1
0
Fork 0

MLK-14610 DMA: fsl-edma-v3: add fsl-edma-v3 support

Add edma-v3 driver on i.mx8qm.

Signed-off-by: Robin Gong <yibin.gong@nxp.com>
(cherry picked from commit d0ac0971c2e637ebddc853f12f71d130f5df4f91)
5.4-rM2-2.2.x-imx-squashed
Robin Gong 2017-03-31 15:53:39 +08:00 committed by Dong Aisheng
parent 219d54332a
commit 2f9e74892d
4 changed files with 966 additions and 0 deletions

View File

@ -0,0 +1,64 @@
* Freescale enhanced Direct Memory Access(eDMA-v3) Controller
The eDMA-v3 controller is inherited from FSL eDMA, and firstly is intergrated
on Freescale i.MX8QM SOC chip. The eDMA channels have multiplex capability by
programmble memory-mapped registers. Specific DMA request source has fixed channel.
* eDMA Controller
Required properties:
- compatible :
- "fsl,imx8qm-edma" for eDMA used similar to that on i.MX8QM SoC
- "fsl,imx8qm-adma" for audio eDMA used on i.MX8QM
- reg : Specifies base physical address(s) and size of the eDMA channel registers.
Each eDMA channel has separated register's address and size.
- interrupts : A list of interrupt-specifiers, each channel has one interrupt.
- interrupt-names : Should contain:
"edma-chan12-tx" - the channel12 transmission interrupt
- #dma-cells : Must be <3>.
The 1st cell specifies the channel ID.
The 2nd cell specifies the channel priority.
The 3rd cell specifies the channel type like for transmit or receive:
0: transmit, 1: receive.
See the SoC's reference manual for all the supported request sources.
- dma-channels : Number of channels supported by the controller
Examples:
edma0: dma-controller@40018000 {
compatible = "fsl,imx8qm-edma";
reg = <0x0 0x5a2c0000 0x0 0x10000>, /* channel12 UART0 rx */
<0x0 0x5a2d0000 0x0 0x10000>, /* channel13 UART0 tx */
<0x0 0x5a2e0000 0x0 0x10000>, /* channel14 UART1 rx */
<0x0 0x5a2f0000 0x0 0x10000>; /* channel15 UART1 tx */
#dma-cells = <3>;
dma-channels = <4>;
interrupts = <GIC_SPI 434 IRQ_TYPE_LEVEL_HIGH>,
<GIC_SPI 435 IRQ_TYPE_LEVEL_HIGH>,
<GIC_SPI 436 IRQ_TYPE_LEVEL_HIGH>,
<GIC_SPI 437 IRQ_TYPE_LEVEL_HIGH>;
interrupt-names = "edma-chan12-tx", "edma-chan13-tx",
"edma-chan14-tx", "edma-chan15-tx";
status = "okay";
};
* DMA clients
DMA client drivers that uses the DMA function must use the format described
in the dma.txt file, using a three-cell specifier for each channel: the 1st
specifies the channel number, the 2nd specifies the priority, and the 3rd
specifies the channel type is for transmit or receive: 0: transmit, 1: receive.
Examples:
lpuart1: serial@5a070000 {
compatible = "fsl,imx8qm-lpuart";
reg = <0x0 0x5a070000 0x0 0x1000>;
interrupts = <GIC_SPI 226 IRQ_TYPE_LEVEL_HIGH>;
interrupt-parent = <&gic>;
clocks = <&clk IMX8QM_UART1_CLK>;
clock-names = "ipg";
assigned-clock-names = <&clk IMX8QM_UART1_CLK>;
assigned-clock-rates = <80000000>;
power-domains = <&pd_dma_lpuart1>;
dma-names = "tx","rx";
dmas = <&edma0 15 0 0>,
<&edma0 14 0 1>;
status = "disabled";
};

View File

@ -227,6 +227,17 @@ config FSL_QDMA
or dequeuing DMA jobs from, different work queues.
This module can be found on NXP Layerscape SoCs.
The qdma driver only work on SoCs with a DPAA hardware block.
config FSL_EDMA_V3
tristate "Freescale eDMA v3 engine support"
depends on OF
select DMA_ENGINE
select DMA_VIRTUAL_CHANNELS
help
Support the Freescale eDMA v3 engine with programmable channel.
This driver is based on FSL_EDMA but big changes come such as
different interrupt for different channel, different register
scope for different channel.
This module can be found on Freescale i.MX8QM.
config FSL_RAID
tristate "Freescale RAID engine Support"

View File

@ -32,6 +32,7 @@ obj-$(CONFIG_DW_EDMA) += dw-edma/
obj-$(CONFIG_EP93XX_DMA) += ep93xx_dma.o
obj-$(CONFIG_FSL_DMA) += fsldma.o
obj-$(CONFIG_FSL_EDMA) += fsl-edma.o fsl-edma-common.o
obj-$(CONFIG_FSL_EDMA_V3) += fsl-edma-v3.o
obj-$(CONFIG_MCF_EDMA) += mcf-edma.o fsl-edma-common.o
obj-$(CONFIG_FSL_QDMA) += fsl-qdma.o
obj-$(CONFIG_FSL_RAID) += fsl_raid.o

View File

@ -0,0 +1,890 @@
/*
* drivers/dma/fsl-edma3-v3.c
*
* Copyright 2017 NXP .
