1
0
Fork 0

Merge remote-tracking branches 'spi/topic/adi', 'spi/topic/atmel' and 'spi/topic/cadence' into spi-next

hifive-unleashed-5.1
Mark Brown 2014-06-02 17:08:35 +01:00
commit 446fe5e2d5
9 changed files with 974 additions and 235 deletions

View File

@ -0,0 +1,31 @@
Cadence SPI controller Device Tree Bindings
-------------------------------------------
Required properties:
- compatible : Should be "cdns,spi-r1p6" or "xlnx,zynq-spi-r1p6".
- reg : Physical base address and size of SPI registers map.
- interrupts : Property with a value describing the interrupt
number.
- interrupt-parent : Must be core interrupt controller
- clock-names : List of input clock names - "ref_clk", "pclk"
(See clock bindings for details).
- clocks : Clock phandles (see clock bindings for details).
Optional properties:
- num-cs : Number of chip selects used.
If a decoder is used, this will be the number of
chip selects after the decoder.
- is-decoded-cs : Flag to indicate whether decoder is used or not.
Example:
spi@e0007000 {
compatible = "xlnx,zynq-spi-r1p6";
clock-names = "ref_clk", "pclk";
clocks = <&clkc 26>, <&clkc 35>;
interrupt-parent = <&intc>;
interrupts = <0 49 4>;
num-cs = <4>;
is-decoded-cs = <0>;
reg = <0xe0007000 0x1000>;
} ;

View File

@ -20,7 +20,7 @@
#include <linux/pinctrl/machine.h>
#include <linux/pinctrl/pinconf-generic.h>
#include <linux/platform_data/pinctrl-adi2.h>
#include <asm/bfin_spi3.h>
#include <linux/spi/adi_spi3.h>
#include <asm/dma.h>
#include <asm/gpio.h>
#include <asm/nand.h>
@ -767,13 +767,13 @@ static struct flash_platform_data bfin_spi_flash_data = {
.type = "w25q32",
};
static struct bfin_spi3_chip spi_flash_chip_info = {
static struct adi_spi3_chip spi_flash_chip_info = {
.enable_dma = true, /* use dma transfer with this chip*/
};
#endif
#if IS_ENABLED(CONFIG_SPI_SPIDEV)
static struct bfin_spi3_chip spidev_chip_info = {
static struct adi_spi3_chip spidev_chip_info = {
.enable_dma = true,
};
#endif
@ -1736,7 +1736,7 @@ static struct spi_board_info bfin_spi_board_info[] __initdata = {
},
#endif
};
#if IS_ENABLED(CONFIG_SPI_BFIN_V3)
#if IS_ENABLED(CONFIG_SPI_ADI_V3)
/* SPI (0) */
static struct resource bfin_spi0_resource[] = {
{
@ -1777,13 +1777,13 @@ static struct resource bfin_spi1_resource[] = {
};
/* SPI controller data */
static struct bfin_spi3_master bf60x_spi_master_info0 = {
static struct adi_spi3_master bf60x_spi_master_info0 = {
.num_chipselect = MAX_CTRL_CS + MAX_BLACKFIN_GPIOS,
.pin_req = {P_SPI0_SCK, P_SPI0_MISO, P_SPI0_MOSI, 0},
};
static struct platform_device bf60x_spi_master0 = {
.name = "bfin-spi3",
.name = "adi-spi3",
.id = 0, /* Bus number */
.num_resources = ARRAY_SIZE(bfin_spi0_resource),
.resource = bfin_spi0_resource,
@ -1792,13 +1792,13 @@ static struct platform_device bf60x_spi_master0 = {
},
};
static struct bfin_spi3_master bf60x_spi_master_info1 = {
static struct adi_spi3_master bf60x_spi_master_info1 = {
.num_chipselect = MAX_CTRL_CS + MAX_BLACKFIN_GPIOS,
.pin_req = {P_SPI1_SCK, P_SPI1_MISO, P_SPI1_MOSI, 0},
};
static struct platform_device bf60x_spi_master1 = {
.name = "bfin-spi3",
.name = "adi-spi3",
.id = 1, /* Bus number */
.num_resources = ARRAY_SIZE(bfin_spi1_resource),
.resource = bfin_spi1_resource,
@ -1990,7 +1990,7 @@ static struct platform_device *ezkit_devices[] __initdata = {
&bfin_sdh_device,
#endif
#if IS_ENABLED(CONFIG_SPI_BFIN_V3)
#if IS_ENABLED(CONFIG_SPI_ADI_V3)
&bf60x_spi_master0,
&bf60x_spi_master1,
#endif
@ -2051,8 +2051,8 @@ static struct pinctrl_map __initdata bfin_pinmux_map[] = {
PIN_MAP_MUX_GROUP_DEFAULT("bfin_sir.1", "pinctrl-adi2.0", NULL, "uart1"),
PIN_MAP_MUX_GROUP_DEFAULT("bfin-sdh.0", "pinctrl-adi2.0", NULL, "rsi0"),
PIN_MAP_MUX_GROUP_DEFAULT("stmmaceth.0", "pinctrl-adi2.0", NULL, "eth0"),
PIN_MAP_MUX_GROUP_DEFAULT("bfin-spi3.0", "pinctrl-adi2.0", NULL, "spi0"),
PIN_MAP_MUX_GROUP_DEFAULT("bfin-spi3.1", "pinctrl-adi2.0", NULL, "spi1"),
PIN_MAP_MUX_GROUP_DEFAULT("adi-spi3.0", "pinctrl-adi2.0", NULL, "spi0"),
PIN_MAP_MUX_GROUP_DEFAULT("adi-spi3.1", "pinctrl-adi2.0", NULL, "spi1"),
PIN_MAP_MUX_GROUP_DEFAULT("i2c-bfin-twi.0", "pinctrl-adi2.0", NULL, "twi0"),
PIN_MAP_MUX_GROUP_DEFAULT("i2c-bfin-twi.1", "pinctrl-adi2.0", NULL, "twi1"),
PIN_MAP_MUX_GROUP_DEFAULT("bfin-rotary", "pinctrl-adi2.0", NULL, "rotary"),

View File

@ -363,6 +363,12 @@ static struct clk ethclk = {
.ops = &dummy_clk_ops,
};
static struct clk spiclk = {
.name = "spi",
.parent = &sclk1,
.ops = &dummy_clk_ops,
};
static struct clk_lookup bf609_clks[] = {
CLK(sys_clkin, NULL, "SYS_CLKIN"),
CLK(pll_clk, NULL, "PLLCLK"),
@ -375,6 +381,7 @@ static struct clk_lookup bf609_clks[] = {
CLK(dclk, NULL, "DCLK"),
CLK(oclk, NULL, "OCLK"),
CLK(ethclk, NULL, "stmmaceth"),
CLK(spiclk, NULL, "spi"),
};
int __init clk_init(void)

View File

@ -91,8 +91,8 @@ config SPI_BFIN5XX
help
This is the SPI controller master driver for Blackfin 5xx processor.
config SPI_BFIN_V3
tristate "SPI controller v3 for Blackfin"
config SPI_ADI_V3
tristate "SPI controller v3 for ADI"
depends on BF60x
help
This is the SPI controller v3 master driver
@ -148,6 +148,13 @@ config SPI_BUTTERFLY
inexpensive battery powered microcontroller evaluation board.
This same cable can be used to flash new firmware.
config SPI_CADENCE
tristate "Cadence SPI controller"
depends on ARM
help
This selects the Cadence SPI controller master driver
used by Xilinx Zynq.
config SPI_CLPS711X
tristate "CLPS711X host SPI controller"
depends on ARCH_CLPS711X || COMPILE_TEST

View File

@ -18,10 +18,11 @@ obj-$(CONFIG_SPI_BCM2835) += spi-bcm2835.o
obj-$(CONFIG_SPI_BCM63XX) += spi-bcm63xx.o
obj-$(CONFIG_SPI_BCM63XX_HSSPI) += spi-bcm63xx-hsspi.o
obj-$(CONFIG_SPI_BFIN5XX) += spi-bfin5xx.o
obj-$(CONFIG_SPI_BFIN_V3) += spi-bfin-v3.o
obj-$(CONFIG_SPI_ADI_V3) += spi-adi-v3.o
obj-$(CONFIG_SPI_BFIN_SPORT) += spi-bfin-sport.o
obj-$(CONFIG_SPI_BITBANG) += spi-bitbang.o
obj-$(CONFIG_SPI_BUTTERFLY) += spi-butterfly.o
obj-$(CONFIG_SPI_CADENCE) += spi-cadence.o
obj-$(CONFIG_SPI_CLPS711X) += spi-clps711x.o
obj-$(CONFIG_SPI_COLDFIRE_QSPI) += spi-coldfire-qspi.o
obj-$(CONFIG_SPI_DAVINCI) += spi-davinci.o

