1
0
Fork 0
alistair23-linux/arch/x86/kvm/cpuid.c

857 lines
22 KiB
C
Raw Normal View History

/*
* Kernel-based Virtual Machine driver for Linux
* cpuid support routines
*
* derived from arch/x86/kvm/x86.c
*
* Copyright 2011 Red Hat, Inc. and/or its affiliates.
* Copyright IBM Corporation, 2008
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
*/
#include <linux/kvm_host.h>
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/uaccess.h>
The bulk of the changes here is for x86. And for once it's not for silicon that no one owns: these are really new features for everyone. * ARM: several features are in progress but missed the 4.2 deadline. So here is just a smattering of bug fixes, plus enabling the VFIO integration. * s390: Some fixes/refactorings/optimizations, plus support for 2GB pages. * x86: 1) host and guest support for marking kvmclock as a stable scheduler clock. 2) support for write combining. 3) support for system management mode, needed for secure boot in guests. 4) a bunch of cleanups required for 2+3. 5) support for virtualized performance counters on AMD; 6) legacy PCI device assignment is deprecated and defaults to "n" in Kconfig; VFIO replaces it. On top of this there are also bug fixes and eager FPU context loading for FPU-heavy guests. * Common code: Support for multiple address spaces; for now it is used only for x86 SMM but the s390 folks also have plans. There are some x86 conflicts, one with the rc8 pull request and the rest with Ingo's FPU rework. -----BEGIN PGP SIGNATURE----- Version: GnuPG v2.0.22 (GNU/Linux) iQEcBAABAgAGBQJViYzhAAoJEL/70l94x66Dda0H/1IepMbfEy+o849d5G71fNTs F8Y8qUP2GZuL7T53FyFUGSBw+AX7kimu9ia4gR/PmDK+QYsdosYeEjwlsolZfTBf sHuzNtPoJhi5o1o/ur4NGameo0WjGK8f1xyzr+U8z74QDQyQv/QYCdK/4isp4BJL ugHNHkuROX6Zng4i7jc9rfaSRg29I3GBxQUYpMkEnD3eMYMUBWGm6Rs8pHgGAMvL vqzntgW00WNxehTqcAkmD/Wv+txxhkvIadZnjgaxH49e9JeXeBKTIR5vtb7Hns3s SuapZUyw+c95DIipXq4EznxxaOrjbebOeFgLCJo8+XMXZum8RZf/ob24KroYad0= =YsAR -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull first batch of KVM updates from Paolo Bonzini: "The bulk of the changes here is for x86. And for once it's not for silicon that no one owns: these are really new features for everyone. Details: - ARM: several features are in progress but missed the 4.2 deadline. So here is just a smattering of bug fixes, plus enabling the VFIO integration. - s390: Some fixes/refactorings/optimizations, plus support for 2GB pages. - x86: * host and guest support for marking kvmclock as a stable scheduler clock. * support for write combining. * support for system management mode, needed for secure boot in guests. * a bunch of cleanups required for the above * support for virtualized performance counters on AMD * legacy PCI device assignment is deprecated and defaults to "n" in Kconfig; VFIO replaces it On top of this there are also bug fixes and eager FPU context loading for FPU-heavy guests. - Common code: Support for multiple address spaces; for now it is used only for x86 SMM but the s390 folks also have plans" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (124 commits) KVM: s390: clear floating interrupt bitmap and parameters KVM: x86/vPMU: Enable PMU handling for AMD PERFCTRn and EVNTSELn MSRs KVM: x86/vPMU: Implement AMD vPMU code for KVM KVM: x86/vPMU: Define kvm_pmu_ops to support vPMU function dispatch KVM: x86/vPMU: introduce kvm_pmu_msr_idx_to_pmc KVM: x86/vPMU: reorder PMU functions KVM: x86/vPMU: whitespace and stylistic adjustments in PMU code KVM: x86/vPMU: use the new macros to go between PMC, PMU and VCPU KVM: x86/vPMU: introduce pmu.h header KVM: x86/vPMU: rename a few PMU functions KVM: MTRR: do not map huge page for non-consistent range KVM: MTRR: simplify kvm_mtrr_get_guest_memory_type KVM: MTRR: introduce mtrr_for_each_mem_type KVM: MTRR: introduce fixed_mtrr_addr_* functions KVM: MTRR: sort variable MTRRs KVM: MTRR: introduce var_mtrr_range KVM: MTRR: introduce fixed_mtrr_segment table KVM: MTRR: improve kvm_mtrr_get_guest_memory_type KVM: MTRR: do not split 64 bits MSR content KVM: MTRR: clean up mtrr default type ...
