1
0
Fork 0

x86, UV: Add support for SGI UV2 hub chip

This patch adds support for a new version of the SGI UV hub
chip. The hub chip is the node controller that connects multiple
blades into a larger coherent SSI.

For the most part, UV2 is compatible with UV1. The majority of
the changes are in the addresses of MMRs and in a few cases, the
contents of MMRs. These changes are the result in changes in the
system topology such as node configuration, processor types,
maximum nodes, physical address sizes, etc.

Signed-off-by: Jack Steiner <steiner@sgi.com>
Link: http://lkml.kernel.org/r/20110511175028.GA18006@sgi.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
hifive-unleashed-5.1
Jack Steiner 2011-05-11 12:50:28 -05:00 committed by Ingo Molnar
parent 7ccafc5f75
commit 2a919596c1
6 changed files with 1074 additions and 237 deletions

View File

@ -44,7 +44,10 @@
#define UV_ACT_STATUS_SIZE 2
#define UV_DISTRIBUTION_SIZE 256
#define UV_SW_ACK_NPENDING 8
#define UV_NET_ENDPOINT_INTD 0x38
#define UV1_NET_ENDPOINT_INTD 0x38
#define UV2_NET_ENDPOINT_INTD 0x28
#define UV_NET_ENDPOINT_INTD (is_uv1_hub() ? \
UV1_NET_ENDPOINT_INTD : UV2_NET_ENDPOINT_INTD)
#define UV_DESC_BASE_PNODE_SHIFT 49
#define UV_PAYLOADQ_PNODE_SHIFT 49
#define UV_PTC_BASENAME "sgi_uv/ptc_statistics"
@ -53,10 +56,22 @@
#define UV_BAU_TUNABLES_FILE "bau_tunables"
#define WHITESPACE " \t\n"
#define uv_physnodeaddr(x) ((__pa((unsigned long)(x)) & uv_mmask))
#define UV_ENABLE_INTD_SOFT_ACK_MODE_SHIFT 15
#define UV_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHIFT 16
#define UV_INTD_SOFT_ACK_TIMEOUT_PERIOD 0x0000000009UL
/* [19:16] SOFT_ACK timeout period 19: 1 is urgency 7 17:16 1 is multiplier */
/*
* UV2: Bit 19 selects between
* (0): 10 microsecond timebase and
* (1): 80 microseconds
* we're using 655us, similar to UV1: 65 units of 10us
*/
#define UV1_INTD_SOFT_ACK_TIMEOUT_PERIOD (9UL)
#define UV2_INTD_SOFT_ACK_TIMEOUT_PERIOD (65*10UL)
#define UV_INTD_SOFT_ACK_TIMEOUT_PERIOD (is_uv1_hub() ? \
UV1_INTD_SOFT_ACK_TIMEOUT_PERIOD : \
UV2_INTD_SOFT_ACK_TIMEOUT_PERIOD)
#define BAU_MISC_CONTROL_MULT_MASK 3
#define UVH_AGING_PRESCALE_SEL 0x000000b000UL
@ -76,6 +91,16 @@
#define DESC_STATUS_ACTIVE 1
#define DESC_STATUS_DESTINATION_TIMEOUT 2
#define DESC_STATUS_SOURCE_TIMEOUT 3
/*
* bits put together from HRP_LB_BAU_SB_ACTIVATION_STATUS_0/1/2
* values 1 and 5 will not occur
*/
#define UV2H_DESC_IDLE 0
#define UV2H_DESC_DEST_TIMEOUT 2
#define UV2H_DESC_DEST_STRONG_NACK 3
#define UV2H_DESC_BUSY 4
#define UV2H_DESC_SOURCE_TIMEOUT 6
#define UV2H_DESC_DEST_PUT_ERR 7
/*
* delay for 'plugged' timeout retries, in microseconds
@ -96,6 +121,15 @@
#define UV_LB_SUBNODEID 0x10
/* these two are the same for UV1 and UV2: */
#define UV_SA_SHFT UVH_LB_BAU_MISC_CONTROL_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHFT
#define UV_SA_MASK UVH_LB_BAU_MISC_CONTROL_INTD_SOFT_ACK_TIMEOUT_PERIOD_MASK
/* 4 bits of software ack period */
#define UV2_ACK_MASK 0x7UL
#define UV2_ACK_UNITS_SHFT 3
#define UV2_LEG_SHFT UV2H_LB_BAU_MISC_CONTROL_USE_LEGACY_DESCRIPTOR_FORMATS_SHFT
#define UV2_EXT_SHFT UV2H_LB_BAU_MISC_CONTROL_ENABLE_EXTENDED_SB_STATUS_SHFT
/*
* number of entries in the destination side payload queue
*/

