alistair23-linux/drivers/gpu/drm/bridge/nxp-ptn3460.c

403 lines
9.8 KiB
C
Raw Normal View History

/*
* NXP PTN3460 DP/LVDS bridge driver
*
* Copyright (C) 2013 Google, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/delay.h>
#include <linux/gpio.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_gpio.h>
#include <linux/of_graph.h>
#include <drm/drm_panel.h>
#include "drm_crtc.h"
#include "drm_crtc_helper.h"
#include "drm_atomic_helper.h"
#include "drm_edid.h"
#include "drmP.h"
#define PTN3460_EDID_ADDR 0x0
#define PTN3460_EDID_EMULATION_ADDR 0x84
#define PTN3460_EDID_ENABLE_EMULATION 0
#define PTN3460_EDID_EMULATION_SELECTION 1
#define PTN3460_EDID_SRAM_LOAD_ADDR 0x85
struct ptn3460_bridge {
struct drm_connector connector;
struct i2c_client *client;
struct drm_bridge bridge;
struct edid *edid;
struct drm_panel *panel;
struct gpio_desc *gpio_pd_n;
struct gpio_desc *gpio_rst_n;
u32 edid_emulation;
bool enabled;
};
static inline struct ptn3460_bridge *
bridge_to_ptn3460(struct drm_bridge *bridge)
{
return container_of(bridge, struct ptn3460_bridge, bridge);
}
static inline struct ptn3460_bridge *
connector_to_ptn3460(struct drm_connector *connector)
{
return container_of(connector, struct ptn3460_bridge, connector);
}
static int ptn3460_read_bytes(struct ptn3460_bridge *ptn_bridge, char addr,
u8 *buf, int len)
{
int ret;
ret = i2c_master_send(ptn_bridge->client, &addr, 1);
if (ret <= 0) {
DRM_ERROR("Failed to send i2c command, ret=%d\n", ret);
return ret;
}
ret = i2c_master_recv(ptn_bridge->client, buf, len);
if (ret <= 0) {
DRM_ERROR("Failed to recv i2c data, ret=%d\n", ret);
return ret;
}
return 0;
}
static int ptn3460_write_byte(struct ptn3460_bridge *ptn_bridge, char addr,
char val)
{
int ret;
char buf[2];
buf[0] = addr;
buf[1] = val;
ret = i2c_master_send(ptn_bridge->client, buf, ARRAY_SIZE(buf));
if (ret <= 0) {
DRM_ERROR("Failed to send i2c command, ret=%d\n", ret);
return ret;
}
return 0;
}
static int ptn3460_select_edid(struct ptn3460_bridge *ptn_bridge)
{
int ret;
char val;
/* Load the selected edid into SRAM (accessed at PTN3460_EDID_ADDR) */
ret = ptn3460_write_byte(ptn_bridge, PTN3460_EDID_SRAM_LOAD_ADDR,
ptn_bridge->edid_emulation);
if (ret) {
DRM_ERROR("Failed to transfer EDID to sram, ret=%d\n", ret);
return ret;
}
/* Enable EDID emulation and select the desired EDID */
val = 1 << PTN3460_EDID_ENABLE_EMULATION |
ptn_bridge->edid_emulation << PTN3460_EDID_EMULATION_SELECTION;
ret = ptn3460_write_byte(ptn_bridge, PTN3460_EDID_EMULATION_ADDR, val);
if (ret) {
DRM_ERROR("Failed to write EDID value, ret=%d\n", ret);
return ret;
}
return 0;
}
static void ptn3460_pre_enable(struct drm_bridge *bridge)
{
struct ptn3460_bridge *ptn_bridge = bridge_to_ptn3460(bridge);
int ret;
if (ptn_bridge->enabled)
return;
gpiod_set_value(ptn_bridge->gpio_pd_n, 1);
gpiod_set_value(ptn_bridge->gpio_rst_n, 0);
usleep_range(10, 20);
gpiod_set_value(ptn_bridge->gpio_rst_n, 1);
if (drm_panel_prepare(ptn_bridge->panel)) {
DRM_ERROR("failed to prepare panel\n");
return;
}
/*
* There's a bug in the PTN chip where it falsely asserts hotplug before
* it is fully functional. We're forced to wait for the maximum start up
* time specified in the chip's datasheet to make sure we're really up.
