1
0
Fork 0

Merge branches 'for-4.11/upstream-fixes', 'for-4.12/accutouch', 'for-4.12/cp2112', 'for-4.12/hid-core-null-state-handling', 'for-4.12/hiddev', 'for-4.12/i2c-hid', 'for-4.12/innomedia', 'for-4.12/logitech-hidpp-battery-power-supply', 'for-4.12/multitouch', 'for-4.12/nti', 'for-4.12/upstream' and 'for-4.12/wacom' into for-linus

hifive-unleashed-5.1
2444 changed files with 74755 additions and 35272 deletions

View File

@ -0,0 +1,25 @@
What: /sys/class/devfreq-event/event(x)/
Date: January 2017
Contact: Chanwoo Choi <cw00.choi@samsung.com>
Description:
Provide a place in sysfs for the devfreq-event objects.
This allows accessing various devfreq-event specific variables.
The name of devfreq-event object denoted as 'event(x)' which
includes the unique number of 'x' for each devfreq-event object.
What: /sys/class/devfreq-event/event(x)/name
Date: January 2017
Contact: Chanwoo Choi <cw00.choi@samsung.com>
Description:
The /sys/class/devfreq-event/event(x)/name attribute contains
the name of the devfreq-event object. This attribute is
read-only.
What: /sys/class/devfreq-event/event(x)/enable_count
Date: January 2017
Contact: Chanwoo Choi <cw00.choi@samsung.com>
Description:
The /sys/class/devfreq-event/event(x)/enable_count attribute
contains the reference count to enable the devfreq-event
object. If the device is enabled, the value of attribute is
greater than zero.

View File

@ -23,6 +23,23 @@ Description:
If the LED does not support different brightness levels, this
should be 1.
What: /sys/class/leds/<led>/brightness_hw_changed
Date: January 2017
KernelVersion: 4.11
Description:
Last hardware set brightness level for this LED. Some LEDs
may be changed autonomously by hardware/firmware. Only LEDs
where this happens and the driver can detect this, will have
this file.
This file supports poll() to detect when the hardware changes
the brightness.
Reading this file will return the last brightness level set
by the hardware, this may be different from the current
brightness. Reading this file when no hw brightness change
event has happened will return an ENODATA error.
What: /sys/class/leds/<led>/trigger
Date: March 2006
KernelVersion: 2.6.17

View File

@ -62,18 +62,18 @@ Description:
This value may be reset to 0 if the current protocol is altered.
What: /sys/class/rc/rcN/wakeup_protocols
Date: Feb 2014
KernelVersion: 3.15
Date: Feb 2017
KernelVersion: 4.11
Contact: Mauro Carvalho Chehab <m.chehab@samsung.com>
Description:
Reading this file returns a list of available protocols to use
for the wakeup filter, something like:
"rc5 rc6 nec jvc [sony]"
"rc-5 nec nec-x rc-6-0 rc-6-6a-24 [rc-6-6a-32] rc-6-mce"
Note that protocol variants are listed, so "nec", "sony",
"rc-5", "rc-6" have their different bit length encodings
listed if available.
The enabled wakeup protocol is shown in [] brackets.
Writing "+proto" will add a protocol to the list of enabled
wakeup protocols.
Writing "-proto" will remove a protocol from the list of enabled
wakeup protocols.
Only one protocol can be selected at a time.
Writing "proto" will use "proto" for wakeup events.
Writing "none" will disable wakeup.
Write fails with EINVAL if an invalid protocol combination or

View File

@ -2,7 +2,7 @@ What: /sys/devices/platform/hidma-*/chid
/sys/devices/platform/QCOM8061:*/chid
Date: Dec 2015
KernelVersion: 4.4
Contact: "Sinan Kaya <okaya@cudeaurora.org>"
Contact: "Sinan Kaya <okaya@codeaurora.org>"
Description:
Contains the ID of the channel within the HIDMA instance.
It is used to associate a given HIDMA channel with the

View File

@ -2,7 +2,7 @@ What: /sys/devices/platform/hidma-mgmt*/chanops/chan*/priority
/sys/devices/platform/QCOM8060:*/chanops/chan*/priority
Date: Nov 2015
KernelVersion: 4.4
Contact: "Sinan Kaya <okaya@cudeaurora.org>"
Contact: "Sinan Kaya <okaya@codeaurora.org>"
Description:
Contains either 0 or 1 and indicates if the DMA channel is a
low priority (0) or high priority (1) channel.
@ -11,7 +11,7 @@ What: /sys/devices/platform/hidma-mgmt*/chanops/chan*/weight
/sys/devices/platform/QCOM8060:*/chanops/chan*/weight
Date: Nov 2015
KernelVersion: 4.4
Contact: "Sinan Kaya <okaya@cudeaurora.org>"
Contact: "Sinan Kaya <okaya@codeaurora.org>"
Description:
Contains 0..15 and indicates the weight of the channel among
equal priority channels during round robin scheduling.
@ -20,7 +20,7 @@ What: /sys/devices/platform/hidma-mgmt*/chreset_timeout_cycles
/sys/devices/platform/QCOM8060:*/chreset_timeout_cycles
Date: Nov 2015
KernelVersion: 4.4
Contact: "Sinan Kaya <okaya@cudeaurora.org>"
Contact: "Sinan Kaya <okaya@codeaurora.org>"
Description:
Contains the platform specific cycle value to wait after a
reset command is issued. If the value is chosen too short,
@ -32,7 +32,7 @@ What: /sys/devices/platform/hidma-mgmt*/dma_channels
/sys/devices/platform/QCOM8060:*/dma_channels
Date: Nov 2015
KernelVersion: 4.4
Contact: "Sinan Kaya <okaya@cudeaurora.org>"
Contact: "Sinan Kaya <okaya@codeaurora.org>"
Description:
Contains the number of dma channels supported by one instance
of HIDMA hardware. The value may change from chip to chip.
@ -41,7 +41,7 @@ What: /sys/devices/platform/hidma-mgmt*/hw_version_major
/sys/devices/platform/QCOM8060:*/hw_version_major
Date: Nov 2015
KernelVersion: 4.4
Contact: "Sinan Kaya <okaya@cudeaurora.org>"
Contact: "Sinan Kaya <okaya@codeaurora.org>"
Description:
Version number major for the hardware.
@ -49,7 +49,7 @@ What: /sys/devices/platform/hidma-mgmt*/hw_version_minor
/sys/devices/platform/QCOM8060:*/hw_version_minor
Date: Nov 2015
KernelVersion: 4.4
Contact: "Sinan Kaya <okaya@cudeaurora.org>"
Contact: "Sinan Kaya <okaya@codeaurora.org>"
Description:
Version number minor for the hardware.
@ -57,7 +57,7 @@ What: /sys/devices/platform/hidma-mgmt*/max_rd_xactions
/sys/devices/platform/QCOM8060:*/max_rd_xactions
Date: Nov 2015
KernelVersion: 4.4
Contact: "Sinan Kaya <okaya@cudeaurora.org>"
Contact: "Sinan Kaya <okaya@codeaurora.org>"
Description:
Contains a value between 0 and 31. Maximum number of
read transactions that can be issued back to back.
@ -69,7 +69,7 @@ What: /sys/devices/platform/hidma-mgmt*/max_read_request
/sys/devices/platform/QCOM8060:*/max_read_request
Date: Nov 2015
KernelVersion: 4.4
Contact: "Sinan Kaya <okaya@cudeaurora.org>"
Contact: "Sinan Kaya <okaya@codeaurora.org>"
Description:
Size of each read request. The value needs to be a power
of two and can be between 128 and 1024.
@ -78,7 +78,7 @@ What: /sys/devices/platform/hidma-mgmt*/max_wr_xactions
/sys/devices/platform/QCOM8060:*/max_wr_xactions
Date: Nov 2015
KernelVersion: 4.4
Contact: "Sinan Kaya <okaya@cudeaurora.org>"
Contact: "Sinan Kaya <okaya@codeaurora.org>"
Description:
Contains a value between 0 and 31. Maximum number of
write transactions that can be issued back to back.
@ -91,7 +91,7 @@ What: /sys/devices/platform/hidma-mgmt*/max_write_request
/sys/devices/platform/QCOM8060:*/max_write_request
Date: Nov 2015
KernelVersion: 4.4
Contact: "Sinan Kaya <okaya@cudeaurora.org>"
Contact: "Sinan Kaya <okaya@codeaurora.org>"
Description:
Size of each write request. The value needs to be a power
of two and can be between 128 and 1024.

View File

@ -59,28 +59,20 @@ button driver uses the following 3 modes in order not to trigger issues.
If the userspace hasn't been prepared to ignore the unreliable "opened"
events and the unreliable initial state notification, Linux users can use
the following kernel parameters to handle the possible issues:
A. button.lid_init_state=method:
When this option is specified, the ACPI button driver reports the
initial lid state using the returning value of the _LID control method
and whether the "opened"/"closed" events are paired fully relies on the
firmware implementation.
This option can be used to fix some platforms where the returning value
of the _LID control method is reliable but the initial lid state
notification is missing.
This option is the default behavior during the period the userspace
isn't ready to handle the buggy AML tables.
B. button.lid_init_state=open:
A. button.lid_init_state=open:
When this option is specified, the ACPI button driver always reports the
initial lid state as "opened" and whether the "opened"/"closed" events
are paired fully relies on the firmware implementation.
This may fix some platforms where the returning value of the _LID
control method is not reliable and the initial lid state notification is
missing.
This option is the default behavior during the period the userspace
isn't ready to handle the buggy AML tables.
If the userspace has been prepared to ignore the unreliable "opened" events
and the unreliable initial state notification, Linux users should always
use the following kernel parameter:
C. button.lid_init_state=ignore:
B. button.lid_init_state=ignore:
When this option is specified, the ACPI button driver never reports the
initial lid state and there is a compensation mechanism implemented to
ensure that the reliable "closed" notifications can always be delievered

View File

@ -4085,6 +4085,9 @@
usbhid.mousepoll=
[USBHID] The interval which mice are to be polled at.
usbhid.jspoll=
[USBHID] The interval which joysticks are to be polled at.
usb-storage.delay_use=
[UMS] The delay in seconds before a new device is
scanned for Logical Units (default 1).

View File

@ -249,7 +249,6 @@ struct& cdrom_device_ops\ \{ \hidewidth\cr
unsigned\ long);\cr
\noalign{\medskip}
&const\ int& capability;& capability flags \cr
&int& n_minors;& number of active minor devices \cr
\};\cr
}
$$
@ -258,13 +257,7 @@ it should add a function pointer to this $struct$. When a particular
function is not implemented, however, this $struct$ should contain a
NULL instead. The $capability$ flags specify the capabilities of the
\cdrom\ hardware and/or low-level \cdrom\ driver when a \cdrom\ drive
is registered with the \UCD. The value $n_minors$ should be a positive
value indicating the number of minor devices that are supported by
the low-level device driver, normally~1. Although these two variables
are `informative' rather than `operational,' they are included in
$cdrom_device_ops$ because they describe the capability of the {\em
driver\/} rather than the {\em drive}. Nomenclature has always been
difficult in computer programming.
is registered with the \UCD.
Note that most functions have fewer parameters than their
$blkdev_fops$ counterparts. This is because very little of the

View File

@ -8,6 +8,8 @@
Dominik Brodowski <linux@brodo.de>
David Kimdon <dwhedon@debian.org>
Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Viresh Kumar <viresh.kumar@linaro.org>
@ -36,10 +38,11 @@ speed limits (like LCD drivers on ARM architecture). Additionally, the
kernel "constant" loops_per_jiffy is updated on frequency changes
here.
Reference counting is done by cpufreq_get_cpu and cpufreq_put_cpu,
which make sure that the cpufreq processor driver is correctly
registered with the core, and will not be unloaded until
cpufreq_put_cpu is called.
Reference counting of the cpufreq policies is done by cpufreq_cpu_get
and cpufreq_cpu_put, which make sure that the cpufreq driver is
correctly registered with the core, and will not be unloaded until
cpufreq_put_cpu is called. That also ensures that the respective cpufreq
policy doesn't get freed while being used.
2. CPUFreq notifiers
====================
@ -69,18 +72,16 @@ CPUFreq policy notifier is called twice for a policy transition:
The phase is specified in the second argument to the notifier.
The third argument, a void *pointer, points to a struct cpufreq_policy
consisting of five values: cpu, min, max, policy and max_cpu_freq. min
and max are the lower and upper frequencies (in kHz) of the new
policy, policy the new policy, cpu the number of the affected CPU; and
max_cpu_freq the maximum supported CPU frequency. This value is given
for informational purposes only.
consisting of several values, including min, max (the lower and upper
frequencies (in kHz) of the new policy).
2.2 CPUFreq transition notifiers
--------------------------------
These are notified twice when the CPUfreq driver switches the CPU core
frequency and this change has any external implications.
These are notified twice for each online CPU in the policy, when the
CPUfreq driver switches the CPU core frequency and this change has no
any external implications.
The second argument specifies the phase - CPUFREQ_PRECHANGE or
CPUFREQ_POSTCHANGE.
@ -90,6 +91,7 @@ values:
cpu - number of the affected CPU
old - old frequency
new - new frequency
flags - flags of the cpufreq driver
3. CPUFreq Table Generation with Operating Performance Point (OPP)
==================================================================

View File

@ -9,6 +9,8 @@
Dominik Brodowski <linux@brodo.de>
Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Viresh Kumar <viresh.kumar@linaro.org>
@ -49,49 +51,65 @@ using cpufreq_register_driver()
What shall this struct cpufreq_driver contain?
cpufreq_driver.name - The name of this driver.
.name - The name of this driver.
cpufreq_driver.init - A pointer to the per-CPU initialization
function.
.init - A pointer to the per-policy initialization function.
cpufreq_driver.verify - A pointer to a "verification" function.
.verify - A pointer to a "verification" function.
cpufreq_driver.setpolicy _or_
cpufreq_driver.target/
target_index - See below on the differences.
.setpolicy _or_ .fast_switch _or_ .target _or_ .target_index - See
below on the differences.
And optionally
cpufreq_driver.exit - A pointer to a per-CPU cleanup
function called during CPU_POST_DEAD
phase of cpu hotplug process.
.flags - Hints for the cpufreq core.
cpufreq_driver.stop_cpu - A pointer to a per-CPU stop function
called during CPU_DOWN_PREPARE phase of
cpu hotplug process.
.driver_data - cpufreq driver specific data.
cpufreq_driver.resume - A pointer to a per-CPU resume function
which is called with interrupts disabled
and _before_ the pre-suspend frequency
and/or policy is restored by a call to
->target/target_index or ->setpolicy.
.resolve_freq - Returns the most appropriate frequency for a target
frequency. Doesn't change the frequency though.
cpufreq_driver.attr - A pointer to a NULL-terminated list of
"struct freq_attr" which allow to
export values to sysfs.
.get_intermediate and target_intermediate - Used to switch to stable
frequency while changing CPU frequency.
cpufreq_driver.get_intermediate
and target_intermediate Used to switch to stable frequency while
changing CPU frequency.
.get - Returns current frequency of the CPU.
.bios_limit - Returns HW/BIOS max frequency limitations for the CPU.
.exit - A pointer to a per-policy cleanup function called during
CPU_POST_DEAD phase of cpu hotplug process.
.stop_cpu - A pointer to a per-policy stop function called during
CPU_DOWN_PREPARE phase of cpu hotplug process.
.suspend - A pointer to a per-policy suspend function which is called
with interrupts disabled and _after_ the governor is stopped for the
policy.
.resume - A pointer to a per-policy resume function which is called
with interrupts disabled and _before_ the governor is started again.
.ready - A pointer to a per-policy ready function which is called after
the policy is fully initialized.
.attr - A pointer to a NULL-terminated list of "struct freq_attr" which
allow to export values to sysfs.
.boost_enabled - If set, boost frequencies are enabled.
.set_boost - A pointer to a per-policy function to enable/disable boost
frequencies.
1.2 Per-CPU Initialization
--------------------------
Whenever a new CPU is registered with the device model, or after the
cpufreq driver registers itself, the per-CPU initialization function
cpufreq_driver.init is called. It takes a struct cpufreq_policy
*policy as argument. What to do now?
cpufreq driver registers itself, the per-policy initialization function
cpufreq_driver.init is called if no cpufreq policy existed for the CPU.
Note that the .init() and .exit() routines are called only once for the
policy and not for each CPU managed by the policy. It takes a struct
cpufreq_policy *policy as argument. What to do now?
If necessary, activate the CPUfreq support on your CPU.
@ -117,47 +135,45 @@ policy->governor must contain the "default policy" for
cpufreq_driver.setpolicy or
cpufreq_driver.target/target_index is called
with these values.
policy->cpus Update this with the masks of the
(online + offline) CPUs that do DVFS
along with this CPU (i.e. that share
clock/voltage rails with it).
For setting some of these values (cpuinfo.min[max]_freq, policy->min[max]), the
frequency table helpers might be helpful. See the section 2 for more information
on them.
SMP systems normally have same clock source for a group of cpus. For these the
.init() would be called only once for the first online cpu. Here the .init()
routine must initialize policy->cpus with mask of all possible cpus (Online +
Offline) that share the clock. Then the core would copy this mask onto
policy->related_cpus and will reset policy->cpus to carry only online cpus.
1.3 verify
------------
----------
When the user decides a new policy (consisting of
"policy,governor,min,max") shall be set, this policy must be validated
so that incompatible values can be corrected. For verifying these
values, a frequency table helper and/or the
cpufreq_verify_within_limits(struct cpufreq_policy *policy, unsigned
int min_freq, unsigned int max_freq) function might be helpful. See
section 2 for details on frequency table helpers.
values cpufreq_verify_within_limits(struct cpufreq_policy *policy,
unsigned int min_freq, unsigned int max_freq) function might be helpful.
See section 2 for details on frequency table helpers.
You need to make sure that at least one valid frequency (or operating
range) is within policy->min and policy->max. If necessary, increase
policy->max first, and only if this is no solution, decrease policy->min.
1.4 target/target_index or setpolicy?
----------------------------
1.4 target or target_index or setpolicy or fast_switch?
-------------------------------------------------------
Most cpufreq drivers or even most cpu frequency scaling algorithms
only allow the CPU to be set to one frequency. For these, you use the
->target/target_index call.
only allow the CPU frequency to be set to predefined fixed values. For
these, you use the ->target(), ->target_index() or ->fast_switch()
callbacks.
Some cpufreq-capable processors switch the frequency between certain
limits on their own. These shall use the ->setpolicy call
Some cpufreq capable processors switch the frequency between certain
limits on their own. These shall use the ->setpolicy() callback.
1.5. target/target_index
-------------
------------------------
The target_index call has two arguments: struct cpufreq_policy *policy,
and unsigned int index (into the exposed frequency table).
@ -186,9 +202,20 @@ actual frequency must be determined using the following rules:
Here again the frequency table helper might assist you - see section 2
for details.
1.6. fast_switch
----------------
1.6 setpolicy
---------------
This function is used for frequency switching from scheduler's context.
Not all drivers are expected to implement it, as sleeping from within
this callback isn't allowed. This callback must be highly optimized to
do switching as fast as possible.
This function has two arguments: struct cpufreq_policy *policy and
unsigned int target_frequency.
1.7 setpolicy
-------------
The setpolicy call only takes a struct cpufreq_policy *policy as
argument. You need to set the lower limit of the in-processor or
@ -198,7 +225,7 @@ setting when policy->policy is CPUFREQ_POLICY_PERFORMANCE, and a
powersaving-oriented setting when CPUFREQ_POLICY_POWERSAVE. Also check
the reference implementation in drivers/cpufreq/longrun.c
1.7 get_intermediate and target_intermediate
1.8 get_intermediate and target_intermediate
--------------------------------------------
Only for drivers with target_index() and CPUFREQ_ASYNC_NOTIFICATION unset.
@ -222,42 +249,36 @@ failures as core would send notifications for that.
As most cpufreq processors only allow for being set to a few specific
frequencies, a "frequency table" with some functions might assist in
some work of the processor driver. Such a "frequency table" consists
of an array of struct cpufreq_frequency_table entries, with any value in
"driver_data" you want to use, and the corresponding frequency in
"frequency". At the end of the table, you need to add a
cpufreq_frequency_table entry with frequency set to CPUFREQ_TABLE_END. And
if you want to skip one entry in the table, set the frequency to
CPUFREQ_ENTRY_INVALID. The entries don't need to be in ascending
order.
some work of the processor driver. Such a "frequency table" consists of
an array of struct cpufreq_frequency_table entries, with driver specific
values in "driver_data", the corresponding frequency in "frequency" and
flags set. At the end of the table, you need to add a
cpufreq_frequency_table entry with frequency set to CPUFREQ_TABLE_END.
And if you want to skip one entry in the table, set the frequency to
CPUFREQ_ENTRY_INVALID. The entries don't need to be in sorted in any
particular order, but if they are cpufreq core will do DVFS a bit
quickly for them as search for best match is faster.
By calling cpufreq_table_validate_and_show(struct cpufreq_policy *policy,
struct cpufreq_frequency_table *table);
the cpuinfo.min_freq and cpuinfo.max_freq values are detected, and
policy->min and policy->max are set to the same values. This is
helpful for the per-CPU initialization stage.
By calling cpufreq_table_validate_and_show(), the cpuinfo.min_freq and
cpuinfo.max_freq values are detected, and policy->min and policy->max
are set to the same values. This is helpful for the per-CPU
initialization stage.
int cpufreq_frequency_table_verify(struct cpufreq_policy *policy,
struct cpufreq_frequency_table *table);
assures that at least one valid frequency is within policy->min and
policy->max, and all other criteria are met. This is helpful for the
->verify call.
cpufreq_frequency_table_verify() assures that at least one valid
frequency is within policy->min and policy->max, and all other criteria
are met. This is helpful for the ->verify call.
int cpufreq_frequency_table_target(struct cpufreq_policy *policy,
unsigned int target_freq,
unsigned int relation);
is the corresponding frequency table helper for the ->target
stage. Just pass the values to this function, and this function
returns the number of the frequency table entry which contains
the frequency the CPU shall be set to.
cpufreq_frequency_table_target() is the corresponding frequency table
helper for the ->target stage. Just pass the values to this function,
and this function returns the of the frequency table entry which
contains the frequency the CPU shall be set to.
The following macros can be used as iterators over cpufreq_frequency_table:
cpufreq_for_each_entry(pos, table) - iterates over all entries of frequency
table.
cpufreq-for_each_valid_entry(pos, table) - iterates over all entries,
cpufreq_for_each_valid_entry(pos, table) - iterates over all entries,
excluding CPUFREQ_ENTRY_INVALID frequencies.
Use arguments "pos" - a cpufreq_frequency_table * as a loop cursor and
"table" - the cpufreq_frequency_table * you want to iterate over.

