1
0
Fork 0
alistair23-linux/arch/mips/jz4740/board-qi_lb60.c

526 lines
13 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* linux/arch/mips/jz4740/board-qi_lb60.c
*
* QI_LB60 board support
*
* Copyright (c) 2009 Qi Hardware inc.,
* Author: Xiangfu Liu <xiangfu@qi-hardware.com>
* Copyright 2010, Lars-Peter Clausen <lars@metafoo.de>
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/gpio.h>
#include <linux/gpio/machine.h>
#include <linux/input.h>
#include <linux/gpio_keys.h>
#include <linux/input/matrix_keypad.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi_gpio.h>
#include <linux/pinctrl/machine.h>
#include <linux/pinctrl/pinconf-generic.h>
#include <linux/power_supply.h>
#include <linux/power/jz4740-battery.h>
#include <linux/power/gpio-charger.h>
#include <linux/pwm.h>
#include <linux/platform_data/jz4740/jz4740_nand.h>
#include <asm/mach-jz4740/gpio.h>
#include <asm/mach-jz4740/jz4740_fb.h>
#include <asm/mach-jz4740/jz4740_mmc.h>
#include <linux/regulator/fixed.h>
#include <linux/regulator/machine.h>
#include <asm/mach-jz4740/platform.h>
#include "clock.h"
/* GPIOs */
#define QI_LB60_GPIO_KEYOUT(x) (JZ_GPIO_PORTC(10) + (x))
#define QI_LB60_GPIO_KEYIN(x) (JZ_GPIO_PORTD(18) + (x))
#define QI_LB60_GPIO_KEYIN8 JZ_GPIO_PORTD(26)
/* NAND */
/* Early prototypes of the QI LB60 had only 1GB of NAND.
* In order to support these devices as well the partition and ecc layout is
* initialized depending on the NAND size */
static struct mtd_partition qi_lb60_partitions_1gb[] = {
{
.name = "NAND BOOT partition",
.offset = 0 * 0x100000,
.size = 4 * 0x100000,
},
{
.name = "NAND KERNEL partition",
.offset = 4 * 0x100000,
.size = 4 * 0x100000,
},
{
.name = "NAND ROOTFS partition",
.offset = 8 * 0x100000,
.size = (504 + 512) * 0x100000,
},
};
static struct mtd_partition qi_lb60_partitions_2gb[] = {
{
.name = "NAND BOOT partition",
.offset = 0 * 0x100000,
.size = 4 * 0x100000,
},
{
.name = "NAND KERNEL partition",
.offset = 4 * 0x100000,
.size = 4 * 0x100000,
},
{
.name = "NAND ROOTFS partition",
.offset = 8 * 0x100000,
.size = (504 + 512 + 1024) * 0x100000,
},
};
static int qi_lb60_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
if (section)
return -ERANGE;
oobregion->length = 36;
oobregion->offset = 6;
if (mtd->oobsize == 128) {
oobregion->length *= 2;
oobregion->offset *= 2;
}
return 0;
}
static int qi_lb60_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
int eccbytes = 36, eccoff = 6;
if (section > 1)
return -ERANGE;
if (mtd->oobsize == 128) {
eccbytes *= 2;
eccoff *= 2;
}
if (!section) {
oobregion->offset = 2;
oobregion->length = eccoff - 2;
} else {
oobregion->offset = eccoff + eccbytes;
oobregion->length = mtd->oobsize - oobregion->offset;
}
return 0;
}
static const struct mtd_ooblayout_ops qi_lb60_ooblayout_ops = {
.ecc = qi_lb60_ooblayout_ecc,
.free = qi_lb60_ooblayout_free,
};
static void qi_lb60_nand_ident(struct platform_device *pdev,
struct mtd_info *mtd, struct mtd_partition **partitions,
int *num_partitions)
{
struct nand_chip *chip = mtd_to_nand(mtd);
if (chip->page_shift == 12) {
*partitions = qi_lb60_partitions_2gb;
*num_partitions = ARRAY_SIZE(qi_lb60_partitions_2gb);
} else {
*partitions = qi_lb60_partitions_1gb;
*num_partitions = ARRAY_SIZE(qi_lb60_partitions_1gb);
}
mtd_set_ooblayout(mtd, &qi_lb60_ooblayout_ops);
}
static struct jz_nand_platform_data qi_lb60_nand_pdata = {
.ident_callback = qi_lb60_nand_ident,
.banks = { 1 },
};
static struct gpiod_lookup_table qi_lb60_nand_gpio_table = {
.dev_id = "jz4740-nand.0",
.table = {
GPIO_LOOKUP("GPIOC", 30, "busy", 0),