View File

@ -77,8 +77,9 @@
*
* 1111110000000000
* 5432109876543210
* pppppppppplc0cch Nehalem-EX
* ppppppppplcc0cch Westmere-EX
* pppppppppplc0cch Nehalem-EX (12 bits in hdw reg)
* ppppppppplcc0cch Westmere-EX (12 bits in hdw reg)
* pppppppppppcccch SandyBridge (15 bits in hdw reg)
* sssssssssss
*
* p = pnode bits
@ -87,7 +88,7 @@
* h = hyperthread
* s = bits that are in the SOCKET_ID CSR
*
* Note: Processor only supports 12 bits in the APICID register. The ACPI
* Note: Processor may support fewer bits in the APICID register. The ACPI
* tables hold all 16 bits. Software needs to be aware of this.
*
* Unless otherwise specified, all references to APICID refer to
@ -138,6 +139,8 @@ struct uv_hub_info_s {
unsigned long global_mmr_base;
unsigned long gpa_mask;
unsigned int gnode_extra;
unsigned char hub_revision;
unsigned char apic_pnode_shift;
unsigned long gnode_upper;
unsigned long lowmem_remap_top;
unsigned long lowmem_remap_base;
@ -149,13 +152,31 @@ struct uv_hub_info_s {
unsigned char m_val;
unsigned char n_val;
struct uv_scir_s scir;
unsigned char apic_pnode_shift;
};
DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
#define uv_hub_info (&__get_cpu_var(__uv_hub_info))
#define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu))
/*
* Hub revisions less than UV2_HUB_REVISION_BASE are UV1 hubs. All UV2
* hubs have revision numbers greater than or equal to UV2_HUB_REVISION_BASE.
* This is a software convention - NOT the hardware revision numbers in
* the hub chip.
*/
#define UV1_HUB_REVISION_BASE 1
#define UV2_HUB_REVISION_BASE 3
static inline int is_uv1_hub(void)
{
return uv_hub_info->hub_revision < UV2_HUB_REVISION_BASE;
}
static inline int is_uv2_hub(void)
{
return uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE;
}
union uvh_apicid {
unsigned long v;
struct uvh_apicid_s {
@ -180,11 +201,25 @@ union uvh_apicid {
#define UV_PNODE_TO_GNODE(p) ((p) |uv_hub_info->gnode_extra)
#define UV_PNODE_TO_NASID(p) (UV_PNODE_TO_GNODE(p) << 1)
#define UV_LOCAL_MMR_BASE 0xf4000000UL
#define UV_GLOBAL_MMR32_BASE 0xf8000000UL
#define UV1_LOCAL_MMR_BASE 0xf4000000UL
#define UV1_GLOBAL_MMR32_BASE 0xf8000000UL
#define UV1_LOCAL_MMR_SIZE (64UL * 1024 * 1024)
#define UV1_GLOBAL_MMR32_SIZE (64UL * 1024 * 1024)
#define UV2_LOCAL_MMR_BASE 0xfa000000UL
#define UV2_GLOBAL_MMR32_BASE 0xfc000000UL
#define UV2_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
#define UV2_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024)
#define UV_LOCAL_MMR_BASE (is_uv1_hub() ? UV1_LOCAL_MMR_BASE \
: UV2_LOCAL_MMR_BASE)
#define UV_GLOBAL_MMR32_BASE (is_uv1_hub() ? UV1_GLOBAL_MMR32_BASE \
: UV2_GLOBAL_MMR32_BASE)
#define UV_LOCAL_MMR_SIZE (is_uv1_hub() ? UV1_LOCAL_MMR_SIZE : \
UV2_LOCAL_MMR_SIZE)
#define UV_GLOBAL_MMR32_SIZE (is_uv1_hub() ? UV1_GLOBAL_MMR32_SIZE :\
UV2_GLOBAL_MMR32_SIZE)
#define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
#define UV_LOCAL_MMR_SIZE (64UL * 1024 * 1024)
#define UV_GLOBAL_MMR32_SIZE (64UL * 1024 * 1024)
#define UV_GLOBAL_GRU_MMR_BASE 0x4000000
@ -300,6 +335,17 @@ static inline int uv_apicid_to_pnode(int apicid)
return (apicid >> uv_hub_info->apic_pnode_shift);
}
/*
* Convert an apicid to the socket number on the blade
*/
static inline int uv_apicid_to_socket(int apicid)
{
if (is_uv1_hub())
return (apicid >> (uv_hub_info->apic_pnode_shift - 1)) & 1;
else
return 0;
}
/*
* Access global MMRs using the low memory MMR32 space. This region supports
* faster MMR access but not all MMRs are accessible in this space.
@ -519,14 +565,13 @@ static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
/*
* Get the minimum revision number of the hub chips within the partition.
* 1 - initial rev 1.0 silicon
* 2 - rev 2.0 production silicon
* 1 - UV1 rev 1.0 initial silicon
* 2 - UV1 rev 2.0 production silicon
* 3 - UV2 rev 1.0 initial silicon
*/
static inline int uv_get_min_hub_revision_id(void)
{
extern int uv_min_hub_revision_id;
return uv_min_hub_revision_id;
return uv_hub_info->hub_revision;
}
#endif /* CONFIG_X86_64 */

