1
0
Fork 0
alistair23-linux/drivers/net/ethernet/broadcom/bnxt/bnxt_tc.c

1715 lines
48 KiB
C
Raw Normal View History

/* Broadcom NetXtreme-C/E network driver.
*
* Copyright (c) 2017 Broadcom Limited
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation.
*/
#include <linux/netdevice.h>
#include <linux/inetdevice.h>
#include <linux/if_vlan.h>
#include <net/flow_dissector.h>
#include <net/pkt_cls.h>
#include <net/tc_act/tc_gact.h>
#include <net/tc_act/tc_skbedit.h>
#include <net/tc_act/tc_mirred.h>
#include <net/tc_act/tc_vlan.h>
#include <net/tc_act/tc_tunnel_key.h>
#include "bnxt_hsi.h"
#include "bnxt.h"
#include "bnxt_sriov.h"
#include "bnxt_tc.h"
#include "bnxt_vfr.h"
#define BNXT_FID_INVALID 0xffff
#define VLAN_TCI(vid, prio) ((vid) | ((prio) << VLAN_PRIO_SHIFT))
#define is_vlan_pcp_wildcarded(vlan_tci_mask) \
((ntohs(vlan_tci_mask) & VLAN_PRIO_MASK) == 0x0000)
#define is_vlan_pcp_exactmatch(vlan_tci_mask) \
((ntohs(vlan_tci_mask) & VLAN_PRIO_MASK) == VLAN_PRIO_MASK)
#define is_vlan_pcp_zero(vlan_tci) \
((ntohs(vlan_tci) & VLAN_PRIO_MASK) == 0x0000)
#define is_vid_exactmatch(vlan_tci_mask) \
((ntohs(vlan_tci_mask) & VLAN_VID_MASK) == VLAN_VID_MASK)
/* Return the dst fid of the func for flow forwarding
* For PFs: src_fid is the fid of the PF
* For VF-reps: src_fid the fid of the VF
*/
static u16 bnxt_flow_get_dst_fid(struct bnxt *pf_bp, struct net_device *dev)
{
struct bnxt *bp;
/* check if dev belongs to the same switch */
if (!netdev_port_same_parent_id(pf_bp->dev, dev)) {
netdev_info(pf_bp->dev, "dev(ifindex=%d) not on same switch",
dev->ifindex);
return BNXT_FID_INVALID;
}
/* Is dev a VF-rep? */
if (bnxt_dev_is_vf_rep(dev))
return bnxt_vf_rep_get_fid(dev);
bp = netdev_priv(dev);
return bp->pf.fw_fid;
}
static int bnxt_tc_parse_redir(struct bnxt *bp,
struct bnxt_tc_actions *actions,
const struct flow_action_entry *act)
{
struct net_device *dev = act->dev;
if (!dev) {
netdev_info(bp->dev, "no dev in mirred action");
return -EINVAL;
}
actions->flags |= BNXT_TC_ACTION_FLAG_FWD;
actions->dst_dev = dev;
return 0;
}
static int bnxt_tc_parse_vlan(struct bnxt *bp,
struct bnxt_tc_actions *actions,
const struct flow_action_entry *act)
{
switch (act->id) {
case FLOW_ACTION_VLAN_POP:
actions->flags |= BNXT_TC_ACTION_FLAG_POP_VLAN;
break;
case FLOW_ACTION_VLAN_PUSH:
actions->flags |= BNXT_TC_ACTION_FLAG_PUSH_VLAN;
actions->push_vlan_tci = htons(act->vlan.vid);
actions->push_vlan_tpid = act->vlan.proto;
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static int bnxt_tc_parse_tunnel_set(struct bnxt *bp,
struct bnxt_tc_actions *actions,
const struct flow_action_entry *act)
{
const struct ip_tunnel_info *tun_info = act->tunnel;
const struct ip_tunnel_key *tun_key = &tun_info->key;
if (ip_tunnel_info_af(tun_info) != AF_INET) {
netdev_info(bp->dev, "only IPv4 tunnel-encap is supported");
return -EOPNOTSUPP;
}
actions->tun_encap_key = *tun_key;
actions->flags |= BNXT_TC_ACTION_FLAG_TUNNEL_ENCAP;
return 0;
}
static int bnxt_tc_parse_actions(struct bnxt *bp,
struct bnxt_tc_actions *actions,
struct flow_action *flow_action)
{
struct flow_action_entry *act;
int i, rc;
if (!flow_action_has_entries(flow_action)) {
netdev_info(bp->dev, "no actions");
return -EINVAL;
}
flow_action_for_each(i, act, flow_action) {
switch (act->id) {
case FLOW_ACTION_DROP:
actions->flags |= BNXT_TC_ACTION_FLAG_DROP;
return 0; /* don't bother with other actions */
case FLOW_ACTION_REDIRECT:
rc = bnxt_tc_parse_redir(bp, actions, act);
if (rc)
return rc;
break;
case FLOW_ACTION_VLAN_POP:
case FLOW_ACTION_VLAN_PUSH:
case FLOW_ACTION_VLAN_MANGLE:
rc = bnxt_tc_parse_vlan(bp, actions, act);
if (rc)
return rc;
break;
case FLOW_ACTION_TUNNEL_ENCAP:
rc = bnxt_tc_parse_tunnel_set(bp, actions, act);
if (rc)
return rc;
break;
case FLOW_ACTION_TUNNEL_DECAP:
actions->flags |= BNXT_TC_ACTION_FLAG_TUNNEL_DECAP;
break;
default:
break;
}
}
if (actions->flags & BNXT_TC_ACTION_FLAG_FWD) {
if (actions->flags & BNXT_TC_ACTION_FLAG_TUNNEL_ENCAP) {
/* dst_fid is PF's fid */
actions->dst_fid = bp->pf.fw_fid;
} else {
/* find the FID from dst_dev */
actions->dst_fid =
bnxt_flow_get_dst_fid(bp, actions->dst_dev);
if (actions->dst_fid == BNXT_FID_INVALID)
return -EINVAL;
}
}
return 0;
}
static int bnxt_tc_parse_flow(struct bnxt *bp,
struct flow_cls_offload *tc_flow_cmd,
struct bnxt_tc_flow *flow)
{
struct flow_rule *rule = flow_cls_offload_flow_rule(tc_flow_cmd);
struct flow_dissector *dissector = rule->match.dissector;
/* KEY_CONTROL and KEY_BASIC are needed for forming a meaningful key */
if ((dissector->used_keys & BIT(FLOW_DISSECTOR_KEY_CONTROL)) == 0 ||
(dissector->used_keys & BIT(FLOW_DISSECTOR_KEY_BASIC)) == 0) {
netdev_info(bp->dev, "cannot form TC key: used_keys = 0x%x",
dissector->used_keys);
return -EOPNOTSUPP;
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
struct flow_match_basic match;
flow_rule_match_basic(rule, &match);
flow->l2_key.ether_type = match.key->n_proto;
flow->l2_mask.ether_type = match.mask->n_proto;
if (match.key->n_proto == htons(ETH_P_IP) ||
match.key->n_proto == htons(ETH_P_IPV6)) {
flow->l4_key.ip_proto = match.key->ip_proto;
flow->l4_mask.ip_proto = match.mask->ip_proto;
}
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
struct flow_match_eth_addrs match;
flow_rule_match_eth_addrs(rule, &match);
flow->flags |= BNXT_TC_FLOW_FLAGS_ETH_ADDRS;
ether_addr_copy(flow->l2_key.dmac, match.key->dst);
ether_addr_copy(flow->l2_mask.dmac, match.mask->dst);
ether_addr_copy(flow->l2_key.smac, match.key->src);
ether_addr_copy(flow->l2_mask.smac, match.mask->src);
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
struct flow_match_vlan match;
flow_rule_match_vlan(rule, &match);
flow->l2_key.inner_vlan_tci =
cpu_to_be16(VLAN_TCI(match.key->vlan_id,
match.key->vlan_priority));
flow->l2_mask.inner_vlan_tci =
cpu_to_be16((VLAN_TCI(match.mask->vlan_id,
match.mask->vlan_priority)));
flow->l2_key.inner_vlan_tpid = htons(ETH_P_8021Q);
flow->l2_mask.inner_vlan_tpid = htons(0xffff);
flow->l2_key.num_vlans = 1;
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
struct flow_match_ipv4_addrs match;
flow_rule_match_ipv4_addrs(rule, &match);
flow->flags |= BNXT_TC_FLOW_FLAGS_IPV4_ADDRS;
flow->l3_key.ipv4.daddr.s_addr = match.key->dst;
flow->l3_mask.ipv4.daddr.s_addr = match.mask->dst;
flow->l3_key.ipv4.saddr.s_addr = match.key->src;
flow->l3_mask.ipv4.saddr.s_addr = match.mask->src;
} else if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
struct flow_match_ipv6_addrs match;
flow_rule_match_ipv6_addrs(rule, &match);
flow->flags |= BNXT_TC_FLOW_FLAGS_IPV6_ADDRS;
flow->l3_key.ipv6.daddr = match.key->dst;
flow->l3_mask.ipv6.daddr = match.mask->dst;
flow->l3_key.ipv6.saddr = match.key->src;
flow->l3_mask.ipv6.saddr = match.mask->src;
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
struct flow_match_ports match;
flow_rule_match_ports(rule, &match);
flow->flags |= BNXT_TC_FLOW_FLAGS_PORTS;
flow->l4_key.ports.dport = match.key->dst;
flow->l4_mask.ports.dport = match.mask->dst;
flow->l4_key.ports.sport = match.key->src;
flow->l4_mask.ports.sport = match.mask->src;
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ICMP)) {
struct flow_match_icmp match;
flow_rule_match_icmp(rule, &match);
flow->flags |= BNXT_TC_FLOW_FLAGS_ICMP;
