1
0
Fork 0

vmemmap: generify initialisation via helpers

Convert the common vmemmap population into initialisation helpers for use by
architecture vmemmap populators.  All architecture implementing the
SPARSEMEM_VMEMMAP variant supply an architecture specific vmemmap_populate()
initialiser, which may make use of the helpers.

This allows us to clean up and remove the initialisation Kconfig entries.
With this patch there is a single SPARSEMEM_VMEMMAP_ENABLE Kconfig option to
indicate use of that variant.

Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
hifive-unleashed-5.1
Andy Whitcroft 2007-10-16 01:24:14 -07:00 committed by Linus Torvalds
parent 8f6aac419b
commit 29c71111d0
3 changed files with 94 additions and 109 deletions

View File

@ -1219,10 +1219,15 @@ extern int randomize_va_space;
const char * arch_vma_name(struct vm_area_struct *vma);
struct page *sparse_early_mem_map_populate(unsigned long pnum, int nid);
int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
int vmemmap_populate_pmd(pud_t *, unsigned long, unsigned long, int);
pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
void *vmemmap_alloc_block(unsigned long size, int node);
void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
int vmemmap_populate_basepages(struct page *start_page,
unsigned long pages, int node);
int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
#endif /* __KERNEL__ */
#endif /* _LINUX_MM_H */

View File

@ -112,6 +112,19 @@ config SPARSEMEM_EXTREME
def_bool y
depends on SPARSEMEM && !SPARSEMEM_STATIC
#
# SPARSEMEM_VMEMMAP uses a virtually mapped mem_map to optimise pfn_to_page
# and page_to_pfn. The most efficient option where kernel virtual space is
# not under pressure.
#
config SPARSEMEM_VMEMMAP_ENABLE
def_bool n
config SPARSEMEM_VMEMMAP
bool
depends on SPARSEMEM
default y if (SPARSEMEM_VMEMMAP_ENABLE)
# eventually, we can have this option just 'select SPARSEMEM'
config MEMORY_HOTPLUG
bool "Allow for memory hot-add"

