1
0
Fork 0
alistair23-linux/arch/arm/mach-omap2/prminst44xx.h

38 lines
1.2 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0-only */
OMAP4: PRCM: add OMAP4-specific accessor/mutator functions In some ways, the OMAP4 PRCM register layout is quite different than the OMAP2/3 PRCM register layout. For example, on OMAP2/3, from a register layout point of view, all CM instances were located in the CM subsystem, and all PRM instances were located in the PRM subsystem. OMAP4 changes this. Now, for example, some CM instances, such as WKUP_CM and EMU_CM, are located in the system PRM subsystem. And a "local PRCM" exists for the MPU - this PRCM combines registers that would normally appear in both CM and PRM instances, but uses its own register layout which matches neither the OMAP2/3 PRCM layout nor the OMAP4 PRCM layout. To try to deal with this, introduce some new functions, omap4_cminst* and omap4_prminst*. The former is to be used when writing to a CM instance register (no matter what subsystem or hardware module it exists in), and the latter, similarly, with PRM instance registers. To determine which "PRCM partition" to write to, the functions take a PRCM instance ID argument. Subsequent patches add these partition IDs to the OMAP4 powerdomain and clockdomain definitions. As far as I can see, there's really no good way to handle these types of register access inconsistencies. This patch seemed like the least bad approach. Moving forward, the long-term goal is to remove all direct PRCM register access from the PM code. PRCM register access should go through layers such as the powerdomain and clockdomain code that can hide the details of how to interact with the specific hardware variant. While here, rename cm4xxx.c to cm44xx.c to match the naming convention of the other OMAP4 PRCM files. Thanks to Santosh Shilimkar <santosh.shilimkar@ti.com>, Rajendra Nayak <rnayak@ti.com>, and Benoît Cousson <b-cousson@ti.com> for some comments. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoît Cousson <b-cousson@ti.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com>
2010-12-21 21:05:14 -07:00
/*
* OMAP4 Power/Reset Management (PRM) function prototypes
*
* Copyright (C) 2010 Nokia Corporation
* Copyright (C) 2011 Texas Instruments, Inc.
OMAP4: PRCM: add OMAP4-specific accessor/mutator functions In some ways, the OMAP4 PRCM register layout is quite different than the OMAP2/3 PRCM register layout. For example, on OMAP2/3, from a register layout point of view, all CM instances were located in the CM subsystem, and all PRM instances were located in the PRM subsystem. OMAP4 changes this. Now, for example, some CM instances, such as WKUP_CM and EMU_CM, are located in the system PRM subsystem. And a "local PRCM" exists for the MPU - this PRCM combines registers that would normally appear in both CM and PRM instances, but uses its own register layout which matches neither the OMAP2/3 PRCM layout nor the OMAP4 PRCM layout. To try to deal with this, introduce some new functions, omap4_cminst* and omap4_prminst*. The former is to be used when writing to a CM instance register (no matter what subsystem or hardware module it exists in), and the latter, similarly, with PRM instance registers. To determine which "PRCM partition" to write to, the functions take a PRCM instance ID argument. Subsequent patches add these partition IDs to the OMAP4 powerdomain and clockdomain definitions. As far as I can see, there's really no good way to handle these types of register access inconsistencies. This patch seemed like the least bad approach. Moving forward, the long-term goal is to remove all direct PRCM register access from the PM code. PRCM register access should go through layers such as the powerdomain and clockdomain code that can hide the details of how to interact with the specific hardware variant. While here, rename cm4xxx.c to cm44xx.c to match the naming convention of the other OMAP4 PRCM files. Thanks to Santosh Shilimkar <santosh.shilimkar@ti.com>, Rajendra Nayak <rnayak@ti.com>, and Benoît Cousson <b-cousson@ti.com> for some comments. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoît Cousson <b-cousson@ti.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com>
2010-12-21 21:05:14 -07:00
* Paul Walmsley
*/
#ifndef __ARCH_ASM_MACH_OMAP2_PRMINST44XX_H
#define __ARCH_ASM_MACH_OMAP2_PRMINST44XX_H
#define PRM_INSTANCE_UNKNOWN -1