View File

@ -1,7 +1,7 @@
/*
* Analog Devices SPI3 controller driver
*
* Copyright (c) 2013 Analog Devices Inc.
* Copyright (c) 2014 Analog Devices Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
@ -13,6 +13,7 @@
* GNU General Public License for more details.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
@ -26,35 +27,34 @@
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spi/spi.h>
#include <linux/spi/adi_spi3.h>
#include <linux/types.h>
#include <asm/bfin_spi3.h>
#include <asm/cacheflush.h>
#include <asm/dma.h>
#include <asm/portmux.h>
enum bfin_spi_state {
enum adi_spi_state {
START_STATE,
RUNNING_STATE,
DONE_STATE,
ERROR_STATE
};
struct bfin_spi_master;
struct adi_spi_master;
struct bfin_spi_transfer_ops {
void (*write) (struct bfin_spi_master *);
void (*read) (struct bfin_spi_master *);
void (*duplex) (struct bfin_spi_master *);
struct adi_spi_transfer_ops {
void (*write) (struct adi_spi_master *);
void (*read) (struct adi_spi_master *);
void (*duplex) (struct adi_spi_master *);
};
/* runtime info for spi master */
struct bfin_spi_master {
struct adi_spi_master {
/* SPI framework hookup */
struct spi_master *master;
/* Regs base of SPI controller */
struct bfin_spi_regs __iomem *regs;
struct adi_spi_regs __iomem *regs;
/* Pin request list */
u16 *pin_req;
@ -65,7 +65,7 @@ struct bfin_spi_master {
/* Current message transfer state info */
struct spi_message *cur_msg;
struct spi_transfer *cur_transfer;
struct bfin_spi_device *cur_chip;
struct adi_spi_device *cur_chip;
unsigned transfer_len;
/* transfer buffer */
@ -90,12 +90,12 @@ struct bfin_spi_master {
u32 ssel;
unsigned long sclk;
enum bfin_spi_state state;
enum adi_spi_state state;
const struct bfin_spi_transfer_ops *ops;
const struct adi_spi_transfer_ops *ops;
};
struct bfin_spi_device {
struct adi_spi_device {
u32 control;
u32 clock;
u32 ssel;
@ -105,17 +105,25 @@ struct bfin_spi_device {
u32 cs_gpio;
u32 tx_dummy_val; /* tx value for rx only transfer */
bool enable_dma;
const struct bfin_spi_transfer_ops *ops;
const struct adi_spi_transfer_ops *ops;
};
static void bfin_spi_enable(struct bfin_spi_master *drv_data)
static void adi_spi_enable(struct adi_spi_master *drv_data)
{
bfin_write_or(&drv_data->regs->control, SPI_CTL_EN);
u32 ctl;
ctl = ioread32(&drv_data->regs->control);
ctl |= SPI_CTL_EN;
iowrite32(ctl, &drv_data->regs->control);
}
static void bfin_spi_disable(struct bfin_spi_master *drv_data)
static void adi_spi_disable(struct adi_spi_master *drv_data)
{
bfin_write_and(&drv_data->regs->control, ~SPI_CTL_EN);
u32 ctl;
ctl = ioread32(&drv_data->regs->control);
ctl &= ~SPI_CTL_EN;
iowrite32(ctl, &drv_data->regs->control);
}
/* Caculate the SPI_CLOCK register value based on input HZ */
@ -128,35 +136,43 @@ static u32 hz_to_spi_clock(u32 sclk, u32 speed_hz)
return spi_clock;
}
static int bfin_spi_flush(struct bfin_spi_master *drv_data)
static int adi_spi_flush(struct adi_spi_master *drv_data)
{
unsigned long limit = loops_per_jiffy << 1;
/* wait for stop and clear stat */
while (!(bfin_read(&drv_data->regs->status) & SPI_STAT_SPIF) && --limit)
while (!(ioread32(&drv_data->regs->status) & SPI_STAT_SPIF) && --limit)
cpu_relax();
bfin_write(&drv_data->regs->status, 0xFFFFFFFF);
iowrite32(0xFFFFFFFF, &drv_data->regs->status);
return limit;
}
/* Chip select operation functions for cs_change flag */
static void bfin_spi_cs_active(struct bfin_spi_master *drv_data, struct bfin_spi_device *chip)
static void adi_spi_cs_active(struct adi_spi_master *drv_data, struct adi_spi_device *chip)
{
if (likely(chip->cs < MAX_CTRL_CS))
bfin_write_and(&drv_data->regs->ssel, ~chip->ssel);
else
if (likely(chip->cs < MAX_CTRL_CS)) {
u32 reg;
reg = ioread32(&drv_data->regs->ssel);
reg &= ~chip->ssel;
iowrite32(reg, &drv_data->regs->ssel);
} else {
gpio_set_value(chip->cs_gpio, 0);
}
}
static void bfin_spi_cs_deactive(struct bfin_spi_master *drv_data,
struct bfin_spi_device *chip)
static void adi_spi_cs_deactive(struct adi_spi_master *drv_data,
struct adi_spi_device *chip)
{
if (likely(chip->cs < MAX_CTRL_CS))
bfin_write_or(&drv_data->regs->ssel, chip->ssel);
else
if (likely(chip->cs < MAX_CTRL_CS)) {
u32 reg;
reg = ioread32(&drv_data->regs->ssel);
reg |= chip->ssel;
iowrite32(reg, &drv_data->regs->ssel);
} else {
gpio_set_value(chip->cs_gpio, 1);
}
/* Move delay here for consistency */
if (chip->cs_chg_udelay)
@ -164,187 +180,192 @@ static void bfin_spi_cs_deactive(struct bfin_spi_master *drv_data,
}
/* enable or disable the pin muxed by GPIO and SPI CS to work as SPI CS */
static inline void bfin_spi_cs_enable(struct bfin_spi_master *drv_data,
struct bfin_spi_device *chip)
static inline void adi_spi_cs_enable(struct adi_spi_master *drv_data,
struct adi_spi_device *chip)
{
if (chip->cs < MAX_CTRL_CS)
bfin_write_or(&drv_data->regs->ssel, chip->ssel >> 8);
if (chip->cs < MAX_CTRL_CS) {
u32 reg;
reg = ioread32(&drv_data->regs->ssel);
reg |= chip->ssel >> 8;
iowrite32(reg, &drv_data->regs->ssel);
}
}
static inline void bfin_spi_cs_disable(struct bfin_spi_master *drv_data,
struct bfin_spi_device *chip)
static inline void adi_spi_cs_disable(struct adi_spi_master *drv_data,
struct adi_spi_device *chip)
{
if (chip->cs < MAX_CTRL_CS)
bfin_write_and(&drv_data->regs->ssel, ~(chip->ssel >> 8));
if (chip->cs < MAX_CTRL_CS) {
u32 reg;
reg = ioread32(&drv_data->regs->ssel);
reg &= ~(chip->ssel >> 8);
iowrite32(reg, &drv_data->regs->ssel);
}
}
/* stop controller and re-config current chip*/
static void bfin_spi_restore_state(struct bfin_spi_master *drv_data)
static void adi_spi_restore_state(struct adi_spi_master *drv_data)
{
struct bfin_spi_device *chip = drv_data->cur_chip;
struct adi_spi_device *chip = drv_data->cur_chip;
/* Clear status and disable clock */
bfin_write(&drv_data->regs->status, 0xFFFFFFFF);
bfin_write(&drv_data->regs->rx_control, 0x0);
bfin_write(&drv_data->regs->tx_control, 0x0);
bfin_spi_disable(drv_data);
SSYNC();
iowrite32(0xFFFFFFFF, &drv_data->regs->status);
iowrite32(0x0, &drv_data->regs->rx_control);
iowrite32(0x0, &drv_data->regs->tx_control);
adi_spi_disable(drv_data);
/* Load the registers */
bfin_write(&drv_data->regs->control, chip->control);
bfin_write(&drv_data->regs->clock, chip->clock);
iowrite32(chip->control, &drv_data->regs->control);
iowrite32(chip->clock, &drv_data->regs->clock);
bfin_spi_enable(drv_data);
adi_spi_enable(drv_data);
drv_data->tx_num = drv_data->rx_num = 0;
/* we always choose tx transfer initiate */
bfin_write(&drv_data->regs->rx_control, SPI_RXCTL_REN);
bfin_write(&drv_data->regs->tx_control,
SPI_TXCTL_TEN | SPI_TXCTL_TTI);
bfin_spi_cs_active(drv_data, chip);
iowrite32(SPI_RXCTL_REN, &drv_data->regs->rx_control);
iowrite32(SPI_TXCTL_TEN | SPI_TXCTL_TTI, &drv_data->regs->tx_control);
adi_spi_cs_active(drv_data, chip);
}
/* discard invalid rx data and empty rfifo */
static inline void dummy_read(struct bfin_spi_master *drv_data)
static inline void dummy_read(struct adi_spi_master *drv_data)
{
while (!(bfin_read(&drv_data->regs->status) & SPI_STAT_RFE))
bfin_read(&drv_data->regs->rfifo);
while (!(ioread32(&drv_data->regs->status) & SPI_STAT_RFE))
ioread32(&drv_data->regs->rfifo);
}
static void bfin_spi_u8_write(struct bfin_spi_master *drv_data)