File diff suppressed because it is too large Load Diff

View File

@ -91,6 +91,10 @@ static int __init early_get_pnodeid(void)
m_n_config.v = uv_early_read_mmr(UVH_RH_GAM_CONFIG_MMR);
uv_min_hub_revision_id = node_id.s.revision;
if (node_id.s.part_number == UV2_HUB_PART_NUMBER)
uv_min_hub_revision_id += UV2_HUB_REVISION_BASE - 1;
uv_hub_info->hub_revision = uv_min_hub_revision_id;
pnode = (node_id.s.node_id >> 1) & ((1 << m_n_config.s.n_skt) - 1);
return pnode;
}
@ -112,17 +116,25 @@ static void __init early_get_apic_pnode_shift(void)
*/
static void __init uv_set_apicid_hibit(void)
{
union uvh_lb_target_physical_apic_id_mask_u apicid_mask;
union uv1h_lb_target_physical_apic_id_mask_u apicid_mask;
apicid_mask.v = uv_early_read_mmr(UVH_LB_TARGET_PHYSICAL_APIC_ID_MASK);
uv_apicid_hibits = apicid_mask.s.bit_enables & UV_APICID_HIBIT_MASK;
if (is_uv1_hub()) {
apicid_mask.v =
uv_early_read_mmr(UV1H_LB_TARGET_PHYSICAL_APIC_ID_MASK);
uv_apicid_hibits =
apicid_mask.s1.bit_enables & UV_APICID_HIBIT_MASK;
}
}
static int __init uv_acpi_madt_oem_check(char *oem_id, char *oem_table_id)
{
int pnodeid;
int pnodeid, is_uv1, is_uv2;
if (!strcmp(oem_id, "SGI")) {
is_uv1 = !strcmp(oem_id, "SGI");
is_uv2 = !strcmp(oem_id, "SGI2");
if (is_uv1 || is_uv2) {
uv_hub_info->hub_revision =
is_uv1 ? UV1_HUB_REVISION_BASE : UV2_HUB_REVISION_BASE;
pnodeid = early_get_pnodeid();
early_get_apic_pnode_shift();
x86_platform.is_untracked_pat_range = uv_is_untracked_pat_range;
@ -484,12 +496,19 @@ static __init void map_mmr_high(int max_pnode)
static __init void map_mmioh_high(int max_pnode)
{
union uvh_rh_gam_mmioh_overlay_config_mmr_u mmioh;
int shift = UVH_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR_BASE_SHFT;
int shift;
mmioh.v = uv_read_local_mmr(UVH_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR);
if (mmioh.s.enable)
map_high("MMIOH", mmioh.s.base, shift, mmioh.s.m_io,
if (is_uv1_hub() && mmioh.s1.enable) {
shift = UV1H_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR_BASE_SHFT;
map_high("MMIOH", mmioh.s1.base, shift, mmioh.s1.m_io,
max_pnode, map_uc);
}
if (is_uv2_hub() && mmioh.s2.enable) {
shift = UV2H_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR_BASE_SHFT;
map_high("MMIOH", mmioh.s2.base, shift, mmioh.s2.m_io,
max_pnode, map_uc);
}
}
static __init void map_low_mmrs(void)
@ -736,13 +755,14 @@ void __init uv_system_init(void)
unsigned long mmr_base, present, paddr;
unsigned short pnode_mask, pnode_io_mask;
printk(KERN_INFO "UV: Found %s hub\n", is_uv1_hub() ? "UV1" : "UV2");
map_low_mmrs();
m_n_config.v = uv_read_local_mmr(UVH_RH_GAM_CONFIG_MMR );
m_val = m_n_config.s.m_skt;
n_val = m_n_config.s.n_skt;
mmioh.v = uv_read_local_mmr(UVH_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR);
n_io = mmioh.s.n_io;
n_io = is_uv1_hub() ? mmioh.s1.n_io : mmioh.s2.n_io;
mmr_base =
uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR) &
~UV_MMR_ENABLE;
@ -811,6 +831,8 @@ void __init uv_system_init(void)
*/
uv_cpu_hub_info(cpu)->pnode_mask = pnode_mask;
uv_cpu_hub_info(cpu)->apic_pnode_shift = uvh_apicid.s.pnode_shift;
uv_cpu_hub_info(cpu)->hub_revision = uv_hub_info->hub_revision;
pnode = uv_apicid_to_pnode(apicid);
blade = boot_pnode_to_blade(pnode);
lcpu = uv_blade_info[blade].nr_possible_cpus;

