1
0
Fork 0

Fairly unexciting MTD merge for 3.9:

* misc clean-ups in the MTD command-line partitioning parser (cmdlinepart)
  * add flash locking support for STmicro chips serial flash chips, as well as
    for CFI command set 2 chips.
  * new driver for the ELM error correction HW module found in various TI chips,
    enable the OMAP NAND driver to use the ELM HW error correction
  * added number of new serial flash IDs
  * various fixes and improvements in the gpmi NAND driver
  * bcm47xx NAND driver improvements
  * make the mtdpart module actually removable
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1.4.13 (GNU/Linux)
 
 iEYEABECAAYFAlExEs8ACgkQdwG7hYl686Oa+gCgiBNt+I0MiixDeN+MGuE1uw9s
 i2wAniD9sR2HDy6y5SkbdXK/aPr8ez/p
 =xV1l
 -----END PGP SIGNATURE-----

Merge tag 'for-linus-20130301' of git://git.infradead.org/linux-mtd

Pull MTD update from David Woodhouse:
 "Fairly unexciting MTD merge for 3.9:

   - misc clean-ups in the MTD command-line partitioning parser
     (cmdlinepart)
   - add flash locking support for STmicro chips serial flash chips, as
     well as for CFI command set 2 chips.
   - new driver for the ELM error correction HW module found in various
     TI chips, enable the OMAP NAND driver to use the ELM HW error
     correction
   - added number of new serial flash IDs
   - various fixes and improvements in the gpmi NAND driver
   - bcm47xx NAND driver improvements
   - make the mtdpart module actually removable"

* tag 'for-linus-20130301' of git://git.infradead.org/linux-mtd: (45 commits)
  mtd: map: BUG() in non handled cases
  mtd: bcm47xxnflash: use pr_fmt for module prefix in messages
  mtd: davinci_nand: Use managed resources
  mtd: mtd_torturetest can cause stack overflows
  mtd: physmap_of: Convert device allocation to managed devm_kzalloc()
  mtd: at91: atmel_nand: for PMECC, add code to check the ONFI parameter ECC requirement.
  mtd: atmel_nand: make pmecc-cap, pmecc-sector-size in dts is optional.
  mtd: atmel_nand: avoid to report an error when lookup table offset is 0.
  mtd: bcm47xxsflash: adjust names of bus-specific functions
  mtd: bcm47xxpart: improve probing of nvram partition
  mtd: bcm47xxpart: add support for other erase sizes
  mtd: bcm47xxnflash: register this as normal driver
  mtd: bcm47xxnflash: fix message
  mtd: bcm47xxsflash: register this as normal driver
  mtd: bcm47xxsflash: write number of written bytes
  mtd: gpmi: add sanity check for the ECC
  mtd: gpmi: set the Golois Field bit for mx6q's BCH
  mtd: devices: elm: Removes <xx> literals in elm DT node
  mtd: gpmi: fix a dereferencing freed memory error
  mtd: fix the wrong timeo for panic_nand_wait()
  ...
hifive-unleashed-5.1
Linus Torvalds 2013-03-02 16:33:54 -08:00
commit 48476df998
38 changed files with 1882 additions and 332 deletions

View File

@ -0,0 +1,16 @@
Error location module
Required properties:
- compatible: Must be "ti,am33xx-elm"
- reg: physical base address and size of the registers map.
- interrupts: Interrupt number for the elm.
Optional properties:
- ti,hwmods: Name of the hwmod associated to the elm
Example:
elm: elm@0 {
compatible = "ti,am3352-elm";
reg = <0x48080000 0x2000>;
interrupts = <4>;
};

View File

@ -26,6 +26,9 @@ file systems on embedded devices.
- linux,mtd-name: allow to specify the mtd name for retro capability with
physmap-flash drivers as boot loader pass the mtd partition via the old
device name physmap-flash.
- use-advanced-sector-protection: boolean to enable support for the
advanced sector protection (Spansion: PPB - Persistent Protection
Bits) locking.
For JEDEC compatible devices, the following additional properties
are defined:

View File

@ -74,8 +74,8 @@ config MTD_REDBOOT_PARTS_READONLY
endif # MTD_REDBOOT_PARTS
config MTD_CMDLINE_PARTS
bool "Command line partition table parsing"
depends on MTD = "y"
tristate "Command line partition table parsing"
depends on MTD
---help---
Allow generic configuration of the MTD partition tables via the kernel
command line. Multiple flash resources are supported for hardware where

View File

@ -142,7 +142,13 @@ static int __init ar7_parser_init(void)
return register_mtd_parser(&ar7_parser);
}
static void __exit ar7_parser_exit(void)
{
deregister_mtd_parser(&ar7_parser);
}
module_init(ar7_parser_init);
module_exit(ar7_parser_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR( "Felix Fietkau <nbd@openwrt.org>, "

View File

@ -19,12 +19,6 @@
/* 10 parts were found on sflash on Netgear WNDR4500 */
#define BCM47XXPART_MAX_PARTS 12
/*
* Amount of bytes we read when analyzing each block of flash memory.
* Set it big enough to allow detecting partition and reading important data.
*/
#define BCM47XXPART_BYTES_TO_READ 0x404
/* Magics */
#define BOARD_DATA_MAGIC 0x5246504D /* MPFR */
#define POT_MAGIC1 0x54544f50 /* POTT */
@ -59,13 +53,21 @@ static int bcm47xxpart_parse(struct mtd_info *master,
uint32_t *buf;
size_t bytes_read;
uint32_t offset;
uint32_t blocksize = 0x10000;
uint32_t blocksize = master->erasesize;
struct trx_header *trx;
int trx_part = -1;
int last_trx_part = -1;
int max_bytes_to_read = 0x8004;
if (blocksize <= 0x10000)
blocksize = 0x10000;
if (blocksize == 0x20000)
max_bytes_to_read = 0x18004;
/* Alloc */
parts = kzalloc(sizeof(struct mtd_partition) * BCM47XXPART_MAX_PARTS,
GFP_KERNEL);
buf = kzalloc(BCM47XXPART_BYTES_TO_READ, GFP_KERNEL);
buf = kzalloc(max_bytes_to_read, GFP_KERNEL);
/* Parse block by block looking for magics */
for (offset = 0; offset <= master->size - blocksize;
@ -80,7 +82,7 @@ static int bcm47xxpart_parse(struct mtd_info *master,
}
/* Read beginning of the block */
if (mtd_read(master, offset, BCM47XXPART_BYTES_TO_READ,
if (mtd_read(master, offset, max_bytes_to_read,
&bytes_read, (uint8_t *)buf) < 0) {
pr_err("mtd_read error while parsing (offset: 0x%X)!\n",
offset);
@ -95,9 +97,16 @@ static int bcm47xxpart_parse(struct mtd_info *master,
}
/* Standard NVRAM */
if (buf[0x000 / 4] == NVRAM_HEADER) {
if (buf[0x000 / 4] == NVRAM_HEADER ||
buf[0x1000 / 4] == NVRAM_HEADER ||
buf[0x8000 / 4] == NVRAM_HEADER ||
(blocksize == 0x20000 && (
buf[0x10000 / 4] == NVRAM_HEADER ||
buf[0x11000 / 4] == NVRAM_HEADER ||
buf[0x18000 / 4] == NVRAM_HEADER))) {
bcm47xxpart_add_part(&parts[curr_part++], "nvram",
offset, 0);
offset = rounddown(offset, blocksize);
continue;
}
@ -131,6 +140,10 @@ static int bcm47xxpart_parse(struct mtd_info *master,
if (buf[0x000 / 4] == TRX_MAGIC) {
trx = (struct trx_header *)buf;
trx_part = curr_part;
bcm47xxpart_add_part(&parts[curr_part++], "firmware",
offset, 0);
i = 0;
/* We have LZMA loader if offset[2] points to sth */
if (trx->offset[2]) {
@ -154,6 +167,8 @@ static int bcm47xxpart_parse(struct mtd_info *master,
offset + trx->offset[i], 0);
i++;
last_trx_part = curr_part - 1;
/*
* We have whole TRX scanned, skip to the next part. Use
* roundown (not roundup), as the loop will increase
@ -169,11 +184,15 @@ static int bcm47xxpart_parse(struct mtd_info *master,
* Assume that partitions end at the beginning of the one they are
* followed by.
*/
for (i = 0; i < curr_part - 1; i++)
parts[i].size = parts[i + 1].offset - parts[i].offset;
if (curr_part > 0)
parts[curr_part - 1].size =
master->size - parts[curr_part - 1].offset;
for (i = 0; i < curr_part; i++) {
u64 next_part_offset = (i < curr_part - 1) ?
parts[i + 1].offset : master->size;
parts[i].size = next_part_offset - parts[i].offset;
if (i == last_trx_part && trx_part >= 0)
parts[trx_part].size = next_part_offset -
parts[trx_part].offset;
}
*pparts = parts;
return curr_part;

View File

@ -33,6 +33,8 @@
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/reboot.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/mtd/map.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/cfi.h>
@ -74,6 +76,10 @@ static void put_chip(struct map_info *map, struct flchip *chip, unsigned long ad
static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
static int cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
static int cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
static int cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
static struct mtd_chip_driver cfi_amdstd_chipdrv = {
.probe = NULL, /* Not usable directly */
.destroy = cfi_amdstd_destroy,
@ -496,6 +502,7 @@ static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private *cfi)
struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
{
struct cfi_private *cfi = map->fldrv_priv;
struct device_node __maybe_unused *np = map->device_node;
struct mtd_info *mtd;
int i;
@ -570,6 +577,17 @@ struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
cfi_tell_features(extp);
#endif
#ifdef CONFIG_OF
if (np && of_property_read_bool(
np, "use-advanced-sector-protection")
&& extp->BlkProtUnprot == 8) {
printk(KERN_INFO " Advanced Sector Protection (PPB Locking) supported\n");
mtd->_lock = cfi_ppb_lock;
mtd->_unlock = cfi_ppb_unlock;
mtd->_is_locked = cfi_ppb_is_locked;
}
#endif
bootloc = extp->TopBottom;
if ((bootloc < 2) || (bootloc > 5)) {
printk(KERN_WARNING "%s: CFI contains unrecognised boot "
@ -2172,6 +2190,205 @@ static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
}
/*
* Advanced Sector Protection - PPB (Persistent Protection Bit) locking
*/
struct ppb_lock {
struct flchip *chip;
loff_t offset;
int locked;
};
#define MAX_SECTORS 512
#define DO_XXLOCK_ONEBLOCK_LOCK ((void *)1)
#define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *)2)
#define DO_XXLOCK_ONEBLOCK_GETLOCK ((void *)3)
static int __maybe_unused do_ppb_xxlock(struct map_info *map,
struct flchip *chip,
unsigned long adr, int len, void *thunk)
{
struct cfi_private *cfi = map->fldrv_priv;
unsigned long timeo;
int ret;
mutex_lock(&chip->mutex);
ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
if (ret) {
mutex_unlock(&chip->mutex);
return ret;
}
pr_debug("MTD %s(): XXLOCK 0x%08lx len %d\n", __func__, adr, len);
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
cfi->device_type, NULL);
/* PPB entry command */
cfi_send_gen_cmd(0xC0, cfi->addr_unlock1, chip->start, map, cfi,
cfi->device_type, NULL);
if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
chip->state = FL_LOCKING;
map_write(map, CMD(0xA0), chip->start + adr);
map_write(map, CMD(0x00), chip->start + adr);
} else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
/*
* Unlocking of one specific sector is not supported, so we
* have to unlock all sectors of this device instead
*/
chip->state = FL_UNLOCKING;
map_write(map, CMD(0x80), chip->start);
map_write(map, CMD(0x30), chip->start);
} else if (thunk == DO_XXLOCK_ONEBLOCK_GETLOCK) {
chip->state = FL_JEDEC_QUERY;
/* Return locked status: 0->locked, 1->unlocked */
ret = !cfi_read_query(map, adr);
} else
BUG();
/*
* Wait for some time as unlocking of all sectors takes quite long
*/
timeo = jiffies + msecs_to_jiffies(2000); /* 2s max (un)locking */
for (;;) {
if (chip_ready(map, adr))
break;
if (time_after(jiffies, timeo)) {
printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
ret = -EIO;
break;
}
UDELAY(map, chip, adr, 1);
}
/* Exit BC commands */
map_write(map, CMD(0x90), chip->start);
map_write(map, CMD(0x00), chip->start);
chip->state = FL_READY;
put_chip(map, chip, adr + chip->start);
mutex_unlock(&chip->mutex);
return ret;
}
static int __maybe_unused cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs,
uint64_t len)
{
return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
DO_XXLOCK_ONEBLOCK_LOCK);
}
static int __maybe_unused cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs,
uint64_t len)
{
struct mtd_erase_region_info *regions = mtd->eraseregions;
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
struct ppb_lock *sect;
unsigned long adr;
loff_t offset;
uint64_t length;
int chipnum;
int i;
int sectors;
int ret;
/*
* PPB unlocking always unlocks all sectors of the flash chip.
* We need to re-lock all previously locked sectors. So lets
* first check the locking status of all sectors and save
* it for future use.
*/
sect = kzalloc(MAX_SECTORS * sizeof(struct ppb_lock), GFP_KERNEL);
if (!sect)
return -ENOMEM;
/*
* This code to walk all sectors is a slightly modified version
* of the cfi_varsize_frob() code.
*/
i = 0;
chipnum = 0;
adr = 0;
sectors = 0;
offset = 0;
length = mtd->size;
while (length) {
int size = regions[i].erasesize;
/*
* Only test sectors that shall not be unlocked. The other
* sectors shall be unlocked, so lets keep their locking
* status at "unlocked" (locked=0) for the final re-locking.
*/
if ((adr < ofs) || (adr >= (ofs + len))) {
sect[sectors].chip = &cfi->chips[chipnum];
sect[sectors].offset = offset;
sect[sectors].locked = do_ppb_xxlock(
map, &cfi->chips[chipnum], adr, 0,
DO_XXLOCK_ONEBLOCK_GETLOCK);
}
adr += size;
offset += size;
length -= size;
if (offset == regions[i].offset + size * regions[i].numblocks)
i++;
if (adr >> cfi->chipshift) {
adr = 0;
chipnum++;
if (chipnum >= cfi->numchips)
break;
}
sectors++;
if (sectors >= MAX_SECTORS) {
printk(KERN_ERR "Only %d sectors for PPB locking supported!\n",
MAX_SECTORS);
kfree(sect);
return -EINVAL;
}
}
/* Now unlock the whole chip */
ret = cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
DO_XXLOCK_ONEBLOCK_UNLOCK);
if (ret) {
kfree(sect);
return ret;
}
/*
* PPB unlocking always unlocks all sectors of the flash chip.
* We need to re-lock all previously locked sectors.
*/
for (i = 0; i < sectors; i++) {
if (sect[i].locked)
do_ppb_xxlock(map, sect[i].chip, sect[i].offset, 0,
DO_XXLOCK_ONEBLOCK_LOCK);
}
kfree(sect);
return ret;
}
static int __maybe_unused cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs,
uint64_t len)
{
return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
DO_XXLOCK_ONEBLOCK_GETLOCK) ? 1 : 0;
}
static void cfi_amdstd_sync (struct mtd_info *mtd)
{