{ },
},
};
/* Keyboard*/
#define KEY_QI_QI KEY_F13
#define KEY_QI_UPRED KEY_RIGHTALT
#define KEY_QI_VOLUP KEY_VOLUMEUP
#define KEY_QI_VOLDOWN KEY_VOLUMEDOWN
#define KEY_QI_FN KEY_LEFTCTRL
static const uint32_t qi_lb60_keymap[] = {
KEY(0, 0, KEY_F1), /* S2 */
KEY(0, 1, KEY_F2), /* S3 */
KEY(0, 2, KEY_F3), /* S4 */
KEY(0, 3, KEY_F4), /* S5 */
KEY(0, 4, KEY_F5), /* S6 */
KEY(0, 5, KEY_F6), /* S7 */
KEY(0, 6, KEY_F7), /* S8 */
KEY(1, 0, KEY_Q), /* S10 */
KEY(1, 1, KEY_W), /* S11 */
KEY(1, 2, KEY_E), /* S12 */
KEY(1, 3, KEY_R), /* S13 */
KEY(1, 4, KEY_T), /* S14 */
KEY(1, 5, KEY_Y), /* S15 */
KEY(1, 6, KEY_U), /* S16 */
KEY(1, 7, KEY_I), /* S17 */
KEY(2, 0, KEY_A), /* S18 */
KEY(2, 1, KEY_S), /* S19 */
KEY(2, 2, KEY_D), /* S20 */
KEY(2, 3, KEY_F), /* S21 */
KEY(2, 4, KEY_G), /* S22 */
KEY(2, 5, KEY_H), /* S23 */
KEY(2, 6, KEY_J), /* S24 */
KEY(2, 7, KEY_K), /* S25 */
KEY(3, 0, KEY_ESC), /* S26 */
KEY(3, 1, KEY_Z), /* S27 */
KEY(3, 2, KEY_X), /* S28 */
KEY(3, 3, KEY_C), /* S29 */
KEY(3, 4, KEY_V), /* S30 */
KEY(3, 5, KEY_B), /* S31 */
KEY(3, 6, KEY_N), /* S32 */
KEY(3, 7, KEY_M), /* S33 */
KEY(4, 0, KEY_TAB), /* S34 */
KEY(4, 1, KEY_CAPSLOCK), /* S35 */
KEY(4, 2, KEY_BACKSLASH), /* S36 */
KEY(4, 3, KEY_APOSTROPHE), /* S37 */
KEY(4, 4, KEY_COMMA), /* S38 */
KEY(4, 5, KEY_DOT), /* S39 */
KEY(4, 6, KEY_SLASH), /* S40 */
KEY(4, 7, KEY_UP), /* S41 */
KEY(5, 0, KEY_O), /* S42 */
KEY(5, 1, KEY_L), /* S43 */
KEY(5, 2, KEY_EQUAL), /* S44 */
KEY(5, 3, KEY_QI_UPRED), /* S45 */
KEY(5, 4, KEY_SPACE), /* S46 */
KEY(5, 5, KEY_QI_QI), /* S47 */
KEY(5, 6, KEY_RIGHTCTRL), /* S48 */
KEY(5, 7, KEY_LEFT), /* S49 */
KEY(6, 0, KEY_F8), /* S50 */
KEY(6, 1, KEY_P), /* S51 */
KEY(6, 2, KEY_BACKSPACE),/* S52 */
KEY(6, 3, KEY_ENTER), /* S53 */
KEY(6, 4, KEY_QI_VOLUP), /* S54 */
KEY(6, 5, KEY_QI_VOLDOWN), /* S55 */
KEY(6, 6, KEY_DOWN), /* S56 */
KEY(6, 7, KEY_RIGHT), /* S57 */
KEY(7, 0, KEY_LEFTSHIFT), /* S58 */
KEY(7, 1, KEY_LEFTALT), /* S59 */
KEY(7, 2, KEY_QI_FN), /* S60 */
};
static const struct matrix_keymap_data qi_lb60_keymap_data = {
.keymap = qi_lb60_keymap,
.keymap_size = ARRAY_SIZE(qi_lb60_keymap),
};
static const unsigned int qi_lb60_keypad_cols[] = {
QI_LB60_GPIO_KEYOUT(0),
QI_LB60_GPIO_KEYOUT(1),
QI_LB60_GPIO_KEYOUT(2),
QI_LB60_GPIO_KEYOUT(3),
QI_LB60_GPIO_KEYOUT(4),
QI_LB60_GPIO_KEYOUT(5),
QI_LB60_GPIO_KEYOUT(6),
QI_LB60_GPIO_KEYOUT(7),
};
static const unsigned int qi_lb60_keypad_rows[] = {
QI_LB60_GPIO_KEYIN(0),
QI_LB60_GPIO_KEYIN(1),
QI_LB60_GPIO_KEYIN(2),
QI_LB60_GPIO_KEYIN(3),
QI_LB60_GPIO_KEYIN(4),
QI_LB60_GPIO_KEYIN(5),
QI_LB60_GPIO_KEYIN(6),
QI_LB60_GPIO_KEYIN8,
};
static struct matrix_keypad_platform_data qi_lb60_pdata = {
.keymap_data = &qi_lb60_keymap_data,
.col_gpios = qi_lb60_keypad_cols,
.row_gpios = qi_lb60_keypad_rows,
.num_col_gpios = ARRAY_SIZE(qi_lb60_keypad_cols),
.num_row_gpios = ARRAY_SIZE(qi_lb60_keypad_rows),
.col_scan_delay_us = 10,
.debounce_ms = 10,
.wakeup = 1,
.active_low = 1,
};
static struct platform_device qi_lb60_keypad = {
.name = "matrix-keypad",
.id = -1,
.dev = {
.platform_data = &qi_lb60_pdata,
},
};
/* Display */
static struct fb_videomode qi_lb60_video_modes[] = {
{
.name = "320x240",
.xres = 320,
.yres = 240,
.refresh = 30,
.left_margin = 140,
.right_margin = 273,
.upper_margin = 20,
.lower_margin = 2,
.hsync_len = 1,
.vsync_len = 1,
.sync = 0,
.vmode = FB_VMODE_NONINTERLACED,
},
};
static struct jz4740_fb_platform_data qi_lb60_fb_pdata = {
.width = 60,
.height = 45,
.num_modes = ARRAY_SIZE(qi_lb60_video_modes),
.modes = qi_lb60_video_modes,
.bpp = 24,
