1
0
Fork 0

KVM updates for v4.20

ARM:
  - Improved guest IPA space support (32 to 52 bits)
 
  - RAS event delivery for 32bit
 
  - PMU fixes
 
  - Guest entry hardening
 
  - Various cleanups
 
  - Port of dirty_log_test selftest
 
 PPC:
  - Nested HV KVM support for radix guests on POWER9.  The performance is
    much better than with PR KVM.  Migration and arbitrary level of
    nesting is supported.
 
  - Disable nested HV-KVM on early POWER9 chips that need a particular hardware
    bug workaround
 
  - One VM per core mode to prevent potential data leaks
 
  - PCI pass-through optimization
 
  - merge ppc-kvm topic branch and kvm-ppc-fixes to get a better base
 
 s390:
  - Initial version of AP crypto virtualization via vfio-mdev
 
  - Improvement for vfio-ap
 
  - Set the host program identifier
 
  - Optimize page table locking
 
 x86:
  - Enable nested virtualization by default
 
  - Implement Hyper-V IPI hypercalls
 
  - Improve #PF and #DB handling
 
  - Allow guests to use Enlightened VMCS
 
  - Add migration selftests for VMCS and Enlightened VMCS
 
  - Allow coalesced PIO accesses
 
  - Add an option to perform nested VMCS host state consistency check
    through hardware
 
  - Automatic tuning of lapic_timer_advance_ns
 
  - Many fixes, minor improvements, and cleanups
 -----BEGIN PGP SIGNATURE-----
 
 iQEcBAABCAAGBQJb0FINAAoJEED/6hsPKofoI60IAJRS3vOAQ9Fav8cJsO1oBHcX
 3+NexfnBke1bzrjIR3SUcHKGZbdnVPNZc+Q4JjIbPpPmmOMU5jc9BC1dmd5f4Vzh
 BMnQ0yCvgFv3A3fy/Icx1Z8NJppxosdmqdQLrQrNo8aD3cjnqY2yQixdXrAfzLzw
 XEgKdIFCCz8oVN/C9TT4wwJn6l9OE7BM5bMKGFy5VNXzMu7t64UDOLbbjZxNgi1g
 teYvfVGdt5mH0N7b2GPPWRbJmgnz5ygVVpVNQUEFrdKZoCm6r5u9d19N+RRXAwan
 ZYFj10W2T8pJOUf3tryev4V33X7MRQitfJBo4tP5hZfi9uRX89np5zP1CFE7AtY=
 =yEPW
 -----END PGP SIGNATURE-----

Merge tag 'kvm-4.20-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Radim Krčmář:
 "ARM:
   - Improved guest IPA space support (32 to 52 bits)

   - RAS event delivery for 32bit

   - PMU fixes

   - Guest entry hardening

   - Various cleanups

   - Port of dirty_log_test selftest

  PPC:
   - Nested HV KVM support for radix guests on POWER9. The performance
     is much better than with PR KVM. Migration and arbitrary level of
     nesting is supported.

   - Disable nested HV-KVM on early POWER9 chips that need a particular
     hardware bug workaround

   - One VM per core mode to prevent potential data leaks

   - PCI pass-through optimization

   - merge ppc-kvm topic branch and kvm-ppc-fixes to get a better base

  s390:
   - Initial version of AP crypto virtualization via vfio-mdev

   - Improvement for vfio-ap

   - Set the host program identifier

   - Optimize page table locking

  x86:
   - Enable nested virtualization by default

   - Implement Hyper-V IPI hypercalls

   - Improve #PF and #DB handling

   - Allow guests to use Enlightened VMCS

   - Add migration selftests for VMCS and Enlightened VMCS

   - Allow coalesced PIO accesses

   - Add an option to perform nested VMCS host state consistency check
     through hardware

   - Automatic tuning of lapic_timer_advance_ns

   - Many fixes, minor improvements, and cleanups"

* tag 'kvm-4.20-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (204 commits)
  KVM/nVMX: Do not validate that posted_intr_desc_addr is page aligned
  Revert "kvm: x86: optimize dr6 restore"
  KVM: PPC: Optimize clearing TCEs for sparse tables
  x86/kvm/nVMX: tweak shadow fields
  selftests/kvm: add missing executables to .gitignore
  KVM: arm64: Safety check PSTATE when entering guest and handle IL
  KVM: PPC: Book3S HV: Don't use streamlined entry path on early POWER9 chips
  arm/arm64: KVM: Enable 32 bits kvm vcpu events support
  arm/arm64: KVM: Rename function kvm_arch_dev_ioctl_check_extension()
  KVM: arm64: Fix caching of host MDCR_EL2 value
  KVM: VMX: enable nested virtualization by default
  KVM/x86: Use 32bit xor to clear registers in svm.c
  kvm: x86: Introduce KVM_CAP_EXCEPTION_PAYLOAD
  kvm: vmx: Defer setting of DR6 until #DB delivery
  kvm: x86: Defer setting of CR2 until #PF delivery
  kvm: x86: Add payload operands to kvm_multiple_exception
  kvm: x86: Add exception payload fields to kvm_vcpu_events
  kvm: x86: Add has_payload and payload to kvm_queued_exception
  KVM: Documentation: Fix omission in struct kvm_vcpu_events
  KVM: selftests: add Enlightened VMCS test
  ...
hifive-unleashed-5.1
Linus Torvalds 2018-10-25 17:57:35 -07:00
commit 0d1e8b8d2b
138 changed files with 12445 additions and 3248 deletions

View File

@ -0,0 +1,837 @@
Introduction:
============
The Adjunct Processor (AP) facility is an IBM Z cryptographic facility comprised
of three AP instructions and from 1 up to 256 PCIe cryptographic adapter cards.
The AP devices provide cryptographic functions to all CPUs assigned to a
linux system running in an IBM Z system LPAR.
The AP adapter cards are exposed via the AP bus. The motivation for vfio-ap
is to make AP cards available to KVM guests using the VFIO mediated device
framework. This implementation relies considerably on the s390 virtualization
facilities which do most of the hard work of providing direct access to AP
devices.
AP Architectural Overview:
=========================
To facilitate the comprehension of the design, let's start with some
definitions:
* AP adapter
An AP adapter is an IBM Z adapter card that can perform cryptographic
functions. There can be from 0 to 256 adapters assigned to an LPAR. Adapters
assigned to the LPAR in which a linux host is running will be available to
the linux host. Each adapter is identified by a number from 0 to 255; however,
the maximum adapter number is determined by machine model and/or adapter type.
When installed, an AP adapter is accessed by AP instructions executed by any
CPU.
The AP adapter cards are assigned to a given LPAR via the system's Activation
Profile which can be edited via the HMC. When the linux host system is IPL'd
in the LPAR, the AP bus detects the AP adapter cards assigned to the LPAR and
creates a sysfs device for each assigned adapter. For example, if AP adapters
4 and 10 (0x0a) are assigned to the LPAR, the AP bus will create the following
sysfs device entries:
/sys/devices/ap/card04
/sys/devices/ap/card0a
Symbolic links to these devices will also be created in the AP bus devices
sub-directory:
/sys/bus/ap/devices/[card04]
/sys/bus/ap/devices/[card04]
* AP domain
An adapter is partitioned into domains. An adapter can hold up to 256 domains
depending upon the adapter type and hardware configuration. A domain is
identified by a number from 0 to 255; however, the maximum domain number is
determined by machine model and/or adapter type.. A domain can be thought of
as a set of hardware registers and memory used for processing AP commands. A
domain can be configured with a secure private key used for clear key
encryption. A domain is classified in one of two ways depending upon how it
may be accessed:
* Usage domains are domains that are targeted by an AP instruction to
process an AP command.
* Control domains are domains that are changed by an AP command sent to a
usage domain; for example, to set the secure private key for the control
domain.
The AP usage and control domains are assigned to a given LPAR via the system's
Activation Profile which can be edited via the HMC. When a linux host system
is IPL'd in the LPAR, the AP bus module detects the AP usage and control
domains assigned to the LPAR. The domain number of each usage domain and
adapter number of each AP adapter are combined to create AP queue devices
(see AP Queue section below). The domain number of each control domain will be
represented in a bitmask and stored in a sysfs file
/sys/bus/ap/ap_control_domain_mask. The bits in the mask, from most to least
significant bit, correspond to domains 0-255.
* AP Queue
An AP queue is the means by which an AP command is sent to a usage domain
inside a specific adapter. An AP queue is identified by a tuple
comprised of an AP adapter ID (APID) and an AP queue index (APQI). The
APQI corresponds to a given usage domain number within the adapter. This tuple
forms an AP Queue Number (APQN) uniquely identifying an AP queue. AP
instructions include a field containing the APQN to identify the AP queue to
which the AP command is to be sent for processing.
The AP bus will create a sysfs device for each APQN that can be derived from
the cross product of the AP adapter and usage domain numbers detected when the
AP bus module is loaded. For example, if adapters 4 and 10 (0x0a) and usage
domains 6 and 71 (0x47) are assigned to the LPAR, the AP bus will create the
following sysfs entries:
/sys/devices/ap/card04/04.0006
/sys/devices/ap/card04/04.0047
/sys/devices/ap/card0a/0a.0006
/sys/devices/ap/card0a/0a.0047
The following symbolic links to these devices will be created in the AP bus
devices subdirectory:
/sys/bus/ap/devices/[04.0006]
/sys/bus/ap/devices/[04.0047]
/sys/bus/ap/devices/[0a.0006]
/sys/bus/ap/devices/[0a.0047]
* AP Instructions:
There are three AP instructions:
* NQAP: to enqueue an AP command-request message to a queue
* DQAP: to dequeue an AP command-reply message from a queue
* PQAP: to administer the queues
AP instructions identify the domain that is targeted to process the AP
command; this must be one of the usage domains. An AP command may modify a
domain that is not one of the usage domains, but the modified domain
must be one of the control domains.
AP and SIE:
==========
Let's now take a look at how AP instructions executed on a guest are interpreted
by the hardware.
A satellite control block called the Crypto Control Block (CRYCB) is attached to
our main hardware virtualization control block. The CRYCB contains three fields
to identify the adapters, usage domains and control domains assigned to the KVM
guest:
* The AP Mask (APM) field is a bit mask that identifies the AP adapters assigned
to the KVM guest. Each bit in the mask, from left to right (i.e. from most
significant to least significant bit in big endian order), corresponds to
an APID from 0-255. If a bit is set, the corresponding adapter is valid for
use by the KVM guest.
* The AP Queue Mask (AQM) field is a bit mask identifying the AP usage domains
assigned to the KVM guest. Each bit in the mask, from left to right (i.e. from
most significant to least significant bit in big endian order), corresponds to
an AP queue index (APQI) from 0-255. If a bit is set, the corresponding queue
is valid for use by the KVM guest.
* The AP Domain Mask field is a bit mask that identifies the AP control domains
assigned to the KVM guest. The ADM bit mask controls which domains can be
changed by an AP command-request message sent to a usage domain from the
guest. Each bit in the mask, from left to right (i.e. from most significant to
least significant bit in big endian order), corresponds to a domain from
0-255. If a bit is set, the corresponding domain can be modified by an AP
command-request message sent to a usage domain.
If you recall from the description of an AP Queue, AP instructions include
an APQN to identify the AP queue to which an AP command-request message is to be
sent (NQAP and PQAP instructions), or from which a command-reply message is to
be received (DQAP instruction). The validity of an APQN is defined by the matrix
calculated from the APM and AQM; it is the cross product of all assigned adapter
numbers (APM) with all assigned queue indexes (AQM). For example, if adapters 1
and 2 and usage domains 5 and 6 are assigned to a guest, the APQNs (1,5), (1,6),
(2,5) and (2,6) will be valid for the guest.
The APQNs can provide secure key functionality - i.e., a private key is stored
on the adapter card for each of its domains - so each APQN must be assigned to
at most one guest or to the linux host.
Example 1: Valid configuration:
------------------------------
Guest1: adapters 1,2 domains 5,6
Guest2: adapter 1,2 domain 7
This is valid because both guests have a unique set of APQNs:
Guest1 has APQNs (1,5), (1,6), (2,5), (2,6);
Guest2 has APQNs (1,7), (2,7)
Example 2: Valid configuration:
------------------------------
Guest1: adapters 1,2 domains 5,6
Guest2: adapters 3,4 domains 5,6
This is also valid because both guests have a unique set of APQNs:
Guest1 has APQNs (1,5), (1,6), (2,5), (2,6);
Guest2 has APQNs (3,5), (3,6), (4,5), (4,6)
Example 3: Invalid configuration:
--------------------------------
Guest1: adapters 1,2 domains 5,6
Guest2: adapter 1 domains 6,7
This is an invalid configuration because both guests have access to
APQN (1,6).
The Design:
===========
The design introduces three new objects:
1. AP matrix device
2. VFIO AP device driver (vfio_ap.ko)
3. VFIO AP mediated matrix pass-through device
The VFIO AP device driver
-------------------------
The VFIO AP (vfio_ap) device driver serves the following purposes:
1. Provides the interfaces to secure APQNs for exclusive use of KVM guests.
2. Sets up the VFIO mediated device interfaces to manage a mediated matrix
device and creates the sysfs interfaces for assigning adapters, usage
domains, and control domains comprising the matrix for a KVM guest.
3. Configures the APM, AQM and ADM in the CRYCB referenced by a KVM guest's
SIE state description to grant the guest access to a matrix of AP devices
Reserve APQNs for exclusive use of KVM guests
---------------------------------------------
The following block diagram illustrates the mechanism by which APQNs are
reserved:
+------------------+
7 remove | |
+--------------------> cex4queue driver |
| | |
| +------------------+
|
|
| +------------------+ +-----------------+
| 5 register driver | | 3 create | |
| +----------------> Device core +----------> matrix device |
| | | | | |
| | +--------^---------+ +-----------------+
| | |
| | +-------------------+
| | +-----------------------------------+ |
| | | 4 register AP driver | | 2 register device
| | | | |
+--------+---+-v---+ +--------+-------+-+
| | | |
| ap_bus +--------------------- > vfio_ap driver |
| | 8 probe | |
+--------^---------+ +--^--^------------+
6 edit | | |
apmask | +-----------------------------+ | 9 mdev create
aqmask | | 1 modprobe |
+--------+-----+---+ +----------------+-+ +------------------+
| | | |8 create | mediated |
| admin | | VFIO device core |---------> matrix |
| + | | | device |
+------+-+---------+ +--------^---------+ +--------^---------+
| | | |
| | 9 create vfio_ap-passthrough | |
| +------------------------------+ |
+-------------------------------------------------------------+
10 assign adapter/domain/control domain
The process for reserving an AP queue for use by a KVM guest is:
1. The administrator loads the vfio_ap device driver
2. The vfio-ap driver during its initialization will register a single 'matrix'
device with the device core. This will serve as the parent device for
all mediated matrix devices used to configure an AP matrix for a guest.
3. The /sys/devices/vfio_ap/matrix device is created by the device core
4 The vfio_ap device driver will register with the AP bus for AP queue devices
of type 10 and higher (CEX4 and newer). The driver will provide the vfio_ap
driver's probe and remove callback interfaces. Devices older than CEX4 queues
are not supported to simplify the implementation by not needlessly
complicating the design by supporting older devices that will go out of
service in the relatively near future, and for which there are few older
systems around on which to test.
5. The AP bus registers the vfio_ap device driver with the device core
6. The administrator edits the AP adapter and queue masks to reserve AP queues
for use by the vfio_ap device driver.
7. The AP bus removes the AP queues reserved for the vfio_ap driver from the
default zcrypt cex4queue driver.
8. The AP bus probes the vfio_ap device driver to bind the queues reserved for
it.
9. The administrator creates a passthrough type mediated matrix device to be
used by a guest
10 The administrator assigns the adapters, usage domains and control domains
to be exclusively used by a guest.
Set up the VFIO mediated device interfaces
------------------------------------------
The VFIO AP device driver utilizes the common interface of the VFIO mediated
device core driver to:
* Register an AP mediated bus driver to add a mediated matrix device to and
remove it from a VFIO group.
* Create and destroy a mediated matrix device
* Add a mediated matrix device to and remove it from the AP mediated bus driver
* Add a mediated matrix device to and remove it from an IOMMU group
The following high-level block diagram shows the main components and interfaces
of the VFIO AP mediated matrix device driver:
+-------------+
| |
| +---------+ | mdev_register_driver() +--------------+
| | Mdev | +<-----------------------+ |
| | bus | | | vfio_mdev.ko |
| | driver | +----------------------->+ |<-> VFIO user
| +---------+ | probe()/remove() +--------------+ APIs
| |
| MDEV CORE |
| MODULE |
| mdev.ko |
| +---------+ | mdev_register_device() +--------------+
| |Physical | +<-----------------------+ |
| | device | | | vfio_ap.ko |<-> matrix
| |interface| +----------------------->+ | device
| +---------+ | callback +--------------+
+-------------+
During initialization of the vfio_ap module, the matrix device is registered
with an 'mdev_parent_ops' structure that provides the sysfs attribute
structures, mdev functions and callback interfaces for managing the mediated
matrix device.
* sysfs attribute structures:
* supported_type_groups
The VFIO mediated device framework supports creation of user-defined
mediated device types. These mediated device types are specified
via the 'supported_type_groups' structure when a device is registered
with the mediated device framework. The registration process creates the
sysfs structures for each mediated device type specified in the
'mdev_supported_types' sub-directory of the device being registered. Along
with the device type, the sysfs attributes of the mediated device type are
provided.
The VFIO AP device driver will register one mediated device type for
passthrough devices:
/sys/devices/vfio_ap/matrix/mdev_supported_types/vfio_ap-passthrough
Only the read-only attributes required by the VFIO mdev framework will
be provided:
... name
... device_api
... available_instances
... device_api
Where:
* name: specifies the name of the mediated device type
* device_api: the mediated device type's API
* available_instances: the number of mediated matrix passthrough devices
that can be created
* device_api: specifies the VFIO API
* mdev_attr_groups
This attribute group identifies the user-defined sysfs attributes of the
mediated device. When a device is registered with the VFIO mediated device
framework, the sysfs attribute files identified in the 'mdev_attr_groups'
structure will be created in the mediated matrix device's directory. The
sysfs attributes for a mediated matrix device are:
* assign_adapter:
* unassign_adapter:
Write-only attributes for assigning/unassigning an AP adapter to/from the
mediated matrix device. To assign/unassign an adapter, the APID of the
adapter is echoed to the respective attribute file.
* assign_domain:
* unassign_domain:
Write-only attributes for assigning/unassigning an AP usage domain to/from
the mediated matrix device. To assign/unassign a domain, the domain
number of the the usage domain is echoed to the respective attribute
file.
* matrix:
A read-only file for displaying the APQNs derived from the cross product
of the adapter and domain numbers assigned to the mediated matrix device.
* assign_control_domain:
* unassign_control_domain:
Write-only attributes for assigning/unassigning an AP control domain
to/from the mediated matrix device. To assign/unassign a control domain,
the ID of the domain to be assigned/unassigned is echoed to the respective
attribute file.
* control_domains:
A read-only file for displaying the control domain numbers assigned to the
mediated matrix device.
* functions:
* create:
allocates the ap_matrix_mdev structure used by the vfio_ap driver to:
* Store the reference to the KVM structure for the guest using the mdev
* Store the AP matrix configuration for the adapters, domains, and control
domains assigned via the corresponding sysfs attributes files
* remove:
deallocates the mediated matrix device's ap_matrix_mdev structure. This will
be allowed only if a running guest is not using the mdev.
* callback interfaces
* open:
The vfio_ap driver uses this callback to register a
VFIO_GROUP_NOTIFY_SET_KVM notifier callback function for the mdev matrix
device. The open is invoked when QEMU connects the VFIO iommu group
for the mdev matrix device to the MDEV bus. Access to the KVM structure used
to configure the KVM guest is provided via this callback. The KVM structure,
is used to configure the guest's access to the AP matrix defined via the
mediated matrix device's sysfs attribute files.
* release:
unregisters the VFIO_GROUP_NOTIFY_SET_KVM notifier callback function for the
mdev matrix device and deconfigures the guest's AP matrix.
Configure the APM, AQM and ADM in the CRYCB:
-------------------------------------------
Configuring the AP matrix for a KVM guest will be performed when the
VFIO_GROUP_NOTIFY_SET_KVM notifier callback is invoked. The notifier
function is called when QEMU connects to KVM. The guest's AP matrix is
configured via it's CRYCB by:
* Setting the bits in the APM corresponding to the APIDs assigned to the
mediated matrix device via its 'assign_adapter' interface.
* Setting the bits in the AQM corresponding to the domains assigned to the
mediated matrix device via its 'assign_domain' interface.
* Setting the bits in the ADM corresponding to the domain dIDs assigned to the
mediated matrix device via its 'assign_control_domains' interface.
The CPU model features for AP
-----------------------------
The AP stack relies on the presence of the AP instructions as well as two
facilities: The AP Facilities Test (APFT) facility; and the AP Query
Configuration Information (QCI) facility. These features/facilities are made
available to a KVM guest via the following CPU model features:
1. ap: Indicates whether the AP instructions are installed on the guest. This
feature will be enabled by KVM only if the AP instructions are installed
on the host.
2. apft: Indicates the APFT facility is available on the guest. This facility
can be made available to the guest only if it is available on the host (i.e.,
facility bit 15 is set).
3. apqci: Indicates the AP QCI facility is available on the guest. This facility
can be made available to the guest only if it is available on the host (i.e.,
facility bit 12 is set).
Note: If the user chooses to specify a CPU model different than the 'host'
model to QEMU, the CPU model features and facilities need to be turned on
explicitly; for example:
/usr/bin/qemu-system-s390x ... -cpu z13,ap=on,apqci=on,apft=on
A guest can be precluded from using AP features/facilities by turning them off
explicitly; for example:
/usr/bin/qemu-system-s390x ... -cpu host,ap=off,apqci=off,apft=off
Note: If the APFT facility is turned off (apft=off) for the guest, the guest
will not see any AP devices. The zcrypt device drivers that register for type 10
and newer AP devices - i.e., the cex4card and cex4queue device drivers - need
the APFT facility to ascertain the facilities installed on a given AP device. If
the APFT facility is not installed on the guest, then the probe of device
drivers will fail since only type 10 and newer devices can be configured for
guest use.
Example:
=======
Let's now provide an example to illustrate how KVM guests may be given
access to AP facilities. For this example, we will show how to configure
three guests such that executing the lszcrypt command on the guests would
look like this:
Guest1
------
CARD.DOMAIN TYPE MODE
------------------------------
05 CEX5C CCA-Coproc
05.0004 CEX5C CCA-Coproc
05.00ab CEX5C CCA-Coproc
06 CEX5A Accelerator
06.0004 CEX5A Accelerator
06.00ab CEX5C CCA-Coproc
Guest2
------
CARD.DOMAIN TYPE MODE
------------------------------
05 CEX5A Accelerator
05.0047 CEX5A Accelerator
05.00ff CEX5A Accelerator
Guest2
------
CARD.DOMAIN TYPE MODE
------------------------------
06 CEX5A Accelerator
06.0047 CEX5A Accelerator
06.00ff CEX5A Accelerator
These are the steps:
1. Install the vfio_ap module on the linux host. The dependency chain for the
vfio_ap module is:
* iommu
* s390
* zcrypt
* vfio
* vfio_mdev
* vfio_mdev_device
* KVM
To build the vfio_ap module, the kernel build must be configured with the
following Kconfig elements selected:
* IOMMU_SUPPORT
* S390
* ZCRYPT
* S390_AP_IOMMU
* VFIO
* VFIO_MDEV
* VFIO_MDEV_DEVICE
* KVM
If using make menuconfig select the following to build the vfio_ap module:
-> Device Drivers
-> IOMMU Hardware Support
select S390 AP IOMMU Support
-> VFIO Non-Privileged userspace driver framework
-> Mediated device driver frramework
-> VFIO driver for Mediated devices
-> I/O subsystem
-> VFIO support for AP devices
2. Secure the AP queues to be used by the three guests so that the host can not
access them. To secure them, there are two sysfs files that specify
bitmasks marking a subset of the APQN range as 'usable by the default AP
queue device drivers' or 'not usable by the default device drivers' and thus
available for use by the vfio_ap device driver'. The location of the sysfs
files containing the masks are:
/sys/bus/ap/apmask
/sys/bus/ap/aqmask
The 'apmask' is a 256-bit mask that identifies a set of AP adapter IDs
(APID). Each bit in the mask, from left to right (i.e., from most significant
to least significant bit in big endian order), corresponds to an APID from
0-255. If a bit is set, the APID is marked as usable only by the default AP
queue device drivers; otherwise, the APID is usable by the vfio_ap
device driver.
The 'aqmask' is a 256-bit mask that identifies a set of AP queue indexes
(APQI). Each bit in the mask, from left to right (i.e., from most significant
to least significant bit in big endian order), corresponds to an APQI from
0-255. If a bit is set, the APQI is marked as usable only by the default AP
queue device drivers; otherwise, the APQI is usable by the vfio_ap device
driver.
Take, for example, the following mask:
0x7dffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
It indicates:
1, 2, 3, 4, 5, and 7-255 belong to the default drivers' pool, and 0 and 6
belong to the vfio_ap device driver's pool.
The APQN of each AP queue device assigned to the linux host is checked by the
AP bus against the set of APQNs derived from the cross product of APIDs
and APQIs marked as usable only by the default AP queue device drivers. If a
match is detected, only the default AP queue device drivers will be probed;
otherwise, the vfio_ap device driver will be probed.
By default, the two masks are set to reserve all APQNs for use by the default
AP queue device drivers. There are two ways the default masks can be changed:
1. The sysfs mask files can be edited by echoing a string into the
respective sysfs mask file in one of two formats:
* An absolute hex string starting with 0x - like "0x12345678" - sets
the mask. If the given string is shorter than the mask, it is padded
with 0s on the right; for example, specifying a mask value of 0x41 is
the same as specifying:
0x4100000000000000000000000000000000000000000000000000000000000000
Keep in mind that the mask reads from left to right (i.e., most
significant to least significant bit in big endian order), so the mask
above identifies device numbers 1 and 7 (01000001).
If the string is longer than the mask, the operation is terminated with
an error (EINVAL).
* Individual bits in the mask can be switched on and off by specifying
each bit number to be switched in a comma separated list. Each bit
number string must be prepended with a ('+') or minus ('-') to indicate
the corresponding bit is to be switched on ('+') or off ('-'). Some
valid values are:
"+0" switches bit 0 on
"-13" switches bit 13 off
"+0x41" switches bit 65 on
"-0xff" switches bit 255 off
The following example:
+0,-6,+0x47,-0xf0
Switches bits 0 and 71 (0x47) on
Switches bits 6 and 240 (0xf0) off
Note that the bits not specified in the list remain as they were before
the operation.
2. The masks can also be changed at boot time via parameters on the kernel
command line like this:
ap.apmask=0xffff ap.aqmask=0x40
This would create the following masks:
apmask:
0xffff000000000000000000000000000000000000000000000000000000000000
aqmask:
0x4000000000000000000000000000000000000000000000000000000000000000
Resulting in these two pools:
default drivers pool: adapter 0-15, domain 1
alternate drivers pool: adapter 16-255, domains 0, 2-255
Securing the APQNs for our example:
----------------------------------
To secure the AP queues 05.0004, 05.0047, 05.00ab, 05.00ff, 06.0004, 06.0047,
06.00ab, and 06.00ff for use by the vfio_ap device driver, the corresponding
APQNs can either be removed from the default masks:
echo -5,-6 > /sys/bus/ap/apmask
echo -4,-0x47,-0xab,-0xff > /sys/bus/ap/aqmask
Or the masks can be set as follows:
echo 0xf9ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff \
> apmask
echo 0xf7fffffffffffffffeffffffffffffffffffffffffeffffffffffffffffffffe \
> aqmask
This will result in AP queues 05.0004, 05.0047, 05.00ab, 05.00ff, 06.0004,
06.0047, 06.00ab, and 06.00ff getting bound to the vfio_ap device driver. The
sysfs directory for the vfio_ap device driver will now contain symbolic links
to the AP queue devices bound to it:
/sys/bus/ap
... [drivers]
...... [vfio_ap]
......... [05.0004]
......... [05.0047]
......... [05.00ab]
......... [05.00ff]
......... [06.0004]
......... [06.0047]
......... [06.00ab]
......... [06.00ff]
Keep in mind that only type 10 and newer adapters (i.e., CEX4 and later)
can be bound to the vfio_ap device driver. The reason for this is to
simplify the implementation by not needlessly complicating the design by
supporting older devices that will go out of service in the relatively near
future and for which there are few older systems on which to test.
The administrator, therefore, must take care to secure only AP queues that
can be bound to the vfio_ap device driver. The device type for a given AP
queue device can be read from the parent card's sysfs directory. For example,
to see the hardware type of the queue 05.0004:
cat /sys/bus/ap/devices/card05/hwtype
The hwtype must be 10 or higher (CEX4 or newer) in order to be bound to the
vfio_ap device driver.
3. Create the mediated devices needed to configure the AP matrixes for the
three guests and to provide an interface to the vfio_ap driver for
use by the guests:
/sys/devices/vfio_ap/matrix/
--- [mdev_supported_types]
------ [vfio_ap-passthrough] (passthrough mediated matrix device type)
--------- create
--------- [devices]
To create the mediated devices for the three guests:
uuidgen > create
uuidgen > create
uuidgen > create
or
echo $uuid1 > create
echo $uuid2 > create
echo $uuid3 > create
This will create three mediated devices in the [devices] subdirectory named
after the UUID written to the create attribute file. We call them $uuid1,
$uuid2 and $uuid3 and this is the sysfs directory structure after creation:
/sys/devices/vfio_ap/matrix/
--- [mdev_supported_types]
------ [vfio_ap-passthrough]
--------- [devices]
------------ [$uuid1]
--------------- assign_adapter
--------------- assign_control_domain
--------------- assign_domain
--------------- matrix
--------------- unassign_adapter
--------------- unassign_control_domain
--------------- unassign_domain
------------ [$uuid2]
--------------- assign_adapter
--------------- assign_control_domain
--------------- assign_domain
--------------- matrix
--------------- unassign_adapter
----------------unassign_control_domain
----------------unassign_domain
------------ [$uuid3]
--------------- assign_adapter
--------------- assign_control_domain
--------------- assign_domain
--------------- matrix
--------------- unassign_adapter
----------------unassign_control_domain
----------------unassign_domain
4. The administrator now needs to configure the matrixes for the mediated
devices $uuid1 (for Guest1), $uuid2 (for Guest2) and $uuid3 (for Guest3).
This is how the matrix is configured for Guest1:
echo 5 > assign_adapter
echo 6 > assign_adapter
echo 4 > assign_domain
echo 0xab > assign_domain
Control domains can similarly be assigned using the assign_control_domain
sysfs file.
If a mistake is made configuring an adapter, domain or control domain,
you can use the unassign_xxx files to unassign the adapter, domain or
control domain.
To display the matrix configuration for Guest1:
cat matrix
This is how the matrix is configured for Guest2:
echo 5 > assign_adapter
echo 0x47 > assign_domain
echo 0xff > assign_domain
This is how the matrix is configured for Guest3:
echo 6 > assign_adapter
echo 0x47 > assign_domain
echo 0xff > assign_domain
In order to successfully assign an adapter:
* The adapter number specified must represent a value from 0 up to the
maximum adapter number configured for the system. If an adapter number
higher than the maximum is specified, the operation will terminate with
an error (ENODEV).
* All APQNs that can be derived from the adapter ID and the IDs of
the previously assigned domains must be bound to the vfio_ap device
driver. If no domains have yet been assigned, then there must be at least
one APQN with the specified APID bound to the vfio_ap driver. If no such
APQNs are bound to the driver, the operation will terminate with an
error (EADDRNOTAVAIL).
No APQN that can be derived from the adapter ID and the IDs of the
previously assigned domains can be assigned to another mediated matrix
device. If an APQN is assigned to another mediated matrix device, the
operation will terminate with an error (EADDRINUSE).
In order to successfully assign a domain:
* The domain number specified must represent a value from 0 up to the
maximum domain number configured for the system. If a domain number
higher than the maximum is specified, the operation will terminate with
an error (ENODEV).
* All APQNs that can be derived from the domain ID and the IDs of
the previously assigned adapters must be bound to the vfio_ap device
driver. If no domains have yet been assigned, then there must be at least
one APQN with the specified APQI bound to the vfio_ap driver. If no such
APQNs are bound to the driver, the operation will terminate with an
error (EADDRNOTAVAIL).
No APQN that can be derived from the domain ID and the IDs of the
previously assigned adapters can be assigned to another mediated matrix
device. If an APQN is assigned to another mediated matrix device, the
operation will terminate with an error (EADDRINUSE).
In order to successfully assign a control domain, the domain number
specified must represent a value from 0 up to the maximum domain number
configured for the system. If a control domain number higher than the maximum
is specified, the operation will terminate with an error (ENODEV).
5. Start Guest1:
/usr/bin/qemu-system-s390x ... -cpu host,ap=on,apqci=on,apft=on \
-device vfio-ap,sysfsdev=/sys/devices/vfio_ap/matrix/$uuid1 ...
7. Start Guest2:
/usr/bin/qemu-system-s390x ... -cpu host,ap=on,apqci=on,apft=on \
-device vfio-ap,sysfsdev=/sys/devices/vfio_ap/matrix/$uuid2 ...
7. Start Guest3:
/usr/bin/qemu-system-s390x ... -cpu host,ap=on,apqci=on,apft=on \
-device vfio-ap,sysfsdev=/sys/devices/vfio_ap/matrix/$uuid3 ...
When the guest is shut down, the mediated matrix devices may be removed.
Using our example again, to remove the mediated matrix device $uuid1:
/sys/devices/vfio_ap/matrix/
--- [mdev_supported_types]
------ [vfio_ap-passthrough]
--------- [devices]
------------ [$uuid1]
--------------- remove
echo 1 > remove
This will remove all of the mdev matrix device's sysfs structures including
the mdev device itself. To recreate and reconfigure the mdev matrix device,
all of the steps starting with step 3 will have to be performed again. Note
that the remove will fail if a guest using the mdev is still running.
It is not necessary to remove an mdev matrix device, but one may want to
remove it if no guest will use it during the remaining lifetime of the linux
host. If the mdev matrix device is removed, one may want to also reconfigure
the pool of adapters and queues reserved for use by the default drivers.
Limitations
===========
* The KVM/kernel interfaces do not provide a way to prevent restoring an APQN
to the default drivers pool of a queue that is still assigned to a mediated
device in use by a guest. It is incumbent upon the administrator to
ensure there is no mediated device in use by a guest to which the APQN is
assigned lest the host be given access to the private data of the AP queue
device such as a private key configured specifically for the guest.
* Dynamically modifying the AP matrix for a running guest (which would amount to
hot(un)plug of AP devices for the guest) is currently not supported
* Live guest migration is not supported for guests using AP devices.

View File

@ -123,6 +123,37 @@ memory layout to fit in user mode), check KVM_CAP_MIPS_VZ and use the
flag KVM_VM_MIPS_VZ.
On arm64, the physical address size for a VM (IPA Size limit) is limited
to 40bits by default. The limit can be configured if the host supports the
extension KVM_CAP_ARM_VM_IPA_SIZE. When supported, use
KVM_VM_TYPE_ARM_IPA_SIZE(IPA_Bits) to set the size in the machine type
identifier, where IPA_Bits is the maximum width of any physical
address used by the VM. The IPA_Bits is encoded in bits[7-0] of the
machine type identifier.
e.g, to configure a guest to use 48bit physical address size :
vm_fd = ioctl(dev_fd, KVM_CREATE_VM, KVM_VM_TYPE_ARM_IPA_SIZE(48));
The requested size (IPA_Bits) must be :
0 - Implies default size, 40bits (for backward compatibility)
or
N - Implies N bits, where N is a positive integer such that,
32 <= N <= Host_IPA_Limit
Host_IPA_Limit is the maximum possible value for IPA_Bits on the host and
is dependent on the CPU capability and the kernel configuration. The limit can
be retrieved using KVM_CAP_ARM_VM_IPA_SIZE of the KVM_CHECK_EXTENSION
ioctl() at run-time.
Please note that configuring the IPA size does not affect the capability
exposed by the guest CPUs in ID_AA64MMFR0_EL1[PARange]. It only affects
size of the address translated by the stage2 level (guest physical to
host physical address translations).
4.3 KVM_GET_MSR_INDEX_LIST, KVM_GET_MSR_FEATURE_INDEX_LIST
Capability: basic, KVM_CAP_GET_MSR_FEATURES for KVM_GET_MSR_FEATURE_INDEX_LIST
@ -850,7 +881,7 @@ struct kvm_vcpu_events {
__u8 injected;
__u8 nr;
__u8 has_error_code;
__u8 pad;
__u8 pending;
__u32 error_code;
} exception;
struct {
@ -873,15 +904,23 @@ struct kvm_vcpu_events {
__u8 smm_inside_nmi;
__u8 latched_init;
} smi;
__u8 reserved[27];
__u8 exception_has_payload;
__u64 exception_payload;
};
Only two fields are defined in the flags field:
The following bits are defined in the flags field:
- KVM_VCPUEVENT_VALID_SHADOW may be set in the flags field to signal that
- KVM_VCPUEVENT_VALID_SHADOW may be set to signal that
interrupt.shadow contains a valid state.
- KVM_VCPUEVENT_VALID_SMM may be set in the flags field to signal that
smi contains a valid state.
- KVM_VCPUEVENT_VALID_SMM may be set to signal that smi contains a
valid state.
- KVM_VCPUEVENT_VALID_PAYLOAD may be set to signal that the
exception_has_payload, exception_payload, and exception.pending
fields contain a valid state. This bit will be set whenever
KVM_CAP_EXCEPTION_PAYLOAD is enabled.
ARM/ARM64:
@ -961,6 +1000,11 @@ shall be written into the VCPU.
KVM_VCPUEVENT_VALID_SMM can only be set if KVM_CAP_X86_SMM is available.
If KVM_CAP_EXCEPTION_PAYLOAD is enabled, KVM_VCPUEVENT_VALID_PAYLOAD
can be set in the flags field to signal that the
exception_has_payload, exception_payload, and exception.pending fields
contain a valid state and shall be written into the VCPU.
ARM/ARM64:
Set the pending SError exception state for this VCPU. It is not possible to
@ -1922,6 +1966,7 @@ registers, find a list below:
PPC | KVM_REG_PPC_TIDR | 64
PPC | KVM_REG_PPC_PSSCR | 64
PPC | KVM_REG_PPC_DEC_EXPIRY | 64
PPC | KVM_REG_PPC_PTCR | 64
PPC | KVM_REG_PPC_TM_GPR0 | 64
...
PPC | KVM_REG_PPC_TM_GPR31 | 64
@ -2269,6 +2314,10 @@ The supported flags are:
The emulated MMU supports 1T segments in addition to the
standard 256M ones.
- KVM_PPC_NO_HASH
This flag indicates that HPT guests are not supported by KVM,
thus all guests must use radix MMU mode.
The "slb_size" field indicates how many SLB entries are supported
The "sps" array contains 8 entries indicating the supported base
@ -3676,6 +3725,34 @@ Returns: 0 on success, -1 on error
This copies the vcpu's kvm_nested_state struct from userspace to the kernel. For
the definition of struct kvm_nested_state, see KVM_GET_NESTED_STATE.
4.116 KVM_(UN)REGISTER_COALESCED_MMIO
Capability: KVM_CAP_COALESCED_MMIO (for coalesced mmio)
KVM_CAP_COALESCED_PIO (for coalesced pio)
Architectures: all
Type: vm ioctl
Parameters: struct kvm_coalesced_mmio_zone
Returns: 0 on success, < 0 on error
Coalesced I/O is a performance optimization that defers hardware
register write emulation so that userspace exits are avoided. It is
typically used to reduce the overhead of emulating frequently accessed
hardware registers.
When a hardware register is configured for coalesced I/O, write accesses
do not exit to userspace and their value is recorded in a ring buffer
that is shared between kernel and userspace.
Coalesced I/O is used if one or more write accesses to a hardware
register can be deferred until a read or a write to another hardware
register on the same device. This last access will cause a vmexit and
userspace will process accesses from the ring buffer before emulating
it. That will avoid exiting to userspace on repeated writes.
Coalesced pio is based on coalesced mmio. There is little difference
between coalesced mmio and pio except that coalesced pio records accesses
to I/O ports.
5. The kvm_run structure
------------------------
@ -4522,7 +4599,7 @@ hpage module parameter is not set to 1, -EINVAL is returned.
While it is generally possible to create a huge page backed VM without
this capability, the VM will not be able to run.
7.14 KVM_CAP_MSR_PLATFORM_INFO
7.15 KVM_CAP_MSR_PLATFORM_INFO
Architectures: x86
Parameters: args[0] whether feature should be enabled or not
@ -4531,6 +4608,45 @@ With this capability, a guest may read the MSR_PLATFORM_INFO MSR. Otherwise,
a #GP would be raised when the guest tries to access. Currently, this
capability does not enable write permissions of this MSR for the guest.
7.16 KVM_CAP_PPC_NESTED_HV
Architectures: ppc
Parameters: none
Returns: 0 on success, -EINVAL when the implementation doesn't support
nested-HV virtualization.
HV-KVM on POWER9 and later systems allows for "nested-HV"
virtualization, which provides a way for a guest VM to run guests that
can run using the CPU's supervisor mode (privileged non-hypervisor
state). Enabling this capability on a VM depends on the CPU having
the necessary functionality and on the facility being enabled with a
kvm-hv module parameter.
7.17 KVM_CAP_EXCEPTION_PAYLOAD
Architectures: x86
Parameters: args[0] whether feature should be enabled or not
With this capability enabled, CR2 will not be modified prior to the
emulated VM-exit when L1 intercepts a #PF exception that occurs in
L2. Similarly, for kvm-intel only, DR6 will not be modified prior to
the emulated VM-exit when L1 intercepts a #DB exception that occurs in
L2. As a result, when KVM_GET_VCPU_EVENTS reports a pending #PF (or
#DB) exception for L2, exception.has_payload will be set and the
faulting address (or the new DR6 bits*) will be reported in the
exception_payload field. Similarly, when userspace injects a #PF (or
#DB) into L2 using KVM_SET_VCPU_EVENTS, it is expected to set
exception.has_payload and to put the faulting address (or the new DR6
bits*) in the exception_payload field.
This capability also enables exception.pending in struct
kvm_vcpu_events, which allows userspace to distinguish between pending
and injected exceptions.
* For the new DR6 bits, note that bit 16 is set iff the #DB exception
will clear DR6.RTM.
8. Other capabilities.
----------------------
@ -4772,3 +4888,10 @@ CPU when the exception is taken. If this virtual SError is taken to EL1 using
AArch64, this value will be reported in the ISS field of ESR_ELx.
See KVM_CAP_VCPU_EVENTS for more details.
8.20 KVM_CAP_HYPERV_SEND_IPI
Architectures: x86
This capability indicates that KVM supports paravirtualized Hyper-V IPI send
hypercalls:
HvCallSendSyntheticClusterIpi, HvCallSendSyntheticClusterIpiEx.

