1
0
Fork 0

KVM/ARM changes for v3.20 including GICv3 emulation, dirty page logging, added

trace symbols, and adding an explicit VGIC init device control IOCTL.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQEcBAABAgAGBQJUwhsKAAoJEEtpOizt6ddyuSEH/ia2uf07N0i+C1dPKYiqhKEd
 nFqBvgrhAMVztWLmy1Wq4SnO9YNd+CrPYATrfCiYsYQ9aKc09+qDq+uo06bVpZXz
 KsHjVGUsdyJ4qRqjDixkPvZviGIXa6C//+hcwg1XH2nit1uHmXVupzB9dDz3ZM2l
 GCwApdRdaaUVDt5Ud2ljqIWZa18Qf/5/HD8MdPXpmotDOKucL6pBr/1R1XWueCU/
 ejRs/qy3EFyMWdEdfGFAMCa0ZvHbPmsJmvB/EgkyUnuJj77ptA0jNo1jtzSfEyis
 53x4ffWnIsPl9yqhk0oKerIALVUvV4A7/me2ya6tsQ5fiBX7lJ3+qwggvCkWQzw=
 =fMS2
 -----END PGP SIGNATURE-----

Merge tag 'kvm-arm-for-3.20' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into kvm-next

KVM/ARM changes for v3.20 including GICv3 emulation, dirty page logging, added
trace symbols, and adding an explicit VGIC init device control IOCTL.

Conflicts:
	arch/arm64/include/asm/kvm_arm.h
	arch/arm64/kvm/handle_exit.c
hifive-unleashed-5.1
Paolo Bonzini 2015-01-23 13:39:51 +01:00
commit 1c6007d59a
50 changed files with 3158 additions and 1002 deletions

View File

@ -612,11 +612,14 @@ Type: vm ioctl
Parameters: none
Returns: 0 on success, -1 on error
Creates an interrupt controller model in the kernel. On x86, creates a virtual
ioapic, a virtual PIC (two PICs, nested), and sets up future vcpus to have a
local APIC. IRQ routing for GSIs 0-15 is set to both PIC and IOAPIC; GSI 16-23
only go to the IOAPIC. On ARM/arm64, a GIC is
created. On s390, a dummy irq routing table is created.
Creates an interrupt controller model in the kernel.
On x86, creates a virtual ioapic, a virtual PIC (two PICs, nested), and sets up
future vcpus to have a local APIC. IRQ routing for GSIs 0-15 is set to both
PIC and IOAPIC; GSI 16-23 only go to the IOAPIC.
On ARM/arm64, a GICv2 is created. Any other GIC versions require the usage of
KVM_CREATE_DEVICE, which also supports creating a GICv2. Using
KVM_CREATE_DEVICE is preferred over KVM_CREATE_IRQCHIP for GICv2.
On s390, a dummy irq routing table is created.
Note that on s390 the KVM_CAP_S390_IRQCHIP vm capability needs to be enabled
before KVM_CREATE_IRQCHIP can be used.

View File

@ -3,22 +3,42 @@ ARM Virtual Generic Interrupt Controller (VGIC)
Device types supported:
KVM_DEV_TYPE_ARM_VGIC_V2 ARM Generic Interrupt Controller v2.0
KVM_DEV_TYPE_ARM_VGIC_V3 ARM Generic Interrupt Controller v3.0
Only one VGIC instance may be instantiated through either this API or the
legacy KVM_CREATE_IRQCHIP api. The created VGIC will act as the VM interrupt
controller, requiring emulated user-space devices to inject interrupts to the
VGIC instead of directly to CPUs.
Creating a guest GICv3 device requires a host GICv3 as well.
GICv3 implementations with hardware compatibility support allow a guest GICv2
as well.
Groups:
KVM_DEV_ARM_VGIC_GRP_ADDR
Attributes:
KVM_VGIC_V2_ADDR_TYPE_DIST (rw, 64-bit)
Base address in the guest physical address space of the GIC distributor
register mappings.
register mappings. Only valid for KVM_DEV_TYPE_ARM_VGIC_V2.
This address needs to be 4K aligned and the region covers 4 KByte.
KVM_VGIC_V2_ADDR_TYPE_CPU (rw, 64-bit)
Base address in the guest physical address space of the GIC virtual cpu
interface register mappings.
interface register mappings. Only valid for KVM_DEV_TYPE_ARM_VGIC_V2.
This address needs to be 4K aligned and the region covers 4 KByte.
KVM_VGIC_V3_ADDR_TYPE_DIST (rw, 64-bit)
Base address in the guest physical address space of the GICv3 distributor
register mappings. Only valid for KVM_DEV_TYPE_ARM_VGIC_V3.
This address needs to be 64K aligned and the region covers 64 KByte.
KVM_VGIC_V3_ADDR_TYPE_REDIST (rw, 64-bit)
Base address in the guest physical address space of the GICv3
redistributor register mappings. There are two 64K pages for each
VCPU and all of the redistributor pages are contiguous.
Only valid for KVM_DEV_TYPE_ARM_VGIC_V3.
This address needs to be 64K aligned.
KVM_DEV_ARM_VGIC_GRP_DIST_REGS
Attributes:
@ -36,6 +56,7 @@ Groups:
the register.
Limitations:
- Priorities are not implemented, and registers are RAZ/WI
- Currently only implemented for KVM_DEV_TYPE_ARM_VGIC_V2.
Errors:
-ENODEV: Getting or setting this register is not yet supported
-EBUSY: One or more VCPUs are running
@ -68,6 +89,7 @@ Groups:
Limitations:
- Priorities are not implemented, and registers are RAZ/WI
- Currently only implemented for KVM_DEV_TYPE_ARM_VGIC_V2.
Errors:
-ENODEV: Getting or setting this register is not yet supported
-EBUSY: One or more VCPUs are running
@ -81,3 +103,14 @@ Groups:
-EINVAL: Value set is out of the expected range
-EBUSY: Value has already be set, or GIC has already been initialized
with default values.
KVM_DEV_ARM_VGIC_GRP_CTRL
Attributes:
KVM_DEV_ARM_VGIC_CTRL_INIT
request the initialization of the VGIC, no additional parameter in
kvm_device_attr.addr.
Errors:
-ENXIO: VGIC not properly configured as required prior to calling
this attribute
-ENODEV: no online VCPU
-ENOMEM: memory shortage when allocating vgic internal data

View File

@ -96,6 +96,7 @@ extern char __kvm_hyp_code_end[];
extern void __kvm_flush_vm_context(void);
extern void __kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa);
extern void __kvm_tlb_flush_vmid(struct kvm *kvm);
extern int __kvm_vcpu_run(struct kvm_vcpu *vcpu);
#endif

View File

@ -23,6 +23,7 @@
#include <asm/kvm_asm.h>
#include <asm/kvm_mmio.h>
#include <asm/kvm_arm.h>
#include <asm/cputype.h>
unsigned long *vcpu_reg(struct kvm_vcpu *vcpu, u8 reg_num);
unsigned long *vcpu_spsr(struct kvm_vcpu *vcpu);
@ -167,9 +168,9 @@ static inline u32 kvm_vcpu_hvc_get_imm(struct kvm_vcpu *vcpu)
return kvm_vcpu_get_hsr(vcpu) & HSR_HVC_IMM_MASK;
}
static inline unsigned long kvm_vcpu_get_mpidr(struct kvm_vcpu *vcpu)
static inline unsigned long kvm_vcpu_get_mpidr_aff(struct kvm_vcpu *vcpu)
{
return vcpu->arch.cp15[c0_MPIDR];
return vcpu->arch.cp15[c0_MPIDR] & MPIDR_HWID_BITMASK;
}
static inline void kvm_vcpu_set_be(struct kvm_vcpu *vcpu)

View File

@ -68,6 +68,7 @@ struct kvm_arch {
/* Interrupt controller */
struct vgic_dist vgic;
int max_vcpus;
};
#define KVM_NR_MEM_OBJS 40
@ -234,6 +235,10 @@ static inline void vgic_arch_setup(const struct vgic_params *vgic)
int kvm_perf_init(void);
int kvm_perf_teardown(void);
void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot);
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
static inline void kvm_arch_hardware_disable(void) {}
static inline void kvm_arch_hardware_unsetup(void) {}
static inline void kvm_arch_sync_events(struct kvm *kvm) {}

View File

@ -37,6 +37,7 @@ struct kvm_exit_mmio {
u8 data[8];
u32 len;
bool is_write;
void *private;
};
static inline void kvm_prepare_mmio(struct kvm_run *run,

View File

@ -114,6 +114,27 @@ static inline void kvm_set_s2pmd_writable(pmd_t *pmd)
pmd_val(*pmd) |= L_PMD_S2_RDWR;
}
static inline void kvm_set_s2pte_readonly(pte_t *pte)
{
pte_val(*pte) = (pte_val(*pte) & ~L_PTE_S2_RDWR) | L_PTE_S2_RDONLY;
}
static inline bool kvm_s2pte_readonly(pte_t *pte)
{
return (pte_val(*pte) & L_PTE_S2_RDWR) == L_PTE_S2_RDONLY;
}
static inline void kvm_set_s2pmd_readonly(pmd_t *pmd)
{
pmd_val(*pmd) = (pmd_val(*pmd) & ~L_PMD_S2_RDWR) | L_PMD_S2_RDONLY;
}
static inline bool kvm_s2pmd_readonly(pmd_t *pmd)
{
return (pmd_val(*pmd) & L_PMD_S2_RDWR) == L_PMD_S2_RDONLY;
}
/* Open coded p*d_addr_end that can deal with 64bit addresses */
#define kvm_pgd_addr_end(addr, end) \
({ u64 __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \

View File

@ -130,6 +130,7 @@
#define L_PTE_S2_RDONLY (_AT(pteval_t, 1) << 6) /* HAP[1] */
#define L_PTE_S2_RDWR (_AT(pteval_t, 3) << 6) /* HAP[2:1] */
#define L_PMD_S2_RDONLY (_AT(pmdval_t, 1) << 6) /* HAP[1] */
#define L_PMD_S2_RDWR (_AT(pmdval_t, 3) << 6) /* HAP[2:1] */
/*

View File

@ -175,6 +175,8 @@ struct kvm_arch_memory_slot {
#define KVM_DEV_ARM_VGIC_OFFSET_SHIFT 0
#define KVM_DEV_ARM_VGIC_OFFSET_MASK (0xffffffffULL << KVM_DEV_ARM_VGIC_OFFSET_SHIFT)
#define KVM_DEV_ARM_VGIC_GRP_NR_IRQS 3
#define KVM_DEV_ARM_VGIC_GRP_CTRL 4
#define KVM_DEV_ARM_VGIC_CTRL_INIT 0
/* KVM_IRQ_LINE irq field index values */
#define KVM_ARM_IRQ_TYPE_SHIFT 24

View File

@ -21,8 +21,10 @@ config KVM
select PREEMPT_NOTIFIERS
select ANON_INODES
select HAVE_KVM_CPU_RELAX_INTERCEPT
select HAVE_KVM_ARCH_TLB_FLUSH_ALL
select KVM_MMIO
select KVM_ARM_HOST
select KVM_GENERIC_DIRTYLOG_READ_PROTECT
depends on ARM_VIRT_EXT && ARM_LPAE
---help---
Support hosting virtualized guest machines. You will also