View File

@ -397,16 +397,13 @@ end_uvhub_quiesce(struct bau_control *hmaster)
* Wait for completion of a broadcast software ack message
* return COMPLETE, RETRY(PLUGGED or TIMEOUT) or GIVEUP
*/
static int uv_wait_completion(struct bau_desc *bau_desc,
static int uv1_wait_completion(struct bau_desc *bau_desc,
unsigned long mmr_offset, int right_shift, int this_cpu,
struct bau_control *bcp, struct bau_control *smaster, long try)
{
unsigned long descriptor_status;
cycles_t ttime;
struct ptc_stats *stat = bcp->statp;
struct bau_control *hmaster;
hmaster = bcp->uvhub_master;
/* spin on the status MMR, waiting for it to go idle */
while ((descriptor_status = (((unsigned long)
@ -414,16 +411,16 @@ static int uv_wait_completion(struct bau_desc *bau_desc,
right_shift) & UV_ACT_STATUS_MASK)) !=
DESC_STATUS_IDLE) {
/*
* Our software ack messages may be blocked because there are
* no swack resources available. As long as none of them
* has timed out hardware will NACK our message and its
* state will stay IDLE.
* Our software ack messages may be blocked because
* there are no swack resources available. As long
* as none of them has timed out hardware will NACK
* our message and its state will stay IDLE.
*/
if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
stat->s_stimeout++;
return FLUSH_GIVEUP;
} else if (descriptor_status ==
DESC_STATUS_DESTINATION_TIMEOUT) {
DESC_STATUS_DESTINATION_TIMEOUT) {
stat->s_dtimeout++;
ttime = get_cycles();
@ -452,6 +449,86 @@ static int uv_wait_completion(struct bau_desc *bau_desc,
return FLUSH_COMPLETE;
}
static int uv2_wait_completion(struct bau_desc *bau_desc,
unsigned long mmr_offset, int right_shift, int this_cpu,
struct bau_control *bcp, struct bau_control *smaster, long try)
{
unsigned long descriptor_status;
unsigned long descriptor_status2;
int cpu;
cycles_t ttime;
struct ptc_stats *stat = bcp->statp;
/* UV2 has an extra bit of status */
cpu = bcp->uvhub_cpu;
/* spin on the status MMR, waiting for it to go idle */
descriptor_status = (((unsigned long)(uv_read_local_mmr
(mmr_offset)) >> right_shift) & UV_ACT_STATUS_MASK);
descriptor_status2 = (((unsigned long)uv_read_local_mmr
(UV2H_LB_BAU_SB_ACTIVATION_STATUS_2) >> cpu) & 0x1UL);
descriptor_status = (descriptor_status << 1) |
descriptor_status2;
while (descriptor_status != UV2H_DESC_IDLE) {
/*
* Our software ack messages may be blocked because
* there are no swack resources available. As long
* as none of them has timed out hardware will NACK
* our message and its state will stay IDLE.
*/
if ((descriptor_status == UV2H_DESC_SOURCE_TIMEOUT) ||
(descriptor_status == UV2H_DESC_DEST_STRONG_NACK) ||
(descriptor_status == UV2H_DESC_DEST_PUT_ERR)) {
stat->s_stimeout++;
return FLUSH_GIVEUP;
} else if (descriptor_status == UV2H_DESC_DEST_TIMEOUT) {
stat->s_dtimeout++;
ttime = get_cycles();
/*
* Our retries may be blocked by all destination
* swack resources being consumed, and a timeout
* pending. In that case hardware returns the
* ERROR that looks like a destination timeout.
*/
if (cycles_2_us(ttime - bcp->send_message) <
timeout_us) {
bcp->conseccompletes = 0;
