_CONTEXT_ID_MASK)
struct drm_i915_gem_pin {
/** Handle of the buffer to be pinned. */
__u32 handle;
__u32 pad;
/** alignment required within the aperture */
__u64 alignment;
/** Returned GTT offset of the buffer. */
__u64 offset;
};
struct drm_i915_gem_unpin {
/** Handle of the buffer to be unpinned. */
__u32 handle;
__u32 pad;
};
struct drm_i915_gem_busy {
/** Handle of the buffer to check for busy */
__u32 handle;
/** Return busy status (1 if busy, 0 if idle).
* The high word is used to indicate on which rings the object
* currently resides:
* 16:31 - busy (r or r/w) rings (16 render, 17 bsd, 18 blt, etc)
*/
__u32 busy;
};
/**
* I915_CACHING_NONE
*
* GPU access is not coherent with cpu caches. Default for machines without an
* LLC.
*/
#define I915_CACHING_NONE 0
/**
* I915_CACHING_CACHED
*
* GPU access is coherent with cpu caches and furthermore the data is cached in
* last-level caches shared between cpu cores and the gpu GT. Default on
* machines with HAS_LLC.
*/
#define I915_CACHING_CACHED 1
/**
* I915_CACHING_DISPLAY
*
* Special GPU caching mode which is coherent with the scanout engines.
* Transparently falls back to I915_CACHING_NONE on platforms where no special
* cache mode (like write-through or gfdt flushing) is available. The kernel
* automatically sets this mode when using a buffer as a scanout target.
* Userspace can manually set this mode to avoid a costly stall and clflush in
* the hotpath of drawing the first frame.
*/
#define I915_CACHING_DISPLAY 2
struct drm_i915_gem_caching {
/**
* Handle of the buffer to set/get the caching level of. */
__u32 handle;
/**
* Cacheing level to apply or return value
*
* bits0-15 are for generic caching control (i.e. the above defined
* values). bits16-31 are reserved for platform-specific variations
* (e.g. l3$ caching on gen7). */
__u32 caching;
};
#define I915_TILING_NONE 0
#define I915_TILING_X 1
#define I915_TILING_Y 2
#define I915_BIT_6_SWIZZLE_NONE 0
#define I915_BIT_6_SWIZZLE_9 1
#define I915_BIT_6_SWIZZLE_9_10 2
#define I915_BIT_6_SWIZZLE_9_11 3
#define I915_BIT_6_SWIZZLE_9_10_11 4
/* Not seen by userland */
#define I915_BIT_6_SWIZZLE_UNKNOWN 5
/* Seen by userland. */
#define I915_BIT_6_SWIZZLE_9_17 6
#define I915_BIT_6_SWIZZLE_9_10_17 7
struct drm_i915_gem_set_tiling {
/** Handle of the buffer to have its tiling state updated */
__u32 handle;
/**
* Tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
* I915_TILING_Y).
*
* This value is to be set on request, and will be updated by the
* kernel on successful return with the actual chosen tiling layout.
*
* The tiling mode may be demoted to I915_TILING_NONE when the system
* has bit 6 swizzling that can't be managed correctly by GEM.
*
* Buffer contents become undefined when changing tiling_mode.
*/
__u32 tiling_mode;
/**
* Stride in bytes for the object when in I915_TILING_X or
* I915_TILING_Y.
*/
__u32 stride;
/**
* Returned address bit 6 swizzling required for CPU access through
* mmap mapping.
*/
__u32 swizzle_mode;
};
struct drm_i915_gem_get_tiling {
/** Handle of the buffer to get tiling state for. */
__u32 handle;
/**
* Current tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
* I915_TILING_Y).
*/
__u32 tiling_mode;
/**
* Returned address bit 6 swizzling required for CPU access through
* mmap mapping.
*/
__u32 swizzle_mode;
/**
* Returned address bit 6 swizzling required for CPU access through
* mmap mapping whilst bound.
*/
__u32 phys_swizzle_mode;
};
struct drm_i915_gem_get_aperture {
/** Total size of the aperture used by i915_gem_execbuffer, in bytes */
__u64 aper_size;
/**
* Available space in the aperture used by i915_gem_execbuffer, in
* bytes
*/
__u64 aper_available_size;
};
struct drm_i915_get_pipe_from_crtc_id {
/** ID of CRTC being requested **/
__u32 crtc_id;
/** pipe of requested CRTC **/
__u32 pipe;
};
#define I915_MADV_WILLNEED 0
#define I915_MADV_DONTNEED 1
#define __I915_MADV_PURGED 2 /* internal state */
struct drm_i915_gem_madvise {
/** Handle of the buffer to change the backing store advice */
__u32 handle;
/* Advice: either the buffer will be needed again in the near future,
* or wont be and could be discarded under memory pressure.