.lcd_type = JZ_LCD_TYPE_8BIT_SERIAL,
.pixclk_falling_edge = 1,
};
spi: spi-gpio: Rewrite to use GPIO descriptors This converts the bit-banged GPIO SPI driver to looking up and using GPIO descriptors to get a handle on GPIO lines for SCK, MOSI, MISO and all CS lines. All existing board files are converted in one go to keep it all consistent. With these conversions I rarely find any interrim steps that makes any sense. Device tree probing and GPIO handling should work like before also after this patch. For board files, we stop using controller data to pass the GPIO line for chip select, instead we pass this as a GPIO descriptor lookup like everything else. In some s3c24xx machines the names of the SPI devices were set to "spi-gpio" rather than "spi_gpio" which can never have worked, I fixed it working (I guess) as part of this patch set. Sometimes I wonder how this code got upstream in the first place, it obviously is not tested. mach-s3c64xx/mach-smartq.c has the same problem and additionally defines the *same* GPIO line for MOSI and MISO which is not going to be accepted by gpiolib. As the lines were number 1,2,2 I assumed it was a typo and use lines 1,2,3. A comment gives awat that line 0 is chip select though no actual SPI device is provided for the LCD supposed to be on this bit-banged SPI bus. I left it intact instead of just deleting the bus though. Kill off board file code that try to initialize the SPI lines to the same values that they will later be set by the spi_gpio driver anyways. Given the huge number of weird things in these board files I do not think this code is very tested or put in with much afterthought anyways. In order to assert that we do not get performance regressions on this crucial bing-banged driver, a ran a script like this dumping the Ilitek ILI9322 regmap 10000 times (it has no caching obviously) on an otherwise idle system in two iterations before and after the patches: #!/bin/sh for run in `seq 10000` do cat /debug/regmap/spi0.0/registers > /dev/null done Before the patch: time test.sh real 3m 41.03s user 0m 29.41s sys 3m 7.22s time test.sh real 3m 44.24s user 0m 32.31s sys 3m 7.60s After the patch: time test.sh real 3m 41.32s user 0m 28.92s sys 3m 8.08s time test.sh real 3m 39.92s user 0m 30.20s sys 3m 5.56s So any performance differences seems to be in the error margin. Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Acked-by: Olof Johansson <olof@lixom.net> Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com> Signed-off-by: Mark Brown <broonie@kernel.org>
2018-02-12 05:45:30 -07:00
struct spi_gpio_platform_data qi_lb60_spigpio_platform_data = {
.num_chipselect = 1,
};
spi: spi-gpio: Rewrite to use GPIO descriptors This converts the bit-banged GPIO SPI driver to looking up and using GPIO descriptors to get a handle on GPIO lines for SCK, MOSI, MISO and all CS lines. All existing board files are converted in one go to keep it all consistent. With these conversions I rarely find any interrim steps that makes any sense. Device tree probing and GPIO handling should work like before also after this patch. For board files, we stop using controller data to pass the GPIO line for chip select, instead we pass this as a GPIO descriptor lookup like everything else. In some s3c24xx machines the names of the SPI devices were set to "spi-gpio" rather than "spi_gpio" which can never have worked, I fixed it working (I guess) as part of this patch set. Sometimes I wonder how this code got upstream in the first place, it obviously is not tested. mach-s3c64xx/mach-smartq.c