View File

@ -34,10 +34,10 @@ cpufreq stats provides following statistics (explained in detail below).
- total_trans
- trans_table
All the statistics will be from the time the stats driver has been inserted
to the time when a read of a particular statistic is done. Obviously, stats
driver will not have any information about the frequency transitions before
the stats driver insertion.
All the statistics will be from the time the stats driver has been inserted
(or the time the stats were reset) to the time when a read of a particular
statistic is done. Obviously, stats driver will not have any information
about the frequency transitions before the stats driver insertion.
--------------------------------------------------------------------------------
<mysystem>:/sys/devices/system/cpu/cpu0/cpufreq/stats # ls -l
@ -110,25 +110,13 @@ Config Main Menu
CPU Frequency scaling --->
[*] CPU Frequency scaling
[*] CPU frequency translation statistics
[*] CPU frequency translation statistics details
"CPU Frequency scaling" (CONFIG_CPU_FREQ) should be enabled to configure
cpufreq-stats.
"CPU frequency translation statistics" (CONFIG_CPU_FREQ_STAT) provides the
basic statistics which includes time_in_state and total_trans.
statistics which includes time_in_state, total_trans and trans_table.
"CPU frequency translation statistics details" (CONFIG_CPU_FREQ_STAT_DETAILS)
provides fine grained cpufreq stats by trans_table. The reason for having a
separate config option for trans_table is:
- trans_table goes against the traditional /sysfs rule of one value per
interface. It provides a whole bunch of value in a 2 dimensional matrix
form.
Once these two options are enabled and your CPU supports cpufrequency, you
Once this option is enabled and your CPU supports cpufrequency, you
will be able to see the CPU frequency statistics in /sysfs.

View File

@ -10,6 +10,8 @@
Dominik Brodowski <linux@brodo.de>
some additions and corrections by Nico Golde <nico@ngolde.de>
Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Viresh Kumar <viresh.kumar@linaro.org>
@ -28,32 +30,27 @@ Contents:
2.3 Userspace
2.4 Ondemand
2.5 Conservative
2.6 Schedutil
3. The Governor Interface in the CPUfreq Core
4. References
1. What Is A CPUFreq Governor?
==============================
Most cpufreq drivers (except the intel_pstate and longrun) or even most
cpu frequency scaling algorithms only offer the CPU to be set to one
frequency. In order to offer dynamic frequency scaling, the cpufreq
core must be able to tell these drivers of a "target frequency". So
these specific drivers will be transformed to offer a "->target/target_index"
call instead of the existing "->setpolicy" call. For "longrun", all
stays the same, though.
cpu frequency scaling algorithms only allow the CPU frequency to be set
to predefined fixed values. In order to offer dynamic frequency
scaling, the cpufreq core must be able to tell these drivers of a
"target frequency". So these specific drivers will be transformed to
offer a "->target/target_index/fast_switch()" call instead of the
"->setpolicy()" call. For set_policy drivers, all stays the same,
though.
How to decide what frequency within the CPUfreq policy should be used?
That's done using "cpufreq governors". Two are already in this patch
-- they're the already existing "powersave" and "performance" which
set the frequency statically to the lowest or highest frequency,
respectively. At least two more such governors will be ready for
addition in the near future, but likely many more as there are various
different theories and models about dynamic frequency scaling
around. Using such a generic interface as cpufreq offers to scaling
governors, these can be tested extensively, and the best one can be
selected for each specific use.
That's done using "cpufreq governors".
Basically, it's the following flow graph:
@ -71,7 +68,7 @@ CPU can be set to switch independently | CPU can only be set
/ the limits of policy->{min,max}
/ \
/ \
Using the ->setpolicy call, Using the ->target/target_index call,
Using the ->setpolicy call, Using the ->target/target_index/fast_switch call,
the limits and the the frequency closest
"policy" is set. to target_freq is set.
It is assured that it
@ -109,114 +106,159 @@ directory.
2.4 Ondemand
------------
The CPUfreq governor "ondemand" sets the CPU depending on the
current usage. To do this the CPU must have the capability to
switch the frequency very quickly. There are a number of sysfs file
accessible parameters:
The CPUfreq governor "ondemand" sets the CPU frequency depending on the
current system load. Load estimation is triggered by the scheduler
through the update_util_data->func hook; when triggered, cpufreq checks
the CPU-usage statistics over the last period and the governor sets the
CPU accordingly. The CPU must have the capability to switch the
frequency very quickly.
sampling_rate: measured in uS (10^-6 seconds), this is how often you
want the kernel to look at the CPU usage and to make decisions on
what to do about the frequency. Typically this is set to values of
around '10000' or more. It's default value is (cmp. with users-guide.txt):
transition_latency * 1000
Be aware that transition latency is in ns and sampling_rate is in us, so you
get the same sysfs value by default.
Sampling rate should always get adjusted considering the transition latency
To set the sampling rate 750 times as high as the transition latency
in the bash (as said, 1000 is default), do:
echo `$(($(cat cpuinfo_transition_latency) * 750 / 1000)) \
>ondemand/sampling_rate
Sysfs files:
sampling_rate_min:
The sampling rate is limited by the HW transition latency:
transition_latency * 100
Or by kernel restrictions:
If CONFIG_NO_HZ_COMMON is set, the limit is 10ms fixed.
If CONFIG_NO_HZ_COMMON is not set or nohz=off boot parameter is used, the
limits depend on the CONFIG_HZ option:
HZ=1000: min=20000us (20ms)
HZ=250: min=80000us (80ms)
HZ=100: min=200000us (200ms)
The highest value of kernel and HW latency restrictions is shown and
used as the minimum sampling rate.
* sampling_rate:
up_threshold: defines what the average CPU usage between the samplings
of 'sampling_rate' needs to be for the kernel to make a decision on
whether it should increase the frequency. For example when it is set
to its default value of '95' it means that between the checking
intervals the CPU needs to be on average more than 95% in use to then
decide that the CPU frequency needs to be increased.
Measured in uS (10^-6 seconds), this is how often you want the kernel
to look at the CPU usage and to make decisions on what to do about the
frequency. Typically this is set to values of around '10000' or more.
It's default value is (cmp. with users-guide.txt): transition_latency
* 1000. Be aware that transition latency is in ns and sampling_rate
is in us, so you get the same sysfs value by default. Sampling rate
should always get adjusted considering the transition latency to set
the sampling rate 750 times as high as the transition latency in the
bash (as said, 1000 is default), do:
ignore_nice_load: this parameter takes a value of '0' or '1'. When
set to '0' (its default), all processes are counted towards the
'cpu utilisation' value. When set to '1', the processes that are
run with a 'nice' value will not count (and thus be ignored) in the
overall usage calculation. This is useful if you are running a CPU
intensive calculation on your laptop that you do not care how long it
takes to complete as you can 'nice' it and prevent it from taking part
in the deciding process of whether to increase your CPU frequency.
$ echo `$(($(cat cpuinfo_transition_latency) * 750 / 1000)) > ondemand/sampling_rate
sampling_down_factor: this parameter controls the rate at which the
kernel makes a decision on when to decrease the frequency while running
at top speed. When set to 1 (the default) decisions to reevaluate load
are made at the same interval regardless of current clock speed. But
when set to greater than 1 (e.g. 100) it acts as a multiplier for the
scheduling interval for reevaluating load when the CPU is at its top
speed due to high load. This improves performance by reducing the overhead
of load evaluation and helping the CPU stay at its top speed when truly
busy, rather than shifting back and forth in speed. This tunable has no
effect on behavior at lower speeds/lower CPU loads.
* sampling_rate_min:
powersave_bias: this parameter takes a value between 0 to 1000. It
defines the percentage (times 10) value of the target frequency that
will be shaved off of the target. For example, when set to 100 -- 10%,
when ondemand governor would have targeted 1000 MHz, it will target
1000 MHz - (10% of 1000 MHz) = 900 MHz instead. This is set to 0
(disabled) by default.
When AMD frequency sensitivity powersave bias driver --
drivers/cpufreq/amd_freq_sensitivity.c is loaded, this parameter
defines the workload frequency sensitivity threshold in which a lower
frequency is chosen instead of ondemand governor's original target.
The frequency sensitivity is a hardware reported (on AMD Family 16h
Processors and above) value between 0 to 100% that tells software how
the performance of the workload running on a CPU will change when
frequency changes. A workload with sensitivity of 0% (memory/IO-bound)
will not perform any better on higher core frequency, whereas a
workload with sensitivity of 100% (CPU-bound) will perform better
higher the frequency. When the driver is loaded, this is set to 400
by default -- for CPUs running workloads with sensitivity value below
40%, a lower frequency is chosen. Unloading the driver or writing 0
will disable this feature.
The sampling rate is limited by the HW transition latency:
transition_latency * 100
Or by kernel restrictions:
- If CONFIG_NO_HZ_COMMON is set, the limit is 10ms fixed.
- If CONFIG_NO_HZ_COMMON is not set or nohz=off boot parameter is
used, the limits depend on the CONFIG_HZ option:
HZ=1000: min=20000us (20ms)
HZ=250: min=80000us (80ms)
HZ=100: min=200000us (200ms)
The highest value of kernel and HW latency restrictions is shown and
used as the minimum sampling rate.
* up_threshold:
This defines what the average CPU usage between the samplings of
'sampling_rate' needs to be for the kernel to make a decision on
whether it should increase the frequency. For example when it is set
to its default value of '95' it means that between the checking
intervals the CPU needs to be on average more than 95% in use to then
decide that the CPU frequency needs to be increased.
* ignore_nice_load:
This parameter takes a value of '0' or '1'. When set to '0' (its
default), all processes are counted towards the 'cpu utilisation'
value. When set to '1', the processes that are run with a 'nice'
value will not count (and thus be ignored) in the overall usage
calculation. This is useful if you are running a CPU intensive
calculation on your laptop that you do not care how long it takes to
complete as you can 'nice' it and prevent it from taking part in the
deciding process of whether to increase your CPU frequency.
* sampling_down_factor:
This parameter controls the rate at which the kernel makes a decision
on when to decrease the frequency while running at top speed. When set
to 1 (the default) decisions to reevaluate load are made at the same
interval regardless of current clock speed. But when set to greater
than 1 (e.g. 100) it acts as a multiplier for the scheduling interval
for reevaluating load when the CPU is at its top speed due to high
load. This improves performance by reducing the overhead of load
evaluation and helping the CPU stay at its top speed when truly busy,
rather than shifting back and forth in speed. This tunable has no
effect on behavior at lower speeds/lower CPU loads.
* powersave_bias:
This parameter takes a value between 0 to 1000. It defines the
percentage (times 10) value of the target frequency that will be
shaved off of the target. For example, when set to 100 -- 10%, when
ondemand governor would have targeted 1000 MHz, it will target
1000 MHz - (10% of 1000 MHz) = 900 MHz instead. This is set to 0
(disabled) by default.
When AMD frequency sensitivity powersave bias driver --
drivers/cpufreq/amd_freq_sensitivity.c is loaded, this parameter
defines the workload frequency sensitivity threshold in which a lower
frequency is chosen instead of ondemand governor's original target.
The frequency sensitivity is a hardware reported (on AMD Family 16h
Processors and above) value between 0 to 100% that tells software how
the performance of the workload running on a CPU will change when
frequency changes. A workload with sensitivity of 0% (memory/IO-bound)
will not perform any better on higher core frequency, whereas a
workload with sensitivity of 100% (CPU-bound) will perform better
higher the frequency. When the driver is loaded, this is set to 400 by
default -- for CPUs running workloads with sensitivity value below
40%, a lower frequency is chosen. Unloading the driver or writing 0
will disable this feature.
2.5 Conservative
----------------
The CPUfreq governor "conservative", much like the "ondemand"
governor, sets the CPU depending on the current usage. It differs in
behaviour in that it gracefully increases and decreases the CPU speed
rather than jumping to max speed the moment there is any load on the
CPU. This behaviour more suitable in a battery powered environment.
The governor is tweaked in the same manner as the "ondemand" governor
through sysfs with the addition of:
governor, sets the CPU frequency depending on the current usage. It
differs in behaviour in that it gracefully increases and decreases the
CPU speed rather than jumping to max speed the moment there is any load
on the CPU. This behaviour is more suitable in a battery powered
environment. The governor is tweaked in the same manner as the
"ondemand" governor through sysfs with the addition of:
freq_step: this describes what percentage steps the cpu freq should be
increased and decreased smoothly by. By default the cpu frequency will
increase in 5% chunks of your maximum cpu frequency. You can change this
value to anywhere between 0 and 100 where '0' will effectively lock your
CPU at a speed regardless of its load whilst '100' will, in theory, make
it behave identically to the "ondemand" governor.
* freq_step:
down_threshold: same as the 'up_threshold' found for the "ondemand"
governor but for the opposite direction. For example when set to its
default value of '20' it means that if the CPU usage needs to be below
20% between samples to have the frequency decreased.
This describes what percentage steps the cpu freq should be increased
and decreased smoothly by. By default the cpu frequency will increase
in 5% chunks of your maximum cpu frequency. You can change this value
to anywhere between 0 and 100 where '0' will effectively lock your CPU
at a speed regardless of its load whilst '100' will, in theory, make
it behave identically to the "ondemand" governor.
* down_threshold:
Same as the 'up_threshold' found for the "ondemand" governor but for
the opposite direction. For example when set to its default value of
'20' it means that if the CPU usage needs to be below 20% between
samples to have the frequency decreased.
* sampling_down_factor:
Similar functionality as in "ondemand" governor. But in
"conservative", it controls the rate at which the kernel makes a
decision on when to decrease the frequency while running in any speed.
Load for frequency increase is still evaluated every sampling rate.
2.6 Schedutil
-------------
The "schedutil" governor aims at better integration with the Linux
kernel scheduler. Load estimation is achieved through the scheduler's
Per-Entity Load Tracking (PELT) mechanism, which also provides
information about the recent load [1]. This governor currently does
load based DVFS only for tasks managed by CFS. RT and DL scheduler tasks
are always run at the highest frequency. Unlike all the other
governors, the code is located under the kernel/sched/ directory.
Sysfs files:
* rate_limit_us:
This contains a value in microseconds. The governor waits for
rate_limit_us time before reevaluating the load again, after it has
evaluated the load once.
For an in-depth comparison with the other governors refer to [2].
sampling_down_factor: similar functionality as in "ondemand" governor.
But in "conservative", it controls the rate at which the kernel makes
a decision on when to decrease the frequency while running in any
speed. Load for frequency increase is still evaluated every
sampling rate.
3. The Governor Interface in the CPUfreq Core
=============================================
@ -225,26 +267,10 @@ A new governor must register itself with the CPUfreq core using
"cpufreq_register_governor". The struct cpufreq_governor, which has to
be passed to that function, must contain the following values:
governor->name - A unique name for this governor
governor->governor - The governor callback function
governor->owner - .THIS_MODULE for the governor module (if
appropriate)
The governor->governor callback is called with the current (or to-be-set)
cpufreq_policy struct for that CPU, and an unsigned int event. The
following events are currently defined:
CPUFREQ_GOV_START: This governor shall start its duty for the CPU
policy->cpu
CPUFREQ_GOV_STOP: This governor shall end its duty for the CPU
policy->cpu
CPUFREQ_GOV_LIMITS: The limits for CPU policy->cpu have changed to
policy->min and policy->max.
If you need other "events" externally of your driver, _only_ use the
cpufreq_governor_l(unsigned int cpu, unsigned int event) call to the
CPUfreq core to ensure proper locking.
governor->name - A unique name for this governor.
governor->owner - .THIS_MODULE for the governor module (if appropriate).
plus a set of hooks to the functions implementing the governor's logic.
The CPUfreq governor may call the CPU processor driver using one of
these two functions:
@ -258,12 +284,18 @@ int __cpufreq_driver_target(struct cpufreq_policy *policy,
unsigned int relation);
target_freq must be within policy->min and policy->max, of course.
What's the difference between these two functions? When your governor
still is in a direct code path of a call to governor->governor, the
per-CPU cpufreq lock is still held in the cpufreq core, and there's
no need to lock it again (in fact, this would cause a deadlock). So
use __cpufreq_driver_target only in these cases. In all other cases
(for example, when there's a "daemonized" function that wakes up
every second), use cpufreq_driver_target to lock the cpufreq per-CPU
lock before the command is passed to the cpufreq processor driver.
What's the difference between these two functions? When your governor is
in a direct code path of a call to governor callbacks, like
governor->start(), the policy->rwsem is still held in the cpufreq core,
and there's no need to lock it again (in fact, this would cause a
deadlock). So use __cpufreq_driver_target only in these cases. In all
other cases (for example, when there's a "daemonized" function that
wakes up every second), use cpufreq_driver_target to take policy->rwsem
before the command is passed to the cpufreq driver.
4. References
=============
[1] Per-entity load tracking: https://lwn.net/Articles/531853/
[2] Improvements in CPU frequency management: https://lwn.net/Articles/682391/