2015-06-24 10:36:49 -06:00
#include <asm/fpu/internal.h> /* For use_eager_fpu. Ugh! */
#include <asm/user.h>
#include <asm/fpu/xstate.h>
#include "cpuid.h"
#include "lapic.h"
#include "mmu.h"
#include "trace.h"
#include "pmu.h"
static u32 xstate_required_size(u64 xstate_bv, bool compacted)
{
int feature_bit = 0;
u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
x86/fpu: Rename XSAVE macros There are two concepts that have some confusing naming: 1. Extended State Component numbers (currently called XFEATURE_BIT_*) 2. Extended State Component masks (currently called XSTATE_*) The numbers are (currently) from 0-9. State component 3 is the bounds registers for MPX, for instance. But when we want to enable "state component 3", we go set a bit in XCR0. The bit we set is 1<<3. We can check to see if a state component feature is enabled by looking at its bit. The current 'xfeature_bit's are at best xfeature bit _numbers_. Calling them bits is at best inconsistent with ending the enum list with 'XFEATURES_NR_MAX'. This patch renames the enum to be 'xfeature'. These also happen to be what the Intel documentation calls a "state component". We also want to differentiate these from the "XSTATE_*" macros. The "XSTATE_*" macros are a mask, and we rename them to match. These macros are reasonably widely used so this patch is a wee bit big, but this really is just a rename. The only non-mechanical part of this is the s/XSTATE_EXTEND_MASK/XFEATURE_MASK_EXTEND/ We need a better name for it, but that's another patch. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: dave@sr71.net Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20150902233126.38653250@viggo.jf.intel.com [ Ported to v4.3-rc1. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-02 17:31:26 -06:00
xstate_bv &= XFEATURE_MASK_EXTEND;
while (xstate_bv) {
if (xstate_bv & 0x1) {
u32 eax, ebx, ecx, edx, offset;
cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
offset = compacted ? ret : ebx;
ret = max(ret, offset + eax);
}
xstate_bv >>= 1;
feature_bit++;
}
return ret;
}
bool kvm_mpx_supported(void)
{
return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
&& kvm_x86_ops->mpx_supported());
}
EXPORT_SYMBOL_GPL(kvm_mpx_supported);
u64 kvm_supported_xcr0(void)
{
u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
if (!kvm_mpx_supported())
x86/fpu: Rename XSAVE macros There are two concepts that have some confusing naming: 1. Extended State Component numbers (currently called XFEATURE_BIT_*) 2. Extended State Component masks (currently called XSTATE_*) The numbers are (currently) from 0-9. State component 3 is the bounds registers for MPX, for instance. But when we want to enable "state component 3", we go set a bit in XCR0. The bit we set is 1<<3. We can check to see if a state component feature is enabled by looking at its bit. The current 'xfeature_bit's are at best xfeature bit _numbers_. Calling them bits is at best inconsistent with ending the enum list with 'XFEATURES_NR_MAX'. This patch renames the enum to be 'xfeature'. These also happen to be what the Intel documentation calls a "state component". We also want to differentiate these from the "XSTATE_*" macros. The "XSTATE_*" macros are a mask, and we rename them to match. These macros are reasonably widely used so this patch is a wee bit big, but this really is just a rename. The only non-mechanical part of this is the s/XSTATE_EXTEND_MASK/XFEATURE_MASK_EXTEND/ We need a better name for it, but that's another patch. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: dave@sr71.net Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20150902233126.38653250@viggo.jf.intel.com [ Ported to v4.3-rc1. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-02 17:31:26 -06:00
xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
return xcr0;
}
#define F(x) bit(X86_FEATURE_##x)
int kvm_update_cpuid(struct kvm_vcpu *vcpu)
{
struct kvm_cpuid_entry2 *best;
struct kvm_lapic *apic = vcpu->arch.apic;
best = kvm_find_cpuid_entry(vcpu, 1, 0);
if (!best)
return 0;
/* Update OSXSAVE bit */
if (cpu_has_xsave && best->function == 0x1) {
best->ecx &= ~F(OSXSAVE);
if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
best->ecx |= F(OSXSAVE);
}
if (apic) {
if (best->ecx & F(TSC_DEADLINE_TIMER))
apic->lapic_timer.timer_mode_mask = 3 << 17;
else
apic->lapic_timer.timer_mode_mask = 1 << 17;
}
best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
if (!best) {
vcpu->arch.guest_supported_xcr0 = 0;
vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
} else {
vcpu->arch.guest_supported_xcr0 =
(best->eax | ((u64)best->edx << 32)) &
kvm_supported_xcr0();
vcpu->arch.guest_xstate_size = best->ebx =
xstate_required_size(vcpu->arch.xcr0, false);
}
best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
if (use_eager_fpu())
kvm_x86_ops->fpu_activate(vcpu);
/*
* The existing code assumes virtual address is 48-bit in the canonical
* address checks; exit if it is ever changed.
*/
best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
if (best && ((best->eax & 0xff00) >> 8) != 48 &&
((best->eax & 0xff00) >> 8) != 0)
return -EINVAL;
/* Update physical-address width */
vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
kvm_pmu_refresh(vcpu);
return 0;
}
static int is_efer_nx(void)
{
unsigned long long efer = 0;
rdmsrl_safe(MSR_EFER, &efer);
return efer & EFER_NX;
}
static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
{
int i;
struct kvm_cpuid_entry2 *e, *entry;
entry = NULL;
for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
e = &vcpu->arch.cpuid_entries[i];
if (e->function == 0x80000001) {
entry = e;
break;
}
}
if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
entry->edx &= ~F(NX);
printk(KERN_INFO "kvm: guest NX capability removed\n");
}
}
int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
{
struct kvm_cpuid_entry2 *best;
best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
if (!best || best->eax < 0x80000008)
goto not_found;
best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
if (best)
return best->eax & 0xff;
not_found:
return 36;
}
EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
/* when an old userspace process fills a new kernel module */
int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
struct kvm_cpuid *cpuid,
struct kvm_cpuid_entry __user *entries)
{
int r, i;
struct kvm_cpuid_entry *cpuid_entries;
r = -E2BIG;
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
goto out;
r = -ENOMEM;
cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
if (!cpuid_entries)
goto out;
r = -EFAULT;
if (copy_from_user(cpuid_entries, entries,
cpuid->nent * sizeof(struct kvm_cpuid_entry)))
goto out_free;
for (i = 0; i < cpuid->nent; i++) {
vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
vcpu->arch.cpuid_entries[i].index = 0;
vcpu->arch.cpuid_entries[i].flags = 0;
vcpu->arch.cpuid_entries[i].padding[0] = 0;
vcpu->arch.cpuid_entries[i].padding[1] = 0;
vcpu->arch.cpuid_entries[i].padding[2] = 0;
}
vcpu->arch.cpuid_nent = cpuid->nent;
cpuid_fix_nx_cap(vcpu);
kvm_apic_set_version(vcpu);
kvm_x86_ops->cpuid_update(vcpu);
r = kvm_update_cpuid(vcpu);
out_free:
vfree(cpuid_entries);
out:
return r;
}
int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
struct kvm_cpuid2 *cpuid,
struct kvm_cpuid_entry2 __user *entries)
{
int r;
r = -E2BIG;
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