has the same problem and additionally defines the *same* GPIO line for MOSI and MISO which is not going to be accepted by gpiolib. As the lines were number 1,2,2 I assumed it was a typo and use lines 1,2,3. A comment gives awat that line 0 is chip select though no actual SPI device is provided for the LCD supposed to be on this bit-banged SPI bus. I left it intact instead of just deleting the bus though. Kill off board file code that try to initialize the SPI lines to the same values that they will later be set by the spi_gpio driver anyways. Given the huge number of weird things in these board files I do not think this code is very tested or put in with much afterthought anyways. In order to assert that we do not get performance regressions on this crucial bing-banged driver, a ran a script like this dumping the Ilitek ILI9322 regmap 10000 times (it has no caching obviously) on an otherwise idle system in two iterations before and after the patches: #!/bin/sh for run in `seq 10000` do cat /debug/regmap/spi0.0/registers > /dev/null done Before the patch: time test.sh real 3m 41.03s user 0m 29.41s sys 3m 7.22s time test.sh real 3m 44.24s user 0m 32.31s sys 3m 7.60s After the patch: time test.sh real 3m 41.32s user 0m 28.92s sys 3m 8.08s time test.sh real 3m 39.92s user 0m 30.20s sys 3m 5.56s So any performance differences seems to be in the error margin. Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Acked-by: Olof Johansson <olof@lixom.net> Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com> Signed-off-by: Mark Brown <broonie@kernel.org>
2018-02-12 05:45:30 -07:00
static struct platform_device qi_lb60_spigpio_device = {
.name = "spi_gpio",
.id = 1,
.dev = {
spi: spi-gpio: Rewrite to use GPIO descriptors This converts the bit-banged GPIO SPI driver to looking up and using GPIO descriptors to get a handle on GPIO lines for SCK, MOSI, MISO and all CS lines. All existing board files are converted in one go to keep it all consistent. With these conversions I rarely find any interrim steps that makes any sense. Device tree probing and GPIO handling should work like before also after this patch. For board files, we stop using controller data to pass the GPIO line for chip select, instead we pass this as a GPIO descriptor lookup like everything else. In some s3c24xx machines the names of the SPI devices were set to "spi-gpio" rather than "spi_gpio" which can never have worked, I fixed it working (I guess) as part of this patch set. Sometimes I wonder how this code got upstream in the first place, it obviously is not tested. mach-s3c64xx/mach-smartq.c has the same problem and additionally defines the *same* GPIO line for MOSI and MISO which is not going to be accepted by gpiolib. As the lines were number 1,2,2 I assumed it was a typo and use lines 1,2,3. A comment gives awat that line 0 is chip select though no actual SPI device is provided for the LCD supposed to be on this bit-banged SPI bus. I left it intact instead of just deleting the bus though. Kill off board file code that try to initialize the SPI lines to the same values that they will later be set by the spi_gpio driver anyways. Given the huge number of weird things in these board files I do not think this code is very tested or put in with much afterthought anyways. In order to assert that we do not get performance regressions on this crucial bing-banged driver, a ran a script like this dumping the Ilitek ILI9322 regmap 10000 times (it has no caching obviously) on an otherwise idle system in two iterations before and after the patches: #!