View File

@ -12800,6 +12800,18 @@ W: http://www.ibm.com/developerworks/linux/linux390/
S: Supported
F: drivers/s390/crypto/
S390 VFIO AP DRIVER
M: Tony Krowiak <akrowiak@linux.ibm.com>
M: Pierre Morel <pmorel@linux.ibm.com>
M: Halil Pasic <pasic@linux.ibm.com>
L: linux-s390@vger.kernel.org
W: http://www.ibm.com/developerworks/linux/linux390/
S: Supported
F: drivers/s390/crypto/vfio_ap_drv.c
F: drivers/s390/crypto/vfio_ap_private.h
F: drivers/s390/crypto/vfio_ap_ops.c
F: Documentation/s390/vfio-ap.txt
S390 ZFCP DRIVER
M: Steffen Maier <maier@linux.ibm.com>
M: Benjamin Block <bblock@linux.ibm.com>

View File

@ -133,8 +133,7 @@
* space.
*/
#define KVM_PHYS_SHIFT (40)
#define KVM_PHYS_SIZE (_AC(1, ULL) << KVM_PHYS_SHIFT)
#define KVM_PHYS_MASK (KVM_PHYS_SIZE - _AC(1, ULL))
#define PTRS_PER_S2_PGD (_AC(1, ULL) << (KVM_PHYS_SHIFT - 30))
/* Virtualization Translation Control Register (VTCR) bits */

View File

@ -273,7 +273,7 @@ static inline void __cpu_init_stage2(void)
kvm_call_hyp(__init_stage2_translation);
}
static inline int kvm_arch_dev_ioctl_check_extension(struct kvm *kvm, long ext)
static inline int kvm_arch_vm_ioctl_check_extension(struct kvm *kvm, long ext)
{
return 0;
}
@ -354,4 +354,15 @@ static inline void kvm_vcpu_put_sysregs(struct kvm_vcpu *vcpu) {}
struct kvm *kvm_arch_alloc_vm(void);
void kvm_arch_free_vm(struct kvm *kvm);
static inline int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type)
{
/*
* On 32bit ARM, VMs get a static 40bit IPA stage2 setup,
* so any non-zero value used as type is illegal.
*/
if (type)
return -EINVAL;
return 0;
}
#endif /* __ARM_KVM_HOST_H__ */

View File

@ -35,16 +35,12 @@
addr; \
})
/*
* KVM_MMU_CACHE_MIN_PAGES is the number of stage2 page table translation levels.
*/
#define KVM_MMU_CACHE_MIN_PAGES 2
#ifndef __ASSEMBLY__
#include <linux/highmem.h>
#include <asm/cacheflush.h>
#include <asm/cputype.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_hyp.h>
#include <asm/pgalloc.h>
#include <asm/stage2_pgtable.h>
@ -52,6 +48,13 @@
/* Ensure compatibility with arm64 */
#define VA_BITS 32
#define kvm_phys_shift(kvm) KVM_PHYS_SHIFT
#define kvm_phys_size(kvm) (1ULL << kvm_phys_shift(kvm))
#define kvm_phys_mask(kvm) (kvm_phys_size(kvm) - 1ULL)
#define kvm_vttbr_baddr_mask(kvm) VTTBR_BADDR_MASK
#define stage2_pgd_size(kvm) (PTRS_PER_S2_PGD * sizeof(pgd_t))
int create_hyp_mappings(void *from, void *to, pgprot_t prot);
int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
void __iomem **kaddr,
@ -355,6 +358,8 @@ static inline int hyp_map_aux_data(void)
#define kvm_phys_to_vttbr(addr) (addr)
static inline void kvm_set_ipa_limit(void) {}
static inline bool kvm_cpu_has_cnp(void)
{
return false;

View File

@ -19,43 +19,53 @@
#ifndef __ARM_S2_PGTABLE_H_
#define __ARM_S2_PGTABLE_H_
#define stage2_pgd_none(pgd) pgd_none(pgd)
#define stage2_pgd_clear(pgd) pgd_clear(pgd)
#define stage2_pgd_present(pgd) pgd_present(pgd)
#define stage2_pgd_populate(pgd, pud) pgd_populate(NULL, pgd, pud)
#define stage2_pud_offset(pgd, address) pud_offset(pgd, address)
#define stage2_pud_free(pud) pud_free(NULL, pud)
/*
* kvm_mmu_cache_min_pages() is the number of pages required
* to install a stage-2 translation. We pre-allocate the entry
* level table at VM creation. Since we have a 3 level page-table,
* we need only two pages to add a new mapping.
*/
#define kvm_mmu_cache_min_pages(kvm) 2
#define stage2_pud_none(pud) pud_none(pud)
#define stage2_pud_clear(pud) pud_clear(pud)
#define stage2_pud_present(pud) pud_present(pud)
#define stage2_pud_populate(pud, pmd) pud_populate(NULL, pud, pmd)
#define stage2_pmd_offset(pud, address) pmd_offset(pud, address)
#define stage2_pmd_free(pmd) pmd_free(NULL, pmd)
#define stage2_pgd_none(kvm, pgd) pgd_none(pgd)
#define stage2_pgd_clear(kvm, pgd) pgd_clear(pgd)
#define stage2_pgd_present(kvm, pgd) pgd_present(pgd)
#define stage2_pgd_populate(kvm, pgd, pud) pgd_populate(NULL, pgd, pud)
#define stage2_pud_offset(kvm, pgd, address) pud_offset(pgd, address)
#define stage2_pud_free(kvm, pud) pud_free(NULL, pud)
#define stage2_pud_huge(pud) pud_huge(pud)
#define stage2_pud_none(kvm, pud) pud_none(pud)
#define stage2_pud_clear(kvm, pud) pud_clear(pud)
#define stage2_pud_present(kvm, pud) pud_present(pud)
#define stage2_pud_populate(kvm, pud, pmd) pud_populate(NULL, pud, pmd)
#define stage2_pmd_offset(kvm, pud, address) pmd_offset(pud, address)
#define stage2_pmd_free(kvm, pmd) pmd_free(NULL, pmd)
#define stage2_pud_huge(kvm, pud) pud_huge(pud)
/* Open coded p*d_addr_end that can deal with 64bit addresses */
static inline phys_addr_t stage2_pgd_addr_end(phys_addr_t addr, phys_addr_t end)
static inline phys_addr_t
stage2_pgd_addr_end(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
{
phys_addr_t boundary = (addr + PGDIR_SIZE) & PGDIR_MASK;
return (boundary - 1 < end - 1) ? boundary : end;
}
#define stage2_pud_addr_end(addr, end) (end)
#define stage2_pud_addr_end(kvm, addr, end) (end)
static inline phys_addr_t stage2_pmd_addr_end(phys_addr_t addr, phys_addr_t end)
static inline phys_addr_t
stage2_pmd_addr_end(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
{
phys_addr_t boundary = (addr + PMD_SIZE) & PMD_MASK;
return (boundary - 1 < end - 1) ? boundary : end;
}
#define stage2_pgd_index(addr) pgd_index(addr)
#define stage2_pgd_index(kvm, addr) pgd_index(addr)
#define stage2_pte_table_empty(ptep) kvm_page_empty(ptep)
#define stage2_pmd_table_empty(pmdp) kvm_page_empty(pmdp)
#define stage2_pud_table_empty(pudp) false
#define stage2_pte_table_empty(kvm, ptep) kvm_page_empty(ptep)
#define stage2_pmd_table_empty(kvm, pmdp) kvm_page_empty(pmdp)
#define stage2_pud_table_empty(kvm, pudp) false
#endif /* __ARM_S2_PGTABLE_H_ */

View File

@ -537,6 +537,27 @@ static inline void arm64_set_ssbd_mitigation(bool state) {}
#endif
extern int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt);
static inline u32 id_aa64mmfr0_parange_to_phys_shift(int parange)
{
switch (parange) {
case 0: return 32;
case 1: return 36;
case 2: return 40;
case 3: return 42;
case 4: return 44;
case 5: return 48;
case 6: return 52;
/*
* A future PE could use a value unknown to the kernel.
* However, by the "D10.1.4 Principles of the ID scheme
* for fields in ID registers", ARM DDI 0487C.a, any new
* value is guaranteed to be higher than what we know already.
* As a safe limit, we return the limit supported by the kernel.
*/
default: return CONFIG_ARM64_PA_BITS;
}
}
#endif /* __ASSEMBLY__ */
#endif

View File

@ -107,6 +107,7 @@
#define VTCR_EL2_RES1 (1 << 31)
#define VTCR_EL2_HD (1 << 22)
#define VTCR_EL2_HA (1 << 21)
#define VTCR_EL2_PS_SHIFT TCR_EL2_PS_SHIFT
#define VTCR_EL2_PS_MASK TCR_EL2_PS_MASK
#define VTCR_EL2_TG0_MASK TCR_TG0_MASK
#define VTCR_EL2_TG0_4K TCR_TG0_4K
@ -120,63 +121,150 @@
#define VTCR_EL2_IRGN0_WBWA TCR_IRGN0_WBWA
#define VTCR_EL2_SL0_SHIFT 6
#define VTCR_EL2_SL0_MASK (3 << VTCR_EL2_SL0_SHIFT)
#define VTCR_EL2_SL0_LVL1 (1 << VTCR_EL2_SL0_SHIFT)
#define VTCR_EL2_T0SZ_MASK 0x3f
#define VTCR_EL2_T0SZ_40B 24
#define VTCR_EL2_VS_SHIFT 19
#define VTCR_EL2_VS_8BIT (0 << VTCR_EL2_VS_SHIFT)
#define VTCR_EL2_VS_16BIT (1 << VTCR_EL2_VS_SHIFT)
#define VTCR_EL2_T0SZ(x) TCR_T0SZ(x)
/*
* We configure the Stage-2 page tables to always restrict the IPA space to be
* 40 bits wide (T0SZ = 24). Systems with a PARange smaller than 40 bits are
* not known to exist and will break with this configuration.
*
* VTCR_EL2.PS is extracted from ID_AA64MMFR0_EL1.PARange at boot time
* (see hyp-init.S).
* The VTCR_EL2 is configured per VM and is initialised in kvm_arm_setup_stage2().
*
* Note that when using 4K pages, we concatenate two first level page tables
* together. With 16K pages, we concatenate 16 first level page tables.
*
* The magic numbers used for VTTBR_X in this patch can be found in Tables
* D4-23 and D4-25 in ARM DDI 0487A.b.
*/
#define VTCR_EL2_T0SZ_IPA VTCR_EL2_T0SZ_40B
#define VTCR_EL2_COMMON_BITS (VTCR_EL2_SH0_INNER | VTCR_EL2_ORGN0_WBWA | \
VTCR_EL2_IRGN0_WBWA | VTCR_EL2_RES1)
/*
* VTCR_EL2:SL0 indicates the entry level for Stage2 translation.
* Interestingly, it depends on the page size.
* See D.10.2.121, VTCR_EL2, in ARM DDI 0487C.a
*
* -----------------------------------------
* | Entry level | 4K | 16K/64K |
* ------------------------------------------
* | Level: 0 | 2 | - |
* ------------------------------------------
* | Level: 1 | 1 | 2 |
* ------------------------------------------
* | Level: 2 | 0 | 1 |
* ------------------------------------------
* | Level: 3 | - | 0 |
* ------------------------------------------
*
* The table roughly translates to :
*
* SL0(PAGE_SIZE, Entry_level) = TGRAN_SL0_BASE - Entry_Level
*
* Where TGRAN_SL0_BASE is a magic number depending on the page size:
* TGRAN_SL0_BASE(4K) = 2
* TGRAN_SL0_BASE(16K) = 3
* TGRAN_SL0_BASE(64K) = 3
* provided we take care of ruling out the unsupported cases and
* Entry_Level = 4 - Number_of_levels.
*
*/
#ifdef CONFIG_ARM64_64K_PAGES
/*
* Stage2 translation configuration:
* 64kB pages (TG0 = 1)
* 2 level page tables (SL = 1)
*/
#define VTCR_EL2_TGRAN_FLAGS (VTCR_EL2_TG0_64K | VTCR_EL2_SL0_LVL1)
#define VTTBR_X_TGRAN_MAGIC 38
#define VTCR_EL2_TGRAN VTCR_EL2_TG0_64K
#define VTCR_EL2_TGRAN_SL0_BASE 3UL
#elif defined(CONFIG_ARM64_16K_PAGES)
/*
* Stage2 translation configuration:
* 16kB pages (TG0 = 2)
* 2 level page tables (SL = 1)
*/
#define VTCR_EL2_TGRAN_FLAGS (VTCR_EL2_TG0_16K | VTCR_EL2_SL0_LVL1)
#define VTTBR_X_TGRAN_MAGIC 42
#define VTCR_EL2_TGRAN VTCR_EL2_TG0_16K
#define VTCR_EL2_TGRAN_SL0_BASE 3UL
#else /* 4K */
/*
* Stage2 translation configuration:
* 4kB pages (TG0 = 0)
* 3 level page tables (SL = 1)
*/
#define VTCR_EL2_TGRAN_FLAGS (VTCR_EL2_TG0_4K | VTCR_EL2_SL0_LVL1)
#define VTTBR_X_TGRAN_MAGIC 37
#define VTCR_EL2_TGRAN VTCR_EL2_TG0_4K
#define VTCR_EL2_TGRAN_SL0_BASE 2UL
#endif
#define VTCR_EL2_FLAGS (VTCR_EL2_COMMON_BITS | VTCR_EL2_TGRAN_FLAGS)
#define VTTBR_X (VTTBR_X_TGRAN_MAGIC - VTCR_EL2_T0SZ_IPA)
#define VTCR_EL2_LVLS_TO_SL0(levels) \
((VTCR_EL2_TGRAN_SL0_BASE - (4 - (levels))) << VTCR_EL2_SL0_SHIFT)
#define VTCR_EL2_SL0_TO_LVLS(sl0) \
((sl0) + 4 - VTCR_EL2_TGRAN_SL0_BASE)
#define VTCR_EL2_LVLS(vtcr) \
VTCR_EL2_SL0_TO_LVLS(((vtcr) & VTCR_EL2_SL0_MASK) >> VTCR_EL2_SL0_SHIFT)
#define VTCR_EL2_FLAGS (VTCR_EL2_COMMON_BITS | VTCR_EL2_TGRAN)
#define VTCR_EL2_IPA(vtcr) (64 - ((vtcr) & VTCR_EL2_T0SZ_MASK))
/*
* ARM VMSAv8-64 defines an algorithm for finding the translation table
* descriptors in section D4.2.8 in ARM DDI 0487C.a.
*
* The algorithm defines the expectations on the translation table
* addresses for each level, based on PAGE_SIZE, entry level
* and the translation table size (T0SZ). The variable "x" in the
* algorithm determines the alignment of a table base address at a given
* level and thus determines the alignment of VTTBR:BADDR for stage2
* page table entry level.
* Since the number of bits resolved at the entry level could vary
* depending on the T0SZ, the value of "x" is defined based on a
* Magic constant for a given PAGE_SIZE and Entry Level. The
* intermediate levels must be always aligned to the PAGE_SIZE (i.e,
* x = PAGE_SHIFT).
*
* The value of "x" for entry level is calculated as :
* x = Magic_N - T0SZ
*
* where Magic_N is an integer depending on the page size and the entry
* level of the page table as below:
*
* --------------------------------------------
* | Entry level | 4K 16K 64K |
* --------------------------------------------
* | Level: 0 (4 levels) | 28 | - | - |
* --------------------------------------------
* | Level: 1 (3 levels) | 37 | 31 | 25 |
* --------------------------------------------
* | Level: 2 (2 levels) | 46 | 42 | 38 |
* --------------------------------------------
* | Level: 3 (1 level) | - | 53 | 51 |
* --------------------------------------------
*
* We have a magic formula for the Magic_N below:
*
* Magic_N(PAGE_SIZE, Level) = 64 - ((PAGE_SHIFT - 3) * Number_of_levels)
*
* where Number_of_levels = (4 - Level). We are only interested in the
* value for Entry_Level for the stage2 page table.
*
* So, given that T0SZ = (64 - IPA_SHIFT), we can compute 'x' as follows:
*
* x = (64 - ((PAGE_SHIFT - 3) * Number_of_levels)) - (64 - IPA_SHIFT)
* = IPA_SHIFT - ((PAGE_SHIFT - 3) * Number of levels)
*
* Here is one way to explain the Magic Formula:
*
* x = log2(Size_of_Entry_Level_Table)
*
* Since, we can resolve (PAGE_SHIFT - 3) bits at each level, and another
* PAGE_SHIFT bits in the PTE, we have :
*
* Bits_Entry_level = IPA_SHIFT - ((PAGE_SHIFT - 3) * (n - 1) + PAGE_SHIFT)
* = IPA_SHIFT - (PAGE_SHIFT - 3) * n - 3
* where n = number of levels, and since each pointer is 8bytes, we have:
*
* x = Bits_Entry_Level + 3
* = IPA_SHIFT - (PAGE_SHIFT - 3) * n
*
* The only constraint here is that, we have to find the number of page table
* levels for a given IPA size (which we do, see stage2_pt_levels())
*/
#define ARM64_VTTBR_X(ipa, levels) ((ipa) - ((levels) * (PAGE_SHIFT - 3)))
#define VTTBR_CNP_BIT (UL(1))
#define VTTBR_BADDR_MASK (((UL(1) << (PHYS_MASK_SHIFT - VTTBR_X)) - 1) << VTTBR_X)
#define VTTBR_VMID_SHIFT (UL(48))
#define VTTBR_VMID_MASK(size) (_AT(u64, (1 << size) - 1) << VTTBR_VMID_SHIFT)
@ -224,6 +312,13 @@
/* Hyp Prefetch Fault Address Register (HPFAR/HDFAR) */
#define HPFAR_MASK (~UL(0xf))
/*
* We have
* PAR [PA_Shift - 1 : 12] = PA [PA_Shift - 1 : 12]
* HPFAR [PA_Shift - 9 : 4] = FIPA [PA_Shift - 1 : 12]
*/
#define PAR_TO_HPFAR(par) \
(((par) & GENMASK_ULL(PHYS_MASK_SHIFT - 1, 12)) >> 8)
#define kvm_arm_exception_type \
{0, "IRQ" }, \

View File

@ -30,6 +30,7 @@
#define ARM_EXCEPTION_IRQ 0
#define ARM_EXCEPTION_EL1_SERROR 1
#define ARM_EXCEPTION_TRAP 2
#define ARM_EXCEPTION_IL 3
/* The hyp-stub will return this for any kvm_call_hyp() call */
#define ARM_EXCEPTION_HYP_GONE HVC_STUB_ERR
@ -72,8 +73,6 @@ extern void __vgic_v3_init_lrs(void);
extern u32 __kvm_get_mdcr_el2(void);
extern u32 __init_stage2_translation(void);
/* Home-grown __this_cpu_{ptr,read} variants that always work at HYP */
#define __hyp_this_cpu_ptr(sym) \
({ \

View File

@ -53,7 +53,7 @@ DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
int __attribute_const__ kvm_target_cpu(void);
int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
int kvm_arch_dev_ioctl_check_extension(struct kvm *kvm, long ext);
int kvm_arch_vm_ioctl_check_extension(struct kvm *kvm, long ext);
void __extended_idmap_trampoline(phys_addr_t boot_pgd, phys_addr_t idmap_start);
struct kvm_arch {
@ -61,11 +61,13 @@ struct kvm_arch {
u64 vmid_gen;
u32 vmid;
/* 1-level 2nd stage table, protected by kvm->mmu_lock */
/* stage2 entry level table */
pgd_t *pgd;
/* VTTBR value associated with above pgd and vmid */
u64 vttbr;
/* VTCR_EL2 value for this VM */
u64 vtcr;
/* The last vcpu id that ran on each physical CPU */
int __percpu *last_vcpu_ran;
@ -451,13 +453,7 @@ int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr);
static inline void __cpu_init_stage2(void)
{
u32 parange = kvm_call_hyp(__init_stage2_translation);
WARN_ONCE(parange < 40,
"PARange is %d bits, unsupported configuration!", parange);
}
static inline void __cpu_init_stage2(void) {}
/* Guest/host FPSIMD coordination helpers */
int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
@ -520,8 +516,12 @@ static inline int kvm_arm_have_ssbd(void)
void kvm_vcpu_load_sysregs(struct kvm_vcpu *vcpu);
void kvm_vcpu_put_sysregs(struct kvm_vcpu *vcpu);
void kvm_set_ipa_limit(void);
#define __KVM_HAVE_ARCH_VM_ALLOC
struct kvm *kvm_arch_alloc_vm(void);
void kvm_arch_free_vm(struct kvm *kvm);
int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type);
#endif /* __ARM64_KVM_HOST_H__ */

View File

@ -155,5 +155,15 @@ void deactivate_traps_vhe_put(void);
u64 __guest_enter(struct kvm_vcpu *vcpu, struct kvm_cpu_context *host_ctxt);
void __noreturn __hyp_do_panic(unsigned long, ...);
/*
* Must be called from hyp code running at EL2 with an updated VTTBR
* and interrupts disabled.
*/
static __always_inline void __hyp_text __load_guest_stage2(struct kvm *kvm)
{
write_sysreg(kvm->arch.vtcr, vtcr_el2);
write_sysreg(kvm->arch.vttbr, vttbr_el2);
}
#endif /* __ARM64_KVM_HYP_H__ */

View File

@ -141,8 +141,16 @@ static inline unsigned long __kern_hyp_va(unsigned long v)
* We currently only support a 40bit IPA.
*/
#define KVM_PHYS_SHIFT (40)
#define KVM_PHYS_SIZE (1UL << KVM_PHYS_SHIFT)
#define KVM_PHYS_MASK (KVM_PHYS_SIZE - 1UL)
#define kvm_phys_shift(kvm) VTCR_EL2_IPA(kvm->arch.vtcr)
#define kvm_phys_size(kvm) (_AC(1, ULL) << kvm_phys_shift(kvm))
#define kvm_phys_mask(kvm) (kvm_phys_size(kvm) - _AC(1, ULL))
static inline bool kvm_page_empty(void *ptr)
{
struct page *ptr_page = virt_to_page(ptr);
return page_count(ptr_page) == 1;
}
#include <asm/stage2_pgtable.h>
@ -238,12 +246,6 @@ static inline bool kvm_s2pmd_exec(pmd_t *pmdp)
return !(READ_ONCE(pmd_val(*pmdp)) & PMD_S2_XN);
}
static inline bool kvm_page_empty(void *ptr)
{
struct page *ptr_page = virt_to_page(ptr);
return page_count(ptr_page) == 1;
}
#define hyp_pte_table_empty(ptep) kvm_page_empty(ptep)
#ifdef __PAGETABLE_PMD_FOLDED
@ -517,6 +519,30 @@ static inline int hyp_map_aux_data(void)
#define kvm_phys_to_vttbr(addr) phys_to_ttbr(addr)
/*
* Get the magic number 'x' for VTTBR:BADDR of this KVM instance.
* With v8.2 LVA extensions, 'x' should be a minimum of 6 with
* 52bit IPS.
*/
static inline int arm64_vttbr_x(u32 ipa_shift, u32 levels)
{
int x = ARM64_VTTBR_X(ipa_shift, levels);
return (IS_ENABLED(CONFIG_ARM64_PA_BITS_52) && x < 6) ? 6 : x;
}
static inline u64 vttbr_baddr_mask(u32 ipa_shift, u32 levels)
{
unsigned int x = arm64_vttbr_x(ipa_shift, levels);
return GENMASK_ULL(PHYS_MASK_SHIFT - 1, x);
}
static inline u64 kvm_vttbr_baddr_mask(struct kvm *kvm)
{
return vttbr_baddr_mask(kvm_phys_shift(kvm), kvm_stage2_levels(kvm));
}
static inline bool kvm_cpu_has_cnp(void)
{
return system_supports_cnp();

View File

@ -25,6 +25,9 @@
#define CurrentEL_EL1 (1 << 2)
#define CurrentEL_EL2 (2 << 2)
/* Additional SPSR bits not exposed in the UABI */
#define PSR_IL_BIT (1 << 20)
/* AArch32-specific ptrace requests */
#define COMPAT_PTRACE_GETREGS 12
#define COMPAT_PTRACE_SETREGS 13

View File

@ -1,42 +0,0 @@
/*
* Copyright (C) 2016 - ARM Ltd
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __ARM64_S2_PGTABLE_NOPMD_H_
#define __ARM64_S2_PGTABLE_NOPMD_H_
#include <asm/stage2_pgtable-nopud.h>
#define __S2_PGTABLE_PMD_FOLDED
#define S2_PMD_SHIFT S2_PUD_SHIFT
#define S2_PTRS_PER_PMD 1
#define S2_PMD_SIZE (1UL << S2_PMD_SHIFT)
#define S2_PMD_MASK (~(S2_PMD_SIZE-1))
#define stage2_pud_none(pud) (0)
#define stage2_pud_present(pud) (1)
#define stage2_pud_clear(pud) do { } while (0)
#define stage2_pud_populate(pud, pmd) do { } while (0)
#define stage2_pmd_offset(pud, address) ((pmd_t *)(pud))
#define stage2_pmd_free(pmd) do { } while (0)
#define stage2_pmd_addr_end(addr, end) (end)
#define stage2_pud_huge(pud) (0)
#define stage2_pmd_table_empty(pmdp) (0)
#endif

View File

@ -1,39 +0,0 @@
/*
* Copyright (C) 2016 - ARM Ltd
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __ARM64_S2_PGTABLE_NOPUD_H_
#define __ARM64_S2_PGTABLE_NOPUD_H_
#define __S2_PGTABLE_PUD_FOLDED
#define S2_PUD_SHIFT S2_PGDIR_SHIFT
#define S2_PTRS_PER_PUD 1
#define S2_PUD_SIZE (_AC(1, UL) << S2_PUD_SHIFT)
#define S2_PUD_MASK (~(S2_PUD_SIZE-1))
#define stage2_pgd_none(pgd) (0)
#define stage2_pgd_present(pgd) (1)
#define stage2_pgd_clear(pgd) do { } while (0)
#define stage2_pgd_populate(pgd, pud) do { } while (0)
#define stage2_pud_offset(pgd, address) ((pud_t *)(pgd))
#define stage2_pud_free(x) do { } while (0)
#define stage2_pud_addr_end(addr, end) (end)
#define stage2_pud_table_empty(pmdp) (0)
#endif

View File

@ -19,8 +19,16 @@
#ifndef __ARM64_S2_PGTABLE_H_
#define __ARM64_S2_PGTABLE_H_
#include <linux/hugetlb.h>
#include <asm/pgtable.h>
/*
* PGDIR_SHIFT determines the size a top-level page table entry can map
* and depends on the number of levels in the page table. Compute the
* PGDIR_SHIFT for a given number of levels.
*/
#define pt_levels_pgdir_shift(lvls) ARM64_HW_PGTABLE_LEVEL_SHIFT(4 - (lvls))
/*
* The hardware supports concatenation of up to 16 tables at stage2 entry level
* and we use the feature whenever possible.
@ -29,112 +37,208 @@
* On arm64, the smallest PAGE_SIZE supported is 4k, which means
* (PAGE_SHIFT - 3) > 4 holds for all page sizes.
* This implies, the total number of page table levels at stage2 expected
* by the hardware is actually the number of levels required for (KVM_PHYS_SHIFT - 4)
* by the hardware is actually the number of levels required for (IPA_SHIFT - 4)
* in normal translations(e.g, stage1), since we cannot have another level in
* the range (KVM_PHYS_SHIFT, KVM_PHYS_SHIFT - 4).
* the range (IPA_SHIFT, IPA_SHIFT - 4).
*/
#define STAGE2_PGTABLE_LEVELS ARM64_HW_PGTABLE_LEVELS(KVM_PHYS_SHIFT - 4)
#define stage2_pgtable_levels(ipa) ARM64_HW_PGTABLE_LEVELS((ipa) - 4)
#define kvm_stage2_levels(kvm) VTCR_EL2_LVLS(kvm->arch.vtcr)
/*
* With all the supported VA_BITs and 40bit guest IPA, the following condition
* is always true:
*
* STAGE2_PGTABLE_LEVELS <= CONFIG_PGTABLE_LEVELS
*
* We base our stage-2 page table walker helpers on this assumption and
* fall back to using the host version of the helper wherever possible.
* i.e, if a particular level is not folded (e.g, PUD) at stage2, we fall back
* to using the host version, since it is guaranteed it is not folded at host.
*
* If the condition breaks in the future, we can rearrange the host level
* definitions and reuse them for stage2. Till then...
*/
#if STAGE2_PGTABLE_LEVELS > CONFIG_PGTABLE_LEVELS
#error "Unsupported combination of guest IPA and host VA_BITS."
#endif
/* S2_PGDIR_SHIFT is the size mapped by top-level stage2 entry */
#define S2_PGDIR_SHIFT ARM64_HW_PGTABLE_LEVEL_SHIFT(4 - STAGE2_PGTABLE_LEVELS)
#define S2_PGDIR_SIZE (_AC(1, UL) << S2_PGDIR_SHIFT)
#define S2_PGDIR_MASK (~(S2_PGDIR_SIZE - 1))
/* stage2_pgdir_shift() is the size mapped by top-level stage2 entry for the VM */
#define stage2_pgdir_shift(kvm) pt_levels_pgdir_shift(kvm_stage2_levels(kvm))
#define stage2_pgdir_size(kvm) (1ULL << stage2_pgdir_shift(kvm))
#define stage2_pgdir_mask(kvm) ~(stage2_pgdir_size(kvm) - 1)
/*
* The number of PTRS across all concatenated stage2 tables given by the
* number of bits resolved at the initial level.
* If we force more levels than necessary, we may have (stage2_pgdir_shift > IPA),
* in which case, stage2_pgd_ptrs will have one entry.
*/
#define PTRS_PER_S2_PGD (1 << (KVM_PHYS_SHIFT - S2_PGDIR_SHIFT))
#define pgd_ptrs_shift(ipa, pgdir_shift) \
((ipa) > (pgdir_shift) ? ((ipa) - (pgdir_shift)) : 0)
#define __s2_pgd_ptrs(ipa, lvls) \
(1 << (pgd_ptrs_shift((ipa), pt_levels_pgdir_shift(lvls))))
#define __s2_pgd_size(ipa, lvls) (__s2_pgd_ptrs((ipa), (lvls)) * sizeof(pgd_t))
#define stage2_pgd_ptrs(kvm) __s2_pgd_ptrs(kvm_phys_shift(kvm), kvm_stage2_levels(kvm))
#define stage2_pgd_size(kvm) __s2_pgd_size(kvm_phys_shift(kvm), kvm_stage2_levels(kvm))
/*
* KVM_MMU_CACHE_MIN_PAGES is the number of stage2 page table translation
* levels in addition to the PGD.
* kvm_mmmu_cache_min_pages() is the number of pages required to install
* a stage-2 translation. We pre-allocate the entry level page table at
* the VM creation.
*/
#define KVM_MMU_CACHE_MIN_PAGES (STAGE2_PGTABLE_LEVELS - 1)
#define kvm_mmu_cache_min_pages(kvm) (kvm_stage2_levels(kvm) - 1)
#if STAGE2_PGTABLE_LEVELS > 3
/* Stage2 PUD definitions when the level is present */
static inline bool kvm_stage2_has_pud(struct kvm *kvm)
{
return (CONFIG_PGTABLE_LEVELS > 3) && (kvm_stage2_levels(kvm) > 3);
}
#define S2_PUD_SHIFT ARM64_HW_PGTABLE_LEVEL_SHIFT(1)
#define S2_PUD_SIZE (_AC(1, UL) << S2_PUD_SHIFT)
#define S2_PUD_SIZE (1UL << S2_PUD_SHIFT)
#define S2_PUD_MASK (~(S2_PUD_SIZE - 1))
#define stage2_pgd_none(pgd) pgd_none(pgd)
#define stage2_pgd_clear(pgd) pgd_clear(pgd)
#define stage2_pgd_present(pgd) pgd_present(pgd)
#define stage2_pgd_populate(pgd, pud) pgd_populate(NULL, pgd, pud)
#define stage2_pud_offset(pgd, address) pud_offset(pgd, address)
#define stage2_pud_free(pud) pud_free(NULL, pud)
#define stage2_pud_table_empty(pudp) kvm_page_empty(pudp)
static inline phys_addr_t stage2_pud_addr_end(phys_addr_t addr, phys_addr_t end)
static inline bool stage2_pgd_none(struct kvm *kvm, pgd_t pgd)
{
phys_addr_t boundary = (addr + S2_PUD_SIZE) & S2_PUD_MASK;
return (boundary - 1 < end - 1) ? boundary : end;
if (kvm_stage2_has_pud(kvm))
return pgd_none(pgd);
else
return 0;
}
#endif /* STAGE2_PGTABLE_LEVELS > 3 */
static inline void stage2_pgd_clear(struct kvm *kvm, pgd_t *pgdp)
{
if (kvm_stage2_has_pud(kvm))
pgd_clear(pgdp);
}
static inline bool stage2_pgd_present(struct kvm *kvm, pgd_t pgd)
{
if (kvm_stage2_has_pud(kvm))
return pgd_present(pgd);
else
return 1;
}
#if STAGE2_PGTABLE_LEVELS > 2
static inline void stage2_pgd_populate(struct kvm *kvm, pgd_t *pgd, pud_t *pud)
{
if (kvm_stage2_has_pud(kvm))
pgd_populate(NULL, pgd, pud);
}
static inline pud_t *stage2_pud_offset(struct kvm *kvm,
pgd_t *pgd, unsigned long address)
{
if (kvm_stage2_has_pud(kvm))
return pud_offset(pgd, address);
else
return (pud_t *)pgd;
}
static inline void stage2_pud_free(struct kvm *kvm, pud_t *pud)
{
if (kvm_stage2_has_pud(kvm))
pud_free(NULL, pud);
}
static inline bool stage2_pud_table_empty(struct kvm *kvm, pud_t *pudp)
{
if (kvm_stage2_has_pud(kvm))
return kvm_page_empty(pudp);
else
return false;
}
static inline phys_addr_t
stage2_pud_addr_end(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
{
if (kvm_stage2_has_pud(kvm)) {
phys_addr_t boundary = (addr + S2_PUD_SIZE) & S2_PUD_MASK;
return (boundary - 1 < end - 1) ? boundary : end;
} else {
return end;
}
}
/* Stage2 PMD definitions when the level is present */
static inline bool kvm_stage2_has_pmd(struct kvm *kvm)
{
return (CONFIG_PGTABLE_LEVELS > 2) && (kvm_stage2_levels(kvm) > 2);
}
#define S2_PMD_SHIFT ARM64_HW_PGTABLE_LEVEL_SHIFT(2)
#define S2_PMD_SIZE (_AC(1, UL) << S2_PMD_SHIFT)
#define S2_PMD_SIZE (1UL << S2_PMD_SHIFT)
#define S2_PMD_MASK (~(S2_PMD_SIZE - 1))
#define stage2_pud_none(pud) pud_none(pud)
#define stage2_pud_clear(pud) pud_clear(pud)
#define stage2_pud_present(pud) pud_present(pud)
#define stage2_pud_populate(pud, pmd) pud_populate(NULL, pud, pmd)
#define stage2_pmd_offset(pud, address) pmd_offset(pud, address)
#define stage2_pmd_free(pmd) pmd_free(NULL, pmd)
#define stage2_pud_huge(pud) pud_huge(pud)
#define stage2_pmd_table_empty(pmdp) kvm_page_empty(pmdp)
static inline phys_addr_t stage2_pmd_addr_end(phys_addr_t addr, phys_addr_t end)
static inline bool stage2_pud_none(struct kvm *kvm, pud_t pud)
{
phys_addr_t boundary = (addr + S2_PMD_SIZE) & S2_PMD_MASK;
return (boundary - 1 < end - 1) ? boundary : end;
if (kvm_stage2_has_pmd(kvm))
return pud_none(pud);
else
return 0;
}
#endif /* STAGE2_PGTABLE_LEVELS > 2 */
#define stage2_pte_table_empty(ptep) kvm_page_empty(ptep)
#if STAGE2_PGTABLE_LEVELS == 2
#include <asm/stage2_pgtable-nopmd.h>
#elif STAGE2_PGTABLE_LEVELS == 3
#include <asm/stage2_pgtable-nopud.h>
#endif
#define stage2_pgd_index(addr) (((addr) >> S2_PGDIR_SHIFT) & (PTRS_PER_S2_PGD - 1))
static inline phys_addr_t stage2_pgd_addr_end(phys_addr_t addr, phys_addr_t end)
static inline void stage2_pud_clear(struct kvm *kvm, pud_t *pud)
{
phys_addr_t boundary = (addr + S2_PGDIR_SIZE) & S2_PGDIR_MASK;
if (kvm_stage2_has_pmd(kvm))
pud_clear(pud);
}
static inline bool stage2_pud_present(struct kvm *kvm, pud_t pud)
{
if (kvm_stage2_has_pmd(kvm))
return pud_present(pud);
else
return 1;
}
static inline void stage2_pud_populate(struct kvm *kvm, pud_t *pud, pmd_t *pmd)
{
if (kvm_stage2_has_pmd(kvm))
pud_populate(NULL, pud, pmd);
}
static inline pmd_t *stage2_pmd_offset(struct kvm *kvm,
pud_t *pud, unsigned long address)
{
if (kvm_stage2_has_pmd(kvm))
return pmd_offset(pud, address);
else
return (pmd_t *)pud;
}
static inline void stage2_pmd_free(struct kvm *kvm, pmd_t *pmd)
{
if (kvm_stage2_has_pmd(kvm))
pmd_free(NULL, pmd);
}
static inline bool stage2_pud_huge(struct kvm *kvm, pud_t pud)
{
if (kvm_stage2_has_pmd(kvm))
return pud_huge(pud);
else
return 0;
}
static inline bool stage2_pmd_table_empty(struct kvm *kvm, pmd_t *pmdp)
{
if (kvm_stage2_has_pmd(kvm))
return kvm_page_empty(pmdp);
else
return 0;
}
static inline phys_addr_t
stage2_pmd_addr_end(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
{
if (kvm_stage2_has_pmd(kvm)) {
phys_addr_t boundary = (addr + S2_PMD_SIZE) & S2_PMD_MASK;
return (boundary - 1 < end - 1) ? boundary : end;
} else {
return end;
}
}
static inline bool stage2_pte_table_empty(struct kvm *kvm, pte_t *ptep)
{
return kvm_page_empty(ptep);
}
static inline unsigned long stage2_pgd_index(struct kvm *kvm, phys_addr_t addr)
{
return (((addr) >> stage2_pgdir_shift(kvm)) & (stage2_pgd_ptrs(kvm) - 1));
}
static inline phys_addr_t
stage2_pgd_addr_end(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
{
phys_addr_t boundary = (addr + stage2_pgdir_size(kvm)) & stage2_pgdir_mask(kvm);
return (boundary - 1 < end - 1) ? boundary : end;
}

