1
0
Fork 0

mm: support memblock alloc on the exact node for sparse_buffer_init()

sparse_buffer_init() use memblock_alloc_try_nid_raw() to allocate memory
for page management structure, if memory allocation fails from specified
node, it will fall back to allocate from other nodes.

Normally, the page management structure will not exceed 2% of the total
memory, but a large continuous block of allocation is needed.  In most
cases, memory allocation from the specified node will succeed, but a
node memory become highly fragmented will fail.  we expect to allocate
memory base section rather than by allocating a large block of memory
from other NUMA nodes

Add memblock_alloc_exact_nid_raw() for this situation, which allocate
boot memory block on the exact node.  If a large contiguous block memory
allocate fail in sparse_buffer_init(), it will fall back to allocate
small block memory base section.

Link: http://lkml.kernel.org/r/66755ea7-ab10-8882-36fd-3e02b03775d5@huawei.com
Signed-off-by: Yunfeng Ye <yeyunfeng@huawei.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
alistair/sunxi64-5.5-dsi
Yunfeng Ye 2019-11-30 17:56:27 -08:00 committed by Linus Torvalds
parent 95830666be
commit 0ac398b171
3 changed files with 58 additions and 12 deletions

View File

@ -358,6 +358,9 @@ static inline phys_addr_t memblock_phys_alloc(phys_addr_t size,
MEMBLOCK_ALLOC_ACCESSIBLE); MEMBLOCK_ALLOC_ACCESSIBLE);
} }
void *memblock_alloc_exact_nid_raw(phys_addr_t size, phys_addr_t align,
phys_addr_t min_addr, phys_addr_t max_addr,
int nid);
void *memblock_alloc_try_nid_raw(phys_addr_t size, phys_addr_t align, void *memblock_alloc_try_nid_raw(phys_addr_t size, phys_addr_t align,
phys_addr_t min_addr, phys_addr_t max_addr, phys_addr_t min_addr, phys_addr_t max_addr,
int nid); int nid);