View File

@ -22,4 +22,5 @@ obj-y += arm.o handle_exit.o guest.o mmu.o emulate.o reset.o
obj-y += coproc.o coproc_a15.o coproc_a7.o mmio.o psci.o perf.o
obj-$(CONFIG_KVM_ARM_VGIC) += $(KVM)/arm/vgic.o
obj-$(CONFIG_KVM_ARM_VGIC) += $(KVM)/arm/vgic-v2.o
obj-$(CONFIG_KVM_ARM_VGIC) += $(KVM)/arm/vgic-v2-emul.o
obj-$(CONFIG_KVM_ARM_TIMER) += $(KVM)/arm/arch_timer.o

View File

@ -132,6 +132,9 @@ int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
/* Mark the initial VMID generation invalid */
kvm->arch.vmid_gen = 0;
/* The maximum number of VCPUs is limited by the host's GIC model */
kvm->arch.max_vcpus = kvm_vgic_get_max_vcpus();
return ret;
out_free_stage2_pgd:
kvm_free_stage2_pgd(kvm);
@ -218,6 +221,11 @@ struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
goto out;
}
if (id >= kvm->arch.max_vcpus) {
err = -EINVAL;
goto out;
}
vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
if (!vcpu) {
err = -ENOMEM;
@ -787,9 +795,39 @@ long kvm_arch_vcpu_ioctl(struct file *filp,
}
}
/**
* kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
* @kvm: kvm instance
* @log: slot id and address to which we copy the log
*
* Steps 1-4 below provide general overview of dirty page logging. See
* kvm_get_dirty_log_protect() function description for additional details.
*
* We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
* always flush the TLB (step 4) even if previous step failed and the dirty
* bitmap may be corrupt. Regardless of previous outcome the KVM logging API
* does not preclude user space subsequent dirty log read. Flushing TLB ensures
* writes will be marked dirty for next log read.
*
* 1. Take a snapshot of the bit and clear it if needed.
* 2. Write protect the corresponding page.
* 3. Copy the snapshot to the userspace.
* 4. Flush TLB's if needed.
*/
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
return -EINVAL;
bool is_dirty = false;
int r;
mutex_lock(&kvm->slots_lock);
r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
if (is_dirty)
kvm_flush_remote_tlbs(kvm);
mutex_unlock(&kvm->slots_lock);
return r;
}
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
@ -821,7 +859,7 @@ long kvm_arch_vm_ioctl(struct file *filp,
switch (ioctl) {
case KVM_CREATE_IRQCHIP: {
if (vgic_present)
return kvm_vgic_create(kvm);
return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
else
return -ENXIO;
}
@ -1045,6 +1083,19 @@ static void check_kvm_target_cpu(void *ret)
*(int *)ret = kvm_target_cpu();
}
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
struct kvm_vcpu *vcpu;
int i;
mpidr &= MPIDR_HWID_BITMASK;
kvm_for_each_vcpu(i, vcpu, kvm) {
if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
return vcpu;
}
return NULL;
}
/**
* Initialize Hyp-mode and memory mappings on all CPUs.
*/

View File

@ -87,11 +87,13 @@ static int handle_dabt_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run)
*/
static int kvm_handle_wfx(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
trace_kvm_wfi(*vcpu_pc(vcpu));
if (kvm_vcpu_get_hsr(vcpu) & HSR_WFI_IS_WFE)
if (kvm_vcpu_get_hsr(vcpu) & HSR_WFI_IS_WFE) {
trace_kvm_wfx(*vcpu_pc(vcpu), true);
kvm_vcpu_on_spin(vcpu);
else
} else {
trace_kvm_wfx(*vcpu_pc(vcpu), false);
kvm_vcpu_block(vcpu);
}
kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));

View File

@ -66,6 +66,17 @@ ENTRY(__kvm_tlb_flush_vmid_ipa)
bx lr
ENDPROC(__kvm_tlb_flush_vmid_ipa)
/**
* void __kvm_tlb_flush_vmid(struct kvm *kvm) - Flush per-VMID TLBs
*
* Reuses __kvm_tlb_flush_vmid_ipa() for ARMv7, without passing address
* parameter
*/
ENTRY(__kvm_tlb_flush_vmid)
b __kvm_tlb_flush_vmid_ipa
ENDPROC(__kvm_tlb_flush_vmid)
/********************************************************************
* Flush TLBs and instruction caches of all CPUs inside the inner-shareable
* domain, for all VMIDs

View File

@ -45,6 +45,26 @@ static phys_addr_t hyp_idmap_vector;
#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
#define kvm_pmd_huge(_x) (pmd_huge(_x) || pmd_trans_huge(_x))
#define kvm_pud_huge(_x) pud_huge(_x)
#define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0)
#define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1)
static bool memslot_is_logging(struct kvm_memory_slot *memslot)
{
return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
}
/**
* kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
* @kvm: pointer to kvm structure.
*
* Interface to HYP function to flush all VM TLB entries
*/
void kvm_flush_remote_tlbs(struct kvm *kvm)
{
kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
}
static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
{
@ -58,6 +78,25 @@ static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
}
/**
* stage2_dissolve_pmd() - clear and flush huge PMD entry
* @kvm: pointer to kvm structure.
* @addr: IPA
* @pmd: pmd pointer for IPA
*
* Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
* pages in the range dirty.
*/
static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
{
if (!kvm_pmd_huge(*pmd))
return;
pmd_clear(pmd);
kvm_tlb_flush_vmid_ipa(kvm, addr);
put_page(virt_to_page(pmd));
}
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
int min, int max)
{
@ -767,10 +806,15 @@ static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
}
static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
phys_addr_t addr, const pte_t *new_pte, bool iomap)
phys_addr_t addr, const pte_t *new_pte,
unsigned long flags)
{
pmd_t *pmd;
pte_t *pte, old_pte;
bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
VM_BUG_ON(logging_active && !cache);
/* Create stage-2 page table mapping - Levels 0 and 1 */
pmd = stage2_get_pmd(kvm, cache, addr);
@ -782,6 +826,13 @@ static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
return 0;
}
/*
* While dirty page logging - dissolve huge PMD, then continue on to
* allocate page.
*/
if (logging_active)
stage2_dissolve_pmd(kvm, addr, pmd);
/* Create stage-2 page mappings - Level 2 */
if (pmd_none(*pmd)) {
if (!cache)
@ -838,7 +889,8 @@ int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
if (ret)
goto out;
spin_lock(&kvm->mmu_lock);
ret = stage2_set_pte(kvm, &cache, addr, &pte, true);
ret = stage2_set_pte(kvm, &cache, addr, &pte,
KVM_S2PTE_FLAG_IS_IOMAP);
spin_unlock(&kvm->mmu_lock);
if (ret)
goto out;
@ -905,6 +957,151 @@ static bool kvm_is_device_pfn(unsigned long pfn)
return !pfn_valid(pfn);
}
/**
* stage2_wp_ptes - write protect PMD range
* @pmd: pointer to pmd entry
* @addr: range start address
* @end: range end address
*/
static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
{
pte_t *pte;
pte = pte_offset_kernel(pmd, addr);
do {
if (!pte_none(*pte)) {
if (!kvm_s2pte_readonly(pte))
kvm_set_s2pte_readonly(pte);
}
} while (pte++, addr += PAGE_SIZE, addr != end);
}
/**
* stage2_wp_pmds - write protect PUD range
* @pud: pointer to pud entry
* @addr: range start address
* @end: range end address
*/
static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
{
pmd_t *pmd;
phys_addr_t next;
pmd = pmd_offset(pud, addr);
do {
next = kvm_pmd_addr_end(addr, end);
if (!pmd_none(*pmd)) {
if (kvm_pmd_huge(*pmd)) {
if (!kvm_s2pmd_readonly(pmd))
kvm_set_s2pmd_readonly(pmd);
} else {
stage2_wp_ptes(pmd, addr, next);
}
}
} while (pmd++, addr = next, addr != end);
}
/**
* stage2_wp_puds - write protect PGD range
* @pgd: pointer to pgd entry
* @addr: range start address
* @end: range end address
*
* Process PUD entries, for a huge PUD we cause a panic.
*/
static void stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
{
pud_t *pud;
phys_addr_t next;
pud = pud_offset(pgd, addr);
do {
next = kvm_pud_addr_end(addr, end);
if (!pud_none(*pud)) {
/* TODO:PUD not supported, revisit later if supported */
BUG_ON(kvm_pud_huge(*pud));
stage2_wp_pmds(pud, addr, next);
}
} while (pud++, addr = next, addr != end);
}
/**
* stage2_wp_range() - write protect stage2 memory region range
* @kvm: The KVM pointer
* @addr: Start address of range
* @end: End address of range
*/
static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
{
pgd_t *pgd;
phys_addr_t next;
pgd = kvm->arch.pgd + pgd_index(addr);
do {
/*
* Release kvm_mmu_lock periodically if the memory region is
* large. Otherwise, we may see kernel panics with
* CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
* CONFIG_LOCKDEP. Additionally, holding the lock too long
* will also starve other vCPUs.
*/
if (need_resched() || spin_needbreak(&kvm->mmu_lock))
cond_resched_lock(&kvm->mmu_lock);
next = kvm_pgd_addr_end(addr, end);
if (pgd_present(*pgd))
stage2_wp_puds(pgd, addr, next);
} while (pgd++, addr = next, addr != end);
}
/**
* kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
* @kvm: The KVM pointer
* @slot: The memory slot to write protect
*
* Called to start logging dirty pages after memory region
* KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
* all present PMD and PTEs are write protected in the memory region.
* Afterwards read of dirty page log can be called.
*
* Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
* serializing operations for VM memory regions.
*/
void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
{
struct kvm_memory_slot *memslot = id_to_memslot(kvm->memslots, slot);
phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
spin_lock(&kvm->mmu_lock);
stage2_wp_range(kvm, start, end);
spin_unlock(&kvm->mmu_lock);
kvm_flush_remote_tlbs(kvm);
}
/**
* kvm_arch_mmu_write_protect_pt_masked() - write protect dirty pages
* @kvm: The KVM pointer
* @slot: The memory slot associated with mask
* @gfn_offset: The gfn offset in memory slot
* @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
* slot to be write protected
*
* Walks bits set in mask write protects the associated pte's. Caller must
* acquire kvm_mmu_lock.
*/
void kvm_arch_mmu_write_protect_pt_masked(struct kvm *kvm,
struct kvm_memory_slot *slot,
gfn_t gfn_offset, unsigned long mask)
{
phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
stage2_wp_range(kvm, start, end);
}
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
struct kvm_memory_slot *memslot, unsigned long hva,
unsigned long fault_status)
@ -919,6 +1116,8 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
pfn_t pfn;
pgprot_t mem_type = PAGE_S2;
bool fault_ipa_uncached;
bool logging_active = memslot_is_logging(memslot);
unsigned long flags = 0;
write_fault = kvm_is_write_fault(vcpu);
if (fault_status == FSC_PERM && !write_fault) {
@ -935,7 +1134,7 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
return -EFAULT;
}
if (is_vm_hugetlb_page(vma)) {
if (is_vm_hugetlb_page(vma) && !logging_active) {
hugetlb = true;
gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
} else {
@ -976,12 +1175,30 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
if (is_error_pfn(pfn))
return -EFAULT;
if (kvm_is_device_pfn(pfn))
if (kvm_is_device_pfn(pfn)) {
mem_type = PAGE_S2_DEVICE;
flags |= KVM_S2PTE_FLAG_IS_IOMAP;
} else if (logging_active) {
/*
* Faults on pages in a memslot with logging enabled
* should not be mapped with huge pages (it introduces churn
* and performance degradation), so force a pte mapping.
*/
force_pte = true;
flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
/*
* Only actually map the page as writable if this was a write
* fault.
*/
if (!write_fault)
writable = false;
}
spin_lock(&kvm->mmu_lock);
if (mmu_notifier_retry(kvm, mmu_seq))
goto out_unlock;
if (!hugetlb && !force_pte)
hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
@ -999,17 +1216,17 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
} else {
pte_t new_pte = pfn_pte(pfn, mem_type);
if (writable) {
kvm_set_s2pte_writable(&new_pte);
kvm_set_pfn_dirty(pfn);
mark_page_dirty(kvm, gfn);
}
coherent_cache_guest_page(vcpu, hva, PAGE_SIZE,
fault_ipa_uncached);
ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte,
pgprot_val(mem_type) == pgprot_val(PAGE_S2_DEVICE));
ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
}
out_unlock:
spin_unlock(&kvm->mmu_lock);
kvm_release_pfn_clean(pfn);
@ -1159,7 +1376,14 @@ static void kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
{
pte_t *pte = (pte_t *)data;
stage2_set_pte(kvm, NULL, gpa, pte, false);
/*
* We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
* flag clear because MMU notifiers will have unmapped a huge PMD before
* calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
* therefore stage2_set_pte() never needs to clear out a huge PMD
* through this calling path.
*/
stage2_set_pte(kvm, NULL, gpa, pte, 0);
}
@ -1292,6 +1516,13 @@ void kvm_arch_commit_memory_region(struct kvm *kvm,
const struct kvm_memory_slot *old,
enum kvm_mr_change change)
{
/*
* At this point memslot has been committed and there is an
* allocated dirty_bitmap[], dirty pages will be be tracked while the
* memory slot is write protected.
*/
if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
kvm_mmu_wp_memory_region(kvm, mem->slot);
}
int kvm_arch_prepare_memory_region(struct kvm *kvm,
@ -1304,7 +1535,8 @@ int kvm_arch_prepare_memory_region(struct kvm *kvm,
bool writable = !(mem->flags & KVM_MEM_READONLY);
int ret = 0;
if (change != KVM_MR_CREATE && change != KVM_MR_MOVE)
if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
change != KVM_MR_FLAGS_ONLY)
return 0;
/*
@ -1355,6 +1587,10 @@ int kvm_arch_prepare_memory_region(struct kvm *kvm,
phys_addr_t pa = (vma->vm_pgoff << PAGE_SHIFT) +
vm_start - vma->vm_start;
/* IO region dirty page logging not allowed */
if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES)
return -EINVAL;
ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
vm_end - vm_start,
writable);
@ -1364,6 +1600,9 @@ int kvm_arch_prepare_memory_region(struct kvm *kvm,
hva = vm_end;
} while (hva < reg_end);
if (change == KVM_MR_FLAGS_ONLY)
return ret;
spin_lock(&kvm->mmu_lock);
if (ret)
unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);