/bin/sh for run in `seq 10000` do cat /debug/regmap/spi0.0/registers > /dev/null done Before the patch: time test.sh real 3m 41.03s user 0m 29.41s sys 3m 7.22s time test.sh real 3m 44.24s user 0m 32.31s sys 3m 7.60s After the patch: time test.sh real 3m 41.32s user 0m 28.92s sys 3m 8.08s time test.sh real 3m 39.92s user 0m 30.20s sys 3m 5.56s So any performance differences seems to be in the error margin. Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Acked-by: Olof Johansson <olof@lixom.net> Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com> Signed-off-by: Mark Brown <broonie@kernel.org>
2018-02-12 05:45:30 -07:00
.platform_data = &qi_lb60_spigpio_platform_data,
},
};
static struct gpiod_lookup_table qi_lb60_spigpio_gpio_table = {
.dev_id = "spi_gpio",
.table = {
GPIO_LOOKUP("GPIOC", 23,
"sck", GPIO_ACTIVE_HIGH),
GPIO_LOOKUP("GPIOC", 22,
"mosi", GPIO_ACTIVE_HIGH),
GPIO_LOOKUP("GPIOC", 21,
"cs", GPIO_ACTIVE_HIGH),
{ },
},
};
static struct spi_board_info qi_lb60_spi_board_info[] = {
{
.modalias = "ili8960",
.chip_select = 0,
.bus_num = 1,
.max_speed_hz = 30 * 1000,
.mode = SPI_3WIRE,
},
};
/* Battery */
static struct jz_battery_platform_data qi_lb60_battery_pdata = {
.gpio_charge = JZ_GPIO_PORTC(27),
.gpio_charge_active_low = 1,
.info = {
.name = "battery",
.technology = POWER_SUPPLY_TECHNOLOGY_LIPO,
.voltage_max_design = 4200000,
.voltage_min_design = 3600000,
},
};
/* GPIO Key: power */
static struct gpio_keys_button qi_lb60_gpio_keys_buttons[] = {
[0] = {
.code = KEY_POWER,
.gpio = JZ_GPIO_PORTD(29),
.active_low = 1,
.desc = "Power",
.wakeup = 1,
},
};
static struct gpio_keys_platform_data qi_lb60_gpio_keys_data = {
.nbuttons = ARRAY_SIZE(qi_lb60_gpio_keys_buttons),
.buttons = qi_lb60_gpio_keys_buttons,
};
static struct platform_device qi_lb60_gpio_keys = {
.name = "gpio-keys",
.id = -1,
.dev = {
.platform_data = &qi_lb60_gpio_keys_data,
}
};
static struct jz4740_mmc_platform_data qi_lb60_mmc_pdata = {
/* Intentionally left blank */
};
static struct gpiod_lookup_table qi_lb60_mmc_gpio_table = {
.dev_id = "jz4740-mmc.0",
.table = {
GPIO_LOOKUP("GPIOD", 0, "cd", GPIO_ACTIVE_HIGH),
GPIO_LOOKUP("GPIOD", 2, "power", GPIO_ACTIVE_LOW),
{ },
},
};
/* beeper */
static struct pwm_lookup qi_lb60_pwm_lookup[] = {
PWM_LOOKUP("jz4740-pwm", 4, "pwm-beeper", NULL, 0,
PWM_POLARITY_NORMAL),
};
static struct platform_device qi_lb60_pwm_beeper = {
.name = "pwm-beeper",
.id = -1,
};
/* charger */
static char *qi_lb60_batteries[] = {
"battery",
};
static struct gpio_charger_platform_data qi_lb60_charger_pdata = {
.name = "usb",
.type = POWER_SUPPLY_TYPE_USB,
.gpio = JZ_GPIO_PORTD(28),
.gpio_active_low = 1,
.supplied_to = qi_lb60_batteries,
.num_supplicants = ARRAY_SIZE(qi_lb60_batteries),
};
static struct platform_device qi_lb60_charger_device = {
.name = "gpio-charger",
.dev = {
.platform_data = &qi_lb60_charger_pdata,
},
};
/* audio */
static struct platform_device qi_lb60_audio_device = {
.name = "qi-lb60-audio",
.id = -1,
};
static struct gpiod_lookup_table qi_lb60_audio_gpio_table = {
.dev_id = "qi-lb60-audio",
.table = {
GPIO_LOOKUP("GPIOB", 29, "snd", 0),
GPIO_LOOKUP("GPIOD", 4, "amp", 0),
{ },
},
};
static struct platform_device *jz_platform_devices[] __initdata = {
&jz4740_udc_device,
&jz4740_udc_xceiv_device,
&jz4740_mmc_device,
&jz4740_nand_device,
&qi_lb60_keypad,