View File

@ -391,15 +391,15 @@ int __attribute_const__ kvm_target_cpu(void)
return KVM_ARM_TARGET_CORTEX_A53;
case ARM_CPU_PART_CORTEX_A57:
return KVM_ARM_TARGET_CORTEX_A57;
};
}
break;
case ARM_CPU_IMP_APM:
switch (part_number) {
case APM_CPU_PART_POTENZA:
return KVM_ARM_TARGET_XGENE_POTENZA;
};
}
break;
};
}
/* Return a default generic target */
return KVM_ARM_TARGET_GENERIC_V8;

View File

@ -284,6 +284,13 @@ int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run,
*/
run->exit_reason = KVM_EXIT_FAIL_ENTRY;
return 0;
case ARM_EXCEPTION_IL:
/*
* We attempted an illegal exception return. Guest state must
* have been corrupted somehow. Give up.
*/
run->exit_reason = KVM_EXIT_FAIL_ENTRY;
return -EINVAL;
default:
kvm_pr_unimpl("Unsupported exception type: %d",
exception_index);

View File

@ -19,7 +19,6 @@ obj-$(CONFIG_KVM_ARM_HOST) += switch.o
obj-$(CONFIG_KVM_ARM_HOST) += fpsimd.o
obj-$(CONFIG_KVM_ARM_HOST) += tlb.o
obj-$(CONFIG_KVM_ARM_HOST) += hyp-entry.o
obj-$(CONFIG_KVM_ARM_HOST) += s2-setup.o
# KVM code is run at a different exception code with a different map, so
# compiler instrumentation that inserts callbacks or checks into the code may

View File

@ -162,6 +162,20 @@ el1_error:
mov x0, #ARM_EXCEPTION_EL1_SERROR
b __guest_exit
el2_sync:
/* Check for illegal exception return, otherwise panic */
mrs x0, spsr_el2
/* if this was something else, then panic! */
tst x0, #PSR_IL_BIT
b.eq __hyp_panic
/* Let's attempt a recovery from the illegal exception return */
get_vcpu_ptr x1, x0
mov x0, #ARM_EXCEPTION_IL
b __guest_exit
el2_error:
ldp x0, x1, [sp], #16
@ -240,7 +254,7 @@ ENTRY(__kvm_hyp_vector)
invalid_vect el2t_fiq_invalid // FIQ EL2t
invalid_vect el2t_error_invalid // Error EL2t
invalid_vect el2h_sync_invalid // Synchronous EL2h
valid_vect el2_sync // Synchronous EL2h
invalid_vect el2h_irq_invalid // IRQ EL2h
invalid_vect el2h_fiq_invalid // FIQ EL2h
valid_vect el2_error // Error EL2h

View File

@ -1,90 +0,0 @@
/*
* Copyright (C) 2016 - ARM Ltd
* Author: Marc Zyngier <marc.zyngier@arm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/types.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_hyp.h>
u32 __hyp_text __init_stage2_translation(void)
{
u64 val = VTCR_EL2_FLAGS;
u64 parange;
u64 tmp;
/*
* Read the PARange bits from ID_AA64MMFR0_EL1 and set the PS
* bits in VTCR_EL2. Amusingly, the PARange is 4 bits, while
* PS is only 3. Fortunately, bit 19 is RES0 in VTCR_EL2...
*/
parange = read_sysreg(id_aa64mmfr0_el1) & 7;
if (parange > ID_AA64MMFR0_PARANGE_MAX)
parange = ID_AA64MMFR0_PARANGE_MAX;
val |= parange << 16;
/* Compute the actual PARange... */
switch (parange) {
case 0:
parange = 32;
break;
case 1:
parange = 36;
break;
case 2:
parange = 40;
break;
case 3:
parange = 42;
break;
case 4:
parange = 44;
break;
case 5:
default:
parange = 48;
break;
}
/*
* ... and clamp it to 40 bits, unless we have some braindead
* HW that implements less than that. In all cases, we'll
* return that value for the rest of the kernel to decide what
* to do.
*/
val |= 64 - (parange > 40 ? 40 : parange);
/*
* Check the availability of Hardware Access Flag / Dirty Bit
* Management in ID_AA64MMFR1_EL1 and enable the feature in VTCR_EL2.
*/
tmp = (read_sysreg(id_aa64mmfr1_el1) >> ID_AA64MMFR1_HADBS_SHIFT) & 0xf;
if (tmp)
val |= VTCR_EL2_HA;
/*
* Read the VMIDBits bits from ID_AA64MMFR1_EL1 and set the VS
* bit in VTCR_EL2.
*/
tmp = (read_sysreg(id_aa64mmfr1_el1) >> ID_AA64MMFR1_VMIDBITS_SHIFT) & 0xf;
val |= (tmp == ID_AA64MMFR1_VMIDBITS_16) ?
VTCR_EL2_VS_16BIT :
VTCR_EL2_VS_8BIT;
write_sysreg(val, vtcr_el2);
return parange;
}

View File

@ -198,7 +198,7 @@ void deactivate_traps_vhe_put(void)
static void __hyp_text __activate_vm(struct kvm *kvm)
{
write_sysreg(kvm->arch.vttbr, vttbr_el2);
__load_guest_stage2(kvm);
}
static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
@ -263,7 +263,7 @@ static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
return false; /* Translation failed, back to guest */
/* Convert PAR to HPFAR format */
*hpfar = ((tmp >> 12) & ((1UL << 36) - 1)) << 4;
*hpfar = PAR_TO_HPFAR(tmp);
return true;
}

View File

@ -152,8 +152,25 @@ static void __hyp_text __sysreg_restore_el1_state(struct kvm_cpu_context *ctxt)
static void __hyp_text
__sysreg_restore_el2_return_state(struct kvm_cpu_context *ctxt)
{
u64 pstate = ctxt->gp_regs.regs.pstate;
u64 mode = pstate & PSR_AA32_MODE_MASK;
/*
* Safety check to ensure we're setting the CPU up to enter the guest
* in a less privileged mode.
*
* If we are attempting a return to EL2 or higher in AArch64 state,
* program SPSR_EL2 with M=EL2h and the IL bit set which ensures that
* we'll take an illegal exception state exception immediately after
* the ERET to the guest. Attempts to return to AArch32 Hyp will
* result in an illegal exception return because EL2's execution state
* is determined by SCR_EL3.RW.
*/
if (!(mode & PSR_MODE32_BIT) && mode >= PSR_MODE_EL2t)
pstate = PSR_MODE_EL2h | PSR_IL_BIT;
write_sysreg_el2(ctxt->gp_regs.regs.pc, elr);
write_sysreg_el2(ctxt->gp_regs.regs.pstate, spsr);
write_sysreg_el2(pstate, spsr);
if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
write_sysreg_s(ctxt->sys_regs[DISR_EL1], SYS_VDISR_EL2);

View File

@ -30,7 +30,7 @@ static void __hyp_text __tlb_switch_to_guest_vhe(struct kvm *kvm)
* bits. Changing E2H is impossible (goodbye TTBR1_EL2), so
* let's flip TGE before executing the TLB operation.
*/
write_sysreg(kvm->arch.vttbr, vttbr_el2);
__load_guest_stage2(kvm);
val = read_sysreg(hcr_el2);
val &= ~HCR_TGE;
write_sysreg(val, hcr_el2);
@ -39,7 +39,7 @@ static void __hyp_text __tlb_switch_to_guest_vhe(struct kvm *kvm)
static void __hyp_text __tlb_switch_to_guest_nvhe(struct kvm *kvm)
{
write_sysreg(kvm->arch.vttbr, vttbr_el2);
__load_guest_stage2(kvm);
isb();
}

View File

@ -26,6 +26,7 @@
#include <kvm/arm_arch_timer.h>
#include <asm/cpufeature.h>
#include <asm/cputype.h>
#include <asm/ptrace.h>
#include <asm/kvm_arm.h>
@ -33,6 +34,9 @@
#include <asm/kvm_coproc.h>
#include <asm/kvm_mmu.h>
/* Maximum phys_shift supported for any VM on this host */
static u32 kvm_ipa_limit;
/*
* ARMv8 Reset Values
*/
@ -55,12 +59,12 @@ static bool cpu_has_32bit_el1(void)
}
/**
* kvm_arch_dev_ioctl_check_extension
* kvm_arch_vm_ioctl_check_extension
*
* We currently assume that the number of HW registers is uniform
* across all CPUs (see cpuinfo_sanity_check).
*/
int kvm_arch_dev_ioctl_check_extension(struct kvm *kvm, long ext)
int kvm_arch_vm_ioctl_check_extension(struct kvm *kvm, long ext)
{
int r;
@ -82,9 +86,11 @@ int kvm_arch_dev_ioctl_check_extension(struct kvm *kvm, long ext)
break;
case KVM_CAP_SET_GUEST_DEBUG:
case KVM_CAP_VCPU_ATTRIBUTES:
case KVM_CAP_VCPU_EVENTS:
r = 1;
break;
case KVM_CAP_ARM_VM_IPA_SIZE:
r = kvm_ipa_limit;
break;
default:
r = 0;
}
@ -133,3 +139,99 @@ int kvm_reset_vcpu(struct kvm_vcpu *vcpu)
/* Reset timer */
return kvm_timer_vcpu_reset(vcpu);
}
void kvm_set_ipa_limit(void)
{
unsigned int ipa_max, pa_max, va_max, parange;
parange = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1) & 0x7;
pa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
/* Clamp the IPA limit to the PA size supported by the kernel */
ipa_max = (pa_max > PHYS_MASK_SHIFT) ? PHYS_MASK_SHIFT : pa_max;
/*
* Since our stage2 table is dependent on the stage1 page table code,
* we must always honor the following condition:
*
* Number of levels in Stage1 >= Number of levels in Stage2.
*
* So clamp the ipa limit further down to limit the number of levels.
* Since we can concatenate upto 16 tables at entry level, we could
* go upto 4bits above the maximum VA addressible with the current
* number of levels.
*/
va_max = PGDIR_SHIFT + PAGE_SHIFT - 3;
va_max += 4;
if (va_max < ipa_max)
ipa_max = va_max;
/*
* If the final limit is lower than the real physical address
* limit of the CPUs, report the reason.
*/
if (ipa_max < pa_max)
pr_info("kvm: Limiting the IPA size due to kernel %s Address limit\n",
(va_max < pa_max) ? "Virtual" : "Physical");
WARN(ipa_max < KVM_PHYS_SHIFT,
"KVM IPA limit (%d bit) is smaller than default size\n", ipa_max);
kvm_ipa_limit = ipa_max;
kvm_info("IPA Size Limit: %dbits\n", kvm_ipa_limit);
}
/*
* Configure the VTCR_EL2 for this VM. The VTCR value is common
* across all the physical CPUs on the system. We use system wide
* sanitised values to fill in different fields, except for Hardware
* Management of Access Flags. HA Flag is set unconditionally on
* all CPUs, as it is safe to run with or without the feature and
* the bit is RES0 on CPUs that don't support it.
*/
int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type)
{
u64 vtcr = VTCR_EL2_FLAGS;
u32 parange, phys_shift;
u8 lvls;
if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK)
return -EINVAL;
phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type);
if (phys_shift) {
if (phys_shift > kvm_ipa_limit ||
phys_shift < 32)
return -EINVAL;
} else {
phys_shift = KVM_PHYS_SHIFT;
}
parange = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1) & 7;
if (parange > ID_AA64MMFR0_PARANGE_MAX)
parange = ID_AA64MMFR0_PARANGE_MAX;
vtcr |= parange << VTCR_EL2_PS_SHIFT;
vtcr |= VTCR_EL2_T0SZ(phys_shift);
/*
* Use a minimum 2 level page table to prevent splitting
* host PMD huge pages at stage2.
*/
lvls = stage2_pgtable_levels(phys_shift);
if (lvls < 2)
lvls = 2;
vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
/*
* Enable the Hardware Access Flag management, unconditionally
* on all CPUs. The features is RES0 on CPUs without the support
* and must be ignored by the CPUs.
*/
vtcr |= VTCR_EL2_HA;
/* Set the vmid bits */
vtcr |= (kvm_get_vmid_bits() == 16) ?
VTCR_EL2_VS_16BIT :
VTCR_EL2_VS_8BIT;
kvm->arch.vtcr = vtcr;
return 0;
}

View File

@ -150,4 +150,25 @@ extern s32 patch__memset_nocache, patch__memcpy_nocache;
extern long flush_count_cache;
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
void kvmppc_save_tm_hv(struct kvm_vcpu *vcpu, u64 msr, bool preserve_nv);
void kvmppc_restore_tm_hv(struct kvm_vcpu *vcpu, u64 msr, bool preserve_nv);
#else
static inline void kvmppc_save_tm_hv(struct kvm_vcpu *vcpu, u64 msr,
bool preserve_nv) { }
static inline void kvmppc_restore_tm_hv(struct kvm_vcpu *vcpu, u64 msr,
bool preserve_nv) { }
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
void kvmhv_save_host_pmu(void);
void kvmhv_load_host_pmu(void);
void kvmhv_save_guest_pmu(struct kvm_vcpu *vcpu, bool pmu_in_use);
void kvmhv_load_guest_pmu(struct kvm_vcpu *vcpu);
int __kvmhv_vcpu_entry_p9(struct kvm_vcpu *vcpu);
long kvmppc_h_set_dabr(struct kvm_vcpu *vcpu, unsigned long dabr);
long kvmppc_h_set_xdabr(struct kvm_vcpu *vcpu, unsigned long dabr,
unsigned long dabrx);
#endif /* _ASM_POWERPC_ASM_PROTOTYPES_H */

View File

@ -203,6 +203,18 @@ static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
BUG();
}
static inline unsigned int ap_to_shift(unsigned long ap)
{
int psize;
for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
if (mmu_psize_defs[psize].ap == ap)
return mmu_psize_defs[psize].shift;
}
return -1;
}
static inline unsigned long get_sllp_encoding(int psize)
{
unsigned long sllp;

View File

@ -53,6 +53,7 @@ extern void radix__flush_tlb_lpid_page(unsigned int lpid,
unsigned long addr,
unsigned long page_size);
extern void radix__flush_pwc_lpid(unsigned int lpid);
extern void radix__flush_tlb_lpid(unsigned int lpid);
extern void radix__local_flush_tlb_lpid(unsigned int lpid);
extern void radix__local_flush_tlb_lpid_guest(unsigned int lpid);

View File

@ -322,6 +322,11 @@
#define H_GET_24X7_DATA 0xF07C
#define H_GET_PERF_COUNTER_INFO 0xF080
/* Platform-specific hcalls used for nested HV KVM */
#define H_SET_PARTITION_TABLE 0xF800
#define H_ENTER_NESTED 0xF804
#define H_TLB_INVALIDATE 0xF808
/* Values for 2nd argument to H_SET_MODE */
#define H_SET_MODE_RESOURCE_SET_CIABR 1
#define H_SET_MODE_RESOURCE_SET_DAWR 2
@ -461,6 +466,42 @@ struct h_cpu_char_result {
u64 behaviour;
};
/* Register state for entering a nested guest with H_ENTER_NESTED */
struct hv_guest_state {
u64 version; /* version of this structure layout */
u32 lpid;
u32 vcpu_token;
/* These registers are hypervisor privileged (at least for writing) */
u64 lpcr;
u64 pcr;
u64 amor;
u64 dpdes;
u64 hfscr;
s64 tb_offset;
u64 dawr0;
u64 dawrx0;
u64 ciabr;
u64 hdec_expiry;
u64 purr;
u64 spurr;
u64 ic;
u64 vtb;
u64 hdar;
u64 hdsisr;
u64 heir;
u64 asdr;
/* These are OS privileged but need to be set late in guest entry */
u64 srr0;
u64 srr1;
u64 sprg[4];
u64 pidr;
u64 cfar;
u64 ppr;
};
/* Latest version of hv_guest_state structure */
#define HV_GUEST_STATE_VERSION 1
#endif /* __ASSEMBLY__ */
#endif /* __KERNEL__ */
#endif /* _ASM_POWERPC_HVCALL_H */

View File

@ -126,7 +126,7 @@ struct iommu_table {
int it_nid;
};
#define IOMMU_TABLE_USERSPACE_ENTRY_RM(tbl, entry) \
#define IOMMU_TABLE_USERSPACE_ENTRY_RO(tbl, entry) \
((tbl)->it_ops->useraddrptr((tbl), (entry), false))
#define IOMMU_TABLE_USERSPACE_ENTRY(tbl, entry) \
((tbl)->it_ops->useraddrptr((tbl), (entry), true))

View File

@ -84,7 +84,6 @@
#define BOOK3S_INTERRUPT_INST_STORAGE 0x400
#define BOOK3S_INTERRUPT_INST_SEGMENT 0x480
#define BOOK3S_INTERRUPT_EXTERNAL 0x500
#define BOOK3S_INTERRUPT_EXTERNAL_LEVEL 0x501
#define BOOK3S_INTERRUPT_EXTERNAL_HV 0x502
#define BOOK3S_INTERRUPT_ALIGNMENT 0x600
#define BOOK3S_INTERRUPT_PROGRAM 0x700
@ -134,8 +133,7 @@
#define BOOK3S_IRQPRIO_EXTERNAL 14
#define BOOK3S_IRQPRIO_DECREMENTER 15
#define BOOK3S_IRQPRIO_PERFORMANCE_MONITOR 16
#define BOOK3S_IRQPRIO_EXTERNAL_LEVEL 17
#define BOOK3S_IRQPRIO_MAX 18
#define BOOK3S_IRQPRIO_MAX 17
#define BOOK3S_HFLAG_DCBZ32 0x1
#define BOOK3S_HFLAG_SLB 0x2

View File

@ -188,14 +188,37 @@ extern int kvmppc_book3s_hcall_implemented(struct kvm *kvm, unsigned long hc);
extern int kvmppc_book3s_radix_page_fault(struct kvm_run *run,
struct kvm_vcpu *vcpu,
unsigned long ea, unsigned long dsisr);
extern int kvmppc_mmu_walk_radix_tree(struct kvm_vcpu *vcpu, gva_t eaddr,
struct kvmppc_pte *gpte, u64 root,
u64 *pte_ret_p);
extern int kvmppc_mmu_radix_translate_table(struct kvm_vcpu *vcpu, gva_t eaddr,
struct kvmppc_pte *gpte, u64 table,
int table_index, u64 *pte_ret_p);
extern int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
struct kvmppc_pte *gpte, bool data, bool iswrite);
extern void kvmppc_unmap_pte(struct kvm *kvm, pte_t *pte, unsigned long gpa,
unsigned int shift, struct kvm_memory_slot *memslot,
unsigned int lpid);
extern bool kvmppc_hv_handle_set_rc(struct kvm *kvm, pgd_t *pgtable,
bool writing, unsigned long gpa,
unsigned int lpid);
extern int kvmppc_book3s_instantiate_page(struct kvm_vcpu *vcpu,
unsigned long gpa,
struct kvm_memory_slot *memslot,
bool writing, bool kvm_ro,
pte_t *inserted_pte, unsigned int *levelp);
extern int kvmppc_init_vm_radix(struct kvm *kvm);
extern void kvmppc_free_radix(struct kvm *kvm);
extern void kvmppc_free_pgtable_radix(struct kvm *kvm, pgd_t *pgd,
unsigned int lpid);
extern int kvmppc_radix_init(void);
extern void kvmppc_radix_exit(void);
extern int kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
unsigned long gfn);
extern void kvmppc_unmap_pte(struct kvm *kvm, pte_t *pte,
unsigned long gpa, unsigned int shift,
struct kvm_memory_slot *memslot,
unsigned int lpid);
extern int kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
unsigned long gfn);
extern int kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
@ -271,6 +294,21 @@ static inline void kvmppc_save_tm_sprs(struct kvm_vcpu *vcpu) {}
static inline void kvmppc_restore_tm_sprs(struct kvm_vcpu *vcpu) {}
#endif
long kvmhv_nested_init(void);
void kvmhv_nested_exit(void);
void kvmhv_vm_nested_init(struct kvm *kvm);
long kvmhv_set_partition_table(struct kvm_vcpu *vcpu);
void kvmhv_set_ptbl_entry(unsigned int lpid, u64 dw0, u64 dw1);
void kvmhv_release_all_nested(struct kvm *kvm);
long kvmhv_enter_nested_guest(struct kvm_vcpu *vcpu);
long kvmhv_do_nested_tlbie(struct kvm_vcpu *vcpu);
int kvmhv_run_single_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu,
u64 time_limit, unsigned long lpcr);
void kvmhv_save_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr);
void kvmhv_restore_hv_return_state(struct kvm_vcpu *vcpu,
struct hv_guest_state *hr);
long int kvmhv_nested_page_fault(struct kvm_vcpu *vcpu);
void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac);
extern int kvm_irq_bypass;
@ -301,12 +339,12 @@ static inline ulong kvmppc_get_gpr(struct kvm_vcpu *vcpu, int num)
static inline void kvmppc_set_cr(struct kvm_vcpu *vcpu, u32 val)
{
vcpu->arch.cr = val;
vcpu->arch.regs.ccr = val;
}
static inline u32 kvmppc_get_cr(struct kvm_vcpu *vcpu)
{
return vcpu->arch.cr;
return vcpu->arch.regs.ccr;
}
static inline void kvmppc_set_xer(struct kvm_vcpu *vcpu, ulong val)
@ -384,9 +422,6 @@ extern int kvmppc_h_logical_ci_store(struct kvm_vcpu *vcpu);
/* TO = 31 for unconditional trap */
#define INS_TW 0x7fe00008
/* LPIDs we support with this build -- runtime limit may be lower */
#define KVMPPC_NR_LPIDS (LPID_RSVD + 1)
#define SPLIT_HACK_MASK 0xff000000
#define SPLIT_HACK_OFFS 0xfb000000

View File

@ -23,6 +23,108 @@
#include <linux/string.h>
#include <asm/bitops.h>
#include <asm/book3s/64/mmu-hash.h>
#include <asm/cpu_has_feature.h>
#include <asm/ppc-opcode.h>
#ifdef CONFIG_PPC_PSERIES
static inline bool kvmhv_on_pseries(void)
{
return !cpu_has_feature(CPU_FTR_HVMODE);
}
#else
static inline bool kvmhv_on_pseries(void)
{
return false;
}
#endif
/*
* Structure for a nested guest, that is, for a guest that is managed by
* one of our guests.
*/
struct kvm_nested_guest {
struct kvm *l1_host; /* L1 VM that owns this nested guest */
int l1_lpid; /* lpid L1 guest thinks this guest is */
int shadow_lpid; /* real lpid of this nested guest */
pgd_t *shadow_pgtable; /* our page table for this guest */
u64 l1_gr_to_hr; /* L1's addr of part'n-scoped table */
u64 process_table; /* process table entry for this guest */
long refcnt; /* number of pointers to this struct */
struct mutex tlb_lock; /* serialize page faults and tlbies */
struct kvm_nested_guest *next;
cpumask_t need_tlb_flush;
cpumask_t cpu_in_guest;
short prev_cpu[NR_CPUS];
};
/*
* We define a nested rmap entry as a single 64-bit quantity
* 0xFFF0000000000000 12-bit lpid field
* 0x000FFFFFFFFFF000 40-bit guest 4k page frame number
* 0x0000000000000001 1-bit single entry flag
*/
#define RMAP_NESTED_LPID_MASK 0xFFF0000000000000UL
#define RMAP_NESTED_LPID_SHIFT (52)
#define RMAP_NESTED_GPA_MASK 0x000FFFFFFFFFF000UL
#define RMAP_NESTED_IS_SINGLE_ENTRY 0x0000000000000001UL
/* Structure for a nested guest rmap entry */
struct rmap_nested {
struct llist_node list;
u64 rmap;
};
/*
* for_each_nest_rmap_safe - iterate over the list of nested rmap entries
* safe against removal of the list entry or NULL list
* @pos: a (struct rmap_nested *) to use as a loop cursor
* @node: pointer to the first entry
* NOTE: this can be NULL
* @rmapp: an (unsigned long *) in which to return the rmap entries on each
* iteration
* NOTE: this must point to already allocated memory
*
* The nested_rmap is a llist of (struct rmap_nested) entries pointed to by the
* rmap entry in the memslot. The list is always terminated by a "single entry"
* stored in the list element of the final entry of the llist. If there is ONLY
* a single entry then this is itself in the rmap entry of the memslot, not a
* llist head pointer.
*
* Note that the iterator below assumes that a nested rmap entry is always
* non-zero. This is true for our usage because the LPID field is always
* non-zero (zero is reserved for the host).
*
* This should be used to iterate over the list of rmap_nested entries with
* processing done on the u64 rmap value given by each iteration. This is safe
* against removal of list entries and it is always safe to call free on (pos).
*
* e.g.
* struct rmap_nested *cursor;
* struct llist_node *first;
* unsigned long rmap;
* for_each_nest_rmap_safe(cursor, first, &rmap) {
* do_something(rmap);
* free(cursor);
* }
*/
#define for_each_nest_rmap_safe(pos, node, rmapp) \
for ((pos) = llist_entry((node), typeof(*(pos)), list); \
(node) && \
(*(rmapp) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ? \
((u64) (node)) : ((pos)->rmap))) && \
(((node) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ? \
((struct llist_node *) ((pos) = NULL)) : \
(pos)->list.next)), true); \
(pos) = llist_entry((node), typeof(*(pos)), list))
struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid,
bool create);
void kvmhv_put_nested(struct kvm_nested_guest *gp);
int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid);
/* Encoding of first parameter for H_TLB_INVALIDATE */
#define H_TLBIE_P1_ENC(ric, prs, r) (___PPC_RIC(ric) | ___PPC_PRS(prs) | \
___PPC_R(r))
/* Power architecture requires HPT is at least 256kiB, at most 64TiB */
#define PPC_MIN_HPT_ORDER 18
@ -435,6 +537,7 @@ static inline struct kvm_memslots *kvm_memslots_raw(struct kvm *kvm)
}
extern void kvmppc_mmu_debugfs_init(struct kvm *kvm);
extern void kvmhv_radix_debugfs_init(struct kvm *kvm);
extern void kvmhv_rm_send_ipi(int cpu);
@ -482,7 +585,7 @@ static inline u64 sanitize_msr(u64 msr)
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static inline void copy_from_checkpoint(struct kvm_vcpu *vcpu)
{
vcpu->arch.cr = vcpu->arch.cr_tm;
vcpu->arch.regs.ccr = vcpu->arch.cr_tm;
vcpu->arch.regs.xer = vcpu->arch.xer_tm;
vcpu->arch.regs.link = vcpu->arch.lr_tm;
vcpu->arch.regs.ctr = vcpu->arch.ctr_tm;
@ -499,7 +602,7 @@ static inline void copy_from_checkpoint(struct kvm_vcpu *vcpu)
static inline void copy_to_checkpoint(struct kvm_vcpu *vcpu)
{
vcpu->arch.cr_tm = vcpu->arch.cr;
vcpu->arch.cr_tm = vcpu->arch.regs.ccr;
vcpu->arch.xer_tm = vcpu->arch.regs.xer;
vcpu->arch.lr_tm = vcpu->arch.regs.link;
vcpu->arch.ctr_tm = vcpu->arch.regs.ctr;
@ -515,6 +618,17 @@ static inline void copy_to_checkpoint(struct kvm_vcpu *vcpu)
}
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
extern int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte,
unsigned long gpa, unsigned int level,
unsigned long mmu_seq, unsigned int lpid,
unsigned long *rmapp, struct rmap_nested **n_rmap);
extern void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp,
struct rmap_nested **n_rmap);
extern void kvmhv_remove_nest_rmap_range(struct kvm *kvm,
struct kvm_memory_slot *memslot,
unsigned long gpa, unsigned long hpa,
unsigned long nbytes);
#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
#endif /* __ASM_KVM_BOOK3S_64_H__ */

View File

@ -25,6 +25,9 @@
#define XICS_MFRR 0xc
#define XICS_IPI 2 /* interrupt source # for IPIs */
/* LPIDs we support with this build -- runtime limit may be lower */
#define KVMPPC_NR_LPIDS (LPID_RSVD + 1)
/* Maximum number of threads per physical core */
#define MAX_SMT_THREADS 8

View File

@ -46,12 +46,12 @@ static inline ulong kvmppc_get_gpr(struct kvm_vcpu *vcpu, int num)
static inline void kvmppc_set_cr(struct kvm_vcpu *vcpu, u32 val)
{
vcpu->arch.cr = val;
vcpu->arch.regs.ccr = val;
}
static inline u32 kvmppc_get_cr(struct kvm_vcpu *vcpu)
{
return vcpu->arch.cr;
return vcpu->arch.regs.ccr;
}
static inline void kvmppc_set_xer(struct kvm_vcpu *vcpu, ulong val)

View File

@ -46,6 +46,7 @@
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
#include <asm/kvm_book3s_asm.h> /* for MAX_SMT_THREADS */
#define KVM_MAX_VCPU_ID (MAX_SMT_THREADS * KVM_MAX_VCORES)
#define KVM_MAX_NESTED_GUESTS KVMPPC_NR_LPIDS
#else
#define KVM_MAX_VCPU_ID KVM_MAX_VCPUS
@ -94,6 +95,7 @@ struct dtl_entry;
struct kvmppc_vcpu_book3s;
struct kvmppc_book3s_shadow_vcpu;
struct kvm_nested_guest;
struct kvm_vm_stat {
ulong remote_tlb_flush;
@ -287,10 +289,12 @@ struct kvm_arch {
u8 radix;
u8 fwnmi_enabled;
bool threads_indep;
bool nested_enable;
pgd_t *pgtable;
u64 process_table;
struct dentry *debugfs_dir;
struct dentry *htab_dentry;
struct dentry *radix_dentry;
struct kvm_resize_hpt *resize_hpt; /* protected by kvm->lock */
#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
@ -311,6 +315,9 @@ struct kvm_arch {
#endif
struct kvmppc_ops *kvm_ops;
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
u64 l1_ptcr;
int max_nested_lpid;
struct kvm_nested_guest *nested_guests[KVM_MAX_NESTED_GUESTS];
/* This array can grow quite large, keep it at the end */
struct kvmppc_vcore *vcores[KVM_MAX_VCORES];
#endif
@ -360,7 +367,9 @@ struct kvmppc_pte {
bool may_write : 1;
bool may_execute : 1;
unsigned long wimg;
unsigned long rc;
u8 page_size; /* MMU_PAGE_xxx */
u8 page_shift;
};
struct kvmppc_mmu {
@ -537,8 +546,6 @@ struct kvm_vcpu_arch {
ulong tar;
#endif
u32 cr;
#ifdef CONFIG_PPC_BOOK3S
ulong hflags;
ulong guest_owned_ext;
@ -707,6 +714,7 @@ struct kvm_vcpu_arch {
u8 hcall_needed;
u8 epr_flags; /* KVMPPC_EPR_xxx */
u8 epr_needed;
u8 external_oneshot; /* clear external irq after delivery */
u32 cpr0_cfgaddr; /* holds the last set cpr0_cfgaddr */
@ -781,6 +789,10 @@ struct kvm_vcpu_arch {
u32 emul_inst;
u32 online;
/* For support of nested guests */
struct kvm_nested_guest *nested;
u32 nested_vcpu_id;
#endif
#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING

View File

@ -194,9 +194,7 @@ extern struct kvmppc_spapr_tce_table *kvmppc_find_table(
(iommu_tce_check_ioba((stt)->page_shift, (stt)->offset, \
(stt)->size, (ioba), (npages)) ? \
H_PARAMETER : H_SUCCESS)
extern long kvmppc_tce_validate(struct kvmppc_spapr_tce_table *tt,
unsigned long tce);
extern long kvmppc_gpa_to_ua(struct kvm *kvm, unsigned long gpa,
extern long kvmppc_tce_to_ua(struct kvm *kvm, unsigned long tce,
unsigned long *ua, unsigned long **prmap);
extern void kvmppc_tce_put(struct kvmppc_spapr_tce_table *tt,
unsigned long idx, unsigned long tce);
@ -327,6 +325,7 @@ struct kvmppc_ops {
int (*set_smt_mode)(struct kvm *kvm, unsigned long mode,
unsigned long flags);
void (*giveup_ext)(struct kvm_vcpu *vcpu, ulong msr);
int (*enable_nested)(struct kvm *kvm);
};
extern struct kvmppc_ops *kvmppc_hv_ops;
@ -585,6 +584,7 @@ extern int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval);
extern int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq,
int level, bool line_status);
extern void kvmppc_xive_push_vcpu(struct kvm_vcpu *vcpu);
#else
static inline int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server,
u32 priority) { return -1; }
@ -607,6 +607,7 @@ static inline int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval) { retur
static inline int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq,
int level, bool line_status) { return -ENODEV; }
static inline void kvmppc_xive_push_vcpu(struct kvm_vcpu *vcpu) { }
#endif /* CONFIG_KVM_XIVE */
/*
@ -652,6 +653,7 @@ int kvmppc_rm_h_ipi(struct kvm_vcpu *vcpu, unsigned long server,
unsigned long mfrr);
int kvmppc_rm_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr);
int kvmppc_rm_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr);
void kvmppc_guest_entry_inject_int(struct kvm_vcpu *vcpu);
/*
* Host-side operations we want to set up while running in real

View File

@ -104,6 +104,7 @@
#define OP_31_XOP_LHZUX 311
#define OP_31_XOP_MSGSNDP 142
#define OP_31_XOP_MSGCLRP 174
#define OP_31_XOP_TLBIE 306
#define OP_31_XOP_MFSPR 339
#define OP_31_XOP_LWAX 341
#define OP_31_XOP_LHAX 343

View File

@ -415,6 +415,7 @@
#define HFSCR_DSCR __MASK(FSCR_DSCR_LG)
#define HFSCR_VECVSX __MASK(FSCR_VECVSX_LG)
#define HFSCR_FP __MASK(FSCR_FP_LG)
#define HFSCR_INTR_CAUSE (ASM_CONST(0xFF) << 56) /* interrupt cause */
#define SPRN_TAR 0x32f /* Target Address Register */
#define SPRN_LPCR 0x13E /* LPAR Control Register */
#define LPCR_VPM0 ASM_CONST(0x8000000000000000)
@ -766,6 +767,7 @@
#define SPRN_HSRR0 0x13A /* Save/Restore Register 0 */
#define SPRN_HSRR1 0x13B /* Save/Restore Register 1 */
#define HSRR1_DENORM 0x00100000 /* Denorm exception */
#define HSRR1_HISI_WRITE 0x00010000 /* HISI bcs couldn't update mem */
#define SPRN_TBCTL 0x35f /* PA6T Timebase control register */
#define TBCTL_FREEZE 0x0000000000000000ull /* Freeze all tbs */

View File

@ -634,6 +634,7 @@ struct kvm_ppc_cpu_char {
#define KVM_REG_PPC_DEC_EXPIRY (KVM_REG_PPC | KVM_REG_SIZE_U64 | 0xbe)
#define KVM_REG_PPC_ONLINE (KVM_REG_PPC | KVM_REG_SIZE_U32 | 0xbf)
#define KVM_REG_PPC_PTCR (KVM_REG_PPC | KVM_REG_SIZE_U64 | 0xc0)
/* Transactional Memory checkpointed state:
* This is all GPRs, all VSX regs and a subset of SPRs

View File

@ -438,7 +438,7 @@ int main(void)
#ifdef CONFIG_PPC_BOOK3S
OFFSET(VCPU_TAR, kvm_vcpu, arch.tar);
#endif
OFFSET(VCPU_CR, kvm_vcpu, arch.cr);
OFFSET(VCPU_CR, kvm_vcpu, arch.regs.ccr);
OFFSET(VCPU_PC, kvm_vcpu, arch.regs.nip);
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
OFFSET(VCPU_MSR, kvm_vcpu, arch.shregs.msr);
@ -503,6 +503,7 @@ int main(void)
OFFSET(VCPU_VPA, kvm_vcpu, arch.vpa.pinned_addr);
OFFSET(VCPU_VPA_DIRTY, kvm_vcpu, arch.vpa.dirty);
OFFSET(VCPU_HEIR, kvm_vcpu, arch.emul_inst);
OFFSET(VCPU_NESTED, kvm_vcpu, arch.nested);
OFFSET(VCPU_CPU, kvm_vcpu, cpu);
OFFSET(VCPU_THREAD_CPU, kvm_vcpu, arch.thread_cpu);
#endif
@ -695,7 +696,7 @@ int main(void)
#endif /* CONFIG_PPC_BOOK3S_64 */
#else /* CONFIG_PPC_BOOK3S */
OFFSET(VCPU_CR, kvm_vcpu, arch.cr);
OFFSET(VCPU_CR, kvm_vcpu, arch.regs.ccr);
OFFSET(VCPU_XER, kvm_vcpu, arch.regs.xer);
OFFSET(VCPU_LR, kvm_vcpu, arch.regs.link);
OFFSET(VCPU_CTR, kvm_vcpu, arch.regs.ctr);

View File

@ -147,8 +147,8 @@ __init_hvmode_206:
rldicl. r0,r3,4,63
bnelr
ld r5,CPU_SPEC_FEATURES(r4)
LOAD_REG_IMMEDIATE(r6,CPU_FTR_HVMODE)
xor r5,r5,r6
LOAD_REG_IMMEDIATE(r6,CPU_FTR_HVMODE | CPU_FTR_P9_TM_HV_ASSIST)
andc r5,r5,r6
std r5,CPU_SPEC_FEATURES(r4)
blr

View File

@ -75,7 +75,8 @@ kvm-hv-y += \
book3s_hv.o \
book3s_hv_interrupts.o \
book3s_64_mmu_hv.o \
book3s_64_mmu_radix.o
book3s_64_mmu_radix.o \
book3s_hv_nested.o
kvm-hv-$(CONFIG_PPC_TRANSACTIONAL_MEM) += \
book3s_hv_tm.o