static void adi_spi_u8_write(struct adi_spi_master *drv_data)
{
dummy_read(drv_data);
while (drv_data->tx < drv_data->tx_end) {
bfin_write(&drv_data->regs->tfifo, (*(u8 *)(drv_data->tx++)));
while (bfin_read(&drv_data->regs->status) & SPI_STAT_RFE)
iowrite32(*(u8 *)(drv_data->tx++), &drv_data->regs->tfifo);
while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
cpu_relax();
bfin_read(&drv_data->regs->rfifo);
ioread32(&drv_data->regs->rfifo);
}
}
static void bfin_spi_u8_read(struct bfin_spi_master *drv_data)
static void adi_spi_u8_read(struct adi_spi_master *drv_data)
{
u32 tx_val = drv_data->cur_chip->tx_dummy_val;
dummy_read(drv_data);
while (drv_data->rx < drv_data->rx_end) {
bfin_write(&drv_data->regs->tfifo, tx_val);
while (bfin_read(&drv_data->regs->status) & SPI_STAT_RFE)
iowrite32(tx_val, &drv_data->regs->tfifo);
while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
cpu_relax();
*(u8 *)(drv_data->rx++) = bfin_read(&drv_data->regs->rfifo);
*(u8 *)(drv_data->rx++) = ioread32(&drv_data->regs->rfifo);
}
}
static void bfin_spi_u8_duplex(struct bfin_spi_master *drv_data)
static void adi_spi_u8_duplex(struct adi_spi_master *drv_data)
{
dummy_read(drv_data);
while (drv_data->rx < drv_data->rx_end) {
bfin_write(&drv_data->regs->tfifo, (*(u8 *)(drv_data->tx++)));
while (bfin_read(&drv_data->regs->status) & SPI_STAT_RFE)
iowrite32(*(u8 *)(drv_data->tx++), &drv_data->regs->tfifo);
while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
cpu_relax();
*(u8 *)(drv_data->rx++) = bfin_read(&drv_data->regs->rfifo);
*(u8 *)(drv_data->rx++) = ioread32(&drv_data->regs->rfifo);
}
}
static const struct bfin_spi_transfer_ops bfin_bfin_spi_transfer_ops_u8 = {
.write = bfin_spi_u8_write,
.read = bfin_spi_u8_read,
.duplex = bfin_spi_u8_duplex,
static const struct adi_spi_transfer_ops adi_spi_transfer_ops_u8 = {
.write = adi_spi_u8_write,
.read = adi_spi_u8_read,
.duplex = adi_spi_u8_duplex,
};
static void bfin_spi_u16_write(struct bfin_spi_master *drv_data)
static void adi_spi_u16_write(struct adi_spi_master *drv_data)
{
dummy_read(drv_data);
while (drv_data->tx < drv_data->tx_end) {
bfin_write(&drv_data->regs->tfifo, (*(u16 *)drv_data->tx));
iowrite32(*(u16 *)drv_data->tx, &drv_data->regs->tfifo);
drv_data->tx += 2;
while (bfin_read(&drv_data->regs->status) & SPI_STAT_RFE)
while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
cpu_relax();
bfin_read(&drv_data->regs->rfifo);
ioread32(&drv_data->regs->rfifo);
}
}
static void bfin_spi_u16_read(struct bfin_spi_master *drv_data)
static void adi_spi_u16_read(struct adi_spi_master *drv_data)
{
u32 tx_val = drv_data->cur_chip->tx_dummy_val;
dummy_read(drv_data);
while (drv_data->rx < drv_data->rx_end) {
bfin_write(&drv_data->regs->tfifo, tx_val);
while (bfin_read(&drv_data->regs->status) & SPI_STAT_RFE)
iowrite32(tx_val, &drv_data->regs->tfifo);
while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
cpu_relax();
*(u16 *)drv_data->rx = bfin_read(&drv_data->regs->rfifo);
*(u16 *)drv_data->rx = ioread32(&drv_data->regs->rfifo);
drv_data->rx += 2;
}
}
static void bfin_spi_u16_duplex(struct bfin_spi_master *drv_data)
static void adi_spi_u16_duplex(struct adi_spi_master *drv_data)
{
dummy_read(drv_data);
while (drv_data->rx < drv_data->rx_end) {
bfin_write(&drv_data->regs->tfifo, (*(u16 *)drv_data->tx));
iowrite32(*(u16 *)drv_data->tx, &drv_data->regs->tfifo);
drv_data->tx += 2;
while (bfin_read(&drv_data->regs->status) & SPI_STAT_RFE)
while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
cpu_relax();
*(u16 *)drv_data->rx = bfin_read(&drv_data->regs->rfifo);
*(u16 *)drv_data->rx = ioread32(&drv_data->regs->rfifo);
drv_data->rx += 2;
}
}
static const struct bfin_spi_transfer_ops bfin_bfin_spi_transfer_ops_u16 = {
.write = bfin_spi_u16_write,
.read = bfin_spi_u16_read,
.duplex = bfin_spi_u16_duplex,
static const struct adi_spi_transfer_ops adi_spi_transfer_ops_u16 = {
.write = adi_spi_u16_write,
.read = adi_spi_u16_read,
.duplex = adi_spi_u16_duplex,
};
static void bfin_spi_u32_write(struct bfin_spi_master *drv_data)
static void adi_spi_u32_write(struct adi_spi_master *drv_data)
{
dummy_read(drv_data);
while (drv_data->tx < drv_data->tx_end) {
bfin_write(&drv_data->regs->tfifo, (*(u32 *)drv_data->tx));
iowrite32(*(u32 *)drv_data->tx, &drv_data->regs->tfifo);
drv_data->tx += 4;
while (bfin_read(&drv_data->regs->status) & SPI_STAT_RFE)
while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
cpu_relax();
bfin_read(&drv_data->regs->rfifo);
ioread32(&drv_data->regs->rfifo);
}
}
static void bfin_spi_u32_read(struct bfin_spi_master *drv_data)
static void adi_spi_u32_read(struct adi_spi_master *drv_data)
{
u32 tx_val = drv_data->cur_chip->tx_dummy_val;
dummy_read(drv_data);
while (drv_data->rx < drv_data->rx_end) {
bfin_write(&drv_data->regs->tfifo, tx_val);
while (bfin_read(&drv_data->regs->status) & SPI_STAT_RFE)
iowrite32(tx_val, &drv_data->regs->tfifo);
while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
cpu_relax();
*(u32 *)drv_data->rx = bfin_read(&drv_data->regs->rfifo);
*(u32 *)drv_data->rx = ioread32(&drv_data->regs->rfifo);
drv_data->rx += 4;
}
}
static void bfin_spi_u32_duplex(struct bfin_spi_master *drv_data)
static void adi_spi_u32_duplex(struct adi_spi_master *drv_data)
{
dummy_read(drv_data);
while (drv_data->rx < drv_data->rx_end) {
bfin_write(&drv_data->regs->tfifo, (*(u32 *)drv_data->tx));
iowrite32(*(u32 *)drv_data->tx, &drv_data->regs->tfifo);
drv_data->tx += 4;
while (bfin_read(&drv_data->regs->status) & SPI_STAT_RFE)
while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
cpu_relax();
*(u32 *)drv_data->rx = bfin_read(&drv_data->regs->rfifo);
*(u32 *)drv_data->rx = ioread32(&drv_data->regs->rfifo);
drv_data->rx += 4;
}
}
static const struct bfin_spi_transfer_ops bfin_bfin_spi_transfer_ops_u32 = {
.write = bfin_spi_u32_write,
.read = bfin_spi_u32_read,
.duplex = bfin_spi_u32_duplex,
static const struct adi_spi_transfer_ops adi_spi_transfer_ops_u32 = {
.write = adi_spi_u32_write,
.read = adi_spi_u32_read,
.duplex = adi_spi_u32_duplex,
};
/* test if there is more transfer to be done */
static void bfin_spi_next_transfer(struct bfin_spi_master *drv)
static void adi_spi_next_transfer(struct adi_spi_master *drv)
{
struct spi_message *msg = drv->cur_msg;
struct spi_transfer *t = drv->cur_transfer;
@ -360,15 +381,15 @@ static void bfin_spi_next_transfer(struct bfin_spi_master *drv)
}
}
static void bfin_spi_giveback(struct bfin_spi_master *drv_data)
static void adi_spi_giveback(struct adi_spi_master *drv_data)
{
struct bfin_spi_device *chip = drv_data->cur_chip;
struct adi_spi_device *chip = drv_data->cur_chip;
bfin_spi_cs_deactive(drv_data, chip);
adi_spi_cs_deactive(drv_data, chip);
spi_finalize_current_message(drv_data->master);
}
static int bfin_spi_setup_transfer(struct bfin_spi_master *drv)
static int adi_spi_setup_transfer(struct adi_spi_master *drv)
{
struct spi_transfer *t = drv->cur_transfer;
u32 cr, cr_width;
@ -393,34 +414,33 @@ static int bfin_spi_setup_transfer(struct bfin_spi_master *drv)
switch (t->bits_per_word) {
case 8:
cr_width = SPI_CTL_SIZE08;
drv->ops = &bfin_bfin_spi_transfer_ops_u8;
drv->ops = &adi_spi_transfer_ops_u8;
break;
case 16:
cr_width = SPI_CTL_SIZE16;
drv->ops = &bfin_bfin_spi_transfer_ops_u16;