View File

@ -18,16 +18,29 @@
Documents in this directory:
----------------------------
core.txt - General description of the CPUFreq core and
of CPUFreq notifiers
cpu-drivers.txt - How to implement a new cpufreq processor driver
amd-powernow.txt - AMD powernow driver specific file.
boost.txt - Frequency boosting support.
core.txt - General description of the CPUFreq core and
of CPUFreq notifiers.
cpu-drivers.txt - How to implement a new cpufreq processor driver.
cpufreq-nforce2.txt - nVidia nForce2 platform specific file.
cpufreq-stats.txt - General description of sysfs cpufreq stats.
governors.txt - What are cpufreq governors and how to
implement them?
index.txt - File index, Mailing list and Links (this document)
intel-pstate.txt - Intel pstate cpufreq driver specific file.
pcc-cpufreq.txt - PCC cpufreq driver specific file.
user-guide.txt - User Guide to CPUFreq
@ -35,9 +48,7 @@ Mailing List
------------
There is a CPU frequency changing CVS commit and general list where
you can report bugs, problems or submit patches. To post a message,
send an email to linux-pm@vger.kernel.org, to subscribe go to
http://vger.kernel.org/vger-lists.html#linux-pm and follow the
instructions there.
send an email to linux-pm@vger.kernel.org.
Links
-----
@ -48,7 +59,7 @@ how to access the CVS repository:
* http://cvs.arm.linux.org.uk/
the CPUFreq Mailing list:
* http://vger.kernel.org/vger-lists.html#cpufreq
* http://vger.kernel.org/vger-lists.html#linux-pm
Clock and voltage scaling for the SA-1100:
* http://www.lartmaker.nl/projects/scaling

View File

@ -85,6 +85,21 @@ Sysfs will show :
Refer to "Intel® 64 and IA-32 Architectures Software Developers Manual
Volume 3: System Programming Guide" to understand ratios.
There is one more sysfs attribute in /sys/devices/system/cpu/intel_pstate/
that can be used for controlling the operation mode of the driver:
status: Three settings are possible:
"off" - The driver is not in use at this time.
"active" - The driver works as a P-state governor (default).
"passive" - The driver works as a regular cpufreq one and collaborates
with the generic cpufreq governors (it sets P-states as
requested by those governors).
The current setting is returned by reads from this attribute. Writing one
of the above strings to it changes the operation mode as indicated by that
string, if possible. If HW-managed P-states (HWP) are enabled, it is not
possible to change the driver's operation mode and attempts to write to
this attribute will fail.
cpufreq sysfs for Intel P-State
Since this driver registers with cpufreq, cpufreq sysfs is also presented.

View File

@ -18,7 +18,7 @@
Contents:
---------
1. Supported Architectures and Processors
1.1 ARM
1.1 ARM and ARM64
1.2 x86
1.3 sparc64
1.4 ppc
@ -37,16 +37,10 @@ Contents:
1. Supported Architectures and Processors
=========================================
1.1 ARM
-------
The following ARM processors are supported by cpufreq:
ARM Integrator
ARM-SA1100
ARM-SA1110
Intel PXA
1.1 ARM and ARM64
-----------------
Almost all ARM and ARM64 platforms support CPU frequency scaling.
1.2 x86
-------
@ -69,6 +63,7 @@ Transmeta Crusoe
Transmeta Efficeon
VIA Cyrix 3 / C3
various processors on some ACPI 2.0-compatible systems [*]
And many more
[*] Only if "ACPI Processor Performance States" are available
to the ACPI<->BIOS interface.
@ -147,10 +142,19 @@ mounted it at /sys, the cpufreq interface is located in a subdirectory
"cpufreq" within the cpu-device directory
(e.g. /sys/devices/system/cpu/cpu0/cpufreq/ for the first CPU).
affected_cpus : List of Online CPUs that require software
coordination of frequency.
cpuinfo_cur_freq : Current frequency of the CPU as obtained from
the hardware, in KHz. This is the frequency
the CPU actually runs at.
cpuinfo_min_freq : this file shows the minimum operating
frequency the processor can run at(in kHz)
cpuinfo_max_freq : this file shows the maximum operating
frequency the processor can run at(in kHz)
cpuinfo_transition_latency The time it takes on this CPU to
switch between two frequencies in nano
seconds. If unknown or known to be
@ -163,25 +167,30 @@ cpuinfo_transition_latency The time it takes on this CPU to
userspace daemon. Make sure to not
switch the frequency too often
resulting in performance loss.
scaling_driver : this file shows what cpufreq driver is
used to set the frequency on this CPU
related_cpus : List of Online + Offline CPUs that need software
coordination of frequency.
scaling_available_frequencies : List of available frequencies, in KHz.
scaling_available_governors : this file shows the CPUfreq governors
available in this kernel. You can see the
currently activated governor in
scaling_cur_freq : Current frequency of the CPU as determined by
the governor and cpufreq core, in KHz. This is
the frequency the kernel thinks the CPU runs
at.
scaling_driver : this file shows what cpufreq driver is
used to set the frequency on this CPU
scaling_governor, and by "echoing" the name of another
governor you can change it. Please note
that some governors won't load - they only
work on some specific architectures or
processors.
cpuinfo_cur_freq : Current frequency of the CPU as obtained from
the hardware, in KHz. This is the frequency
the CPU actually runs at.
scaling_available_frequencies : List of available frequencies, in KHz.
scaling_min_freq and
scaling_max_freq show the current "policy limits" (in
kHz). By echoing new values into these
@ -190,16 +199,11 @@ scaling_max_freq show the current "policy limits" (in
first set scaling_max_freq, then
scaling_min_freq.
affected_cpus : List of Online CPUs that require software
coordination of frequency.
related_cpus : List of Online + Offline CPUs that need software
coordination of frequency.
scaling_cur_freq : Current frequency of the CPU as determined by
the governor and cpufreq core, in KHz. This is
the frequency the kernel thinks the CPU runs
at.
scaling_setspeed This can be read to get the currently programmed
value by the governor. This can be written to
change the current frequency for a group of
CPUs, represented by a policy. This is supported
currently only by the userspace governor.
bios_limit : If the BIOS tells the OS to limit a CPU to
lower frequencies, the user can read out the

View File

@ -207,6 +207,10 @@ Optional feature arguments are:
block, then the cache block is invalidated.
To enable passthrough mode the cache must be clean.
metadata2 : use version 2 of the metadata. This stores the dirty bits
in a separate btree, which improves speed of shutting
down the cache.
A policy called 'default' is always registered. This is an alias for
the policy we currently think is giving best all round performance.

View File

@ -161,6 +161,15 @@ The target is named "raid" and it accepts the following parameters:
the RAID type (i.e. the allocation algorithm) as well, e.g.
changing from raid5_ls to raid5_n.
[journal_dev <dev>]
This option adds a journal device to raid4/5/6 raid sets and
uses it to close the 'write hole' caused by the non-atomic updates
to the component devices which can cause data loss during recovery.
The journal device is used as writethrough thus causing writes to
be throttled versus non-journaled raid4/5/6 sets.
Takeover/reshape is not possible with a raid4/5/6 journal device;
it has to be deconfigured before requesting these.
<#raid_devs>: The number of devices composing the array.
Each device consists of two entries. The first is the device
containing the metadata (if any); the second is the one containing the
@ -245,6 +254,9 @@ recovery. Here is a fuller description of the individual fields:
<data_offset> The current data offset to the start of the user data on
each component device of a raid set (see the respective
raid parameter to support out-of-place reshaping).
<journal_char> 'A' - active raid4/5/6 journal device.
'D' - dead journal device.
'-' - no journal device.
Message Interface
@ -314,3 +326,8 @@ Version History
1.9.0 Add support for RAID level takeover/reshape/region size
and set size reduction.
1.9.1 Fix activation of existing RAID 4/10 mapped devices
1.9.2 Don't emit '- -' on the status table line in case the constructor
fails reading a superblock. Correctly emit 'maj:min1 maj:min2' and
'D' on the status line. If '- -' is passed into the constructor, emit
'- -' on the table line and '-' as the status line health character.
1.10.0 Add support for raid4/5/6 journal device

View File

@ -0,0 +1,128 @@
TI CPUFreq and OPP bindings
================================
Certain TI SoCs, like those in the am335x, am437x, am57xx, and dra7xx
families support different OPPs depending on the silicon variant in use.
The ti-cpufreq driver can use revision and an efuse value from the SoC to
provide the OPP framework with supported hardware information. This is
used to determine which OPPs from the operating-points-v2 table get enabled
when it is parsed by the OPP framework.
Required properties:
--------------------
In 'cpus' nodes:
- operating-points-v2: Phandle to the operating-points-v2 table to use.
In 'operating-points-v2' table:
- compatible: Should be
- 'operating-points-v2-ti-cpu' for am335x, am43xx, and dra7xx/am57xx SoCs
- syscon: A phandle pointing to a syscon node representing the control module
register space of the SoC.
Optional properties:
--------------------
For each opp entry in 'operating-points-v2' table:
- opp-supported-hw: Two bitfields indicating:
1. Which revision of the SoC the OPP is supported by
2. Which eFuse bits indicate this OPP is available
A bitwise AND is performed against these values and if any bit
matches, the OPP gets enabled.
Example:
--------
/* From arch/arm/boot/dts/am33xx.dtsi */
cpus {
#address-cells = <1>;
#size-cells = <0>;
cpu@0 {
compatible = "arm,cortex-a8";
device_type = "cpu";
reg = <0>;
operating-points-v2 = <&cpu0_opp_table>;
clocks = <&dpll_mpu_ck>;
clock-names = "cpu";
clock-latency = <300000>; /* From omap-cpufreq driver */
};
};
/*
* cpu0 has different OPPs depending on SoC revision and some on revisions
* 0x2 and 0x4 have eFuse bits that indicate if they are available or not
*/
cpu0_opp_table: opp-table {
compatible = "operating-points-v2-ti-cpu";
syscon = <&scm_conf>;
/*
* The three following nodes are marked with opp-suspend
* because they can not be enabled simultaneously on a
* single SoC.
*/
opp50@300000000 {
opp-hz = /bits/ 64 <300000000>;
opp-microvolt = <950000 931000 969000>;
opp-supported-hw = <0x06 0x0010>;
opp-suspend;
};
opp100@275000000 {
opp-hz = /bits/ 64 <275000000>;
opp-microvolt = <1100000 1078000 1122000>;
opp-supported-hw = <0x01 0x00FF>;
opp-suspend;
};
opp100@300000000 {
opp-hz = /bits/ 64 <300000000>;
opp-microvolt = <1100000 1078000 1122000>;
opp-supported-hw = <0x06 0x0020>;
opp-suspend;
};
opp100@500000000 {
opp-hz = /bits/ 64 <500000000>;
opp-microvolt = <1100000 1078000 1122000>;
opp-supported-hw = <0x01 0xFFFF>;
};
opp100@600000000 {
opp-hz = /bits/ 64 <600000000>;
opp-microvolt = <1100000 1078000 1122000>;
opp-supported-hw = <0x06 0x0040>;
};
opp120@600000000 {
opp-hz = /bits/ 64 <600000000>;
opp-microvolt = <1200000 1176000 1224000>;
opp-supported-hw = <0x01 0xFFFF>;
};
opp120@720000000 {
opp-hz = /bits/ 64 <720000000>;
opp-microvolt = <1200000 1176000 1224000>;
opp-supported-hw = <0x06 0x0080>;
};
oppturbo@720000000 {
opp-hz = /bits/ 64 <720000000>;
opp-microvolt = <1260000 1234800 1285200>;
opp-supported-hw = <0x01 0xFFFF>;
};
oppturbo@800000000 {
opp-hz = /bits/ 64 <800000000>;
opp-microvolt = <1260000 1234800 1285200>;
opp-supported-hw = <0x06 0x0100>;
};
oppnitro@1000000000 {
opp-hz = /bits/ 64 <1000000000>;
opp-microvolt = <1325000 1298500 1351500>;
opp-supported-hw = <0x04 0x0200>;
};
};

View File

@ -123,6 +123,20 @@ Detailed correlation between sub-blocks and power line according to Exynos SoC:
|--- FSYS
|--- FSYS2
- In case of Exynos5433, there is VDD_INT power line as following:
VDD_INT |--- G2D (parent device)
|--- MSCL
|--- GSCL
|--- JPEG
|--- MFC
|--- HEVC
|--- BUS0
|--- BUS1
|--- BUS2
|--- PERIS (Fixed clock rate)
|--- PERIC (Fixed clock rate)
|--- FSYS (Fixed clock rate)
Example1:
Show the AXI buses of Exynos3250 SoC. Exynos3250 divides the buses to
power line (regulator). The MIF (Memory Interface) AXI bus is used to

View File

@ -40,8 +40,7 @@ Example:
DMA clients connected to the STM32 DMA controller must use the format
described in the dma.txt file, using a five-cell specifier for each
channel: a phandle plus four integer cells.
The four cells in order are:
channel: a phandle to the DMA controller plus the following four integer cells:
1. The channel id
2. The request line number
@ -61,7 +60,7 @@ The four cells in order are:
0x1: medium
0x2: high
0x3: very high
5. A 32bit mask specifying the DMA FIFO threshold configuration which are device
4. A 32bit mask specifying the DMA FIFO threshold configuration which are device
dependent:
-bit 0-1: Fifo threshold
0x0: 1/4 full FIFO

View File

@ -17,6 +17,22 @@ Required properties:
- interrupt-parent: the phandle for the interrupt controller
- interrupts: interrupt line
Additional optional properties:
Some devices may support additional optional properties to help with, e.g.,
power sequencing. The following properties can be supported by one or more
device-specific compatible properties, which should be used in addition to the
"hid-over-i2c" string.
- compatible:
* "wacom,w9013" (Wacom W9013 digitizer). Supports:
- vdd-supply
- post-power-on-delay-ms
- vdd-supply: phandle of the regulator that provides the supply voltage.
- post-power-on-delay-ms: time required by the device after enabling its regulators
before it is ready for communication. Must be used with 'vdd-supply'.
Example:
i2c-hid-dev@2c {

View File

@ -61,16 +61,24 @@ property can be omitted.
Examples:
system-status {
label = "Status";
linux,default-trigger = "heartbeat";
...
gpio-leds {
compatible = "gpio-leds";
system-status {
label = "Status";
linux,default-trigger = "heartbeat";
gpios = <&gpio0 0 GPIO_ACTIVE_HIGH>;
};
};
camera-flash {
label = "Flash";
led-sources = <0>, <1>;
led-max-microamp = <50000>;
flash-max-microamp = <320000>;
flash-max-timeout-us = <500000>;
max77693-led {
compatible = "maxim,max77693-led";
camera-flash {
label = "Flash";
led-sources = <0>, <1>;
led-max-microamp = <50000>;
flash-max-microamp = <320000>;
flash-max-timeout-us = <500000>;
};
};

View File

@ -0,0 +1,29 @@
Device tree bindings for IR LED connected through SPI bus which is used as
remote controller.
The IR LED switch is connected to the MOSI line of the SPI device and the data
are delivered thourgh that.
Required properties:
- compatible: should be "ir-spi-led".
Optional properties:
- duty-cycle: 8 bit balue that represents the percentage of one period
in which the signal is active. It can be 50, 60, 70, 75, 80 or 90.
- led-active-low: boolean value that specifies whether the output is
negated with a NOT gate.
- power-supply: specifies the power source. It can either be a regulator
or a gpio which enables a regulator, i.e. a regulator-fixed as
described in
Documentation/devicetree/bindings/regulator/fixed-regulator.txt
Example:
irled@0 {
compatible = "ir-spi-led";
reg = <0x0>;
spi-max-frequency = <5000000>;
power-supply = <&vdd_led>;
led-active-low;
duty-cycle = /bits/ 8 <60>;
};

View File

@ -0,0 +1,21 @@
Freescale Video Data Order Adapter
==================================
The Video Data Order Adapter (VDOA) is present on the i.MX6q. Its sole purpose
is to reorder video data from the macroblock tiled order produced by the CODA
960 VPU to the conventional raster-scan order for scanout.
Required properties:
- compatible: must be "fsl,imx6q-vdoa"
- reg: the register base and size for the device registers
- interrupts: the VDOA interrupt
- clocks: the vdoa clock
Example:
vdoa@21e4000 {
compatible = "fsl,imx6q-vdoa";
reg = <0x021e4000 0x4000>;
interrupts = <0 18 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&clks IMX6QDL_CLK_VDOA>;
};

View File

@ -5,7 +5,8 @@ Required properties:
- gpios: specifies GPIO used for IR signal reception.
Optional properties:
- linux,rc-map-name: Linux specific remote control map name.
- linux,rc-map-name: see rc.txt file in the same
directory.
Example node:

View File

@ -10,7 +10,7 @@ Required properties:
- clocks: clock phandle and specifier pair.
Optional properties:
- linux,rc-map-name : Remote control map name.
- linux,rc-map-name: see rc.txt file in the same directory.
- hisilicon,power-syscon: DEPRECATED. Don't use this in new dts files.
Provide correct clocks instead.