*/
msleep(90);
ret = ptn3460_select_edid(ptn_bridge);
if (ret)
DRM_ERROR("Select EDID failed ret=%d\n", ret);
ptn_bridge->enabled = true;
}
static void ptn3460_enable(struct drm_bridge *bridge)
{
struct ptn3460_bridge *ptn_bridge = bridge_to_ptn3460(bridge);
if (drm_panel_enable(ptn_bridge->panel)) {
DRM_ERROR("failed to enable panel\n");
return;
}
}
static void ptn3460_disable(struct drm_bridge *bridge)
{
struct ptn3460_bridge *ptn_bridge = bridge_to_ptn3460(bridge);
if (!ptn_bridge->enabled)
return;
ptn_bridge->enabled = false;
if (drm_panel_disable(ptn_bridge->panel)) {
DRM_ERROR("failed to disable panel\n");
return;
}
gpiod_set_value(ptn_bridge->gpio_rst_n, 1);
gpiod_set_value(ptn_bridge->gpio_pd_n, 0);
}
static void ptn3460_post_disable(struct drm_bridge *bridge)
{
struct ptn3460_bridge *ptn_bridge = bridge_to_ptn3460(bridge);
if (drm_panel_unprepare(ptn_bridge->panel)) {
DRM_ERROR("failed to unprepare panel\n");
return;
}
}
static int ptn3460_get_modes(struct drm_connector *connector)
{
struct ptn3460_bridge *ptn_bridge;
u8 *edid;
int ret, num_modes = 0;
bool power_off;
ptn_bridge = connector_to_ptn3460(connector);
if (ptn_bridge->edid)
return drm_add_edid_modes(connector, ptn_bridge->edid);
power_off = !ptn_bridge->enabled;
ptn3460_pre_enable(&ptn_bridge->bridge);
edid = kmalloc(EDID_LENGTH, GFP_KERNEL);
if (!edid) {
DRM_ERROR("Failed to allocate EDID\n");
return 0;
}
ret = ptn3460_read_bytes(ptn_bridge, PTN3460_EDID_ADDR, edid,
EDID_LENGTH);
if (ret) {
kfree(edid);
goto out;
}
ptn_bridge->edid = (struct edid *)edid;
drm_mode_connector_update_edid_property(connector, ptn_bridge->edid);
num_modes = drm_add_edid_modes(connector, ptn_bridge->edid);
out:
if (power_off)
ptn3460_disable(&ptn_bridge->bridge);
return num_modes;
}
static const struct drm_connector_helper_funcs ptn3460_connector_helper_funcs = {
.get_modes = ptn3460_get_modes,
};
static enum drm_connector_status ptn3460_detect(struct drm_connector *connector,
bool force)
{
return connector_status_connected;
}
static void ptn3460_connector_destroy(struct drm_connector *connector)
{
drm_connector_cleanup(connector);
}
static const struct drm_connector_funcs ptn3460_connector_funcs = {
.dpms = drm_atomic_helper_connector_dpms,
.fill_modes = drm_helper_probe_single_connector_modes,
.detect = ptn3460_detect,
.destroy = ptn3460_connector_destroy,
.reset = drm_atomic_helper_connector_reset,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};
static int ptn3460_bridge_attach(struct drm_bridge *bridge)
{
struct ptn3460_bridge *ptn_bridge = bridge_to_ptn3460(bridge);
int ret;
if (!bridge->encoder) {
DRM_ERROR("Parent encoder object not found");
return -ENODEV;
}
ptn_bridge->connector.polled = DRM_CONNECTOR_POLL_HPD;
ret = drm_connector_init(bridge->dev, &ptn_bridge->connector,
&ptn3460_connector_funcs, DRM_MODE_CONNECTOR_LVDS);
if (ret) {
DRM_ERROR("Failed to initialize connector with drm\n");
return ret;
}
drm_connector_helper_add(&ptn_bridge->connector,
&ptn3460_connector_helper_funcs);
drm_connector_register(&ptn_bridge->connector);
drm_mode_connector_attach_encoder(&ptn_bridge->connector,
bridge->encoder);
if (ptn_bridge->panel)
drm_panel_attach(ptn_bridge->panel, &ptn_bridge->connector);
drm_helper_hpd_irq_event(ptn_bridge->connector.dev);
return ret;
}
static const struct drm_bridge_funcs ptn3460_bridge_funcs = {
.pre_enable = ptn3460_pre_enable,
.enable = ptn3460_enable,
.disable = ptn3460_disable,
.post_disable = ptn3460_post_disable,
.attach = ptn3460_bridge_attach,
};
static int ptn3460_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct device *dev = &client->dev;
struct ptn3460_bridge *ptn_bridge;
struct device_node *endpoint, *panel_node;
int ret;
ptn_bridge = devm_kzalloc(dev, sizeof(*ptn_bridge), GFP_KERNEL);
if (!ptn_bridge) {
return -ENOMEM;
}
endpoint = of_graph_get_next_endpoint(dev->of_node, NULL);
if (endpoint) {
panel_node = of_graph_get_remote_port_parent(endpoint);
if (panel_node) {
ptn_bridge->panel = of_drm_find_panel(panel_node);
of_node_put(panel_node);
if (!ptn_bridge->panel)
return -EPROBE_DEFER;
}
}
ptn_bridge->client = client;
ptn_bridge->gpio_pd_n = devm_gpiod_get(&client->dev, "powerdown",
GPIOD_OUT_HIGH);
if (IS_ERR(ptn_bridge->gpio_pd_n)) {
ret = PTR_ERR(ptn_bridge->gpio_pd_n);
dev_err(dev, "cannot get gpio_pd_n %d\n", ret);
return ret;
}
/*
* Request the reset pin low to avoid the bridge being
* initialized prematurely
*/
ptn_bridge->gpio_rst_n = devm_gpiod_get(&client->dev, "reset",
GPIOD_OUT_LOW);
if (IS_ERR(ptn_bridge->gpio_rst_n)) {