drv->ops = &adi_spi_transfer_ops_u16;
break;
case 32:
cr_width = SPI_CTL_SIZE32;
drv->ops = &bfin_bfin_spi_transfer_ops_u32;
drv->ops = &adi_spi_transfer_ops_u32;
break;
default:
return -EINVAL;
}
cr = bfin_read(&drv->regs->control) & ~SPI_CTL_SIZE;
cr = ioread32(&drv->regs->control) & ~SPI_CTL_SIZE;
cr |= cr_width;
bfin_write(&drv->regs->control, cr);
iowrite32(cr, &drv->regs->control);
/* speed setup */
bfin_write(&drv->regs->clock,
hz_to_spi_clock(drv->sclk, t->speed_hz));
iowrite32(hz_to_spi_clock(drv->sclk, t->speed_hz), &drv->regs->clock);
return 0;
}
static int bfin_spi_dma_xfer(struct bfin_spi_master *drv_data)
static int adi_spi_dma_xfer(struct adi_spi_master *drv_data)
{
struct spi_transfer *t = drv_data->cur_transfer;
struct spi_message *msg = drv_data->cur_msg;
struct bfin_spi_device *chip = drv_data->cur_chip;
struct adi_spi_device *chip = drv_data->cur_chip;
u32 dma_config;
unsigned long word_count, word_size;
void *tx_buf, *rx_buf;
@ -498,17 +518,16 @@ static int bfin_spi_dma_xfer(struct bfin_spi_master *drv_data)
set_dma_config(drv_data->rx_dma, dma_config | WNR);
enable_dma(drv_data->tx_dma);
enable_dma(drv_data->rx_dma);
SSYNC();
bfin_write(&drv_data->regs->rx_control, SPI_RXCTL_REN | SPI_RXCTL_RDR_NE);
SSYNC();
bfin_write(&drv_data->regs->tx_control,
SPI_TXCTL_TEN | SPI_TXCTL_TTI | SPI_TXCTL_TDR_NF);
iowrite32(SPI_RXCTL_REN | SPI_RXCTL_RDR_NE,
&drv_data->regs->rx_control);
iowrite32(SPI_TXCTL_TEN | SPI_TXCTL_TTI | SPI_TXCTL_TDR_NF,
&drv_data->regs->tx_control);
return 0;
}
static int bfin_spi_pio_xfer(struct bfin_spi_master *drv_data)
static int adi_spi_pio_xfer(struct adi_spi_master *drv_data)
{
struct spi_message *msg = drv_data->cur_msg;
@ -529,19 +548,19 @@ static int bfin_spi_pio_xfer(struct bfin_spi_master *drv_data)
return -EIO;
}
if (!bfin_spi_flush(drv_data))
if (!adi_spi_flush(drv_data))
return -EIO;
msg->actual_length += drv_data->transfer_len;
tasklet_schedule(&drv_data->pump_transfers);
return 0;
}
static void bfin_spi_pump_transfers(unsigned long data)
static void adi_spi_pump_transfers(unsigned long data)
{
struct bfin_spi_master *drv_data = (struct bfin_spi_master *)data;
struct adi_spi_master *drv_data = (struct adi_spi_master *)data;
struct spi_message *msg = NULL;
struct spi_transfer *t = NULL;
struct bfin_spi_device *chip = NULL;
struct adi_spi_device *chip = NULL;
int ret;
/* Get current state information */
@ -552,7 +571,7 @@ static void bfin_spi_pump_transfers(unsigned long data)
/* Handle for abort */
if (drv_data->state == ERROR_STATE) {
msg->status = -EIO;
bfin_spi_giveback(drv_data);
adi_spi_giveback(drv_data);
return;
}
@ -560,14 +579,14 @@ static void bfin_spi_pump_transfers(unsigned long data)
if (t->delay_usecs)
udelay(t->delay_usecs);
if (t->cs_change)
bfin_spi_cs_deactive(drv_data, chip);
bfin_spi_next_transfer(drv_data);
adi_spi_cs_deactive(drv_data, chip);
adi_spi_next_transfer(drv_data);
t = drv_data->cur_transfer;
}
/* Handle end of message */
if (drv_data->state == DONE_STATE) {
msg->status = 0;
bfin_spi_giveback(drv_data);
adi_spi_giveback(drv_data);
return;
}
@ -577,34 +596,34 @@ static void bfin_spi_pump_transfers(unsigned long data)
return;
}
ret = bfin_spi_setup_transfer(drv_data);
ret = adi_spi_setup_transfer(drv_data);
if (ret) {
msg->status = ret;
bfin_spi_giveback(drv_data);
adi_spi_giveback(drv_data);
}
bfin_write(&drv_data->regs->status, 0xFFFFFFFF);
bfin_spi_cs_active(drv_data, chip);
iowrite32(0xFFFFFFFF, &drv_data->regs->status);
adi_spi_cs_active(drv_data, chip);
drv_data->state = RUNNING_STATE;
if (chip->enable_dma)
ret = bfin_spi_dma_xfer(drv_data);
ret = adi_spi_dma_xfer(drv_data);
else
ret = bfin_spi_pio_xfer(drv_data);
ret = adi_spi_pio_xfer(drv_data);
if (ret) {
msg->status = ret;
bfin_spi_giveback(drv_data);
adi_spi_giveback(drv_data);
}
}
static int bfin_spi_transfer_one_message(struct spi_master *master,
static int adi_spi_transfer_one_message(struct spi_master *master,
struct spi_message *m)
{
struct bfin_spi_master *drv_data = spi_master_get_devdata(master);
struct adi_spi_master *drv_data = spi_master_get_devdata(master);
drv_data->cur_msg = m;
drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
bfin_spi_restore_state(drv_data);
adi_spi_restore_state(drv_data);
drv_data->state = START_STATE;
drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
@ -630,15 +649,15 @@ static const u16 ssel[][MAX_SPI_SSEL] = {
P_SPI2_SSEL6, P_SPI2_SSEL7},
};
static int bfin_spi_setup(struct spi_device *spi)
static int adi_spi_setup(struct spi_device *spi)
{
struct bfin_spi_master *drv_data = spi_master_get_devdata(spi->master);
struct bfin_spi_device *chip = spi_get_ctldata(spi);
u32 bfin_ctl_reg = SPI_CTL_ODM | SPI_CTL_PSSE;
struct adi_spi_master *drv_data = spi_master_get_devdata(spi->master);
struct adi_spi_device *chip = spi_get_ctldata(spi);
u32 ctl_reg = SPI_CTL_ODM | SPI_CTL_PSSE;
int ret = -EINVAL;
if (!chip) {
struct bfin_spi3_chip *chip_info = spi->controller_data;
struct adi_spi3_chip *chip_info = spi->controller_data;
chip = kzalloc(sizeof(*chip), GFP_KERNEL);
if (!chip) {
@ -646,7 +665,7 @@ static int bfin_spi_setup(struct spi_device *spi)
return -ENOMEM;
}
if (chip_info) {
if (chip_info->control & ~bfin_ctl_reg) {
if (chip_info->control & ~ctl_reg) {
dev_err(&spi->dev,
"do not set bits that the SPI framework manages\n");
goto error;
@ -657,6 +676,7 @@ static int bfin_spi_setup(struct spi_device *spi)
chip->enable_dma = chip_info->enable_dma;
}
chip->cs = spi->chip_select;
if (chip->cs < MAX_CTRL_CS) {
chip->ssel = (1 << chip->cs) << 8;
ret = peripheral_request(ssel[spi->master->bus_num]
@ -678,7 +698,7 @@ static int bfin_spi_setup(struct spi_device *spi)
}
/* force a default base state */
chip->control &= bfin_ctl_reg;
chip->control &= ctl_reg;
if (spi->mode & SPI_CPOL)
chip->control |= SPI_CTL_CPOL;
@ -692,8 +712,8 @@ static int bfin_spi_setup(struct spi_device *spi)
chip->clock = hz_to_spi_clock(drv_data->sclk, spi->max_speed_hz);
bfin_spi_cs_enable(drv_data, chip);
bfin_spi_cs_deactive(drv_data, chip);
adi_spi_cs_enable(drv_data, chip);
adi_spi_cs_deactive(drv_data, chip);
return 0;
error:
@ -705,10 +725,10 @@ error:
return ret;
}
static void bfin_spi_cleanup(struct spi_device *spi)
static void adi_spi_cleanup(struct spi_device *spi)
{
struct bfin_spi_device *chip = spi_get_ctldata(spi);
struct bfin_spi_master *drv_data = spi_master_get_devdata(spi->master);
struct adi_spi_device *chip = spi_get_ctldata(spi);
struct adi_spi_master *drv_data = spi_master_get_devdata(spi->master);
if (!chip)
return;
@ -716,7 +736,7 @@ static void bfin_spi_cleanup(struct spi_device *spi)
if (chip->cs < MAX_CTRL_CS) {
peripheral_free(ssel[spi->master->bus_num]
[chip->cs-1]);
bfin_spi_cs_disable(drv_data, chip);
adi_spi_cs_disable(drv_data, chip);
} else {
gpio_free(chip->cs_gpio);
}
@ -725,10 +745,11 @@ static void bfin_spi_cleanup(struct spi_device *spi)
spi_set_ctldata(spi, NULL);
}
static irqreturn_t bfin_spi_tx_dma_isr(int irq, void *dev_id)
static irqreturn_t adi_spi_tx_dma_isr(int irq, void *dev_id)
{
struct bfin_spi_master *drv_data = dev_id;
struct adi_spi_master *drv_data = dev_id;
u32 dma_stat = get_dma_curr_irqstat(drv_data->tx_dma);
u32 tx_ctl;
clear_dma_irqstat(drv_data->tx_dma);