View File

@ -1319,12 +1319,13 @@ __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
* @start: the lower bound of the memory region to allocate (phys address) * @start: the lower bound of the memory region to allocate (phys address)
* @end: the upper bound of the memory region to allocate (phys address) * @end: the upper bound of the memory region to allocate (phys address)
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
* @exact_nid: control the allocation fall back to other nodes
* *
* The allocation is performed from memory region limited by * The allocation is performed from memory region limited by
* memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE. * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
* *
* If the specified node can not hold the requested memory the * If the specified node can not hold the requested memory and @exact_nid
* allocation falls back to any node in the system * is false, the allocation falls back to any node in the system.
* *
* For systems with memory mirroring, the allocation is attempted first * For systems with memory mirroring, the allocation is attempted first
* from the regions with mirroring enabled and then retried from any * from the regions with mirroring enabled and then retried from any
@ -1338,7 +1339,8 @@ __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
*/ */
static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size, static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
phys_addr_t align, phys_addr_t start, phys_addr_t align, phys_addr_t start,
phys_addr_t end, int nid) phys_addr_t end, int nid,
bool exact_nid)
{ {
enum memblock_flags flags = choose_memblock_flags(); enum memblock_flags flags = choose_memblock_flags();
phys_addr_t found; phys_addr_t found;
@ -1358,7 +1360,7 @@ again:
if (found && !memblock_reserve(found, size)) if (found && !memblock_reserve(found, size))
goto done; goto done;
if (nid != NUMA_NO_NODE) { if (nid != NUMA_NO_NODE && !exact_nid) {
found = memblock_find_in_range_node(size, align, start, found = memblock_find_in_range_node(size, align, start,
end, NUMA_NO_NODE, end, NUMA_NO_NODE,
flags); flags);
@ -1406,7 +1408,8 @@ phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
phys_addr_t start, phys_addr_t start,
phys_addr_t end) phys_addr_t end)
{ {
return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE); return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
false);
} }
/** /**
@ -1425,7 +1428,7 @@ phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
{ {
return memblock_alloc_range_nid(size, align, 0, return memblock_alloc_range_nid(size, align, 0,
MEMBLOCK_ALLOC_ACCESSIBLE, nid); MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
} }
/** /**
@ -1435,6 +1438,7 @@ phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t ali
* @min_addr: the lower bound of the memory region to allocate (phys address) * @min_addr: the lower bound of the memory region to allocate (phys address)
* @max_addr: the upper bound of the memory region to allocate (phys address) * @max_addr: the upper bound of the memory region to allocate (phys address)
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
* @exact_nid: control the allocation fall back to other nodes
* *
* Allocates memory block using memblock_alloc_range_nid() and * Allocates memory block using memblock_alloc_range_nid() and
* converts the returned physical address to virtual. * converts the returned physical address to virtual.
@ -1450,7 +1454,7 @@ phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t ali
static void * __init memblock_alloc_internal( static void * __init memblock_alloc_internal(
phys_addr_t size, phys_addr_t align, phys_addr_t size, phys_addr_t align,
phys_addr_t min_addr, phys_addr_t max_addr, phys_addr_t min_addr, phys_addr_t max_addr,
int nid) int nid, bool exact_nid)
{ {
phys_addr_t alloc; phys_addr_t alloc;
@ -1465,11 +1469,13 @@ static void * __init memblock_alloc_internal(
if (max_addr > memblock.current_limit) if (max_addr > memblock.current_limit)
max_addr = memblock.current_limit; max_addr = memblock.current_limit;
alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid); alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
exact_nid);
/* retry allocation without lower limit */ /* retry allocation without lower limit */
if (!alloc && min_addr) if (!alloc && min_addr)
alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid); alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
exact_nid);
if (!alloc) if (!alloc)
return NULL; return NULL;
@ -1477,6 +1483,43 @@ static void * __init memblock_alloc_internal(
return phys_to_virt(alloc); return phys_to_virt(alloc);
} }
/**
* memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
* without zeroing memory
* @size: size of memory block to be allocated in bytes
* @align: alignment of the region and block's size
* @min_addr: the lower bound of the memory region from where the allocation
* is preferred (phys address)
* @max_addr: the upper bound of the memory region from where the allocation
* is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
* allocate only from memory limited by memblock.current_limit value
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
*
* Public function, provides additional debug information (including caller
* info), if enabled. Does not zero allocated memory.
*
* Return:
* Virtual address of allocated memory block on success, NULL on failure.
*/
void * __init memblock_alloc_exact_nid_raw(
phys_addr_t size, phys_addr_t align,
phys_addr_t min_addr, phys_addr_t max_addr,
int nid)
{
void *ptr;
memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
__func__, (u64)size, (u64)align, nid, &min_addr,
&max_addr, (void *)_RET_IP_);
ptr = memblock_alloc_internal(size, align,
min_addr, max_addr, nid, true);
if (ptr && size > 0)
page_init_poison(ptr, size);
return ptr;
}
/** /**
* memblock_alloc_try_nid_raw - allocate boot memory block without zeroing * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
* memory and without panicking * memory and without panicking
@ -1508,7 +1551,7 @@ void * __init memblock_alloc_try_nid_raw(
&max_addr, (void *)_RET_IP_); &max_addr, (void *)_RET_IP_);
ptr = memblock_alloc_internal(size, align, ptr = memblock_alloc_internal(size, align,
min_addr, max_addr, nid); min_addr, max_addr, nid, false);
if (ptr && size > 0) if (ptr && size > 0)
page_init_poison(ptr, size); page_init_poison(ptr, size);
@ -1543,7 +1586,7 @@ void * __init memblock_alloc_try_nid(
__func__, (u64)size, (u64)align, nid, &min_addr, __func__, (u64)size, (u64)align, nid, &min_addr,
&max_addr, (void *)_RET_IP_); &max_addr, (void *)_RET_IP_);
ptr = memblock_alloc_internal(size, align, ptr = memblock_alloc_internal(size, align,
min_addr, max_addr, nid); min_addr, max_addr, nid, false);
if (ptr) if (ptr)
memset(ptr, 0, size); memset(ptr, 0, size);

View File

@ -486,7 +486,7 @@ static void __init sparse_buffer_init(unsigned long size, int nid)
* and we want it to be properly aligned to the section size - this is * and we want it to be properly aligned to the section size - this is
* especially the case for VMEMMAP which maps memmap to PMDs * especially the case for VMEMMAP which maps memmap to PMDs
*/ */
sparsemap_buf = memblock_alloc_try_nid_raw(size, section_map_size(), sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(),
addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid); addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
sparsemap_buf_end = sparsemap_buf + size; sparsemap_buf_end = sparsemap_buf + size;
} }