View File

@ -22,6 +22,7 @@
#include <asm/cputype.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_psci.h>
#include <asm/kvm_host.h>
/*
* This is an implementation of the Power State Coordination Interface
@ -66,25 +67,17 @@ static void kvm_psci_vcpu_off(struct kvm_vcpu *vcpu)
static unsigned long kvm_psci_vcpu_on(struct kvm_vcpu *source_vcpu)
{
struct kvm *kvm = source_vcpu->kvm;
struct kvm_vcpu *vcpu = NULL, *tmp;
struct kvm_vcpu *vcpu = NULL;
wait_queue_head_t *wq;
unsigned long cpu_id;
unsigned long context_id;
unsigned long mpidr;
phys_addr_t target_pc;
int i;
cpu_id = *vcpu_reg(source_vcpu, 1);
cpu_id = *vcpu_reg(source_vcpu, 1) & MPIDR_HWID_BITMASK;
if (vcpu_mode_is_32bit(source_vcpu))
cpu_id &= ~((u32) 0);
kvm_for_each_vcpu(i, tmp, kvm) {
mpidr = kvm_vcpu_get_mpidr(tmp);
if ((mpidr & MPIDR_HWID_BITMASK) == (cpu_id & MPIDR_HWID_BITMASK)) {
vcpu = tmp;
break;
}
}
vcpu = kvm_mpidr_to_vcpu(kvm, cpu_id);
/*
* Make sure the caller requested a valid CPU and that the CPU is
@ -155,7 +148,7 @@ static unsigned long kvm_psci_vcpu_affinity_info(struct kvm_vcpu *vcpu)
* then ON else OFF
*/
kvm_for_each_vcpu(i, tmp, kvm) {
mpidr = kvm_vcpu_get_mpidr(tmp);
mpidr = kvm_vcpu_get_mpidr_aff(tmp);
if (((mpidr & target_affinity_mask) == target_affinity) &&
!tmp->arch.pause) {
return PSCI_0_2_AFFINITY_LEVEL_ON;

View File

@ -140,19 +140,22 @@ TRACE_EVENT(kvm_emulate_cp15_imp,
__entry->CRm, __entry->Op2)
);
TRACE_EVENT(kvm_wfi,
TP_PROTO(unsigned long vcpu_pc),
TP_ARGS(vcpu_pc),
TRACE_EVENT(kvm_wfx,
TP_PROTO(unsigned long vcpu_pc, bool is_wfe),
TP_ARGS(vcpu_pc, is_wfe),
TP_STRUCT__entry(
__field( unsigned long, vcpu_pc )
__field( bool, is_wfe )
),
TP_fast_assign(
__entry->vcpu_pc = vcpu_pc;
__entry->is_wfe = is_wfe;
),
TP_printk("guest executed wfi at: 0x%08lx", __entry->vcpu_pc)
TP_printk("guest executed wf%c at: 0x%08lx",
__entry->is_wfe ? 'e' : 'i', __entry->vcpu_pc)
);
TRACE_EVENT(kvm_unmap_hva,

View File

@ -96,6 +96,7 @@
#define ESR_ELx_COND_SHIFT (20)
#define ESR_ELx_COND_MASK (UL(0xF) << ESR_ELx_COND_SHIFT)
#define ESR_ELx_WFx_ISS_WFE (UL(1) << 0)
#define ESR_ELx_xVC_IMM_MASK ((1UL << 16) - 1)
#ifndef __ASSEMBLY__
#include <asm/types.h>

View File

@ -126,6 +126,7 @@ extern char __kvm_hyp_vector[];
extern void __kvm_flush_vm_context(void);
extern void __kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa);
extern void __kvm_tlb_flush_vmid(struct kvm *kvm);
extern int __kvm_vcpu_run(struct kvm_vcpu *vcpu);

View File

@ -29,6 +29,7 @@
#include <asm/kvm_asm.h>
#include <asm/kvm_mmio.h>
#include <asm/ptrace.h>
#include <asm/cputype.h>
unsigned long *vcpu_reg32(const struct kvm_vcpu *vcpu, u8 reg_num);
unsigned long *vcpu_spsr32(const struct kvm_vcpu *vcpu);
@ -128,6 +129,11 @@ static inline phys_addr_t kvm_vcpu_get_fault_ipa(const struct kvm_vcpu *vcpu)
return ((phys_addr_t)vcpu->arch.fault.hpfar_el2 & HPFAR_MASK) << 8;
}
static inline u32 kvm_vcpu_hvc_get_imm(const struct kvm_vcpu *vcpu)
{
return kvm_vcpu_get_hsr(vcpu) & ESR_ELx_xVC_IMM_MASK;
}
static inline bool kvm_vcpu_dabt_isvalid(const struct kvm_vcpu *vcpu)
{
return !!(kvm_vcpu_get_hsr(vcpu) & ESR_ELx_ISV);
@ -189,9 +195,9 @@ static inline u8 kvm_vcpu_trap_get_fault_type(const struct kvm_vcpu *vcpu)
return kvm_vcpu_get_hsr(vcpu) & ESR_ELx_FSC_TYPE;
}
static inline unsigned long kvm_vcpu_get_mpidr(struct kvm_vcpu *vcpu)
static inline unsigned long kvm_vcpu_get_mpidr_aff(struct kvm_vcpu *vcpu)
{
return vcpu_sys_reg(vcpu, MPIDR_EL1);
return vcpu_sys_reg(vcpu, MPIDR_EL1) & MPIDR_HWID_BITMASK;
}
static inline void kvm_vcpu_set_be(struct kvm_vcpu *vcpu)

View File

@ -59,6 +59,9 @@ struct kvm_arch {
/* VTTBR value associated with above pgd and vmid */
u64 vttbr;
/* The maximum number of vCPUs depends on the used GIC model */
int max_vcpus;
/* Interrupt controller */
struct vgic_dist vgic;
@ -199,6 +202,7 @@ struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
u64 kvm_call_hyp(void *hypfn, ...);
void force_vm_exit(const cpumask_t *mask);
void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot);
int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run,
int exception_index);
@ -206,6 +210,8 @@ int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run,
int kvm_perf_init(void);
int kvm_perf_teardown(void);
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
static inline void __cpu_init_hyp_mode(phys_addr_t boot_pgd_ptr,
phys_addr_t pgd_ptr,
unsigned long hyp_stack_ptr,

View File

@ -40,6 +40,7 @@ struct kvm_exit_mmio {
u8 data[8];
u32 len;
bool is_write;
void *private;
};
static inline void kvm_prepare_mmio(struct kvm_run *run,

View File

@ -118,6 +118,27 @@ static inline void kvm_set_s2pmd_writable(pmd_t *pmd)
pmd_val(*pmd) |= PMD_S2_RDWR;
}
static inline void kvm_set_s2pte_readonly(pte_t *pte)
{
pte_val(*pte) = (pte_val(*pte) & ~PTE_S2_RDWR) | PTE_S2_RDONLY;
}
static inline bool kvm_s2pte_readonly(pte_t *pte)
{
return (pte_val(*pte) & PTE_S2_RDWR) == PTE_S2_RDONLY;
}
static inline void kvm_set_s2pmd_readonly(pmd_t *pmd)
{
pmd_val(*pmd) = (pmd_val(*pmd) & ~PMD_S2_RDWR) | PMD_S2_RDONLY;
}
static inline bool kvm_s2pmd_readonly(pmd_t *pmd)
{
return (pmd_val(*pmd) & PMD_S2_RDWR) == PMD_S2_RDONLY;
}
#define kvm_pgd_addr_end(addr, end) pgd_addr_end(addr, end)
#define kvm_pud_addr_end(addr, end) pud_addr_end(addr, end)
#define kvm_pmd_addr_end(addr, end) pmd_addr_end(addr, end)

View File

@ -119,6 +119,7 @@
#define PTE_S2_RDONLY (_AT(pteval_t, 1) << 6) /* HAP[2:1] */
#define PTE_S2_RDWR (_AT(pteval_t, 3) << 6) /* HAP[2:1] */
#define PMD_S2_RDONLY (_AT(pmdval_t, 1) << 6) /* HAP[2:1] */
#define PMD_S2_RDWR (_AT(pmdval_t, 3) << 6) /* HAP[2:1] */
/*