if (dma_stat & DMA_DONE) {
@ -739,13 +760,15 @@ static irqreturn_t bfin_spi_tx_dma_isr(int irq, void *dev_id)
if (drv_data->tx)
drv_data->state = ERROR_STATE;
}
bfin_write_and(&drv_data->regs->tx_control, ~SPI_TXCTL_TDR_NF);
tx_ctl = ioread32(&drv_data->regs->tx_control);
tx_ctl &= ~SPI_TXCTL_TDR_NF;
iowrite32(tx_ctl, &drv_data->regs->tx_control);
return IRQ_HANDLED;
}
static irqreturn_t bfin_spi_rx_dma_isr(int irq, void *dev_id)
static irqreturn_t adi_spi_rx_dma_isr(int irq, void *dev_id)
{
struct bfin_spi_master *drv_data = dev_id;
struct adi_spi_master *drv_data = dev_id;
struct spi_message *msg = drv_data->cur_msg;
u32 dma_stat = get_dma_curr_irqstat(drv_data->rx_dma);
@ -760,8 +783,8 @@ static irqreturn_t bfin_spi_rx_dma_isr(int irq, void *dev_id)
dev_err(&drv_data->master->dev,
"spi rx dma error: %d\n", dma_stat);
}
bfin_write(&drv_data->regs->tx_control, 0);
bfin_write(&drv_data->regs->rx_control, 0);
iowrite32(0, &drv_data->regs->tx_control);
iowrite32(0, &drv_data->regs->rx_control);
if (drv_data->rx_num != drv_data->tx_num)
dev_dbg(&drv_data->master->dev,
"dma interrupt missing: tx=%d,rx=%d\n",
@ -770,15 +793,15 @@ static irqreturn_t bfin_spi_rx_dma_isr(int irq, void *dev_id)
return IRQ_HANDLED;
}
static int bfin_spi_probe(struct platform_device *pdev)
static int adi_spi_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct bfin_spi3_master *info = dev_get_platdata(dev);
struct adi_spi3_master *info = dev_get_platdata(dev);
struct spi_master *master;
struct bfin_spi_master *drv_data;
struct adi_spi_master *drv_data;
struct resource *mem, *res;
unsigned int tx_dma, rx_dma;
unsigned long sclk;
struct clk *sclk;
int ret;
if (!info) {
@ -786,10 +809,10 @@ static int bfin_spi_probe(struct platform_device *pdev)
return -ENODEV;
}
sclk = get_sclk1();
if (!sclk) {
dev_err(dev, "can not get sclk1\n");
return -ENXIO;
sclk = devm_clk_get(dev, "spi");
if (IS_ERR(sclk)) {
dev_err(dev, "can not get spi clock\n");
return PTR_ERR(sclk);
}
res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
@ -819,9 +842,9 @@ static int bfin_spi_probe(struct platform_device *pdev)
master->bus_num = pdev->id;
master->num_chipselect = info->num_chipselect;
master->cleanup = bfin_spi_cleanup;
master->setup = bfin_spi_setup;
master->transfer_one_message = bfin_spi_transfer_one_message;
master->cleanup = adi_spi_cleanup;
master->setup = adi_spi_setup;
master->transfer_one_message = adi_spi_transfer_one_message;
master->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) |
SPI_BPW_MASK(8);
@ -830,7 +853,7 @@ static int bfin_spi_probe(struct platform_device *pdev)
drv_data->tx_dma = tx_dma;
drv_data->rx_dma = rx_dma;
drv_data->pin_req = info->pin_req;
drv_data->sclk = sclk;
drv_data->sclk = clk_get_rate(sclk);
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
drv_data->regs = devm_ioremap_resource(dev, mem);
@ -845,28 +868,28 @@ static int bfin_spi_probe(struct platform_device *pdev)
dev_err(dev, "can not request SPI TX DMA channel\n");
goto err_put_master;
}
set_dma_callback(tx_dma, bfin_spi_tx_dma_isr, drv_data);
set_dma_callback(tx_dma, adi_spi_tx_dma_isr, drv_data);
ret = request_dma(rx_dma, "SPI_RX_DMA");
if (ret) {
dev_err(dev, "can not request SPI RX DMA channel\n");
goto err_free_tx_dma;
}
set_dma_callback(drv_data->rx_dma, bfin_spi_rx_dma_isr, drv_data);
set_dma_callback(drv_data->rx_dma, adi_spi_rx_dma_isr, drv_data);
/* request CLK, MOSI and MISO */
ret = peripheral_request_list(drv_data->pin_req, "bfin-spi3");
ret = peripheral_request_list(drv_data->pin_req, "adi-spi3");
if (ret < 0) {
dev_err(dev, "can not request spi pins\n");
goto err_free_rx_dma;
}
bfin_write(&drv_data->regs->control, SPI_CTL_MSTR | SPI_CTL_CPHA);
bfin_write(&drv_data->regs->ssel, 0x0000FE00);
bfin_write(&drv_data->regs->delay, 0x0);
iowrite32(SPI_CTL_MSTR | SPI_CTL_CPHA, &drv_data->regs->control);
iowrite32(0x0000FE00, &drv_data->regs->ssel);
iowrite32(0x0, &drv_data->regs->delay);
tasklet_init(&drv_data->pump_transfers,
bfin_spi_pump_transfers, (unsigned long)drv_data);
adi_spi_pump_transfers, (unsigned long)drv_data);
/* register with the SPI framework */
ret = devm_spi_register_master(dev, master);
if (ret) {
@ -888,43 +911,41 @@ err_put_master:
return ret;
}
static int bfin_spi_remove(struct platform_device *pdev)
static int adi_spi_remove(struct platform_device *pdev)
{
struct spi_master *master = platform_get_drvdata(pdev);
struct bfin_spi_master *drv_data = spi_master_get_devdata(master);
bfin_spi_disable(drv_data);
struct adi_spi_master *drv_data = spi_master_get_devdata(master);
adi_spi_disable(drv_data);
peripheral_free_list(drv_data->pin_req);
free_dma(drv_data->rx_dma);
free_dma(drv_data->tx_dma);
return 0;
}
#ifdef CONFIG_PM
static int bfin_spi_suspend(struct device *dev)
static int adi_spi_suspend(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct bfin_spi_master *drv_data = spi_master_get_devdata(master);
struct adi_spi_master *drv_data = spi_master_get_devdata(master);
spi_master_suspend(master);
drv_data->control = bfin_read(&drv_data->regs->control);
drv_data->ssel = bfin_read(&drv_data->regs->ssel);
drv_data->control = ioread32(&drv_data->regs->control);
drv_data->ssel = ioread32(&drv_data->regs->ssel);
bfin_write(&drv_data->regs->control, SPI_CTL_MSTR | SPI_CTL_CPHA);
bfin_write(&drv_data->regs->ssel, 0x0000FE00);
iowrite32(SPI_CTL_MSTR | SPI_CTL_CPHA, &drv_data->regs->control);
iowrite32(0x0000FE00, &drv_data->regs->ssel);
dma_disable_irq(drv_data->rx_dma);
dma_disable_irq(drv_data->tx_dma);
return 0;
}
static int bfin_spi_resume(struct device *dev)
static int adi_spi_resume(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct bfin_spi_master *drv_data = spi_master_get_devdata(master);
struct adi_spi_master *drv_data = spi_master_get_devdata(master);
int ret = 0;
/* bootrom may modify spi and dma status when resume in spi boot mode */
@ -932,8 +953,8 @@ static int bfin_spi_resume(struct device *dev)
dma_enable_irq(drv_data->rx_dma);
dma_enable_irq(drv_data->tx_dma);
bfin_write(&drv_data->regs->control, drv_data->control);
bfin_write(&drv_data->regs->ssel, drv_data->ssel);
iowrite32(drv_data->control, &drv_data->regs->control);
iowrite32(drv_data->ssel, &drv_data->regs->ssel);
ret = spi_master_resume(master);
if (ret) {
@ -944,21 +965,21 @@ static int bfin_spi_resume(struct device *dev)
return ret;
}
#endif
static const struct dev_pm_ops bfin_spi_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(bfin_spi_suspend, bfin_spi_resume)
static const struct dev_pm_ops adi_spi_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(adi_spi_suspend, adi_spi_resume)
};
MODULE_ALIAS("platform:bfin-spi3");
static struct platform_driver bfin_spi_driver = {
MODULE_ALIAS("platform:adi-spi3");
static struct platform_driver adi_spi_driver = {
.driver = {
.name = "bfin-spi3",
.name = "adi-spi3",
.owner = THIS_MODULE,
.pm = &bfin_spi_pm_ops,
.pm = &adi_spi_pm_ops,
},
.remove = bfin_spi_remove,
.remove = adi_spi_remove,
};
module_platform_driver_probe(bfin_spi_driver, bfin_spi_probe);
module_platform_driver_probe(adi_spi_driver, adi_spi_probe);
MODULE_DESCRIPTION("Analog Devices SPI3 controller driver");
MODULE_AUTHOR("Scott Jiang <Scott.Jiang.Linux@gmail.com>");