extern s32 omap4_prmst_get_prm_dev_inst(void);
void omap4_prminst_set_prm_dev_inst(s32 dev_inst);
OMAP4: PRCM: add OMAP4-specific accessor/mutator functions In some ways, the OMAP4 PRCM register layout is quite different than the OMAP2/3 PRCM register layout. For example, on OMAP2/3, from a register layout point of view, all CM instances were located in the CM subsystem, and all PRM instances were located in the PRM subsystem. OMAP4 changes this. Now, for example, some CM instances, such as WKUP_CM and EMU_CM, are located in the system PRM subsystem. And a "local PRCM" exists for the MPU - this PRCM combines registers that would normally appear in both CM and PRM instances, but uses its own register layout which matches neither the OMAP2/3 PRCM layout nor the OMAP4 PRCM layout. To try to deal with this, introduce some new functions, omap4_cminst* and omap4_prminst*. The former is to be used when writing to a CM instance register (no matter what subsystem or hardware module it exists in), and the latter, similarly, with PRM instance registers. To determine which "PRCM partition" to write to, the functions take a PRCM instance ID argument. Subsequent patches add these partition IDs to the OMAP4 powerdomain and clockdomain definitions. As far as I can see, there's really no good way to handle these types of register access inconsistencies. This patch seemed like the least bad approach. Moving forward, the long-term goal is to remove all direct PRCM register access from the PM code. PRCM register access should go through layers such as the powerdomain and clockdomain code that can hide the details of how to interact with the specific hardware variant. While here, rename cm4xxx.c to cm44xx.c to match the naming convention of the other OMAP4 PRCM files. Thanks to Santosh Shilimkar <santosh.shilimkar@ti.com>, Rajendra Nayak <rnayak@ti.com>, and Benoît Cousson <b-cousson@ti.com> for some comments. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoît Cousson <b-cousson@ti.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com>
2010-12-21 21:05:14 -07:00
/*
* In an ideal world, we would not export these low-level functions,
* but this will probably take some time to fix properly
*/
extern u32 omap4_prminst_read_inst_reg(u8 part, s16 inst, u16 idx);
extern void omap4_prminst_write_inst_reg(u32 val, u8 part, s16 inst, u16 idx);
extern u32 omap4_prminst_rmw_inst_reg_bits(u32 mask, u32 bits, u8 part,
s16 inst, u16 idx);
OMAP4: PRCM: add OMAP4-specific accessor/mutator functions In some ways, the OMAP4 PRCM register layout is quite different than the OMAP2/3 PRCM register layout. For example, on OMAP2/3, from a register layout point of view, all CM instances were located in the CM subsystem, and all PRM instances were located in the PRM subsystem. OMAP4 changes this. Now, for example, some CM instances, such as WKUP_CM and EMU_CM, are located in the system PRM subsystem. And a "local PRCM" exists for the MPU - this PRCM combines registers that would normally appear in both CM and PRM instances, but uses its own register layout which matches neither the OMAP2/3 PRCM layout nor the OMAP4 PRCM layout. To try to deal with this, introduce some new functions, omap4_cminst* and omap4_prminst*. The former is to be used when writing to a CM instance register (no matter what subsystem or hardware module it exists in), and the latter, similarly, with PRM instance registers. To determine which "PRCM partition" to write to, the functions take a PRCM instance ID argument. Subsequent patches add these partition IDs to the OMAP4 powerdomain and clockdomain definitions. As far as I can see, there's really no good way to handle these types of register access inconsistencies. This patch seemed like the least bad approach. Moving forward, the long-term goal is to remove all direct PRCM register access from the PM code. PRCM register access should go through layers such as the powerdomain and clockdomain code that can hide the details of how to interact with the specific hardware variant. While here, rename cm4xxx.c to cm44xx.c to match the naming convention of the other OMAP4 PRCM files. Thanks to Santosh Shilimkar <santosh.shilimkar@ti.com>, Rajendra Nayak <rnayak@ti.com>, and Benoît Cousson <b-cousson@ti.com> for some comments. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoît Cousson <b-cousson@ti.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com>
2010-12-21 21:05:14 -07:00