flow->l4_key.icmp.type = match.key->type;
flow->l4_key.icmp.code = match.key->code;
flow->l4_mask.icmp.type = match.mask->type;
flow->l4_mask.icmp.code = match.mask->code;
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) {
struct flow_match_ipv4_addrs match;
flow_rule_match_enc_ipv4_addrs(rule, &match);
flow->flags |= BNXT_TC_FLOW_FLAGS_TUNL_IPV4_ADDRS;
flow->tun_key.u.ipv4.dst = match.key->dst;
flow->tun_mask.u.ipv4.dst = match.mask->dst;
flow->tun_key.u.ipv4.src = match.key->src;
flow->tun_mask.u.ipv4.src = match.mask->src;
} else if (flow_rule_match_key(rule,
FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) {
return -EOPNOTSUPP;
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
struct flow_match_enc_keyid match;
flow_rule_match_enc_keyid(rule, &match);
flow->flags |= BNXT_TC_FLOW_FLAGS_TUNL_ID;
flow->tun_key.tun_id = key32_to_tunnel_id(match.key->keyid);
flow->tun_mask.tun_id = key32_to_tunnel_id(match.mask->keyid);
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
struct flow_match_ports match;
flow_rule_match_enc_ports(rule, &match);
flow->flags |= BNXT_TC_FLOW_FLAGS_TUNL_PORTS;
flow->tun_key.tp_dst = match.key->dst;
flow->tun_mask.tp_dst = match.mask->dst;
flow->tun_key.tp_src = match.key->src;
flow->tun_mask.tp_src = match.mask->src;
}
return bnxt_tc_parse_actions(bp, &flow->actions, &rule->action);
}
static int bnxt_hwrm_cfa_flow_free(struct bnxt *bp,
struct bnxt_tc_flow_node *flow_node)
{
struct hwrm_cfa_flow_free_input req = { 0 };
int rc;
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_FLOW_FREE, -1, -1);
if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
req.ext_flow_handle = flow_node->ext_flow_handle;
else
req.flow_handle = flow_node->flow_handle;
rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
if (rc)
netdev_info(bp->dev, "%s: Error rc=%d", __func__, rc);
if (rc)
rc = -EIO;
return rc;
}
static int ipv6_mask_len(struct in6_addr *mask)
{
int mask_len = 0, i;
for (i = 0; i < 4; i++)
mask_len += inet_mask_len(mask->s6_addr32[i]);
return mask_len;
}
static bool is_wildcard(void *mask, int len)
{
const u8 *p = mask;
int i;
for (i = 0; i < len; i++) {
if (p[i] != 0)
return false;
}
return true;
}
bnxt_en: do not allow wildcard matches for L2 flows Before this patch the following commands would succeed as far as the user was concerned: $ tc qdisc add dev p1p1 ingress $ tc filter add dev p1p1 parent ffff: protocol all \ flower skip_sw action drop $ tc filter add dev p1p1 parent ffff: protocol ipv4 \ flower skip_sw src_mac 00:02:00:00:00:01/44 action drop The current flow offload infrastructure used does not support wildcard matching for ethernet headers, so do not allow the second or third commands to succeed. If a user wants to drop traffic on that interface the protocol and MAC addresses need to be specified explicitly: $ tc qdisc add dev p1p1 ingress $ tc filter add dev p1p1 parent ffff: protocol arp \ flower skip_sw action drop $ tc filter add dev p1p1 parent ffff: protocol ipv4 \ flower skip_sw action drop ... $ tc filter add dev p1p1 parent ffff: protocol ipv4 \ flower skip_sw src_mac 00:02:00:00:00:01 action drop $ tc filter add dev p1p1 parent ffff: protocol ipv4 \ flower skip_sw src_mac 00:02:00:00:00:02 action drop ... There are also checks for VLAN parameters in this patch as other callers may wildcard those parameters even if tc does not. Using different flow infrastructure could allow this to work in the future for L2 flows, but for now it does not. Fixes: 2ae7408fedfe ("bnxt_en: bnxt: add TC flower filter offload support") Signed-off-by: Andy Gospodarek <gospo@broadcom.com> Signed-off-by: Michael Chan <michael.chan@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-11 09:50:14 -06:00
static bool is_exactmatch(void *mask, int len)
{
const u8 *p = mask;
int i;
for (i = 0; i < len; i++)
if (p[i] != 0xff)
return false;
return true;
}
static bool is_vlan_tci_allowed(__be16 vlan_tci_mask,
__be16 vlan_tci)
{
/* VLAN priority must be either exactly zero or fully wildcarded and
* VLAN id must be exact match.
*/
if (is_vid_exactmatch(vlan_tci_mask) &&
((is_vlan_pcp_exactmatch(vlan_tci_mask) &&
is_vlan_pcp_zero(vlan_tci)) ||
is_vlan_pcp_wildcarded(vlan_tci_mask)))
return true;
return false;
}
bnxt_en: do not allow wildcard matches for L2 flows Before this patch the following commands would succeed as far as the user was concerned: $ tc qdisc add dev p1p1 ingress $ tc filter add dev p1p1 parent ffff: protocol all \ flower skip_sw action drop $ tc filter add dev p1p1 parent ffff: protocol ipv4 \ flower skip_sw src_mac 00:02:00:00:00:01/44 action drop The current flow offload infrastructure used does not support wildcard matching for ethernet headers, so do not allow the second or third commands to succeed. If a user wants to drop traffic on that interface the protocol and MAC addresses need to be specified explicitly: $ tc qdisc add dev p1p1 ingress $ tc filter add dev p1p1 parent ffff: protocol arp \ flower skip_sw action drop $ tc filter add dev p1p1 parent ffff: protocol ipv4 \ flower skip_sw action drop ... $ tc filter add dev p1p1 parent ffff: protocol ipv4 \ flower skip_sw src_mac 00:02:00:00:00:01 action drop $ tc filter add dev p1p1 parent ffff: protocol ipv4 \ flower skip_sw src_mac 00:02:00:00:00:02 action drop ... There are also checks for VLAN parameters in this patch as other callers may wildcard those parameters even if tc does not. Using different flow infrastructure could allow this to work in the future for L2 flows, but for now it does not. Fixes: 2ae7408fedfe ("bnxt_en: bnxt: add TC flower filter offload support") Signed-off-by: Andy Gospodarek <gospo@broadcom.com> Signed-off-by: Michael Chan <michael.chan@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-11 09:50:14 -06:00
static bool bits_set(void *key, int len)
{
const u8 *p = key;
int i;
for (i = 0; i < len; i++)
if (p[i] != 0)
return true;
return false;
}
static int bnxt_hwrm_cfa_flow_alloc(struct bnxt *bp, struct bnxt_tc_flow *flow,
__le16 ref_flow_handle,
__le32 tunnel_handle,
struct bnxt_tc_flow_node *flow_node)
{
struct bnxt_tc_actions *actions = &flow->actions;
struct bnxt_tc_l3_key *l3_mask = &flow->l3_mask;
struct bnxt_tc_l3_key *l3_key = &flow->l3_key;
struct hwrm_cfa_flow_alloc_input req = { 0 };
struct hwrm_cfa_flow_alloc_output *resp;
u16 flow_flags = 0, action_flags = 0;
int rc;
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_FLOW_ALLOC, -1, -1);
req.src_fid = cpu_to_le16(flow->src_fid);
req.ref_flow_handle = ref_flow_handle;
if (actions->flags & BNXT_TC_ACTION_FLAG_TUNNEL_DECAP ||
actions->flags & BNXT_TC_ACTION_FLAG_TUNNEL_ENCAP) {
req.tunnel_handle = tunnel_handle;
flow_flags |= CFA_FLOW_ALLOC_REQ_FLAGS_TUNNEL;
action_flags |= CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_TUNNEL;
}
req.ethertype = flow->l2_key.ether_type;
req.ip_proto = flow->l4_key.ip_proto;
if (flow->flags & BNXT_TC_FLOW_FLAGS_ETH_ADDRS) {
memcpy(req.dmac, flow->l2_key.dmac, ETH_ALEN);
memcpy(req.smac, flow->l2_key.smac, ETH_ALEN);
}
if (flow->l2_key.num_vlans > 0) {
flow_flags |= CFA_FLOW_ALLOC_REQ_FLAGS_NUM_VLAN_ONE;
/* FW expects the inner_vlan_tci value to be set
* in outer_vlan_tci when num_vlans is 1 (which is
* always the case in TC.)