goto out;
r = -EFAULT;
if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
goto out;
vcpu->arch.cpuid_nent = cpuid->nent;
kvm_apic_set_version(vcpu);
kvm_x86_ops->cpuid_update(vcpu);
r = kvm_update_cpuid(vcpu);
out:
return r;
}
int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
struct kvm_cpuid2 *cpuid,
struct kvm_cpuid_entry2 __user *entries)
{
int r;
r = -E2BIG;
if (cpuid->nent < vcpu->arch.cpuid_nent)
goto out;
r = -EFAULT;
if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
goto out;
return 0;
out:
cpuid->nent = vcpu->arch.cpuid_nent;
return r;
}
static void cpuid_mask(u32 *word, int wordnum)
{
*word &= boot_cpu_data.x86_capability[wordnum];
}
static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
u32 index)
{
entry->function = function;
entry->index = index;
cpuid_count(entry->function, entry->index,
&entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
entry->flags = 0;
}
static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
u32 func, u32 index, int *nent, int maxnent)
{
switch (func) {
case 0:
entry->eax = 1; /* only one leaf currently */
++*nent;
break;
case 1:
entry->ecx = F(MOVBE);
++*nent;
break;
default:
break;
}
entry->function = func;
entry->index = index;
return 0;
}
static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
u32 index, int *nent, int maxnent)
{
int r;
unsigned f_nx = is_efer_nx() ? F(NX) : 0;
#ifdef CONFIG_X86_64
unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
? F(GBPAGES) : 0;
unsigned f_lm = F(LM);
#else
unsigned f_gbpages = 0;
unsigned f_lm = 0;
#endif
unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
/* cpuid 1.edx */
const u32 kvm_supported_word0_x86_features =
F(FPU) | F(VME) | F(DE) | F(PSE) |
F(TSC) | F(MSR) | F(PAE) | F(MCE) |
F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
0 /* Reserved, DS, ACPI */ | F(MMX) |
F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
0 /* HTT, TM, Reserved, PBE */;
/* cpuid 0x80000001.edx */
const u32 kvm_supported_word1_x86_features =
F(FPU) | F(VME) | F(DE) | F(PSE) |
F(TSC) | F(MSR) | F(PAE) | F(MCE) |
F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
F(PAT) | F(PSE36) | 0 /* Reserved */ |
f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
/* cpuid 1.ecx */
const u32 kvm_supported_word4_x86_features =
/* NOTE: MONITOR (and MWAIT) are emulated as NOP,
* but *not* advertised to guests via CPUID ! */
F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
0 /* DS-CPL, VMX, SMX, EST */ |
0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
F(F16C) | F(RDRAND);
/* cpuid 0x80000001.ecx */
const u32 kvm_supported_word6_x86_features =
F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
/* cpuid 0xC0000001.edx */
const u32 kvm_supported_word5_x86_features =
F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
F(PMM) | F(PMM_EN);
/* cpuid 7.0.ebx */
const u32 kvm_supported_word9_x86_features =
F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
F(ADX) | F(SMAP) | F(AVX512F) | F(AVX512PF) | F(AVX512ER) |
F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(PCOMMIT);
/* cpuid 0xD.1.eax */
const u32 kvm_supported_word10_x86_features =
F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
/* all calls to cpuid_count() should be made on the same cpu */
get_cpu();
r = -E2BIG;
if (*nent >= maxnent)
goto out;
do_cpuid_1_ent(entry, function, index);
++*nent;
switch (function) {
case 0:
entry->eax = min(entry->eax, (u32)0xd);
break;
case 1:
entry->edx &= kvm_supported_word0_x86_features;
cpuid_mask(&entry->edx, 0);
entry->ecx &= kvm_supported_word4_x86_features;
cpuid_mask(&entry->ecx, 4);
/* we support x2apic emulation even if host does not support