View File

@ -0,0 +1,48 @@
Toshiba et8ek8 5MP sensor
Toshiba et8ek8 5MP sensor is an image sensor found in Nokia N900 device
More detailed documentation can be found in
Documentation/devicetree/bindings/media/video-interfaces.txt .
Mandatory properties
--------------------
- compatible: "toshiba,et8ek8"
- reg: I2C address (0x3e, or an alternative address)
- vana-supply: Analogue voltage supply (VANA), 2.8 volts
- clocks: External clock to the sensor
- clock-frequency: Frequency of the external clock to the sensor. Camera
driver will set this frequency on the external clock. The clock frequency is
a pre-determined frequency known to be suitable to the board.
- reset-gpios: XSHUTDOWN GPIO. The XSHUTDOWN signal is active low. The sensor
is in hardware standby mode when the signal is in the low state.
Endpoint node mandatory properties
----------------------------------
- remote-endpoint: A phandle to the bus receiver's endpoint node.
Example
-------
&i2c3 {
clock-frequency = <400000>;
cam1: camera@3e {
compatible = "toshiba,et8ek8";
reg = <0x3e>;
vana-supply = <&vaux4>;
clocks = <&isp 0>;
clock-frequency = <9600000>;
reset-gpio = <&gpio4 6 GPIO_ACTIVE_HIGH>; /* 102 */
port {
csi_cam1: endpoint {
remote-endpoint = <&csi_out1>;
};
};
};
};

View File

@ -8,6 +8,9 @@ Required properties:
- reg : physical base address and length of the device registers
- interrupts : a single specifier for the interrupt from the device
Optional properties:
- linux,rc-map-name: see rc.txt file in the same directory.
Example:
ir-receiver@c8100480 {

View File

@ -0,0 +1,24 @@
Device-Tree bindings for Mediatek consumer IR controller
found in Mediatek SoC family
Required properties:
- compatible : "mediatek,mt7623-cir"
- clocks : list of clock specifiers, corresponding to
entries in clock-names property;
- clock-names : should contain "clk" entries;
- interrupts : should contain IR IRQ number;
- reg : should contain IO map address for IR.
Optional properties:
- linux,rc-map-name : see rc.txt file in the same directory.
Example:
cir: cir@10013000 {
compatible = "mediatek,mt7623-cir";
reg = <0 0x10013000 0 0x1000>;
interrupts = <GIC_SPI 87 IRQ_TYPE_LEVEL_LOW>;
clocks = <&infracfg CLK_INFRA_IRRX>;
clock-names = "clk";
linux,rc-map-name = "rc-rc6-mce";
};

View File

@ -0,0 +1,117 @@
The following properties are common to the infrared remote controllers:
- linux,rc-map-name: string, specifies the scancode/key mapping table
defined in-kernel for the remote controller. Support values are:
* "rc-adstech-dvb-t-pci"
* "rc-alink-dtu-m"
* "rc-anysee"
* "rc-apac-viewcomp"
* "rc-asus-pc39"
* "rc-asus-ps3-100"
* "rc-ati-tv-wonder-hd-600"
* "rc-ati-x10"
* "rc-avermedia-a16d"
* "rc-avermedia-cardbus"
* "rc-avermedia-dvbt"
* "rc-avermedia-m135a"
* "rc-avermedia-m733a-rm-k6"
* "rc-avermedia-rm-ks"
* "rc-avermedia"
* "rc-avertv-303"
* "rc-azurewave-ad-tu700"
* "rc-behold-columbus"
* "rc-behold"
* "rc-budget-ci-old"
* "rc-cec"
* "rc-cinergy-1400"
* "rc-cinergy"
* "rc-delock-61959"
* "rc-dib0700-nec"
* "rc-dib0700-rc5"
* "rc-digitalnow-tinytwin"
* "rc-digittrade"
* "rc-dm1105-nec"
* "rc-dntv-live-dvbt-pro"
* "rc-dntv-live-dvb-t"
* "rc-dtt200u"
* "rc-dvbsky"
* "rc-empty"
* "rc-em-terratec"
* "rc-encore-enltv2"
* "rc-encore-enltv-fm53"
* "rc-encore-enltv"
* "rc-evga-indtube"
* "rc-eztv"
* "rc-flydvb"
* "rc-flyvideo"
* "rc-fusionhdtv-mce"
* "rc-gadmei-rm008z"
* "rc-geekbox"
* "rc-genius-tvgo-a11mce"
* "rc-gotview7135"
* "rc-hauppauge"
* "rc-imon-mce"
* "rc-imon-pad"
* "rc-iodata-bctv7e"
* "rc-it913x-v1"
* "rc-it913x-v2"
* "rc-kaiomy"
* "rc-kworld-315u"
* "rc-kworld-pc150u"
* "rc-kworld-plus-tv-analog"
* "rc-leadtek-y04g0051"
* "rc-lirc"
* "rc-lme2510"
* "rc-manli"
* "rc-medion-x10"
* "rc-medion-x10-digitainer"
* "rc-medion-x10-or2x"
* "rc-msi-digivox-ii"
* "rc-msi-digivox-iii"
* "rc-msi-tvanywhere-plus"
* "rc-msi-tvanywhere"
* "rc-nebula"
* "rc-nec-terratec-cinergy-xs"
* "rc-norwood"
* "rc-npgtech"
* "rc-pctv-sedna"
* "rc-pinnacle-color"
* "rc-pinnacle-grey"
* "rc-pinnacle-pctv-hd"
* "rc-pixelview-new"
* "rc-pixelview"
* "rc-pixelview-002t"
* "rc-pixelview-mk12"
* "rc-powercolor-real-angel"
* "rc-proteus-2309"
* "rc-purpletv"
* "rc-pv951"
* "rc-hauppauge"
* "rc-rc5-tv"
* "rc-rc6-mce"
* "rc-real-audio-220-32-keys"
* "rc-reddo"
* "rc-snapstream-firefly"
* "rc-streamzap"
* "rc-tbs-nec"
* "rc-technisat-ts35"
* "rc-technisat-usb2"
* "rc-terratec-cinergy-c-pci"
* "rc-terratec-cinergy-s2-hd"
* "rc-terratec-cinergy-xs"
* "rc-terratec-slim"
* "rc-terratec-slim-2"
* "rc-tevii-nec"
* "rc-tivo"
* "rc-total-media-in-hand"
* "rc-total-media-in-hand-02"
* "rc-trekstor"
* "rc-tt-1500"
* "rc-twinhan-dtv-cab-ci"
* "rc-twinhan1027"
* "rc-videomate-k100"
* "rc-videomate-s350"
* "rc-videomate-tv-pvr"
* "rc-winfast"
* "rc-winfast-usbii-deluxe"
* "rc-su3000"

View File

@ -0,0 +1,17 @@
* STMicroelectronics DELTA multi-format video decoder
Required properties:
- compatible: should be "st,st-delta".
- clocks: from common clock binding: handle hardware IP needed clocks, the
number of clocks may depend on the SoC type.
See ../clock/clock-bindings.txt for details.
- clock-names: names of the clocks listed in clocks property in the same order.
Example:
delta0 {
compatible = "st,st-delta";
clock-names = "delta", "delta-st231", "delta-flash-promip";
clocks = <&clk_s_c0_flexgen CLK_VID_DMU>,
<&clk_s_c0_flexgen CLK_ST231_DMU>,
<&clk_s_c0_flexgen CLK_FLASH_PROMIP>;
};

View File

@ -9,7 +9,7 @@ Required properties:
- reg : should contain IO map address for IR.
Optional properties:
- linux,rc-map-name : Remote control map name.
- linux,rc-map-name: see rc.txt file in the same directory.
- resets : phandle + reset specifier pair
Example:

View File

@ -0,0 +1,83 @@
Texas Instruments VPIF
----------------------
The TI Video Port InterFace (VPIF) is the primary component for video
capture and display on the DA850/AM18x family of TI DaVinci/Sitara
SoCs.
TI Document reference: SPRUH82C, Chapter 35
http://www.ti.com/lit/pdf/spruh82
Required properties:
- compatible: must be "ti,da850-vpif"
- reg: physical base address and length of the registers set for the device;
- interrupts: should contain IRQ line for the VPIF
Video Capture:
VPIF has a 16-bit parallel bus input, supporting 2 8-bit channels or a
single 16-bit channel. It should contain at least one port child node
with child 'endpoint' node. Please refer to the bindings defined in
Documentation/devicetree/bindings/media/video-interfaces.txt.
Example using 2 8-bit input channels, one of which is connected to an
I2C-connected TVP5147 decoder:
vpif: vpif@217000 {
compatible = "ti,da850-vpif";
reg = <0x217000 0x1000>;
interrupts = <92>;
port {
vpif_ch0: endpoint@0 {
reg = <0>;
bus-width = <8>;
remote-endpoint = <&composite>;
};
vpif_ch1: endpoint@1 {
reg = <1>;
bus-width = <8>;
data-shift = <8>;
};
};
};
[ ... ]
&i2c0 {
tvp5147@5d {
compatible = "ti,tvp5147";
reg = <0x5d>;
status = "okay";
port {
composite: endpoint {
hsync-active = <1>;
vsync-active = <1>;
pclk-sample = <0>;
/* VPIF channel 0 (lower 8-bits) */
remote-endpoint = <&vpif_ch0>;
bus-width = <8>;
};
};
};
};
Alternatively, an example when the bus is configured as a single
16-bit input (e.g. for raw-capture mode):
vpif: vpif@217000 {
compatible = "ti,da850-vpif";
reg = <0x217000 0x1000>;
interrupts = <92>;
port {
vpif_ch0: endpoint {
bus-width = <16>;
};
};
};

View File

@ -0,0 +1,10 @@
Imagination Technologies' Pistachio SoC based Marduk Board
==========================================================
Compatible string must be "img,pistachio-marduk", "img,pistachio"
Hardware and other related documentation is available at
https://docs.creatordev.io/ci40/
It is also known as Creator Ci40. Marduk is legacy name and will
be there for decades.

View File

@ -17,7 +17,7 @@ Required properties:
"core" - Main peripheral bus clock
"clkin0" - Parent clock of internal mux
"clkin1" - Other parent clock of internal mux
The driver has an interal mux clock which switches between clkin0 and clkin1 depending on the
The driver has an internal mux clock which switches between clkin0 and clkin1 depending on the
clock rate requested by the MMC core.
Example:

View File

@ -0,0 +1,16 @@
* Marvell SD8787 power sequence provider
Required properties:
- compatible: must be "mmc-pwrseq-sd8787".
- powerdown-gpios: contains a power down GPIO specifier with the
default active state
- reset-gpios: contains a reset GPIO specifier with the default
active state
Example:
wifi_pwrseq: wifi_pwrseq {
compatible = "mmc-pwrseq-sd8787";
powerdown-gpios = <&twl_gpio 0 GPIO_ACTIVE_LOW>;
reset-gpios = <&twl_gpio 1 GPIO_ACTIVE_LOW>;
}

View File

@ -40,6 +40,7 @@ Optional properties:
- cap-mmc-hw-reset: eMMC hardware reset is supported
- cap-sdio-irq: enable SDIO IRQ signalling on this interface
- full-pwr-cycle: full power cycle of the card is supported
- mmc-ddr-3_3v: eMMC high-speed DDR mode(3.3V I/O) is supported
- mmc-ddr-1_8v: eMMC high-speed DDR mode(1.8V I/O) is supported
- mmc-ddr-1_2v: eMMC high-speed DDR mode(1.2V I/O) is supported
- mmc-hs200-1_8v: eMMC HS200 mode(1.8V I/O) is supported

View File

@ -38,7 +38,7 @@ Optional properties:
- bus-width: Number of data lines.
See: Documentation/devicetree/bindings/mmc/mmc.txt.
- max-frequency: Can be 200MHz, 100Mz or 50MHz (default) and used for
- max-frequency: Can be 200MHz, 100MHz or 50MHz (default) and used for
configuring the CCONFIG3 in the mmcss.
See: Documentation/devicetree/bindings/mmc/mmc.txt.

View File

@ -5,7 +5,7 @@ host controllers refer to the mmc[1] bindings.
Optional properties:
- sdhci-caps-mask: The sdhci capabilities register is incorrect. This 64bit
property corresponds to the bits in the sdhci capabilty register. If the bit
property corresponds to the bits in the sdhci capability register. If the bit
is on in the mask then the bit is incorrect in the register and should be
turned off, before applying sdhci-caps.
- sdhci-caps: The sdhci capabilities register is incorrect. This 64bit

View File

@ -13,6 +13,7 @@ Required properties:
* "allwinner,sun5i-a13-mmc"
* "allwinner,sun7i-a20-mmc"
* "allwinner,sun9i-a80-mmc"
* "allwinner,sun50i-a64-emmc"
* "allwinner,sun50i-a64-mmc"
- reg : mmc controller base registers
- clocks : a list with 4 phandle + clock specifier pairs

View File

@ -16,7 +16,7 @@ Required Properties:
each child-node representing a supported slot. There should be atleast one
child node representing a card slot. The name of the child node representing
the slot is recommended to be slot@n where n is the unique number of the slot
connnected to the controller. The following are optional properties which
connected to the controller. The following are optional properties which
can be included in the slot child node.
* reg: specifies the physical slot number. The valid values of this
@ -75,6 +75,17 @@ Optional properties:
* card-detect-delay: Delay in milli-seconds before detecting card after card
insert event. The default value is 0.
* data-addr: Override fifo address with value provided by DT. The default FIFO reg
offset is assumed as 0x100 (version < 0x240A) and 0x200(version >= 0x240A) by
driver. If the controller does not follow this rule, please use this property
to set fifo address in device tree.
* fifo-watermark-aligned: Data done irq is expected if data length is less than
watermark in PIO mode. But fifo watermark is requested to be aligned with data
length in some SoC so that TX/RX irq can be generated with data done irq. Add this
watermark quirk to mark this requirement and force fifo watermark setting
accordingly.
* vmmc-supply: The phandle to the regulator to use for vmmc. If this is
specified we'll defer probe until we can find this regulator.
@ -102,6 +113,8 @@ board specific portions as listed below.
interrupts = <0 75 0>;
#address-cells = <1>;
#size-cells = <0>;
data-addr = <0x200>;
fifo-watermark-aligned;
resets = <&rst 20>;
reset-names = "reset";
};

View File

@ -25,6 +25,19 @@ Required properties:
"renesas,sdhi-r8a7795" - SDHI IP on R8A7795 SoC
"renesas,sdhi-r8a7796" - SDHI IP on R8A7796 SoC
- clocks: Most controllers only have 1 clock source per channel. However, on
some variations of this controller, the internal card detection
logic that exists in this controller is sectioned off to be run by a
separate second clock source to allow the main core clock to be turned
off to save power.
If 2 clocks are specified by the hardware, you must name them as
"core" and "cd". If the controller only has 1 clock, naming is not
required.
Below is the number clocks for each supported SoC:
1: SH73A0, R8A73A4, R8A7740, R8A7778, R8A7779, R8A7790
R8A7791, R8A7792, R8A7793, R8A7794, R8A7795, R8A7796
2: R7S72100
Optional properties:
- toshiba,mmc-wrprotect-disable: write-protect detection is unavailable
- pinctrl-names: should be "default", "state_uhs"

View File

@ -0,0 +1,33 @@
* ZTE specific extensions to the Synopsys Designware Mobile Storage
Host Controller
The Synopsys designware mobile storage host controller is used to interface
a SoC with storage medium such as eMMC or SD/MMC cards. This file documents
differences between the core Synopsys dw mshc controller properties described
by synopsys-dw-mshc.txt and the properties used by the ZTE specific
extensions to the Synopsys Designware Mobile Storage Host Controller.
Required Properties:
* compatible: should be
- "zte,zx296718-dw-mshc": for ZX SoCs
Example:
mmc1: mmc@1110000 {
compatible = "zte,zx296718-dw-mshc";
reg = <0x01110000 0x1000>;
interrupts = <GIC_SPI 15 IRQ_TYPE_LEVEL_HIGH>;
fifo-depth = <32>;
data-addr = <0x200>;
fifo-watermark-aligned;
bus-width = <4>;
clock-frequency = <50000000>;
clocks = <&topcrm SD0_AHB>, <&topcrm SD0_WCLK>;
clock-names = "biu", "ciu";
num-slots = <1>;
max-frequency = <50000000>;
cap-sdio-irq;
cap-sd-highspeed;
status = "disabled";
};

View File

@ -1,4 +1,4 @@
Marvell 8897/8997 (sd8897/sd8997/pcie8997) SDIO/PCIE devices
Marvell 8787/8897/8997 (sd8787/sd8897/sd8997/pcie8997) SDIO/PCIE devices
------
This node provides properties for controlling the Marvell SDIO/PCIE wireless device.
@ -8,6 +8,7 @@ connects the device to the system.
Required properties:
- compatible : should be one of the following:
* "marvell,sd8787"
* "marvell,sd8897"
* "marvell,sd8997"
* "pci11ab,2b42"
@ -34,6 +35,9 @@ Optional properties:
so that the wifi chip can wakeup host platform under certain condition.
during system resume, the irq will be disabled to make sure
unnecessary interrupt is not received.
- vmmc-supply: a phandle of a regulator, supplying VCC to the card
- mmc-pwrseq: phandle to the MMC power sequence node. See "mmc-pwrseq-*"
for documentation of MMC power sequence bindings.
Example:
@ -46,6 +50,7 @@ so that firmware can wakeup host using this device side pin.
&mmc3 {
status = "okay";
vmmc-supply = <&wlan_en_reg>;
mmc-pwrseq = <&wifi_pwrseq>;
bus-width = <4>;
cap-power-off-card;
keep-power-in-suspend;

View File

@ -23,6 +23,7 @@ Required properties:
"allwinner,sun8i-h3-pinctrl"
"allwinner,sun8i-h3-r-pinctrl"
"allwinner,sun50i-a64-pinctrl"
"allwinner,sun50i-h5-r-pinctrl"
"nextthing,gr8-pinctrl"
- reg: Should contain the register physical address and length for the

View File

@ -19,7 +19,7 @@ iomuxc: iomuxc@30330000 {
reg = <0x30330000 0x10000>;
};
Pheriparials using pads from iomuxc-lpsr support low state retention power
Peripherals using pads from iomuxc-lpsr support low state retention power
state, under LPSR mode GPIO's state of pads are retain.
Please refer to fsl,imx-pinctrl.txt in this directory for common binding part