spi: spi-gpio: Rewrite to use GPIO descriptors This converts the bit-banged GPIO SPI driver to looking up and using GPIO descriptors to get a handle on GPIO lines for SCK, MOSI, MISO and all CS lines. All existing board files are converted in one go to keep it all consistent. With these conversions I rarely find any interrim steps that makes any sense. Device tree probing and GPIO handling should work like before also after this patch. For board files, we stop using controller data to pass the GPIO line for chip select, instead we pass this as a GPIO descriptor lookup like everything else. In some s3c24xx machines the names of the SPI devices were set to "spi-gpio" rather than "spi_gpio" which can never have worked, I fixed it working (I guess) as part of this patch set. Sometimes I wonder how this code got upstream in the first place, it obviously is not tested. mach-s3c64xx/mach-smartq.c has the same problem and additionally defines the *same* GPIO line for MOSI and MISO which is not going to be accepted by gpiolib. As the lines were number 1,2,2 I assumed it was a typo and use lines 1,2,3. A comment gives awat that line 0 is chip select though no actual SPI device is provided for the LCD supposed to be on this bit-banged SPI bus. I left it intact instead of just deleting the bus though. Kill off board file code that try to initialize the SPI lines to the same values that they will later be set by the spi_gpio driver anyways. Given the huge number of weird things in these board files I do not think this code is very tested or put in with much afterthought anyways. In order to assert that we do not get performance regressions on this crucial bing-banged driver, a ran a script like this dumping the Ilitek ILI9322 regmap 10000 times (it has no caching obviously) on an otherwise idle system in two iterations before and after the patches: #!/bin/sh for run in `seq 10000` do cat /debug/regmap/spi0.0/registers > /dev/null done Before the patch: time test.sh real 3m 41.03s user 0m 29.41s sys 3m 7.22s time test.sh real 3m 44.24s user 0m 32.31s sys 3m 7.60s After the patch: time test.sh real 3m 41.32s user 0m 28.92s sys 3m 8.08s time test.sh real 3m 39.92s user 0m 30.20s sys 3m 5.56s So any performance differences seems to be in the error margin. Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Acked-by: Olof Johansson <olof@lixom.net> Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com> Signed-off-by: Mark Brown <broonie@kernel.org>
2018-02-12 05:45:30 -07:00
&qi_lb60_spigpio_device,
&jz4740_framebuffer_device,
&jz4740_pcm_device,
&jz4740_i2s_device,
&jz4740_codec_device,
&jz4740_adc_device,
&jz4740_pwm_device,
&jz4740_dma_device,
&qi_lb60_gpio_keys,
&qi_lb60_pwm_beeper,
&qi_lb60_charger_device,
&qi_lb60_audio_device,
};
static unsigned long pin_cfg_bias_disable[] = {
PIN_CONFIG_BIAS_DISABLE,
};
static struct pinctrl_map pin_map[] __initdata = {
/* NAND pin configuration */
PIN_MAP_MUX_GROUP_DEFAULT("jz4740-nand",
"10010000.pin-controller", "nand-cs1", "nand"),
/* fbdev pin configuration */
PIN_MAP_MUX_GROUP("jz4740-fb", PINCTRL_STATE_DEFAULT,
"10010000.pin-controller", "lcd-8bit", "lcd"),
PIN_MAP_MUX_GROUP("jz4740-fb", PINCTRL_STATE_SLEEP,
"10010000.pin-controller", "lcd-no-pins", "lcd"),
/* MMC pin configuration */
PIN_MAP_MUX_GROUP_DEFAULT("jz4740-mmc.0",
"10010000.pin-controller", "mmc-1bit", "mmc"),
PIN_MAP_MUX_GROUP_DEFAULT("jz4740-mmc.0",
"10010000.pin-controller", "mmc-4bit", "mmc"),
PIN_MAP_CONFIGS_PIN_DEFAULT("jz4740-mmc.0",
"10010000.pin-controller", "PD0", pin_cfg_bias_disable),
PIN_MAP_CONFIGS_PIN_DEFAULT("jz4740-mmc.0",
"10010000.pin-controller", "PD2", pin_cfg_bias_disable),
/* PWM pin configuration */
PIN_MAP_MUX_GROUP_DEFAULT("jz4740-pwm",
"10010000.pin-controller", "pwm4", "pwm4"),