ret = PTR_ERR(ptn_bridge->gpio_rst_n);
DRM_ERROR("cannot get gpio_rst_n %d\n", ret);
return ret;
}
ret = of_property_read_u32(dev->of_node, "edid-emulation",
&ptn_bridge->edid_emulation);
if (ret) {
dev_err(dev, "Can't read EDID emulation value\n");
return ret;
}
ptn_bridge->bridge.funcs = &ptn3460_bridge_funcs;
ptn_bridge->bridge.of_node = dev->of_node;
ret = drm_bridge_add(&ptn_bridge->bridge);
if (ret) {
DRM_ERROR("Failed to add bridge\n");
return ret;
}
i2c_set_clientdata(client, ptn_bridge);
return 0;
}
drm/bridge: make bridge registration independent of drm flow Currently, third party bridge drivers(ptn3460) are dependent on the corresponding encoder driver init, since bridge driver needs a drm_device pointer to finish drm initializations. The encoder driver passes the drm_device pointer to the bridge driver. Because of this dependency, third party drivers like ptn3460 doesn't adhere to the driver model. In this patch, we reframe the bridge registration framework so that bridge initialization is split into 2 steps, and bridge registration happens independent of drm flow: --Step 1: gather all the bridge settings independent of drm and add the bridge onto a global list of bridges. --Step 2: when the encoder driver is probed, call drm_bridge_attach for the corresponding bridge so that the bridge receives drm_device pointer and continues with connector and other drm initializations. The old set of bridge helpers are removed, and a set of new helpers are added to accomplish the 2 step initialization. The bridge devices register themselves onto global list of bridges when they get probed by calling "drm_bridge_add". The parent encoder driver waits till the bridge is available in the lookup table(by calling "of_drm_find_bridge") and then continues with its initialization. The encoder driver should also call "drm_bridge_attach" to pass on the drm_device to the bridge object. drm_bridge_attach inturn calls "bridge->funcs->attach" so that bridge can continue with drm related initializations. Signed-off-by: Ajay Kumar <ajaykumar.rs@samsung.com> Acked-by: Inki Dae <inki.dae@samsung.com> Tested-by: Rahul Sharma <rahul.sharma@samsung.com> Tested-by: Javier Martinez Canillas <javier.martinez@collabora.co.uk> Tested-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk> Tested-by: Sjoerd Simons <sjoerd.simons@collabora.co.uk> Signed-off-by: Thierry Reding <treding@nvidia.com>
2015-01-20 09:38:44 -07:00
static int ptn3460_remove(struct i2c_client *client)
drm/bridge: make bridge registration independent of drm flow Currently, third party bridge drivers(ptn3460) are dependent on the corresponding encoder driver init, since bridge driver needs a drm_device pointer to finish drm initializations. The encoder driver passes the drm_device pointer to the bridge driver. Because of this dependency, third party drivers like ptn3460 doesn't adhere to the driver model. In this patch, we reframe the bridge registration framework so that bridge initialization is split into 2 steps, and bridge registration happens independent of drm flow: --Step 1: gather all the bridge settings independent of drm and add the bridge onto a global list of bridges. --Step 2: when the encoder driver is probed, call drm_bridge_attach for the corresponding bridge so that the bridge receives drm_device pointer and continues with connector and other drm initializations. The old set of bridge helpers are removed, and a set of new helpers are added to accomplish the 2 step initialization. The bridge devices register themselves onto global list of bridges when they get probed by calling "drm_bridge_add". The parent encoder driver waits till the bridge is available in the lookup table(by calling "of_drm_find_bridge") and then continues with its initialization. The encoder driver should also call "drm_bridge_attach" to pass on the drm_device to the bridge object. drm_bridge_attach inturn calls "bridge->funcs->attach" so that bridge can continue with drm related initializations. Signed-off-by: Ajay Kumar <ajaykumar.rs@samsung.com> Acked-by: Inki Dae <inki.dae@samsung.com> Tested-by: Rahul Sharma <rahul.sharma@samsung.com> Tested-by: Javier Martinez Canillas <javier.martinez@collabora.co.uk> Tested-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk> Tested-by: Sjoerd Simons <sjoerd.simons@collabora.co.uk> Signed-off-by: Thierry Reding <treding@nvidia.com>
2015-01-20 09:38:44 -07:00
{
struct ptn3460_bridge *ptn_bridge = i2c_get_clientdata(client);
drm_bridge_remove(&ptn_bridge->bridge);