*/
__u32 madv;
/** Whether the backing store still exists. */
__u32 retained;
};
/* flags */
#define I915_OVERLAY_TYPE_MASK 0xff
#define I915_OVERLAY_YUV_PLANAR 0x01
#define I915_OVERLAY_YUV_PACKED 0x02
#define I915_OVERLAY_RGB 0x03
#define I915_OVERLAY_DEPTH_MASK 0xff00
#define I915_OVERLAY_RGB24 0x1000
#define I915_OVERLAY_RGB16 0x2000
#define I915_OVERLAY_RGB15 0x3000
#define I915_OVERLAY_YUV422 0x0100
#define I915_OVERLAY_YUV411 0x0200
#define I915_OVERLAY_YUV420 0x0300
#define I915_OVERLAY_YUV410 0x0400
#define I915_OVERLAY_SWAP_MASK 0xff0000
#define I915_OVERLAY_NO_SWAP 0x000000
#define I915_OVERLAY_UV_SWAP 0x010000
#define I915_OVERLAY_Y_SWAP 0x020000
#define I915_OVERLAY_Y_AND_UV_SWAP 0x030000
#define I915_OVERLAY_FLAGS_MASK 0xff000000
#define I915_OVERLAY_ENABLE 0x01000000
struct drm_intel_overlay_put_image {
/* various flags and src format description */
__u32 flags;
/* source picture description */
__u32 bo_handle;
/* stride values and offsets are in bytes, buffer relative */
__u16 stride_Y; /* stride for packed formats */
__u16 stride_UV;
__u32 offset_Y; /* offset for packet formats */
__u32 offset_U;
__u32 offset_V;
/* in pixels */
__u16 src_width;
__u16 src_height;
/* to compensate the scaling factors for partially covered surfaces */
__u16 src_scan_width;
__u16 src_scan_height;
/* output crtc description */
__u32 crtc_id;
__u16 dst_x;
__u16 dst_y;
__u16 dst_width;
__u16 dst_height;
};
/* flags */
#define I915_OVERLAY_UPDATE_ATTRS (1<<0)
#define I915_OVERLAY_UPDATE_GAMMA (1<<1)
struct drm_intel_overlay_attrs {
__u32 flags;
__u32 color_key;
__s32 brightness;
__u32 contrast;
__u32 saturation;
__u32 gamma0;
__u32 gamma1;
__u32 gamma2;
__u32 gamma3;
__u32 gamma4;
__u32 gamma5;
};
/*
* Intel sprite handling
*
* Color keying works with a min/mask/max tuple. Both source and destination
* color keying is allowed.
*
* Source keying:
* Sprite pixels within the min & max values, masked against the color channels
* specified in the mask field, will be transparent. All other pixels will
* be displayed on top of the primary plane. For RGB surfaces, only the min
* and mask fields will be used; ranged compares are not allowed.
*
* Destination keying:
* Primary plane pixels that match the min value, masked against the color
* channels specified in the mask field, will be replaced by corresponding
* pixels from the sprite plane.
*
* Note that source & destination keying are exclusive; only one can be
* active on a given plane.