View File

@ -22,11 +22,22 @@
*
* mtdparts=<mtddef>[;<mtddef]
* <mtddef> := <mtd-id>:<partdef>[,<partdef>]
* where <mtd-id> is the name from the "cat /proc/mtd" command
* <partdef> := <size>[@offset][<name>][ro][lk]
* <partdef> := <size>[@<offset>][<name>][ro][lk]
* <mtd-id> := unique name used in mapping driver/device (mtd->name)
* <size> := standard linux memsize OR "-" to denote all remaining space
* size is automatically truncated at end of device
* if specified or trucated size is 0 the part is skipped
* <offset> := standard linux memsize
* if omitted the part will immediately follow the previous part
* or 0 if the first part
* <name> := '(' NAME ')'
* NAME will appear in /proc/mtd
*
* <size> and <offset> can be specified such that the parts are out of order
* in physical memory and may even overlap.
*
* The parts are assigned MTD numbers in the order they are specified in the
* command line regardless of their order in physical memory.
*
* Examples:
*
@ -70,6 +81,7 @@ struct cmdline_mtd_partition {
static struct cmdline_mtd_partition *partitions;
/* the command line passed to mtdpart_setup() */
static char *mtdparts;
static char *cmdline;
static int cmdline_parsed;
@ -330,16 +342,6 @@ static int parse_cmdline_partitions(struct mtd_info *master,
if (part->parts[i].size == SIZE_REMAINING)
part->parts[i].size = master->size - offset;
if (part->parts[i].size == 0) {
printk(KERN_WARNING ERRP
"%s: skipping zero sized partition\n",
part->mtd_id);
part->num_parts--;
memmove(&part->parts[i], &part->parts[i + 1],
sizeof(*part->parts) * (part->num_parts - i));
continue;
}
if (offset + part->parts[i].size > master->size) {
printk(KERN_WARNING ERRP
"%s: partitioning exceeds flash size, truncating\n",
@ -347,6 +349,16 @@ static int parse_cmdline_partitions(struct mtd_info *master,
part->parts[i].size = master->size - offset;
}
offset += part->parts[i].size;
if (part->parts[i].size == 0) {
printk(KERN_WARNING ERRP
"%s: skipping zero sized partition\n",
part->mtd_id);
part->num_parts--;
memmove(&part->parts[i], &part->parts[i + 1],
sizeof(*part->parts) * (part->num_parts - i));
i--;
}
}
*pparts = kmemdup(part->parts, sizeof(*part->parts) * part->num_parts,
@ -365,7 +377,7 @@ static int parse_cmdline_partitions(struct mtd_info *master,
*
* This function needs to be visible for bootloaders.
*/
static int mtdpart_setup(char *s)
static int __init mtdpart_setup(char *s)
{
cmdline = s;
return 1;
@ -381,10 +393,21 @@ static struct mtd_part_parser cmdline_parser = {
static int __init cmdline_parser_init(void)
{
if (mtdparts)
mtdpart_setup(mtdparts);
return register_mtd_parser(&cmdline_parser);
}
static void __exit cmdline_parser_exit(void)
{
deregister_mtd_parser(&cmdline_parser);
}
module_init(cmdline_parser_init);
module_exit(cmdline_parser_exit);
MODULE_PARM_DESC(mtdparts, "Partitioning specification");
module_param(mtdparts, charp, 0);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Marius Groeger <mag@sysgo.de>");

View File

@ -17,8 +17,10 @@ obj-$(CONFIG_MTD_LART) += lart.o
obj-$(CONFIG_MTD_BLOCK2MTD) += block2mtd.o
obj-$(CONFIG_MTD_DATAFLASH) += mtd_dataflash.o
obj-$(CONFIG_MTD_M25P80) += m25p80.o
obj-$(CONFIG_MTD_NAND_OMAP_BCH) += elm.o
obj-$(CONFIG_MTD_SPEAR_SMI) += spear_smi.o
obj-$(CONFIG_MTD_SST25L) += sst25l.o
obj-$(CONFIG_MTD_BCM47XXSFLASH) += bcm47xxsflash.o
CFLAGS_docg3.o += -I$(src)
CFLAGS_docg3.o += -I$(src)

View File

@ -5,6 +5,8 @@
#include <linux/platform_device.h>
#include <linux/bcma/bcma.h>
#include "bcm47xxsflash.h"
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Serial flash driver for BCMA bus");
@ -13,26 +15,28 @@ static const char *probes[] = { "bcm47xxpart", NULL };
static int bcm47xxsflash_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
{
struct bcma_sflash *sflash = mtd->priv;
struct bcm47xxsflash *b47s = mtd->priv;
/* Check address range */
if ((from + len) > mtd->size)
return -EINVAL;
memcpy_fromio(buf, (void __iomem *)KSEG0ADDR(sflash->window + from),
memcpy_fromio(buf, (void __iomem *)KSEG0ADDR(b47s->window + from),
len);
*retlen = len;
return len;
}
static void bcm47xxsflash_fill_mtd(struct bcma_sflash *sflash,
struct mtd_info *mtd)
static void bcm47xxsflash_fill_mtd(struct bcm47xxsflash *b47s)
{
mtd->priv = sflash;
struct mtd_info *mtd = &b47s->mtd;
mtd->priv = b47s;
mtd->name = "bcm47xxsflash";
mtd->owner = THIS_MODULE;
mtd->type = MTD_ROM;
mtd->size = sflash->size;
mtd->size = b47s->size;
mtd->_read = bcm47xxsflash_read;
/* TODO: implement writing support and verify/change following code */
@ -40,19 +44,30 @@ static void bcm47xxsflash_fill_mtd(struct bcma_sflash *sflash,
mtd->writebufsize = mtd->writesize = 1;
}
static int bcm47xxsflash_probe(struct platform_device *pdev)
/**************************************************
* BCMA
**************************************************/
static int bcm47xxsflash_bcma_probe(struct platform_device *pdev)
{
struct bcma_sflash *sflash = dev_get_platdata(&pdev->dev);
struct bcm47xxsflash *b47s;
int err;
sflash->mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL);
if (!sflash->mtd) {
b47s = kzalloc(sizeof(*b47s), GFP_KERNEL);
if (!b47s) {
err = -ENOMEM;
goto out;
}
bcm47xxsflash_fill_mtd(sflash, sflash->mtd);
sflash->priv = b47s;
err = mtd_device_parse_register(sflash->mtd, probes, NULL, NULL, 0);
b47s->window = sflash->window;
b47s->blocksize = sflash->blocksize;
b47s->numblocks = sflash->numblocks;
b47s->size = sflash->size;
bcm47xxsflash_fill_mtd(b47s);
err = mtd_device_parse_register(&b47s->mtd, probes, NULL, NULL, 0);
if (err) {
pr_err("Failed to register MTD device: %d\n", err);
goto err_dev_reg;
@ -61,34 +76,40 @@ static int bcm47xxsflash_probe(struct platform_device *pdev)
return 0;
err_dev_reg:
kfree(sflash->mtd);
kfree(&b47s->mtd);
out:
return err;
}
static int bcm47xxsflash_remove(struct platform_device *pdev)
static int bcm47xxsflash_bcma_remove(struct platform_device *pdev)
{
struct bcma_sflash *sflash = dev_get_platdata(&pdev->dev);
struct bcm47xxsflash *b47s = sflash->priv;
mtd_device_unregister(sflash->mtd);
kfree(sflash->mtd);
mtd_device_unregister(&b47s->mtd);
kfree(b47s);
return 0;
}
static struct platform_driver bcma_sflash_driver = {
.remove = bcm47xxsflash_remove,
.probe = bcm47xxsflash_bcma_probe,
.remove = bcm47xxsflash_bcma_remove,
.driver = {
.name = "bcma_sflash",
.owner = THIS_MODULE,
},
};
/**************************************************
* Init
**************************************************/
static int __init bcm47xxsflash_init(void)
{
int err;
err = platform_driver_probe(&bcma_sflash_driver, bcm47xxsflash_probe);
err = platform_driver_register(&bcma_sflash_driver);
if (err)
pr_err("Failed to register BCMA serial flash driver: %d\n",
err);

View File

@ -0,0 +1,15 @@
#ifndef __BCM47XXSFLASH_H
#define __BCM47XXSFLASH_H
#include <linux/mtd/mtd.h>
struct bcm47xxsflash {
u32 window;
u32 blocksize;
u16 numblocks;
u32 size;
struct mtd_info mtd;
};
#endif /* BCM47XXSFLASH */