*
* Driver for the Freescale eDMA engine v3. This driver based on fsl-edma3.c
* but changed to meet the IP change on i.MX8QM: every dma channel is specific
* to hardware. For example, channel 14 for LPUART1 receive request and channel
* 13 for transmit requesst. The eDMA block can be found on i.MX8QM
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_dma.h>
#include "virt-dma.h"
#define EDMA_CH_CSR 0x00
#define EDMA_CH_ES 0x04
#define EDMA_CH_INT 0x08
#define EDMA_CH_SBR 0x0C
#define EDMA_CH_PRI 0x10
#define EDMA_TCD_SADDR 0x20
#define EDMA_TCD_SOFF 0x24
#define EDMA_TCD_ATTR 0x26
#define EDMA_TCD_NBYTES 0x28
#define EDMA_TCD_SLAST 0x2C
#define EDMA_TCD_DADDR 0x30
#define EDMA_TCD_DOFF 0x34
#define EDMA_TCD_CITER_ELINK 0x36
#define EDMA_TCD_CITER 0x36
#define EDMA_TCD_DLAST_SGA 0x38
#define EDMA_TCD_CSR 0x3C
#define EDMA_TCD_BITER_ELINK 0x3E
#define EDMA_TCD_BITER 0x3E
#define EDMA_CH_SBR_RD BIT(22)
#define EDMA_CH_SBR_WR BIT(21)
#define EDMA_CH_CSR_ERQ BIT(0)
#define EDMA_CH_CSR_EARQ BIT(1)
#define EDMA_CH_CSR_EEI BIT(2)
#define EDMA_CH_CSR_DONE BIT(30)
#define EDMA_CH_CSR_ACTIVE BIT(31)
#define EDMA_TCD_ATTR_DSIZE(x) (((x) & 0x0007))
#define EDMA_TCD_ATTR_DMOD(x) (((x) & 0x001F) << 3)
#define EDMA_TCD_ATTR_SSIZE(x) (((x) & 0x0007) << 8)
#define EDMA_TCD_ATTR_SMOD(x) (((x) & 0x001F) << 11)
#define EDMA_TCD_ATTR_SSIZE_8BIT (0x0000)
#define EDMA_TCD_ATTR_SSIZE_16BIT (0x0100)
#define EDMA_TCD_ATTR_SSIZE_32BIT (0x0200)
#define EDMA_TCD_ATTR_SSIZE_64BIT (0x0300)
#define EDMA_TCD_ATTR_SSIZE_16BYTE (0x0400)
#define EDMA_TCD_ATTR_SSIZE_32BYTE (0x0500)
#define EDMA_TCD_ATTR_SSIZE_64BYTE (0x0600)
#define EDMA_TCD_ATTR_DSIZE_8BIT (0x0000)
#define EDMA_TCD_ATTR_DSIZE_16BIT (0x0001)
#define EDMA_TCD_ATTR_DSIZE_32BIT (0x0002)
#define EDMA_TCD_ATTR_DSIZE_64BIT (0x0003)
#define EDMA_TCD_ATTR_DSIZE_16BYTE (0x0004)
#define EDMA_TCD_ATTR_DSIZE_32BYTE (0x0005)
#define EDMA_TCD_ATTR_DSIZE_64BYTE (0x0006)
#define EDMA_TCD_SOFF_SOFF(x) (x)
#define EDMA_TCD_NBYTES_NBYTES(x) (x)
#define EDMA_TCD_SLAST_SLAST(x) (x)
#define EDMA_TCD_DADDR_DADDR(x) (x)
#define EDMA_TCD_CITER_CITER(x) ((x) & 0x7FFF)
#define EDMA_TCD_DOFF_DOFF(x) (x)
#define EDMA_TCD_DLAST_SGA_DLAST_SGA(x) (x)
#define EDMA_TCD_BITER_BITER(x) ((x) & 0x7FFF)
#define EDMA_TCD_CSR_START BIT(0)
#define EDMA_TCD_CSR_INT_MAJOR BIT(1)
#define EDMA_TCD_CSR_INT_HALF BIT(2)
#define EDMA_TCD_CSR_D_REQ BIT(3)
#define EDMA_TCD_CSR_E_SG BIT(4)
#define EDMA_TCD_CSR_E_LINK BIT(5)
#define EDMA_TCD_CSR_ACTIVE BIT(6)
#define EDMA_TCD_CSR_DONE BIT(7)
#define FSL_EDMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
BIT(DMA_SLAVE_BUSWIDTH_8_BYTES) | \
BIT(DMA_SLAVE_BUSWIDTH_16_BYTES))
struct fsl_edma3_hw_tcd {
__le32 saddr;
__le16 soff;
__le16 attr;
__le32 nbytes;
__le32 slast;
__le32 daddr;
__le16 doff;
__le16 citer;
__le32 dlast_sga;
__le16 csr;
__le16 biter;
};
struct fsl_edma3_sw_tcd {
dma_addr_t ptcd;
struct fsl_edma3_hw_tcd *vtcd;
};
struct fsl_edma3_slave_config {
enum dma_transfer_direction dir;
enum dma_slave_buswidth addr_width;
u32 dev_addr;
u32 dev2_addr; /* source addr for dev2dev */
u32 burst;
u32 attr;
};
struct fsl_edma3_chan {
struct virt_dma_chan vchan;
enum dma_status status;
struct fsl_edma3_engine *edma3;
struct fsl_edma3_desc *edesc;
struct fsl_edma3_slave_config fsc;
void __iomem *membase;
int txirq;
int hw_chanid;
int priority;
int is_rxchan;
struct dma_pool *tcd_pool;
u32 chn_real_count;
char txirq_name[32];
};
struct fsl_edma3_desc {
struct virt_dma_desc vdesc;
struct fsl_edma3_chan *echan;
bool iscyclic;
unsigned int n_tcds;
struct fsl_edma3_sw_tcd tcd[];
};
struct fsl_edma3_engine {
struct dma_device dma_dev;
struct mutex fsl_edma3_mutex;
u32 n_chans;
int errirq;
bool swap; /* remote/local swapped on Audio edma */
struct fsl_edma3_chan chans[];
};
static struct fsl_edma3_chan *to_fsl_edma3_chan(struct dma_chan *chan)
{
return container_of(chan, struct fsl_edma3_chan, vchan.chan);
}
static struct fsl_edma3_desc *to_fsl_edma3_desc(struct virt_dma_desc *vd)
{
return container_of(vd, struct fsl_edma3_desc, vdesc);
}
static void fsl_edma3_enable_request(struct fsl_edma3_chan *fsl_chan)
{
void __iomem *addr = fsl_chan->membase;
u32 val;
val = readl(addr + EDMA_CH_SBR);
/* Remote/local swapped wrongly on iMX8 QM Audio edma */
if (fsl_chan->edma3->swap) {
if (!fsl_chan->is_rxchan)
val |= EDMA_CH_SBR_RD;
else
val |= EDMA_CH_SBR_WR;
} else {
if (fsl_chan->is_rxchan)
val |= EDMA_CH_SBR_RD;
else
val |= EDMA_CH_SBR_WR;
}
writel(val, addr + EDMA_CH_SBR);
val = readl(addr + EDMA_CH_CSR);
val |= EDMA_CH_CSR_ERQ;
writel(val, addr + EDMA_CH_CSR);
}
static void fsl_edma3_disable_request(struct fsl_edma3_chan *fsl_chan)
{
void __iomem *addr = fsl_chan->membase;
u32 val = readl(addr + EDMA_CH_CSR);
val &= ~EDMA_CH_CSR_ERQ;
writel(val, addr + EDMA_CH_CSR);
}
static unsigned int fsl_edma3_get_tcd_attr(enum dma_slave_buswidth addr_width)
{
switch (addr_width) {
case 1:
return EDMA_TCD_ATTR_SSIZE_8BIT | EDMA_TCD_ATTR_DSIZE_8BIT;
case 2:
return EDMA_TCD_ATTR_SSIZE_16BIT | EDMA_TCD_ATTR_DSIZE_16BIT;
case 4:
return EDMA_TCD_ATTR_SSIZE_32BIT | EDMA_TCD_ATTR_DSIZE_32BIT;
case 8:
return EDMA_TCD_ATTR_SSIZE_64BIT | EDMA_TCD_ATTR_DSIZE_64BIT;
case 16:
return EDMA_TCD_ATTR_SSIZE_16BYTE | EDMA_TCD_ATTR_DSIZE_16BYTE;
case 32:
return EDMA_TCD_ATTR_SSIZE_32BYTE | EDMA_TCD_ATTR_DSIZE_32BYTE;
case 64:
return EDMA_TCD_ATTR_SSIZE_64BYTE | EDMA_TCD_ATTR_DSIZE_64BYTE;
default:
return EDMA_TCD_ATTR_SSIZE_32BIT | EDMA_TCD_ATTR_DSIZE_32BIT;
}
}
static void fsl_edma3_free_desc(struct virt_dma_desc *vdesc)
{
struct fsl_edma3_desc *fsl_desc;
int i;
fsl_desc = to_fsl_edma3_desc(vdesc);
for (i = 0; i < fsl_desc->n_tcds; i++)
dma_pool_free(fsl_desc->echan->tcd_pool, fsl_desc->tcd[i].vtcd,
fsl_desc->tcd[i].ptcd);
kfree(fsl_desc);
}
static int fsl_edma3_terminate_all(struct dma_chan *chan)
{
struct fsl_edma3_chan *fsl_chan = to_fsl_edma3_chan(chan);
unsigned long flags;
LIST_HEAD(head);
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
fsl_edma3_disable_request(fsl_chan);
fsl_chan->edesc = NULL;
vchan_get_all_descriptors(&fsl_chan->vchan, &head);
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
vchan_dma_desc_free_list(&fsl_chan->vchan, &head);
return 0;
}
static int fsl_edma3_pause(struct dma_chan *chan)
{
struct fsl_edma3_chan *fsl_chan = to_fsl_edma3_chan(chan);
unsigned long flags;
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
if (fsl_chan->edesc) {
fsl_edma3_disable_request(fsl_chan);
fsl_chan->status = DMA_PAUSED;
}
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
return 0;
}
static int fsl_edma3_resume(struct dma_chan *chan)
{
struct fsl_edma3_chan *fsl_chan = to_fsl_edma3_chan(chan);
unsigned long flags;
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
if (fsl_chan->edesc) {
fsl_edma3_enable_request(fsl_chan);
fsl_chan->status = DMA_IN_PROGRESS;
}
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
return 0;
}
static int fsl_edma3_slave_config(struct dma_chan *chan,
struct dma_slave_config *cfg)
{
struct fsl_edma3_chan *fsl_chan = to_fsl_edma3_chan(chan);
fsl_chan->fsc.dir = cfg->direction;
if (cfg->direction == DMA_DEV_TO_MEM) {
fsl_chan->fsc.dev_addr = cfg->src_addr;
fsl_chan->fsc.addr_width = cfg->src_addr_width;
fsl_chan->fsc.burst = cfg->src_maxburst;
fsl_chan->fsc.attr = fsl_edma3_get_tcd_attr
(cfg->src_addr_width);
} else if (cfg->direction == DMA_MEM_TO_DEV) {
fsl_chan->fsc.dev_addr = cfg->dst_addr;
fsl_chan->fsc.addr_width = cfg->dst_addr_width;
fsl_chan->fsc.burst = cfg->dst_maxburst;
fsl_chan->fsc.attr = fsl_edma3_get_tcd_attr
(cfg->dst_addr_width);
} else if (cfg->direction == DMA_DEV_TO_DEV) {
fsl_chan->fsc.dev2_addr = cfg->src_addr;
fsl_chan->fsc.dev_addr = cfg->dst_addr;
fsl_chan->fsc.addr_width = cfg->dst_addr_width;
fsl_chan->fsc.burst = cfg->dst_maxburst;
fsl_chan->fsc.attr = fsl_edma3_get_tcd_attr
(cfg->dst_addr_width);
} else {
return -EINVAL;
}
return 0;
}
static size_t fsl_edma3_desc_residue(struct fsl_edma3_chan *fsl_chan,
struct virt_dma_desc *vdesc, bool in_progress)
{
struct fsl_edma3_desc *edesc = fsl_chan->edesc;
void __iomem *addr = fsl_chan->membase;
enum dma_transfer_direction dir = fsl_chan->fsc.dir;
dma_addr_t cur_addr, dma_addr;
size_t len, size;
int i;
/* calculate the total size in this desc */
for (len = i = 0; i < fsl_chan->edesc->n_tcds; i++)
len += le32_to_cpu(edesc->tcd[i].vtcd->nbytes)
* le16_to_cpu(edesc->tcd[i].vtcd->biter);
if (!in_progress)
return len;
if (dir == DMA_MEM_TO_DEV)
cur_addr = readl(addr + EDMA_TCD_SADDR);
else
cur_addr = readl(addr + EDMA_TCD_DADDR);
/* figure out the finished and calculate the residue */
for (i = 0; i < fsl_chan->edesc->n_tcds; i++) {
size = le32_to_cpu(edesc->tcd[i].vtcd->nbytes)
* le16_to_cpu(edesc->tcd[i].vtcd->biter);
if (dir == DMA_MEM_TO_DEV)
dma_addr = le32_to_cpu(edesc->tcd[i].vtcd->saddr);
else
dma_addr = le32_to_cpu(edesc->tcd[i].vtcd->daddr);
len -= size;
if (cur_addr >= dma_addr && cur_addr < dma_addr + size) {
len += dma_addr + size - cur_addr;
break;
}
}
return len;
}
static enum dma_status fsl_edma3_tx_status(struct dma_chan *chan,
dma_cookie_t cookie, struct dma_tx_state *txstate)
{
struct fsl_edma3_chan *fsl_chan = to_fsl_edma3_chan(chan);
struct virt_dma_desc *vdesc;
enum dma_status status;
unsigned long flags;
status = dma_cookie_status(chan, cookie, txstate);
if (status == DMA_COMPLETE) {
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
txstate->residue = fsl_chan->chn_real_count;
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
return status;
}
if (!txstate)
return fsl_chan->status;
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
vdesc = vchan_find_desc(&fsl_chan->vchan, cookie);
if (fsl_chan->edesc && cookie == fsl_chan->edesc->vdesc.tx.cookie)
txstate->residue = fsl_edma3_desc_residue(fsl_chan, vdesc,
true);
else if (vdesc)
txstate->residue = fsl_edma3_desc_residue(fsl_chan, vdesc,
false);
else
txstate->residue = 0;
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
return fsl_chan->status;
}
static void fsl_edma3_set_tcd_regs(struct fsl_edma3_chan *fsl_chan,
struct fsl_edma3_hw_tcd *tcd)
{
void __iomem *addr = fsl_chan->membase;
/*
* TCD parameters are stored in struct fsl_edma3_hw_tcd in little
* endian format. However, we need to load the TCD registers in
* big- or little-endian obeying the eDMA engine model endian.
*/
writew(0, addr + EDMA_TCD_CSR);
writel(le32_to_cpu(tcd->saddr), addr + EDMA_TCD_SADDR);
writel(le32_to_cpu(tcd->daddr), addr + EDMA_TCD_DADDR);
writew(le16_to_cpu(tcd->attr), addr + EDMA_TCD_ATTR);
writew(le16_to_cpu(tcd->soff), addr + EDMA_TCD_SOFF);
writel(le32_to_cpu(tcd->nbytes), addr + EDMA_TCD_NBYTES);
writel(le32_to_cpu(tcd->slast), addr + EDMA_TCD_SLAST);
writew(le16_to_cpu(tcd->citer), addr + EDMA_TCD_CITER);
writew(le16_to_cpu(tcd->biter), addr + EDMA_TCD_BITER);
writew(le16_to_cpu(tcd->doff), addr + EDMA_TCD_DOFF);
writel(le32_to_cpu(tcd->dlast_sga), addr + EDMA_TCD_DLAST_SGA);
writew(le16_to_cpu(tcd->csr), addr + EDMA_TCD_CSR);
}
static inline
void fsl_edma3_fill_tcd(struct fsl_edma3_chan *fsl_chan,
struct fsl_edma3_hw_tcd *tcd, u32 src, u32 dst,
u16 attr, u16 soff, u32 nbytes, u32 slast, u16 citer,
u16 biter, u16 doff, u32 dlast_sga, bool major_int,
bool disable_req, bool enable_sg)
{
u16 csr = 0;
/*
* eDMA hardware SGs require the TCDs to be stored in little
* endian format irrespective of the register endian model.
* So we put the value in little endian in memory, waiting
* for fsl_edma3_set_tcd_regs doing the swap.
*/
tcd->saddr = cpu_to_le32(src);
tcd->daddr = cpu_to_le32(dst);
tcd->attr = cpu_to_le16(attr);
tcd->soff = cpu_to_le16(EDMA_TCD_SOFF_SOFF(soff));
tcd->nbytes = cpu_to_le32(EDMA_TCD_NBYTES_NBYTES(nbytes));
tcd->slast = cpu_to_le32(EDMA_TCD_SLAST_SLAST(slast));
tcd->citer = cpu_to_le16(EDMA_TCD_CITER_CITER(citer));
tcd->doff = cpu_to_le16(EDMA_TCD_DOFF_DOFF(doff));
tcd->dlast_sga = cpu_to_le32(EDMA_TCD_DLAST_SGA_DLAST_SGA(dlast_sga));
tcd->biter = cpu_to_le16(EDMA_TCD_BITER_BITER(biter));
if (major_int)
csr |= EDMA_TCD_CSR_INT_MAJOR;
if (disable_req)
csr |= EDMA_TCD_CSR_D_REQ;
if (enable_sg)
csr |= EDMA_TCD_CSR_E_SG;
if (fsl_chan->is_rxchan)
csr |= EDMA_TCD_CSR_ACTIVE;
tcd->csr = cpu_to_le16(csr);
}
static struct fsl_edma3_desc *fsl_edma3_alloc_desc(struct fsl_edma3_chan
*fsl_chan, int sg_len)
{
struct fsl_edma3_desc *fsl_desc;
int i;
fsl_desc = kzalloc(sizeof(*fsl_desc) + sizeof(struct fsl_edma3_sw_tcd)
* sg_len, GFP_ATOMIC);
if (!fsl_desc)
return NULL;
fsl_desc->echan = fsl_chan;
fsl_desc->n_tcds = sg_len;
for (i = 0; i < sg_len; i++) {
fsl_desc->tcd[i].vtcd = dma_pool_alloc(fsl_chan->tcd_pool,
GFP_ATOMIC, &fsl_desc->tcd[i].ptcd);
if (!fsl_desc->tcd[i].vtcd)
goto err;
}
return fsl_desc;
err:
while (--i >= 0)
dma_pool_free(fsl_chan->tcd_pool, fsl_desc->tcd[i].vtcd,
fsl_desc->tcd[i].ptcd);
kfree(fsl_desc);
return NULL;
}
static struct dma_async_tx_descriptor *fsl_edma3_prep_dma_cyclic(
struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
size_t period_len, enum dma_transfer_direction direction,
unsigned long flags)
{
struct fsl_edma3_chan *fsl_chan = to_fsl_edma3_chan(chan);
struct fsl_edma3_desc *fsl_desc;
dma_addr_t dma_buf_next;
int sg_len, i;
u32 src_addr, dst_addr, last_sg, nbytes;
u16 soff, doff, iter;
sg_len = buf_len / period_len;
fsl_desc = fsl_edma3_alloc_desc(fsl_chan, sg_len);
if (!fsl_desc)
return NULL;
fsl_desc->iscyclic = true;
dma_buf_next = dma_addr;
nbytes = fsl_chan->fsc.addr_width * fsl_chan->fsc.burst;
iter = period_len / nbytes;
for (i = 0; i < sg_len; i++) {
if (dma_buf_next >= dma_addr + buf_len)
dma_buf_next = dma_addr;
/* get next sg's physical address */
last_sg = fsl_desc->tcd[(i + 1) % sg_len].ptcd;
if (fsl_chan->fsc.dir == DMA_MEM_TO_DEV) {
src_addr = dma_buf_next;
dst_addr = fsl_chan->fsc.dev_addr;
soff = fsl_chan->fsc.addr_width;
doff = 0;
} else if (fsl_chan->fsc.dir == DMA_DEV_TO_MEM) {
src_addr = fsl_chan->fsc.dev_addr;
dst_addr = dma_buf_next;
soff = 0;
doff = fsl_chan->fsc.addr_width;
} else {
/* DMA_DEV_TO_DEV */
src_addr = fsl_chan->fsc.dev2_addr;
dst_addr = fsl_chan->fsc.dev_addr;
soff = 0;
doff = 0;
}
fsl_edma3_fill_tcd(fsl_chan, fsl_desc->tcd[i].vtcd, src_addr,
dst_addr, fsl_chan->fsc.attr, soff, nbytes, 0,
iter, iter, doff, last_sg, true, false, true);
dma_buf_next += period_len;
}
return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags);
}
static struct dma_async_tx_descriptor *fsl_edma3_prep_slave_sg(
struct dma_chan *chan, struct scatterlist *sgl,
unsigned int sg_len, enum dma_transfer_direction direction,
unsigned long flags, void *context)
{
struct fsl_edma3_chan *fsl_chan = to_fsl_edma3_chan(chan);
struct fsl_edma3_desc *fsl_desc;
struct scatterlist *sg;
u32 src_addr, dst_addr, last_sg, nbytes;
u16 soff, doff, iter;
int i;
if (!is_slave_direction(fsl_chan->fsc.dir))
return NULL;
fsl_desc = fsl_edma3_alloc_desc(fsl_chan, sg_len);
if (!fsl_desc)
return NULL;
fsl_desc->iscyclic = false;
nbytes = fsl_chan->fsc.addr_width * fsl_chan->fsc.burst;
for_each_sg(sgl, sg, sg_len, i) {
/* get next sg's physical address */
last_sg = fsl_desc->tcd[(i + 1) % sg_len].ptcd;
if (fsl_chan->fsc.dir == DMA_MEM_TO_DEV) {
src_addr = sg_dma_address(sg);
dst_addr = fsl_chan->fsc.dev_addr;
soff = fsl_chan->fsc.addr_width;
doff = 0;
} else if (fsl_chan->fsc.dir == DMA_DEV_TO_MEM) {
src_addr = fsl_chan->fsc.dev_addr;
dst_addr = sg_dma_address(sg);
soff = 0;
doff = fsl_chan->fsc.addr_width;
} else {
/* DMA_DEV_TO_DEV */
src_addr = fsl_chan->fsc.dev2_addr;
dst_addr = fsl_chan->fsc.dev_addr;
soff = 0;
doff = 0;
}
iter = sg_dma_len(sg) / nbytes;
if (i < sg_len - 1) {
last_sg = fsl_desc->tcd[(i + 1)].ptcd;
fsl_edma3_fill_tcd(fsl_chan, fsl_desc->tcd[i].vtcd,
src_addr, dst_addr, fsl_chan->fsc.attr,
soff, nbytes, 0, iter, iter, doff,
last_sg, false, false, true);
} else {
last_sg = 0;
fsl_edma3_fill_tcd(fsl_chan, fsl_desc->tcd[i].vtcd,
src_addr, dst_addr, fsl_chan->fsc.attr,
soff, nbytes, 0, iter, iter, doff,
last_sg, true, true, false);
}
}
return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags);
}
static void fsl_edma3_xfer_desc(struct fsl_edma3_chan *fsl_chan)
{
struct virt_dma_desc *vdesc;
vdesc = vchan_next_desc(&fsl_chan->vchan);
if (!vdesc)
return;
fsl_chan->edesc = to_fsl_edma3_desc(vdesc);
fsl_edma3_set_tcd_regs(fsl_chan, fsl_chan->edesc->tcd[0].vtcd);
fsl_edma3_enable_request(fsl_chan);
fsl_chan->status = DMA_IN_PROGRESS;
}
static size_t fsl_edma3_desc_residue(struct fsl_edma3_chan *fsl_chan,
struct virt_dma_desc *vdesc, bool in_progress);
static void fsl_edma3_get_realcnt(struct fsl_edma3_chan *fsl_chan)
{
fsl_chan->chn_real_count = fsl_edma3_desc_residue(fsl_chan, NULL, true);
}
static irqreturn_t fsl_edma3_tx_handler(int irq, void *dev_id)
{
struct fsl_edma3_chan *fsl_chan = dev_id;
unsigned int intr;
void __iomem *base_addr;
base_addr = fsl_chan->membase;
intr = readl(base_addr + EDMA_CH_INT);
if (!intr)
return IRQ_NONE;
writel(1, base_addr + EDMA_CH_INT);
spin_lock(&fsl_chan->vchan.lock);
if (!fsl_chan->edesc->iscyclic) {
fsl_edma3_get_realcnt(fsl_chan);
list_del(&fsl_chan->edesc->vdesc.node);
vchan_cookie_complete(&fsl_chan->edesc->vdesc);
fsl_chan->edesc = NULL;
fsl_chan->status = DMA_COMPLETE;
} else {
vchan_cyclic_callback(&fsl_chan->edesc->vdesc);
}
if (!fsl_chan->edesc)
fsl_edma3_xfer_desc(fsl_chan);
spin_unlock(&fsl_chan->vchan.lock);
return IRQ_HANDLED;
}
static void fsl_edma3_issue_pending(struct dma_chan *chan)
{
struct fsl_edma3_chan *fsl_chan = to_fsl_edma3_chan(chan);
unsigned long flags;
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
if (vchan_issue_pending(&fsl_chan->vchan) && !fsl_chan->edesc)
fsl_edma3_xfer_desc(fsl_chan);
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
}
static struct dma_chan *fsl_edma3_xlate(struct of_phandle_args *dma_spec,
struct of_dma *ofdma)
{
struct fsl_edma3_engine *fsl_edma3 = ofdma->of_dma_data;
struct dma_chan *chan, *_chan;
struct fsl_edma3_chan *fsl_chan;
if (dma_spec->args_count != 3)
return NULL;
mutex_lock(&fsl_edma3->fsl_edma3_mutex);
list_for_each_entry_safe(chan, _chan, &fsl_edma3->dma_dev.channels,
device_node) {
if (chan->client_count)
continue;
fsl_chan = to_fsl_edma3_chan(chan);
if (fsl_chan->hw_chanid == dma_spec->args[0]) {
chan = dma_get_slave_channel(chan);
chan->device->privatecnt++;
fsl_chan->priority = dma_spec->args[1];
fsl_chan->is_rxchan = dma_spec->args[2];
mutex_unlock(&fsl_edma3->fsl_edma3_mutex);
return chan;
}
}
mutex_unlock(&fsl_edma3->fsl_edma3_mutex);
return NULL;
}
static int fsl_edma3_alloc_chan_resources(struct dma_chan *chan)
{
struct fsl_edma3_chan *fsl_chan = to_fsl_edma3_chan(chan);
fsl_chan->tcd_pool = dma_pool_create("tcd_pool", chan->device->dev,
sizeof(struct fsl_edma3_hw_tcd),
32, 0);
return 0;
}
static void fsl_edma3_free_chan_resources(struct dma_chan *chan)
{
struct fsl_edma3_chan *fsl_chan = to_fsl_edma3_chan(chan);
unsigned long flags;
LIST_HEAD(head);
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
fsl_edma3_disable_request(fsl_chan);
fsl_chan->edesc = NULL;
vchan_get_all_descriptors(&fsl_chan->vchan, &head);
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
vchan_dma_desc_free_list(&fsl_chan->vchan, &head);
dma_pool_destroy(fsl_chan->tcd_pool);
fsl_chan->tcd_pool = NULL;
}
static int fsl_edma3_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct fsl_edma3_engine *fsl_edma3;
struct fsl_edma3_chan *fsl_chan;
struct resource *res;
int len, chans;
int ret, i;
unsigned long irqflag = 0;
ret = of_property_read_u32(np, "dma-channels", &chans);
if (ret) {
dev_err(&pdev->dev, "Can't get dma-channels.\n");
return ret;
}
len = sizeof(*fsl_edma3) + sizeof(*fsl_chan) * chans;
fsl_edma3 = devm_kzalloc(&pdev->dev, len, GFP_KERNEL);
if (!fsl_edma3)
return -ENOMEM;
/* Audio edma rx/tx channel shared interrupt */
if (of_property_read_bool(np, "shared-interrupt"))
irqflag = IRQF_SHARED;
fsl_edma3->swap = of_device_is_compatible(np, "fsl,imx8qm-adma");
fsl_edma3->n_chans = chans;
INIT_LIST_HEAD(&fsl_edma3->dma_dev.channels);
for (i = 0; i < fsl_edma3->n_chans; i++) {
struct fsl_edma3_chan *fsl_chan = &fsl_edma3->chans[i];
char *txirq_name = fsl_chan->txirq_name;
fsl_chan->edma3 = fsl_edma3;
/* Get per channel membase */
res = platform_get_resource(pdev, IORESOURCE_MEM, i);
fsl_chan->membase = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(fsl_chan->membase))
return PTR_ERR(fsl_chan->membase);
/* Get the hardware chanel id by the channel membase
* channel0:0x10000, channel1:0x20000... total 32 channels
*/
fsl_chan->hw_chanid = (res->start >> 16) & 0x1f;
sprintf(txirq_name, "edma-chan%d-tx", fsl_chan->hw_chanid);
/* request channel irq */
fsl_chan->txirq = platform_get_irq_byname(pdev, txirq_name);
if (fsl_chan->txirq < 0) {
dev_err(&pdev->dev, "Can't get %s irq.\n", txirq_name);
return fsl_chan->txirq;
}
ret = devm_request_irq(&pdev->dev, fsl_chan->txirq,
fsl_edma3_tx_handler, irqflag, txirq_name,
fsl_chan);
if (ret) {
dev_err(&pdev->dev, "Can't register %s IRQ.\n",
txirq_name);
return ret;
}
fsl_chan->vchan.desc_free = fsl_edma3_free_desc;
vchan_init(&fsl_chan->vchan, &fsl_edma3->dma_dev);
}
mutex_init(&fsl_edma3->fsl_edma3_mutex);
dma_cap_set(DMA_PRIVATE, fsl_edma3->dma_dev.cap_mask);
dma_cap_set(DMA_SLAVE, fsl_edma3->dma_dev.cap_mask);
dma_cap_set(DMA_CYCLIC, fsl_edma3->dma_dev.cap_mask);
fsl_edma3->dma_dev.dev = &pdev->dev;
fsl_edma3->dma_dev.device_alloc_chan_resources
= fsl_edma3_alloc_chan_resources;
fsl_edma3->dma_dev.device_free_chan_resources
= fsl_edma3_free_chan_resources;
fsl_edma3->dma_dev.device_tx_status = fsl_edma3_tx_status;
fsl_edma3->dma_dev.device_prep_slave_sg = fsl_edma3_prep_slave_sg;
fsl_edma3->dma_dev.device_prep_dma_cyclic = fsl_edma3_prep_dma_cyclic;
fsl_edma3->dma_dev.device_config = fsl_edma3_slave_config;
fsl_edma3->dma_dev.device_pause = fsl_edma3_pause;
fsl_edma3->dma_dev.device_resume = fsl_edma3_resume;
fsl_edma3->dma_dev.device_terminate_all = fsl_edma3_terminate_all;
fsl_edma3->dma_dev.device_issue_pending = fsl_edma3_issue_pending;
fsl_edma3->dma_dev.src_addr_widths = FSL_EDMA_BUSWIDTHS;
fsl_edma3->dma_dev.dst_addr_widths = FSL_EDMA_BUSWIDTHS;
fsl_edma3->dma_dev.directions = BIT(DMA_DEV_TO_MEM) |
BIT(DMA_MEM_TO_DEV) |
BIT(DMA_DEV_TO_DEV);
platform_set_drvdata(pdev, fsl_edma3);
ret = dma_async_device_register(&fsl_edma3->dma_dev);
if (ret) {
dev_err(&pdev->dev, "Can't register Freescale eDMA engine.\n");
return ret;
}
ret = of_dma_controller_register(np, fsl_edma3_xlate, fsl_edma3);
if (ret) {
dev_err(&pdev->dev, "Can't register Freescale eDMA of_dma.\n");
dma_async_device_unregister(&fsl_edma3->dma_dev);
return ret;
}
return 0;
}
static int fsl_edma3_remove(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct fsl_edma3_engine *fsl_edma3 = platform_get_drvdata(pdev);
of_dma_controller_free(np);
dma_async_device_unregister(&fsl_edma3->dma_dev);
return 0;
}
static const struct of_device_id fsl_edma3_dt_ids[] = {
{ .compatible = "fsl,imx8qm-edma", },
{ .compatible = "fsl,imx8qm-adma", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, fsl_edma3_dt_ids);
static struct platform_driver fsl_edma3_driver = {
.driver = {
.name = "fsl-edma-v3",
.of_match_table = fsl_edma3_dt_ids,
},
.probe = fsl_edma3_probe,
.remove = fsl_edma3_remove,
};
static int __init fsl_edma3_init(void)
{
return platform_driver_register(&fsl_edma3_driver);
}
subsys_initcall(fsl_edma3_init);
static void __exit fsl_edma3_exit(void)
{
platform_driver_unregister(&fsl_edma3_driver);
}
module_exit(fsl_edma3_exit);
MODULE_ALIAS("platform:fsl-edma3");
MODULE_DESCRIPTION("Freescale eDMA-V3 engine driver");
MODULE_LICENSE("GPL v2");