View File

@ -78,6 +78,13 @@ struct kvm_regs {
#define KVM_VGIC_V2_DIST_SIZE 0x1000
#define KVM_VGIC_V2_CPU_SIZE 0x2000
/* Supported VGICv3 address types */
#define KVM_VGIC_V3_ADDR_TYPE_DIST 2
#define KVM_VGIC_V3_ADDR_TYPE_REDIST 3
#define KVM_VGIC_V3_DIST_SIZE SZ_64K
#define KVM_VGIC_V3_REDIST_SIZE (2 * SZ_64K)
#define KVM_ARM_VCPU_POWER_OFF 0 /* CPU is started in OFF state */
#define KVM_ARM_VCPU_EL1_32BIT 1 /* CPU running a 32bit VM */
#define KVM_ARM_VCPU_PSCI_0_2 2 /* CPU uses PSCI v0.2 */
@ -161,6 +168,8 @@ struct kvm_arch_memory_slot {
#define KVM_DEV_ARM_VGIC_OFFSET_SHIFT 0
#define KVM_DEV_ARM_VGIC_OFFSET_MASK (0xffffffffULL << KVM_DEV_ARM_VGIC_OFFSET_SHIFT)
#define KVM_DEV_ARM_VGIC_GRP_NR_IRQS 3
#define KVM_DEV_ARM_VGIC_GRP_CTRL 4
#define KVM_DEV_ARM_VGIC_CTRL_INIT 0
/* KVM_IRQ_LINE irq field index values */
#define KVM_ARM_IRQ_TYPE_SHIFT 24

View File

@ -140,6 +140,7 @@ int main(void)
DEFINE(VGIC_V2_CPU_ELRSR, offsetof(struct vgic_cpu, vgic_v2.vgic_elrsr));
DEFINE(VGIC_V2_CPU_APR, offsetof(struct vgic_cpu, vgic_v2.vgic_apr));
DEFINE(VGIC_V2_CPU_LR, offsetof(struct vgic_cpu, vgic_v2.vgic_lr));
DEFINE(VGIC_V3_CPU_SRE, offsetof(struct vgic_cpu, vgic_v3.vgic_sre));
DEFINE(VGIC_V3_CPU_HCR, offsetof(struct vgic_cpu, vgic_v3.vgic_hcr));
DEFINE(VGIC_V3_CPU_VMCR, offsetof(struct vgic_cpu, vgic_v3.vgic_vmcr));
DEFINE(VGIC_V3_CPU_MISR, offsetof(struct vgic_cpu, vgic_v3.vgic_misr));

View File

@ -22,10 +22,12 @@ config KVM
select PREEMPT_NOTIFIERS
select ANON_INODES
select HAVE_KVM_CPU_RELAX_INTERCEPT
select HAVE_KVM_ARCH_TLB_FLUSH_ALL
select KVM_MMIO
select KVM_ARM_HOST
select KVM_ARM_VGIC
select KVM_ARM_TIMER
select KVM_GENERIC_DIRTYLOG_READ_PROTECT
---help---
Support hosting virtualized guest machines.

View File

@ -21,7 +21,9 @@ kvm-$(CONFIG_KVM_ARM_HOST) += guest.o reset.o sys_regs.o sys_regs_generic_v8.o
kvm-$(CONFIG_KVM_ARM_VGIC) += $(KVM)/arm/vgic.o
kvm-$(CONFIG_KVM_ARM_VGIC) += $(KVM)/arm/vgic-v2.o
kvm-$(CONFIG_KVM_ARM_VGIC) += $(KVM)/arm/vgic-v2-emul.o
kvm-$(CONFIG_KVM_ARM_VGIC) += vgic-v2-switch.o
kvm-$(CONFIG_KVM_ARM_VGIC) += $(KVM)/arm/vgic-v3.o
kvm-$(CONFIG_KVM_ARM_VGIC) += $(KVM)/arm/vgic-v3-emul.o
kvm-$(CONFIG_KVM_ARM_VGIC) += vgic-v3-switch.o
kvm-$(CONFIG_KVM_ARM_TIMER) += $(KVM)/arm/arch_timer.o

View File

@ -28,12 +28,18 @@
#include <asm/kvm_mmu.h>
#include <asm/kvm_psci.h>
#define CREATE_TRACE_POINTS
#include "trace.h"
typedef int (*exit_handle_fn)(struct kvm_vcpu *, struct kvm_run *);
static int handle_hvc(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
int ret;
trace_kvm_hvc_arm64(*vcpu_pc(vcpu), *vcpu_reg(vcpu, 0),
kvm_vcpu_hvc_get_imm(vcpu));
ret = kvm_psci_call(vcpu);
if (ret < 0) {
kvm_inject_undefined(vcpu);
@ -63,10 +69,13 @@ static int handle_smc(struct kvm_vcpu *vcpu, struct kvm_run *run)
*/
static int kvm_handle_wfx(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
if (kvm_vcpu_get_hsr(vcpu) & ESR_ELx_WFx_ISS_WFE)
if (kvm_vcpu_get_hsr(vcpu) & ESR_ELx_WFx_ISS_WFE) {
trace_kvm_wfx_arm64(*vcpu_pc(vcpu), true);
kvm_vcpu_on_spin(vcpu);
else
} else {
trace_kvm_wfx_arm64(*vcpu_pc(vcpu), false);
kvm_vcpu_block(vcpu);
}
kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));

View File

@ -1031,6 +1031,28 @@ ENTRY(__kvm_tlb_flush_vmid_ipa)
ret
ENDPROC(__kvm_tlb_flush_vmid_ipa)
/**
* void __kvm_tlb_flush_vmid(struct kvm *kvm) - Flush per-VMID TLBs
* @struct kvm *kvm - pointer to kvm structure
*
* Invalidates all Stage 1 and 2 TLB entries for current VMID.
*/
ENTRY(__kvm_tlb_flush_vmid)
dsb ishst
kern_hyp_va x0
ldr x2, [x0, #KVM_VTTBR]
msr vttbr_el2, x2
isb
tlbi vmalls12e1is
dsb ish
isb
msr vttbr_el2, xzr
ret
ENDPROC(__kvm_tlb_flush_vmid)
ENTRY(__kvm_flush_vm_context)
dsb ishst
tlbi alle1is

View File

@ -168,6 +168,27 @@ static bool access_sctlr(struct kvm_vcpu *vcpu,
return true;
}
/*
* Trap handler for the GICv3 SGI generation system register.
* Forward the request to the VGIC emulation.
* The cp15_64 code makes sure this automatically works
* for both AArch64 and AArch32 accesses.
*/
static bool access_gic_sgi(struct kvm_vcpu *vcpu,
const struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u64 val;
if (!p->is_write)
return read_from_write_only(vcpu, p);
val = *vcpu_reg(vcpu, p->Rt);
vgic_v3_dispatch_sgi(vcpu, val);
return true;
}
static bool trap_raz_wi(struct kvm_vcpu *vcpu,
const struct sys_reg_params *p,
const struct sys_reg_desc *r)
@ -255,10 +276,19 @@ static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
u64 mpidr;
/*
* Simply map the vcpu_id into the Aff0 field of the MPIDR.
* Map the vcpu_id into the first three affinity level fields of
* the MPIDR. We limit the number of VCPUs in level 0 due to a
* limitation to 16 CPUs in that level in the ICC_SGIxR registers
* of the GICv3 to be able to address each CPU directly when
* sending IPIs.
*/
vcpu_sys_reg(vcpu, MPIDR_EL1) = (1UL << 31) | (vcpu->vcpu_id & 0xff);
mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr;
}
/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
@ -428,6 +458,9 @@ static const struct sys_reg_desc sys_reg_descs[] = {
{ Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
NULL, reset_val, VBAR_EL1, 0 },
/* ICC_SGI1R_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b101),
access_gic_sgi },
/* ICC_SRE_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
trap_raz_wi },
@ -660,6 +693,8 @@ static const struct sys_reg_desc cp14_64_regs[] = {
* register).
*/
static const struct sys_reg_desc cp15_regs[] = {
{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_sctlr, NULL, c1_SCTLR },
{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
@ -707,6 +742,7 @@ static const struct sys_reg_desc cp15_regs[] = {
static const struct sys_reg_desc cp15_64_regs[] = {
{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
};

View File

@ -0,0 +1,55 @@
#if !defined(_TRACE_ARM64_KVM_H) || defined(TRACE_HEADER_MULTI_READ)
#define _TRACE_ARM64_KVM_H
#include <linux/tracepoint.h>
#undef TRACE_SYSTEM
#define TRACE_SYSTEM kvm
TRACE_EVENT(kvm_wfx_arm64,
TP_PROTO(unsigned long vcpu_pc, bool is_wfe),
TP_ARGS(vcpu_pc, is_wfe),
TP_STRUCT__entry(
__field(unsigned long, vcpu_pc)
__field(bool, is_wfe)
),
TP_fast_assign(
__entry->vcpu_pc = vcpu_pc;
__entry->is_wfe = is_wfe;
),
TP_printk("guest executed wf%c at: 0x%08lx",
__entry->is_wfe ? 'e' : 'i', __entry->vcpu_pc)
);
TRACE_EVENT(kvm_hvc_arm64,
TP_PROTO(unsigned long vcpu_pc, unsigned long r0, unsigned long imm),
TP_ARGS(vcpu_pc, r0, imm),
TP_STRUCT__entry(
__field(unsigned long, vcpu_pc)
__field(unsigned long, r0)
__field(unsigned long, imm)
),
TP_fast_assign(
__entry->vcpu_pc = vcpu_pc;
__entry->r0 = r0;
__entry->imm = imm;
),
TP_printk("HVC at 0x%08lx (r0: 0x%08lx, imm: 0x%lx)",
__entry->vcpu_pc, __entry->r0, __entry->imm)
);
#endif /* _TRACE_ARM64_KVM_H */
#undef TRACE_INCLUDE_PATH
#define TRACE_INCLUDE_PATH .
#undef TRACE_INCLUDE_FILE
#define TRACE_INCLUDE_FILE trace
/* This part must be outside protection */
#include <trace/define_trace.h>

View File

@ -148,17 +148,18 @@
* x0: Register pointing to VCPU struct
*/
.macro restore_vgic_v3_state
// Disable SRE_EL1 access. Necessary, otherwise
// ICH_VMCR_EL2.VFIQEn becomes one, and FIQ happens...
msr_s ICC_SRE_EL1, xzr
isb
// Compute the address of struct vgic_cpu
add x3, x0, #VCPU_VGIC_CPU
// Restore all interesting registers
ldr w4, [x3, #VGIC_V3_CPU_HCR]
ldr w5, [x3, #VGIC_V3_CPU_VMCR]
ldr w25, [x3, #VGIC_V3_CPU_SRE]
msr_s ICC_SRE_EL1, x25
// make sure SRE is valid before writing the other registers
isb
msr_s ICH_HCR_EL2, x4
msr_s ICH_VMCR_EL2, x5
@ -244,9 +245,12 @@
dsb sy
// Prevent the guest from touching the GIC system registers
// if SRE isn't enabled for GICv3 emulation
cbnz x25, 1f
mrs_s x5, ICC_SRE_EL2
and x5, x5, #~ICC_SRE_EL2_ENABLE
msr_s ICC_SRE_EL2, x5
1:
.endm
ENTRY(__save_vgic_v3_state)

View File

@ -835,9 +835,6 @@ void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot);
void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
struct kvm_memory_slot *slot,
gfn_t gfn_offset, unsigned long mask);
void kvm_mmu_zap_all(struct kvm *kvm);
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm);
unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm);

View File

@ -39,6 +39,7 @@ config KVM
select PERF_EVENTS
select HAVE_KVM_MSI
select HAVE_KVM_CPU_RELAX_INTERCEPT
select KVM_GENERIC_DIRTYLOG_READ_PROTECT
select KVM_VFIO
---help---
Support hosting fully virtualized guest machines using hardware

View File

@ -1216,7 +1216,7 @@ static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
}
/**
* kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
* kvm_arch_mmu_write_protect_pt_masked - write protect selected PT level pages
* @kvm: kvm instance
* @slot: slot to protect
* @gfn_offset: start of the BITS_PER_LONG pages we care about
@ -1225,7 +1225,7 @@ static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
* Used when we do not need to care about huge page mappings: e.g. during dirty
* logging we do not have any such mappings.
*/
void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
void kvm_arch_mmu_write_protect_pt_masked(struct kvm *kvm,
struct kvm_memory_slot *slot,
gfn_t gfn_offset, unsigned long mask)
{