drm/bridge: make bridge registration independent of drm flow Currently, third party bridge drivers(ptn3460) are dependent on the corresponding encoder driver init, since bridge driver needs a drm_device pointer to finish drm initializations. The encoder driver passes the drm_device pointer to the bridge driver. Because of this dependency, third party drivers like ptn3460 doesn't adhere to the driver model. In this patch, we reframe the bridge registration framework so that bridge initialization is split into 2 steps, and bridge registration happens independent of drm flow: --Step 1: gather all the bridge settings independent of drm and add the bridge onto a global list of bridges. --Step 2: when the encoder driver is probed, call drm_bridge_attach for the corresponding bridge so that the bridge receives drm_device pointer and continues with connector and other drm initializations. The old set of bridge helpers are removed, and a set of new helpers are added to accomplish the 2 step initialization. The bridge devices register themselves onto global list of bridges when they get probed by calling "drm_bridge_add". The parent encoder driver waits till the bridge is available in the lookup table(by calling "of_drm_find_bridge") and then continues with its initialization. The encoder driver should also call "drm_bridge_attach" to pass on the drm_device to the bridge object. drm_bridge_attach inturn calls "bridge->funcs->attach" so that bridge can continue with drm related initializations. Signed-off-by: Ajay Kumar <ajaykumar.rs@samsung.com> Acked-by: Inki Dae <inki.dae@samsung.com> Tested-by: Rahul Sharma <rahul.sharma@samsung.com> Tested-by: Javier Martinez Canillas <javier.martinez@collabora.co.uk> Tested-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk> Tested-by: Sjoerd Simons <sjoerd.simons@collabora.co.uk> Signed-off-by: Thierry Reding <treding@nvidia.com>
2015-01-20 09:38:44 -07:00
return 0;
drm/bridge: make bridge registration independent of drm flow Currently, third party bridge drivers(ptn3460) are dependent on the corresponding encoder driver init, since bridge driver needs a drm_device pointer to finish drm initializations. The encoder driver passes the drm_device pointer to the bridge driver. Because of this dependency, third party drivers like ptn3460 doesn't adhere to the driver model. In this patch, we reframe the bridge registration framework so that bridge initialization is split into 2 steps, and bridge registration happens independent of drm flow: --Step 1: gather all the bridge settings independent of drm and add the bridge onto a global list of bridges. --Step 2: when the encoder driver is probed, call drm_bridge_attach for the corresponding bridge so that the bridge receives drm_device pointer and continues with connector and other drm initializations. The old set of bridge helpers are removed, and a set of new helpers are added to accomplish the 2 step initialization. The bridge devices register themselves onto global list of bridges when they get probed by calling "drm_bridge_add". The parent encoder driver waits till the bridge is available in the lookup table(by calling "of_drm_find_bridge") and then continues with its initialization. The encoder driver should also call "drm_bridge_attach" to pass on the drm_device to the bridge object. drm_bridge_attach inturn calls "bridge->funcs->attach" so that bridge can continue with drm related initializations. Signed-off-by: Ajay Kumar <ajaykumar.rs@samsung.com> Acked-by: Inki Dae <inki.dae@samsung.com> Tested-by: Rahul Sharma <rahul.sharma@samsung.com> Tested-by: Javier Martinez Canillas <javier.martinez@collabora.co.uk> Tested-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk> Tested-by: Sjoerd Simons <sjoerd.simons@collabora.co.uk> Signed-off-by: Thierry Reding <treding@nvidia.com>
2015-01-20 09:38:44 -07:00
}
static const struct i2c_device_id ptn3460_i2c_table[] = {
{"ptn3460", 0},
{},
};
MODULE_DEVICE_TABLE(i2c, ptn3460_i2c_table);
static const struct of_device_id ptn3460_match[] = {
{ .compatible = "nxp,ptn3460" },
{},
};
MODULE_DEVICE_TABLE(of, ptn3460_match);
static struct i2c_driver ptn3460_driver = {
.id_table = ptn3460_i2c_table,
.probe = ptn3460_probe,
.remove = ptn3460_remove,
.driver = {
.name = "nxp,ptn3460",
.of_match_table = ptn3460_match,
},
};
module_i2c_driver(ptn3460_driver);
MODULE_AUTHOR("Sean Paul <seanpaul@chromium.org>");
MODULE_DESCRIPTION("NXP ptn3460 eDP-LVDS converter driver");
MODULE_LICENSE("GPL v2");