*/
req.outer_vlan_tci = flow->l2_key.inner_vlan_tci;
}
/* If all IP and L4 fields are wildcarded then this is an L2 flow */
if (is_wildcard(l3_mask, sizeof(*l3_mask)) &&
is_wildcard(&flow->l4_mask, sizeof(flow->l4_mask))) {
flow_flags |= CFA_FLOW_ALLOC_REQ_FLAGS_FLOWTYPE_L2;
} else {
flow_flags |= flow->l2_key.ether_type == htons(ETH_P_IP) ?
CFA_FLOW_ALLOC_REQ_FLAGS_FLOWTYPE_IPV4 :
CFA_FLOW_ALLOC_REQ_FLAGS_FLOWTYPE_IPV6;
if (flow->flags & BNXT_TC_FLOW_FLAGS_IPV4_ADDRS) {
req.ip_dst[0] = l3_key->ipv4.daddr.s_addr;
req.ip_dst_mask_len =
inet_mask_len(l3_mask->ipv4.daddr.s_addr);
req.ip_src[0] = l3_key->ipv4.saddr.s_addr;
req.ip_src_mask_len =
inet_mask_len(l3_mask->ipv4.saddr.s_addr);
} else if (flow->flags & BNXT_TC_FLOW_FLAGS_IPV6_ADDRS) {
memcpy(req.ip_dst, l3_key->ipv6.daddr.s6_addr32,
sizeof(req.ip_dst));
req.ip_dst_mask_len =
ipv6_mask_len(&l3_mask->ipv6.daddr);
memcpy(req.ip_src, l3_key->ipv6.saddr.s6_addr32,
sizeof(req.ip_src));
req.ip_src_mask_len =
ipv6_mask_len(&l3_mask->ipv6.saddr);
}
}
if (flow->flags & BNXT_TC_FLOW_FLAGS_PORTS) {
req.l4_src_port = flow->l4_key.ports.sport;
req.l4_src_port_mask = flow->l4_mask.ports.sport;
req.l4_dst_port = flow->l4_key.ports.dport;
req.l4_dst_port_mask = flow->l4_mask.ports.dport;
} else if (flow->flags & BNXT_TC_FLOW_FLAGS_ICMP) {
/* l4 ports serve as type/code when ip_proto is ICMP */
req.l4_src_port = htons(flow->l4_key.icmp.type);
req.l4_src_port_mask = htons(flow->l4_mask.icmp.type);
req.l4_dst_port = htons(flow->l4_key.icmp.code);
req.l4_dst_port_mask = htons(flow->l4_mask.icmp.code);
}
req.flags = cpu_to_le16(flow_flags);
if (actions->flags & BNXT_TC_ACTION_FLAG_DROP) {
action_flags |= CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_DROP;
} else {
if (actions->flags & BNXT_TC_ACTION_FLAG_FWD) {
action_flags |= CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_FWD;
req.dst_fid = cpu_to_le16(actions->dst_fid);
}
if (actions->flags & BNXT_TC_ACTION_FLAG_PUSH_VLAN) {
action_flags |=
CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_L2_HEADER_REWRITE;
req.l2_rewrite_vlan_tpid = actions->push_vlan_tpid;
req.l2_rewrite_vlan_tci = actions->push_vlan_tci;
memcpy(&req.l2_rewrite_dmac, &req.dmac, ETH_ALEN);
memcpy(&req.l2_rewrite_smac, &req.smac, ETH_ALEN);
}
if (actions->flags & BNXT_TC_ACTION_FLAG_POP_VLAN) {
action_flags |=
CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_L2_HEADER_REWRITE;
/* Rewrite config with tpid = 0 implies vlan pop */
req.l2_rewrite_vlan_tpid = 0;
memcpy(&req.l2_rewrite_dmac, &req.dmac, ETH_ALEN);
memcpy(&req.l2_rewrite_smac, &req.smac, ETH_ALEN);
}
}
req.action_flags = cpu_to_le16(action_flags);
mutex_lock(&bp->hwrm_cmd_lock);
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
if (!rc) {
resp = bnxt_get_hwrm_resp_addr(bp, &req);
/* CFA_FLOW_ALLOC response interpretation:
* fw with fw with
* 16-bit 64-bit
* flow handle flow handle
* =========== ===========
* flow_handle flow handle flow context id
* ext_flow_handle INVALID flow handle
* flow_id INVALID flow counter id
*/
flow_node->flow_handle = resp->flow_handle;
if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) {
flow_node->ext_flow_handle = resp->ext_flow_handle;
flow_node->flow_id = resp->flow_id;
}
}
mutex_unlock(&bp->hwrm_cmd_lock);
if (rc == HWRM_ERR_CODE_RESOURCE_ALLOC_ERROR)
rc = -ENOSPC;
else if (rc)
rc = -EIO;
return rc;
}
static int hwrm_cfa_decap_filter_alloc(struct bnxt *bp,
struct bnxt_tc_flow *flow,
struct bnxt_tc_l2_key *l2_info,
__le32 ref_decap_handle,
__le32 *decap_filter_handle)
{
struct hwrm_cfa_decap_filter_alloc_input req = { 0 };
struct hwrm_cfa_decap_filter_alloc_output *resp;
struct ip_tunnel_key *tun_key = &flow->tun_key;
u32 enables = 0;
int rc;
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_DECAP_FILTER_ALLOC, -1, -1);
req.flags = cpu_to_le32(CFA_DECAP_FILTER_ALLOC_REQ_FLAGS_OVS_TUNNEL);
enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE |
CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL;
req.tunnel_type = CFA_DECAP_FILTER_ALLOC_REQ_TUNNEL_TYPE_VXLAN;
req.ip_protocol = CFA_DECAP_FILTER_ALLOC_REQ_IP_PROTOCOL_UDP;
if (flow->flags & BNXT_TC_FLOW_FLAGS_TUNL_ID) {
enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_TUNNEL_ID;
/* tunnel_id is wrongly defined in hsi defn. as __le32 */
req.tunnel_id = tunnel_id_to_key32(tun_key->tun_id);
}
if (flow->flags & BNXT_TC_FLOW_FLAGS_TUNL_ETH_ADDRS) {
enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_DST_MACADDR;
ether_addr_copy(req.dst_macaddr, l2_info->dmac);
}
if (l2_info->num_vlans) {
enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_T_IVLAN_VID;
req.t_ivlan_vid = l2_info->inner_vlan_tci;
}
enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE;
req.ethertype = htons(ETH_P_IP);
if (flow->flags & BNXT_TC_FLOW_FLAGS_TUNL_IPV4_ADDRS) {
enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |
CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |
CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE;
req.ip_addr_type = CFA_DECAP_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
req.dst_ipaddr[0] = tun_key->u.ipv4.dst;
req.src_ipaddr[0] = tun_key->u.ipv4.src;
}
if (flow->flags & BNXT_TC_FLOW_FLAGS_TUNL_PORTS) {
enables |= CFA_DECAP_FILTER_ALLOC_REQ_ENABLES_DST_PORT;
req.dst_port = tun_key->tp_dst;
}
/* Eventhough the decap_handle returned by hwrm_cfa_decap_filter_alloc
* is defined as __le32, l2_ctxt_ref_id is defined in HSI as __le16.