*/
#define I915_SET_COLORKEY_NONE (1<<0) /* disable color key matching */
#define I915_SET_COLORKEY_DESTINATION (1<<1)
#define I915_SET_COLORKEY_SOURCE (1<<2)
struct drm_intel_sprite_colorkey {
__u32 plane_id;
__u32 min_value;
__u32 channel_mask;
__u32 max_value;
__u32 flags;
};
struct drm_i915_gem_wait {
/** Handle of BO we shall wait on */
__u32 bo_handle;
__u32 flags;
/** Number of nanoseconds to wait, Returns time remaining. */
__s64 timeout_ns;
};
struct drm_i915_gem_context_create {
/* output: id of new context*/
__u32 ctx_id;
__u32 pad;
};
struct drm_i915_gem_context_destroy {
__u32 ctx_id;
__u32 pad;
};
struct drm_i915_reg_read {
__u64 offset;
__u64 val; /* Return value */
};
struct drm_i915_reset_stats {
__u32 ctx_id;
__u32 flags;
/* All resets since boot/module reload, for all contexts */
__u32 reset_count;
/* Number of batches lost when active in GPU, for this context */
__u32 batch_active;
/* Number of batches lost pending for execution, for this context */
__u32 batch_pending;
__u32 pad;
};
drm/i915: Introduce mapping of user pages into video memory (userptr) ioctl By exporting the ability to map user address and inserting PTEs representing their backing pages into the GTT, we can exploit UMA in order to utilize normal application data as a texture source or even as a render target (depending upon the capabilities of the chipset). This has a number of uses, with zero-copy downloads to the GPU and efficient readback making the intermixed streaming of CPU and GPU operations fairly efficient. This ability has many widespread implications from faster rendering of client-side software rasterisers (chromium), mitigation of stalls due to read back (firefox) and to faster pipelining of texture data (such as pixel buffer objects in GL or data blobs in CL). v2: Compile with CONFIG_MMU_NOTIFIER v3: We can sleep while performing invalidate-range, which we can utilise to drop our page references prior to the kernel manipulating the vma (for either discard or cloning) and so protect normal users. v4: Only run the invalidate notifier if the range intercepts the bo. v5: Prevent userspace from attempting to GTT mmap non-page aligned buffers v6: Recheck after reacquire mutex for lost mmu. v7: Fix implicit padding of ioctl struct by rounding to next 64bit boundary. v8: Fix rebasing error after forwarding porting the back port. v9: Limit the userptr to page aligned entries. We now expect userspace to handle all the offset-in-page adjustments itself. v10: Prevent vma from being copied across fork to avoid issues with cow. v11: Drop vma behaviour changes -- locking is nigh on impossible. Use a worker to load user pages to avoid lock inversions. v12: Use get_task_mm()/mmput() for correct refcounting of mm. v13: Use a worker to release the mmu_notifier to avoid lock inversion v14: Decouple mmu_notifier from struct_mutex using a custom mmu_notifer with its own locking and tree of objects for each mm/mmu_notifier. v15: Prevent overlapping userptr objects, and invalidate all objects within the mmu_notifier range v16: Fix a typo for iterating over multiple objects in the range and rearrange error path to destroy the mmu_notifier locklessly. Also close a race between invalidate_range and the get_pages_worker. v17: Close a race between get_pages_worker/invalidate_range and fresh allocations of the same userptr range - and notice that struct_mutex was presumed to be held when during creation it wasn't. v18: Sigh. Fix the refactor of st_set_pages() to allocate enough memory for the struct sg_table and to clear it before reporting an error. v19: Always error out on read-only userptr requests as we don't have the hardware infrastructure to support them at the moment. v20: Refuse to implement read-only support until we have the required infrastructure - but reserve the bit in flags for future use. v21: use_mm() is not required for get_user_pages(). It is only meant to be used to fix up the kernel thread's current->mm for use with copy_user(). v22: Use sg_alloc_table_from_pages for that chunky feeling v23: Export a function for sanity checking dma-buf rather than encode userptr details elsewhere, and clean up comments based on suggestions by Bradley. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Cc: "Gong, Zhipeng" <zhipeng.gong@intel.com> Cc: Akash Goel <akash.goel@intel.com> Cc: "Volkin, Bradley D" <bradley.d.volkin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Reviewed-by: Brad Volkin <bradley.d.volkin@intel.com> [danvet: Frob ioctl allocation to pick the next one - will cause a bit of fuss with create2 apparently, but such are the rules.] [danvet2: oops, forgot to git add after manual patch application] [danvet3: Appease sparse.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-05-16 07:22:37 -06:00
struct drm_i915_gem_userptr {
__u64 user_ptr;
__u64 user_size;
__u32 flags;
#define I915_USERPTR_READ_ONLY 0x1
#define I915_USERPTR_UNSYNCHRONIZED 0x80000000
/**
* Returned handle for the object.
*
* Object handles are nonzero.
*/
__u32 handle;
};
struct drm_i915_gem_context_param {
__u32 ctx_id;
__u32 size;
__u64 param;
#define I915_CONTEXT_PARAM_BAN_PERIOD 0x1
__u64 value;
};
#endif /* _UAPI_I915_DRM_H_ */