View File

@ -78,8 +78,11 @@ void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu)
{
if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) {
ulong pc = kvmppc_get_pc(vcpu);
ulong lr = kvmppc_get_lr(vcpu);
if ((pc & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)
kvmppc_set_pc(vcpu, pc & ~SPLIT_HACK_MASK);
if ((lr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)
kvmppc_set_lr(vcpu, lr & ~SPLIT_HACK_MASK);
vcpu->arch.hflags &= ~BOOK3S_HFLAG_SPLIT_HACK;
}
}
@ -150,7 +153,6 @@ static int kvmppc_book3s_vec2irqprio(unsigned int vec)
case 0x400: prio = BOOK3S_IRQPRIO_INST_STORAGE; break;
case 0x480: prio = BOOK3S_IRQPRIO_INST_SEGMENT; break;
case 0x500: prio = BOOK3S_IRQPRIO_EXTERNAL; break;
case 0x501: prio = BOOK3S_IRQPRIO_EXTERNAL_LEVEL; break;
case 0x600: prio = BOOK3S_IRQPRIO_ALIGNMENT; break;
case 0x700: prio = BOOK3S_IRQPRIO_PROGRAM; break;
case 0x800: prio = BOOK3S_IRQPRIO_FP_UNAVAIL; break;
@ -236,18 +238,35 @@ EXPORT_SYMBOL_GPL(kvmppc_core_dequeue_dec);
void kvmppc_core_queue_external(struct kvm_vcpu *vcpu,
struct kvm_interrupt *irq)
{
unsigned int vec = BOOK3S_INTERRUPT_EXTERNAL;
/*
* This case (KVM_INTERRUPT_SET) should never actually arise for
* a pseries guest (because pseries guests expect their interrupt
* controllers to continue asserting an external interrupt request
* until it is acknowledged at the interrupt controller), but is
* included to avoid ABI breakage and potentially for other
* sorts of guest.
*
* There is a subtlety here: HV KVM does not test the
* external_oneshot flag in the code that synthesizes
* external interrupts for the guest just before entering
* the guest. That is OK even if userspace did do a
* KVM_INTERRUPT_SET on a pseries guest vcpu, because the
* caller (kvm_vcpu_ioctl_interrupt) does a kvm_vcpu_kick()
* which ends up doing a smp_send_reschedule(), which will
* pull the guest all the way out to the host, meaning that
* we will call kvmppc_core_prepare_to_enter() before entering
* the guest again, and that will handle the external_oneshot
* flag correctly.
*/
if (irq->irq == KVM_INTERRUPT_SET)
vcpu->arch.external_oneshot = 1;
if (irq->irq == KVM_INTERRUPT_SET_LEVEL)
vec = BOOK3S_INTERRUPT_EXTERNAL_LEVEL;
kvmppc_book3s_queue_irqprio(vcpu, vec);
kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_EXTERNAL);
}
void kvmppc_core_dequeue_external(struct kvm_vcpu *vcpu)
{
kvmppc_book3s_dequeue_irqprio(vcpu, BOOK3S_INTERRUPT_EXTERNAL);
kvmppc_book3s_dequeue_irqprio(vcpu, BOOK3S_INTERRUPT_EXTERNAL_LEVEL);
}
void kvmppc_core_queue_data_storage(struct kvm_vcpu *vcpu, ulong dar,
@ -278,7 +297,6 @@ static int kvmppc_book3s_irqprio_deliver(struct kvm_vcpu *vcpu,
vec = BOOK3S_INTERRUPT_DECREMENTER;
break;
case BOOK3S_IRQPRIO_EXTERNAL:
case BOOK3S_IRQPRIO_EXTERNAL_LEVEL:
deliver = (kvmppc_get_msr(vcpu) & MSR_EE) && !crit;
vec = BOOK3S_INTERRUPT_EXTERNAL;
break;
@ -352,8 +370,16 @@ static bool clear_irqprio(struct kvm_vcpu *vcpu, unsigned int priority)
case BOOK3S_IRQPRIO_DECREMENTER:
/* DEC interrupts get cleared by mtdec */
return false;
case BOOK3S_IRQPRIO_EXTERNAL_LEVEL:
/* External interrupts get cleared by userspace */
case BOOK3S_IRQPRIO_EXTERNAL:
/*
* External interrupts get cleared by userspace
* except when set by the KVM_INTERRUPT ioctl with
* KVM_INTERRUPT_SET (not KVM_INTERRUPT_SET_LEVEL).
*/
if (vcpu->arch.external_oneshot) {
vcpu->arch.external_oneshot = 0;
return true;
}
return false;
}

View File

@ -268,14 +268,13 @@ int kvmppc_mmu_hv_init(void)
{
unsigned long host_lpid, rsvd_lpid;
if (!cpu_has_feature(CPU_FTR_HVMODE))
return -EINVAL;
if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE))
return -EINVAL;
/* POWER7 has 10-bit LPIDs (12-bit in POWER8) */
host_lpid = mfspr(SPRN_LPID);
host_lpid = 0;
if (cpu_has_feature(CPU_FTR_HVMODE))
host_lpid = mfspr(SPRN_LPID);
rsvd_lpid = LPID_RSVD;
kvmppc_init_lpid(rsvd_lpid + 1);

File diff suppressed because it is too large Load Diff

View File

@ -363,6 +363,40 @@ long kvm_vm_ioctl_create_spapr_tce(struct kvm *kvm,
return ret;
}
static long kvmppc_tce_validate(struct kvmppc_spapr_tce_table *stt,
unsigned long tce)
{
unsigned long gpa = tce & ~(TCE_PCI_READ | TCE_PCI_WRITE);
enum dma_data_direction dir = iommu_tce_direction(tce);
struct kvmppc_spapr_tce_iommu_table *stit;
unsigned long ua = 0;
/* Allow userspace to poison TCE table */
if (dir == DMA_NONE)
return H_SUCCESS;
if (iommu_tce_check_gpa(stt->page_shift, gpa))
return H_TOO_HARD;
if (kvmppc_tce_to_ua(stt->kvm, tce, &ua, NULL))
return H_TOO_HARD;
list_for_each_entry_rcu(stit, &stt->iommu_tables, next) {
unsigned long hpa = 0;
struct mm_iommu_table_group_mem_t *mem;
long shift = stit->tbl->it_page_shift;
mem = mm_iommu_lookup(stt->kvm->mm, ua, 1ULL << shift);
if (!mem)
return H_TOO_HARD;
if (mm_iommu_ua_to_hpa(mem, ua, shift, &hpa))
return H_TOO_HARD;
}
return H_SUCCESS;
}
static void kvmppc_clear_tce(struct iommu_table *tbl, unsigned long entry)
{
unsigned long hpa = 0;
@ -376,11 +410,10 @@ static long kvmppc_tce_iommu_mapped_dec(struct kvm *kvm,
{
struct mm_iommu_table_group_mem_t *mem = NULL;
const unsigned long pgsize = 1ULL << tbl->it_page_shift;
__be64 *pua = IOMMU_TABLE_USERSPACE_ENTRY(tbl, entry);
__be64 *pua = IOMMU_TABLE_USERSPACE_ENTRY_RO(tbl, entry);
if (!pua)
/* it_userspace allocation might be delayed */
return H_TOO_HARD;
return H_SUCCESS;
mem = mm_iommu_lookup(kvm->mm, be64_to_cpu(*pua), pgsize);
if (!mem)
@ -401,7 +434,7 @@ static long kvmppc_tce_iommu_do_unmap(struct kvm *kvm,
long ret;
if (WARN_ON_ONCE(iommu_tce_xchg(tbl, entry, &hpa, &dir)))
return H_HARDWARE;
return H_TOO_HARD;
if (dir == DMA_NONE)
return H_SUCCESS;
@ -449,15 +482,15 @@ long kvmppc_tce_iommu_do_map(struct kvm *kvm, struct iommu_table *tbl,
return H_TOO_HARD;
if (WARN_ON_ONCE(mm_iommu_ua_to_hpa(mem, ua, tbl->it_page_shift, &hpa)))
return H_HARDWARE;
return H_TOO_HARD;
if (mm_iommu_mapped_inc(mem))
return H_CLOSED;
return H_TOO_HARD;
ret = iommu_tce_xchg(tbl, entry, &hpa, &dir);
if (WARN_ON_ONCE(ret)) {
mm_iommu_mapped_dec(mem);
return H_HARDWARE;
return H_TOO_HARD;
}
if (dir != DMA_NONE)
@ -517,8 +550,7 @@ long kvmppc_h_put_tce(struct kvm_vcpu *vcpu, unsigned long liobn,
idx = srcu_read_lock(&vcpu->kvm->srcu);
if ((dir != DMA_NONE) && kvmppc_gpa_to_ua(vcpu->kvm,
tce & ~(TCE_PCI_READ | TCE_PCI_WRITE), &ua, NULL)) {
if ((dir != DMA_NONE) && kvmppc_tce_to_ua(vcpu->kvm, tce, &ua, NULL)) {
ret = H_PARAMETER;
goto unlock_exit;
}
@ -533,14 +565,10 @@ long kvmppc_h_put_tce(struct kvm_vcpu *vcpu, unsigned long liobn,
ret = kvmppc_tce_iommu_map(vcpu->kvm, stt, stit->tbl,
entry, ua, dir);
if (ret == H_SUCCESS)
continue;
if (ret == H_TOO_HARD)
if (ret != H_SUCCESS) {
kvmppc_clear_tce(stit->tbl, entry);
goto unlock_exit;
WARN_ON_ONCE(1);
kvmppc_clear_tce(stit->tbl, entry);
}
}
kvmppc_tce_put(stt, entry, tce);
@ -583,7 +611,7 @@ long kvmppc_h_put_tce_indirect(struct kvm_vcpu *vcpu,
return ret;
idx = srcu_read_lock(&vcpu->kvm->srcu);
if (kvmppc_gpa_to_ua(vcpu->kvm, tce_list, &ua, NULL)) {
if (kvmppc_tce_to_ua(vcpu->kvm, tce_list, &ua, NULL)) {
ret = H_TOO_HARD;
goto unlock_exit;
}
@ -599,10 +627,26 @@ long kvmppc_h_put_tce_indirect(struct kvm_vcpu *vcpu,
ret = kvmppc_tce_validate(stt, tce);
if (ret != H_SUCCESS)
goto unlock_exit;
}
if (kvmppc_gpa_to_ua(vcpu->kvm,
tce & ~(TCE_PCI_READ | TCE_PCI_WRITE),
&ua, NULL))
for (i = 0; i < npages; ++i) {
/*
* This looks unsafe, because we validate, then regrab
* the TCE from userspace which could have been changed by
* another thread.
*
* But it actually is safe, because the relevant checks will be
* re-executed in the following code. If userspace tries to
* change this dodgily it will result in a messier failure mode
* but won't threaten the host.
*/
if (get_user(tce, tces + i)) {
ret = H_TOO_HARD;
goto unlock_exit;
}
tce = be64_to_cpu(tce);
if (kvmppc_tce_to_ua(vcpu->kvm, tce, &ua, NULL))
return H_PARAMETER;
list_for_each_entry_lockless(stit, &stt->iommu_tables, next) {
@ -610,14 +654,10 @@ long kvmppc_h_put_tce_indirect(struct kvm_vcpu *vcpu,
stit->tbl, entry + i, ua,
iommu_tce_direction(tce));
if (ret == H_SUCCESS)
continue;
if (ret == H_TOO_HARD)
if (ret != H_SUCCESS) {
kvmppc_clear_tce(stit->tbl, entry);
goto unlock_exit;
WARN_ON_ONCE(1);
kvmppc_clear_tce(stit->tbl, entry);
}
}
kvmppc_tce_put(stt, entry + i, tce);

View File

@ -87,6 +87,7 @@ struct kvmppc_spapr_tce_table *kvmppc_find_table(struct kvm *kvm,
}
EXPORT_SYMBOL_GPL(kvmppc_find_table);
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
/*
* Validates TCE address.
* At the moment flags and page mask are validated.
@ -94,14 +95,14 @@ EXPORT_SYMBOL_GPL(kvmppc_find_table);
* to the table and user space is supposed to process them), we can skip
* checking other things (such as TCE is a guest RAM address or the page
* was actually allocated).
*
* WARNING: This will be called in real-mode on HV KVM and virtual
* mode on PR KVM
*/
long kvmppc_tce_validate(struct kvmppc_spapr_tce_table *stt, unsigned long tce)
static long kvmppc_rm_tce_validate(struct kvmppc_spapr_tce_table *stt,
unsigned long tce)
{
unsigned long gpa = tce & ~(TCE_PCI_READ | TCE_PCI_WRITE);
enum dma_data_direction dir = iommu_tce_direction(tce);
struct kvmppc_spapr_tce_iommu_table *stit;
unsigned long ua = 0;
/* Allow userspace to poison TCE table */
if (dir == DMA_NONE)
@ -110,9 +111,25 @@ long kvmppc_tce_validate(struct kvmppc_spapr_tce_table *stt, unsigned long tce)
if (iommu_tce_check_gpa(stt->page_shift, gpa))
return H_PARAMETER;
if (kvmppc_tce_to_ua(stt->kvm, tce, &ua, NULL))
return H_TOO_HARD;
list_for_each_entry_lockless(stit, &stt->iommu_tables, next) {
unsigned long hpa = 0;
struct mm_iommu_table_group_mem_t *mem;
long shift = stit->tbl->it_page_shift;
mem = mm_iommu_lookup_rm(stt->kvm->mm, ua, 1ULL << shift);
if (!mem)
return H_TOO_HARD;
if (mm_iommu_ua_to_hpa_rm(mem, ua, shift, &hpa))
return H_TOO_HARD;
}
return H_SUCCESS;
}
EXPORT_SYMBOL_GPL(kvmppc_tce_validate);
#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
/* Note on the use of page_address() in real mode,
*
@ -164,10 +181,10 @@ void kvmppc_tce_put(struct kvmppc_spapr_tce_table *stt,
}
EXPORT_SYMBOL_GPL(kvmppc_tce_put);
long kvmppc_gpa_to_ua(struct kvm *kvm, unsigned long gpa,
long kvmppc_tce_to_ua(struct kvm *kvm, unsigned long tce,
unsigned long *ua, unsigned long **prmap)
{
unsigned long gfn = gpa >> PAGE_SHIFT;
unsigned long gfn = tce >> PAGE_SHIFT;
struct kvm_memory_slot *memslot;
memslot = search_memslots(kvm_memslots(kvm), gfn);
@ -175,7 +192,7 @@ long kvmppc_gpa_to_ua(struct kvm *kvm, unsigned long gpa,
return -EINVAL;
*ua = __gfn_to_hva_memslot(memslot, gfn) |
(gpa & ~(PAGE_MASK | TCE_PCI_READ | TCE_PCI_WRITE));
(tce & ~(PAGE_MASK | TCE_PCI_READ | TCE_PCI_WRITE));
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
if (prmap)
@ -184,7 +201,7 @@ long kvmppc_gpa_to_ua(struct kvm *kvm, unsigned long gpa,
return 0;
}
EXPORT_SYMBOL_GPL(kvmppc_gpa_to_ua);
EXPORT_SYMBOL_GPL(kvmppc_tce_to_ua);
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
static long iommu_tce_xchg_rm(struct mm_struct *mm, struct iommu_table *tbl,
@ -197,7 +214,7 @@ static long iommu_tce_xchg_rm(struct mm_struct *mm, struct iommu_table *tbl,
if (!ret && ((*direction == DMA_FROM_DEVICE) ||
(*direction == DMA_BIDIRECTIONAL))) {
__be64 *pua = IOMMU_TABLE_USERSPACE_ENTRY_RM(tbl, entry);
__be64 *pua = IOMMU_TABLE_USERSPACE_ENTRY_RO(tbl, entry);
/*
* kvmppc_rm_tce_iommu_do_map() updates the UA cache after
* calling this so we still get here a valid UA.
@ -223,7 +240,7 @@ static long kvmppc_rm_tce_iommu_mapped_dec(struct kvm *kvm,
{
struct mm_iommu_table_group_mem_t *mem = NULL;
const unsigned long pgsize = 1ULL << tbl->it_page_shift;
__be64 *pua = IOMMU_TABLE_USERSPACE_ENTRY_RM(tbl, entry);
__be64 *pua = IOMMU_TABLE_USERSPACE_ENTRY_RO(tbl, entry);
if (!pua)
/* it_userspace allocation might be delayed */
@ -287,7 +304,7 @@ static long kvmppc_rm_tce_iommu_do_map(struct kvm *kvm, struct iommu_table *tbl,
{
long ret;
unsigned long hpa = 0;
__be64 *pua = IOMMU_TABLE_USERSPACE_ENTRY_RM(tbl, entry);
__be64 *pua = IOMMU_TABLE_USERSPACE_ENTRY_RO(tbl, entry);
struct mm_iommu_table_group_mem_t *mem;
if (!pua)
@ -300,10 +317,10 @@ static long kvmppc_rm_tce_iommu_do_map(struct kvm *kvm, struct iommu_table *tbl,
if (WARN_ON_ONCE_RM(mm_iommu_ua_to_hpa_rm(mem, ua, tbl->it_page_shift,
&hpa)))
return H_HARDWARE;
return H_TOO_HARD;
if (WARN_ON_ONCE_RM(mm_iommu_mapped_inc(mem)))
return H_CLOSED;
return H_TOO_HARD;
ret = iommu_tce_xchg_rm(kvm->mm, tbl, entry, &hpa, &dir);
if (ret) {
@ -368,13 +385,12 @@ long kvmppc_rm_h_put_tce(struct kvm_vcpu *vcpu, unsigned long liobn,
if (ret != H_SUCCESS)
return ret;
ret = kvmppc_tce_validate(stt, tce);
ret = kvmppc_rm_tce_validate(stt, tce);
if (ret != H_SUCCESS)
return ret;
dir = iommu_tce_direction(tce);
if ((dir != DMA_NONE) && kvmppc_gpa_to_ua(vcpu->kvm,
tce & ~(TCE_PCI_READ | TCE_PCI_WRITE), &ua, NULL))
if ((dir != DMA_NONE) && kvmppc_tce_to_ua(vcpu->kvm, tce, &ua, NULL))
return H_PARAMETER;
entry = ioba >> stt->page_shift;
@ -387,14 +403,10 @@ long kvmppc_rm_h_put_tce(struct kvm_vcpu *vcpu, unsigned long liobn,
ret = kvmppc_rm_tce_iommu_map(vcpu->kvm, stt,
stit->tbl, entry, ua, dir);
if (ret == H_SUCCESS)
continue;
if (ret == H_TOO_HARD)
if (ret != H_SUCCESS) {
kvmppc_rm_clear_tce(vcpu->kvm, stit->tbl, entry);
return ret;
WARN_ON_ONCE_RM(1);
kvmppc_rm_clear_tce(vcpu->kvm, stit->tbl, entry);
}
}
kvmppc_tce_put(stt, entry, tce);
@ -480,7 +492,7 @@ long kvmppc_rm_h_put_tce_indirect(struct kvm_vcpu *vcpu,
*/
struct mm_iommu_table_group_mem_t *mem;
if (kvmppc_gpa_to_ua(vcpu->kvm, tce_list, &ua, NULL))
if (kvmppc_tce_to_ua(vcpu->kvm, tce_list, &ua, NULL))
return H_TOO_HARD;
mem = mm_iommu_lookup_rm(vcpu->kvm->mm, ua, IOMMU_PAGE_SIZE_4K);
@ -496,12 +508,12 @@ long kvmppc_rm_h_put_tce_indirect(struct kvm_vcpu *vcpu,
* We do not require memory to be preregistered in this case
* so lock rmap and do __find_linux_pte_or_hugepte().
*/
if (kvmppc_gpa_to_ua(vcpu->kvm, tce_list, &ua, &rmap))
if (kvmppc_tce_to_ua(vcpu->kvm, tce_list, &ua, &rmap))
return H_TOO_HARD;
rmap = (void *) vmalloc_to_phys(rmap);
if (WARN_ON_ONCE_RM(!rmap))
return H_HARDWARE;
return H_TOO_HARD;
/*
* Synchronize with the MMU notifier callbacks in
@ -521,14 +533,16 @@ long kvmppc_rm_h_put_tce_indirect(struct kvm_vcpu *vcpu,
for (i = 0; i < npages; ++i) {
unsigned long tce = be64_to_cpu(((u64 *)tces)[i]);
ret = kvmppc_tce_validate(stt, tce);
ret = kvmppc_rm_tce_validate(stt, tce);
if (ret != H_SUCCESS)
goto unlock_exit;
}
for (i = 0; i < npages; ++i) {
unsigned long tce = be64_to_cpu(((u64 *)tces)[i]);
ua = 0;
if (kvmppc_gpa_to_ua(vcpu->kvm,
tce & ~(TCE_PCI_READ | TCE_PCI_WRITE),
&ua, NULL))
if (kvmppc_tce_to_ua(vcpu->kvm, tce, &ua, NULL))
return H_PARAMETER;
list_for_each_entry_lockless(stit, &stt->iommu_tables, next) {
@ -536,14 +550,11 @@ long kvmppc_rm_h_put_tce_indirect(struct kvm_vcpu *vcpu,
stit->tbl, entry + i, ua,
iommu_tce_direction(tce));
if (ret == H_SUCCESS)
continue;
if (ret == H_TOO_HARD)
if (ret != H_SUCCESS) {
kvmppc_rm_clear_tce(vcpu->kvm, stit->tbl,
entry);
goto unlock_exit;
WARN_ON_ONCE_RM(1);
kvmppc_rm_clear_tce(vcpu->kvm, stit->tbl, entry);
}
}
kvmppc_tce_put(stt, entry + i, tce);

View File

@ -36,7 +36,6 @@
#define OP_31_XOP_MTSR 210
#define OP_31_XOP_MTSRIN 242
#define OP_31_XOP_TLBIEL 274
#define OP_31_XOP_TLBIE 306
/* Opcode is officially reserved, reuse it as sc 1 when sc 1 doesn't trap */
#define OP_31_XOP_FAKE_SC1 308
#define OP_31_XOP_SLBMTE 402
@ -110,7 +109,7 @@ static inline void kvmppc_copyto_vcpu_tm(struct kvm_vcpu *vcpu)
vcpu->arch.ctr_tm = vcpu->arch.regs.ctr;
vcpu->arch.tar_tm = vcpu->arch.tar;
vcpu->arch.lr_tm = vcpu->arch.regs.link;
vcpu->arch.cr_tm = vcpu->arch.cr;
vcpu->arch.cr_tm = vcpu->arch.regs.ccr;
vcpu->arch.xer_tm = vcpu->arch.regs.xer;
vcpu->arch.vrsave_tm = vcpu->arch.vrsave;
}
@ -129,7 +128,7 @@ static inline void kvmppc_copyfrom_vcpu_tm(struct kvm_vcpu *vcpu)
vcpu->arch.regs.ctr = vcpu->arch.ctr_tm;
vcpu->arch.tar = vcpu->arch.tar_tm;
vcpu->arch.regs.link = vcpu->arch.lr_tm;
vcpu->arch.cr = vcpu->arch.cr_tm;
vcpu->arch.regs.ccr = vcpu->arch.cr_tm;
vcpu->arch.regs.xer = vcpu->arch.xer_tm;
vcpu->arch.vrsave = vcpu->arch.vrsave_tm;
}
@ -141,7 +140,7 @@ static void kvmppc_emulate_treclaim(struct kvm_vcpu *vcpu, int ra_val)
uint64_t texasr;
/* CR0 = 0 | MSR[TS] | 0 */
vcpu->arch.cr = (vcpu->arch.cr & ~(CR0_MASK << CR0_SHIFT)) |
vcpu->arch.regs.ccr = (vcpu->arch.regs.ccr & ~(CR0_MASK << CR0_SHIFT)) |
(((guest_msr & MSR_TS_MASK) >> (MSR_TS_S_LG - 1))
<< CR0_SHIFT);
@ -220,7 +219,7 @@ void kvmppc_emulate_tabort(struct kvm_vcpu *vcpu, int ra_val)
tm_abort(ra_val);
/* CR0 = 0 | MSR[TS] | 0 */
vcpu->arch.cr = (vcpu->arch.cr & ~(CR0_MASK << CR0_SHIFT)) |
vcpu->arch.regs.ccr = (vcpu->arch.regs.ccr & ~(CR0_MASK << CR0_SHIFT)) |
(((guest_msr & MSR_TS_MASK) >> (MSR_TS_S_LG - 1))
<< CR0_SHIFT);
@ -494,8 +493,8 @@ int kvmppc_core_emulate_op_pr(struct kvm_run *run, struct kvm_vcpu *vcpu,
if (!(kvmppc_get_msr(vcpu) & MSR_PR)) {
preempt_disable();
vcpu->arch.cr = (CR0_TBEGIN_FAILURE |
(vcpu->arch.cr & ~(CR0_MASK << CR0_SHIFT)));
vcpu->arch.regs.ccr = (CR0_TBEGIN_FAILURE |
(vcpu->arch.regs.ccr & ~(CR0_MASK << CR0_SHIFT)));
vcpu->arch.texasr = (TEXASR_FS | TEXASR_EXACT |
(((u64)(TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))

File diff suppressed because it is too large Load Diff

View File

@ -231,6 +231,15 @@ void kvmhv_rm_send_ipi(int cpu)
void __iomem *xics_phys;
unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
/* For a nested hypervisor, use the XICS via hcall */
if (kvmhv_on_pseries()) {
unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
plpar_hcall_raw(H_IPI, retbuf, get_hard_smp_processor_id(cpu),
IPI_PRIORITY);
return;
}
/* On POWER9 we can use msgsnd for any destination cpu. */
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
msg |= get_hard_smp_processor_id(cpu);
@ -460,12 +469,19 @@ static long kvmppc_read_one_intr(bool *again)
return 1;
/* Now read the interrupt from the ICP */
xics_phys = local_paca->kvm_hstate.xics_phys;
rc = 0;
if (!xics_phys)
rc = opal_int_get_xirr(&xirr, false);
else
xirr = __raw_rm_readl(xics_phys + XICS_XIRR);
if (kvmhv_on_pseries()) {
unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
rc = plpar_hcall_raw(H_XIRR, retbuf, 0xFF);
xirr = cpu_to_be32(retbuf[0]);
} else {
xics_phys = local_paca->kvm_hstate.xics_phys;
rc = 0;
if (!xics_phys)
rc = opal_int_get_xirr(&xirr, false);
else
xirr = __raw_rm_readl(xics_phys + XICS_XIRR);
}
if (rc < 0)
return 1;
@ -494,7 +510,13 @@ static long kvmppc_read_one_intr(bool *again)
*/
if (xisr == XICS_IPI) {
rc = 0;
if (xics_phys) {
if (kvmhv_on_pseries()) {
unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
plpar_hcall_raw(H_IPI, retbuf,
hard_smp_processor_id(), 0xff);
plpar_hcall_raw(H_EOI, retbuf, h_xirr);
} else if (xics_phys) {
__raw_rm_writeb(0xff, xics_phys + XICS_MFRR);
__raw_rm_writel(xirr, xics_phys + XICS_XIRR);
} else {
@ -520,7 +542,13 @@ static long kvmppc_read_one_intr(bool *again)
/* We raced with the host,
* we need to resend that IPI, bummer
*/
if (xics_phys)
if (kvmhv_on_pseries()) {
unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
plpar_hcall_raw(H_IPI, retbuf,
hard_smp_processor_id(),
IPI_PRIORITY);
} else if (xics_phys)
__raw_rm_writeb(IPI_PRIORITY,
xics_phys + XICS_MFRR);
else
@ -729,3 +757,51 @@ void kvmhv_p9_restore_lpcr(struct kvm_split_mode *sip)
smp_mb();
local_paca->kvm_hstate.kvm_split_mode = NULL;
}
/*
* Is there a PRIV_DOORBELL pending for the guest (on POWER9)?
* Can we inject a Decrementer or a External interrupt?
*/
void kvmppc_guest_entry_inject_int(struct kvm_vcpu *vcpu)
{
int ext;
unsigned long vec = 0;
unsigned long lpcr;
/* Insert EXTERNAL bit into LPCR at the MER bit position */
ext = (vcpu->arch.pending_exceptions >> BOOK3S_IRQPRIO_EXTERNAL) & 1;
lpcr = mfspr(SPRN_LPCR);
lpcr |= ext << LPCR_MER_SH;
mtspr(SPRN_LPCR, lpcr);
isync();
if (vcpu->arch.shregs.msr & MSR_EE) {
if (ext) {
vec = BOOK3S_INTERRUPT_EXTERNAL;
} else {
long int dec = mfspr(SPRN_DEC);
if (!(lpcr & LPCR_LD))
dec = (int) dec;
if (dec < 0)
vec = BOOK3S_INTERRUPT_DECREMENTER;
}
}
if (vec) {
unsigned long msr, old_msr = vcpu->arch.shregs.msr;
kvmppc_set_srr0(vcpu, kvmppc_get_pc(vcpu));
kvmppc_set_srr1(vcpu, old_msr);
kvmppc_set_pc(vcpu, vec);
msr = vcpu->arch.intr_msr;
if (MSR_TM_ACTIVE(old_msr))
msr |= MSR_TS_S;
vcpu->arch.shregs.msr = msr;
}
if (vcpu->arch.doorbell_request) {
mtspr(SPRN_DPDES, 1);
vcpu->arch.vcore->dpdes = 1;
smp_wmb();
vcpu->arch.doorbell_request = 0;
}
}

View File

@ -64,52 +64,7 @@ BEGIN_FTR_SECTION
END_FTR_SECTION_IFCLR(CPU_FTR_ARCH_207S)
/* Save host PMU registers */
BEGIN_FTR_SECTION
/* Work around P8 PMAE bug */
li r3, -1
clrrdi r3, r3, 10
mfspr r8, SPRN_MMCR2
mtspr SPRN_MMCR2, r3 /* freeze all counters using MMCR2 */
isync
END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
li r3, 1
sldi r3, r3, 31 /* MMCR0_FC (freeze counters) bit */
mfspr r7, SPRN_MMCR0 /* save MMCR0 */
mtspr SPRN_MMCR0, r3 /* freeze all counters, disable interrupts */
mfspr r6, SPRN_MMCRA
/* Clear MMCRA in order to disable SDAR updates */
li r5, 0
mtspr SPRN_MMCRA, r5
isync
lbz r5, PACA_PMCINUSE(r13) /* is the host using the PMU? */
cmpwi r5, 0
beq 31f /* skip if not */
mfspr r5, SPRN_MMCR1
mfspr r9, SPRN_SIAR
mfspr r10, SPRN_SDAR
std r7, HSTATE_MMCR0(r13)
std r5, HSTATE_MMCR1(r13)
std r6, HSTATE_MMCRA(r13)
std r9, HSTATE_SIAR(r13)
std r10, HSTATE_SDAR(r13)
BEGIN_FTR_SECTION
mfspr r9, SPRN_SIER
std r8, HSTATE_MMCR2(r13)
std r9, HSTATE_SIER(r13)
END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
mfspr r3, SPRN_PMC1
mfspr r5, SPRN_PMC2
mfspr r6, SPRN_PMC3
mfspr r7, SPRN_PMC4
mfspr r8, SPRN_PMC5
mfspr r9, SPRN_PMC6
stw r3, HSTATE_PMC1(r13)
stw r5, HSTATE_PMC2(r13)
stw r6, HSTATE_PMC3(r13)
stw r7, HSTATE_PMC4(r13)
stw r8, HSTATE_PMC5(r13)
stw r9, HSTATE_PMC6(r13)
31:
bl kvmhv_save_host_pmu
/*
* Put whatever is in the decrementer into the
@ -161,3 +116,51 @@ END_FTR_SECTION_IFSET(CPU_FTR_ARCH_300)
ld r0, PPC_LR_STKOFF(r1)
mtlr r0
blr
_GLOBAL(kvmhv_save_host_pmu)
BEGIN_FTR_SECTION
/* Work around P8 PMAE bug */
li r3, -1
clrrdi r3, r3, 10
mfspr r8, SPRN_MMCR2
mtspr SPRN_MMCR2, r3 /* freeze all counters using MMCR2 */
isync
END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
li r3, 1
sldi r3, r3, 31 /* MMCR0_FC (freeze counters) bit */
mfspr r7, SPRN_MMCR0 /* save MMCR0 */
mtspr SPRN_MMCR0, r3 /* freeze all counters, disable interrupts */
mfspr r6, SPRN_MMCRA
/* Clear MMCRA in order to disable SDAR updates */
li r5, 0
mtspr SPRN_MMCRA, r5
isync
lbz r5, PACA_PMCINUSE(r13) /* is the host using the PMU? */
cmpwi r5, 0
beq 31f /* skip if not */
mfspr r5, SPRN_MMCR1
mfspr r9, SPRN_SIAR
mfspr r10, SPRN_SDAR
std r7, HSTATE_MMCR0(r13)
std r5, HSTATE_MMCR1(r13)
std r6, HSTATE_MMCRA(r13)
std r9, HSTATE_SIAR(r13)
std r10, HSTATE_SDAR(r13)
BEGIN_FTR_SECTION
mfspr r9, SPRN_SIER
std r8, HSTATE_MMCR2(r13)
std r9, HSTATE_SIER(r13)
END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
mfspr r3, SPRN_PMC1
mfspr r5, SPRN_PMC2
mfspr r6, SPRN_PMC3
mfspr r7, SPRN_PMC4
mfspr r8, SPRN_PMC5
mfspr r9, SPRN_PMC6
stw r3, HSTATE_PMC1(r13)
stw r5, HSTATE_PMC2(r13)
stw r6, HSTATE_PMC3(r13)
stw r7, HSTATE_PMC4(r13)
stw r8, HSTATE_PMC5(r13)
stw r9, HSTATE_PMC6(r13)
31: blr

File diff suppressed because it is too large Load Diff

View File

@ -177,6 +177,7 @@ void kvmppc_subcore_enter_guest(void)
local_paca->sibling_subcore_state->in_guest[subcore_id] = 1;
}
EXPORT_SYMBOL_GPL(kvmppc_subcore_enter_guest);
void kvmppc_subcore_exit_guest(void)
{
@ -187,6 +188,7 @@ void kvmppc_subcore_exit_guest(void)
local_paca->sibling_subcore_state->in_guest[subcore_id] = 0;
}
EXPORT_SYMBOL_GPL(kvmppc_subcore_exit_guest);
static bool kvmppc_tb_resync_required(void)
{
@ -331,5 +333,13 @@ long kvmppc_realmode_hmi_handler(void)
} else {
wait_for_tb_resync();
}
/*
* Reset tb_offset_applied so the guest exit code won't try
* to subtract the previous timebase offset from the timebase.
*/
if (local_paca->kvm_hstate.kvm_vcore)
local_paca->kvm_hstate.kvm_vcore->tb_offset_applied = 0;
return 0;
}

View File

@ -136,7 +136,7 @@ static void icp_rm_set_vcpu_irq(struct kvm_vcpu *vcpu,
/* Mark the target VCPU as having an interrupt pending */
vcpu->stat.queue_intr++;
set_bit(BOOK3S_IRQPRIO_EXTERNAL_LEVEL, &vcpu->arch.pending_exceptions);
set_bit(BOOK3S_IRQPRIO_EXTERNAL, &vcpu->arch.pending_exceptions);
/* Kick self ? Just set MER and return */
if (vcpu == this_vcpu) {
@ -170,8 +170,7 @@ static void icp_rm_set_vcpu_irq(struct kvm_vcpu *vcpu,
static void icp_rm_clr_vcpu_irq(struct kvm_vcpu *vcpu)
{
/* Note: Only called on self ! */
clear_bit(BOOK3S_IRQPRIO_EXTERNAL_LEVEL,
&vcpu->arch.pending_exceptions);
clear_bit(BOOK3S_IRQPRIO_EXTERNAL, &vcpu->arch.pending_exceptions);
mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_MER);
}
@ -768,6 +767,14 @@ static void icp_eoi(struct irq_chip *c, u32 hwirq, __be32 xirr, bool *again)
void __iomem *xics_phys;
int64_t rc;
if (kvmhv_on_pseries()) {
unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
iosync();
plpar_hcall_raw(H_EOI, retbuf, hwirq);
return;
}
rc = pnv_opal_pci_msi_eoi(c, hwirq);
if (rc)

File diff suppressed because it is too large Load Diff

View File

@ -130,7 +130,7 @@ int kvmhv_p9_tm_emulation(struct kvm_vcpu *vcpu)
return RESUME_GUEST;
}
/* Set CR0 to indicate previous transactional state */
vcpu->arch.cr = (vcpu->arch.cr & 0x0fffffff) |
vcpu->arch.regs.ccr = (vcpu->arch.regs.ccr & 0x0fffffff) |
(((msr & MSR_TS_MASK) >> MSR_TS_S_LG) << 28);
/* L=1 => tresume, L=0 => tsuspend */
if (instr & (1 << 21)) {
@ -174,7 +174,7 @@ int kvmhv_p9_tm_emulation(struct kvm_vcpu *vcpu)
copy_from_checkpoint(vcpu);
/* Set CR0 to indicate previous transactional state */
vcpu->arch.cr = (vcpu->arch.cr & 0x0fffffff) |
vcpu->arch.regs.ccr = (vcpu->arch.regs.ccr & 0x0fffffff) |
(((msr & MSR_TS_MASK) >> MSR_TS_S_LG) << 28);
vcpu->arch.shregs.msr &= ~MSR_TS_MASK;
return RESUME_GUEST;
@ -204,7 +204,7 @@ int kvmhv_p9_tm_emulation(struct kvm_vcpu *vcpu)
copy_to_checkpoint(vcpu);
/* Set CR0 to indicate previous transactional state */
vcpu->arch.cr = (vcpu->arch.cr & 0x0fffffff) |
vcpu->arch.regs.ccr = (vcpu->arch.regs.ccr & 0x0fffffff) |
(((msr & MSR_TS_MASK) >> MSR_TS_S_LG) << 28);
vcpu->arch.shregs.msr = msr | MSR_TS_S;
return RESUME_GUEST;

View File

@ -89,7 +89,8 @@ int kvmhv_p9_tm_emulation_early(struct kvm_vcpu *vcpu)
if (instr & (1 << 21))
vcpu->arch.shregs.msr = (msr & ~MSR_TS_MASK) | MSR_TS_T;
/* Set CR0 to 0b0010 */
vcpu->arch.cr = (vcpu->arch.cr & 0x0fffffff) | 0x20000000;
vcpu->arch.regs.ccr = (vcpu->arch.regs.ccr & 0x0fffffff) |
0x20000000;
return 1;
}
@ -105,5 +106,5 @@ void kvmhv_emulate_tm_rollback(struct kvm_vcpu *vcpu)
vcpu->arch.shregs.msr &= ~MSR_TS_MASK; /* go to N state */
vcpu->arch.regs.nip = vcpu->arch.tfhar;
copy_from_checkpoint(vcpu);
vcpu->arch.cr = (vcpu->arch.cr & 0x0fffffff) | 0xa0000000;
vcpu->arch.regs.ccr = (vcpu->arch.regs.ccr & 0x0fffffff) | 0xa0000000;
}

View File

@ -167,7 +167,7 @@ void kvmppc_copy_to_svcpu(struct kvm_vcpu *vcpu)
svcpu->gpr[11] = vcpu->arch.regs.gpr[11];
svcpu->gpr[12] = vcpu->arch.regs.gpr[12];
svcpu->gpr[13] = vcpu->arch.regs.gpr[13];
svcpu->cr = vcpu->arch.cr;
svcpu->cr = vcpu->arch.regs.ccr;
svcpu->xer = vcpu->arch.regs.xer;
svcpu->ctr = vcpu->arch.regs.ctr;
svcpu->lr = vcpu->arch.regs.link;
@ -249,7 +249,7 @@ void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu)
vcpu->arch.regs.gpr[11] = svcpu->gpr[11];
vcpu->arch.regs.gpr[12] = svcpu->gpr[12];
vcpu->arch.regs.gpr[13] = svcpu->gpr[13];
vcpu->arch.cr = svcpu->cr;
vcpu->arch.regs.ccr = svcpu->cr;
vcpu->arch.regs.xer = svcpu->xer;
vcpu->arch.regs.ctr = svcpu->ctr;
vcpu->arch.regs.link = svcpu->lr;
@ -1246,7 +1246,6 @@ int kvmppc_handle_exit_pr(struct kvm_run *run, struct kvm_vcpu *vcpu,
r = RESUME_GUEST;
break;
case BOOK3S_INTERRUPT_EXTERNAL:
case BOOK3S_INTERRUPT_EXTERNAL_LEVEL:
case BOOK3S_INTERRUPT_EXTERNAL_HV:
case BOOK3S_INTERRUPT_H_VIRT:
vcpu->stat.ext_intr_exits++;

View File

@ -310,7 +310,7 @@ static inline bool icp_try_update(struct kvmppc_icp *icp,
*/
if (new.out_ee) {
kvmppc_book3s_queue_irqprio(icp->vcpu,
BOOK3S_INTERRUPT_EXTERNAL_LEVEL);
BOOK3S_INTERRUPT_EXTERNAL);
if (!change_self)
kvmppc_fast_vcpu_kick(icp->vcpu);
}
@ -593,8 +593,7 @@ static noinline unsigned long kvmppc_h_xirr(struct kvm_vcpu *vcpu)
u32 xirr;
/* First, remove EE from the processor */
kvmppc_book3s_dequeue_irqprio(icp->vcpu,
BOOK3S_INTERRUPT_EXTERNAL_LEVEL);
kvmppc_book3s_dequeue_irqprio(icp->vcpu, BOOK3S_INTERRUPT_EXTERNAL);
/*
* ICP State: Accept_Interrupt
@ -754,8 +753,7 @@ static noinline void kvmppc_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr)
* We can remove EE from the current processor, the update
* transaction will set it again if needed
*/
kvmppc_book3s_dequeue_irqprio(icp->vcpu,
BOOK3S_INTERRUPT_EXTERNAL_LEVEL);
kvmppc_book3s_dequeue_irqprio(icp->vcpu, BOOK3S_INTERRUPT_EXTERNAL);
do {
old_state = new_state = READ_ONCE(icp->state);
@ -1167,8 +1165,7 @@ int kvmppc_xics_set_icp(struct kvm_vcpu *vcpu, u64 icpval)
* Deassert the CPU interrupt request.
* icp_try_update will reassert it if necessary.
*/
kvmppc_book3s_dequeue_irqprio(icp->vcpu,
BOOK3S_INTERRUPT_EXTERNAL_LEVEL);
kvmppc_book3s_dequeue_irqprio(icp->vcpu, BOOK3S_INTERRUPT_EXTERNAL);
/*
* Note that if we displace an interrupt from old_state.xisr,
@ -1393,7 +1390,8 @@ static int kvmppc_xics_create(struct kvm_device *dev, u32 type)
}
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
if (cpu_has_feature(CPU_FTR_ARCH_206)) {
if (cpu_has_feature(CPU_FTR_ARCH_206) &&
cpu_has_feature(CPU_FTR_HVMODE)) {
/* Enable real mode support */
xics->real_mode = ENABLE_REALMODE;
xics->real_mode_dbg = DEBUG_REALMODE;