*/
req.l2_ctxt_ref_id = (__force __le16)ref_decap_handle;
req.enables = cpu_to_le32(enables);
mutex_lock(&bp->hwrm_cmd_lock);
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
if (!rc) {
resp = bnxt_get_hwrm_resp_addr(bp, &req);
*decap_filter_handle = resp->decap_filter_id;
} else {
netdev_info(bp->dev, "%s: Error rc=%d", __func__, rc);
}
mutex_unlock(&bp->hwrm_cmd_lock);
if (rc)
rc = -EIO;
return rc;
}
static int hwrm_cfa_decap_filter_free(struct bnxt *bp,
__le32 decap_filter_handle)
{
struct hwrm_cfa_decap_filter_free_input req = { 0 };
int rc;
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_DECAP_FILTER_FREE, -1, -1);
req.decap_filter_id = decap_filter_handle;
rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
if (rc)
netdev_info(bp->dev, "%s: Error rc=%d", __func__, rc);
if (rc)
rc = -EIO;
return rc;
}
static int hwrm_cfa_encap_record_alloc(struct bnxt *bp,
struct ip_tunnel_key *encap_key,
struct bnxt_tc_l2_key *l2_info,
__le32 *encap_record_handle)
{
struct hwrm_cfa_encap_record_alloc_input req = { 0 };
struct hwrm_cfa_encap_record_alloc_output *resp;
struct hwrm_cfa_encap_data_vxlan *encap =
(struct hwrm_cfa_encap_data_vxlan *)&req.encap_data;
struct hwrm_vxlan_ipv4_hdr *encap_ipv4 =
(struct hwrm_vxlan_ipv4_hdr *)encap->l3;
int rc;
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_ENCAP_RECORD_ALLOC, -1, -1);
req.encap_type = CFA_ENCAP_RECORD_ALLOC_REQ_ENCAP_TYPE_VXLAN;
ether_addr_copy(encap->dst_mac_addr, l2_info->dmac);
ether_addr_copy(encap->src_mac_addr, l2_info->smac);
if (l2_info->num_vlans) {
encap->num_vlan_tags = l2_info->num_vlans;
encap->ovlan_tci = l2_info->inner_vlan_tci;
encap->ovlan_tpid = l2_info->inner_vlan_tpid;
}
encap_ipv4->ver_hlen = 4 << VXLAN_IPV4_HDR_VER_HLEN_VERSION_SFT;
encap_ipv4->ver_hlen |= 5 << VXLAN_IPV4_HDR_VER_HLEN_HEADER_LENGTH_SFT;
encap_ipv4->ttl = encap_key->ttl;
encap_ipv4->dest_ip_addr = encap_key->u.ipv4.dst;
encap_ipv4->src_ip_addr = encap_key->u.ipv4.src;
encap_ipv4->protocol = IPPROTO_UDP;
encap->dst_port = encap_key->tp_dst;
encap->vni = tunnel_id_to_key32(encap_key->tun_id);
mutex_lock(&bp->hwrm_cmd_lock);
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
if (!rc) {
resp = bnxt_get_hwrm_resp_addr(bp, &req);
*encap_record_handle = resp->encap_record_id;
} else {
netdev_info(bp->dev, "%s: Error rc=%d", __func__, rc);
}
mutex_unlock(&bp->hwrm_cmd_lock);
if (rc)
rc = -EIO;
return rc;
}
static int hwrm_cfa_encap_record_free(struct bnxt *bp,
__le32 encap_record_handle)
{
struct hwrm_cfa_encap_record_free_input req = { 0 };
int rc;
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_ENCAP_RECORD_FREE, -1, -1);
req.encap_record_id = encap_record_handle;
rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
if (rc)
netdev_info(bp->dev, "%s: Error rc=%d", __func__, rc);
if (rc)
rc = -EIO;
return rc;
}
static int bnxt_tc_put_l2_node(struct bnxt *bp,
struct bnxt_tc_flow_node *flow_node)
{
struct bnxt_tc_l2_node *l2_node = flow_node->l2_node;
struct bnxt_tc_info *tc_info = bp->tc_info;
int rc;
/* remove flow_node from the L2 shared flow list */
list_del(&flow_node->l2_list_node);
if (--l2_node->refcount == 0) {
rc = rhashtable_remove_fast(&tc_info->l2_table, &l2_node->node,
tc_info->l2_ht_params);
if (rc)
netdev_err(bp->dev,
"Error: %s: rhashtable_remove_fast: %d",
__func__, rc);
kfree_rcu(l2_node, rcu);
}
return 0;
}
static struct bnxt_tc_l2_node *
bnxt_tc_get_l2_node(struct bnxt *bp, struct rhashtable *l2_table,
struct rhashtable_params ht_params,
struct bnxt_tc_l2_key *l2_key)
{
struct bnxt_tc_l2_node *l2_node;
int rc;
l2_node = rhashtable_lookup_fast(l2_table, l2_key, ht_params);
if (!l2_node) {
l2_node = kzalloc(sizeof(*l2_node), GFP_KERNEL);
if (!l2_node) {
rc = -ENOMEM;
return NULL;
}
l2_node->key = *l2_key;
rc = rhashtable_insert_fast(l2_table, &l2_node->node,
ht_params);
if (rc) {
kfree_rcu(l2_node, rcu);
netdev_err(bp->dev,
"Error: %s: rhashtable_insert_fast: %d",
__func__, rc);
return NULL;
}
INIT_LIST_HEAD(&l2_node->common_l2_flows);
}
return l2_node;
}
/* Get the ref_flow_handle for a flow by checking if there are any other
* flows that share the same L2 key as this flow.
*/
static int
bnxt_tc_get_ref_flow_handle(struct bnxt *bp, struct bnxt_tc_flow *flow,
struct bnxt_tc_flow_node *flow_node,
__le16 *ref_flow_handle)
{
struct bnxt_tc_info *tc_info = bp->tc_info;
struct bnxt_tc_flow_node *ref_flow_node;
struct bnxt_tc_l2_node *l2_node;
l2_node = bnxt_tc_get_l2_node(bp, &tc_info->l2_table,
tc_info->l2_ht_params,
&flow->l2_key);
if (!l2_node)
return -1;
/* If any other flow is using this l2_node, use it's flow_handle
* as the ref_flow_handle
*/
if (l2_node->refcount > 0) {
ref_flow_node = list_first_entry(&l2_node->common_l2_flows,
struct bnxt_tc_flow_node,
l2_list_node);
*ref_flow_handle = ref_flow_node->flow_handle;
} else {
*ref_flow_handle = cpu_to_le16(0xffff);
}
/* Insert the l2_node into the flow_node so that subsequent flows
* with a matching l2 key can use the flow_handle of this flow
* as their ref_flow_handle
*/
flow_node->l2_node = l2_node;
list_add(&flow_node->l2_list_node, &l2_node->common_l2_flows);
l2_node->refcount++;
return 0;
}
/* After the flow parsing is done, this routine is used for checking
* if there are any aspects of the flow that prevent it from being
* offloaded.