* it since we emulate x2apic in software */
entry->ecx |= F(X2APIC);
break;
/* function 2 entries are STATEFUL. That is, repeated cpuid commands
* may return different values. This forces us to get_cpu() before
* issuing the first command, and also to emulate this annoying behavior
* in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
case 2: {
int t, times = entry->eax & 0xff;
entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
for (t = 1; t < times; ++t) {
if (*nent >= maxnent)
goto out;
do_cpuid_1_ent(&entry[t], function, 0);
entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
++*nent;
}
break;
}
/* function 4 has additional index. */
case 4: {
int i, cache_type;
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
/* read more entries until cache_type is zero */
for (i = 1; ; ++i) {
if (*nent >= maxnent)
goto out;
cache_type = entry[i - 1].eax & 0x1f;
if (!cache_type)
break;
do_cpuid_1_ent(&entry[i], function, i);
entry[i].flags |=
KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
++*nent;
}
break;
}
case 6: /* Thermal management */
entry->eax = 0x4; /* allow ARAT */
entry->ebx = 0;
entry->ecx = 0;
entry->edx = 0;
break;
case 7: {
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
/* Mask ebx against host capability word 9 */
if (index == 0) {
entry->ebx &= kvm_supported_word9_x86_features;
cpuid_mask(&entry->ebx, 9);
KVM: x86: Emulate IA32_TSC_ADJUST MSR CPUID.7.0.EBX[1]=1 indicates IA32_TSC_ADJUST MSR 0x3b is supported Basic design is to emulate the MSR by allowing reads and writes to a guest vcpu specific location to store the value of the emulated MSR while adding the value to the vmcs tsc_offset. In this way the IA32_TSC_ADJUST value will be included in all reads to the TSC MSR whether through rdmsr or rdtsc. This is of course as long as the "use TSC counter offsetting" VM-execution control is enabled as well as the IA32_TSC_ADJUST control. However, because hardware will only return the TSC + IA32_TSC_ADJUST + vmsc tsc_offset for a guest process when it does and rdtsc (with the correct settings) the value of our virtualized IA32_TSC_ADJUST must be stored in one of these three locations. The argument against storing it in the actual MSR is performance. This is likely to be seldom used while the save/restore is required on every transition. IA32_TSC_ADJUST was created as a way to solve some issues with writing TSC itself so that is not an option either. The remaining option, defined above as our solution has the problem of returning incorrect vmcs tsc_offset values (unless we intercept and fix, not done here) as mentioned above. However, more problematic is that storing the data in vmcs tsc_offset will have a different semantic effect on the system than does using the actual MSR. This is illustrated in the following example: The hypervisor set the IA32_TSC_ADJUST, then the guest sets it and a guest process performs a rdtsc. In this case the guest process will get TSC + IA32_TSC_ADJUST_hyperviser + vmsc tsc_offset including IA32_TSC_ADJUST_guest. While the total system semantics changed the semantics as seen by the guest do not and hence this will not cause a problem. Signed-off-by: Will Auld <will.auld@intel.com> Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2012-11-29 13:42:50 -07:00
// TSC_ADJUST is emulated
entry->ebx |= F(TSC_ADJUST);
} else
entry->ebx = 0;
entry->eax = 0;
entry->ecx = 0;
entry->edx = 0;
break;
}
case 9:
break;
case 0xa: { /* Architectural Performance Monitoring */
struct x86_pmu_capability cap;
union cpuid10_eax eax;
union cpuid10_edx edx;
perf_get_x86_pmu_capability(&cap);
/*
* Only support guest architectural pmu on a host
* with architectural pmu.