return FLUSH_RETRY_PLUGGED;
}
bcp->conseccompletes = 0;
return FLUSH_RETRY_TIMEOUT;
} else {
/*
* descriptor_status is still BUSY
*/
cpu_relax();
}
descriptor_status = (((unsigned long)(uv_read_local_mmr
(mmr_offset)) >> right_shift) &
UV_ACT_STATUS_MASK);
descriptor_status2 = (((unsigned long)uv_read_local_mmr
(UV2H_LB_BAU_SB_ACTIVATION_STATUS_2) >> cpu) &
0x1UL);
descriptor_status = (descriptor_status << 1) |
descriptor_status2;
}
bcp->conseccompletes++;
return FLUSH_COMPLETE;
}
static int uv_wait_completion(struct bau_desc *bau_desc,
unsigned long mmr_offset, int right_shift, int this_cpu,
struct bau_control *bcp, struct bau_control *smaster, long try)
{
if (is_uv1_hub())
return uv1_wait_completion(bau_desc, mmr_offset, right_shift,
this_cpu, bcp, smaster, try);
else
return uv2_wait_completion(bau_desc, mmr_offset, right_shift,
this_cpu, bcp, smaster, try);
}
static inline cycles_t
sec_2_cycles(unsigned long sec)
{
@ -585,7 +662,8 @@ int uv_flush_send_and_wait(struct bau_desc *bau_desc,
struct bau_control *smaster = bcp->socket_master;
struct bau_control *hmaster = bcp->uvhub_master;
if (!atomic_inc_unless_ge(&hmaster->uvhub_lock,
if (is_uv1_hub() &&
!atomic_inc_unless_ge(&hmaster->uvhub_lock,
&hmaster->active_descriptor_count,
hmaster->max_bau_concurrent)) {
stat->s_throttles++;
@ -899,12 +977,17 @@ static void __init uv_enable_timeouts(void)
uv_write_global_mmr64
(pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
/*
* UV1:
* Subsequent reversals of the timebase bit (3) cause an
* immediate timeout of one or all INTD resources as
* indicated in bits 2:0 (7 causes all of them to timeout).
*/
mmr_image |= ((unsigned long)1 <<
UVH_LB_BAU_MISC_CONTROL_ENABLE_INTD_SOFT_ACK_MODE_SHFT);
if (is_uv2_hub()) {
mmr_image |= ((unsigned long)1 << UV2_LEG_SHFT);
mmr_image |= ((unsigned long)1 << UV2_EXT_SHFT);
}
uv_write_global_mmr64
(pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
}
@ -1486,14 +1569,27 @@ calculate_destination_timeout(void)
int ret;
unsigned long ts_ns;
mult1 = UV_INTD_SOFT_ACK_TIMEOUT_PERIOD & BAU_MISC_CONTROL_MULT_MASK;
mmr_image = uv_read_local_mmr(UVH_AGING_PRESCALE_SEL);
index = (mmr_image >> BAU_URGENCY_7_SHIFT) & BAU_URGENCY_7_MASK;
mmr_image = uv_read_local_mmr(UVH_TRANSACTION_TIMEOUT);
mult2 = (mmr_image >> BAU_TRANS_SHIFT) & BAU_TRANS_MASK;
base = timeout_base_ns[index];
ts_ns = base * mult1 * mult2;
ret = ts_ns / 1000;
if (is_uv1_hub()) {
mult1 = UV1_INTD_SOFT_ACK_TIMEOUT_PERIOD &
BAU_MISC_CONTROL_MULT_MASK;
mmr_image = uv_read_local_mmr(UVH_AGING_PRESCALE_SEL);
index = (mmr_image >> BAU_URGENCY_7_SHIFT) & BAU_URGENCY_7_MASK;
mmr_image = uv_read_local_mmr(UVH_TRANSACTION_TIMEOUT);
mult2 = (mmr_image >> BAU_TRANS_SHIFT) & BAU_TRANS_MASK;
base = timeout_base_ns[index];
ts_ns = base * mult1 * mult2;
ret = ts_ns / 1000;
} else {
/* 4 bits 0/1 for 10/80us, 3 bits of multiplier */
mmr_image = uv_read_local_mmr(UVH_AGING_PRESCALE_SEL);
mmr_image = (mmr_image & UV_SA_MASK) >> UV_SA_SHFT;
if (mmr_image & ((unsigned long)1 << UV2_ACK_UNITS_SHFT))
mult1 = 80;
else
mult1 = 10;
base = mmr_image & UV2_ACK_MASK;
ret = mult1 * base;
}
return ret;
}