View File

@ -0,0 +1,46 @@
* Marvell 98dx3236 pinctrl driver for mpp
Please refer to marvell,mvebu-pinctrl.txt in this directory for common binding
part and usage
Required properties:
- compatible: "marvell,98dx3236-pinctrl" or "marvell,98dx4251-pinctrl"
- reg: register specifier of MPP registers
This driver supports all 98dx3236, 98dx3336 and 98dx4251 variants
name pins functions
================================================================================
mpp0 0 gpo, spi0(mosi), dev(ad8)
mpp1 1 gpio, spi0(miso), dev(ad9)
mpp2 2 gpo, spi0(sck), dev(ad10)
mpp3 3 gpio, spi0(cs0), dev(ad11)
mpp4 4 gpio, spi0(cs1), smi(mdc), dev(cs0)
mpp5 5 gpio, pex(rsto), sd0(cmd), dev(bootcs)
mpp6 6 gpo, sd0(clk), dev(a2)
mpp7 7 gpio, sd0(d0), dev(ale0)
mpp8 8 gpio, sd0(d1), dev(ale1)
mpp9 9 gpio, sd0(d2), dev(ready0)
mpp10 10 gpio, sd0(d3), dev(ad12)
mpp11 11 gpio, uart1(rxd), uart0(cts), dev(ad13)
mpp12 12 gpo, uart1(txd), uart0(rts), dev(ad14)
mpp13 13 gpio, intr(out), dev(ad15)
mpp14 14 gpio, i2c0(sck)
mpp15 15 gpio, i2c0(sda)
mpp16 16 gpo, dev(oe)
mpp17 17 gpo, dev(clkout)
mpp18 18 gpio, uart1(txd)
mpp19 19 gpio, uart1(rxd), dev(rb)
mpp20 20 gpo, dev(we0)
mpp21 21 gpo, dev(ad0)
mpp22 22 gpo, dev(ad1)
mpp23 23 gpo, dev(ad2)
mpp24 24 gpo, dev(ad3)
mpp25 25 gpo, dev(ad4)
mpp26 26 gpo, dev(ad5)
mpp27 27 gpo, dev(ad6)
mpp28 28 gpo, dev(ad7)
mpp29 29 gpo, dev(a0)
mpp30 30 gpo, dev(a1)
mpp31 31 gpio, slv_smi(mdc), smi(mdc), dev(we1)
mpp32 32 gpio, slv_smi(mdio), smi(mdio), dev(cs1)

View File

@ -44,16 +44,16 @@ mpp16 16 gpio, sdio(d2), uart0(cts), uart1(rxd), mii(crs)
mpp17 17 gpio, sdio(d3)
mpp18 18 gpo, nand(io0)
mpp19 19 gpo, nand(io1)
mpp20 20 gpio, mii(rxerr)
mpp21 21 gpio, audio(spdifi)
mpp22 22 gpio, audio(spdifo)
mpp23 23 gpio, audio(rmclk)
mpp24 24 gpio, audio(bclk)
mpp25 25 gpio, audio(sdo)
mpp26 26 gpio, audio(lrclk)
mpp27 27 gpio, audio(mclk)
mpp28 28 gpio, audio(sdi)
mpp29 29 gpio, audio(extclk)
mpp35 35 gpio, mii(rxerr)
mpp36 36 gpio, audio(spdifi)
mpp37 37 gpio, audio(spdifo)
mpp38 38 gpio, audio(rmclk)
mpp39 39 gpio, audio(bclk)
mpp40 40 gpio, audio(sdo)
mpp41 41 gpio, audio(lrclk)
mpp42 42 gpio, audio(mclk)
mpp43 43 gpio, audio(sdi)
mpp44 44 gpio, audio(extclk)
* Marvell Kirkwood 88f6190

View File

@ -1,25 +1,38 @@
======================
Aspeed Pin Controllers
----------------------
======================
The Aspeed SoCs vary in functionality inside a generation but have a common mux
device register layout.
Required properties:
- compatible : Should be any one of the following:
"aspeed,ast2400-pinctrl"
"aspeed,g4-pinctrl"
"aspeed,ast2500-pinctrl"
"aspeed,g5-pinctrl"
Required properties for g4:
- compatible : Should be one of the following:
"aspeed,ast2400-pinctrl"
"aspeed,g4-pinctrl"
The pin controller node should be a child of a syscon node with the required
Required properties for g5:
- compatible : Should be one of the following:
"aspeed,ast2500-pinctrl"
"aspeed,g5-pinctrl"
- aspeed,external-nodes: A cell of phandles to external controller nodes:
0: compatible with "aspeed,ast2500-gfx", "syscon"
1: compatible with "aspeed,ast2500-lhc", "syscon"
The pin controller node should be the child of a syscon node with the required
property:
- compatible: "syscon", "simple-mfd"
- compatible : Should be one of the following:
"aspeed,ast2400-scu", "syscon", "simple-mfd"
"aspeed,g4-scu", "syscon", "simple-mfd"
"aspeed,ast2500-scu", "syscon", "simple-mfd"
"aspeed,g5-scu", "syscon", "simple-mfd"
Refer to the the bindings described in
Documentation/devicetree/bindings/mfd/syscon.txt
Subnode Format
--------------
==============
The required properties of child nodes are (as defined in pinctrl-bindings):
- function
@ -31,26 +44,43 @@ supported:
aspeed,ast2400-pinctrl, aspeed,g4-pinctrl:
ACPI BMCINT DDCCLK DDCDAT FLACK FLBUSY FLWP GPID0 GPIE0 GPIE2 GPIE4 GPIE6 I2C10
I2C11 I2C12 I2C13 I2C3 I2C4 I2C5 I2C6 I2C7 I2C8 I2C9 LPCPD LPCPME LPCSMI MDIO1
MDIO2 NCTS1 NCTS3 NCTS4 NDCD1 NDCD3 NDCD4 NDSR1 NDSR3 NDTR1 NDTR3 NRI1 NRI3
NRI4 NRTS1 NRTS3 PWM0 PWM1 PWM2 PWM3 PWM4 PWM5 PWM6 PWM7 RGMII1 RMII1 ROM16
ROM8 ROMCS1 ROMCS2 ROMCS3 ROMCS4 RXD1 RXD3 RXD4 SD1 SGPMI SIOPBI SIOPBO TIMER3
TIMER5 TIMER6 TIMER7 TIMER8 TXD1 TXD3 TXD4 UART6 VGAHS VGAVS VPI18 VPI24 VPI30
VPO12 VPO24
ACPI ADC0 ADC1 ADC10 ADC11 ADC12 ADC13 ADC14 ADC15 ADC2 ADC3 ADC4 ADC5 ADC6
ADC7 ADC8 ADC9 BMCINT DDCCLK DDCDAT EXTRST FLACK FLBUSY FLWP GPID GPID0 GPID2
GPID4 GPID6 GPIE0 GPIE2 GPIE4 GPIE6 I2C10 I2C11 I2C12 I2C13 I2C14 I2C3 I2C4
I2C5 I2C6 I2C7 I2C8 I2C9 LPCPD LPCPME LPCRST LPCSMI MAC1LINK MAC2LINK MDIO1
MDIO2 NCTS1 NCTS2 NCTS3 NCTS4 NDCD1 NDCD2 NDCD3 NDCD4 NDSR1 NDSR2 NDSR3 NDSR4
NDTR1 NDTR2 NDTR3 NDTR4 NDTS4 NRI1 NRI2 NRI3 NRI4 NRTS1 NRTS2 NRTS3 OSCCLK PWM0
PWM1 PWM2 PWM3 PWM4 PWM5 PWM6 PWM7 RGMII1 RGMII2 RMII1 RMII2 ROM16 ROM8 ROMCS1
ROMCS2 ROMCS3 ROMCS4 RXD1 RXD2 RXD3 RXD4 SALT1 SALT2 SALT3 SALT4 SD1 SD2 SGPMCK
SGPMI SGPMLD SGPMO SGPSCK SGPSI0 SGPSI1 SGPSLD SIOONCTRL SIOPBI SIOPBO SIOPWREQ
SIOPWRGD SIOS3 SIOS5 SIOSCI SPI1 SPI1DEBUG SPI1PASSTHRU SPICS1 TIMER3 TIMER4
TIMER5 TIMER6 TIMER7 TIMER8 TXD1 TXD2 TXD3 TXD4 UART6 USBCKI VGABIOS_ROM VGAHS
VGAVS VPI18 VPI24 VPI30 VPO12 VPO24 WDTRST1 WDTRST2
aspeed,ast2500-pinctrl, aspeed,g5-pinctrl:
GPID0 GPID2 GPIE0 I2C10 I2C11 I2C12 I2C13 I2C14 I2C3 I2C4 I2C5 I2C6 I2C7 I2C8
I2C9 MAC1LINK MDIO1 MDIO2 OSCCLK PEWAKE PWM0 PWM1 PWM2 PWM3 PWM4 PWM5 PWM6 PWM7
RGMII1 RGMII2 RMII1 RMII2 SD1 SPI1 SPI1DEBUG SPI1PASSTHRU TIMER4 TIMER5 TIMER6
TIMER7 TIMER8 VGABIOSROM
ACPI ADC0 ADC1 ADC10 ADC11 ADC12 ADC13 ADC14 ADC15 ADC2 ADC3 ADC4 ADC5 ADC6
ADC7 ADC8 ADC9 BMCINT DDCCLK DDCDAT ESPI FWSPICS1 FWSPICS2 GPID0 GPID2 GPID4
GPID6 GPIE0 GPIE2 GPIE4 GPIE6 I2C10 I2C11 I2C12 I2C13 I2C14 I2C3 I2C4 I2C5 I2C6
I2C7 I2C8 I2C9 LAD0 LAD1 LAD2 LAD3 LCLK LFRAME LPCHC LPCPD LPCPLUS LPCPME
LPCRST LPCSMI LSIRQ MAC1LINK MAC2LINK MDIO1 MDIO2 NCTS1 NCTS2 NCTS3 NCTS4 NDCD1
NDCD2 NDCD3 NDCD4 NDSR1 NDSR2 NDSR3 NDSR4 NDTR1 NDTR2 NDTR3 NDTR4 NRI1 NRI2
NRI3 NRI4 NRTS1 NRTS2 NRTS3 NRTS4 OSCCLK PEWAKE PNOR PWM0 PWM1 PWM2 PWM3 PWM4
PWM5 PWM6 PWM7 RGMII1 RGMII2 RMII1 RMII2 RXD1 RXD2 RXD3 RXD4 SALT1 SALT10
SALT11 SALT12 SALT13 SALT14 SALT2 SALT3 SALT4 SALT5 SALT6 SALT7 SALT8 SALT9
SCL1 SCL2 SD1 SD2 SDA1 SDA2 SGPS1 SGPS2 SIOONCTRL SIOPBI SIOPBO SIOPWREQ
SIOPWRGD SIOS3 SIOS5 SIOSCI SPI1 SPI1CS1 SPI1DEBUG SPI1PASSTHRU SPI2CK SPI2CS0
SPI2CS1 SPI2MISO SPI2MOSI TIMER3 TIMER4 TIMER5 TIMER6 TIMER7 TIMER8 TXD1 TXD2
TXD3 TXD4 UART6 USBCKI VGABIOSROM VGAHS VGAVS VPI24 VPO WDTRST1 WDTRST2
Examples
========
Examples:
g4 Example
----------
syscon: scu@1e6e2000 {
compatible = "syscon", "simple-mfd";
compatible = "aspeed,ast2400-scu", "syscon", "simple-mfd";
reg = <0x1e6e2000 0x1a8>;
pinctrl: pinctrl {
@ -63,5 +93,56 @@ syscon: scu@1e6e2000 {
};
};
g5 Example
----------
ahb {
apb {
syscon: scu@1e6e2000 {
compatible = "aspeed,ast2500-scu", "syscon", "simple-mfd";
reg = <0x1e6e2000 0x1a8>;
pinctrl: pinctrl {
compatible = "aspeed,g5-pinctrl";
aspeed,external-nodes = <&gfx &lhc>;
pinctrl_i2c3_default: i2c3_default {
function = "I2C3";
groups = "I2C3";
};
};
};
gfx: display@1e6e6000 {
compatible = "aspeed,ast2500-gfx", "syscon";
reg = <0x1e6e6000 0x1000>;
};
};
lpc: lpc@1e789000 {
compatible = "aspeed,ast2500-lpc", "simple-mfd";
reg = <0x1e789000 0x1000>;
#address-cells = <1>;
#size-cells = <1>;
ranges = <0x0 0x1e789000 0x1000>;
lpc_host: lpc-host@80 {
compatible = "aspeed,ast2500-lpc-host", "simple-mfd", "syscon";
reg = <0x80 0x1e0>;
reg-io-width = <4>;
#address-cells = <1>;
#size-cells = <1>;
ranges = <0x0 0x80 0x1e0>;
lhc: lhc@20 {
compatible = "aspeed,ast2500-lhc";
reg = <0x20 0x24 0x48 0x8>;
};
};
};
};
Please refer to pinctrl-bindings.txt in this directory for details of the
common pinctrl bindings used by client devices.

View File

@ -13,6 +13,7 @@ Required Properties:
- "samsung,s3c2450-pinctrl": for S3C2450-compatible pin-controller,
- "samsung,s3c64xx-pinctrl": for S3C64xx-compatible pin-controller,
- "samsung,s5pv210-pinctrl": for S5PV210-compatible pin-controller,
- "samsung,exynos3250-pinctrl": for Exynos3250 compatible pin-controller.
- "samsung,exynos4210-pinctrl": for Exynos4210 compatible pin-controller.
- "samsung,exynos4x12-pinctrl": for Exynos4x12 compatible pin-controller.
- "samsung,exynos5250-pinctrl": for Exynos5250 compatible pin-controller.

View File

@ -8,8 +8,9 @@ controllers onto these pads.
Pin controller node:
Required properies:
- compatible: value should be one of the following:
(a) "st,stm32f429-pinctrl"
(b) "st,stm32f746-pinctrl"
"st,stm32f429-pinctrl"
"st,stm32f746-pinctrl"
"st,stm32h743-pinctrl"
- #address-cells: The value of this property must be 1
- #size-cells : The value of this property must be 1
- ranges : defines mapping between pin controller node (parent) to
@ -37,8 +38,23 @@ Optional properties:
- st,syscfg: Should be phandle/offset pair. The phandle to the syscon node
which includes IRQ mux selection register, and the offset of the IRQ mux
selection register.
- ngpios: Number of gpios in a bank (to use if bank gpio numbers is less
than 16).
- gpio-ranges: Define a dedicated mapping between a pin-controller and
a gpio controller. Format is <&phandle a b c> with:
-(phandle): phandle of pin-controller.
-(a): gpio base offset in range.
-(b): pin base offset in range.
-(c): gpio count in range
This entry has to be used either if there are holes inside a bank:
GPIOB0/B1/B2/B14/B15 (see example 2)
or if banks are not contiguous:
GPIOA/B/C/E...
NOTE: If "gpio-ranges" is used for a gpio controller, all gpio-controller
have to use a "gpio-ranges" entry.
More details in Documentation/devicetree/bindings/gpio/gpio.txt.
Example:
Example 1:
#include <dt-bindings/pinctrl/stm32f429-pinfunc.h>
...
@ -60,6 +76,43 @@ Example:
pin-functions nodes follow...
};
Example 2:
#include <dt-bindings/pinctrl/stm32f429-pinfunc.h>
...
pinctrl: pin-controller {
#address-cells = <1>;
#size-cells = <1>;
compatible = "st,stm32f429-pinctrl";
ranges = <0 0x40020000 0x3000>;
pins-are-numbered;
gpioa: gpio@40020000 {
gpio-controller;
#gpio-cells = <2>;
reg = <0x0 0x400>;
resets = <&reset_ahb1 0>;
st,bank-name = "GPIOA";
gpio-ranges = <&pinctrl 0 0 16>;
};
gpiob: gpio@40020400 {
gpio-controller;
#gpio-cells = <2>;
reg = <0x0 0x400>;
resets = <&reset_ahb1 0>;
st,bank-name = "GPIOB";
ngpios = 4;
gpio-ranges = <&pinctrl 0 16 3>,
<&pinctrl 14 30 2>;
};
...
pin-functions nodes follow...
};
Contents of function subnode node:
----------------------------------
Subnode format

View File

@ -0,0 +1,47 @@
* Pin configuration for TI IODELAY controller
TI dra7 based SoCs such as am57xx have a controller for setting the IO delay
for each pin. For most part the IO delay values are programmed by the bootloader,
but some pins need to be configured dynamically by the kernel such as the
MMC pins.
Required Properties:
- compatible: Must be "ti,dra7-iodelay"
- reg: Base address and length of the memory resource used
- #address-cells: Number of address cells
- #size-cells: Size of cells
- #pinctrl-cells: Number of pinctrl cells, must be 2. See also
Documentation/devicetree/bindings/pinctrl/pinctrl-bindings.txt
Example
-------
In the SoC specific dtsi file:
dra7_iodelay_core: padconf@4844a000 {
compatible = "ti,dra7-iodelay";
reg = <0x4844a000 0x0d1c>;
#address-cells = <1>;
#size-cells = <0>;
#pinctrl-cells = <2>;
};
In board-specific file:
&dra7_iodelay_core {
mmc2_iodelay_3v3_conf: mmc2_iodelay_3v3_conf {
pinctrl-pin-array = <
0x18c A_DELAY_PS(0) G_DELAY_PS(120) /* CFG_GPMC_A19_IN */
0x1a4 A_DELAY_PS(265) G_DELAY_PS(360) /* CFG_GPMC_A20_IN */
0x1b0 A_DELAY_PS(0) G_DELAY_PS(120) /* CFG_GPMC_A21_IN */
0x1bc A_DELAY_PS(0) G_DELAY_PS(120) /* CFG_GPMC_A22_IN */
0x1c8 A_DELAY_PS(287) G_DELAY_PS(420) /* CFG_GPMC_A23_IN */
0x1d4 A_DELAY_PS(144) G_DELAY_PS(240) /* CFG_GPMC_A24_IN */
0x1e0 A_DELAY_PS(0) G_DELAY_PS(0) /* CFG_GPMC_A25_IN */
0x1ec A_DELAY_PS(120) G_DELAY_PS(0) /* CFG_GPMC_A26_IN */
0x1f8 A_DELAY_PS(120) G_DELAY_PS(180) /* CFG_GPMC_A27_IN */
0x360 A_DELAY_PS(0) G_DELAY_PS(0) /* CFG_GPMC_CS1_IN */
>;
};
};

View File

@ -14,6 +14,7 @@ Optional properties:
- anatop-delay-bit-shift: Bit shift for the step time register
- anatop-delay-bit-width: Number of bits used in the step time register
- vin-supply: The supply for this regulator
- anatop-enable-bit: Regulator enable bit offset
Any property defined as part of the core regulator
binding, defined in regulator.txt, can also be used.

View File

@ -0,0 +1,34 @@
Motorola CPCAP PMIC voltage regulators
------------------------------------
Requires node properties:
- "compatible" value one of:
"motorola,cpcap-regulator"
"motorola,mapphone-cpcap-regulator"
Required regulator properties:
- "regulator-name"
- "regulator-enable-ramp-delay"
- "regulator-min-microvolt"
- "regulator-max-microvolt"
Optional regulator properties:
- "regulator-boot-on"
See Documentation/devicetree/bindings/regulator/regulator.txt
for more details about the regulator properties.
Example:
cpcap_regulator: regulator {
compatible = "motorola,cpcap-regulator";
cpcap_regulators: regulators {
sw5: SW5 {
regulator-min-microvolt = <5050000>;
regulator-max-microvolt = <5050000>;
regulator-enable-ramp-delay = <50000>;
regulator-boot-on;
};
};
};

View File

@ -13,7 +13,7 @@ Optional properties:
- startup-delay-us : Startup time in microseconds.
- enable-active-high : Polarity of GPIO is active high (default is low).
- regulator-type : Specifies what is being regulated, must be either
"voltage" or "current", defaults to current.
"voltage" or "current", defaults to voltage.
Any property defined as part of the core regulator binding defined in
regulator.txt can also be used.