*/
if (!cap.version)
memset(&cap, 0, sizeof(cap));
eax.split.version_id = min(cap.version, 2);
eax.split.num_counters = cap.num_counters_gp;
eax.split.bit_width = cap.bit_width_gp;
eax.split.mask_length = cap.events_mask_len;
edx.split.num_counters_fixed = cap.num_counters_fixed;
edx.split.bit_width_fixed = cap.bit_width_fixed;
edx.split.reserved = 0;
entry->eax = eax.full;
entry->ebx = cap.events_mask;
entry->ecx = 0;
entry->edx = edx.full;
break;
}
/* function 0xb has additional index. */
case 0xb: {
int i, level_type;
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
/* read more entries until level_type is zero */
for (i = 1; ; ++i) {
if (*nent >= maxnent)
goto out;
level_type = entry[i - 1].ecx & 0xff00;
if (!level_type)
break;
do_cpuid_1_ent(&entry[i], function, i);
entry[i].flags |=
KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
++*nent;
}
break;
}
case 0xd: {
int idx, i;
u64 supported = kvm_supported_xcr0();
entry->eax &= supported;
entry->ebx = xstate_required_size(supported, false);
entry->ecx = entry->ebx;
entry->edx &= supported >> 32;
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
if (!supported)
break;
for (idx = 1, i = 1; idx < 64; ++idx) {
u64 mask = ((u64)1 << idx);
if (*nent >= maxnent)
goto out;
do_cpuid_1_ent(&entry[i], function, idx);
if (idx == 1) {
entry[i].eax &= kvm_supported_word10_x86_features;
entry[i].ebx = 0;
if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
entry[i].ebx =
xstate_required_size(supported,
true);
} else {
if (entry[i].eax == 0 || !(supported & mask))
continue;
if (WARN_ON_ONCE(entry[i].ecx & 1))
continue;
}
entry[i].ecx = 0;
entry[i].edx = 0;
entry[i].flags |=
KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
++*nent;
++i;
}
break;
}
case KVM_CPUID_SIGNATURE: {
static const char signature[12] = "KVMKVMKVM\0\0";
const u32 *sigptr = (const u32 *)signature;
entry->eax = KVM_CPUID_FEATURES;
entry->ebx = sigptr[0];
entry->ecx = sigptr[1];
entry->edx = sigptr[2];
break;
}
case KVM_CPUID_FEATURES:
entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
(1 << KVM_FEATURE_NOP_IO_DELAY) |
(1 << KVM_FEATURE_CLOCKSOURCE2) |
(1 << KVM_FEATURE_ASYNC_PF) |
(1 << KVM_FEATURE_PV_EOI) |
(1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
(1 << KVM_FEATURE_PV_UNHALT);
if (sched_info_on())
entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
entry->ebx = 0;
entry->ecx = 0;
entry->edx = 0;
break;
case 0x80000000:
entry->eax = min(entry->eax, 0x8000001a);
break;
case 0x80000001:
entry->edx &= kvm_supported_word1_x86_features;
cpuid_mask(&entry->edx, 1);
entry->ecx &= kvm_supported_word6_x86_features;
cpuid_mask(&entry->ecx, 6);
break;
case 0x80000007: /* Advanced power management */
/* invariant TSC is CPUID.80000007H:EDX[8] */
entry->edx &= (1 << 8);
/* mask against host */
entry->edx &= boot_cpu_data.x86_power;
entry->eax = entry->ebx = entry->ecx = 0;
break;
case 0x80000008: {
unsigned g_phys_as = (entry->eax >> 16) & 0xff;
unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
unsigned phys_as = entry->eax & 0xff;
if (!g_phys_as)
g_phys_as = phys_as;
entry->eax = g_phys_as | (virt_as << 8);
entry->ebx = entry->edx = 0;
break;
}
case 0x80000019:
entry->ecx = entry->edx = 0;
break;
case 0x8000001a:
break;
case 0x8000001d:
break;
/*Add support for Centaur's CPUID instruction*/
case 0xC0000000:
/*Just support up to 0xC0000004 now*/
entry->eax = min(entry->eax, 0xC0000004);
break;
case 0xC0000001:
entry->edx &= kvm_supported_word5_x86_features;
cpuid_mask(&entry->edx, 5);
break;
case 3: /* Processor serial number */
case 5: /* MONITOR/MWAIT */
case 0xC0000002:
case 0xC0000003:
case 0xC0000004:
default:
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
break;
}
kvm_x86_ops->set_supported_cpuid(function, entry);
r = 0;
out:
put_cpu();
return r;
}
static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
u32 idx, int *nent, int maxnent, unsigned int type)
{
if (type == KVM_GET_EMULATED_CPUID)
return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
return __do_cpuid_ent(entry, func, idx, nent, maxnent);
}
#undef F
struct kvm_cpuid_param {
u32 func;
u32 idx;
bool has_leaf_count;
bool (*qualifier)(const struct kvm_cpuid_param *param);
};
static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
{
return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
}
static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
__u32 num_entries, unsigned int ioctl_type)
{
int i;
__u32 pad[3];
if (ioctl_type != KVM_GET_EMULATED_CPUID)
return false;
/*
* We want to make sure that ->padding is being passed clean from
* userspace in case we want to use it for something in the future.