View File

@ -61,6 +61,69 @@
*/
#define XIVE_Q_GAP 2
/*
* Push a vcpu's context to the XIVE on guest entry.
* This assumes we are in virtual mode (MMU on)
*/
void kvmppc_xive_push_vcpu(struct kvm_vcpu *vcpu)
{
void __iomem *tima = local_paca->kvm_hstate.xive_tima_virt;
u64 pq;
if (!tima)
return;
eieio();
__raw_writeq(vcpu->arch.xive_saved_state.w01, tima + TM_QW1_OS);
__raw_writel(vcpu->arch.xive_cam_word, tima + TM_QW1_OS + TM_WORD2);
vcpu->arch.xive_pushed = 1;
eieio();
/*
* We clear the irq_pending flag. There is a small chance of a
* race vs. the escalation interrupt happening on another
* processor setting it again, but the only consequence is to
* cause a spurious wakeup on the next H_CEDE, which is not an
* issue.
*/
vcpu->arch.irq_pending = 0;
/*
* In single escalation mode, if the escalation interrupt is
* on, we mask it.
*/
if (vcpu->arch.xive_esc_on) {
pq = __raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr +
XIVE_ESB_SET_PQ_01));
mb();
/*
* We have a possible subtle race here: The escalation
* interrupt might have fired and be on its way to the
* host queue while we mask it, and if we unmask it
* early enough (re-cede right away), there is a
* theorical possibility that it fires again, thus
* landing in the target queue more than once which is
* a big no-no.
*
* Fortunately, solving this is rather easy. If the
* above load setting PQ to 01 returns a previous
* value where P is set, then we know the escalation
* interrupt is somewhere on its way to the host. In
* that case we simply don't clear the xive_esc_on
* flag below. It will be eventually cleared by the
* handler for the escalation interrupt.
*
* Then, when doing a cede, we check that flag again
* before re-enabling the escalation interrupt, and if
* set, we abort the cede.
*/
if (!(pq & XIVE_ESB_VAL_P))
/* Now P is 0, we can clear the flag */
vcpu->arch.xive_esc_on = 0;
}
}
EXPORT_SYMBOL_GPL(kvmppc_xive_push_vcpu);
/*
* This is a simple trigger for a generic XIVE IRQ. This must
* only be called for interrupts that support a trigger page

View File

@ -280,14 +280,6 @@ X_STATIC unsigned long GLUE(X_PFX,h_xirr)(struct kvm_vcpu *vcpu)
/* First collect pending bits from HW */
GLUE(X_PFX,ack_pending)(xc);
/*
* Cleanup the old-style bits if needed (they may have been
* set by pull or an escalation interrupts).
*/
if (test_bit(BOOK3S_IRQPRIO_EXTERNAL, &vcpu->arch.pending_exceptions))
clear_bit(BOOK3S_IRQPRIO_EXTERNAL_LEVEL,
&vcpu->arch.pending_exceptions);
pr_devel(" new pending=0x%02x hw_cppr=%d cppr=%d\n",
xc->pending, xc->hw_cppr, xc->cppr);

View File

@ -182,7 +182,7 @@
*/
PPC_LL r4, PACACURRENT(r13)
PPC_LL r4, (THREAD + THREAD_KVM_VCPU)(r4)
stw r10, VCPU_CR(r4)
PPC_STL r10, VCPU_CR(r4)
PPC_STL r11, VCPU_GPR(R4)(r4)
PPC_STL r5, VCPU_GPR(R5)(r4)
PPC_STL r6, VCPU_GPR(R6)(r4)
@ -292,7 +292,7 @@ _GLOBAL(kvmppc_handler_\intno\()_\srr1)
PPC_STL r4, VCPU_GPR(R4)(r11)
PPC_LL r4, THREAD_NORMSAVE(0)(r10)
PPC_STL r5, VCPU_GPR(R5)(r11)
stw r13, VCPU_CR(r11)
PPC_STL r13, VCPU_CR(r11)
mfspr r5, \srr0
PPC_STL r3, VCPU_GPR(R10)(r11)
PPC_LL r3, THREAD_NORMSAVE(2)(r10)
@ -319,7 +319,7 @@ _GLOBAL(kvmppc_handler_\intno\()_\srr1)
PPC_STL r4, VCPU_GPR(R4)(r11)
PPC_LL r4, GPR9(r8)
PPC_STL r5, VCPU_GPR(R5)(r11)
stw r9, VCPU_CR(r11)
PPC_STL r9, VCPU_CR(r11)
mfspr r5, \srr0
PPC_STL r3, VCPU_GPR(R8)(r11)
PPC_LL r3, GPR10(r8)
@ -643,7 +643,7 @@ lightweight_exit:
PPC_LL r3, VCPU_LR(r4)
PPC_LL r5, VCPU_XER(r4)
PPC_LL r6, VCPU_CTR(r4)
lwz r7, VCPU_CR(r4)
PPC_LL r7, VCPU_CR(r4)
PPC_LL r8, VCPU_PC(r4)
PPC_LD(r9, VCPU_SHARED_MSR, r11)
PPC_LL r0, VCPU_GPR(R0)(r4)

View File

@ -117,7 +117,6 @@ int kvmppc_emulate_loadstore(struct kvm_vcpu *vcpu)
emulated = EMULATE_FAIL;
vcpu->arch.regs.msr = vcpu->arch.shared->msr;
vcpu->arch.regs.ccr = vcpu->arch.cr;
if (analyse_instr(&op, &vcpu->arch.regs, inst) == 0) {
int type = op.type & INSTR_TYPE_MASK;
int size = GETSIZE(op.type);

View File

@ -594,7 +594,12 @@ int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
r = !!(hv_enabled && radix_enabled());
break;
case KVM_CAP_PPC_MMU_HASH_V3:
r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300));
r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300) &&
cpu_has_feature(CPU_FTR_HVMODE));
break;
case KVM_CAP_PPC_NESTED_HV:
r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
!kvmppc_hv_ops->enable_nested(NULL));
break;
#endif
case KVM_CAP_SYNC_MMU:
@ -2114,6 +2119,14 @@ static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
break;
}
case KVM_CAP_PPC_NESTED_HV:
r = -EINVAL;
if (!is_kvmppc_hv_enabled(kvm) ||
!kvm->arch.kvm_ops->enable_nested)
break;
r = kvm->arch.kvm_ops->enable_nested(kvm);
break;
#endif
default:
r = -EINVAL;

View File

@ -28,17 +28,25 @@
* Save transactional state and TM-related registers.
* Called with:
* - r3 pointing to the vcpu struct
* - r4 points to the MSR with current TS bits:
* - r4 containing the MSR with current TS bits:
* (For HV KVM, it is VCPU_MSR ; For PR KVM, it is host MSR).
* This can modify all checkpointed registers, but
* restores r1, r2 before exit.
* - r5 containing a flag indicating that non-volatile registers
* must be preserved.
* If r5 == 0, this can modify all checkpointed registers, but
* restores r1, r2 before exit. If r5 != 0, this restores the
* MSR TM/FP/VEC/VSX bits to their state on entry.
*/
_GLOBAL(__kvmppc_save_tm)
mflr r0
std r0, PPC_LR_STKOFF(r1)
stdu r1, -SWITCH_FRAME_SIZE(r1)
mr r9, r3
cmpdi cr7, r5, 0
/* Turn on TM. */
mfmsr r8
mr r10, r8
li r0, 1
rldimi r8, r0, MSR_TM_LG, 63-MSR_TM_LG
ori r8, r8, MSR_FP
@ -51,6 +59,27 @@ _GLOBAL(__kvmppc_save_tm)
std r1, HSTATE_SCRATCH2(r13)
std r3, HSTATE_SCRATCH1(r13)
/* Save CR on the stack - even if r5 == 0 we need to get cr7 back. */
mfcr r6
SAVE_GPR(6, r1)
/* Save DSCR so we can restore it to avoid running with user value */
mfspr r7, SPRN_DSCR
SAVE_GPR(7, r1)
/*
* We are going to do treclaim., which will modify all checkpointed
* registers. Save the non-volatile registers on the stack if
* preservation of non-volatile state has been requested.
*/
beq cr7, 3f
SAVE_NVGPRS(r1)
/* MSR[TS] will be 0 (non-transactional) once we do treclaim. */
li r0, 0
rldimi r10, r0, MSR_TS_S_LG, 63 - MSR_TS_T_LG
SAVE_GPR(10, r1) /* final MSR value */
3:
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
BEGIN_FTR_SECTION
/* Emulation of the treclaim instruction needs TEXASR before treclaim */
@ -74,22 +103,25 @@ END_FTR_SECTION_IFSET(CPU_FTR_P9_TM_HV_ASSIST)
std r9, PACATMSCRATCH(r13)
ld r9, HSTATE_SCRATCH1(r13)
/* Get a few more GPRs free. */
std r29, VCPU_GPRS_TM(29)(r9)
std r30, VCPU_GPRS_TM(30)(r9)
std r31, VCPU_GPRS_TM(31)(r9)
/* Save away PPR and DSCR soon so don't run with user values. */
mfspr r31, SPRN_PPR
/* Save away PPR soon so we don't run with user value. */
std r0, VCPU_GPRS_TM(0)(r9)
mfspr r0, SPRN_PPR
HMT_MEDIUM
mfspr r30, SPRN_DSCR
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
ld r29, HSTATE_DSCR(r13)
mtspr SPRN_DSCR, r29
#endif
/* Save all but r9, r13 & r29-r31 */
reg = 0
/* Reload stack pointer. */
std r1, VCPU_GPRS_TM(1)(r9)
ld r1, HSTATE_SCRATCH2(r13)
/* Set MSR RI now we have r1 and r13 back. */
std r2, VCPU_GPRS_TM(2)(r9)
li r2, MSR_RI
mtmsrd r2, 1
/* Reload TOC pointer. */
ld r2, PACATOC(r13)
/* Save all but r0-r2, r9 & r13 */
reg = 3
.rept 29
.if (reg != 9) && (reg != 13)
std reg, VCPU_GPRS_TM(reg)(r9)
@ -103,33 +135,29 @@ END_FTR_SECTION_IFSET(CPU_FTR_P9_TM_HV_ASSIST)
ld r4, PACATMSCRATCH(r13)
std r4, VCPU_GPRS_TM(9)(r9)
/* Reload stack pointer and TOC. */
ld r1, HSTATE_SCRATCH2(r13)
ld r2, PACATOC(r13)
/* Set MSR RI now we have r1 and r13 back. */
li r5, MSR_RI
mtmsrd r5, 1
/* Save away checkpinted SPRs. */
std r31, VCPU_PPR_TM(r9)
std r30, VCPU_DSCR_TM(r9)
mflr r5
/* Restore host DSCR and CR values, after saving guest values */
mfcr r6
mfspr r7, SPRN_DSCR
stw r6, VCPU_CR_TM(r9)
std r7, VCPU_DSCR_TM(r9)
REST_GPR(6, r1)
REST_GPR(7, r1)
mtcr r6
mtspr SPRN_DSCR, r7
/* Save away checkpointed SPRs. */
std r0, VCPU_PPR_TM(r9)
mflr r5
mfctr r7
mfspr r8, SPRN_AMR
mfspr r10, SPRN_TAR
mfxer r11
std r5, VCPU_LR_TM(r9)
stw r6, VCPU_CR_TM(r9)
std r7, VCPU_CTR_TM(r9)
std r8, VCPU_AMR_TM(r9)
std r10, VCPU_TAR_TM(r9)
std r11, VCPU_XER_TM(r9)
/* Restore r12 as trap number. */
lwz r12, VCPU_TRAP(r9)
/* Save FP/VSX. */
addi r3, r9, VCPU_FPRS_TM
bl store_fp_state
@ -137,6 +165,11 @@ END_FTR_SECTION_IFSET(CPU_FTR_P9_TM_HV_ASSIST)
bl store_vr_state
mfspr r6, SPRN_VRSAVE
stw r6, VCPU_VRSAVE_TM(r9)
/* Restore non-volatile registers if requested to */
beq cr7, 1f
REST_NVGPRS(r1)
REST_GPR(10, r1)
1:
/*
* We need to save these SPRs after the treclaim so that the software
@ -146,12 +179,16 @@ END_FTR_SECTION_IFSET(CPU_FTR_P9_TM_HV_ASSIST)
*/
mfspr r7, SPRN_TEXASR
std r7, VCPU_TEXASR(r9)
11:
mfspr r5, SPRN_TFHAR
mfspr r6, SPRN_TFIAR
std r5, VCPU_TFHAR(r9)
std r6, VCPU_TFIAR(r9)
/* Restore MSR state if requested */
beq cr7, 2f
mtmsrd r10, 0
2:
addi r1, r1, SWITCH_FRAME_SIZE
ld r0, PPC_LR_STKOFF(r1)
mtlr r0
blr
@ -161,49 +198,22 @@ END_FTR_SECTION_IFSET(CPU_FTR_P9_TM_HV_ASSIST)
* be invoked from C function by PR KVM only.
*/
_GLOBAL(_kvmppc_save_tm_pr)
mflr r5
std r5, PPC_LR_STKOFF(r1)
stdu r1, -SWITCH_FRAME_SIZE(r1)
SAVE_NVGPRS(r1)
/* save MSR since TM/math bits might be impacted
* by __kvmppc_save_tm().
*/
mfmsr r5
SAVE_GPR(5, r1)
/* also save DSCR/CR/TAR so that it can be recovered later */
mfspr r6, SPRN_DSCR
SAVE_GPR(6, r1)
mfcr r7
stw r7, _CCR(r1)
mflr r0
std r0, PPC_LR_STKOFF(r1)
stdu r1, -PPC_MIN_STKFRM(r1)
mfspr r8, SPRN_TAR
SAVE_GPR(8, r1)
std r8, PPC_MIN_STKFRM-8(r1)
li r5, 1 /* preserve non-volatile registers */
bl __kvmppc_save_tm
REST_GPR(8, r1)
ld r8, PPC_MIN_STKFRM-8(r1)
mtspr SPRN_TAR, r8
ld r7, _CCR(r1)
mtcr r7
REST_GPR(6, r1)
mtspr SPRN_DSCR, r6
/* need preserve current MSR's MSR_TS bits */
REST_GPR(5, r1)
mfmsr r6
rldicl r6, r6, 64 - MSR_TS_S_LG, 62
rldimi r5, r6, MSR_TS_S_LG, 63 - MSR_TS_T_LG
mtmsrd r5
REST_NVGPRS(r1)
addi r1, r1, SWITCH_FRAME_SIZE
ld r5, PPC_LR_STKOFF(r1)
mtlr r5
addi r1, r1, PPC_MIN_STKFRM
ld r0, PPC_LR_STKOFF(r1)
mtlr r0
blr
EXPORT_SYMBOL_GPL(_kvmppc_save_tm_pr);
@ -215,15 +225,21 @@ EXPORT_SYMBOL_GPL(_kvmppc_save_tm_pr);
* - r4 is the guest MSR with desired TS bits:
* For HV KVM, it is VCPU_MSR
* For PR KVM, it is provided by caller
* This potentially modifies all checkpointed registers.
* It restores r1, r2 from the PACA.
* - r5 containing a flag indicating that non-volatile registers
* must be preserved.
* If r5 == 0, this potentially modifies all checkpointed registers, but
* restores r1, r2 from the PACA before exit.
* If r5 != 0, this restores the MSR TM/FP/VEC/VSX bits to their state on entry.
*/
_GLOBAL(__kvmppc_restore_tm)
mflr r0
std r0, PPC_LR_STKOFF(r1)
cmpdi cr7, r5, 0
/* Turn on TM/FP/VSX/VMX so we can restore them. */
mfmsr r5
mr r10, r5
li r6, MSR_TM >> 32
sldi r6, r6, 32
or r5, r5, r6
@ -244,8 +260,7 @@ _GLOBAL(__kvmppc_restore_tm)
mr r5, r4
rldicl. r5, r5, 64 - MSR_TS_S_LG, 62
beqlr /* TM not active in guest */
std r1, HSTATE_SCRATCH2(r13)
beq 9f /* TM not active in guest */
/* Make sure the failure summary is set, otherwise we'll program check
* when we trechkpt. It's possible that this might have been not set
@ -255,6 +270,26 @@ _GLOBAL(__kvmppc_restore_tm)
oris r7, r7, (TEXASR_FS)@h
mtspr SPRN_TEXASR, r7
/*
* Make a stack frame and save non-volatile registers if requested.
*/
stdu r1, -SWITCH_FRAME_SIZE(r1)
std r1, HSTATE_SCRATCH2(r13)
mfcr r6
mfspr r7, SPRN_DSCR
SAVE_GPR(2, r1)
SAVE_GPR(6, r1)
SAVE_GPR(7, r1)
beq cr7, 4f
SAVE_NVGPRS(r1)
/* MSR[TS] will be 1 (suspended) once we do trechkpt */
li r0, 1
rldimi r10, r0, MSR_TS_S_LG, 63 - MSR_TS_T_LG
SAVE_GPR(10, r1) /* final MSR value */
4:
/*
* We need to load up the checkpointed state for the guest.
* We need to do this early as it will blow away any GPRs, VSRs and
@ -291,8 +326,6 @@ _GLOBAL(__kvmppc_restore_tm)
ld r29, VCPU_DSCR_TM(r3)
ld r30, VCPU_PPR_TM(r3)
std r2, PACATMSCRATCH(r13) /* Save TOC */
/* Clear the MSR RI since r1, r13 are all going to be foobar. */
li r5, 0
mtmsrd r5, 1
@ -318,18 +351,31 @@ _GLOBAL(__kvmppc_restore_tm)
/* Now let's get back the state we need. */
HMT_MEDIUM
GET_PACA(r13)
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
ld r29, HSTATE_DSCR(r13)
mtspr SPRN_DSCR, r29
#endif
ld r1, HSTATE_SCRATCH2(r13)
ld r2, PACATMSCRATCH(r13)
REST_GPR(7, r1)
mtspr SPRN_DSCR, r7
/* Set the MSR RI since we have our registers back. */
li r5, MSR_RI
mtmsrd r5, 1
/* Restore TOC pointer and CR */
REST_GPR(2, r1)
REST_GPR(6, r1)
mtcr r6
/* Restore non-volatile registers if requested to. */
beq cr7, 5f
REST_GPR(10, r1)
REST_NVGPRS(r1)
5: addi r1, r1, SWITCH_FRAME_SIZE
ld r0, PPC_LR_STKOFF(r1)
mtlr r0
9: /* Restore MSR bits if requested */
beqlr cr7
mtmsrd r10, 0
blr
/*
@ -337,47 +383,23 @@ _GLOBAL(__kvmppc_restore_tm)
* can be invoked from C function by PR KVM only.
*/
_GLOBAL(_kvmppc_restore_tm_pr)
mflr r5
std r5, PPC_LR_STKOFF(r1)
stdu r1, -SWITCH_FRAME_SIZE(r1)
SAVE_NVGPRS(r1)
/* save MSR to avoid TM/math bits change */
mfmsr r5
SAVE_GPR(5, r1)
/* also save DSCR/CR/TAR so that it can be recovered later */
mfspr r6, SPRN_DSCR
SAVE_GPR(6, r1)
mfcr r7
stw r7, _CCR(r1)
mflr r0
std r0, PPC_LR_STKOFF(r1)
stdu r1, -PPC_MIN_STKFRM(r1)
/* save TAR so that it can be recovered later */
mfspr r8, SPRN_TAR
SAVE_GPR(8, r1)
std r8, PPC_MIN_STKFRM-8(r1)
li r5, 1
bl __kvmppc_restore_tm
REST_GPR(8, r1)
ld r8, PPC_MIN_STKFRM-8(r1)
mtspr SPRN_TAR, r8
ld r7, _CCR(r1)
mtcr r7
REST_GPR(6, r1)
mtspr SPRN_DSCR, r6
/* need preserve current MSR's MSR_TS bits */
REST_GPR(5, r1)
mfmsr r6
rldicl r6, r6, 64 - MSR_TS_S_LG, 62
rldimi r5, r6, MSR_TS_S_LG, 63 - MSR_TS_T_LG
mtmsrd r5
REST_NVGPRS(r1)
addi r1, r1, SWITCH_FRAME_SIZE
ld r5, PPC_LR_STKOFF(r1)
mtlr r5
addi r1, r1, PPC_MIN_STKFRM
ld r0, PPC_LR_STKOFF(r1)
mtlr r0
blr
EXPORT_SYMBOL_GPL(_kvmppc_restore_tm_pr);

View File

@ -14,7 +14,6 @@
{0x400, "INST_STORAGE"}, \
{0x480, "INST_SEGMENT"}, \
{0x500, "EXTERNAL"}, \
{0x501, "EXTERNAL_LEVEL"}, \
{0x502, "EXTERNAL_HV"}, \
{0x600, "ALIGNMENT"}, \
{0x700, "PROGRAM"}, \

View File

@ -830,6 +830,15 @@ void radix__flush_pwc_lpid(unsigned int lpid)
}
EXPORT_SYMBOL_GPL(radix__flush_pwc_lpid);
/*
* Flush partition scoped translations from LPID (=LPIDR)
*/
void radix__flush_tlb_lpid(unsigned int lpid)
{
_tlbie_lpid(lpid, RIC_FLUSH_ALL);
}
EXPORT_SYMBOL_GPL(radix__flush_tlb_lpid);
/*
* Flush partition scoped translations from LPID (=LPIDR)
*/

View File

@ -783,6 +783,17 @@ config VFIO_CCW
To compile this driver as a module, choose M here: the
module will be called vfio_ccw.
config VFIO_AP
def_tristate n
prompt "VFIO support for AP devices"
depends on S390_AP_IOMMU && VFIO_MDEV_DEVICE && KVM
help
This driver grants access to Adjunct Processor (AP) devices
via the VFIO mediated device interface.
To compile this driver as a module, choose M here: the module
will be called vfio_ap.
endmenu
menu "Dump support"

View File

@ -44,6 +44,7 @@
#define KVM_REQ_ICPT_OPEREXC KVM_ARCH_REQ(2)
#define KVM_REQ_START_MIGRATION KVM_ARCH_REQ(3)
#define KVM_REQ_STOP_MIGRATION KVM_ARCH_REQ(4)
#define KVM_REQ_VSIE_RESTART KVM_ARCH_REQ(5)
#define SIGP_CTRL_C 0x80
#define SIGP_CTRL_SCN_MASK 0x3f
@ -186,6 +187,7 @@ struct kvm_s390_sie_block {
#define ECA_AIV 0x00200000
#define ECA_VX 0x00020000
#define ECA_PROTEXCI 0x00002000
#define ECA_APIE 0x00000008
#define ECA_SII 0x00000001
__u32 eca; /* 0x004c */
#define ICPT_INST 0x04
@ -237,7 +239,11 @@ struct kvm_s390_sie_block {
psw_t gpsw; /* 0x0090 */
__u64 gg14; /* 0x00a0 */
__u64 gg15; /* 0x00a8 */
__u8 reservedb0[20]; /* 0x00b0 */
__u8 reservedb0[8]; /* 0x00b0 */
#define HPID_KVM 0x4
#define HPID_VSIE 0x5
__u8 hpid; /* 0x00b8 */
__u8 reservedb9[11]; /* 0x00b9 */
__u16 extcpuaddr; /* 0x00c4 */
__u16 eic; /* 0x00c6 */
__u32 reservedc8; /* 0x00c8 */
@ -255,6 +261,8 @@ struct kvm_s390_sie_block {
__u8 reservede4[4]; /* 0x00e4 */
__u64 tecmc; /* 0x00e8 */
__u8 reservedf0[12]; /* 0x00f0 */
#define CRYCB_FORMAT_MASK 0x00000003
#define CRYCB_FORMAT0 0x00000000
#define CRYCB_FORMAT1 0x00000001
#define CRYCB_FORMAT2 0x00000003
__u32 crycbd; /* 0x00fc */
@ -715,6 +723,7 @@ struct kvm_s390_crypto {
__u32 crycbd;
__u8 aes_kw;
__u8 dea_kw;
__u8 apie;
};
#define APCB0_MASK_SIZE 1
@ -855,6 +864,10 @@ void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
struct kvm_async_pf *work);
void kvm_arch_crypto_clear_masks(struct kvm *kvm);
void kvm_arch_crypto_set_masks(struct kvm *kvm, unsigned long *apm,
unsigned long *aqm, unsigned long *adm);
extern int sie64a(struct kvm_s390_sie_block *, u64 *);
extern char sie_exit;

View File

@ -160,6 +160,8 @@ struct kvm_s390_vm_cpu_subfunc {
#define KVM_S390_VM_CRYPTO_ENABLE_DEA_KW 1
#define KVM_S390_VM_CRYPTO_DISABLE_AES_KW 2
#define KVM_S390_VM_CRYPTO_DISABLE_DEA_KW 3
#define KVM_S390_VM_CRYPTO_ENABLE_APIE 4
#define KVM_S390_VM_CRYPTO_DISABLE_APIE 5
/* kvm attributes for migration mode */
#define KVM_S390_VM_MIGRATION_STOP 0

View File

@ -40,6 +40,7 @@
#include <asm/sclp.h>
#include <asm/cpacf.h>
#include <asm/timex.h>
#include <asm/ap.h>
#include "kvm-s390.h"
#include "gaccess.h"
@ -844,20 +845,24 @@ void kvm_s390_vcpu_crypto_reset_all(struct kvm *kvm)
kvm_s390_vcpu_block_all(kvm);
kvm_for_each_vcpu(i, vcpu, kvm)
kvm_for_each_vcpu(i, vcpu, kvm) {
kvm_s390_vcpu_crypto_setup(vcpu);
/* recreate the shadow crycb by leaving the VSIE handler */
kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu);
}
kvm_s390_vcpu_unblock_all(kvm);
}
static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
{
if (!test_kvm_facility(kvm, 76))
return -EINVAL;
mutex_lock(&kvm->lock);
switch (attr->attr) {
case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
if (!test_kvm_facility(kvm, 76)) {
mutex_unlock(&kvm->lock);
return -EINVAL;
}
get_random_bytes(
kvm->arch.crypto.crycb->aes_wrapping_key_mask,
sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
@ -865,6 +870,10 @@ static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
break;
case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
if (!test_kvm_facility(kvm, 76)) {
mutex_unlock(&kvm->lock);
return -EINVAL;
}
get_random_bytes(
kvm->arch.crypto.crycb->dea_wrapping_key_mask,
sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
@ -872,17 +881,39 @@ static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
break;
case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
if (!test_kvm_facility(kvm, 76)) {
mutex_unlock(&kvm->lock);
return -EINVAL;
}
kvm->arch.crypto.aes_kw = 0;
memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
break;
case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
if (!test_kvm_facility(kvm, 76)) {
mutex_unlock(&kvm->lock);
return -EINVAL;
}
kvm->arch.crypto.dea_kw = 0;
memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
break;
case KVM_S390_VM_CRYPTO_ENABLE_APIE:
if (!ap_instructions_available()) {
mutex_unlock(&kvm->lock);
return -EOPNOTSUPP;
}
kvm->arch.crypto.apie = 1;
break;
case KVM_S390_VM_CRYPTO_DISABLE_APIE:
if (!ap_instructions_available()) {
mutex_unlock(&kvm->lock);
return -EOPNOTSUPP;
}
kvm->arch.crypto.apie = 0;
break;
default:
mutex_unlock(&kvm->lock);
return -ENXIO;
@ -1491,6 +1522,10 @@ static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
ret = 0;
break;
case KVM_S390_VM_CRYPTO_ENABLE_APIE:
case KVM_S390_VM_CRYPTO_DISABLE_APIE:
ret = ap_instructions_available() ? 0 : -ENXIO;
break;
default:
ret = -ENXIO;
break;
@ -1992,55 +2027,101 @@ long kvm_arch_vm_ioctl(struct file *filp,
return r;
}
static int kvm_s390_query_ap_config(u8 *config)
{
u32 fcn_code = 0x04000000UL;
u32 cc = 0;
memset(config, 0, 128);
asm volatile(
"lgr 0,%1\n"
"lgr 2,%2\n"
".long 0xb2af0000\n" /* PQAP(QCI) */
"0: ipm %0\n"
"srl %0,28\n"
"1:\n"
EX_TABLE(0b, 1b)
: "+r" (cc)
: "r" (fcn_code), "r" (config)
: "cc", "0", "2", "memory"
);
return cc;
}
static int kvm_s390_apxa_installed(void)
{
u8 config[128];
int cc;
struct ap_config_info info;
if (test_facility(12)) {
cc = kvm_s390_query_ap_config(config);
if (cc)
pr_err("PQAP(QCI) failed with cc=%d", cc);
else
return config[0] & 0x40;
if (ap_instructions_available()) {
if (ap_qci(&info) == 0)
return info.apxa;
}
return 0;
}
/*
* The format of the crypto control block (CRYCB) is specified in the 3 low
* order bits of the CRYCB designation (CRYCBD) field as follows:
* Format 0: Neither the message security assist extension 3 (MSAX3) nor the
* AP extended addressing (APXA) facility are installed.
* Format 1: The APXA facility is not installed but the MSAX3 facility is.
* Format 2: Both the APXA and MSAX3 facilities are installed
*/
static void kvm_s390_set_crycb_format(struct kvm *kvm)
{
kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;
/* Clear the CRYCB format bits - i.e., set format 0 by default */
kvm->arch.crypto.crycbd &= ~(CRYCB_FORMAT_MASK);
/* Check whether MSAX3 is installed */
if (!test_kvm_facility(kvm, 76))
return;
if (kvm_s390_apxa_installed())
kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
else
kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
}
void kvm_arch_crypto_set_masks(struct kvm *kvm, unsigned long *apm,
unsigned long *aqm, unsigned long *adm)
{
struct kvm_s390_crypto_cb *crycb = kvm->arch.crypto.crycb;
mutex_lock(&kvm->lock);
kvm_s390_vcpu_block_all(kvm);
switch (kvm->arch.crypto.crycbd & CRYCB_FORMAT_MASK) {
case CRYCB_FORMAT2: /* APCB1 use 256 bits */
memcpy(crycb->apcb1.apm, apm, 32);
VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx %016lx %016lx %016lx",
apm[0], apm[1], apm[2], apm[3]);
memcpy(crycb->apcb1.aqm, aqm, 32);
VM_EVENT(kvm, 3, "SET CRYCB: aqm %016lx %016lx %016lx %016lx",
aqm[0], aqm[1], aqm[2], aqm[3]);
memcpy(crycb->apcb1.adm, adm, 32);
VM_EVENT(kvm, 3, "SET CRYCB: adm %016lx %016lx %016lx %016lx",
adm[0], adm[1], adm[2], adm[3]);
break;
case CRYCB_FORMAT1:
case CRYCB_FORMAT0: /* Fall through both use APCB0 */
memcpy(crycb->apcb0.apm, apm, 8);
memcpy(crycb->apcb0.aqm, aqm, 2);
memcpy(crycb->apcb0.adm, adm, 2);
VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx aqm %04x adm %04x",
apm[0], *((unsigned short *)aqm),
*((unsigned short *)adm));
break;
default: /* Can not happen */
break;
}
/* recreate the shadow crycb for each vcpu */
kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART);
kvm_s390_vcpu_unblock_all(kvm);
mutex_unlock(&kvm->lock);
}
EXPORT_SYMBOL_GPL(kvm_arch_crypto_set_masks);
void kvm_arch_crypto_clear_masks(struct kvm *kvm)
{
mutex_lock(&kvm->lock);
kvm_s390_vcpu_block_all(kvm);
memset(&kvm->arch.crypto.crycb->apcb0, 0,
sizeof(kvm->arch.crypto.crycb->apcb0));
memset(&kvm->arch.crypto.crycb->apcb1, 0,
sizeof(kvm->arch.crypto.crycb->apcb1));
VM_EVENT(kvm, 3, "%s", "CLR CRYCB:");
/* recreate the shadow crycb for each vcpu */
kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART);
kvm_s390_vcpu_unblock_all(kvm);
mutex_unlock(&kvm->lock);
}
EXPORT_SYMBOL_GPL(kvm_arch_crypto_clear_masks);
static u64 kvm_s390_get_initial_cpuid(void)
{
struct cpuid cpuid;
@ -2052,12 +2133,12 @@ static u64 kvm_s390_get_initial_cpuid(void)
static void kvm_s390_crypto_init(struct kvm *kvm)
{
if (!test_kvm_facility(kvm, 76))
return;
kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
kvm_s390_set_crycb_format(kvm);
if (!test_kvm_facility(kvm, 76))
return;
/* Enable AES/DEA protected key functions by default */
kvm->arch.crypto.aes_kw = 1;
kvm->arch.crypto.dea_kw = 1;
@ -2583,17 +2664,25 @@ void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
{
if (!test_kvm_facility(vcpu->kvm, 76))
/*
* If the AP instructions are not being interpreted and the MSAX3
* facility is not configured for the guest, there is nothing to set up.
*/
if (!vcpu->kvm->arch.crypto.apie && !test_kvm_facility(vcpu->kvm, 76))
return;
vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);
vcpu->arch.sie_block->eca &= ~ECA_APIE;
if (vcpu->kvm->arch.crypto.apie)
vcpu->arch.sie_block->eca |= ECA_APIE;
/* Set up protected key support */
if (vcpu->kvm->arch.crypto.aes_kw)
vcpu->arch.sie_block->ecb3 |= ECB3_AES;
if (vcpu->kvm->arch.crypto.dea_kw)
vcpu->arch.sie_block->ecb3 |= ECB3_DEA;
vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
}
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
@ -2685,6 +2774,8 @@ int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
vcpu->arch.sie_block->hpid = HPID_KVM;
kvm_s390_vcpu_crypto_setup(vcpu);
return rc;
@ -2768,18 +2859,25 @@ static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
exit_sie(vcpu);
}
bool kvm_s390_vcpu_sie_inhibited(struct kvm_vcpu *vcpu)
{
return atomic_read(&vcpu->arch.sie_block->prog20) &
(PROG_BLOCK_SIE | PROG_REQUEST);
}
static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
{
atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
}
/*
* Kick a guest cpu out of SIE and wait until SIE is not running.
* Kick a guest cpu out of (v)SIE and wait until (v)SIE is not running.
* If the CPU is not running (e.g. waiting as idle) the function will
* return immediately. */
void exit_sie(struct kvm_vcpu *vcpu)
{
kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
kvm_s390_vsie_kick(vcpu);
while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
cpu_relax();
}
@ -3196,6 +3294,8 @@ retry:
/* nothing to do, just clear the request */
kvm_clear_request(KVM_REQ_UNHALT, vcpu);
/* we left the vsie handler, nothing to do, just clear the request */
kvm_clear_request(KVM_REQ_VSIE_RESTART, vcpu);
return 0;
}

View File

@ -290,6 +290,7 @@ void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu);
void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu);
void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu);
void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu);
bool kvm_s390_vcpu_sie_inhibited(struct kvm_vcpu *vcpu);
void exit_sie(struct kvm_vcpu *vcpu);
void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu);
int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu);

