1
0
Fork 0

slab: use get_node() and kmem_cache_node() functions

Use the two functions to simplify the code avoiding numerous explicit
checks coded checking for a certain node to be online.

Get rid of various repeated calculations of kmem_cache_node structures.

[akpm@linux-foundation.org: fix build]
Signed-off-by: Christoph Lameter <cl@linux.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
hifive-unleashed-5.1
Christoph Lameter 2014-08-06 16:04:11 -07:00 committed by Linus Torvalds
parent fa45dc254b
commit 18bf854117
1 changed files with 80 additions and 93 deletions

173
mm/slab.c
View File

@ -267,7 +267,7 @@ static void kmem_cache_node_init(struct kmem_cache_node *parent)
#define MAKE_LIST(cachep, listp, slab, nodeid) \
do { \
INIT_LIST_HEAD(listp); \
list_splice(&(cachep->node[nodeid]->slab), listp); \
list_splice(&get_node(cachep, nodeid)->slab, listp); \
} while (0)
#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
@ -488,16 +488,11 @@ static struct lock_class_key debugobj_alc_key;
static void slab_set_lock_classes(struct kmem_cache *cachep,
struct lock_class_key *l3_key, struct lock_class_key *alc_key,
int q)
struct kmem_cache_node *n)
{
struct array_cache **alc;
struct kmem_cache_node *n;
int r;
n = cachep->node[q];
if (!n)
return;
lockdep_set_class(&n->list_lock, l3_key);
alc = n->alien;
/*
@ -515,17 +510,19 @@ static void slab_set_lock_classes(struct kmem_cache *cachep,
}
}
static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep,
struct kmem_cache_node *n)
{
slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, n);
}
static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
int node;
struct kmem_cache_node *n;
for_each_online_node(node)
slab_set_debugobj_lock_classes_node(cachep, node);
for_each_kmem_cache_node(cachep, node, n)
slab_set_debugobj_lock_classes_node(cachep, n);
}
static void init_node_lock_keys(int q)
@ -542,31 +539,30 @@ static void init_node_lock_keys(int q)
if (!cache)
continue;
n = cache->node[q];
n = get_node(cache, q);
if (!n || OFF_SLAB(cache))
continue;
slab_set_lock_classes(cache, &on_slab_l3_key,
&on_slab_alc_key, q);
&on_slab_alc_key, n);
}
}
static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
static void on_slab_lock_classes_node(struct kmem_cache *cachep,
struct kmem_cache_node *n)
{
if (!cachep->node[q])
return;
slab_set_lock_classes(cachep, &on_slab_l3_key,
&on_slab_alc_key, q);
&on_slab_alc_key, n);
}
static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
int node;
struct kmem_cache_node *n;
VM_BUG_ON(OFF_SLAB(cachep));
for_each_node(node)
on_slab_lock_classes_node(cachep, node);
for_each_kmem_cache_node(cachep, node, n)
on_slab_lock_classes_node(cachep, n);
}
static inline void __init init_lock_keys(void)
@ -589,11 +585,13 @@ static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
}
static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
static inline void on_slab_lock_classes_node(struct kmem_cache *cachep,
struct kmem_cache_node *n)
{
}
static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep,
struct kmem_cache_node *n)
{
}
@ -826,7 +824,7 @@ static inline bool is_slab_pfmemalloc(struct page *page)
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
struct array_cache *ac)
{
struct kmem_cache_node *n = cachep->node[numa_mem_id()];
struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
struct page *page;
unsigned long flags;
@ -881,7 +879,7 @@ static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
* If there are empty slabs on the slabs_free list and we are
* being forced to refill the cache, mark this one !pfmemalloc.
*/
n = cachep->node[numa_mem_id()];
n = get_node(cachep, numa_mem_id());
if (!list_empty(&n->slabs_free) && force_refill) {
struct page *page = virt_to_head_page(objp);
ClearPageSlabPfmemalloc(page);
@ -1031,7 +1029,7 @@ static void free_alien_cache(struct array_cache **ac_ptr)
static void __drain_alien_cache(struct kmem_cache *cachep,
struct array_cache *ac, int node)
{
struct kmem_cache_node *n = cachep->node[node];
struct kmem_cache_node *n = get_node(cachep, node);
if (ac->avail) {
spin_lock(&n->list_lock);
@ -1099,7 +1097,7 @@ static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
if (likely(nodeid == node))
return 0;
n = cachep->node[node];
n = get_node(cachep, node);