View File

@ -224,7 +224,7 @@ struct atmel_spi {
struct platform_device *pdev;
struct spi_transfer *current_transfer;
unsigned long current_remaining_bytes;
int current_remaining_bytes;
int done_status;
struct completion xfer_completion;
@ -874,8 +874,9 @@ atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
spi_readl(as, RDR);
}
if (xfer->bits_per_word > 8) {
as->current_remaining_bytes -= 2;
if (as->current_remaining_bytes < 0)
if (as->current_remaining_bytes > 2)
as->current_remaining_bytes -= 2;
else
as->current_remaining_bytes = 0;
} else {
as->current_remaining_bytes--;
@ -1110,6 +1111,8 @@ static int atmel_spi_one_transfer(struct spi_master *master,
atmel_spi_next_xfer_pio(master, xfer);
} else {
as->current_remaining_bytes -= len;
if (as->current_remaining_bytes < 0)
as->current_remaining_bytes = 0;
}
} else {
atmel_spi_next_xfer_pio(master, xfer);

View File

@ -0,0 +1,673 @@
/*
* Cadence SPI controller driver (master mode only)
*
* Copyright (C) 2008 - 2014 Xilinx, Inc.
*
* based on Blackfin On-Chip SPI Driver (spi_bfin5xx.c)
*
* This program is free software; you can redistribute it and/or modify it under
* the terms of the GNU General Public License version 2 as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#include <linux/spi/spi.h>
/* Name of this driver */
#define CDNS_SPI_NAME "cdns-spi"
/* Register offset definitions */
#define CDNS_SPI_CR_OFFSET 0x00 /* Configuration Register, RW */
#define CDNS_SPI_ISR_OFFSET 0x04 /* Interrupt Status Register, RO */
#define CDNS_SPI_IER_OFFSET 0x08 /* Interrupt Enable Register, WO */
#define CDNS_SPI_IDR_OFFSET 0x0c /* Interrupt Disable Register, WO */
#define CDNS_SPI_IMR_OFFSET 0x10 /* Interrupt Enabled Mask Register, RO */
#define CDNS_SPI_ER_OFFSET 0x14 /* Enable/Disable Register, RW */
#define CDNS_SPI_DR_OFFSET 0x18 /* Delay Register, RW */
#define CDNS_SPI_TXD_OFFSET 0x1C /* Data Transmit Register, WO */
#define CDNS_SPI_RXD_OFFSET 0x20 /* Data Receive Register, RO */
#define CDNS_SPI_SICR_OFFSET 0x24 /* Slave Idle Count Register, RW */
#define CDNS_SPI_THLD_OFFSET 0x28 /* Transmit FIFO Watermark Register,RW */
/*
* SPI Configuration Register bit Masks
*
* This register contains various control bits that affect the operation
* of the SPI controller
*/
#define CDNS_SPI_CR_MANSTRT_MASK 0x00010000 /* Manual TX Start */
#define CDNS_SPI_CR_CPHA_MASK 0x00000004 /* Clock Phase Control */
#define CDNS_SPI_CR_CPOL_MASK 0x00000002 /* Clock Polarity Control */
#define CDNS_SPI_CR_SSCTRL_MASK 0x00003C00 /* Slave Select Mask */
#define CDNS_SPI_CR_BAUD_DIV_MASK 0x00000038 /* Baud Rate Divisor Mask */
#define CDNS_SPI_CR_MSTREN_MASK 0x00000001 /* Master Enable Mask */
#define CDNS_SPI_CR_MANSTRTEN_MASK 0x00008000 /* Manual TX Enable Mask */
#define CDNS_SPI_CR_SSFORCE_MASK 0x00004000 /* Manual SS Enable Mask */
#define CDNS_SPI_CR_BAUD_DIV_4_MASK 0x00000008 /* Default Baud Div Mask */
#define CDNS_SPI_CR_DEFAULT_MASK (CDNS_SPI_CR_MSTREN_MASK | \
CDNS_SPI_CR_SSCTRL_MASK | \
CDNS_SPI_CR_SSFORCE_MASK | \
CDNS_SPI_CR_BAUD_DIV_4_MASK)
/*
* SPI Configuration Register - Baud rate and slave select
*
* These are the values used in the calculation of baud rate divisor and
* setting the slave select.
*/
#define CDNS_SPI_BAUD_DIV_MAX 7 /* Baud rate divisor maximum */
#define CDNS_SPI_BAUD_DIV_MIN 1 /* Baud rate divisor minimum */
#define CDNS_SPI_BAUD_DIV_SHIFT 3 /* Baud rate divisor shift in CR */
#define CDNS_SPI_SS_SHIFT 10 /* Slave Select field shift in CR */
#define CDNS_SPI_SS0 0x1 /* Slave Select zero */
/*
* SPI Interrupt Registers bit Masks
*
* All the four interrupt registers (Status/Mask/Enable/Disable) have the same
* bit definitions.
*/
#define CDNS_SPI_IXR_TXOW_MASK 0x00000004 /* SPI TX FIFO Overwater */
#define CDNS_SPI_IXR_MODF_MASK 0x00000002 /* SPI Mode Fault */
#define CDNS_SPI_IXR_RXNEMTY_MASK 0x00000010 /* SPI RX FIFO Not Empty */
#define CDNS_SPI_IXR_DEFAULT_MASK (CDNS_SPI_IXR_TXOW_MASK | \
CDNS_SPI_IXR_MODF_MASK)
#define CDNS_SPI_IXR_TXFULL_MASK 0x00000008 /* SPI TX Full */
#define CDNS_SPI_IXR_ALL_MASK 0x0000007F /* SPI all interrupts */
/*
* SPI Enable Register bit Masks
*
* This register is used to enable or disable the SPI controller
*/
#define CDNS_SPI_ER_ENABLE_MASK 0x00000001 /* SPI Enable Bit Mask */
#define CDNS_SPI_ER_DISABLE_MASK 0x0 /* SPI Disable Bit Mask */
/* SPI FIFO depth in bytes */
#define CDNS_SPI_FIFO_DEPTH 128
/* Default number of chip select lines */
#define CDNS_SPI_DEFAULT_NUM_CS 4
/**
* struct cdns_spi - This definition defines spi driver instance
* @regs: Virtual address of the SPI controller registers
* @ref_clk: Pointer to the peripheral clock
* @pclk: Pointer to the APB clock
* @speed_hz: Current SPI bus clock speed in Hz
* @txbuf: Pointer to the TX buffer
* @rxbuf: Pointer to the RX buffer
* @tx_bytes: Number of bytes left to transfer
* @rx_bytes: Number of bytes requested
* @dev_busy: Device busy flag
* @is_decoded_cs: Flag for decoder property set or not
*/
struct cdns_spi {
void __iomem *regs;
struct clk *ref_clk;
struct clk *pclk;
u32 speed_hz;
const u8 *txbuf;
u8 *rxbuf;
int tx_bytes;
int rx_bytes;
u8 dev_busy;
u32 is_decoded_cs;
};
/* Macros for the SPI controller read/write */
static inline u32 cdns_spi_read(struct cdns_spi *xspi, u32 offset)
{
return readl_relaxed(xspi->regs + offset);
}
static inline void cdns_spi_write(struct cdns_spi *xspi, u32 offset, u32 val)
{
writel_relaxed(val, xspi->regs + offset);
}
/**
* cdns_spi_init_hw - Initialize the hardware and configure the SPI controller
* @xspi: Pointer to the cdns_spi structure
*
* On reset the SPI controller is configured to be in master mode, baud rate
* divisor is set to 4, threshold value for TX FIFO not full interrupt is set
* to 1 and size of the word to be transferred as 8 bit.
* This function initializes the SPI controller to disable and clear all the
* interrupts, enable manual slave select and manual start, deselect all the
* chip select lines, and enable the SPI controller.
*/
static void cdns_spi_init_hw(struct cdns_spi *xspi)
{
cdns_spi_write(xspi, CDNS_SPI_ER_OFFSET,
CDNS_SPI_ER_DISABLE_MASK);
cdns_spi_write(xspi, CDNS_SPI_IDR_OFFSET,
CDNS_SPI_IXR_ALL_MASK);
/* Clear the RX FIFO */
while (cdns_spi_read(xspi, CDNS_SPI_ISR_OFFSET) &
CDNS_SPI_IXR_RXNEMTY_MASK)
cdns_spi_read(xspi, CDNS_SPI_RXD_OFFSET);
cdns_spi_write(xspi, CDNS_SPI_ISR_OFFSET,
CDNS_SPI_IXR_ALL_MASK);
cdns_spi_write(xspi, CDNS_SPI_CR_OFFSET,
CDNS_SPI_CR_DEFAULT_MASK);
cdns_spi_write(xspi, CDNS_SPI_ER_OFFSET,
CDNS_SPI_ER_ENABLE_MASK);
}
/**
* cdns_spi_chipselect - Select or deselect the chip select line
* @spi: Pointer to the spi_device structure
* @is_on: Select(0) or deselect (1) the chip select line
*/
static void cdns_spi_chipselect(struct spi_device *spi, bool is_high)
{
struct cdns_spi *xspi = spi_master_get_devdata(spi->master);
u32 ctrl_reg;
ctrl_reg = cdns_spi_read(xspi, CDNS_SPI_CR_OFFSET);
if (is_high) {
/* Deselect the slave */
ctrl_reg |= CDNS_SPI_CR_SSCTRL_MASK;
} else {
/* Select the slave */
ctrl_reg &= ~CDNS_SPI_CR_SSCTRL_MASK;
if (!(xspi->is_decoded_cs))
ctrl_reg |= ((~(CDNS_SPI_SS0 << spi->chip_select)) <<
CDNS_SPI_SS_SHIFT) &
CDNS_SPI_CR_SSCTRL_MASK;
else
ctrl_reg |= (spi->chip_select << CDNS_SPI_SS_SHIFT) &
CDNS_SPI_CR_SSCTRL_MASK;
}
cdns_spi_write(xspi, CDNS_SPI_CR_OFFSET, ctrl_reg);
}
/**
* cdns_spi_config_clock_mode - Sets clock polarity and phase
* @spi: Pointer to the spi_device structure
*
* Sets the requested clock polarity and phase.
*/
static void cdns_spi_config_clock_mode(struct spi_device *spi)
{
struct cdns_spi *xspi = spi_master_get_devdata(spi->master);
u32 ctrl_reg;
ctrl_reg = cdns_spi_read(xspi, CDNS_SPI_CR_OFFSET);
/* Set the SPI clock phase and clock polarity */
ctrl_reg &= ~(CDNS_SPI_CR_CPHA_MASK | CDNS_SPI_CR_CPOL_MASK);
if (spi->mode & SPI_CPHA)
ctrl_reg |= CDNS_SPI_CR_CPHA_MASK;
if (spi->mode & SPI_CPOL)
ctrl_reg |= CDNS_SPI_CR_CPOL_MASK;
cdns_spi_write(xspi, CDNS_SPI_CR_OFFSET, ctrl_reg);
}
/**
* cdns_spi_config_clock_freq - Sets clock frequency
* @spi: Pointer to the spi_device structure
* @transfer: Pointer to the spi_transfer structure which provides
* information about next transfer setup parameters
*
* Sets the requested clock frequency.
* Note: If the requested frequency is not an exact match with what can be
* obtained using the prescalar value the driver sets the clock frequency which
* is lower than the requested frequency (maximum lower) for the transfer. If
* the requested frequency is higher or lower than that is supported by the SPI
* controller the driver will set the highest or lowest frequency supported by
* controller.
*/
static void cdns_spi_config_clock_freq(struct spi_device *spi,
struct spi_transfer *transfer)
{
struct cdns_spi *xspi = spi_master_get_devdata(spi->master);
u32 ctrl_reg, baud_rate_val;
unsigned long frequency;
frequency = clk_get_rate(xspi->ref_clk);
ctrl_reg = cdns_spi_read(xspi, CDNS_SPI_CR_OFFSET);
/* Set the clock frequency */
if (xspi->speed_hz != transfer->speed_hz) {
/* first valid value is 1 */
baud_rate_val = CDNS_SPI_BAUD_DIV_MIN;
while ((baud_rate_val < CDNS_SPI_BAUD_DIV_MAX) &&
(frequency / (2 << baud_rate_val)) > transfer->speed_hz)
baud_rate_val++;
ctrl_reg &= ~CDNS_SPI_CR_BAUD_DIV_MASK;
ctrl_reg |= baud_rate_val << CDNS_SPI_BAUD_DIV_SHIFT;
xspi->speed_hz = frequency / (2 << baud_rate_val);
}
cdns_spi_write(xspi, CDNS_SPI_CR_OFFSET, ctrl_reg);
}
/**
* cdns_spi_setup_transfer - Configure SPI controller for specified transfer
* @spi: Pointer to the spi_device structure
* @transfer: Pointer to the spi_transfer structure which provides
* information about next transfer setup parameters
*
* Sets the operational mode of SPI controller for the next SPI transfer and
* sets the requested clock frequency.
*
* Return: Always 0
*/
static int cdns_spi_setup_transfer(struct spi_device *spi,
struct spi_transfer *transfer)
{