View File

@ -135,14 +135,148 @@ static int prepare_cpuflags(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
atomic_set(&scb_s->cpuflags, newflags);
return 0;
}
/* Copy to APCB FORMAT1 from APCB FORMAT0 */
static int setup_apcb10(struct kvm_vcpu *vcpu, struct kvm_s390_apcb1 *apcb_s,
unsigned long apcb_o, struct kvm_s390_apcb1 *apcb_h)
{
struct kvm_s390_apcb0 tmp;
/*
if (read_guest_real(vcpu, apcb_o, &tmp, sizeof(struct kvm_s390_apcb0)))
return -EFAULT;
apcb_s->apm[0] = apcb_h->apm[0] & tmp.apm[0];
apcb_s->aqm[0] = apcb_h->aqm[0] & tmp.aqm[0] & 0xffff000000000000UL;
apcb_s->adm[0] = apcb_h->adm[0] & tmp.adm[0] & 0xffff000000000000UL;
return 0;
}
/**
* setup_apcb00 - Copy to APCB FORMAT0 from APCB FORMAT0
* @vcpu: pointer to the virtual CPU
* @apcb_s: pointer to start of apcb in the shadow crycb
* @apcb_o: pointer to start of original apcb in the guest2
* @apcb_h: pointer to start of apcb in the guest1
*
* Returns 0 and -EFAULT on error reading guest apcb
*/
static int setup_apcb00(struct kvm_vcpu *vcpu, unsigned long *apcb_s,
unsigned long apcb_o, unsigned long *apcb_h)
{
if (read_guest_real(vcpu, apcb_o, apcb_s,
sizeof(struct kvm_s390_apcb0)))
return -EFAULT;
bitmap_and(apcb_s, apcb_s, apcb_h, sizeof(struct kvm_s390_apcb0));
return 0;
}
/**
* setup_apcb11 - Copy the FORMAT1 APCB from the guest to the shadow CRYCB
* @vcpu: pointer to the virtual CPU
* @apcb_s: pointer to start of apcb in the shadow crycb
* @apcb_o: pointer to start of original guest apcb
* @apcb_h: pointer to start of apcb in the host
*
* Returns 0 and -EFAULT on error reading guest apcb
*/
static int setup_apcb11(struct kvm_vcpu *vcpu, unsigned long *apcb_s,
unsigned long apcb_o,
unsigned long *apcb_h)
{
if (read_guest_real(vcpu, apcb_o, apcb_s,
sizeof(struct kvm_s390_apcb1)))
return -EFAULT;
bitmap_and(apcb_s, apcb_s, apcb_h, sizeof(struct kvm_s390_apcb1));
return 0;
}
/**
* setup_apcb - Create a shadow copy of the apcb.
* @vcpu: pointer to the virtual CPU
* @crycb_s: pointer to shadow crycb
* @crycb_o: pointer to original guest crycb
* @crycb_h: pointer to the host crycb
* @fmt_o: format of the original guest crycb.
* @fmt_h: format of the host crycb.
*
* Checks the compatibility between the guest and host crycb and calls the
* appropriate copy function.
*
* Return 0 or an error number if the guest and host crycb are incompatible.
*/
static int setup_apcb(struct kvm_vcpu *vcpu, struct kvm_s390_crypto_cb *crycb_s,
const u32 crycb_o,
struct kvm_s390_crypto_cb *crycb_h,
int fmt_o, int fmt_h)
{
struct kvm_s390_crypto_cb *crycb;
crycb = (struct kvm_s390_crypto_cb *) (unsigned long)crycb_o;
switch (fmt_o) {
case CRYCB_FORMAT2:
if ((crycb_o & PAGE_MASK) != ((crycb_o + 256) & PAGE_MASK))
return -EACCES;
if (fmt_h != CRYCB_FORMAT2)
return -EINVAL;
return setup_apcb11(vcpu, (unsigned long *)&crycb_s->apcb1,
(unsigned long) &crycb->apcb1,
(unsigned long *)&crycb_h->apcb1);
case CRYCB_FORMAT1:
switch (fmt_h) {
case CRYCB_FORMAT2:
return setup_apcb10(vcpu, &crycb_s->apcb1,
(unsigned long) &crycb->apcb0,
&crycb_h->apcb1);
case CRYCB_FORMAT1:
return setup_apcb00(vcpu,
(unsigned long *) &crycb_s->apcb0,
(unsigned long) &crycb->apcb0,
(unsigned long *) &crycb_h->apcb0);
}
break;
case CRYCB_FORMAT0:
if ((crycb_o & PAGE_MASK) != ((crycb_o + 32) & PAGE_MASK))
return -EACCES;
switch (fmt_h) {
case CRYCB_FORMAT2:
return setup_apcb10(vcpu, &crycb_s->apcb1,
(unsigned long) &crycb->apcb0,
&crycb_h->apcb1);
case CRYCB_FORMAT1:
case CRYCB_FORMAT0:
return setup_apcb00(vcpu,
(unsigned long *) &crycb_s->apcb0,
(unsigned long) &crycb->apcb0,
(unsigned long *) &crycb_h->apcb0);
}
}
return -EINVAL;
}
/**
* shadow_crycb - Create a shadow copy of the crycb block
* @vcpu: a pointer to the virtual CPU
* @vsie_page: a pointer to internal date used for the vSIE
*
* Create a shadow copy of the crycb block and setup key wrapping, if
* requested for guest 3 and enabled for guest 2.
*
* We only accept format-1 (no AP in g2), but convert it into format-2
* We accept format-1 or format-2, but we convert format-1 into format-2
* in the shadow CRYCB.
* Using format-2 enables the firmware to choose the right format when
* scheduling the SIE.
* There is nothing to do for format-0.
*
* This function centralize the issuing of set_validity_icpt() for all
* the subfunctions working on the crycb.
*
* Returns: - 0 if shadowed or nothing to do
* - > 0 if control has to be given to guest 2
*/
@ -154,23 +288,40 @@ static int shadow_crycb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
const u32 crycb_addr = crycbd_o & 0x7ffffff8U;
unsigned long *b1, *b2;
u8 ecb3_flags;
int apie_h;
int key_msk = test_kvm_facility(vcpu->kvm, 76);
int fmt_o = crycbd_o & CRYCB_FORMAT_MASK;
int fmt_h = vcpu->arch.sie_block->crycbd & CRYCB_FORMAT_MASK;
int ret = 0;
scb_s->crycbd = 0;
if (!(crycbd_o & vcpu->arch.sie_block->crycbd & CRYCB_FORMAT1))
return 0;
/* format-1 is supported with message-security-assist extension 3 */
if (!test_kvm_facility(vcpu->kvm, 76))
apie_h = vcpu->arch.sie_block->eca & ECA_APIE;
if (!apie_h && !key_msk)
return 0;
if (!crycb_addr)
return set_validity_icpt(scb_s, 0x0039U);
if (fmt_o == CRYCB_FORMAT1)
if ((crycb_addr & PAGE_MASK) !=
((crycb_addr + 128) & PAGE_MASK))
return set_validity_icpt(scb_s, 0x003CU);
if (apie_h && (scb_o->eca & ECA_APIE)) {
ret = setup_apcb(vcpu, &vsie_page->crycb, crycb_addr,
vcpu->kvm->arch.crypto.crycb,
fmt_o, fmt_h);
if (ret)
goto end;
scb_s->eca |= scb_o->eca & ECA_APIE;
}
/* we may only allow it if enabled for guest 2 */
ecb3_flags = scb_o->ecb3 & vcpu->arch.sie_block->ecb3 &
(ECB3_AES | ECB3_DEA);
if (!ecb3_flags)
return 0;
if ((crycb_addr & PAGE_MASK) != ((crycb_addr + 128) & PAGE_MASK))
return set_validity_icpt(scb_s, 0x003CU);
else if (!crycb_addr)
return set_validity_icpt(scb_s, 0x0039U);
goto end;
/* copy only the wrapping keys */
if (read_guest_real(vcpu, crycb_addr + 72,
@ -178,8 +329,6 @@ static int shadow_crycb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
return set_validity_icpt(scb_s, 0x0035U);
scb_s->ecb3 |= ecb3_flags;
scb_s->crycbd = ((__u32)(__u64) &vsie_page->crycb) | CRYCB_FORMAT1 |
CRYCB_FORMAT2;
/* xor both blocks in one run */
b1 = (unsigned long *) vsie_page->crycb.dea_wrapping_key_mask;
@ -187,6 +336,16 @@ static int shadow_crycb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
vcpu->kvm->arch.crypto.crycb->dea_wrapping_key_mask;
/* as 56%8 == 0, bitmap_xor won't overwrite any data */
bitmap_xor(b1, b1, b2, BITS_PER_BYTE * 56);
end:
switch (ret) {
case -EINVAL:
return set_validity_icpt(scb_s, 0x0020U);
case -EFAULT:
return set_validity_icpt(scb_s, 0x0035U);
case -EACCES:
return set_validity_icpt(scb_s, 0x003CU);
}
scb_s->crycbd = ((__u32)(__u64) &vsie_page->crycb) | CRYCB_FORMAT2;
return 0;
}
@ -383,6 +542,8 @@ static int shadow_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
if (test_kvm_facility(vcpu->kvm, 156))
scb_s->ecd |= scb_o->ecd & ECD_ETOKENF;
scb_s->hpid = HPID_VSIE;
prepare_ibc(vcpu, vsie_page);
rc = shadow_crycb(vcpu, vsie_page);
out:
@ -830,7 +991,7 @@ static int do_vsie_run(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
int guest_bp_isolation;
int rc;
int rc = 0;
handle_last_fault(vcpu, vsie_page);
@ -858,7 +1019,18 @@ static int do_vsie_run(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
guest_enter_irqoff();
local_irq_enable();
rc = sie64a(scb_s, vcpu->run->s.regs.gprs);
/*
* Simulate a SIE entry of the VCPU (see sie64a), so VCPU blocking
* and VCPU requests also hinder the vSIE from running and lead
* to an immediate exit. kvm_s390_vsie_kick() has to be used to
* also kick the vSIE.
*/
vcpu->arch.sie_block->prog0c |= PROG_IN_SIE;
barrier();
if (!kvm_s390_vcpu_sie_inhibited(vcpu))
rc = sie64a(scb_s, vcpu->run->s.regs.gprs);
barrier();
vcpu->arch.sie_block->prog0c &= ~PROG_IN_SIE;
local_irq_disable();
guest_exit_irqoff();
@ -1005,7 +1177,8 @@ static int vsie_run(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
if (rc == -EAGAIN)
rc = 0;
if (rc || scb_s->icptcode || signal_pending(current) ||
kvm_s390_vcpu_has_irq(vcpu, 0))
kvm_s390_vcpu_has_irq(vcpu, 0) ||
kvm_s390_vcpu_sie_inhibited(vcpu))
break;
}
@ -1122,7 +1295,8 @@ int kvm_s390_handle_vsie(struct kvm_vcpu *vcpu)
if (unlikely(scb_addr & 0x1ffUL))
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
if (signal_pending(current) || kvm_s390_vcpu_has_irq(vcpu, 0))
if (signal_pending(current) || kvm_s390_vcpu_has_irq(vcpu, 0) ||
kvm_s390_vcpu_sie_inhibited(vcpu))
return 0;
vsie_page = get_vsie_page(vcpu->kvm, scb_addr);

View File

@ -907,10 +907,16 @@ static inline pmd_t *gmap_pmd_op_walk(struct gmap *gmap, unsigned long gaddr)
pmd_t *pmdp;
BUG_ON(gmap_is_shadow(gmap));
spin_lock(&gmap->guest_table_lock);
pmdp = (pmd_t *) gmap_table_walk(gmap, gaddr, 1);
if (!pmdp)
return NULL;
if (!pmdp || pmd_none(*pmdp)) {
/* without huge pages, there is no need to take the table lock */
if (!gmap->mm->context.allow_gmap_hpage_1m)
return pmd_none(*pmdp) ? NULL : pmdp;
spin_lock(&gmap->guest_table_lock);
if (pmd_none(*pmdp)) {
spin_unlock(&gmap->guest_table_lock);
return NULL;
}

View File

@ -106,6 +106,8 @@ static struct facility_def facility_defs[] = {
.name = "FACILITIES_KVM_CPUMODEL",
.bits = (int[]){
12, /* AP Query Configuration Information */
15, /* AP Facilities Test */
156, /* etoken facility */
-1 /* END */
}

View File

@ -102,7 +102,15 @@
#define UNMAPPED_GVA (~(gpa_t)0)
/* KVM Hugepage definitions for x86 */
#define KVM_NR_PAGE_SIZES 3
enum {
PT_PAGE_TABLE_LEVEL = 1,
PT_DIRECTORY_LEVEL = 2,
PT_PDPE_LEVEL = 3,
/* set max level to the biggest one */
PT_MAX_HUGEPAGE_LEVEL = PT_PDPE_LEVEL,
};
#define KVM_NR_PAGE_SIZES (PT_MAX_HUGEPAGE_LEVEL - \
PT_PAGE_TABLE_LEVEL + 1)
#define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9)
#define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
#define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x))
@ -177,6 +185,7 @@ enum {
#define DR6_BD (1 << 13)
#define DR6_BS (1 << 14)
#define DR6_BT (1 << 15)
#define DR6_RTM (1 << 16)
#define DR6_FIXED_1 0xfffe0ff0
#define DR6_INIT 0xffff0ff0
@ -247,7 +256,7 @@ struct kvm_mmu_memory_cache {
* @nxe, @cr0_wp, @smep_andnot_wp and @smap_andnot_wp.
*/
union kvm_mmu_page_role {
unsigned word;
u32 word;
struct {
unsigned level:4;
unsigned cr4_pae:1;
@ -273,6 +282,34 @@ union kvm_mmu_page_role {
};
};
union kvm_mmu_extended_role {
/*
* This structure complements kvm_mmu_page_role caching everything needed for
* MMU configuration. If nothing in both these structures changed, MMU
* re-configuration can be skipped. @valid bit is set on first usage so we don't
* treat all-zero structure as valid data.
*/
u32 word;
struct {
unsigned int valid:1;
unsigned int execonly:1;
unsigned int cr0_pg:1;
unsigned int cr4_pse:1;
unsigned int cr4_pke:1;
unsigned int cr4_smap:1;
unsigned int cr4_smep:1;
unsigned int cr4_la57:1;
};
};
union kvm_mmu_role {
u64 as_u64;
struct {
union kvm_mmu_page_role base;
union kvm_mmu_extended_role ext;
};
};
struct kvm_rmap_head {
unsigned long val;
};
@ -280,18 +317,18 @@ struct kvm_rmap_head {
struct kvm_mmu_page {
struct list_head link;
struct hlist_node hash_link;
bool unsync;
/*
* The following two entries are used to key the shadow page in the
* hash table.
*/
gfn_t gfn;
union kvm_mmu_page_role role;
gfn_t gfn;
u64 *spt;
/* hold the gfn of each spte inside spt */
gfn_t *gfns;
bool unsync;
int root_count; /* Currently serving as active root */
unsigned int unsync_children;
struct kvm_rmap_head parent_ptes; /* rmap pointers to parent sptes */
@ -360,7 +397,7 @@ struct kvm_mmu {
void (*update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
u64 *spte, const void *pte);
hpa_t root_hpa;
union kvm_mmu_page_role base_role;
union kvm_mmu_role mmu_role;
u8 root_level;
u8 shadow_root_level;
u8 ept_ad;
@ -490,7 +527,7 @@ struct kvm_vcpu_hv {
struct kvm_hyperv_exit exit;
struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
cpumask_t tlb_lush;
cpumask_t tlb_flush;
};
struct kvm_vcpu_arch {
@ -534,7 +571,13 @@ struct kvm_vcpu_arch {
* the paging mode of the l1 guest. This context is always used to
* handle faults.
*/
struct kvm_mmu mmu;
struct kvm_mmu *mmu;
/* Non-nested MMU for L1 */
struct kvm_mmu root_mmu;
/* L1 MMU when running nested */
struct kvm_mmu guest_mmu;
/*
* Paging state of an L2 guest (used for nested npt)
@ -585,6 +628,8 @@ struct kvm_vcpu_arch {
bool has_error_code;
u8 nr;
u32 error_code;
unsigned long payload;
bool has_payload;
u8 nested_apf;
} exception;
@ -781,6 +826,9 @@ struct kvm_hv {
u64 hv_reenlightenment_control;
u64 hv_tsc_emulation_control;
u64 hv_tsc_emulation_status;
/* How many vCPUs have VP index != vCPU index */
atomic_t num_mismatched_vp_indexes;
};
enum kvm_irqchip_mode {
@ -871,6 +919,7 @@ struct kvm_arch {
bool x2apic_broadcast_quirk_disabled;
bool guest_can_read_msr_platform_info;
bool exception_payload_enabled;
};
struct kvm_vm_stat {
@ -1133,6 +1182,9 @@ struct kvm_x86_ops {
int (*mem_enc_unreg_region)(struct kvm *kvm, struct kvm_enc_region *argp);
int (*get_msr_feature)(struct kvm_msr_entry *entry);
int (*nested_enable_evmcs)(struct kvm_vcpu *vcpu,
uint16_t *vmcs_version);
};
struct kvm_arch_async_pf {
@ -1170,7 +1222,6 @@ void kvm_mmu_module_exit(void);
void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
int kvm_mmu_create(struct kvm_vcpu *vcpu);
void kvm_mmu_setup(struct kvm_vcpu *vcpu);
void kvm_mmu_init_vm(struct kvm *kvm);
void kvm_mmu_uninit_vm(struct kvm *kvm);
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
@ -1324,7 +1375,8 @@ void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu);
int kvm_mmu_load(struct kvm_vcpu *vcpu);
void kvm_mmu_unload(struct kvm_vcpu *vcpu);
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu);
void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, ulong roots_to_free);
void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
ulong roots_to_free);
gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
struct x86_exception *exception);
gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,

View File

@ -40,7 +40,7 @@ static inline int cpu_has_vmx(void)
*/
static inline void cpu_vmxoff(void)
{
asm volatile (ASM_VMX_VMXOFF : : : "cc");
asm volatile ("vmxoff");
cr4_clear_bits(X86_CR4_VMXE);
}

View File

@ -503,19 +503,6 @@ enum vmcs_field {
#define VMX_EPT_IDENTITY_PAGETABLE_ADDR 0xfffbc000ul
#define ASM_VMX_VMCLEAR_RAX ".byte 0x66, 0x0f, 0xc7, 0x30"
#define ASM_VMX_VMLAUNCH ".byte 0x0f, 0x01, 0xc2"
#define ASM_VMX_VMRESUME ".byte 0x0f, 0x01, 0xc3"
#define ASM_VMX_VMPTRLD_RAX ".byte 0x0f, 0xc7, 0x30"
#define ASM_VMX_VMREAD_RDX_RAX ".byte 0x0f, 0x78, 0xd0"
#define ASM_VMX_VMWRITE_RAX_RDX ".byte 0x0f, 0x79, 0xd0"
#define ASM_VMX_VMWRITE_RSP_RDX ".byte 0x0f, 0x79, 0xd4"
#define ASM_VMX_VMXOFF ".byte 0x0f, 0x01, 0xc4"
#define ASM_VMX_VMXON_RAX ".byte 0xf3, 0x0f, 0xc7, 0x30"
#define ASM_VMX_INVEPT ".byte 0x66, 0x0f, 0x38, 0x80, 0x08"
#define ASM_VMX_INVVPID ".byte 0x66, 0x0f, 0x38, 0x81, 0x08"
struct vmx_msr_entry {
u32 index;
u32 reserved;

View File

@ -288,6 +288,7 @@ struct kvm_reinject_control {
#define KVM_VCPUEVENT_VALID_SIPI_VECTOR 0x00000002
#define KVM_VCPUEVENT_VALID_SHADOW 0x00000004
#define KVM_VCPUEVENT_VALID_SMM 0x00000008
#define KVM_VCPUEVENT_VALID_PAYLOAD 0x00000010
/* Interrupt shadow states */
#define KVM_X86_SHADOW_INT_MOV_SS 0x01
@ -299,7 +300,7 @@ struct kvm_vcpu_events {
__u8 injected;
__u8 nr;
__u8 has_error_code;
__u8 pad;
__u8 pending;
__u32 error_code;
} exception;
struct {
@ -322,7 +323,9 @@ struct kvm_vcpu_events {
__u8 smm_inside_nmi;
__u8 latched_init;
} smi;
__u32 reserved[9];
__u8 reserved[27];
__u8 exception_has_payload;
__u64 exception_payload;
};
/* for KVM_GET/SET_DEBUGREGS */
@ -381,6 +384,7 @@ struct kvm_sync_regs {
#define KVM_STATE_NESTED_GUEST_MODE 0x00000001
#define KVM_STATE_NESTED_RUN_PENDING 0x00000002
#define KVM_STATE_NESTED_EVMCS 0x00000004
#define KVM_STATE_NESTED_SMM_GUEST_MODE 0x00000001
#define KVM_STATE_NESTED_SMM_VMXON 0x00000002

View File

@ -36,6 +36,8 @@
#include "trace.h"
#define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, 64)
static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
{
return atomic64_read(&synic->sint[sint]);
@ -132,8 +134,10 @@ static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx)
struct kvm_vcpu *vcpu = NULL;
int i;
if (vpidx < KVM_MAX_VCPUS)
vcpu = kvm_get_vcpu(kvm, vpidx);
if (vpidx >= KVM_MAX_VCPUS)
return NULL;
vcpu = kvm_get_vcpu(kvm, vpidx);
if (vcpu && vcpu_to_hv_vcpu(vcpu)->vp_index == vpidx)
return vcpu;
kvm_for_each_vcpu(i, vcpu, kvm)
@ -689,6 +693,24 @@ void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu)
stimer_cleanup(&hv_vcpu->stimer[i]);
}
bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu)
{
if (!(vcpu->arch.hyperv.hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE))
return false;
return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
}
EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled);
bool kvm_hv_get_assist_page(struct kvm_vcpu *vcpu,
struct hv_vp_assist_page *assist_page)
{
if (!kvm_hv_assist_page_enabled(vcpu))
return false;
return !kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data,
assist_page, sizeof(*assist_page));
}
EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page);
static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer)
{
struct hv_message *msg = &stimer->msg;
@ -1040,21 +1062,41 @@ static u64 current_task_runtime_100ns(void)
static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
{
struct kvm_vcpu_hv *hv = &vcpu->arch.hyperv;
struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
switch (msr) {
case HV_X64_MSR_VP_INDEX:
if (!host)
case HV_X64_MSR_VP_INDEX: {
struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
int vcpu_idx = kvm_vcpu_get_idx(vcpu);
u32 new_vp_index = (u32)data;
if (!host || new_vp_index >= KVM_MAX_VCPUS)
return 1;
hv->vp_index = (u32)data;
if (new_vp_index == hv_vcpu->vp_index)
return 0;
/*
* The VP index is initialized to vcpu_index by
* kvm_hv_vcpu_postcreate so they initially match. Now the
* VP index is changing, adjust num_mismatched_vp_indexes if
* it now matches or no longer matches vcpu_idx.
*/
if (hv_vcpu->vp_index == vcpu_idx)
atomic_inc(&hv->num_mismatched_vp_indexes);
else if (new_vp_index == vcpu_idx)
atomic_dec(&hv->num_mismatched_vp_indexes);
hv_vcpu->vp_index = new_vp_index;
break;
}
case HV_X64_MSR_VP_ASSIST_PAGE: {
u64 gfn;
unsigned long addr;
if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) {
hv->hv_vapic = data;
if (kvm_lapic_enable_pv_eoi(vcpu, 0))
hv_vcpu->hv_vapic = data;
if (kvm_lapic_enable_pv_eoi(vcpu, 0, 0))
return 1;
break;
}
@ -1062,12 +1104,19 @@ static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
if (kvm_is_error_hva(addr))
return 1;
if (__clear_user((void __user *)addr, PAGE_SIZE))
/*
* Clear apic_assist portion of f(struct hv_vp_assist_page
* only, there can be valuable data in the rest which needs
* to be preserved e.g. on migration.
*/
if (__clear_user((void __user *)addr, sizeof(u32)))
return 1;
hv->hv_vapic = data;
hv_vcpu->hv_vapic = data;
kvm_vcpu_mark_page_dirty(vcpu, gfn);
if (kvm_lapic_enable_pv_eoi(vcpu,
gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
gfn_to_gpa(gfn) | KVM_MSR_ENABLED,
sizeof(struct hv_vp_assist_page)))
return 1;
break;
}
@ -1080,7 +1129,7 @@ static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
case HV_X64_MSR_VP_RUNTIME:
if (!host)
return 1;
hv->runtime_offset = data - current_task_runtime_100ns();
hv_vcpu->runtime_offset = data - current_task_runtime_100ns();
break;
case HV_X64_MSR_SCONTROL:
case HV_X64_MSR_SVERSION:
@ -1172,11 +1221,11 @@ static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
bool host)
{
u64 data = 0;
struct kvm_vcpu_hv *hv = &vcpu->arch.hyperv;
struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
switch (msr) {
case HV_X64_MSR_VP_INDEX:
data = hv->vp_index;
data = hv_vcpu->vp_index;
break;
case HV_X64_MSR_EOI:
return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
@ -1185,10 +1234,10 @@ static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
case HV_X64_MSR_TPR:
return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
case HV_X64_MSR_VP_ASSIST_PAGE:
data = hv->hv_vapic;
data = hv_vcpu->hv_vapic;
break;
case HV_X64_MSR_VP_RUNTIME:
data = current_task_runtime_100ns() + hv->runtime_offset;
data = current_task_runtime_100ns() + hv_vcpu->runtime_offset;
break;
case HV_X64_MSR_SCONTROL:
case HV_X64_MSR_SVERSION:
@ -1255,32 +1304,47 @@ int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
return kvm_hv_get_msr(vcpu, msr, pdata, host);
}
static __always_inline int get_sparse_bank_no(u64 valid_bank_mask, int bank_no)
static __always_inline unsigned long *sparse_set_to_vcpu_mask(
struct kvm *kvm, u64 *sparse_banks, u64 valid_bank_mask,
u64 *vp_bitmap, unsigned long *vcpu_bitmap)
{
int i = 0, j;
struct kvm_hv *hv = &kvm->arch.hyperv;
struct kvm_vcpu *vcpu;
int i, bank, sbank = 0;
if (!(valid_bank_mask & BIT_ULL(bank_no)))
return -1;
memset(vp_bitmap, 0,
KVM_HV_MAX_SPARSE_VCPU_SET_BITS * sizeof(*vp_bitmap));
for_each_set_bit(bank, (unsigned long *)&valid_bank_mask,
KVM_HV_MAX_SPARSE_VCPU_SET_BITS)
vp_bitmap[bank] = sparse_banks[sbank++];
for (j = 0; j < bank_no; j++)
if (valid_bank_mask & BIT_ULL(j))
i++;
if (likely(!atomic_read(&hv->num_mismatched_vp_indexes))) {
/* for all vcpus vp_index == vcpu_idx */
return (unsigned long *)vp_bitmap;
}
return i;
bitmap_zero(vcpu_bitmap, KVM_MAX_VCPUS);
kvm_for_each_vcpu(i, vcpu, kvm) {
if (test_bit(vcpu_to_hv_vcpu(vcpu)->vp_index,
(unsigned long *)vp_bitmap))
__set_bit(i, vcpu_bitmap);
}
return vcpu_bitmap;
}
static u64 kvm_hv_flush_tlb(struct kvm_vcpu *current_vcpu, u64 ingpa,
u16 rep_cnt, bool ex)
{
struct kvm *kvm = current_vcpu->kvm;
struct kvm_vcpu_hv *hv_current = &current_vcpu->arch.hyperv;
struct kvm_vcpu_hv *hv_vcpu = &current_vcpu->arch.hyperv;
struct hv_tlb_flush_ex flush_ex;
struct hv_tlb_flush flush;
struct kvm_vcpu *vcpu;
unsigned long vcpu_bitmap[BITS_TO_LONGS(KVM_MAX_VCPUS)] = {0};
unsigned long valid_bank_mask = 0;
u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
unsigned long *vcpu_mask;
u64 valid_bank_mask;
u64 sparse_banks[64];
int sparse_banks_len, i;
int sparse_banks_len;
bool all_cpus;
if (!ex) {
@ -1290,6 +1354,7 @@ static u64 kvm_hv_flush_tlb(struct kvm_vcpu *current_vcpu, u64 ingpa,
trace_kvm_hv_flush_tlb(flush.processor_mask,
flush.address_space, flush.flags);
valid_bank_mask = BIT_ULL(0);
sparse_banks[0] = flush.processor_mask;
all_cpus = flush.flags & HV_FLUSH_ALL_PROCESSORS;
} else {
@ -1306,7 +1371,8 @@ static u64 kvm_hv_flush_tlb(struct kvm_vcpu *current_vcpu, u64 ingpa,
all_cpus = flush_ex.hv_vp_set.format !=
HV_GENERIC_SET_SPARSE_4K;
sparse_banks_len = bitmap_weight(&valid_bank_mask, 64) *
sparse_banks_len =
bitmap_weight((unsigned long *)&valid_bank_mask, 64) *
sizeof(sparse_banks[0]);
if (!sparse_banks_len && !all_cpus)
@ -1321,48 +1387,19 @@ static u64 kvm_hv_flush_tlb(struct kvm_vcpu *current_vcpu, u64 ingpa,
return HV_STATUS_INVALID_HYPERCALL_INPUT;
}
cpumask_clear(&hv_current->tlb_lush);
cpumask_clear(&hv_vcpu->tlb_flush);
kvm_for_each_vcpu(i, vcpu, kvm) {
struct kvm_vcpu_hv *hv = &vcpu->arch.hyperv;
int bank = hv->vp_index / 64, sbank = 0;
if (!all_cpus) {
/* Banks >64 can't be represented */
if (bank >= 64)
continue;
/* Non-ex hypercalls can only address first 64 vCPUs */
if (!ex && bank)
continue;
if (ex) {
/*
* Check is the bank of this vCPU is in sparse
* set and get the sparse bank number.
*/
sbank = get_sparse_bank_no(valid_bank_mask,
bank);
if (sbank < 0)
continue;
}
if (!(sparse_banks[sbank] & BIT_ULL(hv->vp_index % 64)))
continue;
}
/*
* vcpu->arch.cr3 may not be up-to-date for running vCPUs so we
* can't analyze it here, flush TLB regardless of the specified
* address space.
*/
__set_bit(i, vcpu_bitmap);
}
vcpu_mask = all_cpus ? NULL :
sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
vp_bitmap, vcpu_bitmap);
/*
* vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't
* analyze it here, flush TLB regardless of the specified address space.
*/
kvm_make_vcpus_request_mask(kvm,
KVM_REQ_TLB_FLUSH | KVM_REQUEST_NO_WAKEUP,
vcpu_bitmap, &hv_current->tlb_lush);
vcpu_mask, &hv_vcpu->tlb_flush);
ret_success:
/* We always do full TLB flush, set rep_done = rep_cnt. */
@ -1370,6 +1407,99 @@ ret_success:
((u64)rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET);
}
static void kvm_send_ipi_to_many(struct kvm *kvm, u32 vector,
unsigned long *vcpu_bitmap)
{
struct kvm_lapic_irq irq = {
.delivery_mode = APIC_DM_FIXED,
.vector = vector
};
struct kvm_vcpu *vcpu;
int i;
kvm_for_each_vcpu(i, vcpu, kvm) {
if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
continue;
/* We fail only when APIC is disabled */
kvm_apic_set_irq(vcpu, &irq, NULL);
}
}
static u64 kvm_hv_send_ipi(struct kvm_vcpu *current_vcpu, u64 ingpa, u64 outgpa,
bool ex, bool fast)
{
struct kvm *kvm = current_vcpu->kvm;
struct hv_send_ipi_ex send_ipi_ex;
struct hv_send_ipi send_ipi;
u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
unsigned long *vcpu_mask;
unsigned long valid_bank_mask;
u64 sparse_banks[64];
int sparse_banks_len;
u32 vector;
bool all_cpus;
if (!ex) {
if (!fast) {
if (unlikely(kvm_read_guest(kvm, ingpa, &send_ipi,
sizeof(send_ipi))))
return HV_STATUS_INVALID_HYPERCALL_INPUT;
sparse_banks[0] = send_ipi.cpu_mask;
vector = send_ipi.vector;
} else {
/* 'reserved' part of hv_send_ipi should be 0 */
if (unlikely(ingpa >> 32 != 0))
return HV_STATUS_INVALID_HYPERCALL_INPUT;
sparse_banks[0] = outgpa;
vector = (u32)ingpa;
}
all_cpus = false;
valid_bank_mask = BIT_ULL(0);
trace_kvm_hv_send_ipi(vector, sparse_banks[0]);
} else {
if (unlikely(kvm_read_guest(kvm, ingpa, &send_ipi_ex,
sizeof(send_ipi_ex))))
return HV_STATUS_INVALID_HYPERCALL_INPUT;
trace_kvm_hv_send_ipi_ex(send_ipi_ex.vector,
send_ipi_ex.vp_set.format,
send_ipi_ex.vp_set.valid_bank_mask);
vector = send_ipi_ex.vector;
valid_bank_mask = send_ipi_ex.vp_set.valid_bank_mask;
sparse_banks_len = bitmap_weight(&valid_bank_mask, 64) *
sizeof(sparse_banks[0]);
all_cpus = send_ipi_ex.vp_set.format == HV_GENERIC_SET_ALL;
if (!sparse_banks_len)
goto ret_success;
if (!all_cpus &&
kvm_read_guest(kvm,
ingpa + offsetof(struct hv_send_ipi_ex,
vp_set.bank_contents),
sparse_banks,
sparse_banks_len))
return HV_STATUS_INVALID_HYPERCALL_INPUT;
}
if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR))
return HV_STATUS_INVALID_HYPERCALL_INPUT;
vcpu_mask = all_cpus ? NULL :
sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
vp_bitmap, vcpu_bitmap);
kvm_send_ipi_to_many(kvm, vector, vcpu_mask);
ret_success:
return HV_STATUS_SUCCESS;
}
bool kvm_hv_hypercall_enabled(struct kvm *kvm)
{
return READ_ONCE(kvm->arch.hyperv.hv_hypercall) & HV_X64_MSR_HYPERCALL_ENABLE;
@ -1539,6 +1669,20 @@ int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
}
ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true);
break;
case HVCALL_SEND_IPI:
if (unlikely(rep)) {
ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
break;
}
ret = kvm_hv_send_ipi(vcpu, ingpa, outgpa, false, fast);
break;
case HVCALL_SEND_IPI_EX:
if (unlikely(fast || rep)) {
ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
break;
}
ret = kvm_hv_send_ipi(vcpu, ingpa, outgpa, true, false);
break;
default:
ret = HV_STATUS_INVALID_HYPERCALL_CODE;
break;

View File

@ -62,6 +62,10 @@ void kvm_hv_vcpu_init(struct kvm_vcpu *vcpu);
void kvm_hv_vcpu_postcreate(struct kvm_vcpu *vcpu);
void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu);
bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu);
bool kvm_hv_get_assist_page(struct kvm_vcpu *vcpu,
struct hv_vp_assist_page *assist_page);
static inline struct kvm_vcpu_hv_stimer *vcpu_to_stimer(struct kvm_vcpu *vcpu,
int timer_index)
{

View File

@ -70,6 +70,11 @@
#define APIC_BROADCAST 0xFF
#define X2APIC_BROADCAST 0xFFFFFFFFul
static bool lapic_timer_advance_adjust_done = false;
#define LAPIC_TIMER_ADVANCE_ADJUST_DONE 100
/* step-by-step approximation to mitigate fluctuation */
#define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8
static inline int apic_test_vector(int vec, void *bitmap)
{
return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
@ -955,14 +960,14 @@ bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src,
map = rcu_dereference(kvm->arch.apic_map);
ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap);
if (ret)
if (ret) {
*r = 0;
for_each_set_bit(i, &bitmap, 16) {
if (!dst[i])
continue;
if (*r < 0)
*r = 0;
*r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map);
}
}
rcu_read_unlock();
return ret;
@ -1472,7 +1477,7 @@ static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu)
void wait_lapic_expire(struct kvm_vcpu *vcpu)
{
struct kvm_lapic *apic = vcpu->arch.apic;
u64 guest_tsc, tsc_deadline;
u64 guest_tsc, tsc_deadline, ns;
if (!lapic_in_kernel(vcpu))
return;
@ -1492,6 +1497,24 @@ void wait_lapic_expire(struct kvm_vcpu *vcpu)
if (guest_tsc < tsc_deadline)
__delay(min(tsc_deadline - guest_tsc,
nsec_to_cycles(vcpu, lapic_timer_advance_ns)));
if (!lapic_timer_advance_adjust_done) {
/* too early */
if (guest_tsc < tsc_deadline) {
ns = (tsc_deadline - guest_tsc) * 1000000ULL;
do_div(ns, vcpu->arch.virtual_tsc_khz);
lapic_timer_advance_ns -= min((unsigned int)ns,
lapic_timer_advance_ns / LAPIC_TIMER_ADVANCE_ADJUST_STEP);
} else {
/* too late */
ns = (guest_tsc - tsc_deadline) * 1000000ULL;
do_div(ns, vcpu->arch.virtual_tsc_khz);
lapic_timer_advance_ns += min((unsigned int)ns,
lapic_timer_advance_ns / LAPIC_TIMER_ADVANCE_ADJUST_STEP);
}
if (abs(guest_tsc - tsc_deadline) < LAPIC_TIMER_ADVANCE_ADJUST_DONE)
lapic_timer_advance_adjust_done = true;
}
}
static void start_sw_tscdeadline(struct kvm_lapic *apic)
@ -2621,17 +2644,25 @@ int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data)
return 0;
}
int kvm_lapic_enable_pv_eoi(struct kvm_vcpu *vcpu, u64 data)
int kvm_lapic_enable_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len)
{
u64 addr = data & ~KVM_MSR_ENABLED;
struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data;
unsigned long new_len;
if (!IS_ALIGNED(addr, 4))
return 1;
vcpu->arch.pv_eoi.msr_val = data;
if (!pv_eoi_enabled(vcpu))
return 0;
return kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.pv_eoi.data,
addr, sizeof(u8));
if (addr == ghc->gpa && len <= ghc->len)
new_len = ghc->len;
else
new_len = len;
return kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len);
}
void kvm_apic_accept_events(struct kvm_vcpu *vcpu)

View File

@ -120,7 +120,7 @@ static inline bool kvm_hv_vapic_assist_page_enabled(struct kvm_vcpu *vcpu)
return vcpu->arch.hyperv.hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE;
}
int kvm_lapic_enable_pv_eoi(struct kvm_vcpu *vcpu, u64 data);
int kvm_lapic_enable_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len);
void kvm_lapic_init(void);
void kvm_lapic_exit(void);