View File

@ -22,6 +22,7 @@ Regulator nodes are identified by their compatible:
"qcom,rpm-pm8841-regulators"
"qcom,rpm-pm8916-regulators"
"qcom,rpm-pm8941-regulators"
"qcom,rpm-pm8994-regulators"
"qcom,rpm-pma8084-regulators"
- vdd_s1-supply:
@ -68,6 +69,56 @@ Regulator nodes are identified by their compatible:
Definition: reference to regulator supplying the input pin, as
described in the data sheet
- vdd_s1-supply:
- vdd_s2-supply:
- vdd_s3-supply:
- vdd_s4-supply:
- vdd_s5-supply:
- vdd_s6-supply:
- vdd_s7-supply:
- vdd_s8-supply:
- vdd_s9-supply:
- vdd_s10-supply:
- vdd_s11-supply:
- vdd_s12-supply:
- vdd_l1-supply:
- vdd_l2_l26_l28-supply:
- vdd_l3_l11-supply:
- vdd_l4_l27_l31-supply:
- vdd_l5_l7-supply:
- vdd_l6_l12_l32-supply:
- vdd_l5_l7-supply:
- vdd_l8_l16_l30-supply:
- vdd_l9_l10_l18_l22-supply:
- vdd_l9_l10_l18_l22-supply:
- vdd_l3_l11-supply:
- vdd_l6_l12_l32-supply:
- vdd_l13_l19_l23_l24-supply:
- vdd_l14_l15-supply:
- vdd_l14_l15-supply:
- vdd_l8_l16_l30-supply:
- vdd_l17_l29-supply:
- vdd_l9_l10_l18_l22-supply:
- vdd_l13_l19_l23_l24-supply:
- vdd_l20_l21-supply:
- vdd_l20_l21-supply:
- vdd_l9_l10_l18_l22-supply:
- vdd_l13_l19_l23_l24-supply:
- vdd_l13_l19_l23_l24-supply:
- vdd_l25-supply:
- vdd_l2_l26_l28-supply:
- vdd_l4_l27_l31-supply:
- vdd_l2_l26_l28-supply:
- vdd_l17_l29-supply:
- vdd_l8_l16_l30-supply:
- vdd_l4_l27_l31-supply:
- vdd_l6_l12_l32-supply:
- vdd_lvs1_2-supply:
Usage: optional (pm8994 only)
Value type: <phandle>
Definition: reference to regulator supplying the input pin, as
described in the data sheet
- vdd_s1-supply:
- vdd_s2-supply:
- vdd_s3-supply:
@ -113,6 +164,11 @@ pm8941:
l14, l15, l16, l17, l18, l19, l20, l21, l22, l23, l24, lvs1, lvs2,
lvs3, 5vs1, 5vs2
pm8994:
s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, l1, l2, l3, l4, l5,
l6, l7, l8, l9, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l20,
l21, l22, l23, l24, l25, l26, l27, l28, l29, l30, l31, l32, lvs1, lvs2
pma8084:
s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, l1, l2, l3, l4, l5,
l6, l7, l8, l9, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l20,

View File

@ -0,0 +1,29 @@
Lantiq Synchronous Serial Controller (SSC) SPI master driver
Required properties:
- compatible: "lantiq,ase-spi", "lantiq,falcon-spi", "lantiq,xrx100-spi"
- #address-cells: see spi-bus.txt
- #size-cells: see spi-bus.txt
- reg: address and length of the spi master registers
- interrupts: should contain the "spi_rx", "spi_tx" and "spi_err" interrupt.
Optional properties:
- clocks: spi clock phandle
- num-cs: see spi-bus.txt, set to 8 if unset
- base-cs: the number of the first chip select, set to 1 if unset.
Example:
spi: spi@E100800 {
compatible = "lantiq,xrx200-spi", "lantiq,xrx100-spi";
reg = <0xE100800 0x100>;
interrupt-parent = <&icu0>;
interrupts = <22 23 24>;
interrupt-names = "spi_rx", "spi_tx", "spi_err";
#address-cells = <1>;
#size-cells = <1>;
num-cs = <6>;
base-cs = <1>;
};

View File

@ -31,6 +31,10 @@ Optional Properties:
- rx-sample-delay-ns: nanoseconds to delay after the SCLK edge before sampling
Rx data (may need to be fine tuned for high capacitance lines).
No delay (0) by default.
- pinctrl-names: Names for the pin configuration(s); may be "default" or
"sleep", where the "sleep" configuration may describe the state
the pins should be in during system suspend. See also
pinctrl/pinctrl-bindings.txt.
Example:
@ -46,4 +50,7 @@ Example:
interrupts = <GIC_SPI 44 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&cru SCLK_SPI0>, <&cru PCLK_SPI0>;
clock-names = "spiclk", "apb_pclk";
pinctrl-0 = <&spi1_pins>;
pinctrl-1 = <&spi1_sleep>;
pinctrl-names = "default", "sleep";
};

View File

@ -146,10 +146,11 @@ a pull-up resistor is needed on the outgoing rail to complete the circuit, and
in the second case, a pull-down resistor is needed on the rail.
Hardware that supports open drain or open source or both, can implement a
special callback in the gpio_chip: .set_single_ended() that takes an enum flag
telling whether to configure the line as open drain, open source or push-pull.
This will happen in response to the GPIO_OPEN_DRAIN or GPIO_OPEN_SOURCE flag
set in the machine file, or coming from other hardware descriptions.
special callback in the gpio_chip: .set_config() that takes a generic
pinconf packed value telling whether to configure the line as open drain,
open source or push-pull. This will happen in response to the
GPIO_OPEN_DRAIN or GPIO_OPEN_SOURCE flag set in the machine file, or coming
from other hardware descriptions.
If this state can not be configured in hardware, i.e. if the GPIO hardware does
not support open drain/open source in hardware, the GPIO library will instead

View File

@ -65,6 +65,21 @@ LED subsystem core exposes following API for setting brightness:
blinking, returns -EBUSY if software blink fallback is enabled.
LED registration API
====================
A driver wanting to register a LED classdev for use by other drivers /
userspace needs to allocate and fill a led_classdev struct and then call
[devm_]led_classdev_register. If the non devm version is used the driver
must call led_classdev_unregister from its remove function before
free-ing the led_classdev struct.
If the driver can detect hardware initiated brightness changes and thus
wants to have a brightness_hw_changed attribute then the LED_BRIGHT_HW_CHANGED
flag must be set in flags before registering. Calling
led_classdev_notify_brightness_hw_changed on a classdev not registered with
the LED_BRIGHT_HW_CHANGED flag is a bug and will trigger a WARN_ON.
Hardware accelerated blink of LEDs
==================================

View File

@ -162,13 +162,13 @@ framework provides a depth-first graph traversal API for that purpose.
currently defined as 16.
Drivers initiate a graph traversal by calling
:c:func:`media_entity_graph_walk_start()`
:c:func:`media_graph_walk_start()`
The graph structure, provided by the caller, is initialized to start graph
traversal at the given entity.
Drivers can then retrieve the next entity by calling
:c:func:`media_entity_graph_walk_next()`
:c:func:`media_graph_walk_next()`
When the graph traversal is complete the function will return ``NULL``.
@ -206,7 +206,7 @@ Pipelines and media streams
When starting streaming, drivers must notify all entities in the pipeline to
prevent link states from being modified during streaming by calling
:c:func:`media_entity_pipeline_start()`.
:c:func:`media_pipeline_start()`.
The function will mark all entities connected to the given entity through
enabled links, either directly or indirectly, as streaming.
@ -218,17 +218,17 @@ in higher-level pipeline structures and can then access the
pipeline through the struct :c:type:`media_entity`
pipe field.
Calls to :c:func:`media_entity_pipeline_start()` can be nested.
Calls to :c:func:`media_pipeline_start()` can be nested.
The pipeline pointer must be identical for all nested calls to the function.
:c:func:`media_entity_pipeline_start()` may return an error. In that case,
:c:func:`media_pipeline_start()` may return an error. In that case,
it will clean up any of the changes it did by itself.
When stopping the stream, drivers must notify the entities with
:c:func:`media_entity_pipeline_stop()`.
:c:func:`media_pipeline_stop()`.
If multiple calls to :c:func:`media_entity_pipeline_start()` have been
made the same number of :c:func:`media_entity_pipeline_stop()` calls
If multiple calls to :c:func:`media_pipeline_start()` have been
made the same number of :c:func:`media_pipeline_stop()` calls
are required to stop streaming.
The :c:type:`media_entity`.\ ``pipe`` field is reset to ``NULL`` on the last
nested stop call.
@ -245,7 +245,7 @@ operation must be done with the media_device graph_mutex held.
Link validation
^^^^^^^^^^^^^^^
Link validation is performed by :c:func:`media_entity_pipeline_start()`
Link validation is performed by :c:func:`media_pipeline_start()`
for any entity which has sink pads in the pipeline. The
:c:type:`media_entity`.\ ``link_validate()`` callback is used for that
purpose. In ``link_validate()`` callback, entity driver should check

View File

@ -94,9 +94,17 @@ Generic Error Codes
- Permission denied. Can be returned if the device needs write
permission, or some special capabilities is needed (e. g. root)
- .. row 11
- ``EIO``
- I/O error. Typically used when there are problems communicating with
a hardware device. This could indicate broken or flaky hardware.
It's a 'Something is wrong, I give up!' type of error.
.. note::
#. This list is not exaustive; ioctls may return other error codes.
#. This list is not exhaustive; ioctls may return other error codes.
Since errors may have side effects such as a driver reset,
applications should abort on unexpected errors, or otherwise
assume that the device is in a bad state.

View File

@ -92,15 +92,16 @@ This value may be reset to 0 if the current protocol is altered.
Reading this file returns a list of available protocols to use for the
wakeup filter, something like:
``rc5 rc6 nec jvc [sony]``
``rc-5 nec nec-x rc-6-0 rc-6-6a-24 [rc-6-6a-32] rc-6-mce``
Note that protocol variants are listed, so "nec", "sony", "rc-5", "rc-6"
have their different bit length encodings listed if available.
Note that all protocol variants are listed.
The enabled wakeup protocol is shown in [] brackets.
Writing "+proto" will add a protocol to the list of enabled wakeup
protocols.
Writing "-proto" will remove a protocol from the list of enabled wakeup
protocols.
Only one protocol can be selected at a time.
Writing "proto" will use "proto" for wakeup events.

View File

@ -79,9 +79,7 @@ int __init foo_probe(void)
{
struct pinctrl_dev *pctl;
pctl = pinctrl_register(&foo_desc, <PARENT>, NULL);
if (!pctl)
pr_err("could not register foo pin driver\n");
return pinctrl_register_and_init(&foo_desc, <PARENT>, NULL, &pctl);
}
To enable the pinctrl subsystem and the subgroups for PINMUX and PINCONF and

View File

@ -79,22 +79,6 @@ dependent subsystems such as cpufreq are left to the discretion of the SoC
specific framework which uses the OPP library. Similar care needs to be taken
care to refresh the cpufreq table in cases of these operations.
WARNING on OPP List locking mechanism:
-------------------------------------------------
OPP library uses RCU for exclusivity. RCU allows the query functions to operate
in multiple contexts and this synchronization mechanism is optimal for a read
intensive operations on data structure as the OPP library caters to.
To ensure that the data retrieved are sane, the users such as SoC framework
should ensure that the section of code operating on OPP queries are locked
using RCU read locks. The opp_find_freq_{exact,ceil,floor},
opp_get_{voltage, freq, opp_count} fall into this category.
opp_{add,enable,disable} are updaters which use mutex and implement it's own
RCU locking mechanisms. These functions should *NOT* be called under RCU locks
and other contexts that prevent blocking functions in RCU or mutex operations
from working.
2. Initial OPP List Registration
================================
The SoC implementation calls dev_pm_opp_add function iteratively to add OPPs per
@ -137,15 +121,18 @@ functions return the matching pointer representing the opp if a match is
found, else returns error. These errors are expected to be handled by standard
error checks such as IS_ERR() and appropriate actions taken by the caller.
Callers of these functions shall call dev_pm_opp_put() after they have used the
OPP. Otherwise the memory for the OPP will never get freed and result in
memleak.
dev_pm_opp_find_freq_exact - Search for an OPP based on an *exact* frequency and
availability. This function is especially useful to enable an OPP which
is not available by default.
Example: In a case when SoC framework detects a situation where a
higher frequency could be made available, it can use this function to
find the OPP prior to call the dev_pm_opp_enable to actually make it available.
rcu_read_lock();
opp = dev_pm_opp_find_freq_exact(dev, 1000000000, false);
rcu_read_unlock();
dev_pm_opp_put(opp);
/* dont operate on the pointer.. just do a sanity check.. */
if (IS_ERR(opp)) {
pr_err("frequency not disabled!\n");
@ -163,9 +150,8 @@ dev_pm_opp_find_freq_floor - Search for an available OPP which is *at most* the
frequency.
Example: To find the highest opp for a device:
freq = ULONG_MAX;
rcu_read_lock();
dev_pm_opp_find_freq_floor(dev, &freq);
rcu_read_unlock();
opp = dev_pm_opp_find_freq_floor(dev, &freq);
dev_pm_opp_put(opp);
dev_pm_opp_find_freq_ceil - Search for an available OPP which is *at least* the
provided frequency. This function is useful while searching for a
@ -173,17 +159,15 @@ dev_pm_opp_find_freq_ceil - Search for an available OPP which is *at least* the
frequency.
Example 1: To find the lowest opp for a device:
freq = 0;
rcu_read_lock();
dev_pm_opp_find_freq_ceil(dev, &freq);
rcu_read_unlock();
opp = dev_pm_opp_find_freq_ceil(dev, &freq);
dev_pm_opp_put(opp);
Example 2: A simplified implementation of a SoC cpufreq_driver->target:
soc_cpufreq_target(..)
{
/* Do stuff like policy checks etc. */
/* Find the best frequency match for the req */
rcu_read_lock();
opp = dev_pm_opp_find_freq_ceil(dev, &freq);
rcu_read_unlock();
dev_pm_opp_put(opp);
if (!IS_ERR(opp))
soc_switch_to_freq_voltage(freq);
else
@ -208,9 +192,8 @@ dev_pm_opp_enable - Make a OPP available for operation.
implementation might choose to do something as follows:
if (cur_temp < temp_low_thresh) {
/* Enable 1GHz if it was disabled */
rcu_read_lock();
opp = dev_pm_opp_find_freq_exact(dev, 1000000000, false);
rcu_read_unlock();
dev_pm_opp_put(opp);
/* just error check */
if (!IS_ERR(opp))
ret = dev_pm_opp_enable(dev, 1000000000);
@ -224,9 +207,8 @@ dev_pm_opp_disable - Make an OPP to be not available for operation
choose to do something as follows:
if (cur_temp > temp_high_thresh) {
/* Disable 1GHz if it was enabled */
rcu_read_lock();
opp = dev_pm_opp_find_freq_exact(dev, 1000000000, true);
rcu_read_unlock();
dev_pm_opp_put(opp);
/* just error check */
if (!IS_ERR(opp))
ret = dev_pm_opp_disable(dev, 1000000000);
@ -249,10 +231,9 @@ dev_pm_opp_get_voltage - Retrieve the voltage represented by the opp pointer.
soc_switch_to_freq_voltage(freq)
{
/* do things */
rcu_read_lock();
opp = dev_pm_opp_find_freq_ceil(dev, &freq);
v = dev_pm_opp_get_voltage(opp);
rcu_read_unlock();
dev_pm_opp_put(opp);
if (v)
regulator_set_voltage(.., v);
/* do other things */
@ -266,12 +247,12 @@ dev_pm_opp_get_freq - Retrieve the freq represented by the opp pointer.
{
/* do things.. */
max_freq = ULONG_MAX;
rcu_read_lock();
max_opp = dev_pm_opp_find_freq_floor(dev,&max_freq);
requested_opp = dev_pm_opp_find_freq_ceil(dev,&freq);
if (!IS_ERR(max_opp) && !IS_ERR(requested_opp))
r = soc_test_validity(max_opp, requested_opp);
rcu_read_unlock();
dev_pm_opp_put(max_opp);
dev_pm_opp_put(requested_opp);
/* do other things */
}
soc_test_validity(..)
@ -289,7 +270,6 @@ dev_pm_opp_get_opp_count - Retrieve the number of available opps for a device
soc_notify_coproc_available_frequencies()
{
/* Do things */
rcu_read_lock();
num_available = dev_pm_opp_get_opp_count(dev);
speeds = kzalloc(sizeof(u32) * num_available, GFP_KERNEL);
/* populate the table in increasing order */
@ -298,8 +278,8 @@ dev_pm_opp_get_opp_count - Retrieve the number of available opps for a device
speeds[i] = freq;
freq++;
i++;
dev_pm_opp_put(opp);
}
rcu_read_unlock();
soc_notify_coproc(AVAILABLE_FREQs, speeds, num_available);
/* Do other things */

View File

@ -25,7 +25,7 @@ to be used subsequently to change to the one represented by that string.
Consequently, there are two ways to cause the system to go into the
Suspend-To-Idle sleep state. The first one is to write "freeze" directly to
/sys/power/state. The second one is to write "s2idle" to /sys/power/mem_sleep
and then to wrtie "mem" to /sys/power/state. Similarly, there are two ways
and then to write "mem" to /sys/power/state. Similarly, there are two ways
to cause the system to go into the Power-On Suspend sleep state (the strings to
write to the control files in that case are "standby" or "shallow" and "mem",
respectively) if that state is supported by the platform. In turn, there is

View File

@ -22,6 +22,13 @@ system, building their checks on top of the defined capability hooks.
For more details on capabilities, see capabilities(7) in the Linux
man-pages project.
A list of the active security modules can be found by reading
/sys/kernel/security/lsm. This is a comma separated list, and
will always include the capability module. The list reflects the
order in which checks are made. The capability module will always
be first, followed by any "minor" modules (e.g. Yama) and then
the one "major" module (e.g. SELinux) if there is one configured.
Based on https://lkml.org/lkml/2007/10/26/215,
a new LSM is accepted into the kernel when its intent (a description of
what it tries to protect against and in what cases one would expect to