View File

@ -0,0 +1,404 @@
/*
* Error Location Module
*
* Copyright (C) 2012 Texas Instruments Incorporated - http://www.ti.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/platform_device.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/pm_runtime.h>
#include <linux/platform_data/elm.h>
#define ELM_IRQSTATUS 0x018
#define ELM_IRQENABLE 0x01c
#define ELM_LOCATION_CONFIG 0x020
#define ELM_PAGE_CTRL 0x080
#define ELM_SYNDROME_FRAGMENT_0 0x400
#define ELM_SYNDROME_FRAGMENT_6 0x418
#define ELM_LOCATION_STATUS 0x800
#define ELM_ERROR_LOCATION_0 0x880
/* ELM Interrupt Status Register */
#define INTR_STATUS_PAGE_VALID BIT(8)
/* ELM Interrupt Enable Register */
#define INTR_EN_PAGE_MASK BIT(8)
/* ELM Location Configuration Register */
#define ECC_BCH_LEVEL_MASK 0x3
/* ELM syndrome */
#define ELM_SYNDROME_VALID BIT(16)
/* ELM_LOCATION_STATUS Register */
#define ECC_CORRECTABLE_MASK BIT(8)
#define ECC_NB_ERRORS_MASK 0x1f
/* ELM_ERROR_LOCATION_0-15 Registers */
#define ECC_ERROR_LOCATION_MASK 0x1fff
#define ELM_ECC_SIZE 0x7ff
#define SYNDROME_FRAGMENT_REG_SIZE 0x40
#define ERROR_LOCATION_SIZE 0x100
struct elm_info {
struct device *dev;
void __iomem *elm_base;
struct completion elm_completion;
struct list_head list;
enum bch_ecc bch_type;
};
static LIST_HEAD(elm_devices);
static void elm_write_reg(struct elm_info *info, int offset, u32 val)
{
writel(val, info->elm_base + offset);
}
static u32 elm_read_reg(struct elm_info *info, int offset)
{
return readl(info->elm_base + offset);
}
/**
* elm_config - Configure ELM module
* @dev: ELM device
* @bch_type: Type of BCH ecc
*/
void elm_config(struct device *dev, enum bch_ecc bch_type)
{
u32 reg_val;
struct elm_info *info = dev_get_drvdata(dev);
reg_val = (bch_type & ECC_BCH_LEVEL_MASK) | (ELM_ECC_SIZE << 16);
elm_write_reg(info, ELM_LOCATION_CONFIG, reg_val);
info->bch_type = bch_type;
}
EXPORT_SYMBOL(elm_config);
/**
* elm_configure_page_mode - Enable/Disable page mode
* @info: elm info
* @index: index number of syndrome fragment vector
* @enable: enable/disable flag for page mode
*
* Enable page mode for syndrome fragment index
*/
static void elm_configure_page_mode(struct elm_info *info, int index,
bool enable)
{
u32 reg_val;
reg_val = elm_read_reg(info, ELM_PAGE_CTRL);
if (enable)
reg_val |= BIT(index); /* enable page mode */
else
reg_val &= ~BIT(index); /* disable page mode */
elm_write_reg(info, ELM_PAGE_CTRL, reg_val);
}
/**
* elm_load_syndrome - Load ELM syndrome reg
* @info: elm info
* @err_vec: elm error vectors
* @ecc: buffer with calculated ecc
*
* Load syndrome fragment registers with calculated ecc in reverse order.
*/
static void elm_load_syndrome(struct elm_info *info,
struct elm_errorvec *err_vec, u8 *ecc)
{
int i, offset;
u32 val;
for (i = 0; i < ERROR_VECTOR_MAX; i++) {
/* Check error reported */
if (err_vec[i].error_reported) {
elm_configure_page_mode(info, i, true);
offset = ELM_SYNDROME_FRAGMENT_0 +
SYNDROME_FRAGMENT_REG_SIZE * i;
/* BCH8 */
if (info->bch_type) {
/* syndrome fragment 0 = ecc[9-12B] */
val = cpu_to_be32(*(u32 *) &ecc[9]);
elm_write_reg(info, offset, val);
/* syndrome fragment 1 = ecc[5-8B] */
offset += 4;
val = cpu_to_be32(*(u32 *) &ecc[5]);
elm_write_reg(info, offset, val);
/* syndrome fragment 2 = ecc[1-4B] */
offset += 4;
val = cpu_to_be32(*(u32 *) &ecc[1]);
elm_write_reg(info, offset, val);
/* syndrome fragment 3 = ecc[0B] */
offset += 4;
val = ecc[0];
elm_write_reg(info, offset, val);
} else {
/* syndrome fragment 0 = ecc[20-52b] bits */
val = (cpu_to_be32(*(u32 *) &ecc[3]) >> 4) |
((ecc[2] & 0xf) << 28);
elm_write_reg(info, offset, val);
/* syndrome fragment 1 = ecc[0-20b] bits */
offset += 4;
val = cpu_to_be32(*(u32 *) &ecc[0]) >> 12;
elm_write_reg(info, offset, val);
}
}
/* Update ecc pointer with ecc byte size */
ecc += info->bch_type ? BCH8_SIZE : BCH4_SIZE;
}
}
/**
* elm_start_processing - start elm syndrome processing
* @info: elm info
* @err_vec: elm error vectors
*
* Set syndrome valid bit for syndrome fragment registers for which
* elm syndrome fragment registers are loaded. This enables elm module
* to start processing syndrome vectors.
*/
static void elm_start_processing(struct elm_info *info,
struct elm_errorvec *err_vec)
{
int i, offset;
u32 reg_val;
/*
* Set syndrome vector valid, so that ELM module
* will process it for vectors error is reported
*/
for (i = 0; i < ERROR_VECTOR_MAX; i++) {
if (err_vec[i].error_reported) {
offset = ELM_SYNDROME_FRAGMENT_6 +
SYNDROME_FRAGMENT_REG_SIZE * i;
reg_val = elm_read_reg(info, offset);
reg_val |= ELM_SYNDROME_VALID;
elm_write_reg(info, offset, reg_val);
}
}
}
/**
* elm_error_correction - locate correctable error position
* @info: elm info
* @err_vec: elm error vectors
*
* On completion of processing by elm module, error location status
* register updated with correctable/uncorrectable error information.
* In case of correctable errors, number of errors located from
* elm location status register & read the positions from
* elm error location register.
*/
static void elm_error_correction(struct elm_info *info,
struct elm_errorvec *err_vec)
{
int i, j, errors = 0;
int offset;
u32 reg_val;
for (i = 0; i < ERROR_VECTOR_MAX; i++) {
/* Check error reported */
if (err_vec[i].error_reported) {
offset = ELM_LOCATION_STATUS + ERROR_LOCATION_SIZE * i;
reg_val = elm_read_reg(info, offset);
/* Check correctable error or not */
if (reg_val & ECC_CORRECTABLE_MASK) {
offset = ELM_ERROR_LOCATION_0 +
ERROR_LOCATION_SIZE * i;
/* Read count of correctable errors */
err_vec[i].error_count = reg_val &
ECC_NB_ERRORS_MASK;
/* Update the error locations in error vector */
for (j = 0; j < err_vec[i].error_count; j++) {
reg_val = elm_read_reg(info, offset);
err_vec[i].error_loc[j] = reg_val &
ECC_ERROR_LOCATION_MASK;
/* Update error location register */
offset += 4;
}
errors += err_vec[i].error_count;
} else {
err_vec[i].error_uncorrectable = true;
}
/* Clearing interrupts for processed error vectors */
elm_write_reg(info, ELM_IRQSTATUS, BIT(i));
/* Disable page mode */
elm_configure_page_mode(info, i, false);
}
}
}
/**
* elm_decode_bch_error_page - Locate error position
* @dev: device pointer
* @ecc_calc: calculated ECC bytes from GPMC
* @err_vec: elm error vectors
*
* Called with one or more error reported vectors & vectors with
* error reported is updated in err_vec[].error_reported
*/
void elm_decode_bch_error_page(struct device *dev, u8 *ecc_calc,
struct elm_errorvec *err_vec)
{
struct elm_info *info = dev_get_drvdata(dev);
u32 reg_val;
/* Enable page mode interrupt */
reg_val = elm_read_reg(info, ELM_IRQSTATUS);
elm_write_reg(info, ELM_IRQSTATUS, reg_val & INTR_STATUS_PAGE_VALID);
elm_write_reg(info, ELM_IRQENABLE, INTR_EN_PAGE_MASK);
/* Load valid ecc byte to syndrome fragment register */
elm_load_syndrome(info, err_vec, ecc_calc);
/* Enable syndrome processing for which syndrome fragment is updated */
elm_start_processing(info, err_vec);
/* Wait for ELM module to finish locating error correction */
wait_for_completion(&info->elm_completion);
/* Disable page mode interrupt */
reg_val = elm_read_reg(info, ELM_IRQENABLE);
elm_write_reg(info, ELM_IRQENABLE, reg_val & ~INTR_EN_PAGE_MASK);
elm_error_correction(info, err_vec);
}
EXPORT_SYMBOL(elm_decode_bch_error_page);
static irqreturn_t elm_isr(int this_irq, void *dev_id)
{
u32 reg_val;
struct elm_info *info = dev_id;
reg_val = elm_read_reg(info, ELM_IRQSTATUS);
/* All error vectors processed */
if (reg_val & INTR_STATUS_PAGE_VALID) {
elm_write_reg(info, ELM_IRQSTATUS,
reg_val & INTR_STATUS_PAGE_VALID);
complete(&info->elm_completion);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
static int elm_probe(struct platform_device *pdev)
{
int ret = 0;
struct resource *res, *irq;
struct elm_info *info;
info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
if (!info) {
dev_err(&pdev->dev, "failed to allocate memory\n");
return -ENOMEM;
}
info->dev = &pdev->dev;
irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (!irq) {
dev_err(&pdev->dev, "no irq resource defined\n");
return -ENODEV;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(&pdev->dev, "no memory resource defined\n");
return -ENODEV;
}
info->elm_base = devm_request_and_ioremap(&pdev->dev, res);
if (!info->elm_base)
return -EADDRNOTAVAIL;
ret = devm_request_irq(&pdev->dev, irq->start, elm_isr, 0,
pdev->name, info);
if (ret) {
dev_err(&pdev->dev, "failure requesting irq %i\n", irq->start);
return ret;
}
pm_runtime_enable(&pdev->dev);
if (pm_runtime_get_sync(&pdev->dev)) {
ret = -EINVAL;
pm_runtime_disable(&pdev->dev);
dev_err(&pdev->dev, "can't enable clock\n");
return ret;
}
init_completion(&info->elm_completion);
INIT_LIST_HEAD(&info->list);
list_add(&info->list, &elm_devices);
platform_set_drvdata(pdev, info);
return ret;
}
static int elm_remove(struct platform_device *pdev)
{
pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
platform_set_drvdata(pdev, NULL);
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id elm_of_match[] = {
{ .compatible = "ti,am3352-elm" },
{},
};
MODULE_DEVICE_TABLE(of, elm_of_match);
#endif
static struct platform_driver elm_driver = {
.driver = {
.name = "elm",
.owner = THIS_MODULE,
.of_match_table = of_match_ptr(elm_of_match),
},
.probe = elm_probe,
.remove = elm_remove,
};
module_platform_driver(elm_driver);
MODULE_DESCRIPTION("ELM driver for BCH error correction");
MODULE_AUTHOR("Texas Instruments");
MODULE_ALIAS("platform: elm");
MODULE_LICENSE("GPL v2");

View File

@ -565,6 +565,96 @@ time_out:
return ret;
}
static int m25p80_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
struct m25p *flash = mtd_to_m25p(mtd);
uint32_t offset = ofs;
uint8_t status_old, status_new;
int res = 0;
mutex_lock(&flash->lock);
/* Wait until finished previous command */
if (wait_till_ready(flash)) {
res = 1;
goto err;
}
status_old = read_sr(flash);
if (offset < flash->mtd.size-(flash->mtd.size/2))
status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0;
else if (offset < flash->mtd.size-(flash->mtd.size/4))
status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
else if (offset < flash->mtd.size-(flash->mtd.size/8))
status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
else if (offset < flash->mtd.size-(flash->mtd.size/16))
status_new = (status_old & ~(SR_BP0|SR_BP1)) | SR_BP2;
else if (offset < flash->mtd.size-(flash->mtd.size/32))
status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
else if (offset < flash->mtd.size-(flash->mtd.size/64))
status_new = (status_old & ~(SR_BP2|SR_BP0)) | SR_BP1;
else
status_new = (status_old & ~(SR_BP2|SR_BP1)) | SR_BP0;
/* Only modify protection if it will not unlock other areas */
if ((status_new&(SR_BP2|SR_BP1|SR_BP0)) >
(status_old&(SR_BP2|SR_BP1|SR_BP0))) {
write_enable(flash);
if (write_sr(flash, status_new) < 0) {
res = 1;
goto err;
}
}
err: mutex_unlock(&flash->lock);
return res;
}
static int m25p80_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
struct m25p *flash = mtd_to_m25p(mtd);
uint32_t offset = ofs;
uint8_t status_old, status_new;
int res = 0;
mutex_lock(&flash->lock);
/* Wait until finished previous command */
if (wait_till_ready(flash)) {
res = 1;
goto err;
}
status_old = read_sr(flash);
if (offset+len > flash->mtd.size-(flash->mtd.size/64))
status_new = status_old & ~(SR_BP2|SR_BP1|SR_BP0);
else if (offset+len > flash->mtd.size-(flash->mtd.size/32))
status_new = (status_old & ~(SR_BP2|SR_BP1)) | SR_BP0;
else if (offset+len > flash->mtd.size-(flash->mtd.size/16))
status_new = (status_old & ~(SR_BP2|SR_BP0)) | SR_BP1;
else if (offset+len > flash->mtd.size-(flash->mtd.size/8))
status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
else if (offset+len > flash->mtd.size-(flash->mtd.size/4))
status_new = (status_old & ~(SR_BP0|SR_BP1)) | SR_BP2;
else if (offset+len > flash->mtd.size-(flash->mtd.size/2))
status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
else
status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
/* Only modify protection if it will not lock other areas */
if ((status_new&(SR_BP2|SR_BP1|SR_BP0)) <
(status_old&(SR_BP2|SR_BP1|SR_BP0))) {
write_enable(flash);
if (write_sr(flash, status_new) < 0) {
res = 1;
goto err;
}
}
err: mutex_unlock(&flash->lock);
return res;
}
/****************************************************************************/
/*
@ -642,6 +732,10 @@ static const struct spi_device_id m25p_ids[] = {
/* Everspin */
{ "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2) },
/* GigaDevice */
{ "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64, SECT_4K) },
{ "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },
/* Intel/Numonyx -- xxxs33b */
{ "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
{ "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
@ -899,6 +993,12 @@ static int m25p_probe(struct spi_device *spi)
flash->mtd._erase = m25p80_erase;
flash->mtd._read = m25p80_read;
/* flash protection support for STmicro chips */
if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ST) {
flash->mtd._lock = m25p80_lock;
flash->mtd._unlock = m25p80_unlock;
}
/* sst flash chips use AAI word program */
if (JEDEC_MFR(info->jedec_id) == CFI_MFR_SST)
flash->mtd._write = sst_write;

View File

@ -429,7 +429,7 @@ config MTD_GPIO_ADDR
config MTD_UCLINUX
bool "Generic uClinux RAM/ROM filesystem support"
depends on MTD_RAM=y && (!MMU || COLDFIRE)
depends on (MTD_RAM=y || MTD_ROM=y) && (!MMU || COLDFIRE)
help
Map driver to support image based filesystems for uClinux.