View File

@ -3759,83 +3759,37 @@ static int kvm_vm_ioctl_reinject(struct kvm *kvm,
* @kvm: kvm instance
* @log: slot id and address to which we copy the log
*
* We need to keep it in mind that VCPU threads can write to the bitmap
* concurrently. So, to avoid losing data, we keep the following order for
* each bit:
* Steps 1-4 below provide general overview of dirty page logging. See
* kvm_get_dirty_log_protect() function description for additional details.
*
* We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
* always flush the TLB (step 4) even if previous step failed and the dirty
* bitmap may be corrupt. Regardless of previous outcome the KVM logging API
* does not preclude user space subsequent dirty log read. Flushing TLB ensures
* writes will be marked dirty for next log read.
*
* 1. Take a snapshot of the bit and clear it if needed.
* 2. Write protect the corresponding page.
* 3. Flush TLB's if needed.
* 4. Copy the snapshot to the userspace.
*
* Between 2 and 3, the guest may write to the page using the remaining TLB
* entry. This is not a problem because the page will be reported dirty at
* step 4 using the snapshot taken before and step 3 ensures that successive
* writes will be logged for the next call.
* 3. Copy the snapshot to the userspace.
* 4. Flush TLB's if needed.
*/
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
int r;
struct kvm_memory_slot *memslot;
unsigned long n, i;
unsigned long *dirty_bitmap;
unsigned long *dirty_bitmap_buffer;
bool is_dirty = false;
int r;
mutex_lock(&kvm->slots_lock);
r = -EINVAL;
if (log->slot >= KVM_USER_MEM_SLOTS)
goto out;
memslot = id_to_memslot(kvm->memslots, log->slot);
dirty_bitmap = memslot->dirty_bitmap;
r = -ENOENT;
if (!dirty_bitmap)
goto out;
n = kvm_dirty_bitmap_bytes(memslot);
dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
memset(dirty_bitmap_buffer, 0, n);
spin_lock(&kvm->mmu_lock);
for (i = 0; i < n / sizeof(long); i++) {
unsigned long mask;
gfn_t offset;
if (!dirty_bitmap[i])
continue;
is_dirty = true;
mask = xchg(&dirty_bitmap[i], 0);
dirty_bitmap_buffer[i] = mask;
offset = i * BITS_PER_LONG;
kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
}
spin_unlock(&kvm->mmu_lock);
/* See the comments in kvm_mmu_slot_remove_write_access(). */
lockdep_assert_held(&kvm->slots_lock);
r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
/*
* All the TLBs can be flushed out of mmu lock, see the comments in
* kvm_mmu_slot_remove_write_access().
*/
lockdep_assert_held(&kvm->slots_lock);
if (is_dirty)
kvm_flush_remote_tlbs(kvm);
r = -EFAULT;
if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
goto out;
r = 0;
out:
mutex_unlock(&kvm->slots_lock);
return r;
}

View File

@ -481,15 +481,19 @@ out:
return tlist;
}
#define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
(MPIDR_AFFINITY_LEVEL(cluster_id, level) \
<< ICC_SGI1R_AFFINITY_## level ##_SHIFT)
static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
{
u64 val;
val = (MPIDR_AFFINITY_LEVEL(cluster_id, 3) << 48 |
MPIDR_AFFINITY_LEVEL(cluster_id, 2) << 32 |
irq << 24 |
MPIDR_AFFINITY_LEVEL(cluster_id, 1) << 16 |
tlist);
val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3) |
MPIDR_TO_SGI_AFFINITY(cluster_id, 2) |
irq << ICC_SGI1R_SGI_ID_SHIFT |
MPIDR_TO_SGI_AFFINITY(cluster_id, 1) |
tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
pr_debug("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
gic_write_sgi1r(val);

View File

@ -33,10 +33,11 @@
#define VGIC_V2_MAX_LRS (1 << 6)
#define VGIC_V3_MAX_LRS 16
#define VGIC_MAX_IRQS 1024
#define VGIC_V2_MAX_CPUS 8
/* Sanity checks... */
#if (KVM_MAX_VCPUS > 8)
#error Invalid number of CPU interfaces
#if (KVM_MAX_VCPUS > 255)
#error Too many KVM VCPUs, the VGIC only supports up to 255 VCPUs for now
#endif
#if (VGIC_NR_IRQS_LEGACY & 31)
@ -132,6 +133,18 @@ struct vgic_params {
unsigned int maint_irq;
/* Virtual control interface base address */
void __iomem *vctrl_base;
int max_gic_vcpus;
/* Only needed for the legacy KVM_CREATE_IRQCHIP */
bool can_emulate_gicv2;
};
struct vgic_vm_ops {
bool (*handle_mmio)(struct kvm_vcpu *, struct kvm_run *,
struct kvm_exit_mmio *);
bool (*queue_sgi)(struct kvm_vcpu *, int irq);
void (*add_sgi_source)(struct kvm_vcpu *, int irq, int source);
int (*init_model)(struct kvm *);
int (*map_resources)(struct kvm *, const struct vgic_params *);
};
struct vgic_dist {
@ -140,6 +153,9 @@ struct vgic_dist {
bool in_kernel;
bool ready;
/* vGIC model the kernel emulates for the guest (GICv2 or GICv3) */
u32 vgic_model;
int nr_cpus;
int nr_irqs;
@ -148,7 +164,11 @@ struct vgic_dist {
/* Distributor and vcpu interface mapping in the guest */
phys_addr_t vgic_dist_base;
phys_addr_t vgic_cpu_base;
/* GICv2 and GICv3 use different mapped register blocks */
union {
phys_addr_t vgic_cpu_base;
phys_addr_t vgic_redist_base;
};
/* Distributor enabled */
u32 enabled;
@ -210,8 +230,13 @@ struct vgic_dist {
*/
struct vgic_bitmap *irq_spi_target;
/* Target MPIDR for each IRQ (needed for GICv3 IROUTERn) only */
u32 *irq_spi_mpidr;
/* Bitmap indicating which CPU has something pending */
unsigned long *irq_pending_on_cpu;
struct vgic_vm_ops vm_ops;
#endif
};
@ -229,6 +254,7 @@ struct vgic_v3_cpu_if {
#ifdef CONFIG_ARM_GIC_V3
u32 vgic_hcr;
u32 vgic_vmcr;
u32 vgic_sre; /* Restored only, change ignored */
u32 vgic_misr; /* Saved only */
u32 vgic_eisr; /* Saved only */
u32 vgic_elrsr; /* Saved only */
@ -275,13 +301,15 @@ struct kvm_exit_mmio;
int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write);
int kvm_vgic_hyp_init(void);
int kvm_vgic_map_resources(struct kvm *kvm);
int kvm_vgic_create(struct kvm *kvm);
int kvm_vgic_get_max_vcpus(void);
int kvm_vgic_create(struct kvm *kvm, u32 type);
void kvm_vgic_destroy(struct kvm *kvm);
void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu);
void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu);
void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu);
int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
bool level);
void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg);
int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu);
bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
struct kvm_exit_mmio *mmio);
@ -327,7 +355,7 @@ static inline int kvm_vgic_map_resources(struct kvm *kvm)
return 0;
}
static inline int kvm_vgic_create(struct kvm *kvm)
static inline int kvm_vgic_create(struct kvm *kvm, u32 type)
{
return 0;
}
@ -379,6 +407,11 @@ static inline bool vgic_ready(struct kvm *kvm)
{
return true;
}
static inline int kvm_vgic_get_max_vcpus(void)
{
return KVM_MAX_VCPUS;
}
#endif
#endif

View File

@ -33,6 +33,7 @@
#define GICD_SETSPI_SR 0x0050
#define GICD_CLRSPI_SR 0x0058
#define GICD_SEIR 0x0068
#define GICD_IGROUPR 0x0080
#define GICD_ISENABLER 0x0100
#define GICD_ICENABLER 0x0180
#define GICD_ISPENDR 0x0200
@ -41,14 +42,37 @@
#define GICD_ICACTIVER 0x0380
#define GICD_IPRIORITYR 0x0400
#define GICD_ICFGR 0x0C00
#define GICD_IGRPMODR 0x0D00
#define GICD_NSACR 0x0E00
#define GICD_IROUTER 0x6000
#define GICD_IDREGS 0xFFD0
#define GICD_PIDR2 0xFFE8
/*
* Those registers are actually from GICv2, but the spec demands that they
* are implemented as RES0 if ARE is 1 (which we do in KVM's emulated GICv3).
*/
#define GICD_ITARGETSR 0x0800
#define GICD_SGIR 0x0F00
#define GICD_CPENDSGIR 0x0F10
#define GICD_SPENDSGIR 0x0F20
#define GICD_CTLR_RWP (1U << 31)
#define GICD_CTLR_DS (1U << 6)
#define GICD_CTLR_ARE_NS (1U << 4)
#define GICD_CTLR_ENABLE_G1A (1U << 1)
#define GICD_CTLR_ENABLE_G1 (1U << 0)
/*
* In systems with a single security state (what we emulate in KVM)
* the meaning of the interrupt group enable bits is slightly different
*/
#define GICD_CTLR_ENABLE_SS_G1 (1U << 1)
#define GICD_CTLR_ENABLE_SS_G0 (1U << 0)
#define GICD_TYPER_LPIS (1U << 17)
#define GICD_TYPER_MBIS (1U << 16)
#define GICD_TYPER_ID_BITS(typer) ((((typer) >> 19) & 0x1f) + 1)
#define GICD_TYPER_IRQS(typer) ((((typer) & 0x1f) + 1) * 32)
#define GICD_TYPER_LPIS (1U << 17)
@ -60,6 +84,8 @@
#define GIC_PIDR2_ARCH_GICv3 0x30
#define GIC_PIDR2_ARCH_GICv4 0x40
#define GIC_V3_DIST_SIZE 0x10000
/*
* Re-Distributor registers, offsets from RD_base
*/
@ -78,6 +104,7 @@
#define GICR_SYNCR 0x00C0
#define GICR_MOVLPIR 0x0100
#define GICR_MOVALLR 0x0110
#define GICR_IDREGS GICD_IDREGS
#define GICR_PIDR2 GICD_PIDR2
#define GICR_CTLR_ENABLE_LPIS (1UL << 0)
@ -104,6 +131,7 @@
/*
* Re-Distributor registers, offsets from SGI_base
*/
#define GICR_IGROUPR0 GICD_IGROUPR
#define GICR_ISENABLER0 GICD_ISENABLER
#define GICR_ICENABLER0 GICD_ICENABLER
#define GICR_ISPENDR0 GICD_ISPENDR
@ -112,11 +140,15 @@
#define GICR_ICACTIVER0 GICD_ICACTIVER
#define GICR_IPRIORITYR0 GICD_IPRIORITYR
#define GICR_ICFGR0 GICD_ICFGR
#define GICR_IGRPMODR0 GICD_IGRPMODR
#define GICR_NSACR GICD_NSACR
#define GICR_TYPER_PLPIS (1U << 0)
#define GICR_TYPER_VLPIS (1U << 1)
#define GICR_TYPER_LAST (1U << 4)
#define GIC_V3_REDIST_SIZE 0x20000
#define LPI_PROP_GROUP1 (1 << 1)
#define LPI_PROP_ENABLED (1 << 0)
@ -248,6 +280,18 @@
#define ICC_SRE_EL2_SRE (1 << 0)
#define ICC_SRE_EL2_ENABLE (1 << 3)
#define ICC_SGI1R_TARGET_LIST_SHIFT 0
#define ICC_SGI1R_TARGET_LIST_MASK (0xffff << ICC_SGI1R_TARGET_LIST_SHIFT)
#define ICC_SGI1R_AFFINITY_1_SHIFT 16
#define ICC_SGI1R_AFFINITY_1_MASK (0xff << ICC_SGI1R_AFFINITY_1_SHIFT)
#define ICC_SGI1R_SGI_ID_SHIFT 24
#define ICC_SGI1R_SGI_ID_MASK (0xff << ICC_SGI1R_SGI_ID_SHIFT)
#define ICC_SGI1R_AFFINITY_2_SHIFT 32
#define ICC_SGI1R_AFFINITY_2_MASK (0xffULL << ICC_SGI1R_AFFINITY_1_SHIFT)
#define ICC_SGI1R_IRQ_ROUTING_MODE_BIT 40
#define ICC_SGI1R_AFFINITY_3_SHIFT 48
#define ICC_SGI1R_AFFINITY_3_MASK (0xffULL << ICC_SGI1R_AFFINITY_1_SHIFT)
/*
* System register definitions
*/