struct cdns_spi *xspi = spi_master_get_devdata(spi->master);
cdns_spi_config_clock_freq(spi, transfer);
dev_dbg(&spi->dev, "%s, mode %d, %u bits/w, %u clock speed\n",
__func__, spi->mode, spi->bits_per_word,
xspi->speed_hz);
return 0;
}
/**
* cdns_spi_fill_tx_fifo - Fills the TX FIFO with as many bytes as possible
* @xspi: Pointer to the cdns_spi structure
*/
static void cdns_spi_fill_tx_fifo(struct cdns_spi *xspi)
{
unsigned long trans_cnt = 0;
while ((trans_cnt < CDNS_SPI_FIFO_DEPTH) &&
(xspi->tx_bytes > 0)) {
if (xspi->txbuf)
cdns_spi_write(xspi, CDNS_SPI_TXD_OFFSET,
*xspi->txbuf++);
else
cdns_spi_write(xspi, CDNS_SPI_TXD_OFFSET, 0);
xspi->tx_bytes--;
trans_cnt++;
}
}
/**
* cdns_spi_irq - Interrupt service routine of the SPI controller
* @irq: IRQ number
* @dev_id: Pointer to the xspi structure
*
* This function handles TX empty and Mode Fault interrupts only.
* On TX empty interrupt this function reads the received data from RX FIFO and
* fills the TX FIFO if there is any data remaining to be transferred.
* On Mode Fault interrupt this function indicates that transfer is completed,
* the SPI subsystem will identify the error as the remaining bytes to be
* transferred is non-zero.
*
* Return: IRQ_HANDLED when handled; IRQ_NONE otherwise.
*/
static irqreturn_t cdns_spi_irq(int irq, void *dev_id)
{
struct spi_master *master = dev_id;
struct cdns_spi *xspi = spi_master_get_devdata(master);
u32 intr_status, status;
status = IRQ_NONE;
intr_status = cdns_spi_read(xspi, CDNS_SPI_ISR_OFFSET);
cdns_spi_write(xspi, CDNS_SPI_ISR_OFFSET, intr_status);
if (intr_status & CDNS_SPI_IXR_MODF_MASK) {
/* Indicate that transfer is completed, the SPI subsystem will
* identify the error as the remaining bytes to be
* transferred is non-zero
*/
cdns_spi_write(xspi, CDNS_SPI_IDR_OFFSET,
CDNS_SPI_IXR_DEFAULT_MASK);
spi_finalize_current_transfer(master);
status = IRQ_HANDLED;
} else if (intr_status & CDNS_SPI_IXR_TXOW_MASK) {
unsigned long trans_cnt;
trans_cnt = xspi->rx_bytes - xspi->tx_bytes;
/* Read out the data from the RX FIFO */
while (trans_cnt) {
u8 data;
data = cdns_spi_read(xspi, CDNS_SPI_RXD_OFFSET);
if (xspi->rxbuf)
*xspi->rxbuf++ = data;
xspi->rx_bytes--;
trans_cnt--;
}
if (xspi->tx_bytes) {
/* There is more data to send */
cdns_spi_fill_tx_fifo(xspi);
} else {
/* Transfer is completed */
cdns_spi_write(xspi, CDNS_SPI_IDR_OFFSET,
CDNS_SPI_IXR_DEFAULT_MASK);
spi_finalize_current_transfer(master);
}
status = IRQ_HANDLED;
}
return status;
}
/**
* cdns_transfer_one - Initiates the SPI transfer
* @master: Pointer to spi_master structure
* @spi: Pointer to the spi_device structure
* @transfer: Pointer to the spi_transfer structure which provides
* information about next transfer parameters
*
* This function fills the TX FIFO, starts the SPI transfer and
* returns a positive transfer count so that core will wait for completion.
*
* Return: Number of bytes transferred in the last transfer
*/
static int cdns_transfer_one(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *transfer)
{
struct cdns_spi *xspi = spi_master_get_devdata(master);
xspi->txbuf = transfer->tx_buf;
xspi->rxbuf = transfer->rx_buf;
xspi->tx_bytes = transfer->len;
xspi->rx_bytes = transfer->len;
cdns_spi_setup_transfer(spi, transfer);
cdns_spi_fill_tx_fifo(xspi);
cdns_spi_write(xspi, CDNS_SPI_IER_OFFSET,
CDNS_SPI_IXR_DEFAULT_MASK);
return transfer->len;
}
/**
* cdns_prepare_transfer_hardware - Prepares hardware for transfer.
* @master: Pointer to the spi_master structure which provides
* information about the controller.
*
* This function enables SPI master controller.
*
* Return: 0 always
*/
static int cdns_prepare_transfer_hardware(struct spi_master *master)
{
struct cdns_spi *xspi = spi_master_get_devdata(master);
cdns_spi_config_clock_mode(master->cur_msg->spi);
cdns_spi_write(xspi, CDNS_SPI_ER_OFFSET,
CDNS_SPI_ER_ENABLE_MASK);
return 0;
}
/**
* cdns_unprepare_transfer_hardware - Relaxes hardware after transfer
* @master: Pointer to the spi_master structure which provides
* information about the controller.
*
* This function disables the SPI master controller.
*
* Return: 0 always
*/
static int cdns_unprepare_transfer_hardware(struct spi_master *master)
{
struct cdns_spi *xspi = spi_master_get_devdata(master);
cdns_spi_write(xspi, CDNS_SPI_ER_OFFSET,
CDNS_SPI_ER_DISABLE_MASK);
return 0;
}
/**
* cdns_spi_probe - Probe method for the SPI driver
* @pdev: Pointer to the platform_device structure
*
* This function initializes the driver data structures and the hardware.
*
* Return: 0 on success and error value on error
*/
static int cdns_spi_probe(struct platform_device *pdev)
{
int ret = 0, irq;
struct spi_master *master;
struct cdns_spi *xspi;
struct resource *res;
u32 num_cs;
master = spi_alloc_master(&pdev->dev, sizeof(*xspi));
if (master == NULL)
return -ENOMEM;
xspi = spi_master_get_devdata(master);
master->dev.of_node = pdev->dev.of_node;
platform_set_drvdata(pdev, master);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
xspi->regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(xspi->regs)) {
ret = PTR_ERR(xspi->regs);
goto remove_master;
}
xspi->pclk = devm_clk_get(&pdev->dev, "pclk");
if (IS_ERR(xspi->pclk)) {
dev_err(&pdev->dev, "pclk clock not found.\n");
ret = PTR_ERR(xspi->pclk);
goto remove_master;
}
xspi->ref_clk = devm_clk_get(&pdev->dev, "ref_clk");
if (IS_ERR(xspi->ref_clk)) {
dev_err(&pdev->dev, "ref_clk clock not found.\n");
ret = PTR_ERR(xspi->ref_clk);
goto remove_master;
}
ret = clk_prepare_enable(xspi->pclk);
if (ret) {
dev_err(&pdev->dev, "Unable to enable APB clock.\n");
goto remove_master;
}
ret = clk_prepare_enable(xspi->ref_clk);
if (ret) {
dev_err(&pdev->dev, "Unable to enable device clock.\n");
goto clk_dis_apb;
}
/* SPI controller initializations */
cdns_spi_init_hw(xspi);
irq = platform_get_irq(pdev, 0);
if (irq <= 0) {
ret = -ENXIO;
dev_err(&pdev->dev, "irq number is invalid\n");
goto remove_master;
}
ret = devm_request_irq(&pdev->dev, irq, cdns_spi_irq,
0, pdev->name, master);
if (ret != 0) {
ret = -ENXIO;
dev_err(&pdev->dev, "request_irq failed\n");
goto remove_master;
}
ret = of_property_read_u32(pdev->dev.of_node, "num-cs", &num_cs);
if (ret < 0)
master->num_chipselect = CDNS_SPI_DEFAULT_NUM_CS;
else
master->num_chipselect = num_cs;
ret = of_property_read_u32(pdev->dev.of_node, "is-decoded-cs",
&xspi->is_decoded_cs);
if (ret < 0)
xspi->is_decoded_cs = 0;
master->prepare_transfer_hardware = cdns_prepare_transfer_hardware;
master->transfer_one = cdns_transfer_one;
master->unprepare_transfer_hardware = cdns_unprepare_transfer_hardware;
master->set_cs = cdns_spi_chipselect;
master->mode_bits = SPI_CPOL | SPI_CPHA;
/* Set to default valid value */
master->max_speed_hz = clk_get_rate(xspi->ref_clk) / 4;
xspi->speed_hz = master->max_speed_hz;
master->bits_per_word_mask = SPI_BPW_MASK(8);
ret = spi_register_master(master);
if (ret) {
dev_err(&pdev->dev, "spi_register_master failed\n");
goto clk_dis_all;
}
return ret;
clk_dis_all:
clk_disable_unprepare(xspi->ref_clk);
clk_dis_apb:
clk_disable_unprepare(xspi->pclk);
remove_master:
spi_master_put(master);
return ret;
}
/**
* cdns_spi_remove - Remove method for the SPI driver
* @pdev: Pointer to the platform_device structure
*
* This function is called if a device is physically removed from the system or
* if the driver module is being unloaded. It frees all resources allocated to
* the device.
*
* Return: 0 on success and error value on error
*/
static int cdns_spi_remove(struct platform_device *pdev)
{
struct spi_master *master = platform_get_drvdata(pdev);
struct cdns_spi *xspi = spi_master_get_devdata(master);
cdns_spi_write(xspi, CDNS_SPI_ER_OFFSET,
CDNS_SPI_ER_DISABLE_MASK);
clk_disable_unprepare(xspi->ref_clk);
clk_disable_unprepare(xspi->pclk);
spi_unregister_master(master);
return 0;
}
/**
* cdns_spi_suspend - Suspend method for the SPI driver
* @dev: Address of the platform_device structure
*
* This function disables the SPI controller and
* changes the driver state to "suspend"
*
* Return: Always 0
*/
static int __maybe_unused cdns_spi_suspend(struct device *dev)
{
struct platform_device *pdev = container_of(dev,
struct platform_device, dev);
struct spi_master *master = platform_get_drvdata(pdev);
struct cdns_spi *xspi = spi_master_get_devdata(master);
spi_master_suspend(master);
clk_disable_unprepare(xspi->ref_clk);
clk_disable_unprepare(xspi->pclk);
return 0;
}
/**
* cdns_spi_resume - Resume method for the SPI driver
* @dev: Address of the platform_device structure
*
* This function changes the driver state to "ready"
*
* Return: 0 on success and error value on error
*/
static int __maybe_unused cdns_spi_resume(struct device *dev)
{
struct platform_device *pdev = container_of(dev,
struct platform_device, dev);
struct spi_master *master = platform_get_drvdata(pdev);
struct cdns_spi *xspi = spi_master_get_devdata(master);
int ret = 0;
ret = clk_prepare_enable(xspi->pclk);
if (ret) {
dev_err(dev, "Cannot enable APB clock.\n");
return ret;
}
ret = clk_prepare_enable(xspi->ref_clk);
if (ret) {
dev_err(dev, "Cannot enable device clock.\n");
clk_disable(xspi->pclk);
return ret;
}
spi_master_resume(master);
return 0;
}
static SIMPLE_DEV_PM_OPS(cdns_spi_dev_pm_ops, cdns_spi_suspend,
cdns_spi_resume);
static struct of_device_id cdns_spi_of_match[] = {
{ .compatible = "xlnx,zynq-spi-r1p6" },
{ .compatible = "cdns,spi-r1p6" },
{ /* end of table */ }
};
MODULE_DEVICE_TABLE(of, cdns_spi_of_match);
/* cdns_spi_driver - This structure defines the SPI subsystem platform driver */
static struct platform_driver cdns_spi_driver = {
.probe = cdns_spi_probe,
.remove = cdns_spi_remove,
.driver = {
.name = CDNS_SPI_NAME,
.owner = THIS_MODULE,
.of_match_table = cdns_spi_of_match,
.pm = &cdns_spi_dev_pm_ops,
},
};
module_platform_driver(cdns_spi_driver);
MODULE_AUTHOR("Xilinx, Inc.");
MODULE_DESCRIPTION("Cadence SPI driver");
MODULE_LICENSE("GPL");