View File

@ -1,105 +0,0 @@
Cirrus EP93xx SPI controller driver HOWTO
=========================================
ep93xx_spi driver brings SPI master support for EP93xx SPI controller. Chip
selects are implemented with GPIO lines.
NOTE: If possible, don't use SFRMOUT (SFRM1) signal as a chip select. It will
not work correctly (it cannot be controlled by software). Use GPIO lines
instead.
Sample configuration
====================
Typically driver configuration is done in platform board files (the files under
arch/arm/mach-ep93xx/*.c). In this example we configure MMC over SPI through
this driver on TS-7260 board. You can adapt the code to suit your needs.
This example uses EGPIO9 as SD/MMC card chip select (this is wired in DIO1
header on the board).
You need to select CONFIG_MMC_SPI to use mmc_spi driver.
arch/arm/mach-ep93xx/ts72xx.c:
...
#include <linux/gpio.h>
#include <linux/spi/spi.h>
#include <linux/platform_data/spi-ep93xx.h>
/* this is our GPIO line used for chip select */
#define MMC_CHIP_SELECT_GPIO EP93XX_GPIO_LINE_EGPIO9
static int ts72xx_mmc_spi_setup(struct spi_device *spi)
{
int err;
err = gpio_request(MMC_CHIP_SELECT_GPIO, spi->modalias);
if (err)
return err;
gpio_direction_output(MMC_CHIP_SELECT_GPIO, 1);
return 0;
}
static void ts72xx_mmc_spi_cleanup(struct spi_device *spi)
{
gpio_set_value(MMC_CHIP_SELECT_GPIO, 1);
gpio_direction_input(MMC_CHIP_SELECT_GPIO);
gpio_free(MMC_CHIP_SELECT_GPIO);
}
static void ts72xx_mmc_spi_cs_control(struct spi_device *spi, int value)
{
gpio_set_value(MMC_CHIP_SELECT_GPIO, value);
}
static struct ep93xx_spi_chip_ops ts72xx_mmc_spi_ops = {
.setup = ts72xx_mmc_spi_setup,
.cleanup = ts72xx_mmc_spi_cleanup,
.cs_control = ts72xx_mmc_spi_cs_control,
};
static struct spi_board_info ts72xx_spi_devices[] __initdata = {
{
.modalias = "mmc_spi",
.controller_data = &ts72xx_mmc_spi_ops,
/*
* We use 10 MHz even though the maximum is 7.4 MHz. The driver
* will limit it automatically to max. frequency.
*/
.max_speed_hz = 10 * 1000 * 1000,
.bus_num = 0,
.chip_select = 0,
.mode = SPI_MODE_0,
},
};
static struct ep93xx_spi_info ts72xx_spi_info = {
.num_chipselect = ARRAY_SIZE(ts72xx_spi_devices),
};
static void __init ts72xx_init_machine(void)
{
...
ep93xx_register_spi(&ts72xx_spi_info, ts72xx_spi_devices,
ARRAY_SIZE(ts72xx_spi_devices));
}
The driver can use DMA for the transfers also. In this case ts72xx_spi_info
becomes:
static struct ep93xx_spi_info ts72xx_spi_info = {
.num_chipselect = ARRAY_SIZE(ts72xx_spi_devices),
.use_dma = true;
};
Note that CONFIG_EP93XX_DMA should be enabled as well.
Thanks to
=========
Martin Guy, H. Hartley Sweeten and others who helped me during development of
the driver. Simplemachines.it donated me a Sim.One board which I used testing
the driver on EP9307.

View File

@ -2423,6 +2423,14 @@ W: https://linuxtv.org
S: Supported
F: drivers/media/platform/sti/bdisp
DELTA ST MEDIA DRIVER
M: Hugues Fruchet <hugues.fruchet@st.com>
L: linux-media@vger.kernel.org
T: git git://linuxtv.org/media_tree.git
W: https://linuxtv.org
S: Supported
F: drivers/media/platform/sti/delta
BEFS FILE SYSTEM
M: Luis de Bethencourt <luisbg@osg.samsung.com>
M: Salah Triki <salah.triki@gmail.com>
@ -2692,6 +2700,13 @@ F: drivers/irqchip/irq-brcmstb*
F: include/linux/bcm963xx_nvram.h
F: include/linux/bcm963xx_tag.h
BROADCOM BMIPS CPUFREQ DRIVER
M: Markus Mayer <mmayer@broadcom.com>
M: bcm-kernel-feedback-list@broadcom.com
L: linux-pm@vger.kernel.org
S: Maintained
F: drivers/cpufreq/bmips-cpufreq.c
BROADCOM TG3 GIGABIT ETHERNET DRIVER
M: Siva Reddy Kallam <siva.kallam@broadcom.com>
M: Prashant Sreedharan <prashant@broadcom.com>
@ -5274,7 +5289,7 @@ M: Jaegeuk Kim <jaegeuk@kernel.org>
L: linux-fsdevel@vger.kernel.org
S: Supported
F: fs/crypto/
F: include/linux/fscrypto.h
F: include/linux/fscrypt*.h
F2FS FILE SYSTEM
M: Jaegeuk Kim <jaegeuk@kernel.org>
@ -5731,16 +5746,6 @@ L: linux-parisc@vger.kernel.org
S: Maintained
F: sound/parisc/harmony.*
HD29L2 MEDIA DRIVER
M: Antti Palosaari <crope@iki.fi>
L: linux-media@vger.kernel.org
W: https://linuxtv.org
W: http://palosaari.fi/linux/
Q: http://patchwork.linuxtv.org/project/linux-media/list/
T: git git://linuxtv.org/anttip/media_tree.git
S: Maintained
F: drivers/media/dvb-frontends/hd29l2*
HEWLETT PACKARD ENTERPRISE ILO NMI WATCHDOG DRIVER
M: Jimmy Vance <jimmy.vance@hpe.com>
S: Supported
@ -7700,6 +7705,12 @@ W: http://www.kernel.org/doc/man-pages
L: linux-man@vger.kernel.org
S: Maintained
MARDUK (CREATOR CI40) DEVICE TREE SUPPORT
M: Rahul Bedarkar <rahul.bedarkar@imgtec.com>
L: linux-mips@linux-mips.org
S: Maintained
F: arch/mips/boot/dts/img/pistachio_marduk.dts
MARVELL 88E6XXX ETHERNET SWITCH FABRIC DRIVER
M: Andrew Lunn <andrew@lunn.ch>
M: Vivien Didelot <vivien.didelot@savoirfairelinux.com>
@ -8613,10 +8624,10 @@ S: Maintained
F: drivers/net/ethernet/netronome/
NETWORK BLOCK DEVICE (NBD)
M: Markus Pargmann <mpa@pengutronix.de>
M: Josef Bacik <jbacik@fb.com>
S: Maintained
L: linux-block@vger.kernel.org
L: nbd-general@lists.sourceforge.net
T: git git://git.pengutronix.de/git/mpa/linux-nbd.git
F: Documentation/blockdev/nbd.txt
F: drivers/block/nbd.c
F: include/uapi/linux/nbd.h
@ -8812,6 +8823,22 @@ T: git git://git.kernel.org/pub/scm/linux/kernel/git/lftan/nios2.git
S: Maintained
F: arch/nios2/
NOKIA N900 CAMERA SUPPORT (ET8EK8 SENSOR, AD5820 FOCUS)
M: Pavel Machek <pavel@ucw.cz>
M: Sakari Ailus <sakari.ailus@iki.fi>
L: linux-media@vger.kernel.org
S: Maintained
F: drivers/media/i2c/et8ek8
F: drivers/media/i2c/ad5820.c
NOKIA N900 CAMERA SUPPORT (ET8EK8 SENSOR, AD5820 FOCUS)
M: Pavel Machek <pavel@ucw.cz>
M: Sakari Ailus <sakari.ailus@iki.fi>
L: linux-media@vger.kernel.org
S: Maintained
F: drivers/media/i2c/et8ek8
F: drivers/media/i2c/ad5820.c
NOKIA N900 POWER SUPPLY DRIVERS
R: Pali Rohár <pali.rohar@gmail.com>
F: include/linux/power/bq2415x_charger.h
@ -9788,7 +9815,7 @@ L: linux-mips@linux-mips.org
S: Maintained
F: arch/mips/pistachio/
F: arch/mips/include/asm/mach-pistachio/
F: arch/mips/boot/dts/pistachio/
F: arch/mips/boot/dts/img/pistachio*
F: arch/mips/configs/pistachio*_defconfig
PKTCDVD DRIVER
@ -10887,7 +10914,6 @@ SYNOPSYS DESIGNWARE MMC/SD/SDIO DRIVER
M: Jaehoon Chung <jh80.chung@samsung.com>
L: linux-mmc@vger.kernel.org
S: Maintained
F: include/linux/mmc/dw_mmc.h
F: drivers/mmc/host/dw_mmc*
SYSTEM TRACE MODULE CLASS
@ -11090,6 +11116,17 @@ L: linux-mmc@vger.kernel.org
S: Maintained
F: drivers/mmc/host/sdhci-spear.c
SECURE ENCRYPTING DEVICE (SED) OPAL DRIVER
M: Scott Bauer <scott.bauer@intel.com>
M: Jonathan Derrick <jonathan.derrick@intel.com>
M: Rafael Antognolli <rafael.antognolli@intel.com>
L: linux-block@vger.kernel.org
S: Supported
F: block/sed*
F: block/opal_proto.h
F: include/linux/sed*
F: include/uapi/linux/sed*
SECURITY SUBSYSTEM
M: James Morris <james.l.morris@oracle.com>
M: "Serge E. Hallyn" <serge@hallyn.com>
@ -13637,6 +13674,24 @@ L: zd1211-devs@lists.sourceforge.net (subscribers-only)
S: Maintained
F: drivers/net/wireless/zydas/zd1211rw/
ZD1301_DEMOD MEDIA DRIVER
M: Antti Palosaari <crope@iki.fi>
L: linux-media@vger.kernel.org
W: https://linuxtv.org/
W: http://palosaari.fi/linux/
Q: https://patchwork.linuxtv.org/project/linux-media/list/
S: Maintained
F: drivers/media/dvb-frontends/zd1301_demod*
ZD1301 MEDIA DRIVER
M: Antti Palosaari <crope@iki.fi>
L: linux-media@vger.kernel.org
W: https://linuxtv.org/
W: http://palosaari.fi/linux/
Q: https://patchwork.linuxtv.org/project/linux-media/list/
S: Maintained
F: drivers/media/usb/dvb-usb-v2/zd1301*
ZPOOL COMPRESSED PAGE STORAGE API
M: Dan Streetman <ddstreet@ieee.org>
L: linux-mm@kvack.org

View File

@ -13,7 +13,7 @@
#include <linux/sched.h>
#include <linux/tty.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/extable.h>
#include <linux/kallsyms.h>
#include <linux/ratelimit.h>

View File

@ -22,7 +22,7 @@
#include <linux/mman.h>
#include <linux/smp.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/extable.h>
#include <linux/uaccess.h>
extern void die_if_kernel(char *,struct pt_regs *,long, unsigned long *);

View File

@ -8,7 +8,8 @@
* Borrowed heavily from MIPS
*/
#include <linux/module.h>
#include <linux/export.h>
#include <linux/extable.h>
#include <linux/uaccess.h>
int fixup_exception(struct pt_regs *regs)

View File

@ -1166,8 +1166,10 @@
};
vdoa@021e4000 {
compatible = "fsl,imx6q-vdoa";
reg = <0x021e4000 0x4000>;
interrupts = <0 18 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&clks IMX6QDL_CLK_VDOA>;
};
uart2: serial@021e8000 {

View File

@ -1003,5 +1003,15 @@
status = "disabled";
};
delta0 {
compatible = "st,st-delta";
clock-names = "delta",
"delta-st231",
"delta-flash-promip";
clocks = <&clk_s_c0_flexgen CLK_VID_DMU>,
<&clk_s_c0_flexgen CLK_ST231_DMU>,
<&clk_s_c0_flexgen CLK_FLASH_PROMIP>;
};
};
};

View File

@ -24,7 +24,7 @@ CONFIG_ARM_APPENDED_DTB=y
CONFIG_ARM_ATAG_DTB_COMPAT=y
CONFIG_CMDLINE="root=/dev/ram0 rw ramdisk=8192 initrd=0x41000000,8M console=ttySAC1,115200 init=/linuxrc mem=256M"
CONFIG_CPU_FREQ=y
CONFIG_CPU_FREQ_STAT_DETAILS=y
CONFIG_CPU_FREQ_STAT=y
CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND=y
CONFIG_CPU_FREQ_GOV_POWERSAVE=m
CONFIG_CPU_FREQ_GOV_USERSPACE=m

View File

@ -58,7 +58,7 @@ CONFIG_ZBOOT_ROM_BSS=0x0
CONFIG_ARM_APPENDED_DTB=y
CONFIG_ARM_ATAG_DTB_COMPAT=y
CONFIG_CPU_FREQ=y
CONFIG_CPU_FREQ_STAT_DETAILS=y
CONFIG_CPU_FREQ_STAT=y
CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND=y
CONFIG_CPU_IDLE=y
CONFIG_ARM_KIRKWOOD_CPUIDLE=y

View File

@ -132,7 +132,7 @@ CONFIG_ARM_ATAG_DTB_COMPAT=y
CONFIG_KEXEC=y
CONFIG_EFI=y
CONFIG_CPU_FREQ=y
CONFIG_CPU_FREQ_STAT_DETAILS=y
CONFIG_CPU_FREQ_STAT=y
CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND=y
CONFIG_CPU_FREQ_GOV_POWERSAVE=m
CONFIG_CPU_FREQ_GOV_USERSPACE=m
@ -569,6 +569,7 @@ CONFIG_VIDEO_SAMSUNG_S5P_MFC=m
CONFIG_VIDEO_SAMSUNG_EXYNOS_GSC=m
CONFIG_VIDEO_STI_BDISP=m
CONFIG_VIDEO_STI_HVA=m
CONFIG_VIDEO_STI_DELTA=m
CONFIG_VIDEO_RENESAS_JPU=m
CONFIG_VIDEO_RENESAS_VSP1=m
CONFIG_V4L_TEST_DRIVERS=y

View File

@ -44,7 +44,7 @@ CONFIG_ZBOOT_ROM_BSS=0x0
CONFIG_ARM_APPENDED_DTB=y
CONFIG_ARM_ATAG_DTB_COMPAT=y
CONFIG_CPU_FREQ=y
CONFIG_CPU_FREQ_STAT_DETAILS=y
CONFIG_CPU_FREQ_STAT=y
CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND=y
CONFIG_CPU_IDLE=y
CONFIG_ARM_KIRKWOOD_CPUIDLE=y

View File

@ -97,7 +97,7 @@ CONFIG_ZBOOT_ROM_BSS=0x0
CONFIG_CMDLINE="root=/dev/ram0 ro"
CONFIG_KEXEC=y
CONFIG_CPU_FREQ=y
CONFIG_CPU_FREQ_STAT_DETAILS=y
CONFIG_CPU_FREQ_STAT=y
CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND=y
CONFIG_CPU_FREQ_GOV_POWERSAVE=m
CONFIG_CPU_FREQ_GOV_USERSPACE=m

View File

@ -38,7 +38,7 @@ CONFIG_ZBOOT_ROM_BSS=0x0
CONFIG_ARM_APPENDED_DTB=y
CONFIG_KEXEC=y
CONFIG_CPU_FREQ=y
CONFIG_CPU_FREQ_STAT_DETAILS=y
CONFIG_CPU_FREQ_STAT=y
CONFIG_CPU_FREQ_GOV_POWERSAVE=y
CONFIG_CPU_FREQ_GOV_USERSPACE=y
CONFIG_CPU_FREQ_GOV_ONDEMAND=y

View File

@ -18,6 +18,7 @@
#include <linux/gpio/machine.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/leds.h>
#include <linux/i2c.h>
#include <linux/platform_data/at24.h>
#include <linux/platform_data/pca953x.h>

View File

@ -25,6 +25,7 @@
#include <linux/videodev2.h>
#include <linux/v4l2-dv-timings.h>
#include <linux/export.h>
#include <linux/leds.h>
#include <media/i2c/tvp514x.h>

View File

@ -25,6 +25,7 @@
*/
#include <linux/platform_device.h>
#include <linux/gpio.h>
#include <linux/leds.h>
#include <linux/mtd/partitions.h>
#include <linux/platform_data/gpio-davinci.h>
#include <linux/platform_data/i2c-davinci.h>

View File

@ -12,6 +12,7 @@
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/console.h>
#include <linux/interrupt.h>
#include <linux/gpio.h>
#include <linux/gpio/machine.h>
#include <linux/platform_data/gpio-davinci.h>

View File

@ -27,7 +27,6 @@
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/gpio.h>
#include <linux/i2c.h>
#include <linux/i2c-gpio.h>
#include <linux/spi/spi.h>
@ -106,33 +105,10 @@ static struct cs4271_platform_data edb93xx_cs4271_data = {
.gpio_nreset = -EINVAL, /* filled in later */
};
static int edb93xx_cs4271_hw_setup(struct spi_device *spi)
{
return gpio_request_one(EP93XX_GPIO_LINE_EGPIO6,
GPIOF_OUT_INIT_HIGH, spi->modalias);
}
static void edb93xx_cs4271_hw_cleanup(struct spi_device *spi)
{
gpio_free(EP93XX_GPIO_LINE_EGPIO6);
}
static void edb93xx_cs4271_hw_cs_control(struct spi_device *spi, int value)
{
gpio_set_value(EP93XX_GPIO_LINE_EGPIO6, value);
}
static struct ep93xx_spi_chip_ops edb93xx_cs4271_hw = {
.setup = edb93xx_cs4271_hw_setup,
.cleanup = edb93xx_cs4271_hw_cleanup,
.cs_control = edb93xx_cs4271_hw_cs_control,
};
static struct spi_board_info edb93xx_spi_board_info[] __initdata = {
{
.modalias = "cs4271",
.platform_data = &edb93xx_cs4271_data,
.controller_data = &edb93xx_cs4271_hw,
.max_speed_hz = 6000000,
.bus_num = 0,
.chip_select = 0,
@ -140,8 +116,13 @@ static struct spi_board_info edb93xx_spi_board_info[] __initdata = {
},
};
static int edb93xx_spi_chipselects[] __initdata = {
EP93XX_GPIO_LINE_EGPIO6,
};
static struct ep93xx_spi_info edb93xx_spi_info __initdata = {
.num_chipselect = ARRAY_SIZE(edb93xx_spi_board_info),
.chipselect = edb93xx_spi_chipselects,
.num_chipselect = ARRAY_SIZE(edb93xx_spi_chipselects),
};
static void __init edb93xx_register_spi(void)