View File

@ -68,9 +68,6 @@ static int of_flash_remove(struct platform_device *dev)
kfree(info->list[i].res);
}
}
kfree(info);
return 0;
}
@ -199,8 +196,9 @@ static int of_flash_probe(struct platform_device *dev)
map_indirect = of_property_read_bool(dp, "no-unaligned-direct-access");
err = -ENOMEM;
info = kzalloc(sizeof(struct of_flash) +
sizeof(struct of_flash_list) * count, GFP_KERNEL);
info = devm_kzalloc(&dev->dev,
sizeof(struct of_flash) +
sizeof(struct of_flash_list) * count, GFP_KERNEL);
if (!info)
goto err_flash_remove;
@ -241,6 +239,7 @@ static int of_flash_probe(struct platform_device *dev)
info->list[i].map.phys = res.start;
info->list[i].map.size = res_size;
info->list[i].map.bankwidth = be32_to_cpup(width);
info->list[i].map.device_node = dp;
err = -ENOMEM;
info->list[i].map.virt = ioremap(info->list[i].map.phys,

View File

@ -23,12 +23,26 @@
/****************************************************************************/
#ifdef CONFIG_MTD_ROM
#define MAP_NAME "rom"
#else
#define MAP_NAME "ram"
#endif
/*
* Blackfin uses uclinux_ram_map during startup, so it must not be static.
* Provide a dummy declaration to make sparse happy.
*/
extern struct map_info uclinux_ram_map;
struct map_info uclinux_ram_map = {
.name = "RAM",
.phys = (unsigned long)__bss_stop,
.name = MAP_NAME,
.size = 0,
};
static unsigned long physaddr = -1;
module_param(physaddr, ulong, S_IRUGO);
static struct mtd_info *uclinux_ram_mtdinfo;
/****************************************************************************/
@ -60,11 +74,17 @@ static int __init uclinux_mtd_init(void)
struct map_info *mapp;
mapp = &uclinux_ram_map;
if (physaddr == -1)
mapp->phys = (resource_size_t)__bss_stop;
else
mapp->phys = physaddr;
if (!mapp->size)
mapp->size = PAGE_ALIGN(ntohl(*((unsigned long *)(mapp->phys + 8))));
mapp->bankwidth = 4;
printk("uclinux[mtd]: RAM probe address=0x%x size=0x%x\n",
printk("uclinux[mtd]: probe address=0x%x size=0x%x\n",
(int) mapp->phys, (int) mapp->size);
/*
@ -82,7 +102,7 @@ static int __init uclinux_mtd_init(void)
simple_map_init(mapp);
mtd = do_map_probe("map_ram", mapp);
mtd = do_map_probe("map_" MAP_NAME, mapp);
if (!mtd) {
printk("uclinux[mtd]: failed to find a mapping?\n");
return(-ENXIO);
@ -118,6 +138,6 @@ module_exit(uclinux_mtd_cleanup);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Greg Ungerer <gerg@snapgear.com>");
MODULE_DESCRIPTION("Generic RAM based MTD for uClinux");
MODULE_DESCRIPTION("Generic MTD for uClinux");
/****************************************************************************/

View File

@ -101,6 +101,8 @@ struct atmel_nand_host {
u8 pmecc_corr_cap;
u16 pmecc_sector_size;
u32 pmecc_lookup_table_offset;
u32 pmecc_lookup_table_offset_512;
u32 pmecc_lookup_table_offset_1024;
int pmecc_bytes_per_sector;
int pmecc_sector_number;
@ -908,6 +910,84 @@ static void atmel_pmecc_core_init(struct mtd_info *mtd)
pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
}
/*
* Get ECC requirement in ONFI parameters, returns -1 if ONFI
* parameters is not supported.
* return 0 if success to get the ECC requirement.
*/
static int get_onfi_ecc_param(struct nand_chip *chip,
int *ecc_bits, int *sector_size)
{
*ecc_bits = *sector_size = 0;
if (chip->onfi_params.ecc_bits == 0xff)
/* TODO: the sector_size and ecc_bits need to be find in
* extended ecc parameter, currently we don't support it.
*/
return -1;
*ecc_bits = chip->onfi_params.ecc_bits;
/* The default sector size (ecc codeword size) is 512 */
*sector_size = 512;
return 0;
}
/*
* Get ecc requirement from ONFI parameters ecc requirement.
* If pmecc-cap, pmecc-sector-size in DTS are not specified, this function
* will set them according to ONFI ecc requirement. Otherwise, use the
* value in DTS file.
* return 0 if success. otherwise return error code.
*/
static int pmecc_choose_ecc(struct atmel_nand_host *host,
int *cap, int *sector_size)
{
/* Get ECC requirement from ONFI parameters */
*cap = *sector_size = 0;
if (host->nand_chip.onfi_version) {
if (!get_onfi_ecc_param(&host->nand_chip, cap, sector_size))
dev_info(host->dev, "ONFI params, minimum required ECC: %d bits in %d bytes\n",
*cap, *sector_size);
else
dev_info(host->dev, "NAND chip ECC reqirement is in Extended ONFI parameter, we don't support yet.\n");
} else {
dev_info(host->dev, "NAND chip is not ONFI compliant, assume ecc_bits is 2 in 512 bytes");
}
if (*cap == 0 && *sector_size == 0) {
*cap = 2;
*sector_size = 512;
}
/* If dts file doesn't specify then use the one in ONFI parameters */
if (host->pmecc_corr_cap == 0) {
/* use the most fitable ecc bits (the near bigger one ) */
if (*cap <= 2)
host->pmecc_corr_cap = 2;
else if (*cap <= 4)
host->pmecc_corr_cap = 4;
else if (*cap < 8)
host->pmecc_corr_cap = 8;
else if (*cap < 12)
host->pmecc_corr_cap = 12;
else if (*cap < 24)
host->pmecc_corr_cap = 24;
else
return -EINVAL;
}
if (host->pmecc_sector_size == 0) {
/* use the most fitable sector size (the near smaller one ) */
if (*sector_size >= 1024)
host->pmecc_sector_size = 1024;
else if (*sector_size >= 512)
host->pmecc_sector_size = 512;
else
return -EINVAL;
}
return 0;
}
static int __init atmel_pmecc_nand_init_params(struct platform_device *pdev,
struct atmel_nand_host *host)
{
@ -916,8 +996,22 @@ static int __init atmel_pmecc_nand_init_params(struct platform_device *pdev,
struct resource *regs, *regs_pmerr, *regs_rom;
int cap, sector_size, err_no;
err_no = pmecc_choose_ecc(host, &cap, &sector_size);
if (err_no) {
dev_err(host->dev, "The NAND flash's ECC requirement are not support!");
return err_no;
}
if (cap != host->pmecc_corr_cap ||
sector_size != host->pmecc_sector_size)
dev_info(host->dev, "WARNING: Be Caution! Using different PMECC parameters from Nand ONFI ECC reqirement.\n");
cap = host->pmecc_corr_cap;
sector_size = host->pmecc_sector_size;
host->pmecc_lookup_table_offset = (sector_size == 512) ?
host->pmecc_lookup_table_offset_512 :
host->pmecc_lookup_table_offset_1024;
dev_info(host->dev, "Initialize PMECC params, cap: %d, sector: %d\n",
cap, sector_size);
@ -1215,7 +1309,7 @@ static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
static int atmel_of_init_port(struct atmel_nand_host *host,
struct device_node *np)
{
u32 val, table_offset;
u32 val;
u32 offset[2];
int ecc_mode;
struct atmel_nand_data *board = &host->board;
@ -1259,42 +1353,41 @@ static int atmel_of_init_port(struct atmel_nand_host *host,
/* use PMECC, get correction capability, sector size and lookup
* table offset.
* If correction bits and sector size are not specified, then find
* them from NAND ONFI parameters.
*/
if (of_property_read_u32(np, "atmel,pmecc-cap", &val) != 0) {
dev_err(host->dev, "Cannot decide PMECC Capability\n");
return -EINVAL;
} else if ((val != 2) && (val != 4) && (val != 8) && (val != 12) &&
(val != 24)) {
dev_err(host->dev,
"Unsupported PMECC correction capability: %d; should be 2, 4, 8, 12 or 24\n",
val);
return -EINVAL;
if (of_property_read_u32(np, "atmel,pmecc-cap", &val) == 0) {
if ((val != 2) && (val != 4) && (val != 8) && (val != 12) &&
(val != 24)) {
dev_err(host->dev,
"Unsupported PMECC correction capability: %d; should be 2, 4, 8, 12 or 24\n",
val);
return -EINVAL;
}
host->pmecc_corr_cap = (u8)val;
}
host->pmecc_corr_cap = (u8)val;
if (of_property_read_u32(np, "atmel,pmecc-sector-size", &val) != 0) {
dev_err(host->dev, "Cannot decide PMECC Sector Size\n");
return -EINVAL;
} else if ((val != 512) && (val != 1024)) {
dev_err(host->dev,
"Unsupported PMECC sector size: %d; should be 512 or 1024 bytes\n",
val);
return -EINVAL;
if (of_property_read_u32(np, "atmel,pmecc-sector-size", &val) == 0) {
if ((val != 512) && (val != 1024)) {
dev_err(host->dev,
"Unsupported PMECC sector size: %d; should be 512 or 1024 bytes\n",
val);
return -EINVAL;
}
host->pmecc_sector_size = (u16)val;
}
host->pmecc_sector_size = (u16)val;
if (of_property_read_u32_array(np, "atmel,pmecc-lookup-table-offset",
offset, 2) != 0) {
dev_err(host->dev, "Cannot get PMECC lookup table offset\n");
return -EINVAL;
}
table_offset = host->pmecc_sector_size == 512 ? offset[0] : offset[1];
if (!table_offset) {
if (!offset[0] && !offset[1]) {
dev_err(host->dev, "Invalid PMECC lookup table offset\n");
return -EINVAL;
}
host->pmecc_lookup_table_offset = table_offset;
host->pmecc_lookup_table_offset_512 = offset[0];
host->pmecc_lookup_table_offset_1024 = offset[1];
return 0;
}

View File

@ -1,6 +1,10 @@
#ifndef __BCM47XXNFLASH_H
#define __BCM47XXNFLASH_H
#ifndef pr_fmt
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#endif
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>

View File

@ -9,14 +9,14 @@
*
*/
#include "bcm47xxnflash.h"
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/bcma/bcma.h>
#include "bcm47xxnflash.h"
MODULE_DESCRIPTION("NAND flash driver for BCMA bus");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Rafał Miłecki");
@ -77,6 +77,7 @@ static int bcm47xxnflash_remove(struct platform_device *pdev)
}
static struct platform_driver bcm47xxnflash_driver = {
.probe = bcm47xxnflash_probe,
.remove = bcm47xxnflash_remove,
.driver = {
.name = "bcma_nflash",
@ -88,13 +89,10 @@ static int __init bcm47xxnflash_init(void)
{
int err;
/*
* Platform device "bcma_nflash" exists on SoCs and is registered very
* early, it won't be added during runtime (use platform_driver_probe).
*/
err = platform_driver_probe(&bcm47xxnflash_driver, bcm47xxnflash_probe);
err = platform_driver_register(&bcm47xxnflash_driver);
if (err)
pr_err("Failed to register serial flash driver: %d\n", err);
pr_err("Failed to register bcm47xx nand flash driver: %d\n",
err);
return err;
}

View File

@ -9,13 +9,13 @@
*
*/
#include "bcm47xxnflash.h"
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/bcma/bcma.h>
#include "bcm47xxnflash.h"
/* Broadcom uses 1'000'000 but it seems to be too many. Tests on WNDR4500 has
* shown ~1000 retries as maxiumum. */
#define NFLASH_READY_RETRIES 10000

View File

@ -606,7 +606,7 @@ static int __init nand_davinci_probe(struct platform_device *pdev)
if (pdev->id < 0 || pdev->id > 3)
return -ENODEV;
info = kzalloc(sizeof(*info), GFP_KERNEL);
info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
if (!info) {
dev_err(&pdev->dev, "unable to allocate memory\n");
ret = -ENOMEM;
@ -623,11 +623,11 @@ static int __init nand_davinci_probe(struct platform_device *pdev)
goto err_nomem;
}
vaddr = ioremap(res1->start, resource_size(res1));
base = ioremap(res2->start, resource_size(res2));
vaddr = devm_request_and_ioremap(&pdev->dev, res1);
base = devm_request_and_ioremap(&pdev->dev, res2);
if (!vaddr || !base) {
dev_err(&pdev->dev, "ioremap failed\n");
ret = -EINVAL;
ret = -EADDRNOTAVAIL;
goto err_ioremap;
}
@ -717,7 +717,7 @@ static int __init nand_davinci_probe(struct platform_device *pdev)
}
info->chip.ecc.mode = ecc_mode;
info->clk = clk_get(&pdev->dev, "aemif");
info->clk = devm_clk_get(&pdev->dev, "aemif");
if (IS_ERR(info->clk)) {
ret = PTR_ERR(info->clk);
dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret);
@ -845,8 +845,6 @@ err_timing:
clk_disable_unprepare(info->clk);
err_clk_enable:
clk_put(info->clk);
spin_lock_irq(&davinci_nand_lock);
if (ecc_mode == NAND_ECC_HW_SYNDROME)
ecc4_busy = false;
@ -855,13 +853,7 @@ err_clk_enable:
err_ecc:
err_clk:
err_ioremap:
if (base)
iounmap(base);
if (vaddr)
iounmap(vaddr);
err_nomem:
kfree(info);
return ret;
}
@ -874,15 +866,9 @@ static int __exit nand_davinci_remove(struct platform_device *pdev)
ecc4_busy = false;
spin_unlock_irq(&davinci_nand_lock);
iounmap(info->base);
iounmap(info->vaddr);
nand_release(&info->mtd);
clk_disable_unprepare(info->clk);
clk_put(info->clk);
kfree(info);
return 0;
}