View File

@ -1,7 +1,7 @@
/*
* Analog Devices SPI3 controller driver
*
* Copyright (c) 2011 Analog Devices Inc.
* Copyright (c) 2014 Analog Devices Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
@ -11,14 +11,10 @@
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifndef _SPI_CHANNEL_H_
#define _SPI_CHANNEL_H_
#ifndef _ADI_SPI3_H_
#define _ADI_SPI3_H_
#include <linux/types.h>
@ -209,9 +205,9 @@
#define SPI_ILAT_CLR_TFI 0x00000800 /* Transmit Finish Indication */
/*
* bfin spi3 registers layout
* adi spi3 registers layout
*/
struct bfin_spi_regs {
struct adi_spi_regs {
u32 revid;
u32 control;
u32 rx_control;
@ -240,7 +236,7 @@ struct bfin_spi_regs {
#define MAX_CTRL_CS 8 /* cs in spi controller */
/* device.platform_data for SSP controller devices */
struct bfin_spi3_master {
struct adi_spi3_master {
u16 num_chipselect;
u16 pin_req[7];
};
@ -248,11 +244,11 @@ struct bfin_spi3_master {
/* spi_board_info.controller_data for SPI slave devices,
* copied to spi_device.platform_data ... mostly for dma tuning
*/
struct bfin_spi3_chip {
struct adi_spi3_chip {
u32 control;
u16 cs_chg_udelay; /* Some devices require 16-bit delays */
u32 tx_dummy_val; /* tx value for rx only transfer */
bool enable_dma;
};
#endif /* _SPI_CHANNEL_H_ */
#endif /* _ADI_SPI3_H_ */