View File

@ -48,56 +48,6 @@ static struct ep93xxfb_mach_info __initdata simone_fb_info = {
*/
#define MMC_CARD_DETECT_GPIO EP93XX_GPIO_LINE_EGPIO0
/*
* Up to v1.3, the Sim.One used SFRMOUT as SD card chip select, but this goes
* low between multi-message command blocks. From v1.4, it uses a GPIO instead.
* v1.3 parts will still work, since the signal on SFRMOUT is automatic.
*/
#define MMC_CHIP_SELECT_GPIO EP93XX_GPIO_LINE_EGPIO1
/*
* MMC SPI chip select GPIO handling. If you are using SFRMOUT (SFRM1) signal,
* you can leave these empty and pass NULL as .controller_data.
*/
static int simone_mmc_spi_setup(struct spi_device *spi)
{
unsigned int gpio = MMC_CHIP_SELECT_GPIO;
int err;
err = gpio_request(gpio, spi->modalias);
if (err)
return err;
err = gpio_direction_output(gpio, 1);
if (err) {
gpio_free(gpio);
return err;
}
return 0;
}
static void simone_mmc_spi_cleanup(struct spi_device *spi)
{
unsigned int gpio = MMC_CHIP_SELECT_GPIO;
gpio_set_value(gpio, 1);
gpio_direction_input(gpio);
gpio_free(gpio);
}
static void simone_mmc_spi_cs_control(struct spi_device *spi, int value)
{
gpio_set_value(MMC_CHIP_SELECT_GPIO, value);
}
static struct ep93xx_spi_chip_ops simone_mmc_spi_ops = {
.setup = simone_mmc_spi_setup,
.cleanup = simone_mmc_spi_cleanup,
.cs_control = simone_mmc_spi_cs_control,
};
/*
* MMC card detection GPIO setup.
*/
@ -152,7 +102,6 @@ static struct mmc_spi_platform_data simone_mmc_spi_data = {
static struct spi_board_info simone_spi_devices[] __initdata = {
{
.modalias = "mmc_spi",
.controller_data = &simone_mmc_spi_ops,
.platform_data = &simone_mmc_spi_data,
/*
* We use 10 MHz even though the maximum is 3.7 MHz. The driver
@ -165,8 +114,18 @@ static struct spi_board_info simone_spi_devices[] __initdata = {
},
};
/*
* Up to v1.3, the Sim.One used SFRMOUT as SD card chip select, but this goes
* low between multi-message command blocks. From v1.4, it uses a GPIO instead.
* v1.3 parts will still work, since the signal on SFRMOUT is automatic.
*/
static int simone_spi_chipselects[] __initdata = {
EP93XX_GPIO_LINE_EGPIO1,
};
static struct ep93xx_spi_info simone_spi_info __initdata = {
.num_chipselect = ARRAY_SIZE(simone_spi_devices),
.chipselect = simone_spi_chipselects,
.num_chipselect = ARRAY_SIZE(simone_spi_chipselects),
.use_dma = 1,
};

View File

@ -175,33 +175,9 @@ static struct cs4271_platform_data vision_cs4271_data = {
.gpio_nreset = EP93XX_GPIO_LINE_H(2),
};
static int vision_cs4271_hw_setup(struct spi_device *spi)
{
return gpio_request_one(EP93XX_GPIO_LINE_EGPIO6,
GPIOF_OUT_INIT_HIGH, spi->modalias);
}
static void vision_cs4271_hw_cleanup(struct spi_device *spi)
{
gpio_free(EP93XX_GPIO_LINE_EGPIO6);
}
static void vision_cs4271_hw_cs_control(struct spi_device *spi, int value)
{
gpio_set_value(EP93XX_GPIO_LINE_EGPIO6, value);
}
static struct ep93xx_spi_chip_ops vision_cs4271_hw = {
.setup = vision_cs4271_hw_setup,
.cleanup = vision_cs4271_hw_cleanup,
.cs_control = vision_cs4271_hw_cs_control,
};
/*************************************************************************
* SPI Flash
*************************************************************************/
#define VISION_SPI_FLASH_CS EP93XX_GPIO_LINE_EGPIO7
static struct mtd_partition vision_spi_flash_partitions[] = {
{
.name = "SPI bootstrap",
@ -224,68 +200,20 @@ static struct flash_platform_data vision_spi_flash_data = {
.nr_parts = ARRAY_SIZE(vision_spi_flash_partitions),
};
static int vision_spi_flash_hw_setup(struct spi_device *spi)
{
return gpio_request_one(VISION_SPI_FLASH_CS, GPIOF_INIT_HIGH,
spi->modalias);
}
static void vision_spi_flash_hw_cleanup(struct spi_device *spi)
{
gpio_free(VISION_SPI_FLASH_CS);
}
static void vision_spi_flash_hw_cs_control(struct spi_device *spi, int value)
{
gpio_set_value(VISION_SPI_FLASH_CS, value);
}
static struct ep93xx_spi_chip_ops vision_spi_flash_hw = {
.setup = vision_spi_flash_hw_setup,
.cleanup = vision_spi_flash_hw_cleanup,
.cs_control = vision_spi_flash_hw_cs_control,
};
/*************************************************************************
* SPI SD/MMC host
*************************************************************************/
#define VISION_SPI_MMC_CS EP93XX_GPIO_LINE_G(2)
#define VISION_SPI_MMC_WP EP93XX_GPIO_LINE_F(0)
#define VISION_SPI_MMC_CD EP93XX_GPIO_LINE_EGPIO15
static struct mmc_spi_platform_data vision_spi_mmc_data = {
.detect_delay = 100,
.powerup_msecs = 100,
.ocr_mask = MMC_VDD_32_33 | MMC_VDD_33_34,
.flags = MMC_SPI_USE_CD_GPIO | MMC_SPI_USE_RO_GPIO,
.cd_gpio = VISION_SPI_MMC_CD,
.cd_gpio = EP93XX_GPIO_LINE_EGPIO15,
.cd_debounce = 1,
.ro_gpio = VISION_SPI_MMC_WP,
.ro_gpio = EP93XX_GPIO_LINE_F(0),
.caps2 = MMC_CAP2_RO_ACTIVE_HIGH,
};
static int vision_spi_mmc_hw_setup(struct spi_device *spi)
{
return gpio_request_one(VISION_SPI_MMC_CS, GPIOF_INIT_HIGH,
spi->modalias);
}
static void vision_spi_mmc_hw_cleanup(struct spi_device *spi)
{
gpio_free(VISION_SPI_MMC_CS);
}
static void vision_spi_mmc_hw_cs_control(struct spi_device *spi, int value)
{
gpio_set_value(VISION_SPI_MMC_CS, value);
}
static struct ep93xx_spi_chip_ops vision_spi_mmc_hw = {
.setup = vision_spi_mmc_hw_setup,
.cleanup = vision_spi_mmc_hw_cleanup,
.cs_control = vision_spi_mmc_hw_cs_control,
};
/*************************************************************************
* SPI Bus
*************************************************************************/
@ -293,7 +221,6 @@ static struct spi_board_info vision_spi_board_info[] __initdata = {
{
.modalias = "cs4271",
.platform_data = &vision_cs4271_data,
.controller_data = &vision_cs4271_hw,
.max_speed_hz = 6000000,
.bus_num = 0,
.chip_select = 0,
@ -301,7 +228,6 @@ static struct spi_board_info vision_spi_board_info[] __initdata = {
}, {
.modalias = "sst25l",
.platform_data = &vision_spi_flash_data,
.controller_data = &vision_spi_flash_hw,
.max_speed_hz = 20000000,
.bus_num = 0,
.chip_select = 1,
@ -309,7 +235,6 @@ static struct spi_board_info vision_spi_board_info[] __initdata = {
}, {
.modalias = "mmc_spi",
.platform_data = &vision_spi_mmc_data,
.controller_data = &vision_spi_mmc_hw,
.max_speed_hz = 20000000,
.bus_num = 0,
.chip_select = 2,
@ -317,8 +242,15 @@ static struct spi_board_info vision_spi_board_info[] __initdata = {
},
};
static int vision_spi_chipselects[] __initdata = {
EP93XX_GPIO_LINE_EGPIO6,
EP93XX_GPIO_LINE_EGPIO7,
EP93XX_GPIO_LINE_G(2),
};
static struct ep93xx_spi_info vision_spi_master __initdata = {
.num_chipselect = ARRAY_SIZE(vision_spi_board_info),
.chipselect = vision_spi_chipselects,
.num_chipselect = ARRAY_SIZE(vision_spi_chipselects),
.use_dma = 1,
};

View File

@ -57,7 +57,6 @@ struct exynos_wkup_irq {
struct exynos_pm_data {
const struct exynos_wkup_irq *wkup_irq;
unsigned int wake_disable_mask;
unsigned int *release_ret_regs;
void (*pm_prepare)(void);
void (*pm_resume_prepare)(void);
@ -95,47 +94,6 @@ static const struct exynos_wkup_irq exynos5250_wkup_irq[] = {
{ /* sentinel */ },
};
static unsigned int exynos_release_ret_regs[] = {
S5P_PAD_RET_MAUDIO_OPTION,
S5P_PAD_RET_GPIO_OPTION,
S5P_PAD_RET_UART_OPTION,
S5P_PAD_RET_MMCA_OPTION,
S5P_PAD_RET_MMCB_OPTION,
S5P_PAD_RET_EBIA_OPTION,
S5P_PAD_RET_EBIB_OPTION,
REG_TABLE_END,
};
static unsigned int exynos3250_release_ret_regs[] = {
S5P_PAD_RET_MAUDIO_OPTION,
S5P_PAD_RET_GPIO_OPTION,
S5P_PAD_RET_UART_OPTION,
S5P_PAD_RET_MMCA_OPTION,
S5P_PAD_RET_MMCB_OPTION,
S5P_PAD_RET_EBIA_OPTION,
S5P_PAD_RET_EBIB_OPTION,
S5P_PAD_RET_MMC2_OPTION,
S5P_PAD_RET_SPI_OPTION,
REG_TABLE_END,
};
static unsigned int exynos5420_release_ret_regs[] = {
EXYNOS_PAD_RET_DRAM_OPTION,
EXYNOS_PAD_RET_MAUDIO_OPTION,
EXYNOS_PAD_RET_JTAG_OPTION,
EXYNOS5420_PAD_RET_GPIO_OPTION,
EXYNOS5420_PAD_RET_UART_OPTION,
EXYNOS5420_PAD_RET_MMCA_OPTION,
EXYNOS5420_PAD_RET_MMCB_OPTION,
EXYNOS5420_PAD_RET_MMCC_OPTION,
EXYNOS5420_PAD_RET_HSI_OPTION,
EXYNOS_PAD_RET_EBIA_OPTION,
EXYNOS_PAD_RET_EBIB_OPTION,
EXYNOS5420_PAD_RET_SPI_OPTION,
EXYNOS5420_PAD_RET_DRAM_COREBLK_OPTION,
REG_TABLE_END,
};
static int exynos_irq_set_wake(struct irq_data *data, unsigned int state)
{
const struct exynos_wkup_irq *wkup_irq;
@ -442,15 +400,6 @@ static int exynos5420_pm_suspend(void)
return 0;
}
static void exynos_pm_release_retention(void)
{
unsigned int i;
for (i = 0; (pm_data->release_ret_regs[i] != REG_TABLE_END); i++)
pmu_raw_writel(EXYNOS_WAKEUP_FROM_LOWPWR,
pm_data->release_ret_regs[i]);
}
static void exynos_pm_resume(void)
{
u32 cpuid = read_cpuid_part();
@ -458,9 +407,6 @@ static void exynos_pm_resume(void)
if (exynos_pm_central_resume())
goto early_wakeup;
/* For release retention */
exynos_pm_release_retention();
if (cpuid == ARM_CPU_PART_CORTEX_A9)
scu_enable(S5P_VA_SCU);
@ -482,9 +428,6 @@ static void exynos3250_pm_resume(void)
if (exynos_pm_central_resume())
goto early_wakeup;
/* For release retention */
exynos_pm_release_retention();
pmu_raw_writel(S5P_USE_STANDBY_WFI_ALL, S5P_CENTRAL_SEQ_OPTION);
if (call_firmware_op(resume) == -ENOSYS
@ -522,9 +465,6 @@ static void exynos5420_pm_resume(void)
if (exynos_pm_central_resume())
goto early_wakeup;
/* For release retention */
exynos_pm_release_retention();
pmu_raw_writel(exynos_pmu_spare3, S5P_PMU_SPARE3);
early_wakeup:
@ -637,7 +577,6 @@ static const struct platform_suspend_ops exynos_suspend_ops = {
static const struct exynos_pm_data exynos3250_pm_data = {
.wkup_irq = exynos3250_wkup_irq,
.wake_disable_mask = ((0xFF << 8) | (0x1F << 1)),
.release_ret_regs = exynos3250_release_ret_regs,
.pm_suspend = exynos_pm_suspend,
.pm_resume = exynos3250_pm_resume,
.pm_prepare = exynos3250_pm_prepare,
@ -647,7 +586,6 @@ static const struct exynos_pm_data exynos3250_pm_data = {
static const struct exynos_pm_data exynos4_pm_data = {
.wkup_irq = exynos4_wkup_irq,
.wake_disable_mask = ((0xFF << 8) | (0x1F << 1)),
.release_ret_regs = exynos_release_ret_regs,
.pm_suspend = exynos_pm_suspend,
.pm_resume = exynos_pm_resume,
.pm_prepare = exynos_pm_prepare,
@ -657,7 +595,6 @@ static const struct exynos_pm_data exynos4_pm_data = {
static const struct exynos_pm_data exynos5250_pm_data = {
.wkup_irq = exynos5250_wkup_irq,
.wake_disable_mask = ((0xFF << 8) | (0x1F << 1)),
.release_ret_regs = exynos_release_ret_regs,
.pm_suspend = exynos_pm_suspend,
.pm_resume = exynos_pm_resume,
.pm_prepare = exynos_pm_prepare,
@ -667,7 +604,6 @@ static const struct exynos_pm_data exynos5250_pm_data = {
static const struct exynos_pm_data exynos5420_pm_data = {
.wkup_irq = exynos5250_wkup_irq,
.wake_disable_mask = (0x7F << 7) | (0x1F << 1),
.release_ret_regs = exynos5420_release_ret_regs,
.pm_resume_prepare = exynos5420_prepare_pm_resume,
.pm_resume = exynos5420_pm_resume,
.pm_suspend = exynos5420_pm_suspend,

View File

@ -484,15 +484,15 @@ static struct pwm_omap_dmtimer_pdata pwm_dmtimer_pdata = {
};
#endif
static struct lirc_rx51_platform_data __maybe_unused rx51_lirc_data = {
static struct ir_rx51_platform_data __maybe_unused rx51_ir_data = {
.set_max_mpu_wakeup_lat = omap_pm_set_max_mpu_wakeup_lat,
};
static struct platform_device __maybe_unused rx51_lirc_device = {
.name = "lirc_rx51",
static struct platform_device __maybe_unused rx51_ir_device = {
.name = "ir_rx51",
.id = -1,
.dev = {
.platform_data = &rx51_lirc_data,
.platform_data = &rx51_ir_data,
},
};
@ -533,7 +533,7 @@ static struct of_dev_auxdata omap_auxdata_lookup[] __initdata = {
&omap3_iommu_pdata),
OF_DEV_AUXDATA("ti,omap3-hsmmc", 0x4809c000, "4809c000.mmc", &mmc_pdata[0]),
OF_DEV_AUXDATA("ti,omap3-hsmmc", 0x480b4000, "480b4000.mmc", &mmc_pdata[1]),
OF_DEV_AUXDATA("nokia,n900-ir", 0, "n900-ir", &rx51_lirc_data),
OF_DEV_AUXDATA("nokia,n900-ir", 0, "n900-ir", &rx51_ir_data),
/* Only on am3517 */
OF_DEV_AUXDATA("ti,davinci_mdio", 0x5c030000, "davinci_mdio.0", NULL),
OF_DEV_AUXDATA("ti,am3517-emac", 0x5c000000, "davinci_emac.0",

View File

@ -130,17 +130,16 @@ static int __init omap2_set_init_voltage(char *vdd_name, char *clk_name,
freq = clk_get_rate(clk);
clk_put(clk);
rcu_read_lock();
opp = dev_pm_opp_find_freq_ceil(dev, &freq);
if (IS_ERR(opp)) {
rcu_read_unlock();
pr_err("%s: unable to find boot up OPP for vdd_%s\n",
__func__, vdd_name);
goto exit;
}
bootup_volt = dev_pm_opp_get_voltage(opp);
rcu_read_unlock();
dev_pm_opp_put(opp);
if (!bootup_volt) {
pr_err("%s: unable to find voltage corresponding to the bootup OPP for vdd_%s\n",
__func__, vdd_name);

View File

@ -17,6 +17,7 @@
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/leds.h>
#include <linux/sched.h>
#include <linux/bitops.h>
#include <linux/fb.h>

View File

@ -17,6 +17,7 @@
#include <linux/gpio.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/leds.h>
#include <linux/ioport.h>
#include <linux/kernel.h>
#include <linux/platform_device.h>

View File

@ -19,6 +19,7 @@
#include <linux/major.h>
#include <linux/fs.h>
#include <linux/interrupt.h>
#include <linux/leds.h>
#include <linux/mmc/host.h>
#include <linux/mtd/physmap.h>
#include <linux/pm.h>

View File

@ -16,6 +16,7 @@
#include <linux/kernel.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/leds.h>
#include <linux/export.h>
#include <linux/sched.h>
#include <linux/bitops.h>

View File

@ -15,6 +15,7 @@
#include <linux/irq.h>
#include <linux/gpio_keys.h>
#include <linux/input.h>
#include <linux/leds.h>
#include <linux/gpio.h>
#include <linux/usb/gpio_vbus.h>
#include <linux/mtd/mtd.h>

View File

@ -13,6 +13,7 @@
#include <linux/cpufreq.h>
#include <linux/interrupt.h>
#include <linux/leds.h>
#include <linux/irq.h>
#include <linux/pm.h>
#include <linux/gpio.h>

View File

@ -16,6 +16,7 @@
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/leds.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/gpio.h>

View File

@ -155,13 +155,6 @@ static const struct platform_suspend_ops s5pv210_suspend_ops = {
*/
static void s5pv210_pm_resume(void)
{
u32 tmp;
tmp = __raw_readl(S5P_OTHERS);
tmp |= (S5P_OTHERS_RET_IO | S5P_OTHERS_RET_CF |\
S5P_OTHERS_RET_MMC | S5P_OTHERS_RET_UART);
__raw_writel(tmp , S5P_OTHERS);
s3c_pm_do_restore_core(s5pv210_core_save, ARRAY_SIZE(s5pv210_core_save));
}

View File

@ -188,10 +188,6 @@
#define S5P_SLEEP_CFG_USBOSC_EN (1 << 1)
/* OTHERS Resgister */
#define S5P_OTHERS_RET_IO (1 << 31)
#define S5P_OTHERS_RET_CF (1 << 30)
#define S5P_OTHERS_RET_MMC (1 << 29)
#define S5P_OTHERS_RET_UART (1 << 28)
#define S5P_OTHERS_USB_SIG_MASK (1 << 16)
/* S5P_DAC_CONTROL */

View File

@ -1,7 +1,7 @@
/*
* linux/arch/arm/mm/extable.c
*/
#include <linux/module.h>
#include <linux/extable.h>
#include <linux/uaccess.h>
int fixup_exception(struct pt_regs *regs)

Some files were not shown because too many files have changed in this diff Show More