View File

@ -932,7 +932,7 @@ static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
if (!obj)
return -ENOMEM;
return cache->nobjs >= min ? 0 : -ENOMEM;
cache->objects[cache->nobjs++] = obj;
}
return 0;
@ -960,7 +960,7 @@ static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
if (!page)
return -ENOMEM;
return cache->nobjs >= min ? 0 : -ENOMEM;
cache->objects[cache->nobjs++] = page;
}
return 0;
@ -1265,24 +1265,24 @@ pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
mmu_free_pte_list_desc(desc);
}
static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
{
struct pte_list_desc *desc;
struct pte_list_desc *prev_desc;
int i;
if (!rmap_head->val) {
printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
pr_err("%s: %p 0->BUG\n", __func__, spte);
BUG();
} else if (!(rmap_head->val & 1)) {
rmap_printk("pte_list_remove: %p 1->0\n", spte);
rmap_printk("%s: %p 1->0\n", __func__, spte);
if ((u64 *)rmap_head->val != spte) {
printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
pr_err("%s: %p 1->BUG\n", __func__, spte);
BUG();
}
rmap_head->val = 0;
} else {
rmap_printk("pte_list_remove: %p many->many\n", spte);
rmap_printk("%s: %p many->many\n", __func__, spte);
desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
prev_desc = NULL;
while (desc) {
@ -1296,11 +1296,17 @@ static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
prev_desc = desc;
desc = desc->more;
}
pr_err("pte_list_remove: %p many->many\n", spte);
pr_err("%s: %p many->many\n", __func__, spte);
BUG();
}
}
static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
{
mmu_spte_clear_track_bits(sptep);
__pte_list_remove(sptep, rmap_head);
}
static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
struct kvm_memory_slot *slot)
{
@ -1349,7 +1355,7 @@ static void rmap_remove(struct kvm *kvm, u64 *spte)
sp = page_header(__pa(spte));
gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
rmap_head = gfn_to_rmap(kvm, gfn, sp);
pte_list_remove(spte, rmap_head);
__pte_list_remove(spte, rmap_head);
}
/*
@ -1685,7 +1691,7 @@ static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
while ((sptep = rmap_get_first(rmap_head, &iter))) {
rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
drop_spte(kvm, sptep);
pte_list_remove(rmap_head, sptep);
flush = true;
}
@ -1721,7 +1727,7 @@ restart:
need_flush = 1;
if (pte_write(*ptep)) {
drop_spte(kvm, sptep);
pte_list_remove(rmap_head, sptep);
goto restart;
} else {
new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
@ -1988,7 +1994,7 @@ static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
u64 *parent_pte)
{
pte_list_remove(parent_pte, &sp->parent_ptes);
__pte_list_remove(parent_pte, &sp->parent_ptes);
}
static void drop_parent_pte(struct kvm_mmu_page *sp,
@ -2181,7 +2187,7 @@ static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
struct list_head *invalid_list)
{
if (sp->role.cr4_pae != !!is_pae(vcpu)
|| vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
|| vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
return false;
}
@ -2375,14 +2381,14 @@ static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
int collisions = 0;
LIST_HEAD(invalid_list);
role = vcpu->arch.mmu.base_role;
role = vcpu->arch.mmu->mmu_role.base;
role.level = level;
role.direct = direct;
if (role.direct)
role.cr4_pae = 0;
role.access = access;
if (!vcpu->arch.mmu.direct_map
&& vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
if (!vcpu->arch.mmu->direct_map
&& vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
role.quadrant = quadrant;
@ -2457,11 +2463,11 @@ static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterato
{
iterator->addr = addr;
iterator->shadow_addr = root;
iterator->level = vcpu->arch.mmu.shadow_root_level;
iterator->level = vcpu->arch.mmu->shadow_root_level;
if (iterator->level == PT64_ROOT_4LEVEL &&
vcpu->arch.mmu.root_level < PT64_ROOT_4LEVEL &&
!vcpu->arch.mmu.direct_map)
vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
!vcpu->arch.mmu->direct_map)
--iterator->level;
if (iterator->level == PT32E_ROOT_LEVEL) {
@ -2469,10 +2475,10 @@ static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterato
* prev_root is currently only used for 64-bit hosts. So only
* the active root_hpa is valid here.
*/
BUG_ON(root != vcpu->arch.mmu.root_hpa);
BUG_ON(root != vcpu->arch.mmu->root_hpa);
iterator->shadow_addr
= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
--iterator->level;
if (!iterator->shadow_addr)
@ -2483,7 +2489,7 @@ static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterato
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
struct kvm_vcpu *vcpu, u64 addr)
{
shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu.root_hpa,
shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
addr);
}
@ -3095,7 +3101,7 @@ static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
int emulate = 0;
gfn_t pseudo_gfn;
if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
return 0;
for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
@ -3301,7 +3307,7 @@ static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
u64 spte = 0ull;
uint retry_count = 0;
if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
return false;
if (!page_fault_can_be_fast(error_code))
@ -3471,11 +3477,11 @@ static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
}
/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, ulong roots_to_free)
void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
ulong roots_to_free)
{
int i;
LIST_HEAD(invalid_list);
struct kvm_mmu *mmu = &vcpu->arch.mmu;
bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
@ -3535,20 +3541,20 @@ static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
struct kvm_mmu_page *sp;
unsigned i;
if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL) {
if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
spin_lock(&vcpu->kvm->mmu_lock);
if(make_mmu_pages_available(vcpu) < 0) {
spin_unlock(&vcpu->kvm->mmu_lock);
return -ENOSPC;
}
sp = kvm_mmu_get_page(vcpu, 0, 0,
vcpu->arch.mmu.shadow_root_level, 1, ACC_ALL);
vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
++sp->root_count;
spin_unlock(&vcpu->kvm->mmu_lock);
vcpu->arch.mmu.root_hpa = __pa(sp->spt);
} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
vcpu->arch.mmu->root_hpa = __pa(sp->spt);
} else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
for (i = 0; i < 4; ++i) {
hpa_t root = vcpu->arch.mmu.pae_root[i];
hpa_t root = vcpu->arch.mmu->pae_root[i];
MMU_WARN_ON(VALID_PAGE(root));
spin_lock(&vcpu->kvm->mmu_lock);
@ -3561,9 +3567,9 @@ static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
root = __pa(sp->spt);
++sp->root_count;
spin_unlock(&vcpu->kvm->mmu_lock);
vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
}
vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
} else
BUG();
@ -3577,7 +3583,7 @@ static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
gfn_t root_gfn;
int i;
root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
root_gfn = vcpu->arch.mmu->get_cr3(vcpu) >> PAGE_SHIFT;
if (mmu_check_root(vcpu, root_gfn))
return 1;
@ -3586,8 +3592,8 @@ static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
* Do we shadow a long mode page table? If so we need to
* write-protect the guests page table root.
*/
if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
hpa_t root = vcpu->arch.mmu.root_hpa;
if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
hpa_t root = vcpu->arch.mmu->root_hpa;
MMU_WARN_ON(VALID_PAGE(root));
@ -3597,11 +3603,11 @@ static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
return -ENOSPC;
}
sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
vcpu->arch.mmu.shadow_root_level, 0, ACC_ALL);
vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
root = __pa(sp->spt);
++sp->root_count;
spin_unlock(&vcpu->kvm->mmu_lock);
vcpu->arch.mmu.root_hpa = root;
vcpu->arch.mmu->root_hpa = root;
return 0;
}
@ -3611,17 +3617,17 @@ static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
* the shadow page table may be a PAE or a long mode page table.
*/
pm_mask = PT_PRESENT_MASK;
if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL)
if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
for (i = 0; i < 4; ++i) {
hpa_t root = vcpu->arch.mmu.pae_root[i];
hpa_t root = vcpu->arch.mmu->pae_root[i];
MMU_WARN_ON(VALID_PAGE(root));
if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
if (!(pdptr & PT_PRESENT_MASK)) {
vcpu->arch.mmu.pae_root[i] = 0;
vcpu->arch.mmu->pae_root[i] = 0;
continue;
}
root_gfn = pdptr >> PAGE_SHIFT;
@ -3639,16 +3645,16 @@ static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
++sp->root_count;
spin_unlock(&vcpu->kvm->mmu_lock);
vcpu->arch.mmu.pae_root[i] = root | pm_mask;
vcpu->arch.mmu->pae_root[i] = root | pm_mask;
}
vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
/*
* If we shadow a 32 bit page table with a long mode page
* table we enter this path.
*/
if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL) {
if (vcpu->arch.mmu.lm_root == NULL) {
if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
if (vcpu->arch.mmu->lm_root == NULL) {
/*
* The additional page necessary for this is only
* allocated on demand.
@ -3660,12 +3666,12 @@ static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
if (lm_root == NULL)
return 1;
lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
vcpu->arch.mmu.lm_root = lm_root;
vcpu->arch.mmu->lm_root = lm_root;
}
vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
}
return 0;
@ -3673,7 +3679,7 @@ static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
if (vcpu->arch.mmu.direct_map)
if (vcpu->arch.mmu->direct_map)
return mmu_alloc_direct_roots(vcpu);
else
return mmu_alloc_shadow_roots(vcpu);
@ -3684,17 +3690,16 @@ void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
int i;
struct kvm_mmu_page *sp;
if (vcpu->arch.mmu.direct_map)
if (vcpu->arch.mmu->direct_map)
return;
if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
return;
vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
hpa_t root = vcpu->arch.mmu.root_hpa;
if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
hpa_t root = vcpu->arch.mmu->root_hpa;
sp = page_header(root);
/*
@ -3725,7 +3730,7 @@ void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
for (i = 0; i < 4; ++i) {
hpa_t root = vcpu->arch.mmu.pae_root[i];
hpa_t root = vcpu->arch.mmu->pae_root[i];
if (root && VALID_PAGE(root)) {
root &= PT64_BASE_ADDR_MASK;
@ -3799,7 +3804,7 @@ walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
int root, leaf;
bool reserved = false;
if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
goto exit;
walk_shadow_page_lockless_begin(vcpu);
@ -3816,7 +3821,7 @@ walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
if (!is_shadow_present_pte(spte))
break;
reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
reserved |= is_shadow_zero_bits_set(vcpu->arch.mmu, spte,
iterator.level);
}
@ -3895,7 +3900,7 @@ static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
struct kvm_shadow_walk_iterator iterator;
u64 spte;
if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
return;
walk_shadow_page_lockless_begin(vcpu);
@ -3922,7 +3927,7 @@ static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
if (r)
return r;
MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
return nonpaging_map(vcpu, gva & PAGE_MASK,
@ -3935,8 +3940,8 @@ static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
arch.gfn = gfn;
arch.direct_map = vcpu->arch.mmu.direct_map;
arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
arch.direct_map = vcpu->arch.mmu->direct_map;
arch.cr3 = vcpu->arch.mmu->get_cr3(vcpu);
return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
}
@ -4042,7 +4047,7 @@ static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
int write = error_code & PFERR_WRITE_MASK;
bool map_writable;
MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
if (page_fault_handle_page_track(vcpu, error_code, gfn))
return RET_PF_EMULATE;
@ -4118,7 +4123,7 @@ static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
{
uint i;
struct kvm_mmu_root_info root;
struct kvm_mmu *mmu = &vcpu->arch.mmu;
struct kvm_mmu *mmu = vcpu->arch.mmu;
root.cr3 = mmu->get_cr3(vcpu);
root.hpa = mmu->root_hpa;
@ -4141,7 +4146,7 @@ static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
union kvm_mmu_page_role new_role,
bool skip_tlb_flush)
{
struct kvm_mmu *mmu = &vcpu->arch.mmu;
struct kvm_mmu *mmu = vcpu->arch.mmu;
/*
* For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
@ -4192,7 +4197,8 @@ static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
bool skip_tlb_flush)
{
if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
kvm_mmu_free_roots(vcpu, KVM_MMU_ROOT_CURRENT);
kvm_mmu_free_roots(vcpu, vcpu->arch.mmu,
KVM_MMU_ROOT_CURRENT);
}
void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
@ -4210,7 +4216,7 @@ static unsigned long get_cr3(struct kvm_vcpu *vcpu)
static void inject_page_fault(struct kvm_vcpu *vcpu,
struct x86_exception *fault)
{
vcpu->arch.mmu.inject_page_fault(vcpu, fault);
vcpu->arch.mmu->inject_page_fault(vcpu, fault);
}
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
@ -4414,7 +4420,8 @@ static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
void
reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
{
bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
bool uses_nx = context->nx ||
context->mmu_role.base.smep_andnot_wp;
struct rsvd_bits_validate *shadow_zero_check;
int i;
@ -4553,7 +4560,7 @@ static void update_permission_bitmask(struct kvm_vcpu *vcpu,
* SMAP:kernel-mode data accesses from user-mode
* mappings should fault. A fault is considered
* as a SMAP violation if all of the following
* conditions are ture:
* conditions are true:
* - X86_CR4_SMAP is set in CR4
* - A user page is accessed
* - The access is not a fetch
@ -4714,27 +4721,65 @@ static void paging32E_init_context(struct kvm_vcpu *vcpu,
paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
}
static union kvm_mmu_page_role
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu)
static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
{
union kvm_mmu_page_role role = {0};
union kvm_mmu_extended_role ext = {0};
role.guest_mode = is_guest_mode(vcpu);
role.smm = is_smm(vcpu);
role.ad_disabled = (shadow_accessed_mask == 0);
role.level = kvm_x86_ops->get_tdp_level(vcpu);
role.direct = true;
role.access = ACC_ALL;
ext.cr0_pg = !!is_paging(vcpu);
ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
ext.cr4_pse = !!is_pse(vcpu);
ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
ext.valid = 1;
return ext;
}
static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
bool base_only)
{
union kvm_mmu_role role = {0};
role.base.access = ACC_ALL;
role.base.nxe = !!is_nx(vcpu);
role.base.cr4_pae = !!is_pae(vcpu);
role.base.cr0_wp = is_write_protection(vcpu);
role.base.smm = is_smm(vcpu);
role.base.guest_mode = is_guest_mode(vcpu);
if (base_only)
return role;
role.ext = kvm_calc_mmu_role_ext(vcpu);
return role;
}
static union kvm_mmu_role
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
{
union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
role.base.ad_disabled = (shadow_accessed_mask == 0);
role.base.level = kvm_x86_ops->get_tdp_level(vcpu);
role.base.direct = true;
return role;
}
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
{
struct kvm_mmu *context = &vcpu->arch.mmu;
struct kvm_mmu *context = vcpu->arch.mmu;
union kvm_mmu_role new_role =
kvm_calc_tdp_mmu_root_page_role(vcpu, false);
context->base_role.word = mmu_base_role_mask.word &
kvm_calc_tdp_mmu_root_page_role(vcpu).word;
new_role.base.word &= mmu_base_role_mask.word;
if (new_role.as_u64 == context->mmu_role.as_u64)
return;
context->mmu_role.as_u64 = new_role.as_u64;
context->page_fault = tdp_page_fault;
context->sync_page = nonpaging_sync_page;
context->invlpg = nonpaging_invlpg;
@ -4774,36 +4819,36 @@ static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
reset_tdp_shadow_zero_bits_mask(vcpu, context);
}
static union kvm_mmu_page_role
kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu)
static union kvm_mmu_role
kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
{
union kvm_mmu_page_role role = {0};
bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
role.nxe = is_nx(vcpu);
role.cr4_pae = !!is_pae(vcpu);
role.cr0_wp = is_write_protection(vcpu);
role.smep_andnot_wp = smep && !is_write_protection(vcpu);
role.smap_andnot_wp = smap && !is_write_protection(vcpu);
role.guest_mode = is_guest_mode(vcpu);
role.smm = is_smm(vcpu);
role.direct = !is_paging(vcpu);
role.access = ACC_ALL;
role.base.smep_andnot_wp = role.ext.cr4_smep &&
!is_write_protection(vcpu);
role.base.smap_andnot_wp = role.ext.cr4_smap &&
!is_write_protection(vcpu);
role.base.direct = !is_paging(vcpu);
if (!is_long_mode(vcpu))
role.level = PT32E_ROOT_LEVEL;
role.base.level = PT32E_ROOT_LEVEL;
else if (is_la57_mode(vcpu))
role.level = PT64_ROOT_5LEVEL;
role.base.level = PT64_ROOT_5LEVEL;
else
role.level = PT64_ROOT_4LEVEL;
role.base.level = PT64_ROOT_4LEVEL;
return role;
}
void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
{
struct kvm_mmu *context = &vcpu->arch.mmu;
struct kvm_mmu *context = vcpu->arch.mmu;
union kvm_mmu_role new_role =
kvm_calc_shadow_mmu_root_page_role(vcpu, false);
new_role.base.word &= mmu_base_role_mask.word;
if (new_role.as_u64 == context->mmu_role.as_u64)
return;
if (!is_paging(vcpu))
nonpaging_init_context(vcpu, context);
@ -4814,22 +4859,28 @@ void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
else
paging32_init_context(vcpu, context);
context->base_role.word = mmu_base_role_mask.word &
kvm_calc_shadow_mmu_root_page_role(vcpu).word;
context->mmu_role.as_u64 = new_role.as_u64;
reset_shadow_zero_bits_mask(vcpu, context);
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
static union kvm_mmu_page_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty)
static union kvm_mmu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
bool execonly)
{
union kvm_mmu_page_role role = vcpu->arch.mmu.base_role;
union kvm_mmu_role role;
role.level = PT64_ROOT_4LEVEL;
role.direct = false;
role.ad_disabled = !accessed_dirty;
role.guest_mode = true;
role.access = ACC_ALL;
/* Base role is inherited from root_mmu */
role.base.word = vcpu->arch.root_mmu.mmu_role.base.word;
role.ext = kvm_calc_mmu_role_ext(vcpu);
role.base.level = PT64_ROOT_4LEVEL;
role.base.direct = false;
role.base.ad_disabled = !accessed_dirty;
role.base.guest_mode = true;
role.base.access = ACC_ALL;
role.ext.execonly = execonly;
return role;
}
@ -4837,11 +4888,17 @@ kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty)
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
bool accessed_dirty, gpa_t new_eptp)
{
struct kvm_mmu *context = &vcpu->arch.mmu;
union kvm_mmu_page_role root_page_role =
kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty);
struct kvm_mmu *context = vcpu->arch.mmu;
union kvm_mmu_role new_role =
kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
execonly);
__kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false);
new_role.base.word &= mmu_base_role_mask.word;
if (new_role.as_u64 == context->mmu_role.as_u64)
return;
__kvm_mmu_new_cr3(vcpu, new_eptp, root_page_role, false);
context->shadow_root_level = PT64_ROOT_4LEVEL;
context->nx = true;
@ -4853,7 +4910,8 @@ void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
context->update_pte = ept_update_pte;
context->root_level = PT64_ROOT_4LEVEL;
context->direct_map = false;
context->base_role.word = root_page_role.word & mmu_base_role_mask.word;
context->mmu_role.as_u64 = new_role.as_u64;
update_permission_bitmask(vcpu, context, true);
update_pkru_bitmask(vcpu, context, true);
update_last_nonleaf_level(vcpu, context);
@ -4864,7 +4922,7 @@ EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
{
struct kvm_mmu *context = &vcpu->arch.mmu;
struct kvm_mmu *context = vcpu->arch.mmu;
kvm_init_shadow_mmu(vcpu);
context->set_cr3 = kvm_x86_ops->set_cr3;
@ -4875,14 +4933,20 @@ static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
{
union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
new_role.base.word &= mmu_base_role_mask.word;
if (new_role.as_u64 == g_context->mmu_role.as_u64)
return;
g_context->mmu_role.as_u64 = new_role.as_u64;
g_context->get_cr3 = get_cr3;
g_context->get_pdptr = kvm_pdptr_read;
g_context->inject_page_fault = kvm_inject_page_fault;
/*
* Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
* Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
* L1's nested page tables (e.g. EPT12). The nested translation
* of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
* L2's page tables as the first level of translation and L1's
@ -4921,10 +4985,10 @@ void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
if (reset_roots) {
uint i;
vcpu->arch.mmu.root_hpa = INVALID_PAGE;
vcpu->arch.mmu->root_hpa = INVALID_PAGE;
for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
vcpu->arch.mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
}
if (mmu_is_nested(vcpu))
@ -4939,10 +5003,14 @@ EXPORT_SYMBOL_GPL(kvm_init_mmu);
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
{
union kvm_mmu_role role;
if (tdp_enabled)
return kvm_calc_tdp_mmu_root_page_role(vcpu);
role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
else
return kvm_calc_shadow_mmu_root_page_role(vcpu);
role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
return role.base;
}
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
@ -4972,8 +5040,10 @@ EXPORT_SYMBOL_GPL(kvm_mmu_load);
void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
kvm_mmu_free_roots(vcpu, KVM_MMU_ROOTS_ALL);
WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
}
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
@ -4987,7 +5057,7 @@ static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
}
++vcpu->kvm->stat.mmu_pte_updated;
vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
}
static bool need_remote_flush(u64 old, u64 new)
@ -5164,10 +5234,12 @@ static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
local_flush = true;
while (npte--) {
u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
entry = *spte;
mmu_page_zap_pte(vcpu->kvm, sp, spte);
if (gentry &&
!((sp->role.word ^ vcpu->arch.mmu.base_role.word)
!((sp->role.word ^ base_role)
& mmu_base_role_mask.word) && rmap_can_add(vcpu))
mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
if (need_remote_flush(entry, *spte))
@ -5185,7 +5257,7 @@ int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
gpa_t gpa;
int r;
if (vcpu->arch.mmu.direct_map)
if (vcpu->arch.mmu->direct_map)
return 0;
gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
@ -5221,10 +5293,10 @@ int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
{
int r, emulation_type = 0;
enum emulation_result er;
bool direct = vcpu->arch.mmu.direct_map;
bool direct = vcpu->arch.mmu->direct_map;
/* With shadow page tables, fault_address contains a GVA or nGPA. */
if (vcpu->arch.mmu.direct_map) {
if (vcpu->arch.mmu->direct_map) {
vcpu->arch.gpa_available = true;
vcpu->arch.gpa_val = cr2;
}
@ -5237,8 +5309,9 @@ int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
}
if (r == RET_PF_INVALID) {
r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code),
false);
r = vcpu->arch.mmu->page_fault(vcpu, cr2,
lower_32_bits(error_code),
false);
WARN_ON(r == RET_PF_INVALID);
}
@ -5254,7 +5327,7 @@ int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
* paging in both guests. If true, we simply unprotect the page
* and resume the guest.
*/
if (vcpu->arch.mmu.direct_map &&
if (vcpu->arch.mmu->direct_map &&
(error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
return 1;
@ -5302,7 +5375,7 @@ EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
struct kvm_mmu *mmu = &vcpu->arch.mmu;
struct kvm_mmu *mmu = vcpu->arch.mmu;
int i;
/* INVLPG on a * non-canonical address is a NOP according to the SDM. */
@ -5333,7 +5406,7 @@ EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
{
struct kvm_mmu *mmu = &vcpu->arch.mmu;
struct kvm_mmu *mmu = vcpu->arch.mmu;
bool tlb_flush = false;
uint i;
@ -5377,8 +5450,8 @@ EXPORT_SYMBOL_GPL(kvm_disable_tdp);
static void free_mmu_pages(struct kvm_vcpu *vcpu)
{
free_page((unsigned long)vcpu->arch.mmu.pae_root);
free_page((unsigned long)vcpu->arch.mmu.lm_root);
free_page((unsigned long)vcpu->arch.mmu->pae_root);
free_page((unsigned long)vcpu->arch.mmu->lm_root);
}
static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
@ -5398,9 +5471,9 @@ static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
if (!page)
return -ENOMEM;
vcpu->arch.mmu.pae_root = page_address(page);
vcpu->arch.mmu->pae_root = page_address(page);
for (i = 0; i < 4; ++i)
vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
vcpu->arch.mmu->pae_root[i] = INVALID_PAGE;
return 0;
}
@ -5409,29 +5482,23 @@ int kvm_mmu_create(struct kvm_vcpu *vcpu)
{
uint i;
vcpu->arch.walk_mmu = &vcpu->arch.mmu;
vcpu->arch.mmu.root_hpa = INVALID_PAGE;
vcpu->arch.mmu.translate_gpa = translate_gpa;
vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
vcpu->arch.mmu = &vcpu->arch.root_mmu;
vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
vcpu->arch.root_mmu.translate_gpa = translate_gpa;
for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
vcpu->arch.mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
return alloc_mmu_pages(vcpu);
}
void kvm_mmu_setup(struct kvm_vcpu *vcpu)
{
MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
/*
* kvm_mmu_setup() is called only on vCPU initialization.
* Therefore, no need to reset mmu roots as they are not yet
* initialized.
*/
kvm_init_mmu(vcpu, false);
}
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
struct kvm_memory_slot *slot,
struct kvm_page_track_notifier_node *node)
@ -5612,7 +5679,7 @@ restart:
if (sp->role.direct &&
!kvm_is_reserved_pfn(pfn) &&
PageTransCompoundMap(pfn_to_page(pfn))) {
drop_spte(kvm, sptep);
pte_list_remove(rmap_head, sptep);
need_tlb_flush = 1;
goto restart;
}
@ -5869,6 +5936,16 @@ int kvm_mmu_module_init(void)
{
int ret = -ENOMEM;
/*
* MMU roles use union aliasing which is, generally speaking, an
* undefined behavior. However, we supposedly know how compilers behave
* and the current status quo is unlikely to change. Guardians below are
* supposed to let us know if the assumption becomes false.
*/
BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
kvm_mmu_reset_all_pte_masks();
pte_list_desc_cache = kmem_cache_create("pte_list_desc",
@ -5898,7 +5975,7 @@ out:
}
/*
* Caculate mmu pages needed for kvm.
* Calculate mmu pages needed for kvm.
*/
unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
{

View File

@ -43,11 +43,6 @@
#define PT32_ROOT_LEVEL 2
#define PT32E_ROOT_LEVEL 3
#define PT_PDPE_LEVEL 3
#define PT_DIRECTORY_LEVEL 2
#define PT_PAGE_TABLE_LEVEL 1
#define PT_MAX_HUGEPAGE_LEVEL (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES - 1)
static inline u64 rsvd_bits(int s, int e)
{
if (e < s)
@ -80,7 +75,7 @@ static inline unsigned int kvm_mmu_available_pages(struct kvm *kvm)
static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
{
if (likely(vcpu->arch.mmu.root_hpa != INVALID_PAGE))
if (likely(vcpu->arch.mmu->root_hpa != INVALID_PAGE))
return 0;
return kvm_mmu_load(vcpu);
@ -102,9 +97,9 @@ static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu)
static inline void kvm_mmu_load_cr3(struct kvm_vcpu *vcpu)
{
if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa |
kvm_get_active_pcid(vcpu));
if (VALID_PAGE(vcpu->arch.mmu->root_hpa))
vcpu->arch.mmu->set_cr3(vcpu, vcpu->arch.mmu->root_hpa |
kvm_get_active_pcid(vcpu));
}
/*

View File

@ -59,19 +59,19 @@ static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
int i;
struct kvm_mmu_page *sp;
if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
return;
if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) {
hpa_t root = vcpu->arch.mmu.root_hpa;
if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
hpa_t root = vcpu->arch.mmu->root_hpa;
sp = page_header(root);
__mmu_spte_walk(vcpu, sp, fn, vcpu->arch.mmu.root_level);
__mmu_spte_walk(vcpu, sp, fn, vcpu->arch.mmu->root_level);
return;
}
for (i = 0; i < 4; ++i) {
hpa_t root = vcpu->arch.mmu.pae_root[i];
hpa_t root = vcpu->arch.mmu->pae_root[i];
if (root && VALID_PAGE(root)) {
root &= PT64_BASE_ADDR_MASK;
@ -122,7 +122,7 @@ static void audit_mappings(struct kvm_vcpu *vcpu, u64 *sptep, int level)
hpa = pfn << PAGE_SHIFT;
if ((*sptep & PT64_BASE_ADDR_MASK) != hpa)
audit_printk(vcpu->kvm, "levels %d pfn %llx hpa %llx "
"ent %llxn", vcpu->arch.mmu.root_level, pfn,
"ent %llxn", vcpu->arch.mmu->root_level, pfn,
hpa, *sptep);
}

View File

@ -158,14 +158,15 @@ static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
struct kvm_mmu_page *sp, u64 *spte,
u64 gpte)
{
if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
if (is_rsvd_bits_set(vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
goto no_present;
if (!FNAME(is_present_gpte)(gpte))
goto no_present;
/* if accessed bit is not supported prefetch non accessed gpte */
if (PT_HAVE_ACCESSED_DIRTY(&vcpu->arch.mmu) && !(gpte & PT_GUEST_ACCESSED_MASK))
if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) &&
!(gpte & PT_GUEST_ACCESSED_MASK))
goto no_present;
return false;
@ -480,7 +481,7 @@ error:
static int FNAME(walk_addr)(struct guest_walker *walker,
struct kvm_vcpu *vcpu, gva_t addr, u32 access)
{
return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr,
access);
}
@ -509,7 +510,7 @@ FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
gfn = gpte_to_gfn(gpte);
pte_access = sp->role.access & FNAME(gpte_access)(gpte);
FNAME(protect_clean_gpte)(&vcpu->arch.mmu, &pte_access, gpte);
FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
no_dirty_log && (pte_access & ACC_WRITE_MASK));
if (is_error_pfn(pfn))
@ -604,7 +605,7 @@ static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
direct_access = gw->pte_access;
top_level = vcpu->arch.mmu.root_level;
top_level = vcpu->arch.mmu->root_level;
if (top_level == PT32E_ROOT_LEVEL)
top_level = PT32_ROOT_LEVEL;
/*
@ -616,7 +617,7 @@ static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
if (FNAME(gpte_changed)(vcpu, gw, top_level))
goto out_gpte_changed;
if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
goto out_gpte_changed;
for (shadow_walk_init(&it, vcpu, addr);
@ -1004,7 +1005,7 @@ static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
gfn = gpte_to_gfn(gpte);
pte_access = sp->role.access;
pte_access &= FNAME(gpte_access)(gpte);
FNAME(protect_clean_gpte)(&vcpu->arch.mmu, &pte_access, gpte);
FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access,
&nr_present))

View File

@ -809,6 +809,8 @@ static void svm_queue_exception(struct kvm_vcpu *vcpu)
nested_svm_check_exception(svm, nr, has_error_code, error_code))
return;
kvm_deliver_exception_payload(&svm->vcpu);
if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
@ -2922,18 +2924,18 @@ static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
{
WARN_ON(mmu_is_nested(vcpu));
kvm_init_shadow_mmu(vcpu);
vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
vcpu->arch.mmu.get_pdptr = nested_svm_get_tdp_pdptr;
vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
vcpu->arch.mmu.shadow_root_level = get_npt_level(vcpu);
reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
vcpu->arch.mmu->set_cr3 = nested_svm_set_tdp_cr3;
vcpu->arch.mmu->get_cr3 = nested_svm_get_tdp_cr3;
vcpu->arch.mmu->get_pdptr = nested_svm_get_tdp_pdptr;
vcpu->arch.mmu->inject_page_fault = nested_svm_inject_npf_exit;
vcpu->arch.mmu->shadow_root_level = get_npt_level(vcpu);
reset_shadow_zero_bits_mask(vcpu, vcpu->arch.mmu);
vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
}
static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
{
vcpu->arch.walk_mmu = &vcpu->arch.mmu;
vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
}
static int nested_svm_check_permissions(struct vcpu_svm *svm)
@ -2969,16 +2971,13 @@ static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
svm->vmcb->control.exit_info_1 = error_code;
/*
* FIXME: we should not write CR2 when L1 intercepts an L2 #PF exception.
* The fix is to add the ancillary datum (CR2 or DR6) to structs
* kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6 can be
* written only when inject_pending_event runs (DR6 would written here
* too). This should be conditional on a new capability---if the
* capability is disabled, kvm_multiple_exception would write the
* ancillary information to CR2 or DR6, for backwards ABI-compatibility.
* EXITINFO2 is undefined for all exception intercepts other
* than #PF.
*/
if (svm->vcpu.arch.exception.nested_apf)
svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
else if (svm->vcpu.arch.exception.has_payload)
svm->vmcb->control.exit_info_2 = svm->vcpu.arch.exception.payload;
else
svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
@ -5642,26 +5641,24 @@ static void svm_vcpu_run(struct kvm_vcpu *vcpu)
"mov %%r13, %c[r13](%[svm]) \n\t"
"mov %%r14, %c[r14](%[svm]) \n\t"
"mov %%r15, %c[r15](%[svm]) \n\t"
#endif
/*
* Clear host registers marked as clobbered to prevent
* speculative use.
*/
"xor %%" _ASM_BX ", %%" _ASM_BX " \n\t"
"xor %%" _ASM_CX ", %%" _ASM_CX " \n\t"
"xor %%" _ASM_DX ", %%" _ASM_DX " \n\t"
"xor %%" _ASM_SI ", %%" _ASM_SI " \n\t"
"xor %%" _ASM_DI ", %%" _ASM_DI " \n\t"
#ifdef CONFIG_X86_64
"xor %%r8, %%r8 \n\t"
"xor %%r9, %%r9 \n\t"
"xor %%r10, %%r10 \n\t"
"xor %%r11, %%r11 \n\t"
"xor %%r12, %%r12 \n\t"
"xor %%r13, %%r13 \n\t"
"xor %%r14, %%r14 \n\t"
"xor %%r15, %%r15 \n\t"
"xor %%r8d, %%r8d \n\t"
"xor %%r9d, %%r9d \n\t"
"xor %%r10d, %%r10d \n\t"
"xor %%r11d, %%r11d \n\t"
"xor %%r12d, %%r12d \n\t"
"xor %%r13d, %%r13d \n\t"
"xor %%r14d, %%r14d \n\t"
"xor %%r15d, %%r15d \n\t"
#endif
"xor %%ebx, %%ebx \n\t"
"xor %%ecx, %%ecx \n\t"
"xor %%edx, %%edx \n\t"
"xor %%esi, %%esi \n\t"
"xor %%edi, %%edi \n\t"
"pop %%" _ASM_BP
:
: [svm]"a"(svm),
@ -7040,6 +7037,13 @@ failed:
return ret;
}
static int nested_enable_evmcs(struct kvm_vcpu *vcpu,
uint16_t *vmcs_version)
{
/* Intel-only feature */
return -ENODEV;
}
static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
.cpu_has_kvm_support = has_svm,
.disabled_by_bios = is_disabled,
@ -7169,6 +7173,8 @@ static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
.mem_enc_op = svm_mem_enc_op,
.mem_enc_reg_region = svm_register_enc_region,
.mem_enc_unreg_region = svm_unregister_enc_region,
.nested_enable_evmcs = nested_enable_evmcs,
};
static int __init svm_init(void)

View File

@ -1418,6 +1418,48 @@ TRACE_EVENT(kvm_hv_flush_tlb_ex,
__entry->valid_bank_mask, __entry->format,
__entry->address_space, __entry->flags)
);
/*
* Tracepoints for kvm_hv_send_ipi.
*/
TRACE_EVENT(kvm_hv_send_ipi,
TP_PROTO(u32 vector, u64 processor_mask),
TP_ARGS(vector, processor_mask),
TP_STRUCT__entry(
__field(u32, vector)
__field(u64, processor_mask)
),
TP_fast_assign(
__entry->vector = vector;
__entry->processor_mask = processor_mask;
),
TP_printk("vector %x processor_mask 0x%llx",
__entry->vector, __entry->processor_mask)
);
TRACE_EVENT(kvm_hv_send_ipi_ex,
TP_PROTO(u32 vector, u64 format, u64 valid_bank_mask),
TP_ARGS(vector, format, valid_bank_mask),
TP_STRUCT__entry(
__field(u32, vector)
__field(u64, format)
__field(u64, valid_bank_mask)
),
TP_fast_assign(
__entry->vector = vector;
__entry->format = format;
__entry->valid_bank_mask = valid_bank_mask;
),
TP_printk("vector %x format %llx valid_bank_mask 0x%llx",
__entry->vector, __entry->format,
__entry->valid_bank_mask)
);
#endif /* _TRACE_KVM_H */
#undef TRACE_INCLUDE_PATH

File diff suppressed because it is too large Load Diff

View File

@ -28,7 +28,6 @@
*/
/* 16-bits */
SHADOW_FIELD_RW(GUEST_CS_SELECTOR)
SHADOW_FIELD_RW(GUEST_INTR_STATUS)
SHADOW_FIELD_RW(GUEST_PML_INDEX)
SHADOW_FIELD_RW(HOST_FS_SELECTOR)
@ -47,8 +46,8 @@ SHADOW_FIELD_RW(VM_ENTRY_EXCEPTION_ERROR_CODE)
SHADOW_FIELD_RW(VM_ENTRY_INTR_INFO_FIELD)
SHADOW_FIELD_RW(VM_ENTRY_INSTRUCTION_LEN)
SHADOW_FIELD_RW(TPR_THRESHOLD)
SHADOW_FIELD_RW(GUEST_CS_LIMIT)
SHADOW_FIELD_RW(GUEST_CS_AR_BYTES)
SHADOW_FIELD_RW(GUEST_SS_AR_BYTES)
SHADOW_FIELD_RW(GUEST_INTERRUPTIBILITY_INFO)
SHADOW_FIELD_RW(VMX_PREEMPTION_TIMER_VALUE)
@ -61,8 +60,6 @@ SHADOW_FIELD_RW(GUEST_CR0)
SHADOW_FIELD_RW(GUEST_CR3)
SHADOW_FIELD_RW(GUEST_CR4)
SHADOW_FIELD_RW(GUEST_RFLAGS)
SHADOW_FIELD_RW(GUEST_CS_BASE)
SHADOW_FIELD_RW(GUEST_ES_BASE)
SHADOW_FIELD_RW(CR0_GUEST_HOST_MASK)
SHADOW_FIELD_RW(CR0_READ_SHADOW)
SHADOW_FIELD_RW(CR4_READ_SHADOW)

View File

@ -136,7 +136,7 @@ static u32 __read_mostly tsc_tolerance_ppm = 250;
module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
/* lapic timer advance (tscdeadline mode only) in nanoseconds */
unsigned int __read_mostly lapic_timer_advance_ns = 0;
unsigned int __read_mostly lapic_timer_advance_ns = 1000;
module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
EXPORT_SYMBOL_GPL(lapic_timer_advance_ns);
@ -400,9 +400,51 @@ static int exception_type(int vector)
return EXCPT_FAULT;
}
void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
{
unsigned nr = vcpu->arch.exception.nr;
bool has_payload = vcpu->arch.exception.has_payload;
unsigned long payload = vcpu->arch.exception.payload;
if (!has_payload)
return;
switch (nr) {
case DB_VECTOR:
/*
* "Certain debug exceptions may clear bit 0-3. The
* remaining contents of the DR6 register are never
* cleared by the processor".
*/
vcpu->arch.dr6 &= ~DR_TRAP_BITS;
/*
* DR6.RTM is set by all #DB exceptions that don't clear it.
*/
vcpu->arch.dr6 |= DR6_RTM;
vcpu->arch.dr6 |= payload;
/*
* Bit 16 should be set in the payload whenever the #DB
* exception should clear DR6.RTM. This makes the payload
* compatible with the pending debug exceptions under VMX.
* Though not currently documented in the SDM, this also
* makes the payload compatible with the exit qualification
* for #DB exceptions under VMX.
*/
vcpu->arch.dr6 ^= payload & DR6_RTM;
break;
case PF_VECTOR:
vcpu->arch.cr2 = payload;
break;
}
vcpu->arch.exception.has_payload = false;
vcpu->arch.exception.payload = 0;
}
EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
unsigned nr, bool has_error, u32 error_code,
bool reinject)
bool has_payload, unsigned long payload, bool reinject)
{
u32 prev_nr;
int class1, class2;
@ -424,6 +466,14 @@ static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
*/
WARN_ON_ONCE(vcpu->arch.exception.pending);
vcpu->arch.exception.injected = true;
if (WARN_ON_ONCE(has_payload)) {
/*
* A reinjected event has already
* delivered its payload.
*/
has_payload = false;
payload = 0;
}
} else {
vcpu->arch.exception.pending = true;
vcpu->arch.exception.injected = false;
@ -431,6 +481,22 @@ static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
vcpu->arch.exception.has_error_code = has_error;
vcpu->arch.exception.nr = nr;
vcpu->arch.exception.error_code = error_code;
vcpu->arch.exception.has_payload = has_payload;
vcpu->arch.exception.payload = payload;
/*
* In guest mode, payload delivery should be deferred,
* so that the L1 hypervisor can intercept #PF before
* CR2 is modified (or intercept #DB before DR6 is
* modified under nVMX). However, for ABI
* compatibility with KVM_GET_VCPU_EVENTS and
* KVM_SET_VCPU_EVENTS, we can't delay payload
* delivery unless userspace has enabled this
* functionality via the per-VM capability,
* KVM_CAP_EXCEPTION_PAYLOAD.
*/
if (!vcpu->kvm->arch.exception_payload_enabled ||
!is_guest_mode(vcpu))
kvm_deliver_exception_payload(vcpu);
return;
}
@ -455,6 +521,8 @@ static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
vcpu->arch.exception.has_error_code = true;
vcpu->arch.exception.nr = DF_VECTOR;
vcpu->arch.exception.error_code = 0;
vcpu->arch.exception.has_payload = false;
vcpu->arch.exception.payload = 0;
} else
/* replace previous exception with a new one in a hope
that instruction re-execution will regenerate lost
@ -464,16 +532,29 @@ static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
{
kvm_multiple_exception(vcpu, nr, false, 0, false);
kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
}
EXPORT_SYMBOL_GPL(kvm_queue_exception);
void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
{
kvm_multiple_exception(vcpu, nr, false, 0, true);
kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
}
EXPORT_SYMBOL_GPL(kvm_requeue_exception);
static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
unsigned long payload)
{
kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
}
static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
u32 error_code, unsigned long payload)
{
kvm_multiple_exception(vcpu, nr, true, error_code,
true, payload, false);
}
int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
{
if (err)
@ -490,11 +571,13 @@ void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
++vcpu->stat.pf_guest;
vcpu->arch.exception.nested_apf =
is_guest_mode(vcpu) && fault->async_page_fault;
if (vcpu->arch.exception.nested_apf)
if (vcpu->arch.exception.nested_apf) {
vcpu->arch.apf.nested_apf_token = fault->address;
else
vcpu->arch.cr2 = fault->address;
kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
} else {
kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
fault->address);
}
}
EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
@ -503,7 +586,7 @@ static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fau
if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
else
vcpu->arch.mmu.inject_page_fault(vcpu, fault);
vcpu->arch.mmu->inject_page_fault(vcpu, fault);
return fault->nested_page_fault;
}
@ -517,13 +600,13 @@ EXPORT_SYMBOL_GPL(kvm_inject_nmi);
void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
{
kvm_multiple_exception(vcpu, nr, true, error_code, false);
kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
}
EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
{
kvm_multiple_exception(vcpu, nr, true, error_code, true);
kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
}
EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
@ -602,7 +685,7 @@ int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
if ((pdpte[i] & PT_PRESENT_MASK) &&
(pdpte[i] &
vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
vcpu->arch.mmu->guest_rsvd_check.rsvd_bits_mask[0][2])) {
ret = 0;
goto out;
}
@ -2477,7 +2560,7 @@ int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
break;
case MSR_KVM_PV_EOI_EN:
if (kvm_lapic_enable_pv_eoi(vcpu, data))
if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
return 1;
break;
@ -2912,6 +2995,8 @@ int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
case KVM_CAP_HYPERV_VP_INDEX:
case KVM_CAP_HYPERV_EVENTFD:
case KVM_CAP_HYPERV_TLBFLUSH:
case KVM_CAP_HYPERV_SEND_IPI:
case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
case KVM_CAP_PCI_SEGMENT:
case KVM_CAP_DEBUGREGS:
case KVM_CAP_X86_ROBUST_SINGLESTEP:
@ -2930,6 +3015,7 @@ int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
case KVM_CAP_IMMEDIATE_EXIT:
case KVM_CAP_GET_MSR_FEATURES:
case KVM_CAP_MSR_PLATFORM_INFO:
case KVM_CAP_EXCEPTION_PAYLOAD:
r = 1;
break;
case KVM_CAP_SYNC_REGS:
@ -3362,19 +3448,33 @@ static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
struct kvm_vcpu_events *events)
{
process_nmi(vcpu);
/*
* FIXME: pass injected and pending separately. This is only
* needed for nested virtualization, whose state cannot be
* migrated yet. For now we can combine them.
* The API doesn't provide the instruction length for software
* exceptions, so don't report them. As long as the guest RIP
* isn't advanced, we should expect to encounter the exception
* again.
*/
events->exception.injected =
(vcpu->arch.exception.pending ||
vcpu->arch.exception.injected) &&
!kvm_exception_is_soft(vcpu->arch.exception.nr);
if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
events->exception.injected = 0;
events->exception.pending = 0;
} else {
events->exception.injected = vcpu->arch.exception.injected;
events->exception.pending = vcpu->arch.exception.pending;
/*
* For ABI compatibility, deliberately conflate
* pending and injected exceptions when
* KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
*/
if (!vcpu->kvm->arch.exception_payload_enabled)
events->exception.injected |=
vcpu->arch.exception.pending;
}
events->exception.nr = vcpu->arch.exception.nr;
events->exception.has_error_code = vcpu->arch.exception.has_error_code;
events->exception.pad = 0;
events->exception.error_code = vcpu->arch.exception.error_code;
events->exception_has_payload = vcpu->arch.exception.has_payload;
events->exception_payload = vcpu->arch.exception.payload;
events->interrupt.injected =
vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
@ -3398,6 +3498,9 @@ static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
| KVM_VCPUEVENT_VALID_SHADOW
| KVM_VCPUEVENT_VALID_SMM);
if (vcpu->kvm->arch.exception_payload_enabled)
events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
memset(&events->reserved, 0, sizeof(events->reserved));
}
@ -3409,12 +3512,24 @@ static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
| KVM_VCPUEVENT_VALID_SIPI_VECTOR
| KVM_VCPUEVENT_VALID_SHADOW
| KVM_VCPUEVENT_VALID_SMM))
| KVM_VCPUEVENT_VALID_SMM
| KVM_VCPUEVENT_VALID_PAYLOAD))
return -EINVAL;
if (events->exception.injected &&
(events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
is_guest_mode(vcpu)))
if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
if (!vcpu->kvm->arch.exception_payload_enabled)
return -EINVAL;
if (events->exception.pending)
events->exception.injected = 0;
else
events->exception_has_payload = 0;
} else {
events->exception.pending = 0;
events->exception_has_payload = 0;
}
if ((events->exception.injected || events->exception.pending) &&
(events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
return -EINVAL;
/* INITs are latched while in SMM */
@ -3424,11 +3539,13 @@ static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
return -EINVAL;
process_nmi(vcpu);
vcpu->arch.exception.injected = false;
vcpu->arch.exception.pending = events->exception.injected;
vcpu->arch.exception.injected = events->exception.injected;
vcpu->arch.exception.pending = events->exception.pending;
vcpu->arch.exception.nr = events->exception.nr;
vcpu->arch.exception.has_error_code = events->exception.has_error_code;
vcpu->arch.exception.error_code = events->exception.error_code;
vcpu->arch.exception.has_payload = events->exception_has_payload;
vcpu->arch.exception.payload = events->exception_payload;
vcpu->arch.interrupt.injected = events->interrupt.injected;
vcpu->arch.interrupt.nr = events->interrupt.nr;
@ -3694,6 +3811,10 @@ static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
struct kvm_enable_cap *cap)
{
int r;
uint16_t vmcs_version;
void __user *user_ptr;
if (cap->flags)
return -EINVAL;
@ -3706,6 +3827,16 @@ static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
return -EINVAL;
return kvm_hv_activate_synic(vcpu, cap->cap ==
KVM_CAP_HYPERV_SYNIC2);
case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
if (!r) {
user_ptr = (void __user *)(uintptr_t)cap->args[0];
if (copy_to_user(user_ptr, &vmcs_version,
sizeof(vmcs_version)))
r = -EFAULT;
}
return r;
default:
return -EINVAL;
}
@ -4047,11 +4178,13 @@ long kvm_arch_vcpu_ioctl(struct file *filp,
break;
if (kvm_state.flags &
~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE))
~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
| KVM_STATE_NESTED_EVMCS))
break;
/* nested_run_pending implies guest_mode. */
if (kvm_state.flags == KVM_STATE_NESTED_RUN_PENDING)
if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
&& !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
break;
r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
@ -4363,6 +4496,10 @@ split_irqchip_unlock:
kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
r = 0;
break;
case KVM_CAP_EXCEPTION_PAYLOAD:
kvm->arch.exception_payload_enabled = cap->args[0];
r = 0;
break;
default:
r = -EINVAL;
break;
@ -4803,7 +4940,7 @@ gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
/* NPT walks are always user-walks */
access |= PFERR_USER_MASK;
t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
return t_gpa;
}
@ -5889,7 +6026,7 @@ static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
if (WARN_ON_ONCE(is_guest_mode(vcpu)))
return false;
if (!vcpu->arch.mmu.direct_map) {
if (!vcpu->arch.mmu->direct_map) {
/*
* Write permission should be allowed since only
* write access need to be emulated.
@ -5922,7 +6059,7 @@ static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
kvm_release_pfn_clean(pfn);
/* The instructions are well-emulated on direct mmu. */
if (vcpu->arch.mmu.direct_map) {
if (vcpu->arch.mmu->direct_map) {
unsigned int indirect_shadow_pages;
spin_lock(&vcpu->kvm->mmu_lock);
@ -5989,7 +6126,7 @@ static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
vcpu->arch.last_retry_eip = ctxt->eip;
vcpu->arch.last_retry_addr = cr2;
if (!vcpu->arch.mmu.direct_map)
if (!vcpu->arch.mmu->direct_map)
gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
@ -6049,14 +6186,7 @@ static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
kvm_run->exit_reason = KVM_EXIT_DEBUG;
*r = EMULATE_USER_EXIT;
} else {
/*
* "Certain debug exceptions may clear bit 0-3. The
* remaining contents of the DR6 register are never
* cleared by the processor".
*/
vcpu->arch.dr6 &= ~15;
vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
kvm_queue_exception(vcpu, DB_VECTOR);
kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
}
}
@ -6995,10 +7125,22 @@ static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
X86_EFLAGS_RF);
if (vcpu->arch.exception.nr == DB_VECTOR &&
(vcpu->arch.dr7 & DR7_GD)) {
vcpu->arch.dr7 &= ~DR7_GD;
kvm_update_dr7(vcpu);
if (vcpu->arch.exception.nr == DB_VECTOR) {
/*
* This code assumes that nSVM doesn't use
* check_nested_events(). If it does, the
* DR6/DR7 changes should happen before L1
* gets a #VMEXIT for an intercepted #DB in
* L2. (Under VMX, on the other hand, the
* DR6/DR7 changes should not happen in the
* event of a VM-exit to L1 for an intercepted
* #DB in L2.)
*/
kvm_deliver_exception_payload(vcpu);
if (vcpu->arch.dr7 & DR7_GD) {
vcpu->arch.dr7 &= ~DR7_GD;
kvm_update_dr7(vcpu);
}
}
kvm_x86_ops->queue_exception(vcpu);
@ -8478,7 +8620,7 @@ int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
kvm_vcpu_mtrr_init(vcpu);
vcpu_load(vcpu);
kvm_vcpu_reset(vcpu, false);
kvm_mmu_setup(vcpu);
kvm_init_mmu(vcpu, false);
vcpu_put(vcpu);
return 0;
}
@ -9327,7 +9469,7 @@ void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
{
int r;
if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
work->wakeup_all)
return;
@ -9335,11 +9477,11 @@ void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
if (unlikely(r))
return;
if (!vcpu->arch.mmu.direct_map &&
work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
if (!vcpu->arch.mmu->direct_map &&
work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
return;
vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
vcpu->arch.mmu->page_fault(vcpu, work->gva, 0, true);
}
static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
@ -9463,6 +9605,8 @@ void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
vcpu->arch.exception.nr = 0;
vcpu->arch.exception.has_error_code = false;
vcpu->arch.exception.error_code = 0;
vcpu->arch.exception.has_payload = false;
vcpu->arch.exception.payload = 0;
} else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
fault.vector = PF_VECTOR;
fault.error_code_valid = true;

View File

@ -266,6 +266,8 @@ int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu,
int handle_ud(struct kvm_vcpu *vcpu);
void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu);
void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu);
u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn);
bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data);

View File

@ -372,6 +372,14 @@ config S390_CCW_IOMMU
Enables bits of IOMMU API required by VFIO. The iommu_ops
is not implemented as it is not necessary for VFIO.
config S390_AP_IOMMU
bool "S390 AP IOMMU Support"
depends on S390 && ZCRYPT
select IOMMU_API
help
Enables bits of IOMMU API required by VFIO. The iommu_ops
is not implemented as it is not necessary for VFIO.
config MTK_IOMMU
bool "MTK IOMMU Support"
depends on ARM || ARM64

View File

@ -15,3 +15,7 @@ obj-$(CONFIG_ZCRYPT) += zcrypt_cex2c.o zcrypt_cex2a.o zcrypt_cex4.o
# pkey kernel module
pkey-objs := pkey_api.o
obj-$(CONFIG_PKEY) += pkey.o
# adjunct processor matrix
vfio_ap-objs := vfio_ap_drv.o vfio_ap_ops.o
obj-$(CONFIG_VFIO_AP) += vfio_ap.o

View File

@ -0,0 +1,157 @@
// SPDX-License-Identifier: GPL-2.0+
/*
* VFIO based AP device driver
*
* Copyright IBM Corp. 2018
*
* Author(s): Tony Krowiak <akrowiak@linux.ibm.com>
*/
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/slab.h>
#include <linux/string.h>
#include "vfio_ap_private.h"
#define VFIO_AP_ROOT_NAME "vfio_ap"
#define VFIO_AP_DEV_TYPE_NAME "ap_matrix"
#define VFIO_AP_DEV_NAME "matrix"
MODULE_AUTHOR("IBM Corporation");
MODULE_DESCRIPTION("VFIO AP device driver, Copyright IBM Corp. 2018");
MODULE_LICENSE("GPL v2");
static struct ap_driver vfio_ap_drv;
static struct device_type vfio_ap_dev_type = {
.name = VFIO_AP_DEV_TYPE_NAME,
};
struct ap_matrix_dev *matrix_dev;
/* Only type 10 adapters (CEX4 and later) are supported
* by the AP matrix device driver
*/
static struct ap_device_id ap_queue_ids[] = {
{ .dev_type = AP_DEVICE_TYPE_CEX4,
.match_flags = AP_DEVICE_ID_MATCH_QUEUE_TYPE },
{ .dev_type = AP_DEVICE_TYPE_CEX5,
.match_flags = AP_DEVICE_ID_MATCH_QUEUE_TYPE },
{ .dev_type = AP_DEVICE_TYPE_CEX6,
.match_flags = AP_DEVICE_ID_MATCH_QUEUE_TYPE },
{ /* end of sibling */ },
};
MODULE_DEVICE_TABLE(vfio_ap, ap_queue_ids);
static int vfio_ap_queue_dev_probe(struct ap_device *apdev)
{
return 0;
}
static void vfio_ap_queue_dev_remove(struct ap_device *apdev)
{
/* Nothing to do yet */
}
static void vfio_ap_matrix_dev_release(struct device *dev)
{
struct ap_matrix_dev *matrix_dev = dev_get_drvdata(dev);
kfree(matrix_dev);
}
static int vfio_ap_matrix_dev_create(void)
{
int ret;
struct device *root_device;
root_device = root_device_register(VFIO_AP_ROOT_NAME);
if (IS_ERR(root_device))
return PTR_ERR(root_device);
matrix_dev = kzalloc(sizeof(*matrix_dev), GFP_KERNEL);
if (!matrix_dev) {
ret = -ENOMEM;
goto matrix_alloc_err;
}
/* Fill in config info via PQAP(QCI), if available */
if (test_facility(12)) {
ret = ap_qci(&matrix_dev->info);
if (ret)
goto matrix_alloc_err;
}
mutex_init(&matrix_dev->lock);
INIT_LIST_HEAD(&matrix_dev->mdev_list);
matrix_dev->device.type = &vfio_ap_dev_type;
dev_set_name(&matrix_dev->device, "%s", VFIO_AP_DEV_NAME);
matrix_dev->device.parent = root_device;
matrix_dev->device.release = vfio_ap_matrix_dev_release;
matrix_dev->device.driver = &vfio_ap_drv.driver;
ret = device_register(&matrix_dev->device);
if (ret)
goto matrix_reg_err;
return 0;
matrix_reg_err:
put_device(&matrix_dev->device);
matrix_alloc_err:
root_device_unregister(root_device);
return ret;
}
static void vfio_ap_matrix_dev_destroy(void)
{
device_unregister(&matrix_dev->device);
root_device_unregister(matrix_dev->device.parent);
}
static int __init vfio_ap_init(void)
{
int ret;
/* If there are no AP instructions, there is nothing to pass through. */
if (!ap_instructions_available())
return -ENODEV;
ret = vfio_ap_matrix_dev_create();
if (ret)
return ret;
memset(&vfio_ap_drv, 0, sizeof(vfio_ap_drv));
vfio_ap_drv.probe = vfio_ap_queue_dev_probe;
vfio_ap_drv.remove = vfio_ap_queue_dev_remove;
vfio_ap_drv.ids = ap_queue_ids;
ret = ap_driver_register(&vfio_ap_drv, THIS_MODULE, VFIO_AP_DRV_NAME);
if (ret) {
vfio_ap_matrix_dev_destroy();
return ret;
}
ret = vfio_ap_mdev_register();
if (ret) {
ap_driver_unregister(&vfio_ap_drv);
vfio_ap_matrix_dev_destroy();
return ret;
}
return 0;
}
static void __exit vfio_ap_exit(void)
{
vfio_ap_mdev_unregister();
ap_driver_unregister(&vfio_ap_drv);
vfio_ap_matrix_dev_destroy();
}
module_init(vfio_ap_init);
module_exit(vfio_ap_exit);

View File

@ -0,0 +1,939 @@
// SPDX-License-Identifier: GPL-2.0+
/*
* Adjunct processor matrix VFIO device driver callbacks.
*
* Copyright IBM Corp. 2018
*
* Author(s): Tony Krowiak <akrowiak@linux.ibm.com>
* Halil Pasic <pasic@linux.ibm.com>
* Pierre Morel <pmorel@linux.ibm.com>
*/
#include <linux/string.h>
#include <linux/vfio.h>
#include <linux/device.h>
#include <linux/list.h>
#include <linux/ctype.h>
#include <linux/bitops.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
#include <asm/kvm.h>
#include <asm/zcrypt.h>
#include "vfio_ap_private.h"
#define VFIO_AP_MDEV_TYPE_HWVIRT "passthrough"
#define VFIO_AP_MDEV_NAME_HWVIRT "VFIO AP Passthrough Device"
static void vfio_ap_matrix_init(struct ap_config_info *info,
struct ap_matrix *matrix)
{
matrix->apm_max = info->apxa ? info->Na : 63;
matrix->aqm_max = info->apxa ? info->Nd : 15;
matrix->adm_max = info->apxa ? info->Nd : 15;
}
static int vfio_ap_mdev_create(struct kobject *kobj, struct mdev_device *mdev)
{
struct ap_matrix_mdev *matrix_mdev;
if ((atomic_dec_if_positive(&matrix_dev->available_instances) < 0))
return -EPERM;
matrix_mdev = kzalloc(sizeof(*matrix_mdev), GFP_KERNEL);
if (!matrix_mdev) {
atomic_inc(&matrix_dev->available_instances);
return -ENOMEM;
}
vfio_ap_matrix_init(&matrix_dev->info, &matrix_mdev->matrix);
mdev_set_drvdata(mdev, matrix_mdev);
mutex_lock(&matrix_dev->lock);
list_add(&matrix_mdev->node, &matrix_dev->mdev_list);
mutex_unlock(&matrix_dev->lock);
return 0;
}
static int vfio_ap_mdev_remove(struct mdev_device *mdev)
{
struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
if (matrix_mdev->kvm)
return -EBUSY;
mutex_lock(&matrix_dev->lock);
list_del(&matrix_mdev->node);
mutex_unlock(&matrix_dev->lock);
kfree(matrix_mdev);
mdev_set_drvdata(mdev, NULL);
atomic_inc(&matrix_dev->available_instances);
return 0;
}
static ssize_t name_show(struct kobject *kobj, struct device *dev, char *buf)
{
return sprintf(buf, "%s\n", VFIO_AP_MDEV_NAME_HWVIRT);
}
static MDEV_TYPE_ATTR_RO(name);
static ssize_t available_instances_show(struct kobject *kobj,
struct device *dev, char *buf)
{
return sprintf(buf, "%d\n",
atomic_read(&matrix_dev->available_instances));
}
static MDEV_TYPE_ATTR_RO(available_instances);
static ssize_t device_api_show(struct kobject *kobj, struct device *dev,
char *buf)
{
return sprintf(buf, "%s\n", VFIO_DEVICE_API_AP_STRING);
}
static MDEV_TYPE_ATTR_RO(device_api);
static struct attribute *vfio_ap_mdev_type_attrs[] = {
&mdev_type_attr_name.attr,
&mdev_type_attr_device_api.attr,
&mdev_type_attr_available_instances.attr,
NULL,
};
static struct attribute_group vfio_ap_mdev_hwvirt_type_group = {
.name = VFIO_AP_MDEV_TYPE_HWVIRT,
.attrs = vfio_ap_mdev_type_attrs,
};
static struct attribute_group *vfio_ap_mdev_type_groups[] = {
&vfio_ap_mdev_hwvirt_type_group,
NULL,
};
struct vfio_ap_queue_reserved {
unsigned long *apid;
unsigned long *apqi;
bool reserved;
};
/**
* vfio_ap_has_queue
*
* @dev: an AP queue device
* @data: a struct vfio_ap_queue_reserved reference
*
* Flags whether the AP queue device (@dev) has a queue ID containing the APQN,
* apid or apqi specified in @data:
*
* - If @data contains both an apid and apqi value, then @data will be flagged
* as reserved if the APID and APQI fields for the AP queue device matches
*
* - If @data contains only an apid value, @data will be flagged as
* reserved if the APID field in the AP queue device matches
*
* - If @data contains only an apqi value, @data will be flagged as
* reserved if the APQI field in the AP queue device matches
*
* Returns 0 to indicate the input to function succeeded. Returns -EINVAL if
* @data does not contain either an apid or apqi.
*/
static int vfio_ap_has_queue(struct device *dev, void *data)
{
struct vfio_ap_queue_reserved *qres = data;
struct ap_queue *ap_queue = to_ap_queue(dev);
ap_qid_t qid;
unsigned long id;
if (qres->apid && qres->apqi) {
qid = AP_MKQID(*qres->apid, *qres->apqi);
if (qid == ap_queue->qid)
qres->reserved = true;
} else if (qres->apid && !qres->apqi) {
id = AP_QID_CARD(ap_queue->qid);
if (id == *qres->apid)
qres->reserved = true;
} else if (!qres->apid && qres->apqi) {
id = AP_QID_QUEUE(ap_queue->qid);
if (id == *qres->apqi)
qres->reserved = true;
} else {
return -EINVAL;
}
return 0;
}
/**
* vfio_ap_verify_queue_reserved
*
* @matrix_dev: a mediated matrix device
* @apid: an AP adapter ID
* @apqi: an AP queue index
*
* Verifies that the AP queue with @apid/@apqi is reserved by the VFIO AP device
* driver according to the following rules:
*
* - If both @apid and @apqi are not NULL, then there must be an AP queue
* device bound to the vfio_ap driver with the APQN identified by @apid and
* @apqi
*
* - If only @apid is not NULL, then there must be an AP queue device bound
* to the vfio_ap driver with an APQN containing @apid
*
* - If only @apqi is not NULL, then there must be an AP queue device bound
* to the vfio_ap driver with an APQN containing @apqi
*
* Returns 0 if the AP queue is reserved; otherwise, returns -EADDRNOTAVAIL.
*/
static int vfio_ap_verify_queue_reserved(unsigned long *apid,
unsigned long *apqi)
{
int ret;
struct vfio_ap_queue_reserved qres;
qres.apid = apid;
qres.apqi = apqi;
qres.reserved = false;
ret = driver_for_each_device(matrix_dev->device.driver, NULL, &qres,
vfio_ap_has_queue);
if (ret)
return ret;
if (qres.reserved)
return 0;
return -EADDRNOTAVAIL;
}
static int
vfio_ap_mdev_verify_queues_reserved_for_apid(struct ap_matrix_mdev *matrix_mdev,
unsigned long apid)
{
int ret;
unsigned long apqi;
unsigned long nbits = matrix_mdev->matrix.aqm_max + 1;
if (find_first_bit_inv(matrix_mdev->matrix.aqm, nbits) >= nbits)
return vfio_ap_verify_queue_reserved(&apid, NULL);
for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm, nbits) {
ret = vfio_ap_verify_queue_reserved(&apid, &apqi);
if (ret)
return ret;
}
return 0;
}
/**
* vfio_ap_mdev_verify_no_sharing
*
* Verifies that the APQNs derived from the cross product of the AP adapter IDs
* and AP queue indexes comprising the AP matrix are not configured for another
* mediated device. AP queue sharing is not allowed.
*
* @matrix_mdev: the mediated matrix device
*
* Returns 0 if the APQNs are not shared, otherwise; returns -EADDRINUSE.
*/
static int vfio_ap_mdev_verify_no_sharing(struct ap_matrix_mdev *matrix_mdev)
{
struct ap_matrix_mdev *lstdev;
DECLARE_BITMAP(apm, AP_DEVICES);
DECLARE_BITMAP(aqm, AP_DOMAINS);
list_for_each_entry(lstdev, &matrix_dev->mdev_list, node) {
if (matrix_mdev == lstdev)
continue;
memset(apm, 0, sizeof(apm));
memset(aqm, 0, sizeof(aqm));
/*
* We work on full longs, as we can only exclude the leftover
* bits in non-inverse order. The leftover is all zeros.
*/
if (!bitmap_and(apm, matrix_mdev->matrix.apm,
lstdev->matrix.apm, AP_DEVICES))
continue;
if (!bitmap_and(aqm, matrix_mdev->matrix.aqm,
lstdev->matrix.aqm, AP_DOMAINS))
continue;
return -EADDRINUSE;
}
return 0;
}
/**
* assign_adapter_store
*
* @dev: the matrix device
* @attr: the mediated matrix device's assign_adapter attribute
* @buf: a buffer containing the AP adapter number (APID) to
* be assigned
* @count: the number of bytes in @buf
*
* Parses the APID from @buf and sets the corresponding bit in the mediated
* matrix device's APM.
*
* Returns the number of bytes processed if the APID is valid; otherwise,
* returns one of the following errors:
*
* 1. -EINVAL
* The APID is not a valid number
*
* 2. -ENODEV
* The APID exceeds the maximum value configured for the system
*
* 3. -EADDRNOTAVAIL
* An APQN derived from the cross product of the APID being assigned
* and the APQIs previously assigned is not bound to the vfio_ap device
* driver; or, if no APQIs have yet been assigned, the APID is not
* contained in an APQN bound to the vfio_ap device driver.
*
* 4. -EADDRINUSE
* An APQN derived from the cross product of the APID being assigned
* and the APQIs previously assigned is being used by another mediated
* matrix device
*/
static ssize_t assign_adapter_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int ret;
unsigned long apid;
struct mdev_device *mdev = mdev_from_dev(dev);
struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
/* If the guest is running, disallow assignment of adapter */
if (matrix_mdev->kvm)
return -EBUSY;
ret = kstrtoul(buf, 0, &apid);
if (ret)
return ret;
if (apid > matrix_mdev->matrix.apm_max)
return -ENODEV;
/*
* Set the bit in the AP mask (APM) corresponding to the AP adapter
* number (APID). The bits in the mask, from most significant to least
* significant bit, correspond to APIDs 0-255.
*/
mutex_lock(&matrix_dev->lock);
ret = vfio_ap_mdev_verify_queues_reserved_for_apid(matrix_mdev, apid);
if (ret)
goto done;
set_bit_inv(apid, matrix_mdev->matrix.apm);
ret = vfio_ap_mdev_verify_no_sharing(matrix_mdev);
if (ret)
goto share_err;
ret = count;
goto done;
share_err:
clear_bit_inv(apid, matrix_mdev->matrix.apm);
done:
mutex_unlock(&matrix_dev->lock);
return ret;
}
static DEVICE_ATTR_WO(assign_adapter);
/**
* unassign_adapter_store
*
* @dev: the matrix device
* @attr: the mediated matrix device's unassign_adapter attribute
* @buf: a buffer containing the adapter number (APID) to be unassigned
* @count: the number of bytes in @buf
*
* Parses the APID from @buf and clears the corresponding bit in the mediated
* matrix device's APM.
*
* Returns the number of bytes processed if the APID is valid; otherwise,
* returns one of the following errors:
* -EINVAL if the APID is not a number
* -ENODEV if the APID it exceeds the maximum value configured for the
* system
*/
static ssize_t unassign_adapter_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int ret;
unsigned long apid;
struct mdev_device *mdev = mdev_from_dev(dev);
struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
/* If the guest is running, disallow un-assignment of adapter */
if (matrix_mdev->kvm)
return -EBUSY;
ret = kstrtoul(buf, 0, &apid);
if (ret)
return ret;
if (apid > matrix_mdev->matrix.apm_max)
return -ENODEV;
mutex_lock(&matrix_dev->lock);
clear_bit_inv((unsigned long)apid, matrix_mdev->matrix.apm);
mutex_unlock(&matrix_dev->lock);
return count;
}
static DEVICE_ATTR_WO(unassign_adapter);
static int
vfio_ap_mdev_verify_queues_reserved_for_apqi(struct ap_matrix_mdev *matrix_mdev,
unsigned long apqi)
{
int ret;
unsigned long apid;
unsigned long nbits = matrix_mdev->matrix.apm_max + 1;
if (find_first_bit_inv(matrix_mdev->matrix.apm, nbits) >= nbits)
return vfio_ap_verify_queue_reserved(NULL, &apqi);
for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, nbits) {
ret = vfio_ap_verify_queue_reserved(&apid, &apqi);
if (ret)
return ret;
}
return 0;
}
/**
* assign_domain_store
*
* @dev: the matrix device
* @attr: the mediated matrix device's assign_domain attribute
* @buf: a buffer containing the AP queue index (APQI) of the domain to
* be assigned
* @count: the number of bytes in @buf
*
* Parses the APQI from @buf and sets the corresponding bit in the mediated
* matrix device's AQM.
*
* Returns the number of bytes processed if the APQI is valid; otherwise returns
* one of the following errors:
*
* 1. -EINVAL
* The APQI is not a valid number
*
* 2. -ENODEV
* The APQI exceeds the maximum value configured for the system
*
* 3. -EADDRNOTAVAIL
* An APQN derived from the cross product of the APQI being assigned
* and the APIDs previously assigned is not bound to the vfio_ap device
* driver; or, if no APIDs have yet been assigned, the APQI is not
* contained in an APQN bound to the vfio_ap device driver.
*
* 4. -EADDRINUSE
* An APQN derived from the cross product of the APQI being assigned
* and the APIDs previously assigned is being used by another mediated
* matrix device
*/
static ssize_t assign_domain_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int ret;
unsigned long apqi;
struct mdev_device *mdev = mdev_from_dev(dev);
struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
unsigned long max_apqi = matrix_mdev->matrix.aqm_max;
/* If the guest is running, disallow assignment of domain */
if (matrix_mdev->kvm)
return -EBUSY;
ret = kstrtoul(buf, 0, &apqi);
if (ret)
return ret;
if (apqi > max_apqi)
return -ENODEV;
mutex_lock(&matrix_dev->lock);
ret = vfio_ap_mdev_verify_queues_reserved_for_apqi(matrix_mdev, apqi);
if (ret)
goto done;
set_bit_inv(apqi, matrix_mdev->matrix.aqm);
ret = vfio_ap_mdev_verify_no_sharing(matrix_mdev);
if (ret)
goto share_err;
ret = count;
goto done;
share_err:
clear_bit_inv(apqi, matrix_mdev->matrix.aqm);
done:
mutex_unlock(&matrix_dev->lock);
return ret;
}
static DEVICE_ATTR_WO(assign_domain);
/**
* unassign_domain_store
*
* @dev: the matrix device
* @attr: the mediated matrix device's unassign_domain attribute
* @buf: a buffer containing the AP queue index (APQI) of the domain to
* be unassigned
* @count: the number of bytes in @buf
*
* Parses the APQI from @buf and clears the corresponding bit in the
* mediated matrix device's AQM.
*
* Returns the number of bytes processed if the APQI is valid; otherwise,
* returns one of the following errors:
* -EINVAL if the APQI is not a number
* -ENODEV if the APQI exceeds the maximum value configured for the system
*/
static ssize_t unassign_domain_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int ret;
unsigned long apqi;
struct mdev_device *mdev = mdev_from_dev(dev);
struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
/* If the guest is running, disallow un-assignment of domain */
if (matrix_mdev->kvm)
return -EBUSY;
ret = kstrtoul(buf, 0, &apqi);
if (ret)
return ret;
if (apqi > matrix_mdev->matrix.aqm_max)
return -ENODEV;
mutex_lock(&matrix_dev->lock);
clear_bit_inv((unsigned long)apqi, matrix_mdev->matrix.aqm);
mutex_unlock(&matrix_dev->lock);
return count;
}
static DEVICE_ATTR_WO(unassign_domain);
/**
* assign_control_domain_store
*
* @dev: the matrix device
* @attr: the mediated matrix device's assign_control_domain attribute
* @buf: a buffer containing the domain ID to be assigned
* @count: the number of bytes in @buf
*
* Parses the domain ID from @buf and sets the corresponding bit in the mediated
* matrix device's ADM.
*
* Returns the number of bytes processed if the domain ID is valid; otherwise,
* returns one of the following errors:
* -EINVAL if the ID is not a number
* -ENODEV if the ID exceeds the maximum value configured for the system
*/
static ssize_t assign_control_domain_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int ret;
unsigned long id;
struct mdev_device *mdev = mdev_from_dev(dev);
struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
/* If the guest is running, disallow assignment of control domain */
if (matrix_mdev->kvm)
return -EBUSY;
ret = kstrtoul(buf, 0, &id);
if (ret)
return ret;
if (id > matrix_mdev->matrix.adm_max)
return -ENODEV;
/* Set the bit in the ADM (bitmask) corresponding to the AP control
* domain number (id). The bits in the mask, from most significant to
* least significant, correspond to IDs 0 up to the one less than the
* number of control domains that can be assigned.
*/
mutex_lock(&matrix_dev->lock);
set_bit_inv(id, matrix_mdev->matrix.adm);
mutex_unlock(&matrix_dev->lock);
return count;
}
static DEVICE_ATTR_WO(assign_control_domain);
/**
* unassign_control_domain_store
*
* @dev: the matrix device
* @attr: the mediated matrix device's unassign_control_domain attribute
* @buf: a buffer containing the domain ID to be unassigned
* @count: the number of bytes in @buf
*
* Parses the domain ID from @buf and clears the corresponding bit in the
* mediated matrix device's ADM.
*
* Returns the number of bytes processed if the domain ID is valid; otherwise,
* returns one of the following errors:
* -EINVAL if the ID is not a number
* -ENODEV if the ID exceeds the maximum value configured for the system
*/
static ssize_t unassign_control_domain_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int ret;
unsigned long domid;
struct mdev_device *mdev = mdev_from_dev(dev);
struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
unsigned long max_domid = matrix_mdev->matrix.adm_max;
/* If the guest is running, disallow un-assignment of control domain */
if (matrix_mdev->kvm)
return -EBUSY;
ret = kstrtoul(buf, 0, &domid);
if (ret)
return ret;
if (domid > max_domid)
return -ENODEV;
mutex_lock(&matrix_dev->lock);
clear_bit_inv(domid, matrix_mdev->matrix.adm);
mutex_unlock(&matrix_dev->lock);
return count;
}
static DEVICE_ATTR_WO(unassign_control_domain);
static ssize_t control_domains_show(struct device *dev,
struct device_attribute *dev_attr,
char *buf)
{
unsigned long id;
int nchars = 0;
int n;
char *bufpos = buf;
struct mdev_device *mdev = mdev_from_dev(dev);
struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
unsigned long max_domid = matrix_mdev->matrix.adm_max;
mutex_lock(&matrix_dev->lock);
for_each_set_bit_inv(id, matrix_mdev->matrix.adm, max_domid + 1) {
n = sprintf(bufpos, "%04lx\n", id);
bufpos += n;
nchars += n;
}
mutex_unlock(&matrix_dev->lock);
return nchars;
}
static DEVICE_ATTR_RO(control_domains);
static ssize_t matrix_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct mdev_device *mdev = mdev_from_dev(dev);
struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
char *bufpos = buf;
unsigned long apid;
unsigned long apqi;
unsigned long apid1;
unsigned long apqi1;
unsigned long napm_bits = matrix_mdev->matrix.apm_max + 1;
unsigned long naqm_bits = matrix_mdev->matrix.aqm_max + 1;
int nchars = 0;
int n;
apid1 = find_first_bit_inv(matrix_mdev->matrix.apm, napm_bits);
apqi1 = find_first_bit_inv(matrix_mdev->matrix.aqm, naqm_bits);
mutex_lock(&matrix_dev->lock);
if ((apid1 < napm_bits) && (apqi1 < naqm_bits)) {
for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, napm_bits) {
for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm,
naqm_bits) {
n = sprintf(bufpos, "%02lx.%04lx\n", apid,
apqi);
bufpos += n;
nchars += n;
}
}
} else if (apid1 < napm_bits) {
for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, napm_bits) {
n = sprintf(bufpos, "%02lx.\n", apid);
bufpos += n;
nchars += n;
}
} else if (apqi1 < naqm_bits) {
for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm, naqm_bits) {
n = sprintf(bufpos, ".%04lx\n", apqi);
bufpos += n;
nchars += n;
}
}
mutex_unlock(&matrix_dev->lock);
return nchars;
}
static DEVICE_ATTR_RO(matrix);
static struct attribute *vfio_ap_mdev_attrs[] = {
&dev_attr_assign_adapter.attr,
&dev_attr_unassign_adapter.attr,
&dev_attr_assign_domain.attr,
&dev_attr_unassign_domain.attr,
&dev_attr_assign_control_domain.attr,
&dev_attr_unassign_control_domain.attr,
&dev_attr_control_domains.attr,
&dev_attr_matrix.attr,
NULL,
};
static struct attribute_group vfio_ap_mdev_attr_group = {
.attrs = vfio_ap_mdev_attrs
};
static const struct attribute_group *vfio_ap_mdev_attr_groups[] = {
&vfio_ap_mdev_attr_group,
NULL
};
/**
* vfio_ap_mdev_set_kvm
*
* @matrix_mdev: a mediated matrix device
* @kvm: reference to KVM instance
*
* Verifies no other mediated matrix device has @kvm and sets a reference to
* it in @matrix_mdev->kvm.
*
* Return 0 if no other mediated matrix device has a reference to @kvm;
* otherwise, returns an -EPERM.
*/
static int vfio_ap_mdev_set_kvm(struct ap_matrix_mdev *matrix_mdev,
struct kvm *kvm)
{
struct ap_matrix_mdev *m;
mutex_lock(&matrix_dev->lock);
list_for_each_entry(m, &matrix_dev->mdev_list, node) {
if ((m != matrix_mdev) && (m->kvm == kvm)) {
mutex_unlock(&matrix_dev->lock);
return -EPERM;
}
}
matrix_mdev->kvm = kvm;
mutex_unlock(&matrix_dev->lock);
return 0;
}
static int vfio_ap_mdev_group_notifier(struct notifier_block *nb,
unsigned long action, void *data)
{
int ret;
struct ap_matrix_mdev *matrix_mdev;
if (action != VFIO_GROUP_NOTIFY_SET_KVM)
return NOTIFY_OK;
matrix_mdev = container_of(nb, struct ap_matrix_mdev, group_notifier);
if (!data) {
matrix_mdev->kvm = NULL;
return NOTIFY_OK;
}
ret = vfio_ap_mdev_set_kvm(matrix_mdev, data);
if (ret)
return NOTIFY_DONE;
/* If there is no CRYCB pointer, then we can't copy the masks */
if (!matrix_mdev->kvm->arch.crypto.crycbd)
return NOTIFY_DONE;
kvm_arch_crypto_set_masks(matrix_mdev->kvm, matrix_mdev->matrix.apm,
matrix_mdev->matrix.aqm,
matrix_mdev->matrix.adm);
return NOTIFY_OK;
}
static int vfio_ap_mdev_reset_queue(unsigned int apid, unsigned int apqi,
unsigned int retry)
{
struct ap_queue_status status;
do {
status = ap_zapq(AP_MKQID(apid, apqi));
switch (status.response_code) {
case AP_RESPONSE_NORMAL:
return 0;
case AP_RESPONSE_RESET_IN_PROGRESS:
case AP_RESPONSE_BUSY:
msleep(20);
break;
default:
/* things are really broken, give up */
return -EIO;
}
} while (retry--);
return -EBUSY;
}
static int vfio_ap_mdev_reset_queues(struct mdev_device *mdev)
{
int ret;
int rc = 0;
unsigned long apid, apqi;
struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
for_each_set_bit_inv(apid, matrix_mdev->matrix.apm,
matrix_mdev->matrix.apm_max + 1) {
for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm,
matrix_mdev->matrix.aqm_max + 1) {
ret = vfio_ap_mdev_reset_queue(apid, apqi, 1);
/*
* Regardless whether a queue turns out to be busy, or
* is not operational, we need to continue resetting
* the remaining queues.
*/
if (ret)
rc = ret;
}
}
return rc;
}
static int vfio_ap_mdev_open(struct mdev_device *mdev)
{
struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
unsigned long events;
int ret;
if (!try_module_get(THIS_MODULE))
return -ENODEV;
matrix_mdev->group_notifier.notifier_call = vfio_ap_mdev_group_notifier;
events = VFIO_GROUP_NOTIFY_SET_KVM;
ret = vfio_register_notifier(mdev_dev(mdev), VFIO_GROUP_NOTIFY,
&events, &matrix_mdev->group_notifier);
if (ret) {
module_put(THIS_MODULE);
return ret;
}
return 0;
}
static void vfio_ap_mdev_release(struct mdev_device *mdev)
{
struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
if (matrix_mdev->kvm)
kvm_arch_crypto_clear_masks(matrix_mdev->kvm);
vfio_ap_mdev_reset_queues(mdev);
vfio_unregister_notifier(mdev_dev(mdev), VFIO_GROUP_NOTIFY,
&matrix_mdev->group_notifier);
matrix_mdev->kvm = NULL;
module_put(THIS_MODULE);
}
static int vfio_ap_mdev_get_device_info(unsigned long arg)
{
unsigned long minsz;
struct vfio_device_info info;
minsz = offsetofend(struct vfio_device_info, num_irqs);
if (copy_from_user(&info, (void __user *)arg, minsz))
return -EFAULT;
if (info.argsz < minsz)
return -EINVAL;
info.flags = VFIO_DEVICE_FLAGS_AP | VFIO_DEVICE_FLAGS_RESET;
info.num_regions = 0;
info.num_irqs = 0;
return copy_to_user((void __user *)arg, &info, minsz);
}
static ssize_t vfio_ap_mdev_ioctl(struct mdev_device *mdev,
unsigned int cmd, unsigned long arg)
{
int ret;
switch (cmd) {
case VFIO_DEVICE_GET_INFO:
ret = vfio_ap_mdev_get_device_info(arg);
break;
case VFIO_DEVICE_RESET:
ret = vfio_ap_mdev_reset_queues(mdev);
break;
default:
ret = -EOPNOTSUPP;
break;
}
return ret;
}
static const struct mdev_parent_ops vfio_ap_matrix_ops = {
.owner = THIS_MODULE,
.supported_type_groups = vfio_ap_mdev_type_groups,
.mdev_attr_groups = vfio_ap_mdev_attr_groups,
.create = vfio_ap_mdev_create,
.remove = vfio_ap_mdev_remove,
.open = vfio_ap_mdev_open,
.release = vfio_ap_mdev_release,
.ioctl = vfio_ap_mdev_ioctl,
};
int vfio_ap_mdev_register(void)
{
atomic_set(&matrix_dev->available_instances, MAX_ZDEV_ENTRIES_EXT);
return mdev_register_device(&matrix_dev->device, &vfio_ap_matrix_ops);
}
void vfio_ap_mdev_unregister(void)
{
mdev_unregister_device(&matrix_dev->device);
}

View File

@ -0,0 +1,88 @@
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Private data and functions for adjunct processor VFIO matrix driver.
*
* Author(s): Tony Krowiak <akrowiak@linux.ibm.com>
* Halil Pasic <pasic@linux.ibm.com>
*
* Copyright IBM Corp. 2018
*/
#ifndef _VFIO_AP_PRIVATE_H_
#define _VFIO_AP_PRIVATE_H_
#include <linux/types.h>
#include <linux/device.h>
#include <linux/mdev.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include "ap_bus.h"
#define VFIO_AP_MODULE_NAME "vfio_ap"
#define VFIO_AP_DRV_NAME "vfio_ap"
/**
* ap_matrix_dev - the AP matrix device structure
* @device: generic device structure associated with the AP matrix device
* @available_instances: number of mediated matrix devices that can be created
* @info: the struct containing the output from the PQAP(QCI) instruction
* mdev_list: the list of mediated matrix devices created
* lock: mutex for locking the AP matrix device. This lock will be
* taken every time we fiddle with state managed by the vfio_ap
* driver, be it using @mdev_list or writing the state of a
* single ap_matrix_mdev device. It's quite coarse but we don't
* expect much contention.
*/
struct ap_matrix_dev {
struct device device;
atomic_t available_instances;
struct ap_config_info info;
struct list_head mdev_list;
struct mutex lock;
};
extern struct ap_matrix_dev *matrix_dev;
/**
* The AP matrix is comprised of three bit masks identifying the adapters,
* queues (domains) and control domains that belong to an AP matrix. The bits i
* each mask, from least significant to most significant bit, correspond to IDs
* 0 to 255. When a bit is set, the corresponding ID belongs to the matrix.
*
* @apm_max: max adapter number in @apm
* @apm identifies the AP adapters in the matrix
* @aqm_max: max domain number in @aqm
* @aqm identifies the AP queues (domains) in the matrix
* @adm_max: max domain number in @adm
* @adm identifies the AP control domains in the matrix
*/
struct ap_matrix {
unsigned long apm_max;
DECLARE_BITMAP(apm, 256);
unsigned long aqm_max;
DECLARE_BITMAP(aqm, 256);
unsigned long adm_max;
DECLARE_BITMAP(adm, 256);
};
/**
* struct ap_matrix_mdev - the mediated matrix device structure
* @list: allows the ap_matrix_mdev struct to be added to a list
* @matrix: the adapters, usage domains and control domains assigned to the
* mediated matrix device.
* @group_notifier: notifier block used for specifying callback function for
* handling the VFIO_GROUP_NOTIFY_SET_KVM event
* @kvm: the struct holding guest's state
*/
struct ap_matrix_mdev {
struct list_head node;
struct ap_matrix matrix;
struct notifier_block group_notifier;
struct kvm *kvm;
};
extern int vfio_ap_mdev_register(void);
extern void vfio_ap_mdev_unregister(void);
#endif /* _VFIO_AP_PRIVATE_H_ */

Some files were not shown because too many files have changed in this diff Show More