extern void omap4_prminst_global_warm_sw_reset(void);
OMAP4: PRCM: add OMAP4-specific accessor/mutator functions In some ways, the OMAP4 PRCM register layout is quite different than the OMAP2/3 PRCM register layout. For example, on OMAP2/3, from a register layout point of view, all CM instances were located in the CM subsystem, and all PRM instances were located in the PRM subsystem. OMAP4 changes this. Now, for example, some CM instances, such as WKUP_CM and EMU_CM, are located in the system PRM subsystem. And a "local PRCM" exists for the MPU - this PRCM combines registers that would normally appear in both CM and PRM instances, but uses its own register layout which matches neither the OMAP2/3 PRCM layout nor the OMAP4 PRCM layout. To try to deal with this, introduce some new functions, omap4_cminst* and omap4_prminst*. The former is to be used when writing to a CM instance register (no matter what subsystem or hardware module it exists in), and the latter, similarly, with PRM instance registers. To determine which "PRCM partition" to write to, the functions take a PRCM instance ID argument. Subsequent patches add these partition IDs to the OMAP4 powerdomain and clockdomain definitions. As far as I can see, there's really no good way to handle these types of register access inconsistencies. This patch seemed like the least bad approach. Moving forward, the long-term goal is to remove all direct PRCM register access from the PM code. PRCM register access should go through layers such as the powerdomain and clockdomain code that can hide the details of how to interact with the specific hardware variant. While here, rename cm4xxx.c to cm44xx.c to match the naming convention of the other OMAP4 PRCM files. Thanks to Santosh Shilimkar <santosh.shilimkar@ti.com>, Rajendra Nayak <rnayak@ti.com>, and Benoît Cousson <b-cousson@ti.com> for some comments. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoît Cousson <b-cousson@ti.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com>
2010-12-21 21:05:14 -07:00
extern int omap4_prminst_is_hardreset_asserted(u8 shift, u8 part, s16 inst,
u16 rstctrl_offs);
extern int omap4_prminst_assert_hardreset(u8 shift, u8 part, s16 inst,
u16 rstctrl_offs);
int omap4_prminst_deassert_hardreset(u8 shift, u8 st_shift, u8 part,
s16 inst, u16 rstctrl_offs,
u16 rstst_offs);
extern void omap_prm_base_init(void);
OMAP4: PRCM: add OMAP4-specific accessor/mutator functions In some ways, the OMAP4 PRCM register layout is quite different than the OMAP2/3 PRCM register layout. For example, on OMAP2/3, from a register layout point of view, all CM instances were located in the CM subsystem, and all PRM instances were located in the PRM subsystem. OMAP4 changes this. Now, for example, some CM instances, such as WKUP_CM and EMU_CM, are located in the system PRM subsystem. And a "local PRCM" exists for the MPU - this PRCM combines registers that would normally appear in both CM and PRM instances, but uses its own register layout which matches neither the OMAP2/3 PRCM layout nor the OMAP4 PRCM layout. To try to deal with this, introduce some new functions, omap4_cminst* and omap4_prminst*. The former is to be used when writing to a CM instance register (no matter what subsystem or hardware module it exists in), and the latter, similarly, with PRM instance registers. To determine which "PRCM partition" to write to, the functions take a PRCM instance ID argument. Subsequent patches add these partition IDs to the OMAP4 powerdomain and clockdomain definitions. As far as I can see, there's really no good way to handle these types of register access inconsistencies. This patch seemed like the least bad approach. Moving forward, the long-term goal is to remove all direct PRCM register access from the PM code. PRCM register access should go through layers such as the powerdomain and clockdomain code that can hide the details of how to interact with the specific hardware variant. While here, rename cm4xxx.c to cm44xx.c to match the naming convention of the other OMAP4 PRCM files. Thanks to Santosh Shilimkar <santosh.shilimkar@ti.com>, Rajendra Nayak <rnayak@ti.com>, and Benoît Cousson <b-cousson@ti.com> for some comments. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Benoît Cousson <b-cousson@ti.com> Cc: Rajendra Nayak <rnayak@ti.com> Cc: Santosh Shilimkar <santosh.shilimkar@ti.com>
2010-12-21 21:05:14 -07:00
#endif