*
* Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
* have to give ourselves satisfied only with the emulated side. /me
* sheds a tear.
*/
for (i = 0; i < num_entries; i++) {
if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
return true;
if (pad[0] || pad[1] || pad[2])
return true;
}
return false;
}
int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
struct kvm_cpuid_entry2 __user *entries,
unsigned int type)
{
struct kvm_cpuid_entry2 *cpuid_entries;
int limit, nent = 0, r = -E2BIG, i;
u32 func;
static const struct kvm_cpuid_param param[] = {
{ .func = 0, .has_leaf_count = true },
{ .func = 0x80000000, .has_leaf_count = true },
{ .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
{ .func = KVM_CPUID_SIGNATURE },
{ .func = KVM_CPUID_FEATURES },
};
if (cpuid->nent < 1)
goto out;
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
cpuid->nent = KVM_MAX_CPUID_ENTRIES;
if (sanity_check_entries(entries, cpuid->nent, type))
return -EINVAL;
r = -ENOMEM;
cpuid_entries = vzalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
if (!cpuid_entries)
goto out;
r = 0;
for (i = 0; i < ARRAY_SIZE(param); i++) {
const struct kvm_cpuid_param *ent = &param[i];
if (ent->qualifier && !ent->qualifier(ent))
continue;
r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
&nent, cpuid->nent, type);
if (r)
goto out_free;
if (!ent->has_leaf_count)
continue;
limit = cpuid_entries[nent - 1].eax;
for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
&nent, cpuid->nent, type);
if (r)
goto out_free;
}
r = -EFAULT;
if (copy_to_user(entries, cpuid_entries,
nent * sizeof(struct kvm_cpuid_entry2)))
goto out_free;
cpuid->nent = nent;
r = 0;
out_free:
vfree(cpuid_entries);
out:
return r;
}
static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
{
struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
int j, nent = vcpu->arch.cpuid_nent;
e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
/* when no next entry is found, the current entry[i] is reselected */
for (j = i + 1; ; j = (j + 1) % nent) {
struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
if (ej->function == e->function) {
ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
return j;
}
}
return 0; /* silence gcc, even though control never reaches here */
}
/* find an entry with matching function, matching index (if needed), and that
* should be read next (if it's stateful) */
static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
u32 function, u32 index)
{
if (e->function != function)
return 0;
if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
return 0;
if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
!(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
return 0;
return 1;
}
struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
u32 function, u32 index)
{
int i;
struct kvm_cpuid_entry2 *best = NULL;
for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
struct kvm_cpuid_entry2 *e;
e = &vcpu->arch.cpuid_entries[i];
if (is_matching_cpuid_entry(e, function, index)) {
if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
move_to_next_stateful_cpuid_entry(vcpu, i);
best = e;
break;
}
}
return best;
}
EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
/*
* If no match is found, check whether we exceed the vCPU's limit
* and return the content of the highest valid _standard_ leaf instead.
* This is to satisfy the CPUID specification.
*/
static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
u32 function, u32 index)
{
struct kvm_cpuid_entry2 *maxlevel;
maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
if (!maxlevel || maxlevel->eax >= function)
return NULL;
if (function & 0x80000000) {
maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
if (!maxlevel)
return NULL;
}
return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
}
void kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
{
u32 function = *eax, index = *ecx;
struct kvm_cpuid_entry2 *best;
best = kvm_find_cpuid_entry(vcpu, function, index);
if (!best)
best = check_cpuid_limit(vcpu, function, index);
/*
* Perfmon not yet supported for L2 guest.
*/
if (is_guest_mode(vcpu) && function == 0xa)
best = NULL;
if (best) {
*eax = best->eax;
*ebx = best->ebx;
*ecx = best->ecx;
*edx = best->edx;
} else
*eax = *ebx = *ecx = *edx = 0;
trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx);
}
EXPORT_SYMBOL_GPL(kvm_cpuid);
void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
{
u32 function, eax, ebx, ecx, edx;
function = eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx);
kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
kvm_x86_ops->skip_emulated_instruction(vcpu);
}
EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);