STATS_INC_NODEFREES(cachep);
if (n->alien && n->alien[nodeid]) {
alien = n->alien[nodeid];
@ -1111,9 +1109,10 @@ static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
ac_put_obj(cachep, alien, objp);
spin_unlock(&alien->lock);
} else {
spin_lock(&(cachep->node[nodeid])->list_lock);
n = get_node(cachep, nodeid);
spin_lock(&n->list_lock);
free_block(cachep, &objp, 1, nodeid);
spin_unlock(&(cachep->node[nodeid])->list_lock);
spin_unlock(&n->list_lock);
}
return 1;
}
@ -1140,7 +1139,8 @@ static int init_cache_node_node(int node)
* begin anything. Make sure some other cpu on this
* node has not already allocated this
*/
if (!cachep->node[node]) {
n = get_node(cachep, node);
if (!n) {
n = kmalloc_node(memsize, GFP_KERNEL, node);
if (!n)
return -ENOMEM;
@ -1156,11 +1156,11 @@ static int init_cache_node_node(int node)
cachep->node[node] = n;
}
spin_lock_irq(&cachep->node[node]->list_lock);
cachep->node[node]->free_limit =
spin_lock_irq(&n->list_lock);
n->free_limit =
(1 + nr_cpus_node(node)) *
cachep->batchcount + cachep->num;
spin_unlock_irq(&cachep->node[node]->list_lock);
spin_unlock_irq(&n->list_lock);
}
return 0;
}
@ -1186,7 +1186,7 @@ static void cpuup_canceled(long cpu)
/* cpu is dead; no one can alloc from it. */
nc = cachep->array[cpu];
cachep->array[cpu] = NULL;
n = cachep->node[node];
n = get_node(cachep, node);
if (!n)
goto free_array_cache;
@ -1229,7 +1229,7 @@ free_array_cache:
* shrink each nodelist to its limit.
*/
list_for_each_entry(cachep, &slab_caches, list) {
n = cachep->node[node];
n = get_node(cachep, node);
if (!n)
continue;
drain_freelist(cachep, n, slabs_tofree(cachep, n));
@ -1284,7 +1284,7 @@ static int cpuup_prepare(long cpu)
}
}
cachep->array[cpu] = nc;
n = cachep->node[node];
n = get_node(cachep, node);
BUG_ON(!n);
spin_lock_irq(&n->list_lock);
@ -1306,10 +1306,10 @@ static int cpuup_prepare(long cpu)
kfree(shared);
free_alien_cache(alien);
if (cachep->flags & SLAB_DEBUG_OBJECTS)
slab_set_debugobj_lock_classes_node(cachep, node);
slab_set_debugobj_lock_classes_node(cachep, n);
else if (!OFF_SLAB(cachep) &&
!(cachep->flags & SLAB_DESTROY_BY_RCU))
on_slab_lock_classes_node(cachep, node);
on_slab_lock_classes_node(cachep, n);
}
init_node_lock_keys(node);
@ -1395,7 +1395,7 @@ static int __meminit drain_cache_node_node(int node)
list_for_each_entry(cachep, &slab_caches, list) {
struct kmem_cache_node *n;
n = cachep->node[node];
n = get_node(cachep, node);
if (!n)
continue;
@ -1690,14 +1690,10 @@ slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
cachep->name, cachep->size, cachep->gfporder);
for_each_online_node(node) {
for_each_kmem_cache_node(cachep, node, n) {
unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
unsigned long active_slabs = 0, num_slabs = 0;
n = cachep->node[node];
if (!n)
continue;
spin_lock_irqsave(&n->list_lock, flags);
list_for_each_entry(page, &n->slabs_full, lru) {
active_objs += cachep->num;
@ -2434,7 +2430,7 @@ static void check_spinlock_acquired(struct kmem_cache *cachep)
{
#ifdef CONFIG_SMP
check_irq_off();
assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
#endif
}
@ -2442,7 +2438,7 @@ static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
{
#ifdef CONFIG_SMP
check_irq_off();
assert_spin_locked(&cachep->node[node]->list_lock);
assert_spin_locked(&get_node(cachep, node)->list_lock);
#endif
}
@ -2462,12 +2458,14 @@ static void do_drain(void *arg)
struct kmem_cache *cachep = arg;
struct array_cache *ac;
int node = numa_mem_id();
struct kmem_cache_node *n;
check_irq_off();
ac = cpu_cache_get(cachep);
spin_lock(&cachep->node[node]->list_lock);
n = get_node(cachep, node);
spin_lock(&n->list_lock);
free_block(cachep, ac->entry, ac->avail, node);
spin_unlock(&cachep->node[node]->list_lock);
spin_unlock(&n->list_lock);
ac->avail = 0;
}
@ -2478,17 +2476,12 @@ static void drain_cpu_caches(struct kmem_cache *cachep)
on_each_cpu(do_drain, cachep, 1);
check_irq_on();
for_each_online_node(node) {
n = cachep->node[node];
if (n && n->alien)
for_each_kmem_cache_node(cachep, node, n)
if (n->alien)
drain_alien_cache(cachep, n->alien);
}
for_each_online_node(node) {
n = cachep->node[node];
if (n)
drain_array(cachep, n, n->shared, 1, node);
}
for_each_kmem_cache_node(cachep, node, n)
drain_array(cachep, n, n->shared, 1, node);