*/
static bool bnxt_tc_can_offload(struct bnxt *bp, struct bnxt_tc_flow *flow)
{
/* If L4 ports are specified then ip_proto must be TCP or UDP */
if ((flow->flags & BNXT_TC_FLOW_FLAGS_PORTS) &&
(flow->l4_key.ip_proto != IPPROTO_TCP &&
flow->l4_key.ip_proto != IPPROTO_UDP)) {
netdev_info(bp->dev, "Cannot offload non-TCP/UDP (%d) ports",
flow->l4_key.ip_proto);
return false;
}
bnxt_en: do not allow wildcard matches for L2 flows Before this patch the following commands would succeed as far as the user was concerned: $ tc qdisc add dev p1p1 ingress $ tc filter add dev p1p1 parent ffff: protocol all \ flower skip_sw action drop $ tc filter add dev p1p1 parent ffff: protocol ipv4 \ flower skip_sw src_mac 00:02:00:00:00:01/44 action drop The current flow offload infrastructure used does not support wildcard matching for ethernet headers, so do not allow the second or third commands to succeed. If a user wants to drop traffic on that interface the protocol and MAC addresses need to be specified explicitly: $ tc qdisc add dev p1p1 ingress $ tc filter add dev p1p1 parent ffff: protocol arp \ flower skip_sw action drop $ tc filter add dev p1p1 parent ffff: protocol ipv4 \ flower skip_sw action drop ... $ tc filter add dev p1p1 parent ffff: protocol ipv4 \ flower skip_sw src_mac 00:02:00:00:00:01 action drop $ tc filter add dev p1p1 parent ffff: protocol ipv4 \ flower skip_sw src_mac 00:02:00:00:00:02 action drop ... There are also checks for VLAN parameters in this patch as other callers may wildcard those parameters even if tc does not. Using different flow infrastructure could allow this to work in the future for L2 flows, but for now it does not. Fixes: 2ae7408fedfe ("bnxt_en: bnxt: add TC flower filter offload support") Signed-off-by: Andy Gospodarek <gospo@broadcom.com> Signed-off-by: Michael Chan <michael.chan@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-11 09:50:14 -06:00
/* Currently source/dest MAC cannot be partial wildcard */
if (bits_set(&flow->l2_key.smac, sizeof(flow->l2_key.smac)) &&
!is_exactmatch(flow->l2_mask.smac, sizeof(flow->l2_mask.smac))) {
netdev_info(bp->dev, "Wildcard match unsupported for Source MAC\n");
return false;
}
if (bits_set(&flow->l2_key.dmac, sizeof(flow->l2_key.dmac)) &&
!is_exactmatch(&flow->l2_mask.dmac, sizeof(flow->l2_mask.dmac))) {
netdev_info(bp->dev, "Wildcard match unsupported for Dest MAC\n");
return false;
}
/* Currently VLAN fields cannot be partial wildcard */
if (bits_set(&flow->l2_key.inner_vlan_tci,
sizeof(flow->l2_key.inner_vlan_tci)) &&
!is_vlan_tci_allowed(flow->l2_mask.inner_vlan_tci,
flow->l2_key.inner_vlan_tci)) {
netdev_info(bp->dev, "Unsupported VLAN TCI\n");
bnxt_en: do not allow wildcard matches for L2 flows Before this patch the following commands would succeed as far as the user was concerned: $ tc qdisc add dev p1p1 ingress $ tc filter add dev p1p1 parent ffff: protocol all \ flower skip_sw action drop $ tc filter add dev p1p1 parent ffff: protocol ipv4 \ flower skip_sw src_mac 00:02:00:00:00:01/44 action drop The current flow offload infrastructure used does not support wildcard matching for ethernet headers, so do not allow the second or third commands to succeed. If a user wants to drop traffic on that interface the protocol and MAC addresses need to be specified explicitly: $ tc qdisc add dev p1p1 ingress $ tc filter add dev p1p1 parent ffff: protocol arp \ flower skip_sw action drop $ tc filter add dev p1p1 parent ffff: protocol ipv4 \ flower skip_sw action drop ... $ tc filter add dev p1p1 parent ffff: protocol ipv4 \ flower skip_sw src_mac 00:02:00:00:00:01 action drop $ tc filter add dev p1p1 parent ffff: protocol ipv4 \ flower skip_sw src_mac 00:02:00:00:00:02 action drop ... There are also checks for VLAN parameters in this patch as other callers may wildcard those parameters even if tc does not. Using different flow infrastructure could allow this to work in the future for L2 flows, but for now it does not. Fixes: 2ae7408fedfe ("bnxt_en: bnxt: add TC flower filter offload support") Signed-off-by: Andy Gospodarek <gospo@broadcom.com> Signed-off-by: Michael Chan <michael.chan@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-11 09:50:14 -06:00
return false;
}
if (bits_set(&flow->l2_key.inner_vlan_tpid,
sizeof(flow->l2_key.inner_vlan_tpid)) &&
!is_exactmatch(&flow->l2_mask.inner_vlan_tpid,
sizeof(flow->l2_mask.inner_vlan_tpid))) {
netdev_info(bp->dev, "Wildcard match unsupported for VLAN TPID\n");
return false;
}
/* Currently Ethertype must be set */
if (!is_exactmatch(&flow->l2_mask.ether_type,
sizeof(flow->l2_mask.ether_type))) {
netdev_info(bp->dev, "Wildcard match unsupported for Ethertype\n");
return false;
}
return true;
}
/* Returns the final refcount of the node on success
* or a -ve error code on failure
*/
static int bnxt_tc_put_tunnel_node(struct bnxt *bp,
struct rhashtable *tunnel_table,
struct rhashtable_params *ht_params,
struct bnxt_tc_tunnel_node *tunnel_node)
{
int rc;
if (--tunnel_node->refcount == 0) {
rc = rhashtable_remove_fast(tunnel_table, &tunnel_node->node,
*ht_params);
if (rc) {
netdev_err(bp->dev, "rhashtable_remove_fast rc=%d", rc);
rc = -1;
}
kfree_rcu(tunnel_node, rcu);
return rc;
} else {
return tunnel_node->refcount;
}
}
/* Get (or add) either encap or decap tunnel node from/to the supplied
* hash table.
*/
static struct bnxt_tc_tunnel_node *
bnxt_tc_get_tunnel_node(struct bnxt *bp, struct rhashtable *tunnel_table,
struct rhashtable_params *ht_params,
struct ip_tunnel_key *tun_key)
{
struct bnxt_tc_tunnel_node *tunnel_node;
int rc;
tunnel_node = rhashtable_lookup_fast(tunnel_table, tun_key, *ht_params);
if (!tunnel_node) {
tunnel_node = kzalloc(sizeof(*tunnel_node), GFP_KERNEL);
if (!tunnel_node) {
rc = -ENOMEM;
goto err;
}
tunnel_node->key = *tun_key;
tunnel_node->tunnel_handle = INVALID_TUNNEL_HANDLE;
rc = rhashtable_insert_fast(tunnel_table, &tunnel_node->node,
*ht_params);
if (rc) {
kfree_rcu(tunnel_node, rcu);
goto err;
}
}
tunnel_node->refcount++;
return tunnel_node;
err:
netdev_info(bp->dev, "error rc=%d", rc);
return NULL;
}
static int bnxt_tc_get_ref_decap_handle(struct bnxt *bp,
struct bnxt_tc_flow *flow,
struct bnxt_tc_l2_key *l2_key,
struct bnxt_tc_flow_node *flow_node,
__le32 *ref_decap_handle)
{
struct bnxt_tc_info *tc_info = bp->tc_info;
struct bnxt_tc_flow_node *ref_flow_node;
struct bnxt_tc_l2_node *decap_l2_node;
decap_l2_node = bnxt_tc_get_l2_node(bp, &tc_info->decap_l2_table,
tc_info->decap_l2_ht_params,
l2_key);
if (!decap_l2_node)
return -1;
/* If any other flow is using this decap_l2_node, use it's decap_handle
* as the ref_decap_handle
*/
if (decap_l2_node->refcount > 0) {
ref_flow_node =
list_first_entry(&decap_l2_node->common_l2_flows,
struct bnxt_tc_flow_node,
decap_l2_list_node);
*ref_decap_handle = ref_flow_node->decap_node->tunnel_handle;
} else {
*ref_decap_handle = INVALID_TUNNEL_HANDLE;
}
/* Insert the l2_node into the flow_node so that subsequent flows
* with a matching decap l2 key can use the decap_filter_handle of
* this flow as their ref_decap_handle
*/
flow_node->decap_l2_node = decap_l2_node;
list_add(&flow_node->decap_l2_list_node,
&decap_l2_node->common_l2_flows);
decap_l2_node->refcount++;
return 0;
}
static void bnxt_tc_put_decap_l2_node(struct bnxt *bp,
struct bnxt_tc_flow_node *flow_node)
{
struct bnxt_tc_l2_node *decap_l2_node = flow_node->decap_l2_node;
struct bnxt_tc_info *tc_info = bp->tc_info;
int rc;
/* remove flow_node from the decap L2 sharing flow list */
list_del(&flow_node->decap_l2_list_node);
if (--decap_l2_node->refcount == 0) {
rc = rhashtable_remove_fast(&tc_info->decap_l2_table,
&decap_l2_node->node,
tc_info->decap_l2_ht_params);
if (rc)
netdev_err(bp->dev, "rhashtable_remove_fast rc=%d", rc);
kfree_rcu(decap_l2_node, rcu);
}
}
static void bnxt_tc_put_decap_handle(struct bnxt *bp,
struct bnxt_tc_flow_node *flow_node)
{
__le32 decap_handle = flow_node->decap_node->tunnel_handle;
struct bnxt_tc_info *tc_info = bp->tc_info;
int rc;
if (flow_node->decap_l2_node)
bnxt_tc_put_decap_l2_node(bp, flow_node);
rc = bnxt_tc_put_tunnel_node(bp, &tc_info->decap_table,
&tc_info->decap_ht_params,
flow_node->decap_node);
if (!rc && decap_handle != INVALID_TUNNEL_HANDLE)
hwrm_cfa_decap_filter_free(bp, decap_handle);
}
static int bnxt_tc_resolve_tunnel_hdrs(struct bnxt *bp,
struct ip_tunnel_key *tun_key,
struct bnxt_tc_l2_key *l2_info)
{
#ifdef CONFIG_INET
struct net_device *real_dst_dev = bp->dev;
struct flowi4 flow = { {0} };
struct net_device *dst_dev;
struct neighbour *nbr;
struct rtable *rt;
int rc;
flow.flowi4_proto = IPPROTO_UDP;
flow.fl4_dport = tun_key->tp_dst;
flow.daddr = tun_key->u.ipv4.dst;
rt = ip_route_output_key(dev_net(real_dst_dev), &flow);
if (IS_ERR(rt)) {
netdev_info(bp->dev, "no route to %pI4b", &flow.daddr);
return -EOPNOTSUPP;
}
/* The route must either point to the real_dst_dev or a dst_dev that
* uses the real_dst_dev.