View File

@ -611,6 +611,15 @@ int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
int kvm_get_dirty_log(struct kvm *kvm,
struct kvm_dirty_log *log, int *is_dirty);
int kvm_get_dirty_log_protect(struct kvm *kvm,
struct kvm_dirty_log *log, bool *is_dirty);
void kvm_arch_mmu_write_protect_pt_masked(struct kvm *kvm,
struct kvm_memory_slot *slot,
gfn_t gfn_offset,
unsigned long mask);
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
struct kvm_dirty_log *log);
@ -1042,6 +1051,8 @@ void kvm_unregister_device_ops(u32 type);
extern struct kvm_device_ops kvm_mpic_ops;
extern struct kvm_device_ops kvm_xics_ops;
extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT

View File

@ -952,6 +952,8 @@ enum kvm_device_type {
#define KVM_DEV_TYPE_ARM_VGIC_V2 KVM_DEV_TYPE_ARM_VGIC_V2
KVM_DEV_TYPE_FLIC,
#define KVM_DEV_TYPE_FLIC KVM_DEV_TYPE_FLIC
KVM_DEV_TYPE_ARM_VGIC_V3,
#define KVM_DEV_TYPE_ARM_VGIC_V3 KVM_DEV_TYPE_ARM_VGIC_V3
KVM_DEV_TYPE_MAX,
};

View File

@ -37,3 +37,9 @@ config HAVE_KVM_CPU_RELAX_INTERCEPT
config KVM_VFIO
bool
config HAVE_KVM_ARCH_TLB_FLUSH_ALL
bool
config KVM_GENERIC_DIRTYLOG_READ_PROTECT
bool

View File

@ -0,0 +1,847 @@
/*
* Contains GICv2 specific emulation code, was in vgic.c before.
*
* Copyright (C) 2012 ARM Ltd.
* Author: Marc Zyngier <marc.zyngier@arm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/cpu.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/uaccess.h>
#include <linux/irqchip/arm-gic.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
#include "vgic.h"
#define GICC_ARCH_VERSION_V2 0x2
static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);
static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi)
{
return dist->irq_sgi_sources + vcpu_id * VGIC_NR_SGIS + sgi;
}
static bool handle_mmio_misc(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
u32 reg;
u32 word_offset = offset & 3;
switch (offset & ~3) {
case 0: /* GICD_CTLR */
reg = vcpu->kvm->arch.vgic.enabled;
vgic_reg_access(mmio, &reg, word_offset,
ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
if (mmio->is_write) {
vcpu->kvm->arch.vgic.enabled = reg & 1;
vgic_update_state(vcpu->kvm);
return true;
}
break;
case 4: /* GICD_TYPER */
reg = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
reg |= (vcpu->kvm->arch.vgic.nr_irqs >> 5) - 1;
vgic_reg_access(mmio, &reg, word_offset,
ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
break;
case 8: /* GICD_IIDR */
reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
vgic_reg_access(mmio, &reg, word_offset,
ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
break;
}
return false;
}
static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
return vgic_handle_enable_reg(vcpu->kvm, mmio, offset,
vcpu->vcpu_id, ACCESS_WRITE_SETBIT);
}
static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
return vgic_handle_enable_reg(vcpu->kvm, mmio, offset,
vcpu->vcpu_id, ACCESS_WRITE_CLEARBIT);
}
static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
return vgic_handle_set_pending_reg(vcpu->kvm, mmio, offset,
vcpu->vcpu_id);
}
static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
return vgic_handle_clear_pending_reg(vcpu->kvm, mmio, offset,
vcpu->vcpu_id);
}
static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
vcpu->vcpu_id, offset);
vgic_reg_access(mmio, reg, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
return false;
}
#define GICD_ITARGETSR_SIZE 32
#define GICD_CPUTARGETS_BITS 8
#define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS)
static u32 vgic_get_target_reg(struct kvm *kvm, int irq)
{
struct vgic_dist *dist = &kvm->arch.vgic;
int i;
u32 val = 0;
irq -= VGIC_NR_PRIVATE_IRQS;
for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++)
val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8);
return val;
}
static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq)
{
struct vgic_dist *dist = &kvm->arch.vgic;
struct kvm_vcpu *vcpu;
int i, c;
unsigned long *bmap;
u32 target;
irq -= VGIC_NR_PRIVATE_IRQS;
/*
* Pick the LSB in each byte. This ensures we target exactly
* one vcpu per IRQ. If the byte is null, assume we target
* CPU0.
*/
for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) {
int shift = i * GICD_CPUTARGETS_BITS;
target = ffs((val >> shift) & 0xffU);
target = target ? (target - 1) : 0;
dist->irq_spi_cpu[irq + i] = target;
kvm_for_each_vcpu(c, vcpu, kvm) {
bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
if (c == target)
set_bit(irq + i, bmap);
else
clear_bit(irq + i, bmap);
}
}
}
static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
u32 reg;
/* We treat the banked interrupts targets as read-only */
if (offset < 32) {
u32 roreg;
roreg = 1 << vcpu->vcpu_id;
roreg |= roreg << 8;
roreg |= roreg << 16;
vgic_reg_access(mmio, &roreg, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
return false;
}
reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U);
vgic_reg_access(mmio, &reg, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
if (mmio->is_write) {
vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U);
vgic_update_state(vcpu->kvm);
return true;
}
return false;
}
static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
u32 *reg;
reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
vcpu->vcpu_id, offset >> 1);
return vgic_handle_cfg_reg(reg, mmio, offset);
}
static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
u32 reg;
vgic_reg_access(mmio, &reg, offset,
ACCESS_READ_RAZ | ACCESS_WRITE_VALUE);
if (mmio->is_write) {
vgic_dispatch_sgi(vcpu, reg);
vgic_update_state(vcpu->kvm);
return true;
}
return false;
}
/* Handle reads of GICD_CPENDSGIRn and GICD_SPENDSGIRn */
static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
int sgi;
int min_sgi = (offset & ~0x3);
int max_sgi = min_sgi + 3;
int vcpu_id = vcpu->vcpu_id;
u32 reg = 0;
/* Copy source SGIs from distributor side */
for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
u8 sources = *vgic_get_sgi_sources(dist, vcpu_id, sgi);
reg |= ((u32)sources) << (8 * (sgi - min_sgi));
}
mmio_data_write(mmio, ~0, reg);
return false;
}
static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset, bool set)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
int sgi;
int min_sgi = (offset & ~0x3);
int max_sgi = min_sgi + 3;
int vcpu_id = vcpu->vcpu_id;
u32 reg;
bool updated = false;
reg = mmio_data_read(mmio, ~0);
/* Clear pending SGIs on the distributor */
for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
u8 mask = reg >> (8 * (sgi - min_sgi));
u8 *src = vgic_get_sgi_sources(dist, vcpu_id, sgi);
if (set) {
if ((*src & mask) != mask)
updated = true;
*src |= mask;
} else {
if (*src & mask)
updated = true;
*src &= ~mask;
}
}
if (updated)
vgic_update_state(vcpu->kvm);
return updated;
}
static bool handle_mmio_sgi_set(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
if (!mmio->is_write)
return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
else
return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, true);
}
static bool handle_mmio_sgi_clear(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
if (!mmio->is_write)
return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
else
return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, false);
}
static const struct kvm_mmio_range vgic_dist_ranges[] = {
{
.base = GIC_DIST_CTRL,
.len = 12,
.bits_per_irq = 0,
.handle_mmio = handle_mmio_misc,
},
{
.base = GIC_DIST_IGROUP,
.len = VGIC_MAX_IRQS / 8,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_raz_wi,
},
{
.base = GIC_DIST_ENABLE_SET,
.len = VGIC_MAX_IRQS / 8,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_set_enable_reg,
},
{
.base = GIC_DIST_ENABLE_CLEAR,
.len = VGIC_MAX_IRQS / 8,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_clear_enable_reg,
},
{
.base = GIC_DIST_PENDING_SET,
.len = VGIC_MAX_IRQS / 8,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_set_pending_reg,
},
{
.base = GIC_DIST_PENDING_CLEAR,
.len = VGIC_MAX_IRQS / 8,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_clear_pending_reg,
},
{
.base = GIC_DIST_ACTIVE_SET,
.len = VGIC_MAX_IRQS / 8,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_raz_wi,
},
{
.base = GIC_DIST_ACTIVE_CLEAR,
.len = VGIC_MAX_IRQS / 8,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_raz_wi,
},
{
.base = GIC_DIST_PRI,
.len = VGIC_MAX_IRQS,
.bits_per_irq = 8,
.handle_mmio = handle_mmio_priority_reg,
},
{
.base = GIC_DIST_TARGET,
.len = VGIC_MAX_IRQS,
.bits_per_irq = 8,
.handle_mmio = handle_mmio_target_reg,
},
{
.base = GIC_DIST_CONFIG,
.len = VGIC_MAX_IRQS / 4,
.bits_per_irq = 2,
.handle_mmio = handle_mmio_cfg_reg,
},
{
.base = GIC_DIST_SOFTINT,
.len = 4,
.handle_mmio = handle_mmio_sgi_reg,
},
{
.base = GIC_DIST_SGI_PENDING_CLEAR,
.len = VGIC_NR_SGIS,
.handle_mmio = handle_mmio_sgi_clear,
},
{
.base = GIC_DIST_SGI_PENDING_SET,
.len = VGIC_NR_SGIS,
.handle_mmio = handle_mmio_sgi_set,
},
{}
};
static bool vgic_v2_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
struct kvm_exit_mmio *mmio)
{
unsigned long base = vcpu->kvm->arch.vgic.vgic_dist_base;
if (!is_in_range(mmio->phys_addr, mmio->len, base,
KVM_VGIC_V2_DIST_SIZE))
return false;
/* GICv2 does not support accesses wider than 32 bits */
if (mmio->len > 4) {
kvm_inject_dabt(vcpu, mmio->phys_addr);
return true;
}
return vgic_handle_mmio_range(vcpu, run, mmio, vgic_dist_ranges, base);
}
static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
{
struct kvm *kvm = vcpu->kvm;
struct vgic_dist *dist = &kvm->arch.vgic;
int nrcpus = atomic_read(&kvm->online_vcpus);
u8 target_cpus;
int sgi, mode, c, vcpu_id;
vcpu_id = vcpu->vcpu_id;
sgi = reg & 0xf;
target_cpus = (reg >> 16) & 0xff;
mode = (reg >> 24) & 3;
switch (mode) {
case 0:
if (!target_cpus)
return;
break;
case 1:
target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff;
break;
case 2:
target_cpus = 1 << vcpu_id;
break;
}
kvm_for_each_vcpu(c, vcpu, kvm) {
if (target_cpus & 1) {
/* Flag the SGI as pending */
vgic_dist_irq_set_pending(vcpu, sgi);
*vgic_get_sgi_sources(dist, c, sgi) |= 1 << vcpu_id;
kvm_debug("SGI%d from CPU%d to CPU%d\n",
sgi, vcpu_id, c);
}
target_cpus >>= 1;
}
}
static bool vgic_v2_queue_sgi(struct kvm_vcpu *vcpu, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
unsigned long sources;
int vcpu_id = vcpu->vcpu_id;
int c;
sources = *vgic_get_sgi_sources(dist, vcpu_id, irq);
for_each_set_bit(c, &sources, dist->nr_cpus) {
if (vgic_queue_irq(vcpu, c, irq))
clear_bit(c, &sources);
}
*vgic_get_sgi_sources(dist, vcpu_id, irq) = sources;
/*
* If the sources bitmap has been cleared it means that we
* could queue all the SGIs onto link registers (see the
* clear_bit above), and therefore we are done with them in
* our emulated gic and can get rid of them.
*/
if (!sources) {
vgic_dist_irq_clear_pending(vcpu, irq);
vgic_cpu_irq_clear(vcpu, irq);
return true;
}
return false;
}
/**
* kvm_vgic_map_resources - Configure global VGIC state before running any VCPUs
* @kvm: pointer to the kvm struct
*
* Map the virtual CPU interface into the VM before running any VCPUs. We
* can't do this at creation time, because user space must first set the
* virtual CPU interface address in the guest physical address space.
*/
static int vgic_v2_map_resources(struct kvm *kvm,
const struct vgic_params *params)
{
int ret = 0;
if (!irqchip_in_kernel(kvm))
return 0;
mutex_lock(&kvm->lock);
if (vgic_ready(kvm))
goto out;
if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) ||
IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) {
kvm_err("Need to set vgic cpu and dist addresses first\n");
ret = -ENXIO;
goto out;
}
/*
* Initialize the vgic if this hasn't already been done on demand by
* accessing the vgic state from userspace.
*/
ret = vgic_init(kvm);
if (ret) {
kvm_err("Unable to allocate maps\n");
goto out;
}
ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base,
params->vcpu_base, KVM_VGIC_V2_CPU_SIZE,
true);
if (ret) {
kvm_err("Unable to remap VGIC CPU to VCPU\n");
goto out;
}
kvm->arch.vgic.ready = true;
out:
if (ret)
kvm_vgic_destroy(kvm);
mutex_unlock(&kvm->lock);
return ret;
}
static void vgic_v2_add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
*vgic_get_sgi_sources(dist, vcpu->vcpu_id, irq) |= 1 << source;
}
static int vgic_v2_init_model(struct kvm *kvm)
{
int i;
for (i = VGIC_NR_PRIVATE_IRQS; i < kvm->arch.vgic.nr_irqs; i += 4)
vgic_set_target_reg(kvm, 0, i);
return 0;
}
void vgic_v2_init_emulation(struct kvm *kvm)
{
struct vgic_dist *dist = &kvm->arch.vgic;
dist->vm_ops.handle_mmio = vgic_v2_handle_mmio;
dist->vm_ops.queue_sgi = vgic_v2_queue_sgi;
dist->vm_ops.add_sgi_source = vgic_v2_add_sgi_source;
dist->vm_ops.init_model = vgic_v2_init_model;
dist->vm_ops.map_resources = vgic_v2_map_resources;
kvm->arch.max_vcpus = VGIC_V2_MAX_CPUS;
}
static bool handle_cpu_mmio_misc(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
bool updated = false;
struct vgic_vmcr vmcr;
u32 *vmcr_field;
u32 reg;
vgic_get_vmcr(vcpu, &vmcr);
switch (offset & ~0x3) {
case GIC_CPU_CTRL:
vmcr_field = &vmcr.ctlr;
break;
case GIC_CPU_PRIMASK:
vmcr_field = &vmcr.pmr;
break;
case GIC_CPU_BINPOINT:
vmcr_field = &vmcr.bpr;
break;
case GIC_CPU_ALIAS_BINPOINT:
vmcr_field = &vmcr.abpr;
break;
default:
BUG();
}
if (!mmio->is_write) {
reg = *vmcr_field;
mmio_data_write(mmio, ~0, reg);
} else {
reg = mmio_data_read(mmio, ~0);
if (reg != *vmcr_field) {
*vmcr_field = reg;
vgic_set_vmcr(vcpu, &vmcr);
updated = true;
}
}
return updated;
}
static bool handle_mmio_abpr(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
return handle_cpu_mmio_misc(vcpu, mmio, GIC_CPU_ALIAS_BINPOINT);
}
static bool handle_cpu_mmio_ident(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
u32 reg;
if (mmio->is_write)
return false;
/* GICC_IIDR */
reg = (PRODUCT_ID_KVM << 20) |
(GICC_ARCH_VERSION_V2 << 16) |
(IMPLEMENTER_ARM << 0);
mmio_data_write(mmio, ~0, reg);
return false;
}
/*
* CPU Interface Register accesses - these are not accessed by the VM, but by
* user space for saving and restoring VGIC state.
*/
static const struct kvm_mmio_range vgic_cpu_ranges[] = {
{
.base = GIC_CPU_CTRL,
.len = 12,
.handle_mmio = handle_cpu_mmio_misc,
},
{
.base = GIC_CPU_ALIAS_BINPOINT,
.len = 4,
.handle_mmio = handle_mmio_abpr,
},
{
.base = GIC_CPU_ACTIVEPRIO,
.len = 16,
.handle_mmio = handle_mmio_raz_wi,
},
{
.base = GIC_CPU_IDENT,
.len = 4,
.handle_mmio = handle_cpu_mmio_ident,
},
};
static int vgic_attr_regs_access(struct kvm_device *dev,
struct kvm_device_attr *attr,
u32 *reg, bool is_write)
{
const struct kvm_mmio_range *r = NULL, *ranges;
phys_addr_t offset;
int ret, cpuid, c;
struct kvm_vcpu *vcpu, *tmp_vcpu;
struct vgic_dist *vgic;
struct kvm_exit_mmio mmio;
offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >>
KVM_DEV_ARM_VGIC_CPUID_SHIFT;
mutex_lock(&dev->kvm->lock);
ret = vgic_init(dev->kvm);
if (ret)
goto out;
if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) {
ret = -EINVAL;
goto out;
}
vcpu = kvm_get_vcpu(dev->kvm, cpuid);
vgic = &dev->kvm->arch.vgic;
mmio.len = 4;
mmio.is_write = is_write;
if (is_write)
mmio_data_write(&mmio, ~0, *reg);
switch (attr->group) {
case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
mmio.phys_addr = vgic->vgic_dist_base + offset;
ranges = vgic_dist_ranges;
break;
case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
mmio.phys_addr = vgic->vgic_cpu_base + offset;
ranges = vgic_cpu_ranges;
break;
default:
BUG();
}
r = vgic_find_range(ranges, &mmio, offset);
if (unlikely(!r || !r->handle_mmio)) {
ret = -ENXIO;
goto out;
}
spin_lock(&vgic->lock);
/*
* Ensure that no other VCPU is running by checking the vcpu->cpu
* field. If no other VPCUs are running we can safely access the VGIC
* state, because even if another VPU is run after this point, that
* VCPU will not touch the vgic state, because it will block on
* getting the vgic->lock in kvm_vgic_sync_hwstate().
*/
kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) {
if (unlikely(tmp_vcpu->cpu != -1)) {
ret = -EBUSY;
goto out_vgic_unlock;
}
}
/*
* Move all pending IRQs from the LRs on all VCPUs so the pending
* state can be properly represented in the register state accessible
* through this API.
*/
kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm)
vgic_unqueue_irqs(tmp_vcpu);
offset -= r->base;
r->handle_mmio(vcpu, &mmio, offset);
if (!is_write)
*reg = mmio_data_read(&mmio, ~0);
ret = 0;
out_vgic_unlock:
spin_unlock(&vgic->lock);
out:
mutex_unlock(&dev->kvm->lock);
return ret;
}
static int vgic_v2_create(struct kvm_device *dev, u32 type)
{
return kvm_vgic_create(dev->kvm, type);
}
static void vgic_v2_destroy(struct kvm_device *dev)
{
kfree(dev);
}
static int vgic_v2_set_attr(struct kvm_device *dev,
struct kvm_device_attr *attr)
{
int ret;
ret = vgic_set_common_attr(dev, attr);
if (ret != -ENXIO)
return ret;
switch (attr->group) {
case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
u32 __user *uaddr = (u32 __user *)(long)attr->addr;
u32 reg;
if (get_user(reg, uaddr))
return -EFAULT;
return vgic_attr_regs_access(dev, attr, &reg, true);
}
}
return -ENXIO;
}
static int vgic_v2_get_attr(struct kvm_device *dev,
struct kvm_device_attr *attr)
{
int ret;
ret = vgic_get_common_attr(dev, attr);
if (ret != -ENXIO)
return ret;
switch (attr->group) {
case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
u32 __user *uaddr = (u32 __user *)(long)attr->addr;
u32 reg = 0;
ret = vgic_attr_regs_access(dev, attr, &reg, false);
if (ret)
return ret;
return put_user(reg, uaddr);
}
}
return -ENXIO;
}
static int vgic_v2_has_attr(struct kvm_device *dev,
struct kvm_device_attr *attr)
{
phys_addr_t offset;
switch (attr->group) {
case KVM_DEV_ARM_VGIC_GRP_ADDR:
switch (attr->attr) {
case KVM_VGIC_V2_ADDR_TYPE_DIST:
case KVM_VGIC_V2_ADDR_TYPE_CPU:
return 0;
}
break;
case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
return vgic_has_attr_regs(vgic_dist_ranges, offset);
case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
return vgic_has_attr_regs(vgic_cpu_ranges, offset);
case KVM_DEV_ARM_VGIC_GRP_NR_IRQS:
return 0;
case KVM_DEV_ARM_VGIC_GRP_CTRL:
switch (attr->attr) {
case KVM_DEV_ARM_VGIC_CTRL_INIT:
return 0;
}
}
return -ENXIO;
}
struct kvm_device_ops kvm_arm_vgic_v2_ops = {
.name = "kvm-arm-vgic-v2",
.create = vgic_v2_create,
.destroy = vgic_v2_destroy,
.set_attr = vgic_v2_set_attr,
.get_attr = vgic_v2_get_attr,
.has_attr = vgic_v2_has_attr,
};

View File

@ -229,12 +229,16 @@ int vgic_v2_probe(struct device_node *vgic_node,
goto out_unmap;
}
vgic->can_emulate_gicv2 = true;
kvm_register_device_ops(&kvm_arm_vgic_v2_ops, KVM_DEV_TYPE_ARM_VGIC_V2);
vgic->vcpu_base = vcpu_res.start;
kvm_info("%s@%llx IRQ%d\n", vgic_node->name,
vctrl_res.start, vgic->maint_irq);
vgic->type = VGIC_V2;
vgic->max_gic_vcpus = VGIC_V2_MAX_CPUS;
*ops = &vgic_v2_ops;
*params = vgic;
goto out;

File diff suppressed because it is too large Load Diff

View File

@ -34,6 +34,7 @@
#define GICH_LR_VIRTUALID (0x3ffUL << 0)
#define GICH_LR_PHYSID_CPUID_SHIFT (10)
#define GICH_LR_PHYSID_CPUID (7UL << GICH_LR_PHYSID_CPUID_SHIFT)
#define ICH_LR_VIRTUALID_MASK (BIT_ULL(32) - 1)
/*
* LRs are stored in reverse order in memory. make sure we index them
@ -48,12 +49,17 @@ static struct vgic_lr vgic_v3_get_lr(const struct kvm_vcpu *vcpu, int lr)
struct vgic_lr lr_desc;
u64 val = vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[LR_INDEX(lr)];
lr_desc.irq = val & GICH_LR_VIRTUALID;
if (lr_desc.irq <= 15)
lr_desc.source = (val >> GICH_LR_PHYSID_CPUID_SHIFT) & 0x7;
if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3)
lr_desc.irq = val & ICH_LR_VIRTUALID_MASK;
else
lr_desc.source = 0;
lr_desc.state = 0;
lr_desc.irq = val & GICH_LR_VIRTUALID;
lr_desc.source = 0;
if (lr_desc.irq <= 15 &&
vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2)
lr_desc.source = (val >> GICH_LR_PHYSID_CPUID_SHIFT) & 0x7;
lr_desc.state = 0;
if (val & ICH_LR_PENDING_BIT)
lr_desc.state |= LR_STATE_PENDING;
@ -68,8 +74,20 @@ static struct vgic_lr vgic_v3_get_lr(const struct kvm_vcpu *vcpu, int lr)
static void vgic_v3_set_lr(struct kvm_vcpu *vcpu, int lr,
struct vgic_lr lr_desc)
{
u64 lr_val = (((u32)lr_desc.source << GICH_LR_PHYSID_CPUID_SHIFT) |
lr_desc.irq);
u64 lr_val;
lr_val = lr_desc.irq;
/*
* Currently all guest IRQs are Group1, as Group0 would result
* in a FIQ in the guest, which it wouldn't expect.
* Eventually we want to make this configurable, so we may revisit
* this in the future.
*/
if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3)
lr_val |= ICH_LR_GROUP;
else
lr_val |= (u32)lr_desc.source << GICH_LR_PHYSID_CPUID_SHIFT;
if (lr_desc.state & LR_STATE_PENDING)
lr_val |= ICH_LR_PENDING_BIT;
@ -145,15 +163,27 @@ static void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
static void vgic_v3_enable(struct kvm_vcpu *vcpu)
{
struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3;
/*
* By forcing VMCR to zero, the GIC will restore the binary
* points to their reset values. Anything else resets to zero
* anyway.
*/
vcpu->arch.vgic_cpu.vgic_v3.vgic_vmcr = 0;
vgic_v3->vgic_vmcr = 0;
/*
* If we are emulating a GICv3, we do it in an non-GICv2-compatible
* way, so we force SRE to 1 to demonstrate this to the guest.
* This goes with the spec allowing the value to be RAO/WI.
*/
if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3)
vgic_v3->vgic_sre = ICC_SRE_EL1_SRE;
else
vgic_v3->vgic_sre = 0;
/* Get the show on the road... */
vcpu->arch.vgic_cpu.vgic_v3.vgic_hcr = ICH_HCR_EN;
vgic_v3->vgic_hcr = ICH_HCR_EN;
}
static const struct vgic_ops vgic_v3_ops = {
@ -205,35 +235,37 @@ int vgic_v3_probe(struct device_node *vgic_node,
* maximum of 16 list registers. Just ignore bit 4...
*/
vgic->nr_lr = (ich_vtr_el2 & 0xf) + 1;
vgic->can_emulate_gicv2 = false;
if (of_property_read_u32(vgic_node, "#redistributor-regions", &gicv_idx))
gicv_idx = 1;
gicv_idx += 3; /* Also skip GICD, GICC, GICH */
if (of_address_to_resource(vgic_node, gicv_idx, &vcpu_res)) {
kvm_err("Cannot obtain GICV region\n");
ret = -ENXIO;
goto out;
}
if (!PAGE_ALIGNED(vcpu_res.start)) {
kvm_err("GICV physical address 0x%llx not page aligned\n",
kvm_info("GICv3: no GICV resource entry\n");
vgic->vcpu_base = 0;
} else if (!PAGE_ALIGNED(vcpu_res.start)) {
pr_warn("GICV physical address 0x%llx not page aligned\n",
(unsigned long long)vcpu_res.start);
ret = -ENXIO;
goto out;
}
if (!PAGE_ALIGNED(resource_size(&vcpu_res))) {
kvm_err("GICV size 0x%llx not a multiple of page size 0x%lx\n",
vgic->vcpu_base = 0;
} else if (!PAGE_ALIGNED(resource_size(&vcpu_res))) {
pr_warn("GICV size 0x%llx not a multiple of page size 0x%lx\n",
(unsigned long long)resource_size(&vcpu_res),
PAGE_SIZE);
ret = -ENXIO;
goto out;
vgic->vcpu_base = 0;
} else {
vgic->vcpu_base = vcpu_res.start;
vgic->can_emulate_gicv2 = true;
kvm_register_device_ops(&kvm_arm_vgic_v2_ops,
KVM_DEV_TYPE_ARM_VGIC_V2);
}
if (vgic->vcpu_base == 0)
kvm_info("disabling GICv2 emulation\n");
kvm_register_device_ops(&kvm_arm_vgic_v3_ops, KVM_DEV_TYPE_ARM_VGIC_V3);
vgic->vcpu_base = vcpu_res.start;
vgic->vctrl_base = NULL;
vgic->type = VGIC_V3;
vgic->max_gic_vcpus = KVM_MAX_VCPUS;
kvm_info("%s@%llx IRQ%d\n", vgic_node->name,
vcpu_res.start, vgic->maint_irq);

File diff suppressed because it is too large Load Diff

123
virt/kvm/arm/vgic.h 100644
View File

@ -0,0 +1,123 @@
/*
* Copyright (C) 2012-2014 ARM Ltd.
* Author: Marc Zyngier <marc.zyngier@arm.com>
*
* Derived from virt/kvm/arm/vgic.c
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __KVM_VGIC_H__
#define __KVM_VGIC_H__
#define VGIC_ADDR_UNDEF (-1)
#define IS_VGIC_ADDR_UNDEF(_x) ((_x) == VGIC_ADDR_UNDEF)
#define PRODUCT_ID_KVM 0x4b /* ASCII code K */
#define IMPLEMENTER_ARM 0x43b
#define ACCESS_READ_VALUE (1 << 0)
#define ACCESS_READ_RAZ (0 << 0)
#define ACCESS_READ_MASK(x) ((x) & (1 << 0))
#define ACCESS_WRITE_IGNORED (0 << 1)
#define ACCESS_WRITE_SETBIT (1 << 1)
#define ACCESS_WRITE_CLEARBIT (2 << 1)
#define ACCESS_WRITE_VALUE (3 << 1)
#define ACCESS_WRITE_MASK(x) ((x) & (3 << 1))
#define VCPU_NOT_ALLOCATED ((u8)-1)
unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x);
void vgic_update_state(struct kvm *kvm);
int vgic_init_common_maps(struct kvm *kvm);
u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset);
u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset);
void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq);
void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq);
void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq);
void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
int irq, int val);
void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq);
void vgic_unqueue_irqs(struct kvm_vcpu *vcpu);
void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
phys_addr_t offset, int mode);
bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
phys_addr_t offset);
static inline
u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask)
{
return le32_to_cpu(*((u32 *)mmio->data)) & mask;
}
static inline
void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value)
{
*((u32 *)mmio->data) = cpu_to_le32(value) & mask;
}
struct kvm_mmio_range {
phys_addr_t base;
unsigned long len;
int bits_per_irq;
bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
phys_addr_t offset);
};
static inline bool is_in_range(phys_addr_t addr, unsigned long len,
phys_addr_t baseaddr, unsigned long size)
{
return (addr >= baseaddr) && (addr + len <= baseaddr + size);
}
const
struct kvm_mmio_range *vgic_find_range(const struct kvm_mmio_range *ranges,
struct kvm_exit_mmio *mmio,
phys_addr_t offset);
bool vgic_handle_mmio_range(struct kvm_vcpu *vcpu, struct kvm_run *run,
struct kvm_exit_mmio *mmio,
const struct kvm_mmio_range *ranges,
unsigned long mmio_base);
bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
phys_addr_t offset, int vcpu_id, int access);
bool vgic_handle_set_pending_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
phys_addr_t offset, int vcpu_id);
bool vgic_handle_clear_pending_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
phys_addr_t offset, int vcpu_id);
bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio,
phys_addr_t offset);
void vgic_kick_vcpus(struct kvm *kvm);
int vgic_has_attr_regs(const struct kvm_mmio_range *ranges, phys_addr_t offset);
int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr);
int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr);
int vgic_init(struct kvm *kvm);
void vgic_v2_init_emulation(struct kvm *kvm);
void vgic_v3_init_emulation(struct kvm *kvm);
#endif

View File

@ -176,6 +176,7 @@ bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
return called;
}
#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
void kvm_flush_remote_tlbs(struct kvm *kvm)
{
long dirty_count = kvm->tlbs_dirty;
@ -186,6 +187,7 @@ void kvm_flush_remote_tlbs(struct kvm *kvm)
cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
}
EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
#endif
void kvm_reload_remote_mmus(struct kvm *kvm)
{
@ -993,6 +995,86 @@ out:
}
EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
/**
* kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
* are dirty write protect them for next write.
* @kvm: pointer to kvm instance
* @log: slot id and address to which we copy the log
* @is_dirty: flag set if any page is dirty
*
* We need to keep it in mind that VCPU threads can write to the bitmap
* concurrently. So, to avoid losing track of dirty pages we keep the
* following order:
*
* 1. Take a snapshot of the bit and clear it if needed.
* 2. Write protect the corresponding page.
* 3. Copy the snapshot to the userspace.
* 4. Upon return caller flushes TLB's if needed.
*
* Between 2 and 4, the guest may write to the page using the remaining TLB
* entry. This is not a problem because the page is reported dirty using
* the snapshot taken before and step 4 ensures that writes done after
* exiting to userspace will be logged for the next call.
*
*/
int kvm_get_dirty_log_protect(struct kvm *kvm,
struct kvm_dirty_log *log, bool *is_dirty)
{
struct kvm_memory_slot *memslot;
int r, i;
unsigned long n;
unsigned long *dirty_bitmap;
unsigned long *dirty_bitmap_buffer;
r = -EINVAL;
if (log->slot >= KVM_USER_MEM_SLOTS)
goto out;
memslot = id_to_memslot(kvm->memslots, log->slot);
dirty_bitmap = memslot->dirty_bitmap;
r = -ENOENT;
if (!dirty_bitmap)
goto out;
n = kvm_dirty_bitmap_bytes(memslot);
dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
memset(dirty_bitmap_buffer, 0, n);
spin_lock(&kvm->mmu_lock);
*is_dirty = false;
for (i = 0; i < n / sizeof(long); i++) {
unsigned long mask;
gfn_t offset;
if (!dirty_bitmap[i])
continue;
*is_dirty = true;
mask = xchg(&dirty_bitmap[i], 0);
dirty_bitmap_buffer[i] = mask;
offset = i * BITS_PER_LONG;
kvm_arch_mmu_write_protect_pt_masked(kvm, memslot, offset,
mask);
}
spin_unlock(&kvm->mmu_lock);
r = -EFAULT;
if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
goto out;
r = 0;
out:
return r;
}
EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
#endif
bool kvm_largepages_enabled(void)
{
return largepages_enabled;