};
static int __init qi_lb60_init_platform_devices(void)
{
jz4740_framebuffer_device.dev.platform_data = &qi_lb60_fb_pdata;
jz4740_nand_device.dev.platform_data = &qi_lb60_nand_pdata;
jz4740_adc_device.dev.platform_data = &qi_lb60_battery_pdata;
jz4740_mmc_device.dev.platform_data = &qi_lb60_mmc_pdata;
gpiod_add_lookup_table(&qi_lb60_audio_gpio_table);
gpiod_add_lookup_table(&qi_lb60_nand_gpio_table);
spi: spi-gpio: Rewrite to use GPIO descriptors This converts the bit-banged GPIO SPI driver to looking up and using GPIO descriptors to get a handle on GPIO lines for SCK, MOSI, MISO and all CS lines. All existing board files are converted in one go to keep it all consistent. With these conversions I rarely find any interrim steps that makes any sense. Device tree probing and GPIO handling should work like before also after this patch. For board files, we stop using controller data to pass the GPIO line for chip select, instead we pass this as a GPIO descriptor lookup like everything else. In some s3c24xx machines the names of the SPI devices were set to "spi-gpio" rather than "spi_gpio" which can never have worked, I fixed it working (I guess) as part of this patch set. Sometimes I wonder how this code got upstream in the first place, it obviously is not tested. mach-s3c64xx/mach-smartq.c has the same problem and additionally defines the *same* GPIO line for MOSI and MISO which is not going to be accepted by gpiolib. As the lines were number 1,2,2 I assumed it was a typo and use lines 1,2,3. A comment gives awat that line 0 is chip select though no actual SPI device is provided for the LCD supposed to be on this bit-banged SPI bus. I left it intact instead of just deleting the bus though. Kill off board file code that try to initialize the SPI lines to the same values that they will later be set by the spi_gpio driver anyways. Given the huge number of weird things in these board files I do not think this code is very tested or put in with much afterthought anyways. In order to assert that we do not get performance regressions on this crucial bing-banged driver, a ran a script like this dumping the Ilitek ILI9322 regmap 10000 times (it has no caching obviously) on an otherwise idle system in two iterations before and after the patches: #!/bin/sh for run in `seq 10000` do cat /debug/regmap/spi0.0/registers > /dev/null done Before the patch: time test.sh real 3m 41.03s user 0m 29.41s sys 3m 7.22s time test.sh real 3m 44.24s user 0m 32.31s sys 3m 7.60s After the patch: time test.sh real 3m 41.32s user 0m 28.92s sys 3m 8.08s time test.sh real 3m 39.92s user 0m 30.20s sys 3m 5.56s So any performance differences seems to be in the error margin. Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Acked-by: Olof Johansson <olof@lixom.net> Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com> Signed-off-by: Mark Brown <broonie@kernel.org>
2018-02-12 05:45:30 -07:00
gpiod_add_lookup_table(&qi_lb60_spigpio_gpio_table);
gpiod_add_lookup_table(&qi_lb60_mmc_gpio_table);
spi_register_board_info(qi_lb60_spi_board_info,
ARRAY_SIZE(qi_lb60_spi_board_info));
pwm_add_table(qi_lb60_pwm_lookup, ARRAY_SIZE(qi_lb60_pwm_lookup));
pinctrl_register_mappings(pin_map, ARRAY_SIZE(pin_map));
return platform_add_devices(jz_platform_devices,
ARRAY_SIZE(jz_platform_devices));
}
static int __init qi_lb60_board_setup(void)
{
printk(KERN_INFO "Qi Hardware JZ4740 QI LB60 setup\n");
if (qi_lb60_init_platform_devices())
panic("Failed to initialize platform devices");
return 0;
}
arch_initcall(qi_lb60_board_setup);