View File

@ -14,21 +14,8 @@
* case the overhead consists of a few additional pages that are
* allocated to create a view of memory for vmemmap.
*
* Special Kconfig settings:
*
* CONFIG_ARCH_POPULATES_SPARSEMEM_VMEMMAP
*
* The architecture has its own functions to populate the memory
* map and provides a vmemmap_populate function.
*
* CONFIG_ARCH_POPULATES_SPARSEMEM_VMEMMAP_PMD
*
* The architecture provides functions to populate the pmd level
* of the vmemmap mappings. Allowing mappings using large pages
* where available.
*
* If neither are set then PAGE_SIZE mappings are generated which
* require one PTE/TLB per PAGE_SIZE chunk of the virtual memory map.
* The architecture is expected to provide a vmemmap_populate() function
* to instantiate the mapping.
*/
#include <linux/mm.h>
#include <linux/mmzone.h>
@ -60,7 +47,6 @@ void * __meminit vmemmap_alloc_block(unsigned long size, int node)
__pa(MAX_DMA_ADDRESS));
}
#ifndef CONFIG_ARCH_POPULATES_SPARSEMEM_VMEMMAP
void __meminit vmemmap_verify(pte_t *pte, int node,
unsigned long start, unsigned long end)
{
@ -72,104 +58,85 @@ void __meminit vmemmap_verify(pte_t *pte, int node,
"page_structs\n", start, end - 1);
}
#ifndef CONFIG_ARCH_POPULATES_SPARSEMEM_VMEMMAP_PMD
static int __meminit vmemmap_populate_pte(pmd_t *pmd, unsigned long addr,
unsigned long end, int node)
pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node)
{
pte_t *pte = pte_offset_kernel(pmd, addr);
if (pte_none(*pte)) {
pte_t entry;
void *p = vmemmap_alloc_block(PAGE_SIZE, node);
if (!p)
return 0;
entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
set_pte_at(&init_mm, addr, pte, entry);
}
return pte;
}
pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
{
pmd_t *pmd = pmd_offset(pud, addr);
if (pmd_none(*pmd)) {
void *p = vmemmap_alloc_block(PAGE_SIZE, node);
if (!p)
return 0;
pmd_populate_kernel(&init_mm, pmd, p);
}
return pmd;
}
pud_t * __meminit vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node)
{
pud_t *pud = pud_offset(pgd, addr);
if (pud_none(*pud)) {
void *p = vmemmap_alloc_block(PAGE_SIZE, node);
if (!p)
return 0;
pud_populate(&init_mm, pud, p);
}
return pud;
}
pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
{
pgd_t *pgd = pgd_offset_k(addr);
if (pgd_none(*pgd)) {
void *p = vmemmap_alloc_block(PAGE_SIZE, node);
if (!p)
return 0;
pgd_populate(&init_mm, pgd, p);
}
return pgd;
}
int __meminit vmemmap_populate_basepages(struct page *start_page,
unsigned long size, int node)
{
unsigned long addr = (unsigned long)start_page;
unsigned long end = (unsigned long)(start_page + size);
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
for (pte = pte_offset_kernel(pmd, addr); addr < end;
pte++, addr += PAGE_SIZE)
if (pte_none(*pte)) {
pte_t entry;
void *p = vmemmap_alloc_block(PAGE_SIZE, node);
if (!p)
return -ENOMEM;
entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
set_pte(pte, entry);
} else
vmemmap_verify(pte, node, addr + PAGE_SIZE, end);
for (; addr < end; addr += PAGE_SIZE) {
pgd = vmemmap_pgd_populate(addr, node);
if (!pgd)
return -ENOMEM;
pud = vmemmap_pud_populate(pgd, addr, node);
if (!pud)
return -ENOMEM;
pmd = vmemmap_pmd_populate(pud, addr, node);
if (!pmd)
return -ENOMEM;
pte = vmemmap_pte_populate(pmd, addr, node);
if (!pte)
return -ENOMEM;
vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
}
return 0;
}
int __meminit vmemmap_populate_pmd(pud_t *pud, unsigned long addr,
unsigned long end, int node)
{
pmd_t *pmd;
int error = 0;
unsigned long next;
for (pmd = pmd_offset(pud, addr); addr < end && !error;
pmd++, addr = next) {
if (pmd_none(*pmd)) {
void *p = vmemmap_alloc_block(PAGE_SIZE, node);
if (!p)
return -ENOMEM;
pmd_populate_kernel(&init_mm, pmd, p);
} else
vmemmap_verify((pte_t *)pmd, node,
pmd_addr_end(addr, end), end);
next = pmd_addr_end(addr, end);
error = vmemmap_populate_pte(pmd, addr, next, node);
}
return error;
}
#endif /* CONFIG_ARCH_POPULATES_SPARSEMEM_VMEMMAP_PMD */
static int __meminit vmemmap_populate_pud(pgd_t *pgd, unsigned long addr,
unsigned long end, int node)
{
pud_t *pud;
int error = 0;
unsigned long next;
for (pud = pud_offset(pgd, addr); addr < end && !error;
pud++, addr = next) {
if (pud_none(*pud)) {
void *p = vmemmap_alloc_block(PAGE_SIZE, node);
if (!p)
return -ENOMEM;
pud_populate(&init_mm, pud, p);
}
next = pud_addr_end(addr, end);
error = vmemmap_populate_pmd(pud, addr, next, node);
}
return error;
}
int __meminit vmemmap_populate(struct page *start_page,
unsigned long nr, int node)
{
pgd_t *pgd;
unsigned long addr = (unsigned long)start_page;
unsigned long end = (unsigned long)(start_page + nr);
unsigned long next;
int error = 0;
printk(KERN_DEBUG "[%lx-%lx] Virtual memory section"
" (%ld pages) node %d\n", addr, end - 1, nr, node);
for (pgd = pgd_offset_k(addr); addr < end && !error;
pgd++, addr = next) {
if (pgd_none(*pgd)) {
void *p = vmemmap_alloc_block(PAGE_SIZE, node);
if (!p)
return -ENOMEM;
pgd_populate(&init_mm, pgd, p);
}
next = pgd_addr_end(addr,end);
error = vmemmap_populate_pud(pgd, addr, next, node);
}
return error;
}
#endif /* !CONFIG_ARCH_POPULATES_SPARSEMEM_VMEMMAP */
struct page __init *sparse_early_mem_map_populate(unsigned long pnum, int nid)
{
struct page *map = pfn_to_page(pnum * PAGES_PER_SECTION);