View File

@ -99,8 +99,12 @@ static void uv_rtc_send_IPI(int cpu)
/* Check for an RTC interrupt pending */
static int uv_intr_pending(int pnode)
{
return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED0) &
UVH_EVENT_OCCURRED0_RTC1_MASK;
if (is_uv1_hub())
return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED0) &
UV1H_EVENT_OCCURRED0_RTC1_MASK;
else
return uv_read_global_mmr64(pnode, UV2H_EVENT_OCCURRED2) &
UV2H_EVENT_OCCURRED2_RTC_1_MASK;
}
/* Setup interrupt and return non-zero if early expiration occurred. */
@ -114,8 +118,12 @@ static int uv_setup_intr(int cpu, u64 expires)
UVH_RTC1_INT_CONFIG_M_MASK);
uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L);
uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED0_ALIAS,
UVH_EVENT_OCCURRED0_RTC1_MASK);
if (is_uv1_hub())
uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED0_ALIAS,
UV1H_EVENT_OCCURRED0_RTC1_MASK);
else
uv_write_global_mmr64(pnode, UV2H_EVENT_OCCURRED2_ALIAS,
UV2H_EVENT_OCCURRED2_RTC_1_MASK);
val = (X86_PLATFORM_IPI_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) |
((u64)apicid << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT);