1
0
Fork 0

ARM: SoC driver updates for 4.17

The main addition this time around is the new ARM "SCMI" framework,
 which is the latest in a series of standards coming from ARM to do power
 management in a platform independent way. This has been through many
 review cycles, and it relies on a rather interesting way of using the
 mailbox subsystem, but in the end I agreed that Sudeep's version was
 the best we could do after all.
 
 Other changes include:
 
 - the ARM CCN driver is moved out of drivers/bus into drivers/perf,
   which makes more sense. Similarly, the performance monitoring
   portion of the CCI driver are moved the same way and cleaned up
   a little more.
 
 - a series of updates to the SCPI framework
 
 - support for the Mediatek mt7623a SoC in drivers/soc
 
 - support for additional NVIDIA Tegra hardware in drivers/soc
 
 - a new reset driver for Socionext Uniphier
 
 - lesser bug fixes in drivers/soc, drivers/tee, drivers/memory, and
   drivers/firmware and drivers/reset across platforms
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJaxiNzAAoJEGCrR//JCVInYhYP/2kPhc5t/kszA1bcklcbO9dY
 eX37Ra/RR4yQ5yeQZVIZ4UkUovxk9PmG2tM4K5oJaTDsz5pPEgavVOOr3sbfj6vb
 4O9auTeysEQlHcbVdNFum0YS2gUY2YD7D12DTRorotLxCqod184ccWXq0XGfIWaY
 l3YRrcL/lPlqmyS3z/GNx9oNygOMUzEfXfIQYICyzHuYiLBUGnkKC1vIb+Hx1TDq
 Cxk++AUqH13Mss24O2A2QQh+oBHj2BybDLLqwcC5PSpsUbFrVCfzG54l43mig32T
 NOxV0Qnml2wAtU4H0QcgtSgwRimHD0YOiX8ssquvDDiqTqM5G+llSTGkEbYe+AUW
 4GIZYoBOwGkfEXS+tyymHe9yfc5h1OLYAeFU1jRm723c7phanuu67rPn35YC8UMK
 zSql10JpkAGNzMikrxxb6wnis951w2UFlzhgZQ6ItA/nRq3l+oEQA0Qiljv965nz
 DVLsD5+gdhK6GBctkzlsD5HFn6GjM8JilnsOVPHD765nKnVBSxKiXRLV228XVug2
 rChF1FhQqLnM54jCMqHZX5fS9SbSgtYswHqIXpVw6GmJkqq/Ly10yGR0vuWD+uyn
 BV7q5AKpGrwm6wZkMM2uZ1VdUtWzn856AbkqrvX/QhmJcX4McuqaLUrC8bSOj1ty
 KeVil0akq3nU+xHl5Ojs
 =Pmsx
 -----END PGP SIGNATURE-----

Merge tag 'armsoc-drivers' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc

Pull ARM SoC driver updates from Arnd Bergmann:
 "The main addition this time around is the new ARM "SCMI" framework,
  which is the latest in a series of standards coming from ARM to do
  power management in a platform independent way.

  This has been through many review cycles, and it relies on a rather
  interesting way of using the mailbox subsystem, but in the end I
  agreed that Sudeep's version was the best we could do after all.

  Other changes include:

   - the ARM CCN driver is moved out of drivers/bus into drivers/perf,
     which makes more sense. Similarly, the performance monitoring
     portion of the CCI driver are moved the same way and cleaned up a
     little more.

   - a series of updates to the SCPI framework

   - support for the Mediatek mt7623a SoC in drivers/soc

   - support for additional NVIDIA Tegra hardware in drivers/soc

   - a new reset driver for Socionext Uniphier

   - lesser bug fixes in drivers/soc, drivers/tee, drivers/memory, and
     drivers/firmware and drivers/reset across platforms"

* tag 'armsoc-drivers' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: (87 commits)
  reset: uniphier: add ethernet reset control support for PXs3
  reset: stm32mp1: Enable stm32mp1 reset driver
  dt-bindings: reset: add STM32MP1 resets
  reset: uniphier: add Pro4/Pro5/PXs2 audio systems reset control
  reset: imx7: add 'depends on HAS_IOMEM' to fix unmet dependency
  reset: modify the way reset lookup works for board files
  reset: add support for non-DT systems
  clk: scmi: use devm_of_clk_add_hw_provider() API and drop scmi_clocks_remove
  firmware: arm_scmi: prevent accessing rate_discrete uninitialized
  hwmon: (scmi) return -EINVAL when sensor information is unavailable
  amlogic: meson-gx-socinfo: Update soc ids
  soc/tegra: pmc: Use the new reset APIs to manage reset controllers
  soc: mediatek: update power domain data of MT2712
  dt-bindings: soc: update MT2712 power dt-bindings
  cpufreq: scmi: add thermal dependency
  soc: mediatek: fix the mistaken pointer accessed when subdomains are added
  soc: mediatek: add SCPSYS power domain driver for MediaTek MT7623A SoC
  soc: mediatek: avoid hardcoded value with bus_prot_mask
  dt-bindings: soc: add header files required for MT7623A SCPSYS dt-binding
  dt-bindings: soc: add SCPSYS binding for MT7623 and MT7623A SoC
  ...
hifive-unleashed-5.1
Linus Torvalds 2018-04-05 21:29:35 -07:00
commit 38c23685b2
79 changed files with 6861 additions and 2189 deletions

View File

@ -0,0 +1,179 @@
System Control and Management Interface (SCMI) Message Protocol
----------------------------------------------------------
The SCMI is intended to allow agents such as OSPM to manage various functions
that are provided by the hardware platform it is running on, including power
and performance functions.
This binding is intended to define the interface the firmware implementing
the SCMI as described in ARM document number ARM DUI 0922B ("ARM System Control
and Management Interface Platform Design Document")[0] provide for OSPM in
the device tree.
Required properties:
The scmi node with the following properties shall be under the /firmware/ node.
- compatible : shall be "arm,scmi"
- mboxes: List of phandle and mailbox channel specifiers. It should contain
exactly one or two mailboxes, one for transmitting messages("tx")
and another optional for receiving the notifications("rx") if
supported.
- shmem : List of phandle pointing to the shared memory(SHM) area as per
generic mailbox client binding.
- #address-cells : should be '1' if the device has sub-nodes, maps to
protocol identifier for a given sub-node.
- #size-cells : should be '0' as 'reg' property doesn't have any size
associated with it.
Optional properties:
- mbox-names: shall be "tx" or "rx" depending on mboxes entries.
See Documentation/devicetree/bindings/mailbox/mailbox.txt for more details
about the generic mailbox controller and client driver bindings.
The mailbox is the only permitted method of calling the SCMI firmware.
Mailbox doorbell is used as a mechanism to alert the presence of a
messages and/or notification.
Each protocol supported shall have a sub-node with corresponding compatible
as described in the following sections. If the platform supports dedicated
communication channel for a particular protocol, the 3 properties namely:
mboxes, mbox-names and shmem shall be present in the sub-node corresponding
to that protocol.
Clock/Performance bindings for the clocks/OPPs based on SCMI Message Protocol
------------------------------------------------------------
This binding uses the common clock binding[1].
Required properties:
- #clock-cells : Should be 1. Contains the Clock ID value used by SCMI commands.
Power domain bindings for the power domains based on SCMI Message Protocol
------------------------------------------------------------
This binding for the SCMI power domain providers uses the generic power
domain binding[2].
Required properties:
- #power-domain-cells : Should be 1. Contains the device or the power
domain ID value used by SCMI commands.
Sensor bindings for the sensors based on SCMI Message Protocol
--------------------------------------------------------------
SCMI provides an API to access the various sensors on the SoC.
Required properties:
- #thermal-sensor-cells: should be set to 1. This property follows the
thermal device tree bindings[3].
Valid cell values are raw identifiers (Sensor ID)
as used by the firmware. Refer to platform details
for your implementation for the IDs to use.
SRAM and Shared Memory for SCMI
-------------------------------
A small area of SRAM is reserved for SCMI communication between application
processors and SCP.
The properties should follow the generic mmio-sram description found in [4]
Each sub-node represents the reserved area for SCMI.
Required sub-node properties:
- reg : The base offset and size of the reserved area with the SRAM
- compatible : should be "arm,scmi-shmem" for Non-secure SRAM based
shared memory
[0] http://infocenter.arm.com/help/topic/com.arm.doc.den0056a/index.html
[1] Documentation/devicetree/bindings/clock/clock-bindings.txt
[2] Documentation/devicetree/bindings/power/power_domain.txt
[3] Documentation/devicetree/bindings/thermal/thermal.txt
[4] Documentation/devicetree/bindings/sram/sram.txt
Example:
sram@50000000 {
compatible = "mmio-sram";
reg = <0x0 0x50000000 0x0 0x10000>;
#address-cells = <1>;
#size-cells = <1>;
ranges = <0 0x0 0x50000000 0x10000>;
cpu_scp_lpri: scp-shmem@0 {
compatible = "arm,scmi-shmem";
reg = <0x0 0x200>;
};
cpu_scp_hpri: scp-shmem@200 {
compatible = "arm,scmi-shmem";
reg = <0x200 0x200>;
};
};
mailbox@40000000 {
....
#mbox-cells = <1>;
reg = <0x0 0x40000000 0x0 0x10000>;
};
firmware {
...
scmi {
compatible = "arm,scmi";
mboxes = <&mailbox 0 &mailbox 1>;
mbox-names = "tx", "rx";
shmem = <&cpu_scp_lpri &cpu_scp_hpri>;
#address-cells = <1>;
#size-cells = <0>;
scmi_devpd: protocol@11 {
reg = <0x11>;
#power-domain-cells = <1>;
};
scmi_dvfs: protocol@13 {
reg = <0x13>;
#clock-cells = <1>;
};
scmi_clk: protocol@14 {
reg = <0x14>;
#clock-cells = <1>;
};
scmi_sensors0: protocol@15 {
reg = <0x15>;
#thermal-sensor-cells = <1>;
};
};
};
cpu@0 {
...
reg = <0 0>;
clocks = <&scmi_dvfs 0>;
};
hdlcd@7ff60000 {
...
reg = <0 0x7ff60000 0 0x1000>;
clocks = <&scmi_clk 4>;
power-domains = <&scmi_devpd 1>;
};
thermal-zones {
soc_thermal {
polling-delay-passive = <100>;
polling-delay = <1000>;
/* sensor ID */
thermal-sensors = <&scmi_sensors0 3>;
...
};
};

View File

@ -43,6 +43,12 @@ following properties:
- interrupt-parent: a phandle indicating which interrupt controller
this PMU signals interrupts to.
Optional nodes:
- nodes defining the restart and poweroff syscon children
Example :
pmu_system_controller: system-controller@10040000 {
compatible = "samsung,exynos5250-pmu", "syscon";

View File

@ -23,6 +23,11 @@ Required property:
Optional property:
- mbox-names: List of identifier strings for each mailbox channel.
- shmem : List of phandle pointing to the shared memory(SHM) area between the
users of these mailboxes for IPC, one for each mailbox. This shared
memory can be part of any memory reserved for the purpose of this
communication between the mailbox client and the remote.
Example:
pwr_cntrl: power {
@ -30,3 +35,26 @@ Example:
mbox-names = "pwr-ctrl", "rpc";
mboxes = <&mailbox 0 &mailbox 1>;
};
Example with shared memory(shmem):
sram: sram@50000000 {
compatible = "mmio-sram";
reg = <0x50000000 0x10000>;
#address-cells = <1>;
#size-cells = <1>;
ranges = <0 0x50000000 0x10000>;
cl_shmem: shmem@0 {
compatible = "client-shmem";
reg = <0x0 0x200>;
};
};
client@2e000000 {
...
mboxes = <&mailbox 0>;
shmem = <&cl_shmem>;
..
};

View File

@ -176,3 +176,24 @@ lhc: lhc@20 {
compatible = "aspeed,ast2500-lhc";
reg = <0x20 0x24 0x48 0x8>;
};
LPC reset control
-----------------
The UARTs present in the ASPEED SoC can have their resets tied to the reset
state of the LPC bus. Some systems may chose to modify this configuration.
Required properties:
- compatible: "aspeed,ast2500-lpc-reset" or
"aspeed,ast2400-lpc-reset"
- reg: offset and length of the IP in the LHC memory region
- #reset-controller indicates the number of reset cells expected
Example:
lpc_reset: reset-controller@18 {
compatible = "aspeed,ast2500-lpc-reset";
reg = <0x18 0x4>;
#reset-cells = <1>;
};

View File

@ -0,0 +1,6 @@
STMicroelectronics STM32MP1 Peripheral Reset Controller
=======================================================
The RCC IP is both a reset and a clock controller.
Please see Documentation/devicetree/bindings/clock/st,stm32mp1-rcc.txt

View File

@ -21,6 +21,8 @@ Required properties:
- "mediatek,mt2712-scpsys"
- "mediatek,mt6797-scpsys"
- "mediatek,mt7622-scpsys"
- "mediatek,mt7623-scpsys", "mediatek,mt2701-scpsys": For MT7623 SoC
- "mediatek,mt7623a-scpsys": For MT7623A SoC
- "mediatek,mt8173-scpsys"
- #power-domain-cells: Must be 1
- reg: Address range of the SCPSYS unit
@ -28,10 +30,11 @@ Required properties:
- clock, clock-names: clocks according to the common clock binding.
These are clocks which hardware needs to be
enabled before enabling certain power domains.
Required clocks for MT2701: "mm", "mfg", "ethif"
Required clocks for MT2701 or MT7623: "mm", "mfg", "ethif"
Required clocks for MT2712: "mm", "mfg", "venc", "jpgdec", "audio", "vdec"
Required clocks for MT6797: "mm", "mfg", "vdec"
Required clocks for MT7622: "hif_sel"
Required clocks for MT7622A: "ethif"
Required clocks for MT8173: "mm", "mfg", "venc", "venc_lt"
Optional properties:

View File

@ -13491,15 +13491,16 @@ T: git git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd.git
S: Supported
F: drivers/mfd/syscon.c
SYSTEM CONTROL & POWER INTERFACE (SCPI) Message Protocol drivers
SYSTEM CONTROL & POWER/MANAGEMENT INTERFACE (SCPI/SCMI) Message Protocol drivers
M: Sudeep Holla <sudeep.holla@arm.com>
L: linux-arm-kernel@lists.infradead.org
S: Maintained
F: Documentation/devicetree/bindings/arm/arm,scpi.txt
F: drivers/clk/clk-scpi.c
F: drivers/cpufreq/scpi-cpufreq.c
F: Documentation/devicetree/bindings/arm/arm,sc[mp]i.txt
F: drivers/clk/clk-sc[mp]i.c
F: drivers/cpufreq/sc[mp]i-cpufreq.c
F: drivers/firmware/arm_scpi.c
F: include/linux/scpi_protocol.h
F: drivers/firmware/arm_scmi/
F: include/linux/sc[mp]i_protocol.h
SYSTEM RESET/SHUTDOWN DRIVERS
M: Sebastian Reichel <sre@kernel.org>

View File

@ -8,25 +8,10 @@ menu "Bus devices"
config ARM_CCI
bool
config ARM_CCI_PMU
bool
select ARM_CCI
config ARM_CCI400_COMMON
bool
select ARM_CCI
config ARM_CCI400_PMU
bool "ARM CCI400 PMU support"
depends on (ARM && CPU_V7) || ARM64
depends on PERF_EVENTS
select ARM_CCI400_COMMON
select ARM_CCI_PMU
help
Support for PMU events monitoring on the ARM CCI-400 (cache coherent
interconnect). CCI-400 supports counting events related to the
connected slave/master interfaces.
config ARM_CCI400_PORT_CTRL
bool
depends on ARM && OF && CPU_V7
@ -35,27 +20,6 @@ config ARM_CCI400_PORT_CTRL
Low level power management driver for CCI400 cache coherent
interconnect for ARM platforms.
config ARM_CCI5xx_PMU
bool "ARM CCI-500/CCI-550 PMU support"
depends on (ARM && CPU_V7) || ARM64
depends on PERF_EVENTS
select ARM_CCI_PMU
help
Support for PMU events monitoring on the ARM CCI-500/CCI-550 cache
coherent interconnects. Both of them provide 8 independent event counters,
which can count events pertaining to the slave/master interfaces as well
as the internal events to the CCI.
If unsure, say Y
config ARM_CCN
tristate "ARM CCN driver support"
depends on ARM || ARM64
depends on PERF_EVENTS
help
PMU (perf) driver supporting the ARM CCN (Cache Coherent Network)
interconnect.
config BRCMSTB_GISB_ARB
bool "Broadcom STB GISB bus arbiter"
depends on ARM || ARM64 || MIPS

View File

@ -5,8 +5,6 @@
# Interconnect bus drivers for ARM platforms
obj-$(CONFIG_ARM_CCI) += arm-cci.o
obj-$(CONFIG_ARM_CCN) += arm-ccn.o
obj-$(CONFIG_BRCMSTB_GISB_ARB) += brcmstb_gisb.o
# DPAA2 fsl-mc bus

File diff suppressed because it is too large Load Diff

View File

@ -62,6 +62,16 @@ config COMMON_CLK_HI655X
multi-function device has one fixed-rate oscillator, clocked
at 32KHz.
config COMMON_CLK_SCMI
tristate "Clock driver controlled via SCMI interface"
depends on ARM_SCMI_PROTOCOL || COMPILE_TEST
---help---
This driver provides support for clocks that are controlled
by firmware that implements the SCMI interface.
This driver uses SCMI Message Protocol to interact with the
firmware providing all the clock controls.
config COMMON_CLK_SCPI
tristate "Clock driver controlled via SCPI interface"
depends on ARM_SCPI_PROTOCOL || COMPILE_TEST

View File

@ -41,6 +41,7 @@ obj-$(CONFIG_CLK_QORIQ) += clk-qoriq.o
obj-$(CONFIG_COMMON_CLK_RK808) += clk-rk808.o
obj-$(CONFIG_COMMON_CLK_HI655X) += clk-hi655x.o
obj-$(CONFIG_COMMON_CLK_S2MPS11) += clk-s2mps11.o
obj-$(CONFIG_COMMON_CLK_SCMI) += clk-scmi.o
obj-$(CONFIG_COMMON_CLK_SCPI) += clk-scpi.o
obj-$(CONFIG_COMMON_CLK_SI5351) += clk-si5351.o
obj-$(CONFIG_COMMON_CLK_SI514) += clk-si514.o

View File

@ -0,0 +1,194 @@
// SPDX-License-Identifier: GPL-2.0
/*
* System Control and Power Interface (SCMI) Protocol based clock driver
*
* Copyright (C) 2018 ARM Ltd.
*/
#include <linux/clk-provider.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/of.h>
#include <linux/module.h>
#include <linux/scmi_protocol.h>
#include <asm/div64.h>
struct scmi_clk {
u32 id;
struct clk_hw hw;
const struct scmi_clock_info *info;
const struct scmi_handle *handle;
};
#define to_scmi_clk(clk) container_of(clk, struct scmi_clk, hw)
static unsigned long scmi_clk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
int ret;
u64 rate;
struct scmi_clk *clk = to_scmi_clk(hw);
ret = clk->handle->clk_ops->rate_get(clk->handle, clk->id, &rate);
if (ret)
return 0;
return rate;
}
static long scmi_clk_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
int step;
u64 fmin, fmax, ftmp;
struct scmi_clk *clk = to_scmi_clk(hw);
/*
* We can't figure out what rate it will be, so just return the
* rate back to the caller. scmi_clk_recalc_rate() will be called
* after the rate is set and we'll know what rate the clock is
* running at then.
*/
if (clk->info->rate_discrete)
return rate;
fmin = clk->info->range.min_rate;
fmax = clk->info->range.max_rate;
if (rate <= fmin)
return fmin;
else if (rate >= fmax)
return fmax;
ftmp = rate - fmin;
ftmp += clk->info->range.step_size - 1; /* to round up */
step = do_div(ftmp, clk->info->range.step_size);
return step * clk->info->range.step_size + fmin;
}
static int scmi_clk_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct scmi_clk *clk = to_scmi_clk(hw);
return clk->handle->clk_ops->rate_set(clk->handle, clk->id, 0, rate);
}
static int scmi_clk_enable(struct clk_hw *hw)
{
struct scmi_clk *clk = to_scmi_clk(hw);
return clk->handle->clk_ops->enable(clk->handle, clk->id);
}
static void scmi_clk_disable(struct clk_hw *hw)
{
struct scmi_clk *clk = to_scmi_clk(hw);
clk->handle->clk_ops->disable(clk->handle, clk->id);
}
static const struct clk_ops scmi_clk_ops = {
.recalc_rate = scmi_clk_recalc_rate,
.round_rate = scmi_clk_round_rate,
.set_rate = scmi_clk_set_rate,
/*
* We can't provide enable/disable callback as we can't perform the same
* in atomic context. Since the clock framework provides standard API
* clk_prepare_enable that helps cases using clk_enable in non-atomic
* context, it should be fine providing prepare/unprepare.
*/
.prepare = scmi_clk_enable,
.unprepare = scmi_clk_disable,
};
static int scmi_clk_ops_init(struct device *dev, struct scmi_clk *sclk)
{
int ret;
struct clk_init_data init = {
.flags = CLK_GET_RATE_NOCACHE,
.num_parents = 0,
.ops = &scmi_clk_ops,
.name = sclk->info->name,
};
sclk->hw.init = &init;
ret = devm_clk_hw_register(dev, &sclk->hw);
if (!ret)
clk_hw_set_rate_range(&sclk->hw, sclk->info->range.min_rate,
sclk->info->range.max_rate);
return ret;
}
static int scmi_clocks_probe(struct scmi_device *sdev)
{
int idx, count, err;
struct clk_hw **hws;
struct clk_hw_onecell_data *clk_data;
struct device *dev = &sdev->dev;
struct device_node *np = dev->of_node;
const struct scmi_handle *handle = sdev->handle;
if (!handle || !handle->clk_ops)
return -ENODEV;
count = handle->clk_ops->count_get(handle);
if (count < 0) {
dev_err(dev, "%s: invalid clock output count\n", np->name);
return -EINVAL;
}
clk_data = devm_kzalloc(dev, sizeof(*clk_data) +
sizeof(*clk_data->hws) * count, GFP_KERNEL);
if (!clk_data)
return -ENOMEM;
clk_data->num = count;
hws = clk_data->hws;
for (idx = 0; idx < count; idx++) {
struct scmi_clk *sclk;
sclk = devm_kzalloc(dev, sizeof(*sclk), GFP_KERNEL);
if (!sclk)
return -ENOMEM;
sclk->info = handle->clk_ops->info_get(handle, idx);
if (!sclk->info) {
dev_dbg(dev, "invalid clock info for idx %d\n", idx);
continue;
}
sclk->id = idx;
sclk->handle = handle;
err = scmi_clk_ops_init(dev, sclk);
if (err) {
dev_err(dev, "failed to register clock %d\n", idx);
devm_kfree(dev, sclk);
hws[idx] = NULL;
} else {
dev_dbg(dev, "Registered clock:%s\n", sclk->info->name);
hws[idx] = &sclk->hw;
}
}
return devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get,
clk_data);
}
static const struct scmi_device_id scmi_id_table[] = {
{ SCMI_PROTOCOL_CLOCK },
{ },
};
MODULE_DEVICE_TABLE(scmi, scmi_id_table);
static struct scmi_driver scmi_clocks_driver = {
.name = "scmi-clocks",
.probe = scmi_clocks_probe,
.id_table = scmi_id_table,
};
module_scmi_driver(scmi_clocks_driver);
MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>");
MODULE_DESCRIPTION("ARM SCMI clock driver");
MODULE_LICENSE("GPL v2");

View File

@ -239,6 +239,18 @@ config ARM_SA1100_CPUFREQ
config ARM_SA1110_CPUFREQ
bool
config ARM_SCMI_CPUFREQ
tristate "SCMI based CPUfreq driver"
depends on ARM_SCMI_PROTOCOL || COMPILE_TEST
depends on !CPU_THERMAL || THERMAL
select PM_OPP
help
This adds the CPUfreq driver support for ARM platforms using SCMI
protocol for CPU power management.
This driver uses SCMI Message Protocol driver to interact with the
firmware providing the CPU DVFS functionality.
config ARM_SPEAR_CPUFREQ
bool "SPEAr CPUFreq support"
depends on PLAT_SPEAR

View File

@ -75,6 +75,7 @@ obj-$(CONFIG_ARM_S3C24XX_CPUFREQ_DEBUGFS) += s3c24xx-cpufreq-debugfs.o
obj-$(CONFIG_ARM_S5PV210_CPUFREQ) += s5pv210-cpufreq.o
obj-$(CONFIG_ARM_SA1100_CPUFREQ) += sa1100-cpufreq.o
obj-$(CONFIG_ARM_SA1110_CPUFREQ) += sa1110-cpufreq.o
obj-$(CONFIG_ARM_SCMI_CPUFREQ) += scmi-cpufreq.o
obj-$(CONFIG_ARM_SCPI_CPUFREQ) += scpi-cpufreq.o
obj-$(CONFIG_ARM_SPEAR_CPUFREQ) += spear-cpufreq.o
obj-$(CONFIG_ARM_STI_CPUFREQ) += sti-cpufreq.o

View File

@ -0,0 +1,264 @@
// SPDX-License-Identifier: GPL-2.0
/*
* System Control and Power Interface (SCMI) based CPUFreq Interface driver
*
* Copyright (C) 2018 ARM Ltd.
* Sudeep Holla <sudeep.holla@arm.com>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/cpumask.h>
#include <linux/cpu_cooling.h>
#include <linux/export.h>
#include <linux/module.h>
#include <linux/pm_opp.h>
#include <linux/slab.h>
#include <linux/scmi_protocol.h>
#include <linux/types.h>
struct scmi_data {
int domain_id;
struct device *cpu_dev;
struct thermal_cooling_device *cdev;
};
static const struct scmi_handle *handle;
static unsigned int scmi_cpufreq_get_rate(unsigned int cpu)
{
struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
struct scmi_perf_ops *perf_ops = handle->perf_ops;
struct scmi_data *priv = policy->driver_data;
unsigned long rate;
int ret;
ret = perf_ops->freq_get(handle, priv->domain_id, &rate, false);
if (ret)
return 0;
return rate / 1000;
}
/*
* perf_ops->freq_set is not a synchronous, the actual OPP change will
* happen asynchronously and can get notified if the events are
* subscribed for by the SCMI firmware
*/
static int
scmi_cpufreq_set_target(struct cpufreq_policy *policy, unsigned int index)
{
int ret;
struct scmi_data *priv = policy->driver_data;
struct scmi_perf_ops *perf_ops = handle->perf_ops;
u64 freq = policy->freq_table[index].frequency * 1000;
ret = perf_ops->freq_set(handle, priv->domain_id, freq, false);
if (!ret)
arch_set_freq_scale(policy->related_cpus, freq,
policy->cpuinfo.max_freq);
return ret;
}
static unsigned int scmi_cpufreq_fast_switch(struct cpufreq_policy *policy,
unsigned int target_freq)
{
struct scmi_data *priv = policy->driver_data;
struct scmi_perf_ops *perf_ops = handle->perf_ops;
if (!perf_ops->freq_set(handle, priv->domain_id,
target_freq * 1000, true)) {
arch_set_freq_scale(policy->related_cpus, target_freq,
policy->cpuinfo.max_freq);
return target_freq;
}
return 0;
}
static int
scmi_get_sharing_cpus(struct device *cpu_dev, struct cpumask *cpumask)
{
int cpu, domain, tdomain;
struct device *tcpu_dev;
domain = handle->perf_ops->device_domain_id(cpu_dev);
if (domain < 0)
return domain;
for_each_possible_cpu(cpu) {
if (cpu == cpu_dev->id)
continue;
tcpu_dev = get_cpu_device(cpu);
if (!tcpu_dev)
continue;
tdomain = handle->perf_ops->device_domain_id(tcpu_dev);
if (tdomain == domain)
cpumask_set_cpu(cpu, cpumask);
}
return 0;
}
static int scmi_cpufreq_init(struct cpufreq_policy *policy)
{
int ret;
unsigned int latency;
struct device *cpu_dev;
struct scmi_data *priv;
struct cpufreq_frequency_table *freq_table;
cpu_dev = get_cpu_device(policy->cpu);
if (!cpu_dev) {
pr_err("failed to get cpu%d device\n", policy->cpu);
return -ENODEV;
}
ret = handle->perf_ops->add_opps_to_device(handle, cpu_dev);
if (ret) {
dev_warn(cpu_dev, "failed to add opps to the device\n");
return ret;
}
ret = scmi_get_sharing_cpus(cpu_dev, policy->cpus);
if (ret) {
dev_warn(cpu_dev, "failed to get sharing cpumask\n");
return ret;
}
ret = dev_pm_opp_set_sharing_cpus(cpu_dev, policy->cpus);
if (ret) {
dev_err(cpu_dev, "%s: failed to mark OPPs as shared: %d\n",
__func__, ret);
return ret;
}
ret = dev_pm_opp_get_opp_count(cpu_dev);
if (ret <= 0) {
dev_dbg(cpu_dev, "OPP table is not ready, deferring probe\n");
ret = -EPROBE_DEFER;
goto out_free_opp;
}
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
if (!priv) {
ret = -ENOMEM;
goto out_free_opp;
}
ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
if (ret) {
dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
goto out_free_priv;
}
priv->cpu_dev = cpu_dev;
priv->domain_id = handle->perf_ops->device_domain_id(cpu_dev);
policy->driver_data = priv;
ret = cpufreq_table_validate_and_show(policy, freq_table);
if (ret) {
dev_err(cpu_dev, "%s: invalid frequency table: %d\n", __func__,
ret);
goto out_free_cpufreq_table;
}
/* SCMI allows DVFS request for any domain from any CPU */
policy->dvfs_possible_from_any_cpu = true;
latency = handle->perf_ops->get_transition_latency(handle, cpu_dev);
if (!latency)
latency = CPUFREQ_ETERNAL;
policy->cpuinfo.transition_latency = latency;
policy->fast_switch_possible = true;
return 0;
out_free_cpufreq_table:
dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
out_free_priv:
kfree(priv);
out_free_opp:
dev_pm_opp_cpumask_remove_table(policy->cpus);
return ret;
}
static int scmi_cpufreq_exit(struct cpufreq_policy *policy)
{
struct scmi_data *priv = policy->driver_data;
cpufreq_cooling_unregister(priv->cdev);
dev_pm_opp_free_cpufreq_table(priv->cpu_dev, &policy->freq_table);
kfree(priv);
dev_pm_opp_cpumask_remove_table(policy->related_cpus);
return 0;
}
static void scmi_cpufreq_ready(struct cpufreq_policy *policy)
{
struct scmi_data *priv = policy->driver_data;
priv->cdev = of_cpufreq_cooling_register(policy);
}
static struct cpufreq_driver scmi_cpufreq_driver = {
.name = "scmi",
.flags = CPUFREQ_STICKY | CPUFREQ_HAVE_GOVERNOR_PER_POLICY |
CPUFREQ_NEED_INITIAL_FREQ_CHECK,
.verify = cpufreq_generic_frequency_table_verify,
.attr = cpufreq_generic_attr,
.target_index = scmi_cpufreq_set_target,
.fast_switch = scmi_cpufreq_fast_switch,
.get = scmi_cpufreq_get_rate,
.init = scmi_cpufreq_init,
.exit = scmi_cpufreq_exit,
.ready = scmi_cpufreq_ready,
};
static int scmi_cpufreq_probe(struct scmi_device *sdev)
{
int ret;
handle = sdev->handle;
if (!handle || !handle->perf_ops)
return -ENODEV;
ret = cpufreq_register_driver(&scmi_cpufreq_driver);
if (ret) {
dev_err(&sdev->dev, "%s: registering cpufreq failed, err: %d\n",
__func__, ret);
}
return ret;
}
static void scmi_cpufreq_remove(struct scmi_device *sdev)
{
cpufreq_unregister_driver(&scmi_cpufreq_driver);
}
static const struct scmi_device_id scmi_id_table[] = {
{ SCMI_PROTOCOL_PERF },
{ },
};
MODULE_DEVICE_TABLE(scmi, scmi_id_table);
static struct scmi_driver scmi_cpufreq_drv = {
.name = "scmi-cpufreq",
.probe = scmi_cpufreq_probe,
.remove = scmi_cpufreq_remove,
.id_table = scmi_id_table,
};
module_scmi_driver(scmi_cpufreq_drv);
MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>");
MODULE_DESCRIPTION("ARM SCMI CPUFreq interface driver");
MODULE_LICENSE("GPL v2");

View File

@ -19,6 +19,40 @@ config ARM_PSCI_CHECKER
on and off through hotplug, so for now torture tests and PSCI checker
are mutually exclusive.
config ARM_SCMI_PROTOCOL
bool "ARM System Control and Management Interface (SCMI) Message Protocol"
depends on ARM || ARM64 || COMPILE_TEST
depends on MAILBOX
help
ARM System Control and Management Interface (SCMI) protocol is a
set of operating system-independent software interfaces that are
used in system management. SCMI is extensible and currently provides
interfaces for: Discovery and self-description of the interfaces
it supports, Power domain management which is the ability to place
a given device or domain into the various power-saving states that
it supports, Performance management which is the ability to control
the performance of a domain that is composed of compute engines
such as application processors and other accelerators, Clock
management which is the ability to set and inquire rates on platform
managed clocks and Sensor management which is the ability to read
sensor data, and be notified of sensor value.
This protocol library provides interface for all the client drivers
making use of the features offered by the SCMI.
config ARM_SCMI_POWER_DOMAIN
tristate "SCMI power domain driver"
depends on ARM_SCMI_PROTOCOL || (COMPILE_TEST && OF)
default y
select PM_GENERIC_DOMAINS if PM
help
This enables support for the SCMI power domains which can be
enabled or disabled via the SCP firmware
This driver can also be built as a module. If so, the module
will be called scmi_pm_domain. Note this may needed early in boot
before rootfs may be available.
config ARM_SCPI_PROTOCOL
tristate "ARM System Control and Power Interface (SCPI) Message Protocol"
depends on ARM || ARM64 || COMPILE_TEST

View File

@ -25,6 +25,7 @@ obj-$(CONFIG_QCOM_SCM_32) += qcom_scm-32.o
CFLAGS_qcom_scm-32.o :=$(call as-instr,.arch armv7-a\n.arch_extension sec,-DREQUIRES_SEC=1) -march=armv7-a
obj-$(CONFIG_TI_SCI_PROTOCOL) += ti_sci.o
obj-$(CONFIG_ARM_SCMI_PROTOCOL) += arm_scmi/
obj-y += broadcom/
obj-y += meson/
obj-$(CONFIG_GOOGLE_FIRMWARE) += google/

View File

@ -0,0 +1,5 @@
obj-y = scmi-bus.o scmi-driver.o scmi-protocols.o
scmi-bus-y = bus.o
scmi-driver-y = driver.o
scmi-protocols-y = base.o clock.o perf.o power.o sensors.o
obj-$(CONFIG_ARM_SCMI_POWER_DOMAIN) += scmi_pm_domain.o

View File

@ -0,0 +1,253 @@
// SPDX-License-Identifier: GPL-2.0
/*
* System Control and Management Interface (SCMI) Base Protocol
*
* Copyright (C) 2018 ARM Ltd.
*/
#include "common.h"
enum scmi_base_protocol_cmd {
BASE_DISCOVER_VENDOR = 0x3,
BASE_DISCOVER_SUB_VENDOR = 0x4,
BASE_DISCOVER_IMPLEMENT_VERSION = 0x5,
BASE_DISCOVER_LIST_PROTOCOLS = 0x6,
BASE_DISCOVER_AGENT = 0x7,
BASE_NOTIFY_ERRORS = 0x8,
};
struct scmi_msg_resp_base_attributes {
u8 num_protocols;
u8 num_agents;
__le16 reserved;
};
/**
* scmi_base_attributes_get() - gets the implementation details
* that are associated with the base protocol.
*
* @handle - SCMI entity handle
*
* Return: 0 on success, else appropriate SCMI error.
*/
static int scmi_base_attributes_get(const struct scmi_handle *handle)
{
int ret;
struct scmi_xfer *t;
struct scmi_msg_resp_base_attributes *attr_info;
struct scmi_revision_info *rev = handle->version;
ret = scmi_one_xfer_init(handle, PROTOCOL_ATTRIBUTES,
SCMI_PROTOCOL_BASE, 0, sizeof(*attr_info), &t);
if (ret)
return ret;
ret = scmi_do_xfer(handle, t);
if (!ret) {
attr_info = t->rx.buf;
rev->num_protocols = attr_info->num_protocols;
rev->num_agents = attr_info->num_agents;
}
scmi_one_xfer_put(handle, t);
return ret;
}
/**
* scmi_base_vendor_id_get() - gets vendor/subvendor identifier ASCII string.
*
* @handle - SCMI entity handle
* @sub_vendor - specify true if sub-vendor ID is needed
*
* Return: 0 on success, else appropriate SCMI error.
*/
static int
scmi_base_vendor_id_get(const struct scmi_handle *handle, bool sub_vendor)
{
u8 cmd;
int ret, size;
char *vendor_id;
struct scmi_xfer *t;
struct scmi_revision_info *rev = handle->version;
if (sub_vendor) {
cmd = BASE_DISCOVER_SUB_VENDOR;
vendor_id = rev->sub_vendor_id;
size = ARRAY_SIZE(rev->sub_vendor_id);
} else {
cmd = BASE_DISCOVER_VENDOR;
vendor_id = rev->vendor_id;
size = ARRAY_SIZE(rev->vendor_id);
}
ret = scmi_one_xfer_init(handle, cmd, SCMI_PROTOCOL_BASE, 0, size, &t);
if (ret)
return ret;
ret = scmi_do_xfer(handle, t);
if (!ret)
memcpy(vendor_id, t->rx.buf, size);
scmi_one_xfer_put(handle, t);
return ret;
}
/**
* scmi_base_implementation_version_get() - gets a vendor-specific
* implementation 32-bit version. The format of the version number is
* vendor-specific
*
* @handle - SCMI entity handle
*
* Return: 0 on success, else appropriate SCMI error.
*/
static int
scmi_base_implementation_version_get(const struct scmi_handle *handle)
{
int ret;
__le32 *impl_ver;
struct scmi_xfer *t;
struct scmi_revision_info *rev = handle->version;
ret = scmi_one_xfer_init(handle, BASE_DISCOVER_IMPLEMENT_VERSION,
SCMI_PROTOCOL_BASE, 0, sizeof(*impl_ver), &t);
if (ret)
return ret;
ret = scmi_do_xfer(handle, t);
if (!ret) {
impl_ver = t->rx.buf;
rev->impl_ver = le32_to_cpu(*impl_ver);
}
scmi_one_xfer_put(handle, t);
return ret;
}
/**
* scmi_base_implementation_list_get() - gets the list of protocols it is
* OSPM is allowed to access
*
* @handle - SCMI entity handle
* @protocols_imp - pointer to hold the list of protocol identifiers
*
* Return: 0 on success, else appropriate SCMI error.
*/
static int scmi_base_implementation_list_get(const struct scmi_handle *handle,
u8 *protocols_imp)
{
u8 *list;
int ret, loop;
struct scmi_xfer *t;
__le32 *num_skip, *num_ret;
u32 tot_num_ret = 0, loop_num_ret;
struct device *dev = handle->dev;
ret = scmi_one_xfer_init(handle, BASE_DISCOVER_LIST_PROTOCOLS,
SCMI_PROTOCOL_BASE, sizeof(*num_skip), 0, &t);
if (ret)
return ret;
num_skip = t->tx.buf;
num_ret = t->rx.buf;
list = t->rx.buf + sizeof(*num_ret);
do {
/* Set the number of protocols to be skipped/already read */
*num_skip = cpu_to_le32(tot_num_ret);
ret = scmi_do_xfer(handle, t);
if (ret)
break;
loop_num_ret = le32_to_cpu(*num_ret);
if (tot_num_ret + loop_num_ret > MAX_PROTOCOLS_IMP) {
dev_err(dev, "No. of Protocol > MAX_PROTOCOLS_IMP");
break;
}
for (loop = 0; loop < loop_num_ret; loop++)
protocols_imp[tot_num_ret + loop] = *(list + loop);
tot_num_ret += loop_num_ret;
} while (loop_num_ret);
scmi_one_xfer_put(handle, t);
return ret;
}
/**
* scmi_base_discover_agent_get() - discover the name of an agent
*
* @handle - SCMI entity handle
* @id - Agent identifier
* @name - Agent identifier ASCII string
*
* An agent id of 0 is reserved to identify the platform itself.
* Generally operating system is represented as "OSPM"
*
* Return: 0 on success, else appropriate SCMI error.
*/
static int scmi_base_discover_agent_get(const struct scmi_handle *handle,
int id, char *name)
{
int ret;
struct scmi_xfer *t;
ret = scmi_one_xfer_init(handle, BASE_DISCOVER_AGENT,
SCMI_PROTOCOL_BASE, sizeof(__le32),
SCMI_MAX_STR_SIZE, &t);
if (ret)
return ret;
*(__le32 *)t->tx.buf = cpu_to_le32(id);
ret = scmi_do_xfer(handle, t);
if (!ret)
memcpy(name, t->rx.buf, SCMI_MAX_STR_SIZE);
scmi_one_xfer_put(handle, t);
return ret;
}
int scmi_base_protocol_init(struct scmi_handle *h)
{
int id, ret;
u8 *prot_imp;
u32 version;
char name[SCMI_MAX_STR_SIZE];
const struct scmi_handle *handle = h;
struct device *dev = handle->dev;
struct scmi_revision_info *rev = handle->version;
ret = scmi_version_get(handle, SCMI_PROTOCOL_BASE, &version);
if (ret)
return ret;
prot_imp = devm_kcalloc(dev, MAX_PROTOCOLS_IMP, sizeof(u8), GFP_KERNEL);
if (!prot_imp)
return -ENOMEM;
rev->major_ver = PROTOCOL_REV_MAJOR(version),
rev->minor_ver = PROTOCOL_REV_MINOR(version);
scmi_base_attributes_get(handle);
scmi_base_vendor_id_get(handle, false);
scmi_base_vendor_id_get(handle, true);
scmi_base_implementation_version_get(handle);
scmi_base_implementation_list_get(handle, prot_imp);
scmi_setup_protocol_implemented(handle, prot_imp);
dev_info(dev, "SCMI Protocol v%d.%d '%s:%s' Firmware version 0x%x\n",
rev->major_ver, rev->minor_ver, rev->vendor_id,
rev->sub_vendor_id, rev->impl_ver);
dev_dbg(dev, "Found %d protocol(s) %d agent(s)\n", rev->num_protocols,
rev->num_agents);
for (id = 0; id < rev->num_agents; id++) {
scmi_base_discover_agent_get(handle, id, name);
dev_dbg(dev, "Agent %d: %s\n", id, name);
}
return 0;
}

View File

@ -0,0 +1,221 @@
// SPDX-License-Identifier: GPL-2.0
/*
* System Control and Management Interface (SCMI) Message Protocol bus layer
*
* Copyright (C) 2018 ARM Ltd.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/types.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/device.h>
#include "common.h"
static DEFINE_IDA(scmi_bus_id);
static DEFINE_IDR(scmi_protocols);
static DEFINE_SPINLOCK(protocol_lock);
static const struct scmi_device_id *
scmi_dev_match_id(struct scmi_device *scmi_dev, struct scmi_driver *scmi_drv)
{
const struct scmi_device_id *id = scmi_drv->id_table;
if (!id)
return NULL;
for (; id->protocol_id; id++)
if (id->protocol_id == scmi_dev->protocol_id)
return id;
return NULL;
}
static int scmi_dev_match(struct device *dev, struct device_driver *drv)
{
struct scmi_driver *scmi_drv = to_scmi_driver(drv);
struct scmi_device *scmi_dev = to_scmi_dev(dev);
const struct scmi_device_id *id;
id = scmi_dev_match_id(scmi_dev, scmi_drv);
if (id)
return 1;
return 0;
}
static int scmi_protocol_init(int protocol_id, struct scmi_handle *handle)
{
scmi_prot_init_fn_t fn = idr_find(&scmi_protocols, protocol_id);
if (unlikely(!fn))
return -EINVAL;
return fn(handle);
}
static int scmi_dev_probe(struct device *dev)
{
struct scmi_driver *scmi_drv = to_scmi_driver(dev->driver);
struct scmi_device *scmi_dev = to_scmi_dev(dev);
const struct scmi_device_id *id;
int ret;
id = scmi_dev_match_id(scmi_dev, scmi_drv);
if (!id)
return -ENODEV;
if (!scmi_dev->handle)
return -EPROBE_DEFER;
ret = scmi_protocol_init(scmi_dev->protocol_id, scmi_dev->handle);
if (ret)
return ret;
return scmi_drv->probe(scmi_dev);
}
static int scmi_dev_remove(struct device *dev)
{
struct scmi_driver *scmi_drv = to_scmi_driver(dev->driver);
struct scmi_device *scmi_dev = to_scmi_dev(dev);
if (scmi_drv->remove)
scmi_drv->remove(scmi_dev);
return 0;
}
static struct bus_type scmi_bus_type = {
.name = "scmi_protocol",
.match = scmi_dev_match,
.probe = scmi_dev_probe,
.remove = scmi_dev_remove,
};
int scmi_driver_register(struct scmi_driver *driver, struct module *owner,
const char *mod_name)
{
int retval;
driver->driver.bus = &scmi_bus_type;
driver->driver.name = driver->name;
driver->driver.owner = owner;
driver->driver.mod_name = mod_name;
retval = driver_register(&driver->driver);
if (!retval)
pr_debug("registered new scmi driver %s\n", driver->name);
return retval;
}
EXPORT_SYMBOL_GPL(scmi_driver_register);
void scmi_driver_unregister(struct scmi_driver *driver)
{
driver_unregister(&driver->driver);
}
EXPORT_SYMBOL_GPL(scmi_driver_unregister);
struct scmi_device *
scmi_device_create(struct device_node *np, struct device *parent, int protocol)
{
int id, retval;
struct scmi_device *scmi_dev;
id = ida_simple_get(&scmi_bus_id, 1, 0, GFP_KERNEL);
if (id < 0)
return NULL;
scmi_dev = kzalloc(sizeof(*scmi_dev), GFP_KERNEL);
if (!scmi_dev)
goto no_mem;
scmi_dev->id = id;
scmi_dev->protocol_id = protocol;
scmi_dev->dev.parent = parent;
scmi_dev->dev.of_node = np;
scmi_dev->dev.bus = &scmi_bus_type;
dev_set_name(&scmi_dev->dev, "scmi_dev.%d", id);
retval = device_register(&scmi_dev->dev);
if (!retval)
return scmi_dev;
put_device(&scmi_dev->dev);
kfree(scmi_dev);
no_mem:
ida_simple_remove(&scmi_bus_id, id);
return NULL;
}
void scmi_device_destroy(struct scmi_device *scmi_dev)
{
scmi_handle_put(scmi_dev->handle);
device_unregister(&scmi_dev->dev);
ida_simple_remove(&scmi_bus_id, scmi_dev->id);
kfree(scmi_dev);
}
void scmi_set_handle(struct scmi_device *scmi_dev)
{
scmi_dev->handle = scmi_handle_get(&scmi_dev->dev);
}
int scmi_protocol_register(int protocol_id, scmi_prot_init_fn_t fn)
{
int ret;
spin_lock(&protocol_lock);
ret = idr_alloc(&scmi_protocols, fn, protocol_id, protocol_id + 1,
GFP_ATOMIC);
if (ret != protocol_id)
pr_err("unable to allocate SCMI idr slot, err %d\n", ret);
spin_unlock(&protocol_lock);
return ret;
}
EXPORT_SYMBOL_GPL(scmi_protocol_register);
void scmi_protocol_unregister(int protocol_id)
{
spin_lock(&protocol_lock);
idr_remove(&scmi_protocols, protocol_id);
spin_unlock(&protocol_lock);
}
EXPORT_SYMBOL_GPL(scmi_protocol_unregister);
static int __scmi_devices_unregister(struct device *dev, void *data)
{
struct scmi_device *scmi_dev = to_scmi_dev(dev);
scmi_device_destroy(scmi_dev);
return 0;
}
static void scmi_devices_unregister(void)
{
bus_for_each_dev(&scmi_bus_type, NULL, NULL, __scmi_devices_unregister);
}
static int __init scmi_bus_init(void)
{
int retval;
retval = bus_register(&scmi_bus_type);
if (retval)
pr_err("scmi protocol bus register failed (%d)\n", retval);
return retval;
}
subsys_initcall(scmi_bus_init);
static void __exit scmi_bus_exit(void)
{
scmi_devices_unregister();
bus_unregister(&scmi_bus_type);
ida_destroy(&scmi_bus_id);
}
module_exit(scmi_bus_exit);

View File

@ -0,0 +1,343 @@
// SPDX-License-Identifier: GPL-2.0
/*
* System Control and Management Interface (SCMI) Clock Protocol
*
* Copyright (C) 2018 ARM Ltd.
*/
#include "common.h"
enum scmi_clock_protocol_cmd {
CLOCK_ATTRIBUTES = 0x3,
CLOCK_DESCRIBE_RATES = 0x4,
CLOCK_RATE_SET = 0x5,
CLOCK_RATE_GET = 0x6,
CLOCK_CONFIG_SET = 0x7,
};
struct scmi_msg_resp_clock_protocol_attributes {
__le16 num_clocks;
u8 max_async_req;
u8 reserved;
};
struct scmi_msg_resp_clock_attributes {
__le32 attributes;
#define CLOCK_ENABLE BIT(0)
u8 name[SCMI_MAX_STR_SIZE];
};
struct scmi_clock_set_config {
__le32 id;
__le32 attributes;
};
struct scmi_msg_clock_describe_rates {
__le32 id;
__le32 rate_index;
};
struct scmi_msg_resp_clock_describe_rates {
__le32 num_rates_flags;
#define NUM_RETURNED(x) ((x) & 0xfff)
#define RATE_DISCRETE(x) !((x) & BIT(12))
#define NUM_REMAINING(x) ((x) >> 16)
struct {
__le32 value_low;
__le32 value_high;
} rate[0];
#define RATE_TO_U64(X) \
({ \
typeof(X) x = (X); \
le32_to_cpu((x).value_low) | (u64)le32_to_cpu((x).value_high) << 32; \
})
};
struct scmi_clock_set_rate {
__le32 flags;
#define CLOCK_SET_ASYNC BIT(0)
#define CLOCK_SET_DELAYED BIT(1)
#define CLOCK_SET_ROUND_UP BIT(2)
#define CLOCK_SET_ROUND_AUTO BIT(3)
__le32 id;
__le32 value_low;
__le32 value_high;
};
struct clock_info {
int num_clocks;
int max_async_req;
struct scmi_clock_info *clk;
};
static int scmi_clock_protocol_attributes_get(const struct scmi_handle *handle,
struct clock_info *ci)
{
int ret;
struct scmi_xfer *t;
struct scmi_msg_resp_clock_protocol_attributes *attr;
ret = scmi_one_xfer_init(handle, PROTOCOL_ATTRIBUTES,
SCMI_PROTOCOL_CLOCK, 0, sizeof(*attr), &t);
if (ret)
return ret;
attr = t->rx.buf;
ret = scmi_do_xfer(handle, t);
if (!ret) {
ci->num_clocks = le16_to_cpu(attr->num_clocks);
ci->max_async_req = attr->max_async_req;
}
scmi_one_xfer_put(handle, t);
return ret;
}
static int scmi_clock_attributes_get(const struct scmi_handle *handle,
u32 clk_id, struct scmi_clock_info *clk)
{
int ret;
struct scmi_xfer *t;
struct scmi_msg_resp_clock_attributes *attr;
ret = scmi_one_xfer_init(handle, CLOCK_ATTRIBUTES, SCMI_PROTOCOL_CLOCK,
sizeof(clk_id), sizeof(*attr), &t);
if (ret)
return ret;
*(__le32 *)t->tx.buf = cpu_to_le32(clk_id);
attr = t->rx.buf;
ret = scmi_do_xfer(handle, t);
if (!ret)
memcpy(clk->name, attr->name, SCMI_MAX_STR_SIZE);
else
clk->name[0] = '\0';
scmi_one_xfer_put(handle, t);
return ret;
}
static int
scmi_clock_describe_rates_get(const struct scmi_handle *handle, u32 clk_id,
struct scmi_clock_info *clk)
{
u64 *rate;
int ret, cnt;
bool rate_discrete = false;
u32 tot_rate_cnt = 0, rates_flag;
u16 num_returned, num_remaining;
struct scmi_xfer *t;
struct scmi_msg_clock_describe_rates *clk_desc;
struct scmi_msg_resp_clock_describe_rates *rlist;
ret = scmi_one_xfer_init(handle, CLOCK_DESCRIBE_RATES,
SCMI_PROTOCOL_CLOCK, sizeof(*clk_desc), 0, &t);
if (ret)
return ret;
clk_desc = t->tx.buf;
rlist = t->rx.buf;
do {
clk_desc->id = cpu_to_le32(clk_id);
/* Set the number of rates to be skipped/already read */
clk_desc->rate_index = cpu_to_le32(tot_rate_cnt);
ret = scmi_do_xfer(handle, t);
if (ret)
goto err;
rates_flag = le32_to_cpu(rlist->num_rates_flags);
num_remaining = NUM_REMAINING(rates_flag);
rate_discrete = RATE_DISCRETE(rates_flag);
num_returned = NUM_RETURNED(rates_flag);
if (tot_rate_cnt + num_returned > SCMI_MAX_NUM_RATES) {
dev_err(handle->dev, "No. of rates > MAX_NUM_RATES");
break;
}
if (!rate_discrete) {
clk->range.min_rate = RATE_TO_U64(rlist->rate[0]);
clk->range.max_rate = RATE_TO_U64(rlist->rate[1]);
clk->range.step_size = RATE_TO_U64(rlist->rate[2]);
dev_dbg(handle->dev, "Min %llu Max %llu Step %llu Hz\n",
clk->range.min_rate, clk->range.max_rate,
clk->range.step_size);
break;
}
rate = &clk->list.rates[tot_rate_cnt];
for (cnt = 0; cnt < num_returned; cnt++, rate++) {
*rate = RATE_TO_U64(rlist->rate[cnt]);
dev_dbg(handle->dev, "Rate %llu Hz\n", *rate);
}
tot_rate_cnt += num_returned;
/*
* check for both returned and remaining to avoid infinite
* loop due to buggy firmware
*/
} while (num_returned && num_remaining);
if (rate_discrete)
clk->list.num_rates = tot_rate_cnt;
err:
scmi_one_xfer_put(handle, t);
return ret;
}
static int
scmi_clock_rate_get(const struct scmi_handle *handle, u32 clk_id, u64 *value)
{
int ret;
struct scmi_xfer *t;
ret = scmi_one_xfer_init(handle, CLOCK_RATE_GET, SCMI_PROTOCOL_CLOCK,
sizeof(__le32), sizeof(u64), &t);
if (ret)
return ret;
*(__le32 *)t->tx.buf = cpu_to_le32(clk_id);
ret = scmi_do_xfer(handle, t);
if (!ret) {
__le32 *pval = t->rx.buf;
*value = le32_to_cpu(*pval);
*value |= (u64)le32_to_cpu(*(pval + 1)) << 32;
}
scmi_one_xfer_put(handle, t);
return ret;
}
static int scmi_clock_rate_set(const struct scmi_handle *handle, u32 clk_id,
u32 config, u64 rate)
{
int ret;
struct scmi_xfer *t;
struct scmi_clock_set_rate *cfg;
ret = scmi_one_xfer_init(handle, CLOCK_RATE_SET, SCMI_PROTOCOL_CLOCK,
sizeof(*cfg), 0, &t);
if (ret)
return ret;
cfg = t->tx.buf;
cfg->flags = cpu_to_le32(config);
cfg->id = cpu_to_le32(clk_id);
cfg->value_low = cpu_to_le32(rate & 0xffffffff);
cfg->value_high = cpu_to_le32(rate >> 32);
ret = scmi_do_xfer(handle, t);
scmi_one_xfer_put(handle, t);
return ret;
}
static int
scmi_clock_config_set(const struct scmi_handle *handle, u32 clk_id, u32 config)
{
int ret;
struct scmi_xfer *t;
struct scmi_clock_set_config *cfg;
ret = scmi_one_xfer_init(handle, CLOCK_CONFIG_SET, SCMI_PROTOCOL_CLOCK,
sizeof(*cfg), 0, &t);
if (ret)
return ret;
cfg = t->tx.buf;
cfg->id = cpu_to_le32(clk_id);
cfg->attributes = cpu_to_le32(config);
ret = scmi_do_xfer(handle, t);
scmi_one_xfer_put(handle, t);
return ret;
}
static int scmi_clock_enable(const struct scmi_handle *handle, u32 clk_id)
{
return scmi_clock_config_set(handle, clk_id, CLOCK_ENABLE);
}
static int scmi_clock_disable(const struct scmi_handle *handle, u32 clk_id)
{
return scmi_clock_config_set(handle, clk_id, 0);
}
static int scmi_clock_count_get(const struct scmi_handle *handle)
{
struct clock_info *ci = handle->clk_priv;
return ci->num_clocks;
}
static const struct scmi_clock_info *
scmi_clock_info_get(const struct scmi_handle *handle, u32 clk_id)
{
struct clock_info *ci = handle->clk_priv;
struct scmi_clock_info *clk = ci->clk + clk_id;
if (!clk->name || !clk->name[0])
return NULL;
return clk;
}
static struct scmi_clk_ops clk_ops = {
.count_get = scmi_clock_count_get,
.info_get = scmi_clock_info_get,
.rate_get = scmi_clock_rate_get,
.rate_set = scmi_clock_rate_set,
.enable = scmi_clock_enable,
.disable = scmi_clock_disable,
};
static int scmi_clock_protocol_init(struct scmi_handle *handle)
{
u32 version;
int clkid, ret;
struct clock_info *cinfo;
scmi_version_get(handle, SCMI_PROTOCOL_CLOCK, &version);
dev_dbg(handle->dev, "Clock Version %d.%d\n",
PROTOCOL_REV_MAJOR(version), PROTOCOL_REV_MINOR(version));
cinfo = devm_kzalloc(handle->dev, sizeof(*cinfo), GFP_KERNEL);
if (!cinfo)
return -ENOMEM;
scmi_clock_protocol_attributes_get(handle, cinfo);
cinfo->clk = devm_kcalloc(handle->dev, cinfo->num_clocks,
sizeof(*cinfo->clk), GFP_KERNEL);
if (!cinfo->clk)
return -ENOMEM;
for (clkid = 0; clkid < cinfo->num_clocks; clkid++) {
struct scmi_clock_info *clk = cinfo->clk + clkid;
ret = scmi_clock_attributes_get(handle, clkid, clk);
if (!ret)
scmi_clock_describe_rates_get(handle, clkid, clk);
}
handle->clk_ops = &clk_ops;
handle->clk_priv = cinfo;
return 0;
}
static int __init scmi_clock_init(void)
{
return scmi_protocol_register(SCMI_PROTOCOL_CLOCK,
&scmi_clock_protocol_init);
}
subsys_initcall(scmi_clock_init);

View File

@ -0,0 +1,105 @@
// SPDX-License-Identifier: GPL-2.0
/*
* System Control and Management Interface (SCMI) Message Protocol
* driver common header file containing some definitions, structures
* and function prototypes used in all the different SCMI protocols.
*
* Copyright (C) 2018 ARM Ltd.
*/
#include <linux/completion.h>
#include <linux/device.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/scmi_protocol.h>
#include <linux/types.h>
#define PROTOCOL_REV_MINOR_BITS 16
#define PROTOCOL_REV_MINOR_MASK ((1U << PROTOCOL_REV_MINOR_BITS) - 1)
#define PROTOCOL_REV_MAJOR(x) ((x) >> PROTOCOL_REV_MINOR_BITS)
#define PROTOCOL_REV_MINOR(x) ((x) & PROTOCOL_REV_MINOR_MASK)
#define MAX_PROTOCOLS_IMP 16
#define MAX_OPPS 16
enum scmi_common_cmd {
PROTOCOL_VERSION = 0x0,
PROTOCOL_ATTRIBUTES = 0x1,
PROTOCOL_MESSAGE_ATTRIBUTES = 0x2,
};
/**
* struct scmi_msg_resp_prot_version - Response for a message
*
* @major_version: Major version of the ABI that firmware supports
* @minor_version: Minor version of the ABI that firmware supports
*
* In general, ABI version changes follow the rule that minor version increments
* are backward compatible. Major revision changes in ABI may not be
* backward compatible.
*
* Response to a generic message with message type SCMI_MSG_VERSION
*/
struct scmi_msg_resp_prot_version {
__le16 minor_version;
__le16 major_version;
};
/**
* struct scmi_msg_hdr - Message(Tx/Rx) header
*
* @id: The identifier of the command being sent
* @protocol_id: The identifier of the protocol used to send @id command
* @seq: The token to identify the message. when a message/command returns,
* the platform returns the whole message header unmodified including
* the token.
*/
struct scmi_msg_hdr {
u8 id;
u8 protocol_id;
u16 seq;
u32 status;
bool poll_completion;
};
/**
* struct scmi_msg - Message(Tx/Rx) structure
*
* @buf: Buffer pointer
* @len: Length of data in the Buffer
*/
struct scmi_msg {
void *buf;
size_t len;
};
/**
* struct scmi_xfer - Structure representing a message flow
*
* @hdr: Transmit message header
* @tx: Transmit message
* @rx: Receive message, the buffer should be pre-allocated to store
* message. If request-ACK protocol is used, we can reuse the same
* buffer for the rx path as we use for the tx path.
* @done: completion event
*/
struct scmi_xfer {
void *con_priv;
struct scmi_msg_hdr hdr;
struct scmi_msg tx;
struct scmi_msg rx;
struct completion done;
};
void scmi_one_xfer_put(const struct scmi_handle *h, struct scmi_xfer *xfer);
int scmi_do_xfer(const struct scmi_handle *h, struct scmi_xfer *xfer);
int scmi_one_xfer_init(const struct scmi_handle *h, u8 msg_id, u8 prot_id,
size_t tx_size, size_t rx_size, struct scmi_xfer **p);
int scmi_handle_put(const struct scmi_handle *handle);
struct scmi_handle *scmi_handle_get(struct device *dev);
void scmi_set_handle(struct scmi_device *scmi_dev);
int scmi_version_get(const struct scmi_handle *h, u8 protocol, u32 *version);
void scmi_setup_protocol_implemented(const struct scmi_handle *handle,
u8 *prot_imp);
int scmi_base_protocol_init(struct scmi_handle *h);

View File

@ -0,0 +1,871 @@
// SPDX-License-Identifier: GPL-2.0
/*
* System Control and Management Interface (SCMI) Message Protocol driver
*
* SCMI Message Protocol is used between the System Control Processor(SCP)
* and the Application Processors(AP). The Message Handling Unit(MHU)
* provides a mechanism for inter-processor communication between SCP's
* Cortex M3 and AP.
*
* SCP offers control and management of the core/cluster power states,
* various power domain DVFS including the core/cluster, certain system
* clocks configuration, thermal sensors and many others.
*
* Copyright (C) 2018 ARM Ltd.
*/
#include <linux/bitmap.h>
#include <linux/export.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/ktime.h>
#include <linux/mailbox_client.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/processor.h>
#include <linux/semaphore.h>
#include <linux/slab.h>
#include "common.h"
#define MSG_ID_SHIFT 0
#define MSG_ID_MASK 0xff
#define MSG_TYPE_SHIFT 8
#define MSG_TYPE_MASK 0x3
#define MSG_PROTOCOL_ID_SHIFT 10
#define MSG_PROTOCOL_ID_MASK 0xff
#define MSG_TOKEN_ID_SHIFT 18
#define MSG_TOKEN_ID_MASK 0x3ff
#define MSG_XTRACT_TOKEN(header) \
(((header) >> MSG_TOKEN_ID_SHIFT) & MSG_TOKEN_ID_MASK)
enum scmi_error_codes {
SCMI_SUCCESS = 0, /* Success */
SCMI_ERR_SUPPORT = -1, /* Not supported */
SCMI_ERR_PARAMS = -2, /* Invalid Parameters */
SCMI_ERR_ACCESS = -3, /* Invalid access/permission denied */
SCMI_ERR_ENTRY = -4, /* Not found */
SCMI_ERR_RANGE = -5, /* Value out of range */
SCMI_ERR_BUSY = -6, /* Device busy */
SCMI_ERR_COMMS = -7, /* Communication Error */
SCMI_ERR_GENERIC = -8, /* Generic Error */
SCMI_ERR_HARDWARE = -9, /* Hardware Error */
SCMI_ERR_PROTOCOL = -10,/* Protocol Error */
SCMI_ERR_MAX
};
/* List of all SCMI devices active in system */
static LIST_HEAD(scmi_list);
/* Protection for the entire list */
static DEFINE_MUTEX(scmi_list_mutex);
/**
* struct scmi_xfers_info - Structure to manage transfer information
*
* @xfer_block: Preallocated Message array
* @xfer_alloc_table: Bitmap table for allocated messages.
* Index of this bitmap table is also used for message
* sequence identifier.
* @xfer_lock: Protection for message allocation
*/
struct scmi_xfers_info {
struct scmi_xfer *xfer_block;
unsigned long *xfer_alloc_table;
/* protect transfer allocation */
spinlock_t xfer_lock;
};
/**
* struct scmi_desc - Description of SoC integration
*
* @max_rx_timeout_ms: Timeout for communication with SoC (in Milliseconds)
* @max_msg: Maximum number of messages that can be pending
* simultaneously in the system
* @max_msg_size: Maximum size of data per message that can be handled.
*/
struct scmi_desc {
int max_rx_timeout_ms;
int max_msg;
int max_msg_size;
};
/**
* struct scmi_chan_info - Structure representing a SCMI channel informfation
*
* @cl: Mailbox Client
* @chan: Transmit/Receive mailbox channel
* @payload: Transmit/Receive mailbox channel payload area
* @dev: Reference to device in the SCMI hierarchy corresponding to this
* channel
*/
struct scmi_chan_info {
struct mbox_client cl;
struct mbox_chan *chan;
void __iomem *payload;
struct device *dev;
struct scmi_handle *handle;
};
/**
* struct scmi_info - Structure representing a SCMI instance
*
* @dev: Device pointer
* @desc: SoC description for this instance
* @handle: Instance of SCMI handle to send to clients
* @version: SCMI revision information containing protocol version,
* implementation version and (sub-)vendor identification.
* @minfo: Message info
* @tx_idr: IDR object to map protocol id to channel info pointer
* @protocols_imp: list of protocols implemented, currently maximum of
* MAX_PROTOCOLS_IMP elements allocated by the base protocol
* @node: list head
* @users: Number of users of this instance
*/
struct scmi_info {
struct device *dev;
const struct scmi_desc *desc;
struct scmi_revision_info version;
struct scmi_handle handle;
struct scmi_xfers_info minfo;
struct idr tx_idr;
u8 *protocols_imp;
struct list_head node;
int users;
};
#define client_to_scmi_chan_info(c) container_of(c, struct scmi_chan_info, cl)
#define handle_to_scmi_info(h) container_of(h, struct scmi_info, handle)
/*
* SCMI specification requires all parameters, message headers, return
* arguments or any protocol data to be expressed in little endian
* format only.
*/
struct scmi_shared_mem {
__le32 reserved;
__le32 channel_status;
#define SCMI_SHMEM_CHAN_STAT_CHANNEL_ERROR BIT(1)
#define SCMI_SHMEM_CHAN_STAT_CHANNEL_FREE BIT(0)
__le32 reserved1[2];
__le32 flags;
#define SCMI_SHMEM_FLAG_INTR_ENABLED BIT(0)
__le32 length;
__le32 msg_header;
u8 msg_payload[0];
};
static const int scmi_linux_errmap[] = {
/* better than switch case as long as return value is continuous */
0, /* SCMI_SUCCESS */
-EOPNOTSUPP, /* SCMI_ERR_SUPPORT */
-EINVAL, /* SCMI_ERR_PARAM */
-EACCES, /* SCMI_ERR_ACCESS */
-ENOENT, /* SCMI_ERR_ENTRY */
-ERANGE, /* SCMI_ERR_RANGE */
-EBUSY, /* SCMI_ERR_BUSY */
-ECOMM, /* SCMI_ERR_COMMS */
-EIO, /* SCMI_ERR_GENERIC */
-EREMOTEIO, /* SCMI_ERR_HARDWARE */
-EPROTO, /* SCMI_ERR_PROTOCOL */
};
static inline int scmi_to_linux_errno(int errno)
{
if (errno < SCMI_SUCCESS && errno > SCMI_ERR_MAX)
return scmi_linux_errmap[-errno];
return -EIO;
}
/**
* scmi_dump_header_dbg() - Helper to dump a message header.
*
* @dev: Device pointer corresponding to the SCMI entity
* @hdr: pointer to header.
*/
static inline void scmi_dump_header_dbg(struct device *dev,
struct scmi_msg_hdr *hdr)
{
dev_dbg(dev, "Command ID: %x Sequence ID: %x Protocol: %x\n",
hdr->id, hdr->seq, hdr->protocol_id);
}
static void scmi_fetch_response(struct scmi_xfer *xfer,
struct scmi_shared_mem __iomem *mem)
{
xfer->hdr.status = ioread32(mem->msg_payload);
/* Skip the length of header and statues in payload area i.e 8 bytes*/
xfer->rx.len = min_t(size_t, xfer->rx.len, ioread32(&mem->length) - 8);
/* Take a copy to the rx buffer.. */
memcpy_fromio(xfer->rx.buf, mem->msg_payload + 4, xfer->rx.len);
}
/**
* scmi_rx_callback() - mailbox client callback for receive messages
*
* @cl: client pointer
* @m: mailbox message
*
* Processes one received message to appropriate transfer information and
* signals completion of the transfer.
*
* NOTE: This function will be invoked in IRQ context, hence should be
* as optimal as possible.
*/
static void scmi_rx_callback(struct mbox_client *cl, void *m)
{
u16 xfer_id;
struct scmi_xfer *xfer;
struct scmi_chan_info *cinfo = client_to_scmi_chan_info(cl);
struct device *dev = cinfo->dev;
struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
struct scmi_xfers_info *minfo = &info->minfo;
struct scmi_shared_mem __iomem *mem = cinfo->payload;
xfer_id = MSG_XTRACT_TOKEN(ioread32(&mem->msg_header));
/*
* Are we even expecting this?
*/
if (!test_bit(xfer_id, minfo->xfer_alloc_table)) {
dev_err(dev, "message for %d is not expected!\n", xfer_id);
return;
}
xfer = &minfo->xfer_block[xfer_id];
scmi_dump_header_dbg(dev, &xfer->hdr);
/* Is the message of valid length? */
if (xfer->rx.len > info->desc->max_msg_size) {
dev_err(dev, "unable to handle %zu xfer(max %d)\n",
xfer->rx.len, info->desc->max_msg_size);
return;
}
scmi_fetch_response(xfer, mem);
complete(&xfer->done);
}
/**
* pack_scmi_header() - packs and returns 32-bit header
*
* @hdr: pointer to header containing all the information on message id,
* protocol id and sequence id.
*/
static inline u32 pack_scmi_header(struct scmi_msg_hdr *hdr)
{
return ((hdr->id & MSG_ID_MASK) << MSG_ID_SHIFT) |
((hdr->seq & MSG_TOKEN_ID_MASK) << MSG_TOKEN_ID_SHIFT) |
((hdr->protocol_id & MSG_PROTOCOL_ID_MASK) << MSG_PROTOCOL_ID_SHIFT);
}
/**
* scmi_tx_prepare() - mailbox client callback to prepare for the transfer
*
* @cl: client pointer
* @m: mailbox message
*
* This function prepares the shared memory which contains the header and the
* payload.
*/
static void scmi_tx_prepare(struct mbox_client *cl, void *m)
{
struct scmi_xfer *t = m;
struct scmi_chan_info *cinfo = client_to_scmi_chan_info(cl);
struct scmi_shared_mem __iomem *mem = cinfo->payload;
/* Mark channel busy + clear error */
iowrite32(0x0, &mem->channel_status);
iowrite32(t->hdr.poll_completion ? 0 : SCMI_SHMEM_FLAG_INTR_ENABLED,
&mem->flags);
iowrite32(sizeof(mem->msg_header) + t->tx.len, &mem->length);
iowrite32(pack_scmi_header(&t->hdr), &mem->msg_header);
if (t->tx.buf)
memcpy_toio(mem->msg_payload, t->tx.buf, t->tx.len);
}
/**
* scmi_one_xfer_get() - Allocate one message
*
* @handle: SCMI entity handle
*
* Helper function which is used by various command functions that are
* exposed to clients of this driver for allocating a message traffic event.
*
* This function can sleep depending on pending requests already in the system
* for the SCMI entity. Further, this also holds a spinlock to maintain
* integrity of internal data structures.
*
* Return: 0 if all went fine, else corresponding error.
*/
static struct scmi_xfer *scmi_one_xfer_get(const struct scmi_handle *handle)
{
u16 xfer_id;
struct scmi_xfer *xfer;
unsigned long flags, bit_pos;
struct scmi_info *info = handle_to_scmi_info(handle);
struct scmi_xfers_info *minfo = &info->minfo;
/* Keep the locked section as small as possible */
spin_lock_irqsave(&minfo->xfer_lock, flags);
bit_pos = find_first_zero_bit(minfo->xfer_alloc_table,
info->desc->max_msg);
if (bit_pos == info->desc->max_msg) {
spin_unlock_irqrestore(&minfo->xfer_lock, flags);
return ERR_PTR(-ENOMEM);
}
set_bit(bit_pos, minfo->xfer_alloc_table);
spin_unlock_irqrestore(&minfo->xfer_lock, flags);
xfer_id = bit_pos;
xfer = &minfo->xfer_block[xfer_id];
xfer->hdr.seq = xfer_id;
reinit_completion(&xfer->done);
return xfer;
}
/**
* scmi_one_xfer_put() - Release a message
*
* @minfo: transfer info pointer
* @xfer: message that was reserved by scmi_one_xfer_get
*
* This holds a spinlock to maintain integrity of internal data structures.
*/
void scmi_one_xfer_put(const struct scmi_handle *handle, struct scmi_xfer *xfer)
{
unsigned long flags;
struct scmi_info *info = handle_to_scmi_info(handle);
struct scmi_xfers_info *minfo = &info->minfo;
/*
* Keep the locked section as small as possible
* NOTE: we might escape with smp_mb and no lock here..
* but just be conservative and symmetric.
*/
spin_lock_irqsave(&minfo->xfer_lock, flags);
clear_bit(xfer->hdr.seq, minfo->xfer_alloc_table);
spin_unlock_irqrestore(&minfo->xfer_lock, flags);
}
static bool
scmi_xfer_poll_done(const struct scmi_chan_info *cinfo, struct scmi_xfer *xfer)
{
struct scmi_shared_mem __iomem *mem = cinfo->payload;
u16 xfer_id = MSG_XTRACT_TOKEN(ioread32(&mem->msg_header));
if (xfer->hdr.seq != xfer_id)
return false;
return ioread32(&mem->channel_status) &
(SCMI_SHMEM_CHAN_STAT_CHANNEL_ERROR |
SCMI_SHMEM_CHAN_STAT_CHANNEL_FREE);
}
#define SCMI_MAX_POLL_TO_NS (100 * NSEC_PER_USEC)
static bool scmi_xfer_done_no_timeout(const struct scmi_chan_info *cinfo,
struct scmi_xfer *xfer, ktime_t stop)
{
ktime_t __cur = ktime_get();
return scmi_xfer_poll_done(cinfo, xfer) || ktime_after(__cur, stop);
}
/**
* scmi_do_xfer() - Do one transfer
*
* @info: Pointer to SCMI entity information
* @xfer: Transfer to initiate and wait for response
*
* Return: -ETIMEDOUT in case of no response, if transmit error,
* return corresponding error, else if all goes well,
* return 0.
*/
int scmi_do_xfer(const struct scmi_handle *handle, struct scmi_xfer *xfer)
{
int ret;
int timeout;
struct scmi_info *info = handle_to_scmi_info(handle);
struct device *dev = info->dev;
struct scmi_chan_info *cinfo;
cinfo = idr_find(&info->tx_idr, xfer->hdr.protocol_id);
if (unlikely(!cinfo))
return -EINVAL;
ret = mbox_send_message(cinfo->chan, xfer);
if (ret < 0) {
dev_dbg(dev, "mbox send fail %d\n", ret);
return ret;
}
/* mbox_send_message returns non-negative value on success, so reset */
ret = 0;
if (xfer->hdr.poll_completion) {
ktime_t stop = ktime_add_ns(ktime_get(), SCMI_MAX_POLL_TO_NS);
spin_until_cond(scmi_xfer_done_no_timeout(cinfo, xfer, stop));
if (ktime_before(ktime_get(), stop))
scmi_fetch_response(xfer, cinfo->payload);
else
ret = -ETIMEDOUT;
} else {
/* And we wait for the response. */
timeout = msecs_to_jiffies(info->desc->max_rx_timeout_ms);
if (!wait_for_completion_timeout(&xfer->done, timeout)) {
dev_err(dev, "mbox timed out in resp(caller: %pS)\n",
(void *)_RET_IP_);
ret = -ETIMEDOUT;
}
}
if (!ret && xfer->hdr.status)
ret = scmi_to_linux_errno(xfer->hdr.status);
/*
* NOTE: we might prefer not to need the mailbox ticker to manage the
* transfer queueing since the protocol layer queues things by itself.
* Unfortunately, we have to kick the mailbox framework after we have
* received our message.
*/
mbox_client_txdone(cinfo->chan, ret);
return ret;
}
/**
* scmi_one_xfer_init() - Allocate and initialise one message
*
* @handle: SCMI entity handle
* @msg_id: Message identifier
* @msg_prot_id: Protocol identifier for the message
* @tx_size: transmit message size
* @rx_size: receive message size
* @p: pointer to the allocated and initialised message
*
* This function allocates the message using @scmi_one_xfer_get and
* initialise the header.
*
* Return: 0 if all went fine with @p pointing to message, else
* corresponding error.
*/
int scmi_one_xfer_init(const struct scmi_handle *handle, u8 msg_id, u8 prot_id,
size_t tx_size, size_t rx_size, struct scmi_xfer **p)
{
int ret;
struct scmi_xfer *xfer;
struct scmi_info *info = handle_to_scmi_info(handle);
struct device *dev = info->dev;
/* Ensure we have sane transfer sizes */
if (rx_size > info->desc->max_msg_size ||
tx_size > info->desc->max_msg_size)
return -ERANGE;
xfer = scmi_one_xfer_get(handle);
if (IS_ERR(xfer)) {
ret = PTR_ERR(xfer);
dev_err(dev, "failed to get free message slot(%d)\n", ret);
return ret;
}
xfer->tx.len = tx_size;
xfer->rx.len = rx_size ? : info->desc->max_msg_size;
xfer->hdr.id = msg_id;
xfer->hdr.protocol_id = prot_id;
xfer->hdr.poll_completion = false;
*p = xfer;
return 0;
}
/**
* scmi_version_get() - command to get the revision of the SCMI entity
*
* @handle: Handle to SCMI entity information
*
* Updates the SCMI information in the internal data structure.
*
* Return: 0 if all went fine, else return appropriate error.
*/
int scmi_version_get(const struct scmi_handle *handle, u8 protocol,
u32 *version)
{
int ret;
__le32 *rev_info;
struct scmi_xfer *t;
ret = scmi_one_xfer_init(handle, PROTOCOL_VERSION, protocol, 0,
sizeof(*version), &t);
if (ret)
return ret;
ret = scmi_do_xfer(handle, t);
if (!ret) {
rev_info = t->rx.buf;
*version = le32_to_cpu(*rev_info);
}
scmi_one_xfer_put(handle, t);
return ret;
}
void scmi_setup_protocol_implemented(const struct scmi_handle *handle,
u8 *prot_imp)
{
struct scmi_info *info = handle_to_scmi_info(handle);
info->protocols_imp = prot_imp;
}
static bool
scmi_is_protocol_implemented(const struct scmi_handle *handle, u8 prot_id)
{
int i;
struct scmi_info *info = handle_to_scmi_info(handle);
if (!info->protocols_imp)
return false;
for (i = 0; i < MAX_PROTOCOLS_IMP; i++)
if (info->protocols_imp[i] == prot_id)
return true;
return false;
}
/**
* scmi_handle_get() - Get the SCMI handle for a device
*
* @dev: pointer to device for which we want SCMI handle
*
* NOTE: The function does not track individual clients of the framework
* and is expected to be maintained by caller of SCMI protocol library.
* scmi_handle_put must be balanced with successful scmi_handle_get
*
* Return: pointer to handle if successful, NULL on error
*/
struct scmi_handle *scmi_handle_get(struct device *dev)
{
struct list_head *p;
struct scmi_info *info;
struct scmi_handle *handle = NULL;
mutex_lock(&scmi_list_mutex);
list_for_each(p, &scmi_list) {
info = list_entry(p, struct scmi_info, node);
if (dev->parent == info->dev) {
handle = &info->handle;
info->users++;
break;
}
}
mutex_unlock(&scmi_list_mutex);
return handle;
}
/**
* scmi_handle_put() - Release the handle acquired by scmi_handle_get
*
* @handle: handle acquired by scmi_handle_get
*
* NOTE: The function does not track individual clients of the framework
* and is expected to be maintained by caller of SCMI protocol library.
* scmi_handle_put must be balanced with successful scmi_handle_get
*
* Return: 0 is successfully released
* if null was passed, it returns -EINVAL;
*/
int scmi_handle_put(const struct scmi_handle *handle)
{
struct scmi_info *info;
if (!handle)
return -EINVAL;
info = handle_to_scmi_info(handle);
mutex_lock(&scmi_list_mutex);
if (!WARN_ON(!info->users))
info->users--;
mutex_unlock(&scmi_list_mutex);
return 0;
}
static const struct scmi_desc scmi_generic_desc = {
.max_rx_timeout_ms = 30, /* we may increase this if required */
.max_msg = 20, /* Limited by MBOX_TX_QUEUE_LEN */
.max_msg_size = 128,
};
/* Each compatible listed below must have descriptor associated with it */
static const struct of_device_id scmi_of_match[] = {
{ .compatible = "arm,scmi", .data = &scmi_generic_desc },
{ /* Sentinel */ },
};
MODULE_DEVICE_TABLE(of, scmi_of_match);
static int scmi_xfer_info_init(struct scmi_info *sinfo)
{
int i;
struct scmi_xfer *xfer;
struct device *dev = sinfo->dev;
const struct scmi_desc *desc = sinfo->desc;
struct scmi_xfers_info *info = &sinfo->minfo;
/* Pre-allocated messages, no more than what hdr.seq can support */
if (WARN_ON(desc->max_msg >= (MSG_TOKEN_ID_MASK + 1))) {
dev_err(dev, "Maximum message of %d exceeds supported %d\n",
desc->max_msg, MSG_TOKEN_ID_MASK + 1);
return -EINVAL;
}
info->xfer_block = devm_kcalloc(dev, desc->max_msg,
sizeof(*info->xfer_block), GFP_KERNEL);
if (!info->xfer_block)
return -ENOMEM;
info->xfer_alloc_table = devm_kcalloc(dev, BITS_TO_LONGS(desc->max_msg),
sizeof(long), GFP_KERNEL);
if (!info->xfer_alloc_table)
return -ENOMEM;
bitmap_zero(info->xfer_alloc_table, desc->max_msg);
/* Pre-initialize the buffer pointer to pre-allocated buffers */
for (i = 0, xfer = info->xfer_block; i < desc->max_msg; i++, xfer++) {
xfer->rx.buf = devm_kcalloc(dev, sizeof(u8), desc->max_msg_size,
GFP_KERNEL);
if (!xfer->rx.buf)
return -ENOMEM;
xfer->tx.buf = xfer->rx.buf;
init_completion(&xfer->done);
}
spin_lock_init(&info->xfer_lock);
return 0;
}
static int scmi_mailbox_check(struct device_node *np)
{
struct of_phandle_args arg;
return of_parse_phandle_with_args(np, "mboxes", "#mbox-cells", 0, &arg);
}
static int scmi_mbox_free_channel(int id, void *p, void *data)
{
struct scmi_chan_info *cinfo = p;
struct idr *idr = data;
if (!IS_ERR_OR_NULL(cinfo->chan)) {
mbox_free_channel(cinfo->chan);
cinfo->chan = NULL;
}
idr_remove(idr, id);
return 0;
}
static int scmi_remove(struct platform_device *pdev)
{
int ret = 0;
struct scmi_info *info = platform_get_drvdata(pdev);
struct idr *idr = &info->tx_idr;
mutex_lock(&scmi_list_mutex);
if (info->users)
ret = -EBUSY;
else
list_del(&info->node);
mutex_unlock(&scmi_list_mutex);
if (!ret) {
/* Safe to free channels since no more users */
ret = idr_for_each(idr, scmi_mbox_free_channel, idr);
idr_destroy(&info->tx_idr);
}
return ret;
}
static inline int
scmi_mbox_chan_setup(struct scmi_info *info, struct device *dev, int prot_id)
{
int ret;
struct resource res;
resource_size_t size;
struct device_node *shmem, *np = dev->of_node;
struct scmi_chan_info *cinfo;
struct mbox_client *cl;
if (scmi_mailbox_check(np)) {
cinfo = idr_find(&info->tx_idr, SCMI_PROTOCOL_BASE);
goto idr_alloc;
}
cinfo = devm_kzalloc(info->dev, sizeof(*cinfo), GFP_KERNEL);
if (!cinfo)
return -ENOMEM;
cinfo->dev = dev;
cl = &cinfo->cl;
cl->dev = dev;
cl->rx_callback = scmi_rx_callback;
cl->tx_prepare = scmi_tx_prepare;
cl->tx_block = false;
cl->knows_txdone = true;
shmem = of_parse_phandle(np, "shmem", 0);
ret = of_address_to_resource(shmem, 0, &res);
of_node_put(shmem);
if (ret) {
dev_err(dev, "failed to get SCMI Tx payload mem resource\n");
return ret;
}
size = resource_size(&res);
cinfo->payload = devm_ioremap(info->dev, res.start, size);
if (!cinfo->payload) {
dev_err(dev, "failed to ioremap SCMI Tx payload\n");
return -EADDRNOTAVAIL;
}
/* Transmit channel is first entry i.e. index 0 */
cinfo->chan = mbox_request_channel(cl, 0);
if (IS_ERR(cinfo->chan)) {
ret = PTR_ERR(cinfo->chan);
if (ret != -EPROBE_DEFER)
dev_err(dev, "failed to request SCMI Tx mailbox\n");
return ret;
}
idr_alloc:
ret = idr_alloc(&info->tx_idr, cinfo, prot_id, prot_id + 1, GFP_KERNEL);
if (ret != prot_id) {
dev_err(dev, "unable to allocate SCMI idr slot err %d\n", ret);
return ret;
}
cinfo->handle = &info->handle;
return 0;
}
static inline void
scmi_create_protocol_device(struct device_node *np, struct scmi_info *info,
int prot_id)
{
struct scmi_device *sdev;
sdev = scmi_device_create(np, info->dev, prot_id);
if (!sdev) {
dev_err(info->dev, "failed to create %d protocol device\n",
prot_id);
return;
}
if (scmi_mbox_chan_setup(info, &sdev->dev, prot_id)) {
dev_err(&sdev->dev, "failed to setup transport\n");
scmi_device_destroy(sdev);
}
/* setup handle now as the transport is ready */
scmi_set_handle(sdev);
}
static int scmi_probe(struct platform_device *pdev)
{
int ret;
struct scmi_handle *handle;
const struct scmi_desc *desc;
struct scmi_info *info;
struct device *dev = &pdev->dev;
struct device_node *child, *np = dev->of_node;
/* Only mailbox method supported, check for the presence of one */
if (scmi_mailbox_check(np)) {
dev_err(dev, "no mailbox found in %pOF\n", np);
return -EINVAL;
}
desc = of_match_device(scmi_of_match, dev)->data;
info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL);
if (!info)
return -ENOMEM;
info->dev = dev;
info->desc = desc;
INIT_LIST_HEAD(&info->node);
ret = scmi_xfer_info_init(info);
if (ret)
return ret;
platform_set_drvdata(pdev, info);
idr_init(&info->tx_idr);
handle = &info->handle;
handle->dev = info->dev;
handle->version = &info->version;
ret = scmi_mbox_chan_setup(info, dev, SCMI_PROTOCOL_BASE);
if (ret)
return ret;
ret = scmi_base_protocol_init(handle);
if (ret) {
dev_err(dev, "unable to communicate with SCMI(%d)\n", ret);
return ret;
}
mutex_lock(&scmi_list_mutex);
list_add_tail(&info->node, &scmi_list);
mutex_unlock(&scmi_list_mutex);
for_each_available_child_of_node(np, child) {
u32 prot_id;
if (of_property_read_u32(child, "reg", &prot_id))
continue;
prot_id &= MSG_PROTOCOL_ID_MASK;
if (!scmi_is_protocol_implemented(handle, prot_id)) {
dev_err(dev, "SCMI protocol %d not implemented\n",
prot_id);
continue;
}
scmi_create_protocol_device(child, info, prot_id);
}
return 0;
}
static struct platform_driver scmi_driver = {
.driver = {
.name = "arm-scmi",
.of_match_table = scmi_of_match,
},
.probe = scmi_probe,
.remove = scmi_remove,
};
module_platform_driver(scmi_driver);
MODULE_ALIAS("platform: arm-scmi");
MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>");
MODULE_DESCRIPTION("ARM SCMI protocol driver");
MODULE_LICENSE("GPL v2");

View File

@ -0,0 +1,481 @@
// SPDX-License-Identifier: GPL-2.0
/*
* System Control and Management Interface (SCMI) Performance Protocol
*
* Copyright (C) 2018 ARM Ltd.
*/
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_opp.h>
#include <linux/sort.h>
#include "common.h"
enum scmi_performance_protocol_cmd {
PERF_DOMAIN_ATTRIBUTES = 0x3,
PERF_DESCRIBE_LEVELS = 0x4,
PERF_LIMITS_SET = 0x5,
PERF_LIMITS_GET = 0x6,
PERF_LEVEL_SET = 0x7,
PERF_LEVEL_GET = 0x8,
PERF_NOTIFY_LIMITS = 0x9,
PERF_NOTIFY_LEVEL = 0xa,
};
struct scmi_opp {
u32 perf;
u32 power;
u32 trans_latency_us;
};
struct scmi_msg_resp_perf_attributes {
__le16 num_domains;
__le16 flags;
#define POWER_SCALE_IN_MILLIWATT(x) ((x) & BIT(0))
__le32 stats_addr_low;
__le32 stats_addr_high;
__le32 stats_size;
};
struct scmi_msg_resp_perf_domain_attributes {
__le32 flags;
#define SUPPORTS_SET_LIMITS(x) ((x) & BIT(31))
#define SUPPORTS_SET_PERF_LVL(x) ((x) & BIT(30))
#define SUPPORTS_PERF_LIMIT_NOTIFY(x) ((x) & BIT(29))
#define SUPPORTS_PERF_LEVEL_NOTIFY(x) ((x) & BIT(28))
__le32 rate_limit_us;
__le32 sustained_freq_khz;
__le32 sustained_perf_level;
u8 name[SCMI_MAX_STR_SIZE];
};
struct scmi_msg_perf_describe_levels {
__le32 domain;
__le32 level_index;
};
struct scmi_perf_set_limits {
__le32 domain;
__le32 max_level;
__le32 min_level;
};
struct scmi_perf_get_limits {
__le32 max_level;
__le32 min_level;
};
struct scmi_perf_set_level {
__le32 domain;
__le32 level;
};
struct scmi_perf_notify_level_or_limits {
__le32 domain;
__le32 notify_enable;
};
struct scmi_msg_resp_perf_describe_levels {
__le16 num_returned;
__le16 num_remaining;
struct {
__le32 perf_val;
__le32 power;
__le16 transition_latency_us;
__le16 reserved;
} opp[0];
};
struct perf_dom_info {
bool set_limits;
bool set_perf;
bool perf_limit_notify;
bool perf_level_notify;
u32 opp_count;
u32 sustained_freq_khz;
u32 sustained_perf_level;
u32 mult_factor;
char name[SCMI_MAX_STR_SIZE];
struct scmi_opp opp[MAX_OPPS];
};
struct scmi_perf_info {
int num_domains;
bool power_scale_mw;
u64 stats_addr;
u32 stats_size;
struct perf_dom_info *dom_info;
};
static int scmi_perf_attributes_get(const struct scmi_handle *handle,
struct scmi_perf_info *pi)
{
int ret;
struct scmi_xfer *t;
struct scmi_msg_resp_perf_attributes *attr;
ret = scmi_one_xfer_init(handle, PROTOCOL_ATTRIBUTES,
SCMI_PROTOCOL_PERF, 0, sizeof(*attr), &t);
if (ret)
return ret;
attr = t->rx.buf;
ret = scmi_do_xfer(handle, t);
if (!ret) {
u16 flags = le16_to_cpu(attr->flags);
pi->num_domains = le16_to_cpu(attr->num_domains);
pi->power_scale_mw = POWER_SCALE_IN_MILLIWATT(flags);
pi->stats_addr = le32_to_cpu(attr->stats_addr_low) |
(u64)le32_to_cpu(attr->stats_addr_high) << 32;
pi->stats_size = le32_to_cpu(attr->stats_size);
}
scmi_one_xfer_put(handle, t);
return ret;
}
static int
scmi_perf_domain_attributes_get(const struct scmi_handle *handle, u32 domain,
struct perf_dom_info *dom_info)
{
int ret;
struct scmi_xfer *t;
struct scmi_msg_resp_perf_domain_attributes *attr;
ret = scmi_one_xfer_init(handle, PERF_DOMAIN_ATTRIBUTES,
SCMI_PROTOCOL_PERF, sizeof(domain),
sizeof(*attr), &t);
if (ret)
return ret;
*(__le32 *)t->tx.buf = cpu_to_le32(domain);
attr = t->rx.buf;
ret = scmi_do_xfer(handle, t);
if (!ret) {
u32 flags = le32_to_cpu(attr->flags);
dom_info->set_limits = SUPPORTS_SET_LIMITS(flags);
dom_info->set_perf = SUPPORTS_SET_PERF_LVL(flags);
dom_info->perf_limit_notify = SUPPORTS_PERF_LIMIT_NOTIFY(flags);
dom_info->perf_level_notify = SUPPORTS_PERF_LEVEL_NOTIFY(flags);
dom_info->sustained_freq_khz =
le32_to_cpu(attr->sustained_freq_khz);
dom_info->sustained_perf_level =
le32_to_cpu(attr->sustained_perf_level);
dom_info->mult_factor = (dom_info->sustained_freq_khz * 1000) /
dom_info->sustained_perf_level;
memcpy(dom_info->name, attr->name, SCMI_MAX_STR_SIZE);
}
scmi_one_xfer_put(handle, t);
return ret;
}
static int opp_cmp_func(const void *opp1, const void *opp2)
{
const struct scmi_opp *t1 = opp1, *t2 = opp2;
return t1->perf - t2->perf;
}
static int
scmi_perf_describe_levels_get(const struct scmi_handle *handle, u32 domain,
struct perf_dom_info *perf_dom)
{
int ret, cnt;
u32 tot_opp_cnt = 0;
u16 num_returned, num_remaining;
struct scmi_xfer *t;
struct scmi_opp *opp;
struct scmi_msg_perf_describe_levels *dom_info;
struct scmi_msg_resp_perf_describe_levels *level_info;
ret = scmi_one_xfer_init(handle, PERF_DESCRIBE_LEVELS,
SCMI_PROTOCOL_PERF, sizeof(*dom_info), 0, &t);
if (ret)
return ret;
dom_info = t->tx.buf;
level_info = t->rx.buf;
do {
dom_info->domain = cpu_to_le32(domain);
/* Set the number of OPPs to be skipped/already read */
dom_info->level_index = cpu_to_le32(tot_opp_cnt);
ret = scmi_do_xfer(handle, t);
if (ret)
break;
num_returned = le16_to_cpu(level_info->num_returned);
num_remaining = le16_to_cpu(level_info->num_remaining);
if (tot_opp_cnt + num_returned > MAX_OPPS) {
dev_err(handle->dev, "No. of OPPs exceeded MAX_OPPS");
break;
}
opp = &perf_dom->opp[tot_opp_cnt];
for (cnt = 0; cnt < num_returned; cnt++, opp++) {
opp->perf = le32_to_cpu(level_info->opp[cnt].perf_val);
opp->power = le32_to_cpu(level_info->opp[cnt].power);
opp->trans_latency_us = le16_to_cpu
(level_info->opp[cnt].transition_latency_us);
dev_dbg(handle->dev, "Level %d Power %d Latency %dus\n",
opp->perf, opp->power, opp->trans_latency_us);
}
tot_opp_cnt += num_returned;
/*
* check for both returned and remaining to avoid infinite
* loop due to buggy firmware
*/
} while (num_returned && num_remaining);
perf_dom->opp_count = tot_opp_cnt;
scmi_one_xfer_put(handle, t);
sort(perf_dom->opp, tot_opp_cnt, sizeof(*opp), opp_cmp_func, NULL);
return ret;
}
static int scmi_perf_limits_set(const struct scmi_handle *handle, u32 domain,
u32 max_perf, u32 min_perf)
{
int ret;
struct scmi_xfer *t;
struct scmi_perf_set_limits *limits;
ret = scmi_one_xfer_init(handle, PERF_LIMITS_SET, SCMI_PROTOCOL_PERF,
sizeof(*limits), 0, &t);
if (ret)
return ret;
limits = t->tx.buf;
limits->domain = cpu_to_le32(domain);
limits->max_level = cpu_to_le32(max_perf);
limits->min_level = cpu_to_le32(min_perf);
ret = scmi_do_xfer(handle, t);
scmi_one_xfer_put(handle, t);
return ret;
}
static int scmi_perf_limits_get(const struct scmi_handle *handle, u32 domain,
u32 *max_perf, u32 *min_perf)
{
int ret;
struct scmi_xfer *t;
struct scmi_perf_get_limits *limits;
ret = scmi_one_xfer_init(handle, PERF_LIMITS_GET, SCMI_PROTOCOL_PERF,
sizeof(__le32), 0, &t);
if (ret)
return ret;
*(__le32 *)t->tx.buf = cpu_to_le32(domain);
ret = scmi_do_xfer(handle, t);
if (!ret) {
limits = t->rx.buf;
*max_perf = le32_to_cpu(limits->max_level);
*min_perf = le32_to_cpu(limits->min_level);
}
scmi_one_xfer_put(handle, t);
return ret;
}
static int scmi_perf_level_set(const struct scmi_handle *handle, u32 domain,
u32 level, bool poll)
{
int ret;
struct scmi_xfer *t;
struct scmi_perf_set_level *lvl;
ret = scmi_one_xfer_init(handle, PERF_LEVEL_SET, SCMI_PROTOCOL_PERF,
sizeof(*lvl), 0, &t);
if (ret)
return ret;
t->hdr.poll_completion = poll;
lvl = t->tx.buf;
lvl->domain = cpu_to_le32(domain);
lvl->level = cpu_to_le32(level);
ret = scmi_do_xfer(handle, t);
scmi_one_xfer_put(handle, t);
return ret;
}
static int scmi_perf_level_get(const struct scmi_handle *handle, u32 domain,
u32 *level, bool poll)
{
int ret;
struct scmi_xfer *t;
ret = scmi_one_xfer_init(handle, PERF_LEVEL_GET, SCMI_PROTOCOL_PERF,
sizeof(u32), sizeof(u32), &t);
if (ret)
return ret;
t->hdr.poll_completion = poll;
*(__le32 *)t->tx.buf = cpu_to_le32(domain);
ret = scmi_do_xfer(handle, t);
if (!ret)
*level = le32_to_cpu(*(__le32 *)t->rx.buf);
scmi_one_xfer_put(handle, t);
return ret;
}
/* Device specific ops */
static int scmi_dev_domain_id(struct device *dev)
{
struct of_phandle_args clkspec;
if (of_parse_phandle_with_args(dev->of_node, "clocks", "#clock-cells",
0, &clkspec))
return -EINVAL;
return clkspec.args[0];
}
static int scmi_dvfs_add_opps_to_device(const struct scmi_handle *handle,
struct device *dev)
{
int idx, ret, domain;
unsigned long freq;
struct scmi_opp *opp;
struct perf_dom_info *dom;
struct scmi_perf_info *pi = handle->perf_priv;
domain = scmi_dev_domain_id(dev);
if (domain < 0)
return domain;
dom = pi->dom_info + domain;
if (!dom)
return -EIO;
for (opp = dom->opp, idx = 0; idx < dom->opp_count; idx++, opp++) {
freq = opp->perf * dom->mult_factor;
ret = dev_pm_opp_add(dev, freq, 0);
if (ret) {
dev_warn(dev, "failed to add opp %luHz\n", freq);
while (idx-- > 0) {
freq = (--opp)->perf * dom->mult_factor;
dev_pm_opp_remove(dev, freq);
}
return ret;
}
}
return 0;
}
static int scmi_dvfs_get_transition_latency(const struct scmi_handle *handle,
struct device *dev)
{
struct perf_dom_info *dom;
struct scmi_perf_info *pi = handle->perf_priv;
int domain = scmi_dev_domain_id(dev);
if (domain < 0)
return domain;
dom = pi->dom_info + domain;
if (!dom)
return -EIO;
/* uS to nS */
return dom->opp[dom->opp_count - 1].trans_latency_us * 1000;
}
static int scmi_dvfs_freq_set(const struct scmi_handle *handle, u32 domain,
unsigned long freq, bool poll)
{
struct scmi_perf_info *pi = handle->perf_priv;
struct perf_dom_info *dom = pi->dom_info + domain;
return scmi_perf_level_set(handle, domain, freq / dom->mult_factor,
poll);
}
static int scmi_dvfs_freq_get(const struct scmi_handle *handle, u32 domain,
unsigned long *freq, bool poll)
{
int ret;
u32 level;
struct scmi_perf_info *pi = handle->perf_priv;
struct perf_dom_info *dom = pi->dom_info + domain;
ret = scmi_perf_level_get(handle, domain, &level, poll);
if (!ret)
*freq = level * dom->mult_factor;
return ret;
}
static struct scmi_perf_ops perf_ops = {
.limits_set = scmi_perf_limits_set,
.limits_get = scmi_perf_limits_get,
.level_set = scmi_perf_level_set,
.level_get = scmi_perf_level_get,
.device_domain_id = scmi_dev_domain_id,
.get_transition_latency = scmi_dvfs_get_transition_latency,
.add_opps_to_device = scmi_dvfs_add_opps_to_device,
.freq_set = scmi_dvfs_freq_set,
.freq_get = scmi_dvfs_freq_get,
};
static int scmi_perf_protocol_init(struct scmi_handle *handle)
{
int domain;
u32 version;
struct scmi_perf_info *pinfo;
scmi_version_get(handle, SCMI_PROTOCOL_PERF, &version);
dev_dbg(handle->dev, "Performance Version %d.%d\n",
PROTOCOL_REV_MAJOR(version), PROTOCOL_REV_MINOR(version));
pinfo = devm_kzalloc(handle->dev, sizeof(*pinfo), GFP_KERNEL);
if (!pinfo)
return -ENOMEM;
scmi_perf_attributes_get(handle, pinfo);
pinfo->dom_info = devm_kcalloc(handle->dev, pinfo->num_domains,
sizeof(*pinfo->dom_info), GFP_KERNEL);
if (!pinfo->dom_info)
return -ENOMEM;
for (domain = 0; domain < pinfo->num_domains; domain++) {
struct perf_dom_info *dom = pinfo->dom_info + domain;
scmi_perf_domain_attributes_get(handle, domain, dom);
scmi_perf_describe_levels_get(handle, domain, dom);
}
handle->perf_ops = &perf_ops;
handle->perf_priv = pinfo;
return 0;
}
static int __init scmi_perf_init(void)
{
return scmi_protocol_register(SCMI_PROTOCOL_PERF,
&scmi_perf_protocol_init);
}
subsys_initcall(scmi_perf_init);

View File

@ -0,0 +1,221 @@
// SPDX-License-Identifier: GPL-2.0
/*
* System Control and Management Interface (SCMI) Power Protocol
*
* Copyright (C) 2018 ARM Ltd.
*/
#include "common.h"
enum scmi_power_protocol_cmd {
POWER_DOMAIN_ATTRIBUTES = 0x3,
POWER_STATE_SET = 0x4,
POWER_STATE_GET = 0x5,
POWER_STATE_NOTIFY = 0x6,
};
struct scmi_msg_resp_power_attributes {
__le16 num_domains;
__le16 reserved;
__le32 stats_addr_low;
__le32 stats_addr_high;
__le32 stats_size;
};
struct scmi_msg_resp_power_domain_attributes {
__le32 flags;
#define SUPPORTS_STATE_SET_NOTIFY(x) ((x) & BIT(31))
#define SUPPORTS_STATE_SET_ASYNC(x) ((x) & BIT(30))
#define SUPPORTS_STATE_SET_SYNC(x) ((x) & BIT(29))
u8 name[SCMI_MAX_STR_SIZE];
};
struct scmi_power_set_state {
__le32 flags;
#define STATE_SET_ASYNC BIT(0)
__le32 domain;
__le32 state;
};
struct scmi_power_state_notify {
__le32 domain;
__le32 notify_enable;
};
struct power_dom_info {
bool state_set_sync;
bool state_set_async;
bool state_set_notify;
char name[SCMI_MAX_STR_SIZE];
};
struct scmi_power_info {
int num_domains;
u64 stats_addr;
u32 stats_size;
struct power_dom_info *dom_info;
};
static int scmi_power_attributes_get(const struct scmi_handle *handle,
struct scmi_power_info *pi)
{
int ret;
struct scmi_xfer *t;
struct scmi_msg_resp_power_attributes *attr;
ret = scmi_one_xfer_init(handle, PROTOCOL_ATTRIBUTES,
SCMI_PROTOCOL_POWER, 0, sizeof(*attr), &t);
if (ret)
return ret;
attr = t->rx.buf;
ret = scmi_do_xfer(handle, t);
if (!ret) {
pi->num_domains = le16_to_cpu(attr->num_domains);
pi->stats_addr = le32_to_cpu(attr->stats_addr_low) |
(u64)le32_to_cpu(attr->stats_addr_high) << 32;
pi->stats_size = le32_to_cpu(attr->stats_size);
}
scmi_one_xfer_put(handle, t);
return ret;
}
static int
scmi_power_domain_attributes_get(const struct scmi_handle *handle, u32 domain,
struct power_dom_info *dom_info)
{
int ret;
struct scmi_xfer *t;
struct scmi_msg_resp_power_domain_attributes *attr;
ret = scmi_one_xfer_init(handle, POWER_DOMAIN_ATTRIBUTES,
SCMI_PROTOCOL_POWER, sizeof(domain),
sizeof(*attr), &t);
if (ret)
return ret;
*(__le32 *)t->tx.buf = cpu_to_le32(domain);
attr = t->rx.buf;
ret = scmi_do_xfer(handle, t);
if (!ret) {
u32 flags = le32_to_cpu(attr->flags);
dom_info->state_set_notify = SUPPORTS_STATE_SET_NOTIFY(flags);
dom_info->state_set_async = SUPPORTS_STATE_SET_ASYNC(flags);
dom_info->state_set_sync = SUPPORTS_STATE_SET_SYNC(flags);
memcpy(dom_info->name, attr->name, SCMI_MAX_STR_SIZE);
}
scmi_one_xfer_put(handle, t);
return ret;
}
static int
scmi_power_state_set(const struct scmi_handle *handle, u32 domain, u32 state)
{
int ret;
struct scmi_xfer *t;
struct scmi_power_set_state *st;
ret = scmi_one_xfer_init(handle, POWER_STATE_SET, SCMI_PROTOCOL_POWER,
sizeof(*st), 0, &t);
if (ret)
return ret;
st = t->tx.buf;
st->flags = cpu_to_le32(0);
st->domain = cpu_to_le32(domain);
st->state = cpu_to_le32(state);
ret = scmi_do_xfer(handle, t);
scmi_one_xfer_put(handle, t);
return ret;
}
static int
scmi_power_state_get(const struct scmi_handle *handle, u32 domain, u32 *state)
{
int ret;
struct scmi_xfer *t;
ret = scmi_one_xfer_init(handle, POWER_STATE_GET, SCMI_PROTOCOL_POWER,
sizeof(u32), sizeof(u32), &t);
if (ret)
return ret;
*(__le32 *)t->tx.buf = cpu_to_le32(domain);
ret = scmi_do_xfer(handle, t);
if (!ret)
*state = le32_to_cpu(*(__le32 *)t->rx.buf);
scmi_one_xfer_put(handle, t);
return ret;
}
static int scmi_power_num_domains_get(const struct scmi_handle *handle)
{
struct scmi_power_info *pi = handle->power_priv;
return pi->num_domains;
}
static char *scmi_power_name_get(const struct scmi_handle *handle, u32 domain)
{
struct scmi_power_info *pi = handle->power_priv;
struct power_dom_info *dom = pi->dom_info + domain;
return dom->name;
}
static struct scmi_power_ops power_ops = {
.num_domains_get = scmi_power_num_domains_get,
.name_get = scmi_power_name_get,
.state_set = scmi_power_state_set,
.state_get = scmi_power_state_get,
};
static int scmi_power_protocol_init(struct scmi_handle *handle)
{
int domain;
u32 version;
struct scmi_power_info *pinfo;
scmi_version_get(handle, SCMI_PROTOCOL_POWER, &version);
dev_dbg(handle->dev, "Power Version %d.%d\n",
PROTOCOL_REV_MAJOR(version), PROTOCOL_REV_MINOR(version));
pinfo = devm_kzalloc(handle->dev, sizeof(*pinfo), GFP_KERNEL);
if (!pinfo)
return -ENOMEM;
scmi_power_attributes_get(handle, pinfo);
pinfo->dom_info = devm_kcalloc(handle->dev, pinfo->num_domains,
sizeof(*pinfo->dom_info), GFP_KERNEL);
if (!pinfo->dom_info)
return -ENOMEM;
for (domain = 0; domain < pinfo->num_domains; domain++) {
struct power_dom_info *dom = pinfo->dom_info + domain;
scmi_power_domain_attributes_get(handle, domain, dom);
}
handle->power_ops = &power_ops;
handle->power_priv = pinfo;
return 0;
}
static int __init scmi_power_init(void)
{
return scmi_protocol_register(SCMI_PROTOCOL_POWER,
&scmi_power_protocol_init);
}
subsys_initcall(scmi_power_init);

View File

@ -0,0 +1,129 @@
// SPDX-License-Identifier: GPL-2.0
/*
* SCMI Generic power domain support.
*
* Copyright (C) 2018 ARM Ltd.
*/
#include <linux/err.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/pm_domain.h>
#include <linux/scmi_protocol.h>
struct scmi_pm_domain {
struct generic_pm_domain genpd;
const struct scmi_handle *handle;
const char *name;
u32 domain;
};
#define to_scmi_pd(gpd) container_of(gpd, struct scmi_pm_domain, genpd)
static int scmi_pd_power(struct generic_pm_domain *domain, bool power_on)
{
int ret;
u32 state, ret_state;
struct scmi_pm_domain *pd = to_scmi_pd(domain);
const struct scmi_power_ops *ops = pd->handle->power_ops;
if (power_on)
state = SCMI_POWER_STATE_GENERIC_ON;
else
state = SCMI_POWER_STATE_GENERIC_OFF;
ret = ops->state_set(pd->handle, pd->domain, state);
if (!ret)
ret = ops->state_get(pd->handle, pd->domain, &ret_state);
if (!ret && state != ret_state)
return -EIO;
return ret;
}
static int scmi_pd_power_on(struct generic_pm_domain *domain)
{
return scmi_pd_power(domain, true);
}
static int scmi_pd_power_off(struct generic_pm_domain *domain)
{
return scmi_pd_power(domain, false);
}
static int scmi_pm_domain_probe(struct scmi_device *sdev)
{
int num_domains, i;
struct device *dev = &sdev->dev;
struct device_node *np = dev->of_node;
struct scmi_pm_domain *scmi_pd;
struct genpd_onecell_data *scmi_pd_data;
struct generic_pm_domain **domains;
const struct scmi_handle *handle = sdev->handle;
if (!handle || !handle->power_ops)
return -ENODEV;
num_domains = handle->power_ops->num_domains_get(handle);
if (num_domains < 0) {
dev_err(dev, "number of domains not found\n");
return num_domains;
}
scmi_pd = devm_kcalloc(dev, num_domains, sizeof(*scmi_pd), GFP_KERNEL);
if (!scmi_pd)
return -ENOMEM;
scmi_pd_data = devm_kzalloc(dev, sizeof(*scmi_pd_data), GFP_KERNEL);
if (!scmi_pd_data)
return -ENOMEM;
domains = devm_kcalloc(dev, num_domains, sizeof(*domains), GFP_KERNEL);
if (!domains)
return -ENOMEM;
for (i = 0; i < num_domains; i++, scmi_pd++) {
u32 state;
domains[i] = &scmi_pd->genpd;
scmi_pd->domain = i;
scmi_pd->handle = handle;
scmi_pd->name = handle->power_ops->name_get(handle, i);
scmi_pd->genpd.name = scmi_pd->name;
scmi_pd->genpd.power_off = scmi_pd_power_off;
scmi_pd->genpd.power_on = scmi_pd_power_on;
if (handle->power_ops->state_get(handle, i, &state)) {
dev_warn(dev, "failed to get state for domain %d\n", i);
continue;
}
pm_genpd_init(&scmi_pd->genpd, NULL,
state == SCMI_POWER_STATE_GENERIC_OFF);
}
scmi_pd_data->domains = domains;
scmi_pd_data->num_domains = num_domains;
of_genpd_add_provider_onecell(np, scmi_pd_data);
return 0;
}
static const struct scmi_device_id scmi_id_table[] = {
{ SCMI_PROTOCOL_POWER },
{ },
};
MODULE_DEVICE_TABLE(scmi, scmi_id_table);
static struct scmi_driver scmi_power_domain_driver = {
.name = "scmi-power-domain",
.probe = scmi_pm_domain_probe,
.id_table = scmi_id_table,
};
module_scmi_driver(scmi_power_domain_driver);
MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>");
MODULE_DESCRIPTION("ARM SCMI power domain driver");
MODULE_LICENSE("GPL v2");

View File

@ -0,0 +1,291 @@
// SPDX-License-Identifier: GPL-2.0
/*
* System Control and Management Interface (SCMI) Sensor Protocol
*
* Copyright (C) 2018 ARM Ltd.
*/
#include "common.h"
enum scmi_sensor_protocol_cmd {
SENSOR_DESCRIPTION_GET = 0x3,
SENSOR_CONFIG_SET = 0x4,
SENSOR_TRIP_POINT_SET = 0x5,
SENSOR_READING_GET = 0x6,
};
struct scmi_msg_resp_sensor_attributes {
__le16 num_sensors;
u8 max_requests;
u8 reserved;
__le32 reg_addr_low;
__le32 reg_addr_high;
__le32 reg_size;
};
struct scmi_msg_resp_sensor_description {
__le16 num_returned;
__le16 num_remaining;
struct {
__le32 id;
__le32 attributes_low;
#define SUPPORTS_ASYNC_READ(x) ((x) & BIT(31))
#define NUM_TRIP_POINTS(x) (((x) >> 4) & 0xff)
__le32 attributes_high;
#define SENSOR_TYPE(x) ((x) & 0xff)
#define SENSOR_SCALE(x) (((x) >> 11) & 0x3f)
#define SENSOR_UPDATE_SCALE(x) (((x) >> 22) & 0x1f)
#define SENSOR_UPDATE_BASE(x) (((x) >> 27) & 0x1f)
u8 name[SCMI_MAX_STR_SIZE];
} desc[0];
};
struct scmi_msg_set_sensor_config {
__le32 id;
__le32 event_control;
};
struct scmi_msg_set_sensor_trip_point {
__le32 id;
__le32 event_control;
#define SENSOR_TP_EVENT_MASK (0x3)
#define SENSOR_TP_DISABLED 0x0
#define SENSOR_TP_POSITIVE 0x1
#define SENSOR_TP_NEGATIVE 0x2
#define SENSOR_TP_BOTH 0x3
#define SENSOR_TP_ID(x) (((x) & 0xff) << 4)
__le32 value_low;
__le32 value_high;
};
struct scmi_msg_sensor_reading_get {
__le32 id;
__le32 flags;
#define SENSOR_READ_ASYNC BIT(0)
};
struct sensors_info {
int num_sensors;
int max_requests;
u64 reg_addr;
u32 reg_size;
struct scmi_sensor_info *sensors;
};
static int scmi_sensor_attributes_get(const struct scmi_handle *handle,
struct sensors_info *si)
{
int ret;
struct scmi_xfer *t;
struct scmi_msg_resp_sensor_attributes *attr;
ret = scmi_one_xfer_init(handle, PROTOCOL_ATTRIBUTES,
SCMI_PROTOCOL_SENSOR, 0, sizeof(*attr), &t);
if (ret)
return ret;
attr = t->rx.buf;
ret = scmi_do_xfer(handle, t);
if (!ret) {
si->num_sensors = le16_to_cpu(attr->num_sensors);
si->max_requests = attr->max_requests;
si->reg_addr = le32_to_cpu(attr->reg_addr_low) |
(u64)le32_to_cpu(attr->reg_addr_high) << 32;
si->reg_size = le32_to_cpu(attr->reg_size);
}
scmi_one_xfer_put(handle, t);
return ret;
}
static int scmi_sensor_description_get(const struct scmi_handle *handle,
struct sensors_info *si)
{
int ret, cnt;
u32 desc_index = 0;
u16 num_returned, num_remaining;
struct scmi_xfer *t;
struct scmi_msg_resp_sensor_description *buf;
ret = scmi_one_xfer_init(handle, SENSOR_DESCRIPTION_GET,
SCMI_PROTOCOL_SENSOR, sizeof(__le32), 0, &t);
if (ret)
return ret;
buf = t->rx.buf;
do {
/* Set the number of sensors to be skipped/already read */
*(__le32 *)t->tx.buf = cpu_to_le32(desc_index);
ret = scmi_do_xfer(handle, t);
if (ret)
break;
num_returned = le16_to_cpu(buf->num_returned);
num_remaining = le16_to_cpu(buf->num_remaining);
if (desc_index + num_returned > si->num_sensors) {
dev_err(handle->dev, "No. of sensors can't exceed %d",
si->num_sensors);
break;
}
for (cnt = 0; cnt < num_returned; cnt++) {
u32 attrh;
struct scmi_sensor_info *s;
attrh = le32_to_cpu(buf->desc[cnt].attributes_high);
s = &si->sensors[desc_index + cnt];
s->id = le32_to_cpu(buf->desc[cnt].id);
s->type = SENSOR_TYPE(attrh);
memcpy(s->name, buf->desc[cnt].name, SCMI_MAX_STR_SIZE);
}
desc_index += num_returned;
/*
* check for both returned and remaining to avoid infinite
* loop due to buggy firmware
*/
} while (num_returned && num_remaining);
scmi_one_xfer_put(handle, t);
return ret;
}
static int
scmi_sensor_configuration_set(const struct scmi_handle *handle, u32 sensor_id)
{
int ret;
u32 evt_cntl = BIT(0);
struct scmi_xfer *t;
struct scmi_msg_set_sensor_config *cfg;
ret = scmi_one_xfer_init(handle, SENSOR_CONFIG_SET,
SCMI_PROTOCOL_SENSOR, sizeof(*cfg), 0, &t);
if (ret)
return ret;
cfg = t->tx.buf;
cfg->id = cpu_to_le32(sensor_id);
cfg->event_control = cpu_to_le32(evt_cntl);
ret = scmi_do_xfer(handle, t);
scmi_one_xfer_put(handle, t);
return ret;
}
static int scmi_sensor_trip_point_set(const struct scmi_handle *handle,
u32 sensor_id, u8 trip_id, u64 trip_value)
{
int ret;
u32 evt_cntl = SENSOR_TP_BOTH;
struct scmi_xfer *t;
struct scmi_msg_set_sensor_trip_point *trip;
ret = scmi_one_xfer_init(handle, SENSOR_TRIP_POINT_SET,
SCMI_PROTOCOL_SENSOR, sizeof(*trip), 0, &t);
if (ret)
return ret;
trip = t->tx.buf;
trip->id = cpu_to_le32(sensor_id);
trip->event_control = cpu_to_le32(evt_cntl | SENSOR_TP_ID(trip_id));
trip->value_low = cpu_to_le32(trip_value & 0xffffffff);
trip->value_high = cpu_to_le32(trip_value >> 32);
ret = scmi_do_xfer(handle, t);
scmi_one_xfer_put(handle, t);
return ret;
}
static int scmi_sensor_reading_get(const struct scmi_handle *handle,
u32 sensor_id, bool async, u64 *value)
{
int ret;
struct scmi_xfer *t;
struct scmi_msg_sensor_reading_get *sensor;
ret = scmi_one_xfer_init(handle, SENSOR_READING_GET,
SCMI_PROTOCOL_SENSOR, sizeof(*sensor),
sizeof(u64), &t);
if (ret)
return ret;
sensor = t->tx.buf;
sensor->id = cpu_to_le32(sensor_id);
sensor->flags = cpu_to_le32(async ? SENSOR_READ_ASYNC : 0);
ret = scmi_do_xfer(handle, t);
if (!ret) {
__le32 *pval = t->rx.buf;
*value = le32_to_cpu(*pval);
*value |= (u64)le32_to_cpu(*(pval + 1)) << 32;
}
scmi_one_xfer_put(handle, t);
return ret;
}
static const struct scmi_sensor_info *
scmi_sensor_info_get(const struct scmi_handle *handle, u32 sensor_id)
{
struct sensors_info *si = handle->sensor_priv;
return si->sensors + sensor_id;
}
static int scmi_sensor_count_get(const struct scmi_handle *handle)
{
struct sensors_info *si = handle->sensor_priv;
return si->num_sensors;
}
static struct scmi_sensor_ops sensor_ops = {
.count_get = scmi_sensor_count_get,
.info_get = scmi_sensor_info_get,
.configuration_set = scmi_sensor_configuration_set,
.trip_point_set = scmi_sensor_trip_point_set,
.reading_get = scmi_sensor_reading_get,
};
static int scmi_sensors_protocol_init(struct scmi_handle *handle)
{
u32 version;
struct sensors_info *sinfo;
scmi_version_get(handle, SCMI_PROTOCOL_SENSOR, &version);
dev_dbg(handle->dev, "Sensor Version %d.%d\n",
PROTOCOL_REV_MAJOR(version), PROTOCOL_REV_MINOR(version));
sinfo = devm_kzalloc(handle->dev, sizeof(*sinfo), GFP_KERNEL);
if (!sinfo)
return -ENOMEM;
scmi_sensor_attributes_get(handle, sinfo);
sinfo->sensors = devm_kcalloc(handle->dev, sinfo->num_sensors,
sizeof(*sinfo->sensors), GFP_KERNEL);
if (!sinfo->sensors)
return -ENOMEM;
scmi_sensor_description_get(handle, sinfo);
handle->sensor_ops = &sensor_ops;
handle->sensor_priv = sinfo;
return 0;
}
static int __init scmi_sensors_init(void)
{
return scmi_protocol_register(SCMI_PROTOCOL_SENSOR,
&scmi_sensors_protocol_init);
}
subsys_initcall(scmi_sensors_init);

View File

@ -28,6 +28,7 @@
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/bitmap.h>
#include <linux/bitfield.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/export.h>
@ -45,48 +46,32 @@
#include <linux/sort.h>
#include <linux/spinlock.h>
#define CMD_ID_SHIFT 0
#define CMD_ID_MASK 0x7f
#define CMD_TOKEN_ID_SHIFT 8
#define CMD_TOKEN_ID_MASK 0xff
#define CMD_DATA_SIZE_SHIFT 16
#define CMD_DATA_SIZE_MASK 0x1ff
#define CMD_LEGACY_DATA_SIZE_SHIFT 20
#define CMD_LEGACY_DATA_SIZE_MASK 0x1ff
#define PACK_SCPI_CMD(cmd_id, tx_sz) \
((((cmd_id) & CMD_ID_MASK) << CMD_ID_SHIFT) | \
(((tx_sz) & CMD_DATA_SIZE_MASK) << CMD_DATA_SIZE_SHIFT))
#define ADD_SCPI_TOKEN(cmd, token) \
((cmd) |= (((token) & CMD_TOKEN_ID_MASK) << CMD_TOKEN_ID_SHIFT))
#define PACK_LEGACY_SCPI_CMD(cmd_id, tx_sz) \
((((cmd_id) & CMD_ID_MASK) << CMD_ID_SHIFT) | \
(((tx_sz) & CMD_LEGACY_DATA_SIZE_MASK) << CMD_LEGACY_DATA_SIZE_SHIFT))
#define CMD_ID_MASK GENMASK(6, 0)
#define CMD_TOKEN_ID_MASK GENMASK(15, 8)
#define CMD_DATA_SIZE_MASK GENMASK(24, 16)
#define CMD_LEGACY_DATA_SIZE_MASK GENMASK(28, 20)
#define PACK_SCPI_CMD(cmd_id, tx_sz) \
(FIELD_PREP(CMD_ID_MASK, cmd_id) | \
FIELD_PREP(CMD_DATA_SIZE_MASK, tx_sz))
#define PACK_LEGACY_SCPI_CMD(cmd_id, tx_sz) \
(FIELD_PREP(CMD_ID_MASK, cmd_id) | \
FIELD_PREP(CMD_LEGACY_DATA_SIZE_MASK, tx_sz))
#define CMD_SIZE(cmd) (((cmd) >> CMD_DATA_SIZE_SHIFT) & CMD_DATA_SIZE_MASK)
#define CMD_LEGACY_SIZE(cmd) (((cmd) >> CMD_LEGACY_DATA_SIZE_SHIFT) & \
CMD_LEGACY_DATA_SIZE_MASK)
#define CMD_UNIQ_MASK (CMD_TOKEN_ID_MASK << CMD_TOKEN_ID_SHIFT | CMD_ID_MASK)
#define CMD_SIZE(cmd) FIELD_GET(CMD_DATA_SIZE_MASK, cmd)
#define CMD_UNIQ_MASK (CMD_TOKEN_ID_MASK | CMD_ID_MASK)
#define CMD_XTRACT_UNIQ(cmd) ((cmd) & CMD_UNIQ_MASK)
#define SCPI_SLOT 0
#define MAX_DVFS_DOMAINS 8
#define MAX_DVFS_OPPS 16
#define DVFS_LATENCY(hdr) (le32_to_cpu(hdr) >> 16)
#define DVFS_OPP_COUNT(hdr) ((le32_to_cpu(hdr) >> 8) & 0xff)
#define PROTOCOL_REV_MINOR_BITS 16
#define PROTOCOL_REV_MINOR_MASK ((1U << PROTOCOL_REV_MINOR_BITS) - 1)
#define PROTOCOL_REV_MAJOR(x) ((x) >> PROTOCOL_REV_MINOR_BITS)
#define PROTOCOL_REV_MINOR(x) ((x) & PROTOCOL_REV_MINOR_MASK)
#define PROTO_REV_MAJOR_MASK GENMASK(31, 16)
#define PROTO_REV_MINOR_MASK GENMASK(15, 0)
#define FW_REV_MAJOR_BITS 24
#define FW_REV_MINOR_BITS 16
#define FW_REV_PATCH_MASK ((1U << FW_REV_MINOR_BITS) - 1)
#define FW_REV_MINOR_MASK ((1U << FW_REV_MAJOR_BITS) - 1)
#define FW_REV_MAJOR(x) ((x) >> FW_REV_MAJOR_BITS)
#define FW_REV_MINOR(x) (((x) & FW_REV_MINOR_MASK) >> FW_REV_MINOR_BITS)
#define FW_REV_PATCH(x) ((x) & FW_REV_PATCH_MASK)
#define FW_REV_MAJOR_MASK GENMASK(31, 24)
#define FW_REV_MINOR_MASK GENMASK(23, 16)
#define FW_REV_PATCH_MASK GENMASK(15, 0)
#define MAX_RX_TIMEOUT (msecs_to_jiffies(30))
@ -311,10 +296,6 @@ struct clk_get_info {
u8 name[20];
} __packed;
struct clk_get_value {
__le32 rate;
} __packed;
struct clk_set_value {
__le16 id;
__le16 reserved;
@ -328,7 +309,9 @@ struct legacy_clk_set_value {
} __packed;
struct dvfs_info {
__le32 header;
u8 domain;
u8 opp_count;
__le16 latency;
struct {
__le32 freq;
__le32 m_volt;
@ -340,10 +323,6 @@ struct dvfs_set {
u8 index;
} __packed;
struct sensor_capabilities {
__le16 sensors;
} __packed;
struct _scpi_sensor_info {
__le16 sensor_id;
u8 class;
@ -351,11 +330,6 @@ struct _scpi_sensor_info {
char name[20];
};
struct sensor_value {
__le32 lo_val;
__le32 hi_val;
} __packed;
struct dev_pstate_set {
__le16 dev_id;
u8 pstate;
@ -419,19 +393,20 @@ static void scpi_process_cmd(struct scpi_chan *ch, u32 cmd)
unsigned int len;
if (scpi_info->is_legacy) {
struct legacy_scpi_shared_mem *mem = ch->rx_payload;
struct legacy_scpi_shared_mem __iomem *mem =
ch->rx_payload;
/* RX Length is not replied by the legacy Firmware */
len = match->rx_len;
match->status = le32_to_cpu(mem->status);
match->status = ioread32(&mem->status);
memcpy_fromio(match->rx_buf, mem->payload, len);
} else {
struct scpi_shared_mem *mem = ch->rx_payload;
struct scpi_shared_mem __iomem *mem = ch->rx_payload;
len = min(match->rx_len, CMD_SIZE(cmd));
len = min_t(unsigned int, match->rx_len, CMD_SIZE(cmd));
match->status = le32_to_cpu(mem->status);
match->status = ioread32(&mem->status);
memcpy_fromio(match->rx_buf, mem->payload, len);
}
@ -445,11 +420,11 @@ static void scpi_process_cmd(struct scpi_chan *ch, u32 cmd)
static void scpi_handle_remote_msg(struct mbox_client *c, void *msg)
{
struct scpi_chan *ch = container_of(c, struct scpi_chan, cl);
struct scpi_shared_mem *mem = ch->rx_payload;
struct scpi_shared_mem __iomem *mem = ch->rx_payload;
u32 cmd = 0;
if (!scpi_info->is_legacy)
cmd = le32_to_cpu(mem->command);
cmd = ioread32(&mem->command);
scpi_process_cmd(ch, cmd);
}
@ -459,7 +434,7 @@ static void scpi_tx_prepare(struct mbox_client *c, void *msg)
unsigned long flags;
struct scpi_xfer *t = msg;
struct scpi_chan *ch = container_of(c, struct scpi_chan, cl);
struct scpi_shared_mem *mem = (struct scpi_shared_mem *)ch->tx_payload;
struct scpi_shared_mem __iomem *mem = ch->tx_payload;
if (t->tx_buf) {
if (scpi_info->is_legacy)
@ -471,14 +446,14 @@ static void scpi_tx_prepare(struct mbox_client *c, void *msg)
if (t->rx_buf) {
if (!(++ch->token))
++ch->token;
ADD_SCPI_TOKEN(t->cmd, ch->token);
t->cmd |= FIELD_PREP(CMD_TOKEN_ID_MASK, ch->token);
spin_lock_irqsave(&ch->rx_lock, flags);
list_add_tail(&t->node, &ch->rx_pending);
spin_unlock_irqrestore(&ch->rx_lock, flags);
}
if (!scpi_info->is_legacy)
mem->command = cpu_to_le32(t->cmd);
iowrite32(t->cmd, &mem->command);
}
static struct scpi_xfer *get_scpi_xfer(struct scpi_chan *ch)
@ -583,13 +558,13 @@ scpi_clk_get_range(u16 clk_id, unsigned long *min, unsigned long *max)
static unsigned long scpi_clk_get_val(u16 clk_id)
{
int ret;
struct clk_get_value clk;
__le32 rate;
__le16 le_clk_id = cpu_to_le16(clk_id);
ret = scpi_send_message(CMD_GET_CLOCK_VALUE, &le_clk_id,
sizeof(le_clk_id), &clk, sizeof(clk));
sizeof(le_clk_id), &rate, sizeof(rate));
return ret ? ret : le32_to_cpu(clk.rate);
return ret ? ret : le32_to_cpu(rate);
}
static int scpi_clk_set_val(u16 clk_id, unsigned long rate)
@ -665,8 +640,8 @@ static struct scpi_dvfs_info *scpi_dvfs_get_info(u8 domain)
if (!info)
return ERR_PTR(-ENOMEM);
info->count = DVFS_OPP_COUNT(buf.header);
info->latency = DVFS_LATENCY(buf.header) * 1000; /* uS to nS */
info->count = buf.opp_count;
info->latency = le16_to_cpu(buf.latency) * 1000; /* uS to nS */
info->opps = kcalloc(info->count, sizeof(*opp), GFP_KERNEL);
if (!info->opps) {
@ -713,9 +688,6 @@ static int scpi_dvfs_get_transition_latency(struct device *dev)
if (IS_ERR(info))
return PTR_ERR(info);
if (!info->latency)
return 0;
return info->latency;
}
@ -746,13 +718,13 @@ static int scpi_dvfs_add_opps_to_device(struct device *dev)
static int scpi_sensor_get_capability(u16 *sensors)
{
struct sensor_capabilities cap_buf;
__le16 cap;
int ret;
ret = scpi_send_message(CMD_SENSOR_CAPABILITIES, NULL, 0, &cap_buf,
sizeof(cap_buf));
ret = scpi_send_message(CMD_SENSOR_CAPABILITIES, NULL, 0, &cap,
sizeof(cap));
if (!ret)
*sensors = le16_to_cpu(cap_buf.sensors);
*sensors = le16_to_cpu(cap);
return ret;
}
@ -776,20 +748,19 @@ static int scpi_sensor_get_info(u16 sensor_id, struct scpi_sensor_info *info)
static int scpi_sensor_get_value(u16 sensor, u64 *val)
{
__le16 id = cpu_to_le16(sensor);
struct sensor_value buf;
__le64 value;
int ret;
ret = scpi_send_message(CMD_SENSOR_VALUE, &id, sizeof(id),
&buf, sizeof(buf));
&value, sizeof(value));
if (ret)
return ret;
if (scpi_info->is_legacy)
/* only 32-bits supported, hi_val can be junk */
*val = le32_to_cpu(buf.lo_val);
/* only 32-bits supported, upper 32 bits can be junk */
*val = le32_to_cpup((__le32 *)&value);
else
*val = (u64)le32_to_cpu(buf.hi_val) << 32 |
le32_to_cpu(buf.lo_val);
*val = le64_to_cpu(value);
return 0;
}
@ -864,9 +835,9 @@ static ssize_t protocol_version_show(struct device *dev,
{
struct scpi_drvinfo *scpi_info = dev_get_drvdata(dev);
return sprintf(buf, "%d.%d\n",
PROTOCOL_REV_MAJOR(scpi_info->protocol_version),
PROTOCOL_REV_MINOR(scpi_info->protocol_version));
return sprintf(buf, "%lu.%lu\n",
FIELD_GET(PROTO_REV_MAJOR_MASK, scpi_info->protocol_version),
FIELD_GET(PROTO_REV_MINOR_MASK, scpi_info->protocol_version));
}
static DEVICE_ATTR_RO(protocol_version);
@ -875,10 +846,10 @@ static ssize_t firmware_version_show(struct device *dev,
{
struct scpi_drvinfo *scpi_info = dev_get_drvdata(dev);
return sprintf(buf, "%d.%d.%d\n",
FW_REV_MAJOR(scpi_info->firmware_version),
FW_REV_MINOR(scpi_info->firmware_version),
FW_REV_PATCH(scpi_info->firmware_version));
return sprintf(buf, "%lu.%lu.%lu\n",
FIELD_GET(FW_REV_MAJOR_MASK, scpi_info->firmware_version),
FIELD_GET(FW_REV_MINOR_MASK, scpi_info->firmware_version),
FIELD_GET(FW_REV_PATCH_MASK, scpi_info->firmware_version));
}
static DEVICE_ATTR_RO(firmware_version);
@ -889,37 +860,26 @@ static struct attribute *versions_attrs[] = {
};
ATTRIBUTE_GROUPS(versions);
static void
scpi_free_channels(struct device *dev, struct scpi_chan *pchan, int count)
static void scpi_free_channels(void *data)
{
struct scpi_drvinfo *info = data;
int i;
for (i = 0; i < count && pchan->chan; i++, pchan++) {
mbox_free_channel(pchan->chan);
devm_kfree(dev, pchan->xfers);
devm_iounmap(dev, pchan->rx_payload);
}
for (i = 0; i < info->num_chans; i++)
mbox_free_channel(info->channels[i].chan);
}
static int scpi_remove(struct platform_device *pdev)
{
int i;
struct device *dev = &pdev->dev;
struct scpi_drvinfo *info = platform_get_drvdata(pdev);
scpi_info = NULL; /* stop exporting SCPI ops through get_scpi_ops */
of_platform_depopulate(dev);
sysfs_remove_groups(&dev->kobj, versions_groups);
scpi_free_channels(dev, info->channels, info->num_chans);
platform_set_drvdata(pdev, NULL);
for (i = 0; i < MAX_DVFS_DOMAINS && info->dvfs[i]; i++) {
kfree(info->dvfs[i]->opps);
kfree(info->dvfs[i]);
}
devm_kfree(dev, info->channels);
devm_kfree(dev, info);
return 0;
}
@ -952,7 +912,6 @@ static int scpi_probe(struct platform_device *pdev)
{
int count, idx, ret;
struct resource res;
struct scpi_chan *scpi_chan;
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
@ -969,13 +928,19 @@ static int scpi_probe(struct platform_device *pdev)
return -ENODEV;
}
scpi_chan = devm_kcalloc(dev, count, sizeof(*scpi_chan), GFP_KERNEL);
if (!scpi_chan)
scpi_info->channels = devm_kcalloc(dev, count, sizeof(struct scpi_chan),
GFP_KERNEL);
if (!scpi_info->channels)
return -ENOMEM;
for (idx = 0; idx < count; idx++) {
ret = devm_add_action(dev, scpi_free_channels, scpi_info);
if (ret)
return ret;
for (; scpi_info->num_chans < count; scpi_info->num_chans++) {
resource_size_t size;
struct scpi_chan *pchan = scpi_chan + idx;
int idx = scpi_info->num_chans;
struct scpi_chan *pchan = scpi_info->channels + idx;
struct mbox_client *cl = &pchan->cl;
struct device_node *shmem = of_parse_phandle(np, "shmem", idx);
@ -983,15 +948,14 @@ static int scpi_probe(struct platform_device *pdev)
of_node_put(shmem);
if (ret) {
dev_err(dev, "failed to get SCPI payload mem resource\n");
goto err;
return ret;
}
size = resource_size(&res);
pchan->rx_payload = devm_ioremap(dev, res.start, size);
if (!pchan->rx_payload) {
dev_err(dev, "failed to ioremap SCPI payload\n");
ret = -EADDRNOTAVAIL;
goto err;
return -EADDRNOTAVAIL;
}
pchan->tx_payload = pchan->rx_payload + (size >> 1);
@ -1017,14 +981,9 @@ static int scpi_probe(struct platform_device *pdev)
dev_err(dev, "failed to get channel%d err %d\n",
idx, ret);
}
err:
scpi_free_channels(dev, scpi_chan, idx);
scpi_info = NULL;
return ret;
}
scpi_info->channels = scpi_chan;
scpi_info->num_chans = count;
scpi_info->commands = scpi_std_commands;
platform_set_drvdata(pdev, scpi_info);
@ -1043,23 +1002,31 @@ err:
ret = scpi_init_versions(scpi_info);
if (ret) {
dev_err(dev, "incorrect or no SCP firmware found\n");
scpi_remove(pdev);
return ret;
}
_dev_info(dev, "SCP Protocol %d.%d Firmware %d.%d.%d version\n",
PROTOCOL_REV_MAJOR(scpi_info->protocol_version),
PROTOCOL_REV_MINOR(scpi_info->protocol_version),
FW_REV_MAJOR(scpi_info->firmware_version),
FW_REV_MINOR(scpi_info->firmware_version),
FW_REV_PATCH(scpi_info->firmware_version));
if (scpi_info->is_legacy && !scpi_info->protocol_version &&
!scpi_info->firmware_version)
dev_info(dev, "SCP Protocol legacy pre-1.0 firmware\n");
else
dev_info(dev, "SCP Protocol %lu.%lu Firmware %lu.%lu.%lu version\n",
FIELD_GET(PROTO_REV_MAJOR_MASK,
scpi_info->protocol_version),
FIELD_GET(PROTO_REV_MINOR_MASK,
scpi_info->protocol_version),
FIELD_GET(FW_REV_MAJOR_MASK,
scpi_info->firmware_version),
FIELD_GET(FW_REV_MINOR_MASK,
scpi_info->firmware_version),
FIELD_GET(FW_REV_PATCH_MASK,
scpi_info->firmware_version));
scpi_info->scpi_ops = &scpi_ops;
ret = sysfs_create_groups(&dev->kobj, versions_groups);
ret = devm_device_add_groups(dev, versions_groups);
if (ret)
dev_err(dev, "unable to create sysfs version group\n");
return of_platform_populate(dev->of_node, NULL, NULL, dev);
return devm_of_platform_populate(dev);
}
static const struct of_device_id scpi_of_match[] = {

View File

@ -17,8 +17,10 @@
#include <linux/arm-smccc.h>
#include <linux/bug.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/printk.h>
#include <linux/types.h>
#include <linux/sizes.h>
@ -217,21 +219,11 @@ static const struct of_device_id meson_sm_ids[] = {
{ /* sentinel */ },
};
int __init meson_sm_init(void)
static int __init meson_sm_probe(struct platform_device *pdev)
{
const struct meson_sm_chip *chip;
const struct of_device_id *matched_np;
struct device_node *np;
np = of_find_matching_node_and_match(NULL, meson_sm_ids, &matched_np);
if (!np)
return -ENODEV;
chip = matched_np->data;
if (!chip) {
pr_err("unable to setup secure-monitor data\n");
goto out;
}
chip = of_match_device(meson_sm_ids, &pdev->dev)->data;
if (chip->cmd_shmem_in_base) {
fw.sm_shmem_in_base = meson_sm_map_shmem(chip->cmd_shmem_in_base,
@ -257,4 +249,11 @@ out_in_base:
out:
return -EINVAL;
}
device_initcall(meson_sm_init);
static struct platform_driver meson_sm_driver = {
.driver = {
.name = "meson-sm",
.of_match_table = of_match_ptr(meson_sm_ids),
},
};
module_platform_driver_probe(meson_sm_driver, meson_sm_probe);

View File

@ -70,57 +70,20 @@ void tegra_bpmp_put(struct tegra_bpmp *bpmp)
}
EXPORT_SYMBOL_GPL(tegra_bpmp_put);
static int tegra_bpmp_channel_get_index(struct tegra_bpmp_channel *channel)
{
return channel - channel->bpmp->channels;
}
static int
tegra_bpmp_channel_get_thread_index(struct tegra_bpmp_channel *channel)
{
struct tegra_bpmp *bpmp = channel->bpmp;
unsigned int offset, count;
unsigned int count;
int index;
offset = bpmp->soc->channels.thread.offset;
count = bpmp->soc->channels.thread.count;
index = tegra_bpmp_channel_get_index(channel);
if (index < 0)
return index;
if (index < offset || index >= offset + count)
index = channel - channel->bpmp->threaded_channels;
if (index < 0 || index >= count)
return -EINVAL;
return index - offset;
}
static struct tegra_bpmp_channel *
tegra_bpmp_channel_get_thread(struct tegra_bpmp *bpmp, unsigned int index)
{
unsigned int offset = bpmp->soc->channels.thread.offset;
unsigned int count = bpmp->soc->channels.thread.count;
if (index >= count)
return NULL;
return &bpmp->channels[offset + index];
}
static struct tegra_bpmp_channel *
tegra_bpmp_channel_get_tx(struct tegra_bpmp *bpmp)
{
unsigned int offset = bpmp->soc->channels.cpu_tx.offset;
return &bpmp->channels[offset + smp_processor_id()];
}
static struct tegra_bpmp_channel *
tegra_bpmp_channel_get_rx(struct tegra_bpmp *bpmp)
{
unsigned int offset = bpmp->soc->channels.cpu_rx.offset;
return &bpmp->channels[offset];
return index;
}
static bool tegra_bpmp_message_valid(const struct tegra_bpmp_message *msg)
@ -271,11 +234,7 @@ tegra_bpmp_write_threaded(struct tegra_bpmp *bpmp, unsigned int mrq,
goto unlock;
}
channel = tegra_bpmp_channel_get_thread(bpmp, index);
if (!channel) {
err = -EINVAL;
goto unlock;
}
channel = &bpmp->threaded_channels[index];
if (!tegra_bpmp_master_free(channel)) {
err = -EBUSY;
@ -328,12 +287,18 @@ int tegra_bpmp_transfer_atomic(struct tegra_bpmp *bpmp,
if (!tegra_bpmp_message_valid(msg))
return -EINVAL;
channel = tegra_bpmp_channel_get_tx(bpmp);
channel = bpmp->tx_channel;
spin_lock(&bpmp->atomic_tx_lock);
err = tegra_bpmp_channel_write(channel, msg->mrq, MSG_ACK,
msg->tx.data, msg->tx.size);
if (err < 0)
if (err < 0) {
spin_unlock(&bpmp->atomic_tx_lock);
return err;
}
spin_unlock(&bpmp->atomic_tx_lock);
err = mbox_send_message(bpmp->mbox.channel, NULL);
if (err < 0)
@ -607,7 +572,7 @@ static void tegra_bpmp_handle_rx(struct mbox_client *client, void *data)
unsigned int i, count;
unsigned long *busy;
channel = tegra_bpmp_channel_get_rx(bpmp);
channel = bpmp->rx_channel;
count = bpmp->soc->channels.thread.count;
busy = bpmp->threaded.busy;
@ -619,9 +584,7 @@ static void tegra_bpmp_handle_rx(struct mbox_client *client, void *data)
for_each_set_bit(i, busy, count) {
struct tegra_bpmp_channel *channel;
channel = tegra_bpmp_channel_get_thread(bpmp, i);
if (!channel)
continue;
channel = &bpmp->threaded_channels[i];
if (tegra_bpmp_master_acked(channel)) {
tegra_bpmp_channel_signal(channel);
@ -698,7 +661,6 @@ static void tegra_bpmp_channel_cleanup(struct tegra_bpmp_channel *channel)
static int tegra_bpmp_probe(struct platform_device *pdev)
{
struct tegra_bpmp_channel *channel;
struct tegra_bpmp *bpmp;
unsigned int i;
char tag[32];
@ -732,7 +694,7 @@ static int tegra_bpmp_probe(struct platform_device *pdev)
}
bpmp->rx.virt = gen_pool_dma_alloc(bpmp->rx.pool, 4096, &bpmp->rx.phys);
if (!bpmp->rx.pool) {
if (!bpmp->rx.virt) {
dev_err(&pdev->dev, "failed to allocate from RX pool\n");
err = -ENOMEM;
goto free_tx;
@ -758,24 +720,45 @@ static int tegra_bpmp_probe(struct platform_device *pdev)
goto free_rx;
}
bpmp->num_channels = bpmp->soc->channels.cpu_tx.count +
bpmp->soc->channels.thread.count +
bpmp->soc->channels.cpu_rx.count;
bpmp->channels = devm_kcalloc(&pdev->dev, bpmp->num_channels,
sizeof(*channel), GFP_KERNEL);
if (!bpmp->channels) {
spin_lock_init(&bpmp->atomic_tx_lock);
bpmp->tx_channel = devm_kzalloc(&pdev->dev, sizeof(*bpmp->tx_channel),
GFP_KERNEL);
if (!bpmp->tx_channel) {
err = -ENOMEM;
goto free_rx;
}
/* message channel initialization */
for (i = 0; i < bpmp->num_channels; i++) {
struct tegra_bpmp_channel *channel = &bpmp->channels[i];
bpmp->rx_channel = devm_kzalloc(&pdev->dev, sizeof(*bpmp->rx_channel),
GFP_KERNEL);
if (!bpmp->rx_channel) {
err = -ENOMEM;
goto free_rx;
}
err = tegra_bpmp_channel_init(channel, bpmp, i);
bpmp->threaded_channels = devm_kcalloc(&pdev->dev, bpmp->threaded.count,
sizeof(*bpmp->threaded_channels),
GFP_KERNEL);
if (!bpmp->threaded_channels) {
err = -ENOMEM;
goto free_rx;
}
err = tegra_bpmp_channel_init(bpmp->tx_channel, bpmp,
bpmp->soc->channels.cpu_tx.offset);
if (err < 0)
goto free_rx;
err = tegra_bpmp_channel_init(bpmp->rx_channel, bpmp,
bpmp->soc->channels.cpu_rx.offset);
if (err < 0)
goto cleanup_tx_channel;
for (i = 0; i < bpmp->threaded.count; i++) {
err = tegra_bpmp_channel_init(
&bpmp->threaded_channels[i], bpmp,
bpmp->soc->channels.thread.offset + i);
if (err < 0)
goto cleanup_channels;
goto cleanup_threaded_channels;
}
/* mbox registration */
@ -788,15 +771,14 @@ static int tegra_bpmp_probe(struct platform_device *pdev)
if (IS_ERR(bpmp->mbox.channel)) {
err = PTR_ERR(bpmp->mbox.channel);
dev_err(&pdev->dev, "failed to get HSP mailbox: %d\n", err);
goto cleanup_channels;
goto cleanup_threaded_channels;
}
/* reset message channels */
for (i = 0; i < bpmp->num_channels; i++) {
struct tegra_bpmp_channel *channel = &bpmp->channels[i];
tegra_bpmp_channel_reset(channel);
}
tegra_bpmp_channel_reset(bpmp->tx_channel);
tegra_bpmp_channel_reset(bpmp->rx_channel);
for (i = 0; i < bpmp->threaded.count; i++)
tegra_bpmp_channel_reset(&bpmp->threaded_channels[i]);
err = tegra_bpmp_request_mrq(bpmp, MRQ_PING,
tegra_bpmp_mrq_handle_ping, bpmp);
@ -845,9 +827,15 @@ free_mrq:
tegra_bpmp_free_mrq(bpmp, MRQ_PING, bpmp);
free_mbox:
mbox_free_channel(bpmp->mbox.channel);
cleanup_channels:
while (i--)
tegra_bpmp_channel_cleanup(&bpmp->channels[i]);
cleanup_threaded_channels:
for (i = 0; i < bpmp->threaded.count; i++) {
if (bpmp->threaded_channels[i].bpmp)
tegra_bpmp_channel_cleanup(&bpmp->threaded_channels[i]);
}
tegra_bpmp_channel_cleanup(bpmp->rx_channel);
cleanup_tx_channel:
tegra_bpmp_channel_cleanup(bpmp->tx_channel);
free_rx:
gen_pool_free(bpmp->rx.pool, (unsigned long)bpmp->rx.virt, 4096);
free_tx:
@ -858,18 +846,16 @@ free_tx:
static const struct tegra_bpmp_soc tegra186_soc = {
.channels = {
.cpu_tx = {
.offset = 0,
.count = 6,
.offset = 3,
.timeout = 60 * USEC_PER_SEC,
},
.thread = {
.offset = 6,
.count = 7,
.offset = 0,
.count = 3,
.timeout = 600 * USEC_PER_SEC,
},
.cpu_rx = {
.offset = 13,
.count = 1,
.timeout = 0,
},
},

View File

@ -317,6 +317,18 @@ config SENSORS_APPLESMC
Say Y here if you have an applicable laptop and want to experience
the awesome power of applesmc.
config SENSORS_ARM_SCMI
tristate "ARM SCMI Sensors"
depends on ARM_SCMI_PROTOCOL
depends on THERMAL || !THERMAL_OF
help
This driver provides support for temperature, voltage, current
and power sensors available on SCMI based platforms. The actual
number and type of sensors exported depend on the platform.
This driver can also be built as a module. If so, the module
will be called scmi-hwmon.
config SENSORS_ARM_SCPI
tristate "ARM SCPI Sensors"
depends on ARM_SCPI_PROTOCOL

View File

@ -46,6 +46,7 @@ obj-$(CONFIG_SENSORS_ADT7462) += adt7462.o
obj-$(CONFIG_SENSORS_ADT7470) += adt7470.o
obj-$(CONFIG_SENSORS_ADT7475) += adt7475.o
obj-$(CONFIG_SENSORS_APPLESMC) += applesmc.o
obj-$(CONFIG_SENSORS_ARM_SCMI) += scmi-hwmon.o
obj-$(CONFIG_SENSORS_ARM_SCPI) += scpi-hwmon.o
obj-$(CONFIG_SENSORS_ASC7621) += asc7621.o
obj-$(CONFIG_SENSORS_ASPEED) += aspeed-pwm-tacho.o

View File

@ -0,0 +1,225 @@
// SPDX-License-Identifier: GPL-2.0
/*
* System Control and Management Interface(SCMI) based hwmon sensor driver
*
* Copyright (C) 2018 ARM Ltd.
* Sudeep Holla <sudeep.holla@arm.com>
*/
#include <linux/hwmon.h>
#include <linux/module.h>
#include <linux/scmi_protocol.h>
#include <linux/slab.h>
#include <linux/sysfs.h>
#include <linux/thermal.h>
struct scmi_sensors {
const struct scmi_handle *handle;
const struct scmi_sensor_info **info[hwmon_max];
};
static int scmi_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long *val)
{
int ret;
u64 value;
const struct scmi_sensor_info *sensor;
struct scmi_sensors *scmi_sensors = dev_get_drvdata(dev);
const struct scmi_handle *h = scmi_sensors->handle;
sensor = *(scmi_sensors->info[type] + channel);
ret = h->sensor_ops->reading_get(h, sensor->id, false, &value);
if (!ret)
*val = value;
return ret;
}
static int
scmi_hwmon_read_string(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, const char **str)
{
const struct scmi_sensor_info *sensor;
struct scmi_sensors *scmi_sensors = dev_get_drvdata(dev);
sensor = *(scmi_sensors->info[type] + channel);
*str = sensor->name;
return 0;
}
static umode_t
scmi_hwmon_is_visible(const void *drvdata, enum hwmon_sensor_types type,
u32 attr, int channel)
{
const struct scmi_sensor_info *sensor;
const struct scmi_sensors *scmi_sensors = drvdata;
sensor = *(scmi_sensors->info[type] + channel);
if (sensor && sensor->name)
return S_IRUGO;
return 0;
}
static const struct hwmon_ops scmi_hwmon_ops = {
.is_visible = scmi_hwmon_is_visible,
.read = scmi_hwmon_read,
.read_string = scmi_hwmon_read_string,
};
static struct hwmon_chip_info scmi_chip_info = {
.ops = &scmi_hwmon_ops,
.info = NULL,
};
static int scmi_hwmon_add_chan_info(struct hwmon_channel_info *scmi_hwmon_chan,
struct device *dev, int num,
enum hwmon_sensor_types type, u32 config)
{
int i;
u32 *cfg = devm_kcalloc(dev, num + 1, sizeof(*cfg), GFP_KERNEL);
if (!cfg)
return -ENOMEM;
scmi_hwmon_chan->type = type;
scmi_hwmon_chan->config = cfg;
for (i = 0; i < num; i++, cfg++)
*cfg = config;
return 0;
}
static enum hwmon_sensor_types scmi_types[] = {
[TEMPERATURE_C] = hwmon_temp,
[VOLTAGE] = hwmon_in,
[CURRENT] = hwmon_curr,
[POWER] = hwmon_power,
[ENERGY] = hwmon_energy,
};
static u32 hwmon_attributes[] = {
[hwmon_chip] = HWMON_C_REGISTER_TZ,
[hwmon_temp] = HWMON_T_INPUT | HWMON_T_LABEL,
[hwmon_in] = HWMON_I_INPUT | HWMON_I_LABEL,
[hwmon_curr] = HWMON_C_INPUT | HWMON_C_LABEL,
[hwmon_power] = HWMON_P_INPUT | HWMON_P_LABEL,
[hwmon_energy] = HWMON_E_INPUT | HWMON_E_LABEL,
};
static int scmi_hwmon_probe(struct scmi_device *sdev)
{
int i, idx;
u16 nr_sensors;
enum hwmon_sensor_types type;
struct scmi_sensors *scmi_sensors;
const struct scmi_sensor_info *sensor;
int nr_count[hwmon_max] = {0}, nr_types = 0;
const struct hwmon_chip_info *chip_info;
struct device *hwdev, *dev = &sdev->dev;
struct hwmon_channel_info *scmi_hwmon_chan;
const struct hwmon_channel_info **ptr_scmi_ci;
const struct scmi_handle *handle = sdev->handle;
if (!handle || !handle->sensor_ops)
return -ENODEV;
nr_sensors = handle->sensor_ops->count_get(handle);
if (!nr_sensors)
return -EIO;
scmi_sensors = devm_kzalloc(dev, sizeof(*scmi_sensors), GFP_KERNEL);
if (!scmi_sensors)
return -ENOMEM;
scmi_sensors->handle = handle;
for (i = 0; i < nr_sensors; i++) {
sensor = handle->sensor_ops->info_get(handle, i);
if (!sensor)
return -EINVAL;
switch (sensor->type) {
case TEMPERATURE_C:
case VOLTAGE:
case CURRENT:
case POWER:
case ENERGY:
type = scmi_types[sensor->type];
if (!nr_count[type])
nr_types++;
nr_count[type]++;
break;
}
}
if (nr_count[hwmon_temp])
nr_count[hwmon_chip]++, nr_types++;
scmi_hwmon_chan = devm_kcalloc(dev, nr_types, sizeof(*scmi_hwmon_chan),
GFP_KERNEL);
if (!scmi_hwmon_chan)
return -ENOMEM;
ptr_scmi_ci = devm_kcalloc(dev, nr_types + 1, sizeof(*ptr_scmi_ci),
GFP_KERNEL);
if (!ptr_scmi_ci)
return -ENOMEM;
scmi_chip_info.info = ptr_scmi_ci;
chip_info = &scmi_chip_info;
for (type = 0; type < hwmon_max && nr_count[type]; type++) {
scmi_hwmon_add_chan_info(scmi_hwmon_chan, dev, nr_count[type],
type, hwmon_attributes[type]);
*ptr_scmi_ci++ = scmi_hwmon_chan++;
scmi_sensors->info[type] =
devm_kcalloc(dev, nr_count[type],
sizeof(*scmi_sensors->info), GFP_KERNEL);
if (!scmi_sensors->info[type])
return -ENOMEM;
}
for (i = nr_sensors - 1; i >= 0 ; i--) {
sensor = handle->sensor_ops->info_get(handle, i);
if (!sensor)
continue;
switch (sensor->type) {
case TEMPERATURE_C:
case VOLTAGE:
case CURRENT:
case POWER:
case ENERGY:
type = scmi_types[sensor->type];
idx = --nr_count[type];
*(scmi_sensors->info[type] + idx) = sensor;
break;
}
}
hwdev = devm_hwmon_device_register_with_info(dev, "scmi_sensors",
scmi_sensors, chip_info,
NULL);
return PTR_ERR_OR_ZERO(hwdev);
}
static const struct scmi_device_id scmi_id_table[] = {
{ SCMI_PROTOCOL_SENSOR },
{ },
};
MODULE_DEVICE_TABLE(scmi, scmi_id_table);
static struct scmi_driver scmi_hwmon_drv = {
.name = "scmi-hwmon",
.probe = scmi_hwmon_probe,
.id_table = scmi_id_table,
};
module_scmi_driver(scmi_hwmon_drv);
MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>");
MODULE_DESCRIPTION("ARM SCMI HWMON interface driver");
MODULE_LICENSE("GPL v2");

View File

@ -127,7 +127,7 @@ static int emif_regdump_show(struct seq_file *s, void *unused)
for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
do_emif_regdump_show(s, emif, regs_cache[i]);
seq_printf(s, "\n");
seq_putc(s, '\n');
}
return 0;

View File

@ -1,3 +1,4 @@
# SPDX-License-Identifier: GPL-2.0
config SAMSUNG_MC
bool "Samsung Exynos Memory Controller support" if COMPILE_TEST
help

View File

@ -1 +1,2 @@
# SPDX-License-Identifier: GPL-2.0
obj-$(CONFIG_EXYNOS_SROM) += exynos-srom.o

View File

@ -1,14 +1,10 @@
/*
* Copyright (c) 2015 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* EXYNOS - SROM Controller support
* Author: Pankaj Dubey <pankaj.dubey@samsung.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
// SPDX-License-Identifier: GPL-2.0
//
// Copyright (c) 2015 Samsung Electronics Co., Ltd.
// http://www.samsung.com/
//
// EXYNOS - SROM Controller support
// Author: Pankaj Dubey <pankaj.dubey@samsung.com>
#include <linux/io.h>
#include <linux/init.h>

View File

@ -1,13 +1,10 @@
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (c) 2015 Samsung Electronics Co., Ltd.
* http://www.samsung.com
*
* Exynos SROMC register definitions
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
*/
#ifndef __EXYNOS_SROM_H
#define __EXYNOS_SROM_H __FILE__

View File

@ -271,7 +271,6 @@ static int ti_emif_probe(struct platform_device *pdev)
emif_data->pm_data.ti_emif_base_addr_virt = devm_ioremap_resource(dev,
res);
if (IS_ERR(emif_data->pm_data.ti_emif_base_addr_virt)) {
dev_err(dev, "could not ioremap emif mem\n");
ret = PTR_ERR(emif_data->pm_data.ti_emif_base_addr_virt);
return ret;
}

View File

@ -5,6 +5,39 @@
menu "Performance monitor support"
depends on PERF_EVENTS
config ARM_CCI_PMU
bool
select ARM_CCI
config ARM_CCI400_PMU
bool "ARM CCI400 PMU support"
depends on (ARM && CPU_V7) || ARM64
select ARM_CCI400_COMMON
select ARM_CCI_PMU
help
Support for PMU events monitoring on the ARM CCI-400 (cache coherent
interconnect). CCI-400 supports counting events related to the
connected slave/master interfaces.
config ARM_CCI5xx_PMU
bool "ARM CCI-500/CCI-550 PMU support"
depends on (ARM && CPU_V7) || ARM64
select ARM_CCI_PMU
help
Support for PMU events monitoring on the ARM CCI-500/CCI-550 cache
coherent interconnects. Both of them provide 8 independent event counters,
which can count events pertaining to the slave/master interfaces as well
as the internal events to the CCI.
If unsure, say Y
config ARM_CCN
tristate "ARM CCN driver support"
depends on ARM || ARM64
help
PMU (perf) driver supporting the ARM CCN (Cache Coherent Network)
interconnect.
config ARM_PMU
depends on ARM || ARM64
bool "ARM PMU framework"

View File

@ -1,4 +1,6 @@
# SPDX-License-Identifier: GPL-2.0
obj-$(CONFIG_ARM_CCI_PMU) += arm-cci.o
obj-$(CONFIG_ARM_CCN) += arm-ccn.o
obj-$(CONFIG_ARM_DSU_PMU) += arm_dsu_pmu.o
obj-$(CONFIG_ARM_PMU) += arm_pmu.o arm_pmu_platform.o
obj-$(CONFIG_ARM_PMU_ACPI) += arm_pmu_acpi.o

File diff suppressed because it is too large Load Diff

View File

@ -49,6 +49,7 @@ config RESET_HSDK
config RESET_IMX7
bool "i.MX7 Reset Driver" if COMPILE_TEST
depends on HAS_IOMEM
default SOC_IMX7D
select MFD_SYSCON
help
@ -83,14 +84,24 @@ config RESET_PISTACHIO
config RESET_SIMPLE
bool "Simple Reset Controller Driver" if COMPILE_TEST
default ARCH_SOCFPGA || ARCH_STM32 || ARCH_STRATIX10 || ARCH_SUNXI || ARCH_ZX
default ARCH_SOCFPGA || ARCH_STM32 || ARCH_STRATIX10 || ARCH_SUNXI || ARCH_ZX || ARCH_ASPEED
help
This enables a simple reset controller driver for reset lines that
that can be asserted and deasserted by toggling bits in a contiguous,
exclusive register space.
Currently this driver supports Altera SoCFPGAs, the RCC reset
controller in STM32 MCUs, Allwinner SoCs, and ZTE's zx2967 family.
Currently this driver supports:
- Altera SoCFPGAs
- ASPEED BMC SoCs
- RCC reset controller in STM32 MCUs
- Allwinner SoCs
- ZTE's zx2967 family
config RESET_STM32MP157
bool "STM32MP157 Reset Driver" if COMPILE_TEST
default MACH_STM32MP157
help
This enables the RCC reset controller driver for STM32 MPUs.
config RESET_SUNXI
bool "Allwinner SoCs Reset Driver" if COMPILE_TEST && !ARCH_SUNXI

View File

@ -15,6 +15,7 @@ obj-$(CONFIG_RESET_MESON) += reset-meson.o
obj-$(CONFIG_RESET_OXNAS) += reset-oxnas.o
obj-$(CONFIG_RESET_PISTACHIO) += reset-pistachio.o
obj-$(CONFIG_RESET_SIMPLE) += reset-simple.o
obj-$(CONFIG_RESET_STM32MP157) += reset-stm32mp1.o
obj-$(CONFIG_RESET_SUNXI) += reset-sunxi.o
obj-$(CONFIG_RESET_TI_SCI) += reset-ti-sci.o
obj-$(CONFIG_RESET_TI_SYSCON) += reset-ti-syscon.o

View File

@ -23,6 +23,9 @@
static DEFINE_MUTEX(reset_list_mutex);
static LIST_HEAD(reset_controller_list);
static DEFINE_MUTEX(reset_lookup_mutex);
static LIST_HEAD(reset_lookup_list);
/**
* struct reset_control - a reset control
* @rcdev: a pointer to the reset controller device
@ -148,6 +151,33 @@ int devm_reset_controller_register(struct device *dev,
}
EXPORT_SYMBOL_GPL(devm_reset_controller_register);
/**
* reset_controller_add_lookup - register a set of lookup entries
* @lookup: array of reset lookup entries
* @num_entries: number of entries in the lookup array
*/
void reset_controller_add_lookup(struct reset_control_lookup *lookup,
unsigned int num_entries)
{
struct reset_control_lookup *entry;
unsigned int i;
mutex_lock(&reset_lookup_mutex);
for (i = 0; i < num_entries; i++) {
entry = &lookup[i];
if (!entry->dev_id || !entry->provider) {
pr_warn("%s(): reset lookup entry badly specified, skipping\n",
__func__);
continue;
}
list_add_tail(&entry->list, &reset_lookup_list);
}
mutex_unlock(&reset_lookup_mutex);
}
EXPORT_SYMBOL_GPL(reset_controller_add_lookup);
static inline struct reset_control_array *
rstc_to_array(struct reset_control *rstc) {
return container_of(rstc, struct reset_control_array, base);
@ -493,6 +523,70 @@ struct reset_control *__of_reset_control_get(struct device_node *node,
}
EXPORT_SYMBOL_GPL(__of_reset_control_get);
static struct reset_controller_dev *
__reset_controller_by_name(const char *name)
{
struct reset_controller_dev *rcdev;
lockdep_assert_held(&reset_list_mutex);
list_for_each_entry(rcdev, &reset_controller_list, list) {
if (!rcdev->dev)
continue;
if (!strcmp(name, dev_name(rcdev->dev)))
return rcdev;
}
return NULL;
}
static struct reset_control *
__reset_control_get_from_lookup(struct device *dev, const char *con_id,
bool shared, bool optional)
{
const struct reset_control_lookup *lookup;
struct reset_controller_dev *rcdev;
const char *dev_id = dev_name(dev);
struct reset_control *rstc = NULL;
if (!dev)
return ERR_PTR(-EINVAL);
mutex_lock(&reset_lookup_mutex);
list_for_each_entry(lookup, &reset_lookup_list, list) {
if (strcmp(lookup->dev_id, dev_id))
continue;
if ((!con_id && !lookup->con_id) ||
((con_id && lookup->con_id) &&
!strcmp(con_id, lookup->con_id))) {
mutex_lock(&reset_list_mutex);
rcdev = __reset_controller_by_name(lookup->provider);
if (!rcdev) {
mutex_unlock(&reset_list_mutex);
mutex_unlock(&reset_lookup_mutex);
/* Reset provider may not be ready yet. */
return ERR_PTR(-EPROBE_DEFER);
}
rstc = __reset_control_get_internal(rcdev,
lookup->index,
shared);
mutex_unlock(&reset_list_mutex);
break;
}
}
mutex_unlock(&reset_lookup_mutex);
if (!rstc)
return optional ? NULL : ERR_PTR(-ENOENT);
return rstc;
}
struct reset_control *__reset_control_get(struct device *dev, const char *id,
int index, bool shared, bool optional)
{
@ -500,7 +594,7 @@ struct reset_control *__reset_control_get(struct device *dev, const char *id,
return __of_reset_control_get(dev->of_node, id, index, shared,
optional);
return optional ? NULL : ERR_PTR(-EINVAL);
return __reset_control_get_from_lookup(dev, id, shared, optional);
}
EXPORT_SYMBOL_GPL(__reset_control_get);

View File

@ -124,29 +124,21 @@ static int meson_reset_deassert(struct reset_controller_dev *rcdev,
return meson_reset_level(rcdev, id, false);
}
static const struct reset_control_ops meson_reset_meson8_ops = {
.reset = meson_reset_reset,
};
static const struct reset_control_ops meson_reset_gx_ops = {
static const struct reset_control_ops meson_reset_ops = {
.reset = meson_reset_reset,
.assert = meson_reset_assert,
.deassert = meson_reset_deassert,
};
static const struct of_device_id meson_reset_dt_ids[] = {
{ .compatible = "amlogic,meson8b-reset",
.data = &meson_reset_meson8_ops, },
{ .compatible = "amlogic,meson-gxbb-reset",
.data = &meson_reset_gx_ops, },
{ .compatible = "amlogic,meson-axg-reset",
.data = &meson_reset_gx_ops, },
{ .compatible = "amlogic,meson8b-reset" },
{ .compatible = "amlogic,meson-gxbb-reset" },
{ .compatible = "amlogic,meson-axg-reset" },
{ /* sentinel */ },
};
static int meson_reset_probe(struct platform_device *pdev)
{
const struct reset_control_ops *ops;
struct meson_reset *data;
struct resource *res;
@ -154,10 +146,6 @@ static int meson_reset_probe(struct platform_device *pdev)
if (!data)
return -ENOMEM;
ops = of_device_get_match_data(&pdev->dev);
if (!ops)
return -EINVAL;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
data->reg_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(data->reg_base))
@ -169,7 +157,7 @@ static int meson_reset_probe(struct platform_device *pdev)
data->rcdev.owner = THIS_MODULE;
data->rcdev.nr_resets = REG_COUNT * BITS_PER_REG;
data->rcdev.ops = ops;
data->rcdev.ops = &meson_reset_ops;
data->rcdev.of_node = pdev->dev.of_node;
return devm_reset_controller_register(&pdev->dev, &data->rcdev);

View File

@ -125,6 +125,8 @@ static const struct of_device_id reset_simple_dt_ids[] = {
.data = &reset_simple_active_low },
{ .compatible = "zte,zx296718-reset",
.data = &reset_simple_active_low },
{ .compatible = "aspeed,ast2400-lpc-reset" },
{ .compatible = "aspeed,ast2500-lpc-reset" },
{ /* sentinel */ },
};

View File

@ -0,0 +1,115 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) STMicroelectronics 2018 - All Rights Reserved
* Author: Gabriel Fernandez <gabriel.fernandez@st.com> for STMicroelectronics.
*/
#include <linux/device.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/reset-controller.h>
#define CLR_OFFSET 0x4
struct stm32_reset_data {
struct reset_controller_dev rcdev;
void __iomem *membase;
};
static inline struct stm32_reset_data *
to_stm32_reset_data(struct reset_controller_dev *rcdev)
{
return container_of(rcdev, struct stm32_reset_data, rcdev);
}
static int stm32_reset_update(struct reset_controller_dev *rcdev,
unsigned long id, bool assert)
{
struct stm32_reset_data *data = to_stm32_reset_data(rcdev);
int reg_width = sizeof(u32);
int bank = id / (reg_width * BITS_PER_BYTE);
int offset = id % (reg_width * BITS_PER_BYTE);
void __iomem *addr;
addr = data->membase + (bank * reg_width);
if (!assert)
addr += CLR_OFFSET;
writel(BIT(offset), addr);
return 0;
}
static int stm32_reset_assert(struct reset_controller_dev *rcdev,
unsigned long id)
{
return stm32_reset_update(rcdev, id, true);
}
static int stm32_reset_deassert(struct reset_controller_dev *rcdev,
unsigned long id)
{
return stm32_reset_update(rcdev, id, false);
}
static int stm32_reset_status(struct reset_controller_dev *rcdev,
unsigned long id)
{
struct stm32_reset_data *data = to_stm32_reset_data(rcdev);
int reg_width = sizeof(u32);
int bank = id / (reg_width * BITS_PER_BYTE);
int offset = id % (reg_width * BITS_PER_BYTE);
u32 reg;
reg = readl(data->membase + (bank * reg_width));
return !!(reg & BIT(offset));
}
static const struct reset_control_ops stm32_reset_ops = {
.assert = stm32_reset_assert,
.deassert = stm32_reset_deassert,
.status = stm32_reset_status,
};
static const struct of_device_id stm32_reset_dt_ids[] = {
{ .compatible = "st,stm32mp1-rcc"},
{ /* sentinel */ },
};
static int stm32_reset_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct stm32_reset_data *data;
void __iomem *membase;
struct resource *res;
data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
membase = devm_ioremap_resource(dev, res);
if (IS_ERR(membase))
return PTR_ERR(membase);
data->membase = membase;
data->rcdev.owner = THIS_MODULE;
data->rcdev.nr_resets = resource_size(res) * BITS_PER_BYTE;
data->rcdev.ops = &stm32_reset_ops;
data->rcdev.of_node = dev->of_node;
return devm_reset_controller_register(dev, &data->rcdev);
}
static struct platform_driver stm32_reset_driver = {
.probe = stm32_reset_probe,
.driver = {
.name = "stm32mp1-reset",
.of_match_table = stm32_reset_dt_ids,
},
};
builtin_platform_driver(stm32_reset_driver);

View File

@ -63,6 +63,7 @@ static const struct uniphier_reset_data uniphier_pro4_sys_reset_data[] = {
UNIPHIER_RESETX(12, 0x2000, 6), /* GIO (Ether, SATA, USB3) */
UNIPHIER_RESETX(14, 0x2000, 17), /* USB30 */
UNIPHIER_RESETX(15, 0x2004, 17), /* USB31 */
UNIPHIER_RESETX(40, 0x2000, 13), /* AIO */
UNIPHIER_RESET_END,
};
@ -72,6 +73,7 @@ static const struct uniphier_reset_data uniphier_pro5_sys_reset_data[] = {
UNIPHIER_RESETX(12, 0x2000, 6), /* GIO (PCIe, USB3) */
UNIPHIER_RESETX(14, 0x2000, 17), /* USB30 */
UNIPHIER_RESETX(15, 0x2004, 17), /* USB31 */
UNIPHIER_RESETX(40, 0x2000, 13), /* AIO */
UNIPHIER_RESET_END,
};
@ -88,6 +90,7 @@ static const struct uniphier_reset_data uniphier_pxs2_sys_reset_data[] = {
UNIPHIER_RESETX(21, 0x2014, 1), /* USB31-PHY1 */
UNIPHIER_RESETX(28, 0x2014, 12), /* SATA */
UNIPHIER_RESET(29, 0x2014, 8), /* SATA-PHY (active high) */
UNIPHIER_RESETX(40, 0x2000, 13), /* AIO */
UNIPHIER_RESET_END,
};
@ -121,6 +124,8 @@ static const struct uniphier_reset_data uniphier_ld20_sys_reset_data[] = {
static const struct uniphier_reset_data uniphier_pxs3_sys_reset_data[] = {
UNIPHIER_RESETX(2, 0x200c, 0), /* NAND */
UNIPHIER_RESETX(4, 0x200c, 2), /* eMMC */
UNIPHIER_RESETX(6, 0x200c, 9), /* Ether0 */
UNIPHIER_RESETX(7, 0x200c, 10), /* Ether1 */
UNIPHIER_RESETX(8, 0x200c, 12), /* STDMAC */
UNIPHIER_RESETX(12, 0x200c, 4), /* USB30 link (GIO0) */
UNIPHIER_RESETX(13, 0x200c, 5), /* USB31 link (GIO1) */

View File

@ -184,7 +184,8 @@ static int meson_gx_pwrc_vpu_probe(struct platform_device *pdev)
rstc = devm_reset_control_array_get(&pdev->dev, false, false);
if (IS_ERR(rstc)) {
dev_err(&pdev->dev, "failed to get reset lines\n");
if (PTR_ERR(rstc) != -EPROBE_DEFER)
dev_err(&pdev->dev, "failed to get reset lines\n");
return PTR_ERR(rstc);
}
@ -224,7 +225,11 @@ static int meson_gx_pwrc_vpu_probe(struct platform_device *pdev)
static void meson_gx_pwrc_vpu_shutdown(struct platform_device *pdev)
{
meson_gx_pwrc_vpu_power_off(&vpu_hdmi_pd.genpd);
bool powered_off;
powered_off = meson_gx_pwrc_vpu_get_power(&vpu_hdmi_pd);
if (!powered_off)
meson_gx_pwrc_vpu_power_off(&vpu_hdmi_pd.genpd);
}
static const struct of_device_id meson_gx_pwrc_vpu_match_table[] = {

View File

@ -33,6 +33,10 @@ static const struct meson_gx_soc_id {
{ "GXL", 0x21 },
{ "GXM", 0x22 },
{ "TXL", 0x23 },
{ "TXLX", 0x24 },
{ "AXG", 0x25 },
{ "GXLX", 0x26 },
{ "TXHD", 0x27 },
};
static const struct meson_gx_package_id {
@ -45,9 +49,14 @@ static const struct meson_gx_package_id {
{ "S905M", 0x1f, 0x20 },
{ "S905D", 0x21, 0 },
{ "S905X", 0x21, 0x80 },
{ "S905W", 0x21, 0xa0 },
{ "S905L", 0x21, 0xc0 },
{ "S905M2", 0x21, 0xe0 },
{ "S912", 0x22, 0 },
{ "962X", 0x24, 0x10 },
{ "962E", 0x24, 0x20 },
{ "A113X", 0x25, 0x37 },
{ "A113D", 0x25, 0x22 },
};
static inline unsigned int socinfo_to_major(u32 socinfo)
@ -98,7 +107,7 @@ static const char *socinfo_to_soc_id(u32 socinfo)
return "Unknown";
}
int __init meson_gx_socinfo_init(void)
static int __init meson_gx_socinfo_init(void)
{
struct soc_device_attribute *soc_dev_attr;
struct soc_device *soc_dev;

View File

@ -104,7 +104,7 @@ static const struct of_device_id meson_mx_socinfo_analog_top_ids[] = {
{ /* sentinel */ }
};
int __init meson_mx_socinfo_init(void)
static int __init meson_mx_socinfo_init(void)
{
struct soc_device_attribute *soc_dev_attr;
struct soc_device *soc_dev;

View File

@ -254,6 +254,7 @@ static struct imx_pm_domain imx_gpc_domains[] = {
{
.base = {
.name = "ARM",
.flags = GENPD_FLAG_ALWAYS_ON,
},
}, {
.base = {

View File

@ -24,6 +24,7 @@
#include <dt-bindings/power/mt2712-power.h>
#include <dt-bindings/power/mt6797-power.h>
#include <dt-bindings/power/mt7622-power.h>
#include <dt-bindings/power/mt7623a-power.h>
#include <dt-bindings/power/mt8173-power.h>
#define SPM_VDE_PWR_CON 0x0210
@ -518,7 +519,8 @@ static const struct scp_domain_data scp_domain_data_mt2701[] = {
.name = "conn",
.sta_mask = PWR_STATUS_CONN,
.ctl_offs = SPM_CONN_PWR_CON,
.bus_prot_mask = 0x0104,
.bus_prot_mask = MT2701_TOP_AXI_PROT_EN_CONN_M |
MT2701_TOP_AXI_PROT_EN_CONN_S,
.clk_id = {CLK_NONE},
.active_wakeup = true,
},
@ -528,7 +530,7 @@ static const struct scp_domain_data scp_domain_data_mt2701[] = {
.ctl_offs = SPM_DIS_PWR_CON,
.sram_pdn_bits = GENMASK(11, 8),
.clk_id = {CLK_MM},
.bus_prot_mask = 0x0002,
.bus_prot_mask = MT2701_TOP_AXI_PROT_EN_MM_M0,
.active_wakeup = true,
},
[MT2701_POWER_DOMAIN_MFG] = {
@ -664,12 +666,48 @@ static const struct scp_domain_data scp_domain_data_mt2712[] = {
.name = "mfg",
.sta_mask = PWR_STATUS_MFG,
.ctl_offs = SPM_MFG_PWR_CON,
.sram_pdn_bits = GENMASK(11, 8),
.sram_pdn_ack_bits = GENMASK(19, 16),
.sram_pdn_bits = GENMASK(8, 8),
.sram_pdn_ack_bits = GENMASK(16, 16),
.clk_id = {CLK_MFG},
.bus_prot_mask = BIT(14) | BIT(21) | BIT(23),
.active_wakeup = true,
},
[MT2712_POWER_DOMAIN_MFG_SC1] = {
.name = "mfg_sc1",
.sta_mask = BIT(22),
.ctl_offs = 0x02c0,
.sram_pdn_bits = GENMASK(8, 8),
.sram_pdn_ack_bits = GENMASK(16, 16),
.clk_id = {CLK_NONE},
.active_wakeup = true,
},
[MT2712_POWER_DOMAIN_MFG_SC2] = {
.name = "mfg_sc2",
.sta_mask = BIT(23),
.ctl_offs = 0x02c4,
.sram_pdn_bits = GENMASK(8, 8),
.sram_pdn_ack_bits = GENMASK(16, 16),
.clk_id = {CLK_NONE},
.active_wakeup = true,
},
[MT2712_POWER_DOMAIN_MFG_SC3] = {
.name = "mfg_sc3",
.sta_mask = BIT(30),
.ctl_offs = 0x01f8,
.sram_pdn_bits = GENMASK(8, 8),
.sram_pdn_ack_bits = GENMASK(16, 16),
.clk_id = {CLK_NONE},
.active_wakeup = true,
},
};
static const struct scp_subdomain scp_subdomain_mt2712[] = {
{MT2712_POWER_DOMAIN_MM, MT2712_POWER_DOMAIN_VDEC},
{MT2712_POWER_DOMAIN_MM, MT2712_POWER_DOMAIN_VENC},
{MT2712_POWER_DOMAIN_MM, MT2712_POWER_DOMAIN_ISP},
{MT2712_POWER_DOMAIN_MFG, MT2712_POWER_DOMAIN_MFG_SC1},
{MT2712_POWER_DOMAIN_MFG_SC1, MT2712_POWER_DOMAIN_MFG_SC2},
{MT2712_POWER_DOMAIN_MFG_SC2, MT2712_POWER_DOMAIN_MFG_SC3},
};
/*
@ -793,6 +831,47 @@ static const struct scp_domain_data scp_domain_data_mt7622[] = {
},
};
/*
* MT7623A power domain support
*/
static const struct scp_domain_data scp_domain_data_mt7623a[] = {
[MT7623A_POWER_DOMAIN_CONN] = {
.name = "conn",
.sta_mask = PWR_STATUS_CONN,
.ctl_offs = SPM_CONN_PWR_CON,
.bus_prot_mask = MT2701_TOP_AXI_PROT_EN_CONN_M |
MT2701_TOP_AXI_PROT_EN_CONN_S,
.clk_id = {CLK_NONE},
.active_wakeup = true,
},
[MT7623A_POWER_DOMAIN_ETH] = {
.name = "eth",
.sta_mask = PWR_STATUS_ETH,
.ctl_offs = SPM_ETH_PWR_CON,
.sram_pdn_bits = GENMASK(11, 8),
.sram_pdn_ack_bits = GENMASK(15, 12),
.clk_id = {CLK_ETHIF},
.active_wakeup = true,
},
[MT7623A_POWER_DOMAIN_HIF] = {
.name = "hif",
.sta_mask = PWR_STATUS_HIF,
.ctl_offs = SPM_HIF_PWR_CON,
.sram_pdn_bits = GENMASK(11, 8),
.sram_pdn_ack_bits = GENMASK(15, 12),
.clk_id = {CLK_ETHIF},
.active_wakeup = true,
},
[MT7623A_POWER_DOMAIN_IFR_MSC] = {
.name = "ifr_msc",
.sta_mask = PWR_STATUS_IFR_MSC,
.ctl_offs = SPM_IFR_MSC_PWR_CON,
.clk_id = {CLK_NONE},
.active_wakeup = true,
},
};
/*
* MT8173 power domain support
*/
@ -905,6 +984,8 @@ static const struct scp_soc_data mt2701_data = {
static const struct scp_soc_data mt2712_data = {
.domains = scp_domain_data_mt2712,
.num_domains = ARRAY_SIZE(scp_domain_data_mt2712),
.subdomains = scp_subdomain_mt2712,
.num_subdomains = ARRAY_SIZE(scp_subdomain_mt2712),
.regs = {
.pwr_sta_offs = SPM_PWR_STATUS,
.pwr_sta2nd_offs = SPM_PWR_STATUS_2ND
@ -934,6 +1015,16 @@ static const struct scp_soc_data mt7622_data = {
.bus_prot_reg_update = true,
};
static const struct scp_soc_data mt7623a_data = {
.domains = scp_domain_data_mt7623a,
.num_domains = ARRAY_SIZE(scp_domain_data_mt7623a),
.regs = {
.pwr_sta_offs = SPM_PWR_STATUS,
.pwr_sta2nd_offs = SPM_PWR_STATUS_2ND
},
.bus_prot_reg_update = true,
};
static const struct scp_soc_data mt8173_data = {
.domains = scp_domain_data_mt8173,
.num_domains = ARRAY_SIZE(scp_domain_data_mt8173),
@ -963,6 +1054,9 @@ static const struct of_device_id of_scpsys_match_tbl[] = {
}, {
.compatible = "mediatek,mt7622-scpsys",
.data = &mt7622_data,
}, {
.compatible = "mediatek,mt7623a-scpsys",
.data = &mt7623a_data,
}, {
.compatible = "mediatek,mt8173-scpsys",
.data = &mt8173_data,
@ -992,7 +1086,7 @@ static int scpsys_probe(struct platform_device *pdev)
pd_data = &scp->pd_data;
for (i = 0, sd = soc->subdomains ; i < soc->num_subdomains ; i++) {
for (i = 0, sd = soc->subdomains; i < soc->num_subdomains; i++, sd++) {
ret = pm_genpd_add_subdomain(pd_data->domains[sd->origin],
pd_data->domains[sd->subdomain]);
if (ret && IS_ENABLED(CONFIG_PM))

View File

@ -47,6 +47,7 @@ config QCOM_QMI_HELPERS
config QCOM_RMTFS_MEM
tristate "Qualcomm Remote Filesystem memory driver"
depends on ARCH_QCOM
select QCOM_SCM
help
The Qualcomm remote filesystem memory driver is used for allocating
and exposing regions of shared memory with remote processors for the

View File

@ -37,6 +37,8 @@ struct qcom_rmtfs_mem {
phys_addr_t size;
unsigned int client_id;
unsigned int perms;
};
static ssize_t qcom_rmtfs_mem_show(struct device *dev,
@ -151,9 +153,11 @@ static void qcom_rmtfs_mem_release_device(struct device *dev)
static int qcom_rmtfs_mem_probe(struct platform_device *pdev)
{
struct device_node *node = pdev->dev.of_node;
struct qcom_scm_vmperm perms[2];
struct reserved_mem *rmem;
struct qcom_rmtfs_mem *rmtfs_mem;
u32 client_id;
u32 vmid;
int ret;
rmem = of_reserved_mem_lookup(node);
@ -204,10 +208,31 @@ static int qcom_rmtfs_mem_probe(struct platform_device *pdev)
rmtfs_mem->dev.release = qcom_rmtfs_mem_release_device;
ret = of_property_read_u32(node, "qcom,vmid", &vmid);
if (ret < 0 && ret != -EINVAL) {
dev_err(&pdev->dev, "failed to parse qcom,vmid\n");
goto remove_cdev;
} else if (!ret) {
perms[0].vmid = QCOM_SCM_VMID_HLOS;
perms[0].perm = QCOM_SCM_PERM_RW;
perms[1].vmid = vmid;
perms[1].perm = QCOM_SCM_PERM_RW;
rmtfs_mem->perms = BIT(QCOM_SCM_VMID_HLOS);
ret = qcom_scm_assign_mem(rmtfs_mem->addr, rmtfs_mem->size,
&rmtfs_mem->perms, perms, 2);
if (ret < 0) {
dev_err(&pdev->dev, "assign memory failed\n");
goto remove_cdev;
}
}
dev_set_drvdata(&pdev->dev, rmtfs_mem);
return 0;
remove_cdev:
cdev_device_del(&rmtfs_mem->cdev, &rmtfs_mem->dev);
put_device:
put_device(&rmtfs_mem->dev);
@ -217,6 +242,15 @@ put_device:
static int qcom_rmtfs_mem_remove(struct platform_device *pdev)
{
struct qcom_rmtfs_mem *rmtfs_mem = dev_get_drvdata(&pdev->dev);
struct qcom_scm_vmperm perm;
if (rmtfs_mem->perms) {
perm.vmid = QCOM_SCM_VMID_HLOS;
perm.perm = QCOM_SCM_PERM_RW;
qcom_scm_assign_mem(rmtfs_mem->addr, rmtfs_mem->size,
&rmtfs_mem->perms, &perm, 1);
}
cdev_device_del(&rmtfs_mem->cdev, &rmtfs_mem->dev);
put_device(&rmtfs_mem->dev);

View File

@ -249,7 +249,7 @@ static int wcnss_download_nv(struct wcnss_ctrl *wcnss, bool *expect_cbc)
/* Increment for next fragment */
req->seq++;
data += req->hdr.len;
data += NV_FRAGMENT_SIZE;
left -= NV_FRAGMENT_SIZE;
} while (left > 0);

View File

@ -43,6 +43,28 @@ static const struct rockchip_grf_info rk3036_grf __initconst = {
.num_values = ARRAY_SIZE(rk3036_defaults),
};
#define RK3128_GRF_SOC_CON0 0x140
static const struct rockchip_grf_value rk3128_defaults[] __initconst = {
{ "jtag switching", RK3128_GRF_SOC_CON0, HIWORD_UPDATE(0, 1, 8) },
};
static const struct rockchip_grf_info rk3128_grf __initconst = {
.values = rk3128_defaults,
.num_values = ARRAY_SIZE(rk3128_defaults),
};
#define RK3228_GRF_SOC_CON6 0x418
static const struct rockchip_grf_value rk3228_defaults[] __initconst = {
{ "jtag switching", RK3228_GRF_SOC_CON6, HIWORD_UPDATE(0, 1, 8) },
};
static const struct rockchip_grf_info rk3228_grf __initconst = {
.values = rk3228_defaults,
.num_values = ARRAY_SIZE(rk3228_defaults),
};
#define RK3288_GRF_SOC_CON0 0x244
static const struct rockchip_grf_value rk3288_defaults[] __initconst = {
@ -91,6 +113,12 @@ static const struct of_device_id rockchip_grf_dt_match[] __initconst = {
{
.compatible = "rockchip,rk3036-grf",
.data = (void *)&rk3036_grf,
}, {
.compatible = "rockchip,rk3128-grf",
.data = (void *)&rk3128_grf,
}, {
.compatible = "rockchip,rk3228-grf",
.data = (void *)&rk3228_grf,
}, {
.compatible = "rockchip,rk3288-grf",
.data = (void *)&rk3288_grf,

View File

@ -67,7 +67,7 @@ struct rockchip_pm_domain {
struct regmap **qos_regmap;
u32 *qos_save_regs[MAX_QOS_REGS_NUM];
int num_clks;
struct clk *clks[];
struct clk_bulk_data *clks;
};
struct rockchip_pmu {
@ -274,13 +274,18 @@ static void rockchip_do_pmu_set_power_domain(struct rockchip_pm_domain *pd,
static int rockchip_pd_power(struct rockchip_pm_domain *pd, bool power_on)
{
int i;
struct rockchip_pmu *pmu = pd->pmu;
int ret;
mutex_lock(&pd->pmu->mutex);
mutex_lock(&pmu->mutex);
if (rockchip_pmu_domain_is_on(pd) != power_on) {
for (i = 0; i < pd->num_clks; i++)
clk_enable(pd->clks[i]);
ret = clk_bulk_enable(pd->num_clks, pd->clks);
if (ret < 0) {
dev_err(pmu->dev, "failed to enable clocks\n");
mutex_unlock(&pmu->mutex);
return ret;
}
if (!power_on) {
rockchip_pmu_save_qos(pd);
@ -298,11 +303,10 @@ static int rockchip_pd_power(struct rockchip_pm_domain *pd, bool power_on)
rockchip_pmu_restore_qos(pd);
}
for (i = pd->num_clks - 1; i >= 0; i--)
clk_disable(pd->clks[i]);
clk_bulk_disable(pd->num_clks, pd->clks);
}
mutex_unlock(&pd->pmu->mutex);
mutex_unlock(&pmu->mutex);
return 0;
}
@ -364,8 +368,6 @@ static int rockchip_pm_add_one_domain(struct rockchip_pmu *pmu,
const struct rockchip_domain_info *pd_info;
struct rockchip_pm_domain *pd;
struct device_node *qos_node;
struct clk *clk;
int clk_cnt;
int i, j;
u32 id;
int error;
@ -391,41 +393,41 @@ static int rockchip_pm_add_one_domain(struct rockchip_pmu *pmu,
return -EINVAL;
}
clk_cnt = of_count_phandle_with_args(node, "clocks", "#clock-cells");
pd = devm_kzalloc(pmu->dev,
sizeof(*pd) + clk_cnt * sizeof(pd->clks[0]),
GFP_KERNEL);
pd = devm_kzalloc(pmu->dev, sizeof(*pd), GFP_KERNEL);
if (!pd)
return -ENOMEM;
pd->info = pd_info;
pd->pmu = pmu;
for (i = 0; i < clk_cnt; i++) {
clk = of_clk_get(node, i);
if (IS_ERR(clk)) {
error = PTR_ERR(clk);
pd->num_clks = of_count_phandle_with_args(node, "clocks",
"#clock-cells");
if (pd->num_clks > 0) {
pd->clks = devm_kcalloc(pmu->dev, pd->num_clks,
sizeof(*pd->clks), GFP_KERNEL);
if (!pd->clks)
return -ENOMEM;
} else {
dev_dbg(pmu->dev, "%s: doesn't have clocks: %d\n",
node->name, pd->num_clks);
pd->num_clks = 0;
}
for (i = 0; i < pd->num_clks; i++) {
pd->clks[i].clk = of_clk_get(node, i);
if (IS_ERR(pd->clks[i].clk)) {
error = PTR_ERR(pd->clks[i].clk);
dev_err(pmu->dev,
"%s: failed to get clk at index %d: %d\n",
node->name, i, error);
goto err_out;
return error;
}
error = clk_prepare(clk);
if (error) {
dev_err(pmu->dev,
"%s: failed to prepare clk %pC (index %d): %d\n",
node->name, clk, i, error);
clk_put(clk);
goto err_out;
}
pd->clks[pd->num_clks++] = clk;
dev_dbg(pmu->dev, "added clock '%pC' to domain '%s'\n",
clk, node->name);
}
error = clk_bulk_prepare(pd->num_clks, pd->clks);
if (error)
goto err_put_clocks;
pd->num_qos = of_count_phandle_with_args(node, "pm_qos",
NULL);
@ -435,7 +437,7 @@ static int rockchip_pm_add_one_domain(struct rockchip_pmu *pmu,
GFP_KERNEL);
if (!pd->qos_regmap) {
error = -ENOMEM;
goto err_out;
goto err_unprepare_clocks;
}
for (j = 0; j < MAX_QOS_REGS_NUM; j++) {
@ -445,7 +447,7 @@ static int rockchip_pm_add_one_domain(struct rockchip_pmu *pmu,
GFP_KERNEL);
if (!pd->qos_save_regs[j]) {
error = -ENOMEM;
goto err_out;
goto err_unprepare_clocks;
}
}
@ -453,13 +455,13 @@ static int rockchip_pm_add_one_domain(struct rockchip_pmu *pmu,
qos_node = of_parse_phandle(node, "pm_qos", j);
if (!qos_node) {
error = -ENODEV;
goto err_out;
goto err_unprepare_clocks;
}
pd->qos_regmap[j] = syscon_node_to_regmap(qos_node);
if (IS_ERR(pd->qos_regmap[j])) {
error = -ENODEV;
of_node_put(qos_node);
goto err_out;
goto err_unprepare_clocks;
}
of_node_put(qos_node);
}
@ -470,7 +472,7 @@ static int rockchip_pm_add_one_domain(struct rockchip_pmu *pmu,
dev_err(pmu->dev,
"failed to power on domain '%s': %d\n",
node->name, error);
goto err_out;
goto err_unprepare_clocks;
}
pd->genpd.name = node->name;
@ -486,17 +488,16 @@ static int rockchip_pm_add_one_domain(struct rockchip_pmu *pmu,
pmu->genpd_data.domains[id] = &pd->genpd;
return 0;
err_out:
while (--i >= 0) {
clk_unprepare(pd->clks[i]);
clk_put(pd->clks[i]);
}
err_unprepare_clocks:
clk_bulk_unprepare(pd->num_clks, pd->clks);
err_put_clocks:
clk_bulk_put(pd->num_clks, pd->clks);
return error;
}
static void rockchip_pm_remove_one_domain(struct rockchip_pm_domain *pd)
{
int i, ret;
int ret;
/*
* We're in the error cleanup already, so we only complain,
@ -507,10 +508,8 @@ static void rockchip_pm_remove_one_domain(struct rockchip_pm_domain *pd)
dev_err(pd->pmu->dev, "failed to remove domain '%s' : %d - state may be inconsistent\n",
pd->genpd.name, ret);
for (i = 0; i < pd->num_clks; i++) {
clk_unprepare(pd->clks[i]);
clk_put(pd->clks[i]);
}
clk_bulk_unprepare(pd->num_clks, pd->clks);
clk_bulk_put(pd->num_clks, pd->clks);
/* protect the zeroing of pm->num_clks */
mutex_lock(&pd->pmu->mutex);

View File

@ -84,11 +84,15 @@ static const struct of_device_id exynos_pmu_of_device_ids[] = {
}, {
.compatible = "samsung,exynos5250-pmu",
.data = exynos_pmu_data_arm_ptr(exynos5250_pmu_data),
}, {
.compatible = "samsung,exynos5410-pmu",
}, {
.compatible = "samsung,exynos5420-pmu",
.data = exynos_pmu_data_arm_ptr(exynos5420_pmu_data),
}, {
.compatible = "samsung,exynos5433-pmu",
}, {
.compatible = "samsung,exynos7-pmu",
},
{ /*sentinel*/ },
};
@ -126,6 +130,9 @@ static int exynos_pmu_probe(struct platform_device *pdev)
platform_set_drvdata(pdev, pmu_context);
if (devm_of_platform_populate(dev))
dev_err(dev, "Error populating children, reboot and poweroff might not work properly\n");
dev_dbg(dev, "Exynos PMU Driver probe done\n");
return 0;
}

View File

@ -104,6 +104,16 @@ config ARCH_TEGRA_186_SOC
multi-format support, ISP for image capture processing and BPMP for
power management.
config ARCH_TEGRA_194_SOC
bool "NVIDIA Tegra194 SoC"
select MAILBOX
select TEGRA_BPMP
select TEGRA_HSP_MBOX
select TEGRA_IVC
select SOC_TEGRA_PMC
help
Enable support for the NVIDIA Tegra194 SoC.
endif
endif

View File

@ -127,8 +127,7 @@ struct tegra_powergate {
unsigned int id;
struct clk **clks;
unsigned int num_clks;
struct reset_control **resets;
unsigned int num_resets;
struct reset_control *reset;
};
struct tegra_io_pad_soc {
@ -153,6 +152,7 @@ struct tegra_pmc_soc {
bool has_tsense_reset;
bool has_gpu_clamps;
bool needs_mbist_war;
const struct tegra_io_pad_soc *io_pads;
unsigned int num_io_pads;
@ -368,31 +368,8 @@ out:
return err;
}
static int tegra_powergate_reset_assert(struct tegra_powergate *pg)
int __weak tegra210_clk_handle_mbist_war(unsigned int id)
{
unsigned int i;
int err;
for (i = 0; i < pg->num_resets; i++) {
err = reset_control_assert(pg->resets[i]);
if (err)
return err;
}
return 0;
}
static int tegra_powergate_reset_deassert(struct tegra_powergate *pg)
{
unsigned int i;
int err;
for (i = 0; i < pg->num_resets; i++) {
err = reset_control_deassert(pg->resets[i]);
if (err)
return err;
}
return 0;
}
@ -401,7 +378,7 @@ static int tegra_powergate_power_up(struct tegra_powergate *pg,
{
int err;
err = tegra_powergate_reset_assert(pg);
err = reset_control_assert(pg->reset);
if (err)
return err;
@ -425,12 +402,17 @@ static int tegra_powergate_power_up(struct tegra_powergate *pg,
usleep_range(10, 20);
err = tegra_powergate_reset_deassert(pg);
err = reset_control_deassert(pg->reset);
if (err)
goto powergate_off;
usleep_range(10, 20);
if (pg->pmc->soc->needs_mbist_war)
err = tegra210_clk_handle_mbist_war(pg->id);
if (err)
goto disable_clks;
if (disable_clocks)
tegra_powergate_disable_clocks(pg);
@ -456,7 +438,7 @@ static int tegra_powergate_power_down(struct tegra_powergate *pg)
usleep_range(10, 20);
err = tegra_powergate_reset_assert(pg);
err = reset_control_assert(pg->reset);
if (err)
goto disable_clks;
@ -475,7 +457,7 @@ static int tegra_powergate_power_down(struct tegra_powergate *pg)
assert_resets:
tegra_powergate_enable_clocks(pg);
usleep_range(10, 20);
tegra_powergate_reset_deassert(pg);
reset_control_deassert(pg->reset);
usleep_range(10, 20);
disable_clks:
@ -586,8 +568,8 @@ int tegra_powergate_sequence_power_up(unsigned int id, struct clk *clk,
pg.id = id;
pg.clks = &clk;
pg.num_clks = 1;
pg.resets = &rst;
pg.num_resets = 1;
pg.reset = rst;
pg.pmc = pmc;
err = tegra_powergate_power_up(&pg, false);
if (err)
@ -775,45 +757,22 @@ err:
static int tegra_powergate_of_get_resets(struct tegra_powergate *pg,
struct device_node *np, bool off)
{
struct reset_control *rst;
unsigned int i, count;
int err;
count = of_count_phandle_with_args(np, "resets", "#reset-cells");
if (count == 0)
return -ENODEV;
pg->resets = kcalloc(count, sizeof(rst), GFP_KERNEL);
if (!pg->resets)
return -ENOMEM;
for (i = 0; i < count; i++) {
pg->resets[i] = of_reset_control_get_by_index(np, i);
if (IS_ERR(pg->resets[i])) {
err = PTR_ERR(pg->resets[i]);
goto error;
}
if (off)
err = reset_control_assert(pg->resets[i]);
else
err = reset_control_deassert(pg->resets[i]);
if (err) {
reset_control_put(pg->resets[i]);
goto error;
}
pg->reset = of_reset_control_array_get_exclusive(np);
if (IS_ERR(pg->reset)) {
err = PTR_ERR(pg->reset);
pr_err("failed to get device resets: %d\n", err);
return err;
}
pg->num_resets = count;
if (off)
err = reset_control_assert(pg->reset);
else
err = reset_control_deassert(pg->reset);
return 0;
error:
while (i--)
reset_control_put(pg->resets[i]);
kfree(pg->resets);
if (err)
reset_control_put(pg->reset);
return err;
}
@ -905,10 +864,7 @@ remove_genpd:
pm_genpd_remove(&pg->genpd);
remove_resets:
while (pg->num_resets--)
reset_control_put(pg->resets[pg->num_resets]);
kfree(pg->resets);
reset_control_put(pg->reset);
remove_clks:
while (pg->num_clks--)
@ -1815,6 +1771,7 @@ static const struct tegra_pmc_soc tegra210_pmc_soc = {
.cpu_powergates = tegra210_cpu_powergates,
.has_tsense_reset = true,
.has_gpu_clamps = true,
.needs_mbist_war = true,
.num_io_pads = ARRAY_SIZE(tegra210_io_pads),
.io_pads = tegra210_io_pads,
.regs = &tegra20_pmc_regs,
@ -1920,6 +1877,7 @@ static const struct tegra_pmc_soc tegra186_pmc_soc = {
};
static const struct of_device_id tegra_pmc_match[] = {
{ .compatible = "nvidia,tegra194-pmc", .data = &tegra186_pmc_soc },
{ .compatible = "nvidia,tegra186-pmc", .data = &tegra186_pmc_soc },
{ .compatible = "nvidia,tegra210-pmc", .data = &tegra210_pmc_soc },
{ .compatible = "nvidia,tegra132-pmc", .data = &tegra124_pmc_soc },

View File

@ -356,6 +356,27 @@ static bool optee_msg_api_uid_is_optee_api(optee_invoke_fn *invoke_fn)
return false;
}
static void optee_msg_get_os_revision(optee_invoke_fn *invoke_fn)
{
union {
struct arm_smccc_res smccc;
struct optee_smc_call_get_os_revision_result result;
} res = {
.result = {
.build_id = 0
}
};
invoke_fn(OPTEE_SMC_CALL_GET_OS_REVISION, 0, 0, 0, 0, 0, 0, 0,
&res.smccc);
if (res.result.build_id)
pr_info("revision %lu.%lu (%08lx)", res.result.major,
res.result.minor, res.result.build_id);
else
pr_info("revision %lu.%lu", res.result.major, res.result.minor);
}
static bool optee_msg_api_revision_is_compatible(optee_invoke_fn *invoke_fn)
{
union {
@ -547,6 +568,8 @@ static struct optee *optee_probe(struct device_node *np)
return ERR_PTR(-EINVAL);
}
optee_msg_get_os_revision(invoke_fn);
if (!optee_msg_api_revision_is_compatible(invoke_fn)) {
pr_warn("api revision mismatch\n");
return ERR_PTR(-EINVAL);

View File

@ -112,12 +112,20 @@ struct optee_smc_calls_revision_result {
* Trusted OS, not of the API.
*
* Returns revision in a0-1 in the same way as OPTEE_SMC_CALLS_REVISION
* described above.
* described above. May optionally return a 32-bit build identifier in a2,
* with zero meaning unspecified.
*/
#define OPTEE_SMC_FUNCID_GET_OS_REVISION OPTEE_MSG_FUNCID_GET_OS_REVISION
#define OPTEE_SMC_CALL_GET_OS_REVISION \
OPTEE_SMC_FAST_CALL_VAL(OPTEE_SMC_FUNCID_GET_OS_REVISION)
struct optee_smc_call_get_os_revision_result {
unsigned long major;
unsigned long minor;
unsigned long build_id;
unsigned long reserved1;
};
/*
* Call with struct optee_msg_arg as argument
*

View File

@ -693,7 +693,7 @@ struct tee_device *tee_device_alloc(const struct tee_desc *teedesc,
{
struct tee_device *teedev;
void *ret;
int rc;
int rc, max_id;
int offs = 0;
if (!teedesc || !teedesc->name || !teedesc->ops ||
@ -707,16 +707,20 @@ struct tee_device *tee_device_alloc(const struct tee_desc *teedesc,
goto err;
}
if (teedesc->flags & TEE_DESC_PRIVILEGED)
max_id = TEE_NUM_DEVICES / 2;
if (teedesc->flags & TEE_DESC_PRIVILEGED) {
offs = TEE_NUM_DEVICES / 2;
max_id = TEE_NUM_DEVICES;
}
spin_lock(&driver_lock);
teedev->id = find_next_zero_bit(dev_mask, TEE_NUM_DEVICES, offs);
if (teedev->id < TEE_NUM_DEVICES)
teedev->id = find_next_zero_bit(dev_mask, max_id, offs);
if (teedev->id < max_id)
set_bit(teedev->id, dev_mask);
spin_unlock(&driver_lock);
if (teedev->id >= TEE_NUM_DEVICES) {
if (teedev->id >= max_id) {
ret = ERR_PTR(-ENOMEM);
goto err;
}

View File

@ -22,5 +22,8 @@
#define MT2712_POWER_DOMAIN_USB 5
#define MT2712_POWER_DOMAIN_USB2 6
#define MT2712_POWER_DOMAIN_MFG 7
#define MT2712_POWER_DOMAIN_MFG_SC1 8
#define MT2712_POWER_DOMAIN_MFG_SC2 9
#define MT2712_POWER_DOMAIN_MFG_SC3 10
#endif /* _DT_BINDINGS_POWER_MT2712_POWER_H */

View File

@ -0,0 +1,10 @@
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _DT_BINDINGS_POWER_MT7623A_POWER_H
#define _DT_BINDINGS_POWER_MT7623A_POWER_H
#define MT7623A_POWER_DOMAIN_CONN 0
#define MT7623A_POWER_DOMAIN_ETH 1
#define MT7623A_POWER_DOMAIN_HIF 2
#define MT7623A_POWER_DOMAIN_IFR_MSC 3
#endif /* _DT_BINDINGS_POWER_MT7623A_POWER_H */

View File

@ -0,0 +1,108 @@
/* SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause */
/*
* Copyright (C) STMicroelectronics 2018 - All Rights Reserved
* Author: Gabriel Fernandez <gabriel.fernandez@st.com> for STMicroelectronics.
*/
#ifndef _DT_BINDINGS_STM32MP1_RESET_H_
#define _DT_BINDINGS_STM32MP1_RESET_H_
#define LTDC_R 3072
#define DSI_R 3076
#define DDRPERFM_R 3080
#define USBPHY_R 3088
#define SPI6_R 3136
#define I2C4_R 3138
#define I2C6_R 3139
#define USART1_R 3140
#define STGEN_R 3156
#define GPIOZ_R 3200
#define CRYP1_R 3204
#define HASH1_R 3205
#define RNG1_R 3206
#define AXIM_R 3216
#define GPU_R 3269
#define ETHMAC_R 3274
#define FMC_R 3276
#define QSPI_R 3278
#define SDMMC1_R 3280
#define SDMMC2_R 3281
#define CRC1_R 3284
#define USBH_R 3288
#define MDMA_R 3328
#define MCU_R 8225
#define TIM2_R 19456
#define TIM3_R 19457
#define TIM4_R 19458
#define TIM5_R 19459
#define TIM6_R 19460
#define TIM7_R 19461
#define TIM12_R 16462
#define TIM13_R 16463
#define TIM14_R 16464
#define LPTIM1_R 19465
#define SPI2_R 19467
#define SPI3_R 19468
#define USART2_R 19470
#define USART3_R 19471
#define UART4_R 19472
#define UART5_R 19473
#define UART7_R 19474
#define UART8_R 19475
#define I2C1_R 19477
#define I2C2_R 19478
#define I2C3_R 19479
#define I2C5_R 19480
#define SPDIF_R 19482
#define CEC_R 19483
#define DAC12_R 19485
#define MDIO_R 19847
#define TIM1_R 19520
#define TIM8_R 19521
#define TIM15_R 19522
#define TIM16_R 19523
#define TIM17_R 19524
#define SPI1_R 19528
#define SPI4_R 19529
#define SPI5_R 19530
#define USART6_R 19533
#define SAI1_R 19536
#define SAI2_R 19537
#define SAI3_R 19538
#define DFSDM_R 19540
#define FDCAN_R 19544
#define LPTIM2_R 19584
#define LPTIM3_R 19585
#define LPTIM4_R 19586
#define LPTIM5_R 19587
#define SAI4_R 19592
#define SYSCFG_R 19595
#define VREF_R 19597
#define TMPSENS_R 19600
#define PMBCTRL_R 19601
#define DMA1_R 19648
#define DMA2_R 19649
#define DMAMUX_R 19650
#define ADC12_R 19653
#define USBO_R 19656
#define SDMMC3_R 19664
#define CAMITF_R 19712
#define CRYP2_R 19716
#define HASH2_R 19717
#define RNG2_R 19718
#define CRC2_R 19719
#define HSEM_R 19723
#define MBOX_R 19724
#define GPIOA_R 19776
#define GPIOB_R 19777
#define GPIOC_R 19778
#define GPIOD_R 19779
#define GPIOE_R 19780
#define GPIOF_R 19781
#define GPIOG_R 19782
#define GPIOH_R 19783
#define GPIOI_R 19784
#define GPIOJ_R 19785
#define GPIOK_R 19786
#endif /* _DT_BINDINGS_STM32MP1_RESET_H_ */

View File

@ -29,6 +29,7 @@ enum hwmon_sensor_types {
hwmon_humidity,
hwmon_fan,
hwmon_pwm,
hwmon_max,
};
enum hwmon_chip_attributes {

View File

@ -26,6 +26,31 @@ struct module;
struct device_node;
struct of_phandle_args;
/**
* struct reset_control_lookup - represents a single lookup entry
*
* @list: internal list of all reset lookup entries
* @provider: name of the reset controller device controlling this reset line
* @index: ID of the reset controller in the reset controller device
* @dev_id: name of the device associated with this reset line
* @con_id name of the reset line (can be NULL)
*/
struct reset_control_lookup {
struct list_head list;
const char *provider;
unsigned int index;
const char *dev_id;
const char *con_id;
};
#define RESET_LOOKUP(_provider, _index, _dev_id, _con_id) \
{ \
.provider = _provider, \
.index = _index, \
.dev_id = _dev_id, \
.con_id = _con_id, \
}
/**
* struct reset_controller_dev - reset controller entity that might
* provide multiple reset controls
@ -33,6 +58,7 @@ struct of_phandle_args;
* @owner: kernel module of the reset controller driver
* @list: internal list of reset controller devices
* @reset_control_head: head of internal list of requested reset controls
* @dev: corresponding driver model device struct
* @of_node: corresponding device tree node as phandle target
* @of_reset_n_cells: number of cells in reset line specifiers
* @of_xlate: translation function to translate from specifier as found in the
@ -44,6 +70,7 @@ struct reset_controller_dev {
struct module *owner;
struct list_head list;
struct list_head reset_control_head;
struct device *dev;
struct device_node *of_node;
int of_reset_n_cells;
int (*of_xlate)(struct reset_controller_dev *rcdev,
@ -58,4 +85,7 @@ struct device;
int devm_reset_controller_register(struct device *dev,
struct reset_controller_dev *rcdev);
void reset_controller_add_lookup(struct reset_control_lookup *lookup,
unsigned int num_entries);
#endif

View File

@ -0,0 +1,277 @@
// SPDX-License-Identifier: GPL-2.0
/*
* SCMI Message Protocol driver header
*
* Copyright (C) 2018 ARM Ltd.
*/
#include <linux/device.h>
#include <linux/types.h>
#define SCMI_MAX_STR_SIZE 16
#define SCMI_MAX_NUM_RATES 16
/**
* struct scmi_revision_info - version information structure
*
* @major_ver: Major ABI version. Change here implies risk of backward
* compatibility break.
* @minor_ver: Minor ABI version. Change here implies new feature addition,
* or compatible change in ABI.
* @num_protocols: Number of protocols that are implemented, excluding the
* base protocol.
* @num_agents: Number of agents in the system.
* @impl_ver: A vendor-specific implementation version.
* @vendor_id: A vendor identifier(Null terminated ASCII string)
* @sub_vendor_id: A sub-vendor identifier(Null terminated ASCII string)
*/
struct scmi_revision_info {
u16 major_ver;
u16 minor_ver;
u8 num_protocols;
u8 num_agents;
u32 impl_ver;
char vendor_id[SCMI_MAX_STR_SIZE];
char sub_vendor_id[SCMI_MAX_STR_SIZE];
};
struct scmi_clock_info {
char name[SCMI_MAX_STR_SIZE];
bool rate_discrete;
union {
struct {
int num_rates;
u64 rates[SCMI_MAX_NUM_RATES];
} list;
struct {
u64 min_rate;
u64 max_rate;
u64 step_size;
} range;
};
};
struct scmi_handle;
/**
* struct scmi_clk_ops - represents the various operations provided
* by SCMI Clock Protocol
*
* @count_get: get the count of clocks provided by SCMI
* @info_get: get the information of the specified clock
* @rate_get: request the current clock rate of a clock
* @rate_set: set the clock rate of a clock
* @enable: enables the specified clock
* @disable: disables the specified clock
*/
struct scmi_clk_ops {
int (*count_get)(const struct scmi_handle *handle);
const struct scmi_clock_info *(*info_get)
(const struct scmi_handle *handle, u32 clk_id);
int (*rate_get)(const struct scmi_handle *handle, u32 clk_id,
u64 *rate);
int (*rate_set)(const struct scmi_handle *handle, u32 clk_id,
u32 config, u64 rate);
int (*enable)(const struct scmi_handle *handle, u32 clk_id);
int (*disable)(const struct scmi_handle *handle, u32 clk_id);
};
/**
* struct scmi_perf_ops - represents the various operations provided
* by SCMI Performance Protocol
*
* @limits_set: sets limits on the performance level of a domain
* @limits_get: gets limits on the performance level of a domain
* @level_set: sets the performance level of a domain
* @level_get: gets the performance level of a domain
* @device_domain_id: gets the scmi domain id for a given device
* @get_transition_latency: gets the DVFS transition latency for a given device
* @add_opps_to_device: adds all the OPPs for a given device
* @freq_set: sets the frequency for a given device using sustained frequency
* to sustained performance level mapping
* @freq_get: gets the frequency for a given device using sustained frequency
* to sustained performance level mapping
*/
struct scmi_perf_ops {
int (*limits_set)(const struct scmi_handle *handle, u32 domain,
u32 max_perf, u32 min_perf);
int (*limits_get)(const struct scmi_handle *handle, u32 domain,
u32 *max_perf, u32 *min_perf);
int (*level_set)(const struct scmi_handle *handle, u32 domain,
u32 level, bool poll);
int (*level_get)(const struct scmi_handle *handle, u32 domain,
u32 *level, bool poll);
int (*device_domain_id)(struct device *dev);
int (*get_transition_latency)(const struct scmi_handle *handle,
struct device *dev);
int (*add_opps_to_device)(const struct scmi_handle *handle,
struct device *dev);
int (*freq_set)(const struct scmi_handle *handle, u32 domain,
unsigned long rate, bool poll);
int (*freq_get)(const struct scmi_handle *handle, u32 domain,
unsigned long *rate, bool poll);
};
/**
* struct scmi_power_ops - represents the various operations provided
* by SCMI Power Protocol
*
* @num_domains_get: get the count of power domains provided by SCMI
* @name_get: gets the name of a power domain
* @state_set: sets the power state of a power domain
* @state_get: gets the power state of a power domain
*/
struct scmi_power_ops {
int (*num_domains_get)(const struct scmi_handle *handle);
char *(*name_get)(const struct scmi_handle *handle, u32 domain);
#define SCMI_POWER_STATE_TYPE_SHIFT 30
#define SCMI_POWER_STATE_ID_MASK (BIT(28) - 1)
#define SCMI_POWER_STATE_PARAM(type, id) \
((((type) & BIT(0)) << SCMI_POWER_STATE_TYPE_SHIFT) | \
((id) & SCMI_POWER_STATE_ID_MASK))
#define SCMI_POWER_STATE_GENERIC_ON SCMI_POWER_STATE_PARAM(0, 0)
#define SCMI_POWER_STATE_GENERIC_OFF SCMI_POWER_STATE_PARAM(1, 0)
int (*state_set)(const struct scmi_handle *handle, u32 domain,
u32 state);
int (*state_get)(const struct scmi_handle *handle, u32 domain,
u32 *state);
};
struct scmi_sensor_info {
u32 id;
u8 type;
char name[SCMI_MAX_STR_SIZE];
};
/*
* Partial list from Distributed Management Task Force (DMTF) specification:
* DSP0249 (Platform Level Data Model specification)
*/
enum scmi_sensor_class {
NONE = 0x0,
TEMPERATURE_C = 0x2,
VOLTAGE = 0x5,
CURRENT = 0x6,
POWER = 0x7,
ENERGY = 0x8,
};
/**
* struct scmi_sensor_ops - represents the various operations provided
* by SCMI Sensor Protocol
*
* @count_get: get the count of sensors provided by SCMI
* @info_get: get the information of the specified sensor
* @configuration_set: control notifications on cross-over events for
* the trip-points
* @trip_point_set: selects and configures a trip-point of interest
* @reading_get: gets the current value of the sensor
*/
struct scmi_sensor_ops {
int (*count_get)(const struct scmi_handle *handle);
const struct scmi_sensor_info *(*info_get)
(const struct scmi_handle *handle, u32 sensor_id);
int (*configuration_set)(const struct scmi_handle *handle,
u32 sensor_id);
int (*trip_point_set)(const struct scmi_handle *handle, u32 sensor_id,
u8 trip_id, u64 trip_value);
int (*reading_get)(const struct scmi_handle *handle, u32 sensor_id,
bool async, u64 *value);
};
/**
* struct scmi_handle - Handle returned to ARM SCMI clients for usage.
*
* @dev: pointer to the SCMI device
* @version: pointer to the structure containing SCMI version information
* @power_ops: pointer to set of power protocol operations
* @perf_ops: pointer to set of performance protocol operations
* @clk_ops: pointer to set of clock protocol operations
* @sensor_ops: pointer to set of sensor protocol operations
*/
struct scmi_handle {
struct device *dev;
struct scmi_revision_info *version;
struct scmi_perf_ops *perf_ops;
struct scmi_clk_ops *clk_ops;
struct scmi_power_ops *power_ops;
struct scmi_sensor_ops *sensor_ops;
/* for protocol internal use */
void *perf_priv;
void *clk_priv;
void *power_priv;
void *sensor_priv;
};
enum scmi_std_protocol {
SCMI_PROTOCOL_BASE = 0x10,
SCMI_PROTOCOL_POWER = 0x11,
SCMI_PROTOCOL_SYSTEM = 0x12,
SCMI_PROTOCOL_PERF = 0x13,
SCMI_PROTOCOL_CLOCK = 0x14,
SCMI_PROTOCOL_SENSOR = 0x15,
};
struct scmi_device {
u32 id;
u8 protocol_id;
struct device dev;
struct scmi_handle *handle;
};
#define to_scmi_dev(d) container_of(d, struct scmi_device, dev)
struct scmi_device *
scmi_device_create(struct device_node *np, struct device *parent, int protocol);
void scmi_device_destroy(struct scmi_device *scmi_dev);
struct scmi_device_id {
u8 protocol_id;
};
struct scmi_driver {
const char *name;
int (*probe)(struct scmi_device *sdev);
void (*remove)(struct scmi_device *sdev);
const struct scmi_device_id *id_table;
struct device_driver driver;
};
#define to_scmi_driver(d) container_of(d, struct scmi_driver, driver)
#ifdef CONFIG_ARM_SCMI_PROTOCOL
int scmi_driver_register(struct scmi_driver *driver,
struct module *owner, const char *mod_name);
void scmi_driver_unregister(struct scmi_driver *driver);
#else
static inline int
scmi_driver_register(struct scmi_driver *driver, struct module *owner,
const char *mod_name)
{
return -EINVAL;
}
static inline void scmi_driver_unregister(struct scmi_driver *driver) {}
#endif /* CONFIG_ARM_SCMI_PROTOCOL */
#define scmi_register(driver) \
scmi_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
#define scmi_unregister(driver) \
scmi_driver_unregister(driver)
/**
* module_scmi_driver() - Helper macro for registering a scmi driver
* @__scmi_driver: scmi_driver structure
*
* Helper macro for scmi drivers to set up proper module init / exit
* functions. Replaces module_init() and module_exit() and keeps people from
* printing pointless things to the kernel log when their driver is loaded.
*/
#define module_scmi_driver(__scmi_driver) \
module_driver(__scmi_driver, scmi_register, scmi_unregister)
typedef int (*scmi_prot_init_fn_t)(struct scmi_handle *);
int scmi_protocol_register(int protocol_id, scmi_prot_init_fn_t fn);
void scmi_protocol_unregister(int protocol_id);

View File

@ -21,6 +21,10 @@
#define MT8173_TOP_AXI_PROT_EN_MFG_M1 BIT(22)
#define MT8173_TOP_AXI_PROT_EN_MFG_SNOOP_OUT BIT(23)
#define MT2701_TOP_AXI_PROT_EN_MM_M0 BIT(1)
#define MT2701_TOP_AXI_PROT_EN_CONN_M BIT(2)
#define MT2701_TOP_AXI_PROT_EN_CONN_S BIT(8)
#define MT7622_TOP_AXI_PROT_EN_ETHSYS (BIT(3) | BIT(17))
#define MT7622_TOP_AXI_PROT_EN_HIF0 (BIT(24) | BIT(25))
#define MT7622_TOP_AXI_PROT_EN_HIF1 (BIT(26) | BIT(27) | \

View File

@ -1,12 +1,9 @@
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (c) 2014 Samsung Electronics Co., Ltd.
* http://www.samsung.com
*
* Header for EXYNOS PMU Driver support
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef __LINUX_SOC_EXYNOS_PMU_H

View File

@ -1,14 +1,10 @@
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (c) 2010-2015 Samsung Electronics Co., Ltd.
* http://www.samsung.com
*
* EXYNOS - Power management unit definition
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*
* Notice:
* This is not a list of all Exynos Power Management Unit SFRs.
* There are too many of them, not mentioning subtle differences

View File

@ -75,8 +75,8 @@ struct tegra_bpmp {
struct mbox_chan *channel;
} mbox;
struct tegra_bpmp_channel *channels;
unsigned int num_channels;
spinlock_t atomic_tx_lock;
struct tegra_bpmp_channel *tx_channel, *rx_channel, *threaded_channels;
struct {
unsigned long *allocated;