*/
dst_dev = rt->dst.dev;
if (is_vlan_dev(dst_dev)) {
#if IS_ENABLED(CONFIG_VLAN_8021Q)
struct vlan_dev_priv *vlan = vlan_dev_priv(dst_dev);
if (vlan->real_dev != real_dst_dev) {
netdev_info(bp->dev,
"dst_dev(%s) doesn't use PF-if(%s)",
netdev_name(dst_dev),
netdev_name(real_dst_dev));
rc = -EOPNOTSUPP;
goto put_rt;
}
l2_info->inner_vlan_tci = htons(vlan->vlan_id);
l2_info->inner_vlan_tpid = vlan->vlan_proto;
l2_info->num_vlans = 1;
#endif
} else if (dst_dev != real_dst_dev) {
netdev_info(bp->dev,
"dst_dev(%s) for %pI4b is not PF-if(%s)",
netdev_name(dst_dev), &flow.daddr,
netdev_name(real_dst_dev));
rc = -EOPNOTSUPP;
goto put_rt;
}
nbr = dst_neigh_lookup(&rt->dst, &flow.daddr);
if (!nbr) {
netdev_info(bp->dev, "can't lookup neighbor for %pI4b",
&flow.daddr);
rc = -EOPNOTSUPP;
goto put_rt;
}
tun_key->u.ipv4.src = flow.saddr;
tun_key->ttl = ip4_dst_hoplimit(&rt->dst);
neigh_ha_snapshot(l2_info->dmac, nbr, dst_dev);
ether_addr_copy(l2_info->smac, dst_dev->dev_addr);
neigh_release(nbr);
ip_rt_put(rt);
return 0;
put_rt:
ip_rt_put(rt);
return rc;
#else
return -EOPNOTSUPP;
#endif
}
static int bnxt_tc_get_decap_handle(struct bnxt *bp, struct bnxt_tc_flow *flow,
struct bnxt_tc_flow_node *flow_node,
__le32 *decap_filter_handle)
{
struct ip_tunnel_key *decap_key = &flow->tun_key;
struct bnxt_tc_info *tc_info = bp->tc_info;
struct bnxt_tc_l2_key l2_info = { {0} };
struct bnxt_tc_tunnel_node *decap_node;
struct ip_tunnel_key tun_key = { 0 };
struct bnxt_tc_l2_key *decap_l2_info;
__le32 ref_decap_handle;
int rc;
/* Check if there's another flow using the same tunnel decap.
* If not, add this tunnel to the table and resolve the other
* tunnel header fileds. Ignore src_port in the tunnel_key,
* since it is not required for decap filters.
*/
decap_key->tp_src = 0;
decap_node = bnxt_tc_get_tunnel_node(bp, &tc_info->decap_table,
&tc_info->decap_ht_params,
decap_key);
if (!decap_node)
return -ENOMEM;
flow_node->decap_node = decap_node;
if (decap_node->tunnel_handle != INVALID_TUNNEL_HANDLE)
goto done;
/* Resolve the L2 fields for tunnel decap
* Resolve the route for remote vtep (saddr) of the decap key
* Find it's next-hop mac addrs
*/
tun_key.u.ipv4.dst = flow->tun_key.u.ipv4.src;
tun_key.tp_dst = flow->tun_key.tp_dst;
rc = bnxt_tc_resolve_tunnel_hdrs(bp, &tun_key, &l2_info);
if (rc)
goto put_decap;
decap_l2_info = &decap_node->l2_info;
/* decap smac is wildcarded */
ether_addr_copy(decap_l2_info->dmac, l2_info.smac);
if (l2_info.num_vlans) {
decap_l2_info->num_vlans = l2_info.num_vlans;
decap_l2_info->inner_vlan_tpid = l2_info.inner_vlan_tpid;
decap_l2_info->inner_vlan_tci = l2_info.inner_vlan_tci;
}
flow->flags |= BNXT_TC_FLOW_FLAGS_TUNL_ETH_ADDRS;
/* For getting a decap_filter_handle we first need to check if
* there are any other decap flows that share the same tunnel L2
* key and if so, pass that flow's decap_filter_handle as the
* ref_decap_handle for this flow.
*/
rc = bnxt_tc_get_ref_decap_handle(bp, flow, decap_l2_info, flow_node,
&ref_decap_handle);
if (rc)
goto put_decap;
/* Issue the hwrm cmd to allocate a decap filter handle */
rc = hwrm_cfa_decap_filter_alloc(bp, flow, decap_l2_info,
ref_decap_handle,
&decap_node->tunnel_handle);
if (rc)
goto put_decap_l2;
done:
*decap_filter_handle = decap_node->tunnel_handle;
return 0;
put_decap_l2:
bnxt_tc_put_decap_l2_node(bp, flow_node);
put_decap:
bnxt_tc_put_tunnel_node(bp, &tc_info->decap_table,
&tc_info->decap_ht_params,
flow_node->decap_node);
return rc;
}
static void bnxt_tc_put_encap_handle(struct bnxt *bp,
struct bnxt_tc_tunnel_node *encap_node)
{
__le32 encap_handle = encap_node->tunnel_handle;
struct bnxt_tc_info *tc_info = bp->tc_info;
int rc;
rc = bnxt_tc_put_tunnel_node(bp, &tc_info->encap_table,
&tc_info->encap_ht_params, encap_node);
if (!rc && encap_handle != INVALID_TUNNEL_HANDLE)
hwrm_cfa_encap_record_free(bp, encap_handle);
}
/* Lookup the tunnel encap table and check if there's an encap_handle
* alloc'd already.
* If not, query L2 info via a route lookup and issue an encap_record_alloc
* cmd to FW.
*/
static int bnxt_tc_get_encap_handle(struct bnxt *bp, struct bnxt_tc_flow *flow,
struct bnxt_tc_flow_node *flow_node,
__le32 *encap_handle)
{
struct ip_tunnel_key *encap_key = &flow->actions.tun_encap_key;
struct bnxt_tc_info *tc_info = bp->tc_info;
struct bnxt_tc_tunnel_node *encap_node;
int rc;
/* Check if there's another flow using the same tunnel encap.
* If not, add this tunnel to the table and resolve the other
* tunnel header fileds
*/
encap_node = bnxt_tc_get_tunnel_node(bp, &tc_info->encap_table,
&tc_info->encap_ht_params,
encap_key);
if (!encap_node)
return -ENOMEM;
flow_node->encap_node = encap_node;
if (encap_node->tunnel_handle != INVALID_TUNNEL_HANDLE)
goto done;
rc = bnxt_tc_resolve_tunnel_hdrs(bp, encap_key, &encap_node->l2_info);
if (rc)
goto put_encap;
/* Allocate a new tunnel encap record */
rc = hwrm_cfa_encap_record_alloc(bp, encap_key, &encap_node->l2_info,
&encap_node->tunnel_handle);
if (rc)
goto put_encap;
done:
*encap_handle = encap_node->tunnel_handle;
return 0;
put_encap:
bnxt_tc_put_tunnel_node(bp, &tc_info->encap_table,
&tc_info->encap_ht_params, encap_node);
return rc;
}
static void bnxt_tc_put_tunnel_handle(struct bnxt *bp,
struct bnxt_tc_flow *flow,
struct bnxt_tc_flow_node *flow_node)
{
if (flow->actions.flags & BNXT_TC_ACTION_FLAG_TUNNEL_DECAP)
bnxt_tc_put_decap_handle(bp, flow_node);
else if (flow->actions.flags & BNXT_TC_ACTION_FLAG_TUNNEL_ENCAP)
bnxt_tc_put_encap_handle(bp, flow_node->encap_node);
}
static int bnxt_tc_get_tunnel_handle(struct bnxt *bp,
struct bnxt_tc_flow *flow,
struct bnxt_tc_flow_node *flow_node,
__le32 *tunnel_handle)
{
if (flow->actions.flags & BNXT_TC_ACTION_FLAG_TUNNEL_DECAP)
return bnxt_tc_get_decap_handle(bp, flow, flow_node,
tunnel_handle);
else if (flow->actions.flags & BNXT_TC_ACTION_FLAG_TUNNEL_ENCAP)
return bnxt_tc_get_encap_handle(bp, flow, flow_node,
tunnel_handle);
else
return 0;
}
static int __bnxt_tc_del_flow(struct bnxt *bp,
struct bnxt_tc_flow_node *flow_node)
{
struct bnxt_tc_info *tc_info = bp->tc_info;
int rc;
/* send HWRM cmd to free the flow-id */
bnxt_hwrm_cfa_flow_free(bp, flow_node);
mutex_lock(&tc_info->lock);
/* release references to any tunnel encap/decap nodes */
bnxt_tc_put_tunnel_handle(bp, &flow_node->flow, flow_node);
/* release reference to l2 node */
bnxt_tc_put_l2_node(bp, flow_node);
mutex_unlock(&tc_info->lock);
rc = rhashtable_remove_fast(&tc_info->flow_table, &flow_node->node,
tc_info->flow_ht_params);
if (rc)
netdev_err(bp->dev, "Error: %s: rhashtable_remove_fast rc=%d",
__func__, rc);
kfree_rcu(flow_node, rcu);
return 0;
}
static void bnxt_tc_set_flow_dir(struct bnxt *bp, struct bnxt_tc_flow *flow,
u16 src_fid)
{
flow->dir = (bp->pf.fw_fid == src_fid) ? BNXT_DIR_RX : BNXT_DIR_TX;
}
static void bnxt_tc_set_src_fid(struct bnxt *bp, struct bnxt_tc_flow *flow,
u16 src_fid)
{
if (flow->actions.flags & BNXT_TC_ACTION_FLAG_TUNNEL_DECAP)
flow->src_fid = bp->pf.fw_fid;
else
flow->src_fid = src_fid;
}
/* Add a new flow or replace an existing flow.
* Notes on locking:
* There are essentially two critical sections here.
* 1. while adding a new flow
* a) lookup l2-key
* b) issue HWRM cmd and get flow_handle
* c) link l2-key with flow
* 2. while deleting a flow
* a) unlinking l2-key from flow
* A lock is needed to protect these two critical sections.
*
* The hash-tables are already protected by the rhashtable API.
*/
static int bnxt_tc_add_flow(struct bnxt *bp, u16 src_fid,
struct flow_cls_offload *tc_flow_cmd)
{
struct bnxt_tc_flow_node *new_node, *old_node;
struct bnxt_tc_info *tc_info = bp->tc_info;
struct bnxt_tc_flow *flow;
__le32 tunnel_handle = 0;
__le16 ref_flow_handle;
int rc;
/* allocate memory for the new flow and it's node */
new_node = kzalloc(sizeof(*new_node), GFP_KERNEL);
if (!new_node) {
rc = -ENOMEM;
goto done;
}
new_node->cookie = tc_flow_cmd->cookie;
flow = &new_node->flow;
rc = bnxt_tc_parse_flow(bp, tc_flow_cmd, flow);
if (rc)
goto free_node;
bnxt_tc_set_src_fid(bp, flow, src_fid);
if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
bnxt_tc_set_flow_dir(bp, flow, src_fid);
if (!bnxt_tc_can_offload(bp, flow)) {
rc = -EOPNOTSUPP;
goto free_node;
}
/* If a flow exists with the same cookie, delete it */
old_node = rhashtable_lookup_fast(&tc_info->flow_table,
&tc_flow_cmd->cookie,
tc_info->flow_ht_params);
if (old_node)
__bnxt_tc_del_flow(bp, old_node);
/* Check if the L2 part of the flow has been offloaded already.
* If so, bump up it's refcnt and get it's reference handle.
*/
mutex_lock(&tc_info->lock);
rc = bnxt_tc_get_ref_flow_handle(bp, flow, new_node, &ref_flow_handle);
if (rc)
goto unlock;
/* If the flow involves tunnel encap/decap, get tunnel_handle */
rc = bnxt_tc_get_tunnel_handle(bp, flow, new_node, &tunnel_handle);
if (rc)
goto put_l2;
/* send HWRM cmd to alloc the flow */
rc = bnxt_hwrm_cfa_flow_alloc(bp, flow, ref_flow_handle,
tunnel_handle, new_node);
if (rc)
goto put_tunnel;
flow->lastused = jiffies;
spin_lock_init(&flow->stats_lock);
/* add new flow to flow-table */
rc = rhashtable_insert_fast(&tc_info->flow_table, &new_node->node,
tc_info->flow_ht_params);
if (rc)
goto hwrm_flow_free;
mutex_unlock(&tc_info->lock);
return 0;
hwrm_flow_free:
bnxt_hwrm_cfa_flow_free(bp, new_node);
put_tunnel:
bnxt_tc_put_tunnel_handle(bp, flow, new_node);
put_l2:
bnxt_tc_put_l2_node(bp, new_node);
unlock:
mutex_unlock(&tc_info->lock);
free_node:
kfree_rcu(new_node, rcu);
done:
netdev_err(bp->dev, "Error: %s: cookie=0x%lx error=%d",
__func__, tc_flow_cmd->cookie, rc);
return rc;
}
static int bnxt_tc_del_flow(struct bnxt *bp,
struct flow_cls_offload *tc_flow_cmd)
{
struct bnxt_tc_info *tc_info = bp->tc_info;
struct bnxt_tc_flow_node *flow_node;
flow_node = rhashtable_lookup_fast(&tc_info->flow_table,
&tc_flow_cmd->cookie,
tc_info->flow_ht_params);
if (!flow_node)
return -EINVAL;
return __bnxt_tc_del_flow(bp, flow_node);
}
static int bnxt_tc_get_flow_stats(struct bnxt *bp,
struct flow_cls_offload *tc_flow_cmd)
{
struct bnxt_tc_flow_stats stats, *curr_stats, *prev_stats;
struct bnxt_tc_info *tc_info = bp->tc_info;
struct bnxt_tc_flow_node *flow_node;
struct bnxt_tc_flow *flow;
unsigned long lastused;
flow_node = rhashtable_lookup_fast(&tc_info->flow_table,
&tc_flow_cmd->cookie,
tc_info->flow_ht_params);
if (!flow_node)
return -1;
flow = &flow_node->flow;
curr_stats = &flow->stats;
prev_stats = &flow->prev_stats;
spin_lock(&flow->stats_lock);
stats.packets = curr_stats->packets - prev_stats->packets;
stats.bytes = curr_stats->bytes - prev_stats->bytes;
*prev_stats = *curr_stats;
lastused = flow->lastused;
spin_unlock(&flow->stats_lock);
flow_stats_update(&tc_flow_cmd->stats, stats.bytes, stats.packets,
lastused);
return 0;
}
static void bnxt_fill_cfa_stats_req(struct bnxt *bp,
struct bnxt_tc_flow_node *flow_node,
__le16 *flow_handle, __le32 *flow_id)
{
u16 handle;
if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) {
*flow_id = flow_node->flow_id;
/* If flow_id is used to fetch flow stats then:
* 1. lower 12 bits of flow_handle must be set to all 1s.
* 2. 15th bit of flow_handle must specify the flow
* direction (TX/RX).
*/
if (flow_node->flow.dir == BNXT_DIR_RX)
handle = CFA_FLOW_INFO_REQ_FLOW_HANDLE_DIR_RX |
CFA_FLOW_INFO_REQ_FLOW_HANDLE_MAX_MASK;
else
handle = CFA_FLOW_INFO_REQ_FLOW_HANDLE_MAX_MASK;
*flow_handle = cpu_to_le16(handle);
} else {
*flow_handle = flow_node->flow_handle;
}
}
static int
bnxt_hwrm_cfa_flow_stats_get(struct bnxt *bp, int num_flows,
struct bnxt_tc_stats_batch stats_batch[])
{
struct hwrm_cfa_flow_stats_input req = { 0 };
struct hwrm_cfa_flow_stats_output *resp;
__le16 *req_flow_handles = &req.flow_handle_0;
__le32 *req_flow_ids = &req.flow_id_0;
int rc, i;
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_FLOW_STATS, -1, -1);
req.num_flows = cpu_to_le16(num_flows);
for (i = 0; i < num_flows; i++) {
struct bnxt_tc_flow_node *flow_node = stats_batch[i].flow_node;
bnxt_fill_cfa_stats_req(bp, flow_node,
&req_flow_handles[i], &req_flow_ids[i]);
}
mutex_lock(&bp->hwrm_cmd_lock);
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
if (!rc) {
__le64 *resp_packets;
__le64 *resp_bytes;
resp = bnxt_get_hwrm_resp_addr(bp, &req);
resp_packets = &resp->packet_0;
resp_bytes = &resp->byte_0;
for (i = 0; i < num_flows; i++) {
stats_batch[i].hw_stats.packets =
le64_to_cpu(resp_packets[i]);
stats_batch[i].hw_stats.bytes =
le64_to_cpu(resp_bytes[i]);
}
} else {
netdev_info(bp->dev, "error rc=%d", rc);
}
mutex_unlock(&bp->hwrm_cmd_lock);
if (rc)
rc = -EIO;
return rc;
}
/* Add val to accum while handling a possible wraparound
* of val. Eventhough val is of type u64, its actual width
* is denoted by mask and will wrap-around beyond that width.
*/
static void accumulate_val(u64 *accum, u64 val, u64 mask)
{
#define low_bits(x, mask) ((x) & (mask))
#define high_bits(x, mask) ((x) & ~(mask))
bool wrapped = val < low_bits(*accum, mask);
*accum = high_bits(*accum, mask) + val;
if (wrapped)
*accum += (mask + 1);
}
/* The HW counters' width is much less than 64bits.
* Handle possible wrap-around while updating the stat counters
*/
static void bnxt_flow_stats_accum(struct bnxt_tc_info *tc_info,
struct bnxt_tc_flow_stats *acc_stats,
struct bnxt_tc_flow_stats *hw_stats)
{
accumulate_val(&acc_stats->bytes, hw_stats->bytes, tc_info->bytes_mask);
accumulate_val(&acc_stats->packets, hw_stats->packets,
tc_info->packets_mask);
}
static int
bnxt_tc_flow_stats_batch_update(struct bnxt *bp, int num_flows,
struct bnxt_tc_stats_batch stats_batch[])
{
struct bnxt_tc_info *tc_info = bp->tc_info;
int rc, i;
rc = bnxt_hwrm_cfa_flow_stats_get(bp, num_flows, stats_batch);
if (rc)
return rc;
for (i = 0; i < num_flows; i++) {
struct bnxt_tc_flow_node *flow_node = stats_batch[i].flow_node;
struct bnxt_tc_flow *flow = &flow_node->flow;
spin_lock(&flow->stats_lock);
bnxt_flow_stats_accum(tc_info, &flow->stats,
&stats_batch[i].hw_stats);
if (flow->stats.packets != flow->prev_stats.packets)
flow->lastused = jiffies;
spin_unlock(&flow->stats_lock);
}
return 0;
}
static int
bnxt_tc_flow_stats_batch_prep(struct bnxt *bp,
struct bnxt_tc_stats_batch stats_batch[],
int *num_flows)
{
struct bnxt_tc_info *tc_info = bp->tc_info;
struct rhashtable_iter *iter = &tc_info->iter;
void *flow_node;
int rc, i;
rhashtable_walk_start(iter);
rc = 0;
for (i = 0; i < BNXT_FLOW_STATS_BATCH_MAX; i++) {
flow_node = rhashtable_walk_next(iter);
if (IS_ERR(flow_node)) {
i = 0;
if (PTR_ERR(flow_node) == -EAGAIN) {
continue;
} else {
rc = PTR_ERR(flow_node);
goto done;
}
}
/* No more flows */
if (!flow_node)
goto done;
stats_batch[i].flow_node = flow_node;
}
done:
rhashtable_walk_stop(iter);
*num_flows = i;
return rc;
}
void bnxt_tc_flow_stats_work(struct bnxt *bp)
{
struct bnxt_tc_info *tc_info = bp->tc_info;
int num_flows, rc;
num_flows = atomic_read(&tc_info->flow_table.nelems);
if (!num_flows)
return;
rhashtable_walk_enter(&tc_info->flow_table, &tc_info->iter);
for (;;) {
rc = bnxt_tc_flow_stats_batch_prep(bp, tc_info->stats_batch,
&num_flows);
if (rc) {
if (rc == -EAGAIN)
continue;
break;
}
if (!num_flows)
break;
bnxt_tc_flow_stats_batch_update(bp, num_flows,
tc_info->stats_batch);
}
rhashtable_walk_exit(&tc_info->iter);
}
int bnxt_tc_setup_flower(struct bnxt *bp, u16 src_fid,
struct flow_cls_offload *cls_flower)
{
switch (cls_flower->command) {
case FLOW_CLS_REPLACE:
return bnxt_tc_add_flow(bp, src_fid, cls_flower);
case FLOW_CLS_DESTROY:
return bnxt_tc_del_flow(bp, cls_flower);
case FLOW_CLS_STATS:
return bnxt_tc_get_flow_stats(bp, cls_flower);
default:
return -EOPNOTSUPP;
}
}
static const struct rhashtable_params bnxt_tc_flow_ht_params = {
.head_offset = offsetof(struct bnxt_tc_flow_node, node),
.key_offset = offsetof(struct bnxt_tc_flow_node, cookie),
.key_len = sizeof(((struct bnxt_tc_flow_node *)0)->cookie),
.automatic_shrinking = true
};
static const struct rhashtable_params bnxt_tc_l2_ht_params = {
.head_offset = offsetof(struct bnxt_tc_l2_node, node),
.key_offset = offsetof(struct bnxt_tc_l2_node, key),
.key_len = BNXT_TC_L2_KEY_LEN,
.automatic_shrinking = true
};
static const struct rhashtable_params bnxt_tc_decap_l2_ht_params = {
.head_offset = offsetof(struct bnxt_tc_l2_node, node),
.key_offset = offsetof(struct bnxt_tc_l2_node, key),
.key_len = BNXT_TC_L2_KEY_LEN,
.automatic_shrinking = true
};
static const struct rhashtable_params bnxt_tc_tunnel_ht_params = {
.head_offset = offsetof(struct bnxt_tc_tunnel_node, node),
.key_offset = offsetof(struct bnxt_tc_tunnel_node, key),
.key_len = sizeof(struct ip_tunnel_key),
.automatic_shrinking = true
};
/* convert counter width in bits to a mask */
#define mask(width) ((u64)~0 >> (64 - (width)))
int bnxt_init_tc(struct bnxt *bp)
{
struct bnxt_tc_info *tc_info;
int rc;
if (bp->hwrm_spec_code < 0x10803) {
netdev_warn(bp->dev,
"Firmware does not support TC flower offload.\n");
return -ENOTSUPP;
}
tc_info = kzalloc(sizeof(*tc_info), GFP_KERNEL);
if (!tc_info)
return -ENOMEM;
mutex_init(&tc_info->lock);
/* Counter widths are programmed by FW */
tc_info->bytes_mask = mask(36);
tc_info->packets_mask = mask(28);
tc_info->flow_ht_params = bnxt_tc_flow_ht_params;
rc = rhashtable_init(&tc_info->flow_table, &tc_info->flow_ht_params);
if (rc)
goto free_tc_info;
tc_info->l2_ht_params = bnxt_tc_l2_ht_params;
rc = rhashtable_init(&tc_info->l2_table, &tc_info->l2_ht_params);
if (rc)
goto destroy_flow_table;
tc_info->decap_l2_ht_params = bnxt_tc_decap_l2_ht_params;
rc = rhashtable_init(&tc_info->decap_l2_table,
&tc_info->decap_l2_ht_params);
if (rc)
goto destroy_l2_table;
tc_info->decap_ht_params = bnxt_tc_tunnel_ht_params;
rc = rhashtable_init(&tc_info->decap_table,
&tc_info->decap_ht_params);
if (rc)
goto destroy_decap_l2_table;
tc_info->encap_ht_params = bnxt_tc_tunnel_ht_params;
rc = rhashtable_init(&tc_info->encap_table,
&tc_info->encap_ht_params);
if (rc)
goto destroy_decap_table;
tc_info->enabled = true;
bp->dev->hw_features |= NETIF_F_HW_TC;
bp->dev->features |= NETIF_F_HW_TC;
bp->tc_info = tc_info;
return 0;
destroy_decap_table:
rhashtable_destroy(&tc_info->decap_table);
destroy_decap_l2_table:
rhashtable_destroy(&tc_info->decap_l2_table);
destroy_l2_table:
rhashtable_destroy(&tc_info->l2_table);
destroy_flow_table:
rhashtable_destroy(&tc_info->flow_table);
free_tc_info:
kfree(tc_info);
return rc;
}
void bnxt_shutdown_tc(struct bnxt *bp)
{
struct bnxt_tc_info *tc_info = bp->tc_info;
if (!bnxt_tc_flower_enabled(bp))
return;
rhashtable_destroy(&tc_info->flow_table);
rhashtable_destroy(&tc_info->l2_table);
rhashtable_destroy(&tc_info->decap_l2_table);
rhashtable_destroy(&tc_info->decap_table);
rhashtable_destroy(&tc_info->encap_table);
kfree(tc_info);
bp->tc_info = NULL;
}