}
/*
@ -2534,17 +2527,14 @@ out:
int __kmem_cache_shrink(struct kmem_cache *cachep)
{
int ret = 0, i = 0;
int ret = 0;
int node;
struct kmem_cache_node *n;
drain_cpu_caches(cachep);
check_irq_on();
for_each_online_node(i) {
n = cachep->node[i];
if (!n)
continue;
for_each_kmem_cache_node(cachep, node, n) {
drain_freelist(cachep, n, slabs_tofree(cachep, n));
ret += !list_empty(&n->slabs_full) ||
@ -2566,13 +2556,11 @@ int __kmem_cache_shutdown(struct kmem_cache *cachep)
kfree(cachep->array[i]);
/* NUMA: free the node structures */
for_each_online_node(i) {
n = cachep->node[i];
if (n) {
kfree(n->shared);
free_alien_cache(n->alien);
kfree(n);
}
for_each_kmem_cache_node(cachep, i, n) {
kfree(n->shared);
free_alien_cache(n->alien);
kfree(n);
cachep->node[i] = NULL;
}
return 0;
}
@ -2751,7 +2739,7 @@ static int cache_grow(struct kmem_cache *cachep,
/* Take the node list lock to change the colour_next on this node */
check_irq_off();
n = cachep->node[nodeid];
n = get_node(cachep, nodeid);
spin_lock(&n->list_lock);
/* Get colour for the slab, and cal the next value. */
@ -2920,7 +2908,7 @@ retry:
*/
batchcount = BATCHREFILL_LIMIT;
}
n = cachep->node[node];
n = get_node(cachep, node);
BUG_ON(ac->avail > 0 || !n);
spin_lock(&n->list_lock);
@ -3169,8 +3157,8 @@ retry:
nid = zone_to_nid(zone);
if (cpuset_zone_allowed_hardwall(zone, flags) &&
cache->node[nid] &&
cache->node[nid]->free_objects) {
get_node(cache, nid) &&
get_node(cache, nid)->free_objects) {
obj = ____cache_alloc_node(cache,
flags | GFP_THISNODE, nid);
if (obj)
@ -3233,7 +3221,7 @@ static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
int x;
VM_BUG_ON(nodeid > num_online_nodes());
n = cachep->node[nodeid];
n = get_node(cachep, nodeid);
BUG_ON(!n);
retry:
@ -3304,7 +3292,7 @@ slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
if (nodeid == NUMA_NO_NODE)
nodeid = slab_node;
if (unlikely(!cachep->node[nodeid])) {
if (unlikely(!get_node(cachep, nodeid))) {
/* Node not bootstrapped yet */
ptr = fallback_alloc(cachep, flags);
goto out;
@ -3420,7 +3408,7 @@ static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
objp = objpp[i];
page = virt_to_head_page(objp);
n = cachep->node[node];
n = get_node(cachep, node);
list_del(&page->lru);
check_spinlock_acquired_node(cachep, node);
slab_put_obj(cachep, page, objp, node);
@ -3462,7 +3450,7 @@ static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
BUG_ON(!batchcount || batchcount > ac->avail);
#endif
check_irq_off();
n = cachep->node[node];
n = get_node(cachep, node);
spin_lock(&n->list_lock);
if (n->shared) {
struct array_cache *shared_array = n->shared;
@ -3775,7 +3763,7 @@ static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
}
}
n = cachep->node[node];
n = get_node(cachep, node);
if (n) {
struct array_cache *shared = n->shared;
@ -3820,9 +3808,8 @@ fail:
/* Cache is not active yet. Roll back what we did */
node--;
while (node >= 0) {
if (cachep->node[node]) {
n = cachep->node[node];
n = get_node(cachep, node);
if (n) {
kfree(n->shared);
free_alien_cache(n->alien);
kfree(n);
@ -3884,11 +3871,17 @@ static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
for_each_online_cpu(i) {
struct array_cache *ccold = new->new[i];
int node;
struct kmem_cache_node *n;
if (!ccold)
continue;
spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
node = cpu_to_mem(i);
n = get_node(cachep, node);
spin_lock_irq(&n->list_lock);
free_block(cachep, ccold->entry, ccold->avail, node);
spin_unlock_irq(&n->list_lock);
kfree(ccold);
}
kfree(new);
@ -4048,7 +4041,7 @@ static void cache_reap(struct work_struct *w)
* have established with reasonable certainty that
* we can do some work if the lock was obtained.
*/
n = searchp->node[node];
n = get_node(searchp, node);
reap_alien(searchp, n);
@ -4100,10 +4093,7 @@ void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
active_objs = 0;
num_slabs = 0;
for_each_online_node(node) {
n = cachep->node[node];
if (!n)
continue;
for_each_kmem_cache_node(cachep, node, n) {
check_irq_on();
spin_lock_irq(&n->list_lock);
@ -4328,10 +4318,7 @@ static int leaks_show(struct seq_file *m, void *p)
x[1] = 0;
for_each_online_node(node) {
n = cachep->node[node];
if (!n)
continue;
for_each_kmem_cache_node(cachep, node, n) {
check_irq_on();
spin_lock_irq(&n->list_lock);