View File

@ -176,8 +176,8 @@ static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
ifc_nand_ctrl->page = page_addr;
/* Program ROW0/COL0 */
out_be32(&ifc->ifc_nand.row0, page_addr);
out_be32(&ifc->ifc_nand.col0, (oob ? IFC_NAND_COL_MS : 0) | column);
iowrite32be(page_addr, &ifc->ifc_nand.row0);
iowrite32be((oob ? IFC_NAND_COL_MS : 0) | column, &ifc->ifc_nand.col0);
buf_num = page_addr & priv->bufnum_mask;
@ -239,18 +239,19 @@ static void fsl_ifc_run_command(struct mtd_info *mtd)
int i;
/* set the chip select for NAND Transaction */
out_be32(&ifc->ifc_nand.nand_csel, priv->bank << IFC_NAND_CSEL_SHIFT);
iowrite32be(priv->bank << IFC_NAND_CSEL_SHIFT,
&ifc->ifc_nand.nand_csel);
dev_vdbg(priv->dev,
"%s: fir0=%08x fcr0=%08x\n",
__func__,
in_be32(&ifc->ifc_nand.nand_fir0),
in_be32(&ifc->ifc_nand.nand_fcr0));
ioread32be(&ifc->ifc_nand.nand_fir0),
ioread32be(&ifc->ifc_nand.nand_fcr0));
ctrl->nand_stat = 0;
/* start read/write seq */
out_be32(&ifc->ifc_nand.nandseq_strt, IFC_NAND_SEQ_STRT_FIR_STRT);
iowrite32be(IFC_NAND_SEQ_STRT_FIR_STRT, &ifc->ifc_nand.nandseq_strt);
/* wait for command complete flag or timeout */
wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat,
@ -273,7 +274,7 @@ static void fsl_ifc_run_command(struct mtd_info *mtd)
int sector_end = sector + chip->ecc.steps - 1;
for (i = sector / 4; i <= sector_end / 4; i++)
eccstat[i] = in_be32(&ifc->ifc_nand.nand_eccstat[i]);
eccstat[i] = ioread32be(&ifc->ifc_nand.nand_eccstat[i]);
for (i = sector; i <= sector_end; i++) {
errors = check_read_ecc(mtd, ctrl, eccstat, i);
@ -313,31 +314,33 @@ static void fsl_ifc_do_read(struct nand_chip *chip,
/* Program FIR/IFC_NAND_FCR0 for Small/Large page */
if (mtd->writesize > 512) {
out_be32(&ifc->ifc_nand.nand_fir0,
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
(IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
(IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT));
out_be32(&ifc->ifc_nand.nand_fir1, 0x0);
iowrite32be((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
(IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
(IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT),
&ifc->ifc_nand.nand_fir0);
iowrite32be(0x0, &ifc->ifc_nand.nand_fir1);
out_be32(&ifc->ifc_nand.nand_fcr0,
(NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
(NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT));
iowrite32be((NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
(NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT),
&ifc->ifc_nand.nand_fcr0);
} else {
out_be32(&ifc->ifc_nand.nand_fir0,
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
(IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT));
out_be32(&ifc->ifc_nand.nand_fir1, 0x0);
iowrite32be((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
(IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT),
&ifc->ifc_nand.nand_fir0);
iowrite32be(0x0, &ifc->ifc_nand.nand_fir1);
if (oob)
out_be32(&ifc->ifc_nand.nand_fcr0,
NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT);
iowrite32be(NAND_CMD_READOOB <<
IFC_NAND_FCR0_CMD0_SHIFT,
&ifc->ifc_nand.nand_fcr0);
else
out_be32(&ifc->ifc_nand.nand_fcr0,
NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT);
iowrite32be(NAND_CMD_READ0 <<
IFC_NAND_FCR0_CMD0_SHIFT,
&ifc->ifc_nand.nand_fcr0);
}
}
@ -357,7 +360,7 @@ static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command,
switch (command) {
/* READ0 read the entire buffer to use hardware ECC. */
case NAND_CMD_READ0:
out_be32(&ifc->ifc_nand.nand_fbcr, 0);
iowrite32be(0, &ifc->ifc_nand.nand_fbcr);
set_addr(mtd, 0, page_addr, 0);
ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
@ -372,7 +375,7 @@ static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command,
/* READOOB reads only the OOB because no ECC is performed. */
case NAND_CMD_READOOB:
out_be32(&ifc->ifc_nand.nand_fbcr, mtd->oobsize - column);
iowrite32be(mtd->oobsize - column, &ifc->ifc_nand.nand_fbcr);
set_addr(mtd, column, page_addr, 1);
ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
@ -388,19 +391,19 @@ static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command,
if (command == NAND_CMD_PARAM)
timing = IFC_FIR_OP_RBCD;
out_be32(&ifc->ifc_nand.nand_fir0,
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) |
(timing << IFC_NAND_FIR0_OP2_SHIFT));
out_be32(&ifc->ifc_nand.nand_fcr0,
command << IFC_NAND_FCR0_CMD0_SHIFT);
out_be32(&ifc->ifc_nand.row3, column);
iowrite32be((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) |
(timing << IFC_NAND_FIR0_OP2_SHIFT),
&ifc->ifc_nand.nand_fir0);
iowrite32be(command << IFC_NAND_FCR0_CMD0_SHIFT,
&ifc->ifc_nand.nand_fcr0);
iowrite32be(column, &ifc->ifc_nand.row3);
/*
* although currently it's 8 bytes for READID, we always read
* the maximum 256 bytes(for PARAM)
*/
out_be32(&ifc->ifc_nand.nand_fbcr, 256);
iowrite32be(256, &ifc->ifc_nand.nand_fbcr);
ifc_nand_ctrl->read_bytes = 256;
set_addr(mtd, 0, 0, 0);
@ -415,16 +418,16 @@ static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command,
/* ERASE2 uses the block and page address from ERASE1 */
case NAND_CMD_ERASE2:
out_be32(&ifc->ifc_nand.nand_fir0,
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) |
(IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT));
iowrite32be((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) |
(IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT),
&ifc->ifc_nand.nand_fir0);
out_be32(&ifc->ifc_nand.nand_fcr0,
(NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) |
(NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT));
iowrite32be((NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) |
(NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT),
&ifc->ifc_nand.nand_fcr0);
out_be32(&ifc->ifc_nand.nand_fbcr, 0);
iowrite32be(0, &ifc->ifc_nand.nand_fbcr);
ifc_nand_ctrl->read_bytes = 0;
fsl_ifc_run_command(mtd);
return;
@ -440,26 +443,28 @@ static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command,
(NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) |
(NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD1_SHIFT);
out_be32(&ifc->ifc_nand.nand_fir0,
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
(IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP3_SHIFT) |
(IFC_FIR_OP_CW1 << IFC_NAND_FIR0_OP4_SHIFT));
iowrite32be(
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
(IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP3_SHIFT) |
(IFC_FIR_OP_CW1 << IFC_NAND_FIR0_OP4_SHIFT),
&ifc->ifc_nand.nand_fir0);
} else {
nand_fcr0 = ((NAND_CMD_PAGEPROG <<
IFC_NAND_FCR0_CMD1_SHIFT) |
(NAND_CMD_SEQIN <<
IFC_NAND_FCR0_CMD2_SHIFT));
out_be32(&ifc->ifc_nand.nand_fir0,
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) |
(IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) |
(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) |
(IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT));
out_be32(&ifc->ifc_nand.nand_fir1,
(IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT));
iowrite32be(
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) |
(IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) |
(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) |
(IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT),
&ifc->ifc_nand.nand_fir0);
iowrite32be(IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT,
&ifc->ifc_nand.nand_fir1);
if (column >= mtd->writesize)
nand_fcr0 |=
@ -474,7 +479,7 @@ static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command,
column -= mtd->writesize;
ifc_nand_ctrl->oob = 1;
}
out_be32(&ifc->ifc_nand.nand_fcr0, nand_fcr0);
iowrite32be(nand_fcr0, &ifc->ifc_nand.nand_fcr0);
set_addr(mtd, column, page_addr, ifc_nand_ctrl->oob);
return;
}
@ -482,10 +487,11 @@ static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command,
/* PAGEPROG reuses all of the setup from SEQIN and adds the length */
case NAND_CMD_PAGEPROG: {
if (ifc_nand_ctrl->oob) {
out_be32(&ifc->ifc_nand.nand_fbcr,
ifc_nand_ctrl->index - ifc_nand_ctrl->column);
iowrite32be(ifc_nand_ctrl->index -
ifc_nand_ctrl->column,
&ifc->ifc_nand.nand_fbcr);
} else {
out_be32(&ifc->ifc_nand.nand_fbcr, 0);
iowrite32be(0, &ifc->ifc_nand.nand_fbcr);
}
fsl_ifc_run_command(mtd);
@ -493,12 +499,12 @@ static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command,
}
case NAND_CMD_STATUS:
out_be32(&ifc->ifc_nand.nand_fir0,
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT));
out_be32(&ifc->ifc_nand.nand_fcr0,
NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT);
out_be32(&ifc->ifc_nand.nand_fbcr, 1);
iowrite32be((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT),
&ifc->ifc_nand.nand_fir0);
iowrite32be(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT,
&ifc->ifc_nand.nand_fcr0);
iowrite32be(1, &ifc->ifc_nand.nand_fbcr);
set_addr(mtd, 0, 0, 0);
ifc_nand_ctrl->read_bytes = 1;
@ -512,10 +518,10 @@ static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command,
return;
case NAND_CMD_RESET:
out_be32(&ifc->ifc_nand.nand_fir0,
IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT);
out_be32(&ifc->ifc_nand.nand_fcr0,
NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT);
iowrite32be(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT,
&ifc->ifc_nand.nand_fir0);
iowrite32be(NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT,
&ifc->ifc_nand.nand_fcr0);
fsl_ifc_run_command(mtd);
return;
@ -639,18 +645,18 @@ static int fsl_ifc_wait(struct mtd_info *mtd, struct nand_chip *chip)
u32 nand_fsr;
/* Use READ_STATUS command, but wait for the device to be ready */
out_be32(&ifc->ifc_nand.nand_fir0,
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT));
out_be32(&ifc->ifc_nand.nand_fcr0, NAND_CMD_STATUS <<
IFC_NAND_FCR0_CMD0_SHIFT);
out_be32(&ifc->ifc_nand.nand_fbcr, 1);
iowrite32be((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT),
&ifc->ifc_nand.nand_fir0);
iowrite32be(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT,
&ifc->ifc_nand.nand_fcr0);
iowrite32be(1, &ifc->ifc_nand.nand_fbcr);
set_addr(mtd, 0, 0, 0);
ifc_nand_ctrl->read_bytes = 1;
fsl_ifc_run_command(mtd);
nand_fsr = in_be32(&ifc->ifc_nand.nand_fsr);
nand_fsr = ioread32be(&ifc->ifc_nand.nand_fsr);
/*
* The chip always seems to report that it is
@ -744,34 +750,34 @@ static void fsl_ifc_sram_init(struct fsl_ifc_mtd *priv)
uint32_t cs = priv->bank;
/* Save CSOR and CSOR_ext */
csor = in_be32(&ifc->csor_cs[cs].csor);
csor_ext = in_be32(&ifc->csor_cs[cs].csor_ext);
csor = ioread32be(&ifc->csor_cs[cs].csor);
csor_ext = ioread32be(&ifc->csor_cs[cs].csor_ext);
/* chage PageSize 8K and SpareSize 1K*/
csor_8k = (csor & ~(CSOR_NAND_PGS_MASK)) | 0x0018C000;
out_be32(&ifc->csor_cs[cs].csor, csor_8k);
out_be32(&ifc->csor_cs[cs].csor_ext, 0x0000400);
iowrite32be(csor_8k, &ifc->csor_cs[cs].csor);
iowrite32be(0x0000400, &ifc->csor_cs[cs].csor_ext);
/* READID */
out_be32(&ifc->ifc_nand.nand_fir0,
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) |
(IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT));
out_be32(&ifc->ifc_nand.nand_fcr0,
NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT);
out_be32(&ifc->ifc_nand.row3, 0x0);
iowrite32be((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) |
(IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT),
&ifc->ifc_nand.nand_fir0);
iowrite32be(NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT,
&ifc->ifc_nand.nand_fcr0);
iowrite32be(0x0, &ifc->ifc_nand.row3);
out_be32(&ifc->ifc_nand.nand_fbcr, 0x0);
iowrite32be(0x0, &ifc->ifc_nand.nand_fbcr);
/* Program ROW0/COL0 */
out_be32(&ifc->ifc_nand.row0, 0x0);
out_be32(&ifc->ifc_nand.col0, 0x0);
iowrite32be(0x0, &ifc->ifc_nand.row0);
iowrite32be(0x0, &ifc->ifc_nand.col0);
/* set the chip select for NAND Transaction */
out_be32(&ifc->ifc_nand.nand_csel, cs << IFC_NAND_CSEL_SHIFT);
iowrite32be(cs << IFC_NAND_CSEL_SHIFT, &ifc->ifc_nand.nand_csel);
/* start read seq */
out_be32(&ifc->ifc_nand.nandseq_strt, IFC_NAND_SEQ_STRT_FIR_STRT);
iowrite32be(IFC_NAND_SEQ_STRT_FIR_STRT, &ifc->ifc_nand.nandseq_strt);
/* wait for command complete flag or timeout */
wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat,
@ -781,8 +787,8 @@ static void fsl_ifc_sram_init(struct fsl_ifc_mtd *priv)
printk(KERN_ERR "fsl-ifc: Failed to Initialise SRAM\n");
/* Restore CSOR and CSOR_ext */
out_be32(&ifc->csor_cs[cs].csor, csor);
out_be32(&ifc->csor_cs[cs].csor_ext, csor_ext);
iowrite32be(csor, &ifc->csor_cs[cs].csor);
iowrite32be(csor_ext, &ifc->csor_cs[cs].csor_ext);
}
static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv)
@ -799,7 +805,7 @@ static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv)
/* fill in nand_chip structure */
/* set up function call table */
if ((in_be32(&ifc->cspr_cs[priv->bank].cspr)) & CSPR_PORT_SIZE_16)
if ((ioread32be(&ifc->cspr_cs[priv->bank].cspr)) & CSPR_PORT_SIZE_16)
chip->read_byte = fsl_ifc_read_byte16;
else
chip->read_byte = fsl_ifc_read_byte;
@ -813,13 +819,13 @@ static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv)
chip->bbt_td = &bbt_main_descr;
chip->bbt_md = &bbt_mirror_descr;
out_be32(&ifc->ifc_nand.ncfgr, 0x0);
iowrite32be(0x0, &ifc->ifc_nand.ncfgr);
/* set up nand options */
chip->bbt_options = NAND_BBT_USE_FLASH;
if (in_be32(&ifc->cspr_cs[priv->bank].cspr) & CSPR_PORT_SIZE_16) {
if (ioread32be(&ifc->cspr_cs[priv->bank].cspr) & CSPR_PORT_SIZE_16) {
chip->read_byte = fsl_ifc_read_byte16;
chip->options |= NAND_BUSWIDTH_16;
} else {
@ -832,7 +838,7 @@ static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv)
chip->ecc.read_page = fsl_ifc_read_page;
chip->ecc.write_page = fsl_ifc_write_page;
csor = in_be32(&ifc->csor_cs[priv->bank].csor);
csor = ioread32be(&ifc->csor_cs[priv->bank].csor);
/* Hardware generates ECC per 512 Bytes */
chip->ecc.size = 512;
@ -884,7 +890,7 @@ static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv)
chip->ecc.mode = NAND_ECC_SOFT;
}
ver = in_be32(&ifc->ifc_rev);
ver = ioread32be(&ifc->ifc_rev);
if (ver == FSL_IFC_V1_1_0)
fsl_ifc_sram_init(priv);
@ -910,7 +916,7 @@ static int fsl_ifc_chip_remove(struct fsl_ifc_mtd *priv)
static int match_bank(struct fsl_ifc_regs __iomem *ifc, int bank,
phys_addr_t addr)
{
u32 cspr = in_be32(&ifc->cspr_cs[bank].cspr);
u32 cspr = ioread32be(&ifc->cspr_cs[bank].cspr);
if (!(cspr & CSPR_V))
return 0;
@ -997,17 +1003,16 @@ static int fsl_ifc_nand_probe(struct platform_device *dev)
dev_set_drvdata(priv->dev, priv);
out_be32(&ifc->ifc_nand.nand_evter_en,
IFC_NAND_EVTER_EN_OPC_EN |
IFC_NAND_EVTER_EN_FTOER_EN |
IFC_NAND_EVTER_EN_WPER_EN);
iowrite32be(IFC_NAND_EVTER_EN_OPC_EN |
IFC_NAND_EVTER_EN_FTOER_EN |
IFC_NAND_EVTER_EN_WPER_EN,
&ifc->ifc_nand.nand_evter_en);
/* enable NAND Machine Interrupts */
out_be32(&ifc->ifc_nand.nand_evter_intr_en,
IFC_NAND_EVTER_INTR_OPCIR_EN |
IFC_NAND_EVTER_INTR_FTOERIR_EN |
IFC_NAND_EVTER_INTR_WPERIR_EN);
iowrite32be(IFC_NAND_EVTER_INTR_OPCIR_EN |
IFC_NAND_EVTER_INTR_FTOERIR_EN |
IFC_NAND_EVTER_INTR_WPERIR_EN,
&ifc->ifc_nand.nand_evter_intr_en);
priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", (unsigned)res.start);
if (!priv->mtd.name) {
ret = -ENOMEM;

View File

@ -61,6 +61,16 @@
& BM_BCH_FLASH0LAYOUT0_ECC0) \
)
#define MX6Q_BP_BCH_FLASH0LAYOUT0_GF_13_14 10
#define MX6Q_BM_BCH_FLASH0LAYOUT0_GF_13_14 \
(0x1 << MX6Q_BP_BCH_FLASH0LAYOUT0_GF_13_14)
#define BF_BCH_FLASH0LAYOUT0_GF(v, x) \
((GPMI_IS_MX6Q(x) && ((v) == 14)) \
? (((1) << MX6Q_BP_BCH_FLASH0LAYOUT0_GF_13_14) \
& MX6Q_BM_BCH_FLASH0LAYOUT0_GF_13_14) \
: 0 \
)
#define BP_BCH_FLASH0LAYOUT0_DATA0_SIZE 0
#define BM_BCH_FLASH0LAYOUT0_DATA0_SIZE \
(0xfff << BP_BCH_FLASH0LAYOUT0_DATA0_SIZE)
@ -93,6 +103,16 @@
& BM_BCH_FLASH0LAYOUT1_ECCN) \
)
#define MX6Q_BP_BCH_FLASH0LAYOUT1_GF_13_14 10
#define MX6Q_BM_BCH_FLASH0LAYOUT1_GF_13_14 \
(0x1 << MX6Q_BP_BCH_FLASH0LAYOUT1_GF_13_14)
#define BF_BCH_FLASH0LAYOUT1_GF(v, x) \
((GPMI_IS_MX6Q(x) && ((v) == 14)) \
? (((1) << MX6Q_BP_BCH_FLASH0LAYOUT1_GF_13_14) \
& MX6Q_BM_BCH_FLASH0LAYOUT1_GF_13_14) \
: 0 \
)
#define BP_BCH_FLASH0LAYOUT1_DATAN_SIZE 0
#define BM_BCH_FLASH0LAYOUT1_DATAN_SIZE \
(0xfff << BP_BCH_FLASH0LAYOUT1_DATAN_SIZE)
@ -103,4 +123,6 @@
? (((v) >> 2) & MX6Q_BM_BCH_FLASH0LAYOUT1_DATAN_SIZE) \
: ((v) & BM_BCH_FLASH0LAYOUT1_DATAN_SIZE) \
)
#define HW_BCH_VERSION 0x00000160
#endif

View File

@ -208,6 +208,11 @@ void gpmi_dump_info(struct gpmi_nand_data *this)
}
/* start to print out the BCH info */
pr_err("Show BCH registers :\n");
for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
reg = readl(r->bch_regs + i * 0x10);
pr_err("offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
}
pr_err("BCH Geometry :\n");
pr_err("GF length : %u\n", geo->gf_len);
pr_err("ECC Strength : %u\n", geo->ecc_strength);
@ -232,6 +237,7 @@ int bch_set_geometry(struct gpmi_nand_data *this)
unsigned int metadata_size;
unsigned int ecc_strength;
unsigned int page_size;
unsigned int gf_len;
int ret;
if (common_nfc_set_geometry(this))
@ -242,6 +248,7 @@ int bch_set_geometry(struct gpmi_nand_data *this)
metadata_size = bch_geo->metadata_size;
ecc_strength = bch_geo->ecc_strength >> 1;
page_size = bch_geo->page_size;
gf_len = bch_geo->gf_len;
ret = gpmi_enable_clk(this);
if (ret)
@ -263,11 +270,13 @@ int bch_set_geometry(struct gpmi_nand_data *this)
writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count)
| BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size)
| BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this)
| BF_BCH_FLASH0LAYOUT0_GF(gf_len, this)
| BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this),
r->bch_regs + HW_BCH_FLASH0LAYOUT0);
writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size)
| BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this)
| BF_BCH_FLASH0LAYOUT1_GF(gf_len, this)
| BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this),
r->bch_regs + HW_BCH_FLASH0LAYOUT1);

View File

@ -94,6 +94,25 @@ static inline int get_ecc_strength(struct gpmi_nand_data *this)
return round_down(ecc_strength, 2);
}
static inline bool gpmi_check_ecc(struct gpmi_nand_data *this)
{
struct bch_geometry *geo = &this->bch_geometry;
/* Do the sanity check. */
if (GPMI_IS_MX23(this) || GPMI_IS_MX28(this)) {
/* The mx23/mx28 only support the GF13. */
if (geo->gf_len == 14)
return false;
if (geo->ecc_strength > MXS_ECC_STRENGTH_MAX)
return false;
} else if (GPMI_IS_MX6Q(this)) {
if (geo->ecc_strength > MX6_ECC_STRENGTH_MAX)
return false;
}
return true;
}
int common_nfc_set_geometry(struct gpmi_nand_data *this)
{
struct bch_geometry *geo = &this->bch_geometry;
@ -112,17 +131,24 @@ int common_nfc_set_geometry(struct gpmi_nand_data *this)
/* The default for the length of Galois Field. */
geo->gf_len = 13;
/* The default for chunk size. There is no oobsize greater then 512. */
/* The default for chunk size. */
geo->ecc_chunk_size = 512;
while (geo->ecc_chunk_size < mtd->oobsize)
while (geo->ecc_chunk_size < mtd->oobsize) {
geo->ecc_chunk_size *= 2; /* keep C >= O */
geo->gf_len = 14;
}
geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
/* We use the same ECC strength for all chunks. */
geo->ecc_strength = get_ecc_strength(this);
if (!geo->ecc_strength) {
pr_err("wrong ECC strength.\n");
if (!gpmi_check_ecc(this)) {
dev_err(this->dev,
"We can not support this nand chip."
" Its required ecc strength(%d) is beyond our"
" capability(%d).\n", geo->ecc_strength,
(GPMI_IS_MX6Q(this) ? MX6_ECC_STRENGTH_MAX
: MXS_ECC_STRENGTH_MAX));
return -EINVAL;
}
@ -920,8 +946,7 @@ static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
dma_addr_t auxiliary_phys;
unsigned int i;
unsigned char *status;
unsigned int failed;
unsigned int corrected;
unsigned int max_bitflips = 0;
int ret;
pr_debug("page number is : %d\n", page);
@ -945,35 +970,25 @@ static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
payload_virt, payload_phys);
if (ret) {
pr_err("Error in ECC-based read: %d\n", ret);
goto exit_nfc;
return ret;
}
/* handle the block mark swapping */
block_mark_swapping(this, payload_virt, auxiliary_virt);
/* Loop over status bytes, accumulating ECC status. */
failed = 0;
corrected = 0;
status = auxiliary_virt + nfc_geo->auxiliary_status_offset;
status = auxiliary_virt + nfc_geo->auxiliary_status_offset;
for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) {
if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
continue;
if (*status == STATUS_UNCORRECTABLE) {
failed++;
mtd->ecc_stats.failed++;
continue;
}
corrected += *status;
}
/*
* Propagate ECC status to the owning MTD only when failed or
* corrected times nearly reaches our ECC correction threshold.
*/
if (failed || corrected >= (nfc_geo->ecc_strength - 1)) {
mtd->ecc_stats.failed += failed;
mtd->ecc_stats.corrected += corrected;
mtd->ecc_stats.corrected += *status;
max_bitflips = max_t(unsigned int, max_bitflips, *status);
}
if (oob_required) {
@ -995,8 +1010,8 @@ static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
this->payload_virt, this->payload_phys,
nfc_geo->payload_size,
payload_virt, payload_phys);
exit_nfc:
return ret;
return max_bitflips;
}
static int gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
@ -1668,8 +1683,8 @@ exit_nfc_init:
release_resources(this);
exit_acquire_resources:
platform_set_drvdata(pdev, NULL);
kfree(this);
dev_err(this->dev, "driver registration failed: %d\n", ret);
kfree(this);
return ret;
}

View File

@ -284,6 +284,10 @@ extern int gpmi_read_page(struct gpmi_nand_data *,
#define STATUS_ERASED 0xff
#define STATUS_UNCORRECTABLE 0xfe
/* BCH's bit correction capability. */
#define MXS_ECC_STRENGTH_MAX 20 /* mx23 and mx28 */
#define MX6_ECC_STRENGTH_MAX 40
/* Use the platform_id to distinguish different Archs. */
#define IS_MX23 0x0
#define IS_MX28 0x1

View File

@ -530,12 +530,23 @@ static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
static void send_read_id_v3(struct mxc_nand_host *host)
{
struct nand_chip *this = &host->nand;
/* Read ID into main buffer */
writel(NFC_ID, NFC_V3_LAUNCH);
wait_op_done(host, true);
memcpy32_fromio(host->data_buf, host->main_area0, 16);
if (this->options & NAND_BUSWIDTH_16) {
/* compress the ID info */
host->data_buf[1] = host->data_buf[2];
host->data_buf[2] = host->data_buf[4];
host->data_buf[3] = host->data_buf[6];
host->data_buf[4] = host->data_buf[8];
host->data_buf[5] = host->data_buf[10];
}
}
/* Request the NANDFC to perform a read of the NAND device ID. */

View File

@ -825,13 +825,8 @@ static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
{
unsigned long timeo = jiffies;
int status, state = chip->state;
if (state == FL_ERASING)
timeo += (HZ * 400) / 1000;
else
timeo += (HZ * 20) / 1000;
unsigned long timeo = (state == FL_ERASING ? 400 : 20);
led_trigger_event(nand_led_trigger, LED_FULL);
@ -849,6 +844,7 @@ static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
if (in_interrupt() || oops_in_progress)
panic_nand_wait(mtd, chip, timeo);
else {
timeo = jiffies + msecs_to_jiffies(timeo);
while (time_before(jiffies, timeo)) {
if (chip->dev_ready) {
if (chip->dev_ready(mtd))

View File

@ -55,8 +55,7 @@ struct mtd_info;
#define MODULE_AUTHOR(x) /* x */
#define MODULE_DESCRIPTION(x) /* x */
#define printk printf
#define KERN_ERR ""
#define pr_err printf
#endif
/*
@ -507,7 +506,7 @@ int __nand_correct_data(unsigned char *buf,
if ((bitsperbyte[b0] + bitsperbyte[b1] + bitsperbyte[b2]) == 1)
return 1; /* error in ECC data; no action needed */
printk(KERN_ERR "uncorrectable error : ");
pr_err("%s: uncorrectable ECC error", __func__);
return -1;
}
EXPORT_SYMBOL(__nand_correct_data);

View File

@ -1468,12 +1468,12 @@ int do_read_error(struct nandsim *ns, int num)
void do_bit_flips(struct nandsim *ns, int num)
{
if (bitflips && random32() < (1 << 22)) {
if (bitflips && prandom_u32() < (1 << 22)) {
int flips = 1;
if (bitflips > 1)
flips = (random32() % (int) bitflips) + 1;
flips = (prandom_u32() % (int) bitflips) + 1;
while (flips--) {
int pos = random32() % (num * 8);
int pos = prandom_u32() % (num * 8);
ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
NS_WARN("read_page: flipping bit %d in page %d "
"reading from %d ecc: corrected=%u failed=%u\n",

View File

@ -22,9 +22,12 @@
#include <linux/omap-dma.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/of_device.h>
#ifdef CONFIG_MTD_NAND_OMAP_BCH
#include <linux/bch.h>
#include <linux/platform_data/elm.h>
#endif
#include <linux/platform_data/mtd-nand-omap2.h>
@ -117,6 +120,33 @@
#define OMAP24XX_DMA_GPMC 4
#define BCH8_MAX_ERROR 8 /* upto 8 bit correctable */
#define BCH4_MAX_ERROR 4 /* upto 4 bit correctable */
#define SECTOR_BYTES 512
/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
#define BCH4_BIT_PAD 4
#define BCH8_ECC_MAX ((SECTOR_BYTES + BCH8_ECC_OOB_BYTES) * 8)
#define BCH4_ECC_MAX ((SECTOR_BYTES + BCH4_ECC_OOB_BYTES) * 8)
/* GPMC ecc engine settings for read */
#define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
#define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */
#define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */
#define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */
#define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */
/* GPMC ecc engine settings for write */
#define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
#define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */
#define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */
#ifdef CONFIG_MTD_NAND_OMAP_BCH
static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
0xac, 0x6b, 0xff, 0x99, 0x7b};
static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
#endif
/* oob info generated runtime depending on ecc algorithm and layout selected */
static struct nand_ecclayout omap_oobinfo;
/* Define some generic bad / good block scan pattern which are used
@ -156,6 +186,9 @@ struct omap_nand_info {
#ifdef CONFIG_MTD_NAND_OMAP_BCH
struct bch_control *bch;
struct nand_ecclayout ecclayout;
bool is_elm_used;
struct device *elm_dev;
struct device_node *of_node;
#endif
};
@ -1031,6 +1064,13 @@ static int omap_dev_ready(struct mtd_info *mtd)
* omap3_enable_hwecc_bch - Program OMAP3 GPMC to perform BCH ECC correction
* @mtd: MTD device structure
* @mode: Read/Write mode
*
* When using BCH, sector size is hardcoded to 512 bytes.
* Using wrapping mode 6 both for reading and writing if ELM module not uses
* for error correction.
* On writing,
* eccsize0 = 0 (no additional protected byte in spare area)
* eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
*/
static void omap3_enable_hwecc_bch(struct mtd_info *mtd, int mode)
{
@ -1039,32 +1079,57 @@ static void omap3_enable_hwecc_bch(struct mtd_info *mtd, int mode)
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
mtd);
struct nand_chip *chip = mtd->priv;
u32 val;
u32 val, wr_mode;
unsigned int ecc_size1, ecc_size0;
/* Using wrapping mode 6 for writing */
wr_mode = BCH_WRAPMODE_6;
nerrors = (info->nand.ecc.bytes == 13) ? 8 : 4;
dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
nsectors = 1;
/*
* Program GPMC to perform correction on one 512-byte sector at a time.
* Using 4 sectors at a time (i.e. ecc.size = 2048) is also possible and
* gives a slight (5%) performance gain (but requires additional code).
* ECC engine enabled for valid ecc_size0 nibbles
* and disabled for ecc_size1 nibbles.
*/
ecc_size0 = BCH_ECC_SIZE0;
ecc_size1 = BCH_ECC_SIZE1;
/* Perform ecc calculation on 512-byte sector */
nsectors = 1;
/* Update number of error correction */
nerrors = info->nand.ecc.strength;
/* Multi sector reading/writing for NAND flash with page size < 4096 */
if (info->is_elm_used && (mtd->writesize <= 4096)) {
if (mode == NAND_ECC_READ) {
/* Using wrapping mode 1 for reading */
wr_mode = BCH_WRAPMODE_1;
/*
* ECC engine enabled for ecc_size0 nibbles
* and disabled for ecc_size1 nibbles.
*/
ecc_size0 = (nerrors == 8) ?
BCH8R_ECC_SIZE0 : BCH4R_ECC_SIZE0;
ecc_size1 = (nerrors == 8) ?
BCH8R_ECC_SIZE1 : BCH4R_ECC_SIZE1;
}
/* Perform ecc calculation for one page (< 4096) */
nsectors = info->nand.ecc.steps;
}
writel(ECC1, info->reg.gpmc_ecc_control);
/*
* When using BCH, sector size is hardcoded to 512 bytes.
* Here we are using wrapping mode 6 both for reading and writing, with:
* size0 = 0 (no additional protected byte in spare area)
* size1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
*/
val = (32 << ECCSIZE1_SHIFT) | (0 << ECCSIZE0_SHIFT);
/* Configure ecc size for BCH */
val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
writel(val, info->reg.gpmc_ecc_size_config);
dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
/* BCH configuration */
val = ((1 << 16) | /* enable BCH */
(((nerrors == 8) ? 1 : 0) << 12) | /* 8 or 4 bits */
(0x06 << 8) | /* wrap mode = 6 */
(wr_mode << 8) | /* wrap mode */
(dev_width << 7) | /* bus width */
(((nsectors-1) & 0x7) << 4) | /* number of sectors */
(info->gpmc_cs << 1) | /* ECC CS */
@ -1072,7 +1137,7 @@ static void omap3_enable_hwecc_bch(struct mtd_info *mtd, int mode)
writel(val, info->reg.gpmc_ecc_config);
/* clear ecc and enable bits */
/* Clear ecc and enable bits */
writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
}
@ -1161,6 +1226,298 @@ static int omap3_calculate_ecc_bch8(struct mtd_info *mtd, const u_char *dat,
return 0;
}
/**
* omap3_calculate_ecc_bch - Generate bytes of ECC bytes
* @mtd: MTD device structure
* @dat: The pointer to data on which ecc is computed
* @ecc_code: The ecc_code buffer
*
* Support calculating of BCH4/8 ecc vectors for the page
*/
static int omap3_calculate_ecc_bch(struct mtd_info *mtd, const u_char *dat,
u_char *ecc_code)
{
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
mtd);
unsigned long nsectors, bch_val1, bch_val2, bch_val3, bch_val4;
int i, eccbchtsel;
nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
/*
* find BCH scheme used
* 0 -> BCH4
* 1 -> BCH8
*/
eccbchtsel = ((readl(info->reg.gpmc_ecc_config) >> 12) & 0x3);
for (i = 0; i < nsectors; i++) {
/* Read hw-computed remainder */
bch_val1 = readl(info->reg.gpmc_bch_result0[i]);
bch_val2 = readl(info->reg.gpmc_bch_result1[i]);
if (eccbchtsel) {
bch_val3 = readl(info->reg.gpmc_bch_result2[i]);
bch_val4 = readl(info->reg.gpmc_bch_result3[i]);
}
if (eccbchtsel) {
/* BCH8 ecc scheme */
*ecc_code++ = (bch_val4 & 0xFF);
*ecc_code++ = ((bch_val3 >> 24) & 0xFF);
*ecc_code++ = ((bch_val3 >> 16) & 0xFF);
*ecc_code++ = ((bch_val3 >> 8) & 0xFF);
*ecc_code++ = (bch_val3 & 0xFF);
*ecc_code++ = ((bch_val2 >> 24) & 0xFF);
*ecc_code++ = ((bch_val2 >> 16) & 0xFF);
*ecc_code++ = ((bch_val2 >> 8) & 0xFF);
*ecc_code++ = (bch_val2 & 0xFF);
*ecc_code++ = ((bch_val1 >> 24) & 0xFF);
*ecc_code++ = ((bch_val1 >> 16) & 0xFF);
*ecc_code++ = ((bch_val1 >> 8) & 0xFF);
*ecc_code++ = (bch_val1 & 0xFF);
/*
* Setting 14th byte to zero to handle
* erased page & maintain compatibility
* with RBL
*/
*ecc_code++ = 0x0;
} else {
/* BCH4 ecc scheme */
*ecc_code++ = ((bch_val2 >> 12) & 0xFF);
*ecc_code++ = ((bch_val2 >> 4) & 0xFF);
*ecc_code++ = ((bch_val2 & 0xF) << 4) |
((bch_val1 >> 28) & 0xF);
*ecc_code++ = ((bch_val1 >> 20) & 0xFF);
*ecc_code++ = ((bch_val1 >> 12) & 0xFF);
*ecc_code++ = ((bch_val1 >> 4) & 0xFF);
*ecc_code++ = ((bch_val1 & 0xF) << 4);
/*
* Setting 8th byte to zero to handle
* erased page
*/
*ecc_code++ = 0x0;
}
}
return 0;
}
/**
* erased_sector_bitflips - count bit flips
* @data: data sector buffer
* @oob: oob buffer
* @info: omap_nand_info
*
* Check the bit flips in erased page falls below correctable level.
* If falls below, report the page as erased with correctable bit
* flip, else report as uncorrectable page.
*/
static int erased_sector_bitflips(u_char *data, u_char *oob,
struct omap_nand_info *info)
{
int flip_bits = 0, i;
for (i = 0; i < info->nand.ecc.size; i++) {
flip_bits += hweight8(~data[i]);
if (flip_bits > info->nand.ecc.strength)
return 0;
}
for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
flip_bits += hweight8(~oob[i]);
if (flip_bits > info->nand.ecc.strength)
return 0;
}
/*
* Bit flips falls in correctable level.
* Fill data area with 0xFF
*/
if (flip_bits) {
memset(data, 0xFF, info->nand.ecc.size);
memset(oob, 0xFF, info->nand.ecc.bytes);
}
return flip_bits;
}
/**
* omap_elm_correct_data - corrects page data area in case error reported
* @mtd: MTD device structure
* @data: page data
* @read_ecc: ecc read from nand flash
* @calc_ecc: ecc read from HW ECC registers
*
* Calculated ecc vector reported as zero in case of non-error pages.
* In case of error/erased pages non-zero error vector is reported.
* In case of non-zero ecc vector, check read_ecc at fixed offset
* (x = 13/7 in case of BCH8/4 == 0) to find page programmed or not.
* To handle bit flips in this data, count the number of 0's in
* read_ecc[x] and check if it greater than 4. If it is less, it is
* programmed page, else erased page.
*
* 1. If page is erased, check with standard ecc vector (ecc vector
* for erased page to find any bit flip). If check fails, bit flip
* is present in erased page. Count the bit flips in erased page and
* if it falls under correctable level, report page with 0xFF and
* update the correctable bit information.
* 2. If error is reported on programmed page, update elm error
* vector and correct the page with ELM error correction routine.
*
*/
static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
u_char *read_ecc, u_char *calc_ecc)
{
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
mtd);
int eccsteps = info->nand.ecc.steps;
int i , j, stat = 0;
int eccsize, eccflag, ecc_vector_size;
struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
u_char *ecc_vec = calc_ecc;
u_char *spare_ecc = read_ecc;
u_char *erased_ecc_vec;
enum bch_ecc type;
bool is_error_reported = false;
/* Initialize elm error vector to zero */
memset(err_vec, 0, sizeof(err_vec));
if (info->nand.ecc.strength == BCH8_MAX_ERROR) {
type = BCH8_ECC;
erased_ecc_vec = bch8_vector;
} else {
type = BCH4_ECC;
erased_ecc_vec = bch4_vector;
}
ecc_vector_size = info->nand.ecc.bytes;
/*
* Remove extra byte padding for BCH8 RBL
* compatibility and erased page handling
*/
eccsize = ecc_vector_size - 1;
for (i = 0; i < eccsteps ; i++) {
eccflag = 0; /* initialize eccflag */
/*
* Check any error reported,
* In case of error, non zero ecc reported.
*/
for (j = 0; (j < eccsize); j++) {
if (calc_ecc[j] != 0) {
eccflag = 1; /* non zero ecc, error present */
break;
}
}
if (eccflag == 1) {
/*
* Set threshold to minimum of 4, half of ecc.strength/2
* to allow max bit flip in byte to 4
*/
unsigned int threshold = min_t(unsigned int, 4,
info->nand.ecc.strength / 2);
/*
* Check data area is programmed by counting
* number of 0's at fixed offset in spare area.
* Checking count of 0's against threshold.
* In case programmed page expects at least threshold
* zeros in byte.
* If zeros are less than threshold for programmed page/
* zeros are more than threshold erased page, either
* case page reported as uncorrectable.
*/
if (hweight8(~read_ecc[eccsize]) >= threshold) {
/*
* Update elm error vector as
* data area is programmed
*/
err_vec[i].error_reported = true;
is_error_reported = true;
} else {
/* Error reported in erased page */
int bitflip_count;
u_char *buf = &data[info->nand.ecc.size * i];
if (memcmp(calc_ecc, erased_ecc_vec, eccsize)) {
bitflip_count = erased_sector_bitflips(
buf, read_ecc, info);
if (bitflip_count)
stat += bitflip_count;
else
return -EINVAL;
}
}
}
/* Update the ecc vector */
calc_ecc += ecc_vector_size;
read_ecc += ecc_vector_size;
}
/* Check if any error reported */
if (!is_error_reported)
return 0;
/* Decode BCH error using ELM module */
elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
for (i = 0; i < eccsteps; i++) {
if (err_vec[i].error_reported) {
for (j = 0; j < err_vec[i].error_count; j++) {
u32 bit_pos, byte_pos, error_max, pos;
if (type == BCH8_ECC)
error_max = BCH8_ECC_MAX;
else
error_max = BCH4_ECC_MAX;
if (info->nand.ecc.strength == BCH8_MAX_ERROR)
pos = err_vec[i].error_loc[j];
else
/* Add 4 to take care 4 bit padding */
pos = err_vec[i].error_loc[j] +
BCH4_BIT_PAD;
/* Calculate bit position of error */
bit_pos = pos % 8;
/* Calculate byte position of error */
byte_pos = (error_max - pos - 1) / 8;
if (pos < error_max) {
if (byte_pos < 512)
data[byte_pos] ^= 1 << bit_pos;
else
spare_ecc[byte_pos - 512] ^=
1 << bit_pos;
}
/* else, not interested to correct ecc */
}
}
/* Update number of correctable errors */
stat += err_vec[i].error_count;
/* Update page data with sector size */
data += info->nand.ecc.size;
spare_ecc += ecc_vector_size;
}
for (i = 0; i < eccsteps; i++)
/* Return error if uncorrectable error present */
if (err_vec[i].error_uncorrectable)
return -EINVAL;
return stat;
}
/**
* omap3_correct_data_bch - Decode received data and correct errors
* @mtd: MTD device structure
@ -1193,6 +1550,92 @@ static int omap3_correct_data_bch(struct mtd_info *mtd, u_char *data,
return count;
}
/**
* omap_write_page_bch - BCH ecc based write page function for entire page
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: data buffer
* @oob_required: must write chip->oob_poi to OOB
*
* Custom write page method evolved to support multi sector writing in one shot
*/
static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, int oob_required)
{
int i;
uint8_t *ecc_calc = chip->buffers->ecccalc;
uint32_t *eccpos = chip->ecc.layout->eccpos;
/* Enable GPMC ecc engine */
chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
/* Write data */
chip->write_buf(mtd, buf, mtd->writesize);
/* Update ecc vector from GPMC result registers */
chip->ecc.calculate(mtd, buf, &ecc_calc[0]);
for (i = 0; i < chip->ecc.total; i++)
chip->oob_poi[eccpos[i]] = ecc_calc[i];
/* Write ecc vector to OOB area */
chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
return 0;
}
/**
* omap_read_page_bch - BCH ecc based page read function for entire page
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller requires OOB data read to chip->oob_poi
* @page: page number to read
*
* For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
* used for error correction.
* Custom method evolved to support ELM error correction & multi sector
* reading. On reading page data area is read along with OOB data with
* ecc engine enabled. ecc vector updated after read of OOB data.
* For non error pages ecc vector reported as zero.
*/
static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
uint8_t *ecc_calc = chip->buffers->ecccalc;
uint8_t *ecc_code = chip->buffers->ecccode;
uint32_t *eccpos = chip->ecc.layout->eccpos;
uint8_t *oob = &chip->oob_poi[eccpos[0]];
uint32_t oob_pos = mtd->writesize + chip->ecc.layout->eccpos[0];
int stat;
unsigned int max_bitflips = 0;
/* Enable GPMC ecc engine */
chip->ecc.hwctl(mtd, NAND_ECC_READ);
/* Read data */
chip->read_buf(mtd, buf, mtd->writesize);
/* Read oob bytes */
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
chip->read_buf(mtd, oob, chip->ecc.total);
/* Calculate ecc bytes */
chip->ecc.calculate(mtd, buf, ecc_calc);
memcpy(ecc_code, &chip->oob_poi[eccpos[0]], chip->ecc.total);
stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc);
if (stat < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += stat;
max_bitflips = max_t(unsigned int, max_bitflips, stat);
}
return max_bitflips;
}
/**
* omap3_free_bch - Release BCH ecc resources
* @mtd: MTD device structure
@ -1218,43 +1661,86 @@ static int omap3_init_bch(struct mtd_info *mtd, int ecc_opt)
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
mtd);
#ifdef CONFIG_MTD_NAND_OMAP_BCH8
const int hw_errors = 8;
const int hw_errors = BCH8_MAX_ERROR;
#else
const int hw_errors = 4;
const int hw_errors = BCH4_MAX_ERROR;
#endif
enum bch_ecc bch_type;
const __be32 *parp;
int lenp;
struct device_node *elm_node;
info->bch = NULL;
max_errors = (ecc_opt == OMAP_ECC_BCH8_CODE_HW) ? 8 : 4;
max_errors = (ecc_opt == OMAP_ECC_BCH8_CODE_HW) ?
BCH8_MAX_ERROR : BCH4_MAX_ERROR;
if (max_errors != hw_errors) {
pr_err("cannot configure %d-bit BCH ecc, only %d-bit supported",
max_errors, hw_errors);
goto fail;
}
/* software bch library is only used to detect and locate errors */
info->bch = init_bch(13, max_errors, 0x201b /* hw polynomial */);
if (!info->bch)
goto fail;
info->nand.ecc.size = 512;
info->nand.ecc.hwctl = omap3_enable_hwecc_bch;
info->nand.ecc.mode = NAND_ECC_HW;
info->nand.ecc.strength = max_errors;
info->nand.ecc.size = 512;
info->nand.ecc.hwctl = omap3_enable_hwecc_bch;
info->nand.ecc.correct = omap3_correct_data_bch;
info->nand.ecc.mode = NAND_ECC_HW;
if (hw_errors == BCH8_MAX_ERROR)
bch_type = BCH8_ECC;
else
bch_type = BCH4_ECC;
/*
* The number of corrected errors in an ecc block that will trigger
* block scrubbing defaults to the ecc strength (4 or 8).
* Set mtd->bitflip_threshold here to define a custom threshold.
*/
if (max_errors == 8) {
info->nand.ecc.strength = 8;
info->nand.ecc.bytes = 13;
info->nand.ecc.calculate = omap3_calculate_ecc_bch8;
/* Detect availability of ELM module */
parp = of_get_property(info->of_node, "elm_id", &lenp);
if ((parp == NULL) && (lenp != (sizeof(void *) * 2))) {
pr_err("Missing elm_id property, fall back to Software BCH\n");
info->is_elm_used = false;
} else {
info->nand.ecc.strength = 4;
info->nand.ecc.bytes = 7;
info->nand.ecc.calculate = omap3_calculate_ecc_bch4;
struct platform_device *pdev;
elm_node = of_find_node_by_phandle(be32_to_cpup(parp));
pdev = of_find_device_by_node(elm_node);
info->elm_dev = &pdev->dev;
elm_config(info->elm_dev, bch_type);
info->is_elm_used = true;
}
if (info->is_elm_used && (mtd->writesize <= 4096)) {
if (hw_errors == BCH8_MAX_ERROR)
info->nand.ecc.bytes = BCH8_SIZE;
else
info->nand.ecc.bytes = BCH4_SIZE;
info->nand.ecc.correct = omap_elm_correct_data;
info->nand.ecc.calculate = omap3_calculate_ecc_bch;
info->nand.ecc.read_page = omap_read_page_bch;
info->nand.ecc.write_page = omap_write_page_bch;
} else {
/*
* software bch library is only used to detect and
* locate errors
*/
info->bch = init_bch(13, max_errors,
0x201b /* hw polynomial */);
if (!info->bch)
goto fail;
info->nand.ecc.correct = omap3_correct_data_bch;
/*
* The number of corrected errors in an ecc block that will
* trigger block scrubbing defaults to the ecc strength (4 or 8)
* Set mtd->bitflip_threshold here to define a custom threshold.
*/
if (max_errors == 8) {
info->nand.ecc.bytes = 13;
info->nand.ecc.calculate = omap3_calculate_ecc_bch8;
} else {
info->nand.ecc.bytes = 7;
info->nand.ecc.calculate = omap3_calculate_ecc_bch4;
}
}
pr_info("enabling NAND BCH ecc with %d-bit correction\n", max_errors);
@ -1270,7 +1756,7 @@ fail:
*/
static int omap3_init_bch_tail(struct mtd_info *mtd)
{
int i, steps;
int i, steps, offset;
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
mtd);
struct nand_ecclayout *layout = &info->ecclayout;
@ -1292,11 +1778,21 @@ static int omap3_init_bch_tail(struct mtd_info *mtd)
goto fail;
}
/* ECC layout compatible with RBL for BCH8 */
if (info->is_elm_used && (info->nand.ecc.bytes == BCH8_SIZE))
offset = 2;
else
offset = mtd->oobsize - layout->eccbytes;
/* put ecc bytes at oob tail */
for (i = 0; i < layout->eccbytes; i++)
layout->eccpos[i] = mtd->oobsize-layout->eccbytes+i;
layout->eccpos[i] = offset + i;
if (info->is_elm_used && (info->nand.ecc.bytes == BCH8_SIZE))
layout->oobfree[0].offset = 2 + layout->eccbytes * steps;
else
layout->oobfree[0].offset = 2;
layout->oobfree[0].offset = 2;
layout->oobfree[0].length = mtd->oobsize-2-layout->eccbytes;
info->nand.ecc.layout = layout;
@ -1360,6 +1856,9 @@ static int omap_nand_probe(struct platform_device *pdev)
info->nand.options = pdata->devsize;
info->nand.options |= NAND_SKIP_BBTSCAN;
#ifdef CONFIG_MTD_NAND_OMAP_BCH
info->of_node = pdata->of_node;
#endif
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (res == NULL) {

View File

@ -174,7 +174,14 @@ out:
return rc;
}
static void __exit ofpart_parser_exit(void)
{
deregister_mtd_parser(&ofpart_parser);
deregister_mtd_parser(&ofoldpart_parser);
}
module_init(ofpart_parser_init);
module_exit(ofpart_parser_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Parser for MTD partitioning information in device tree");

View File

@ -44,7 +44,7 @@ struct nand_ecc_test {
static void single_bit_error_data(void *error_data, void *correct_data,
size_t size)
{
unsigned int offset = random32() % (size * BITS_PER_BYTE);
unsigned int offset = prandom_u32() % (size * BITS_PER_BYTE);
memcpy(error_data, correct_data, size);
__change_bit_le(offset, error_data);
@ -55,9 +55,9 @@ static void double_bit_error_data(void *error_data, void *correct_data,
{
unsigned int offset[2];
offset[0] = random32() % (size * BITS_PER_BYTE);
offset[0] = prandom_u32() % (size * BITS_PER_BYTE);
do {
offset[1] = random32() % (size * BITS_PER_BYTE);
offset[1] = prandom_u32() % (size * BITS_PER_BYTE);
} while (offset[0] == offset[1]);
memcpy(error_data, correct_data, size);
@ -68,7 +68,7 @@ static void double_bit_error_data(void *error_data, void *correct_data,
static unsigned int random_ecc_bit(size_t size)
{
unsigned int offset = random32() % (3 * BITS_PER_BYTE);
unsigned int offset = prandom_u32() % (3 * BITS_PER_BYTE);
if (size == 256) {
/*
@ -76,7 +76,7 @@ static unsigned int random_ecc_bit(size_t size)
* and 17th bit) in ECC code for 256 byte data block
*/
while (offset == 16 || offset == 17)
offset = random32() % (3 * BITS_PER_BYTE);
offset = prandom_u32() % (3 * BITS_PER_BYTE);
}
return offset;

View File

@ -55,7 +55,7 @@ static int rand_eb(void)
unsigned int eb;
again:
eb = random32();
eb = prandom_u32();
/* Read or write up 2 eraseblocks at a time - hence 'ebcnt - 1' */
eb %= (ebcnt - 1);
if (bbt[eb])
@ -67,7 +67,7 @@ static int rand_offs(void)
{
unsigned int offs;
offs = random32();
offs = prandom_u32();
offs %= bufsize;
return offs;
}
@ -76,7 +76,7 @@ static int rand_len(int offs)
{
unsigned int len;
len = random32();
len = prandom_u32();
len %= (bufsize - offs);
return len;
}
@ -191,7 +191,7 @@ static int do_write(void)
static int do_operation(void)
{
if (random32() & 1)
if (prandom_u32() & 1)
return do_read();
else
return do_write();

View File

@ -208,7 +208,7 @@ static inline int write_pattern(int ebnum, void *buf)
static int __init tort_init(void)
{
int err = 0, i, infinite = !cycles_count;
int bad_ebs[ebcnt];
int *bad_ebs;
printk(KERN_INFO "\n");
printk(KERN_INFO "=================================================\n");
@ -250,28 +250,24 @@ static int __init tort_init(void)
err = -ENOMEM;
patt_5A5 = kmalloc(mtd->erasesize, GFP_KERNEL);
if (!patt_5A5) {
pr_err("error: cannot allocate memory\n");
if (!patt_5A5)
goto out_mtd;
}
patt_A5A = kmalloc(mtd->erasesize, GFP_KERNEL);
if (!patt_A5A) {
pr_err("error: cannot allocate memory\n");
if (!patt_A5A)
goto out_patt_5A5;
}
patt_FF = kmalloc(mtd->erasesize, GFP_KERNEL);
if (!patt_FF) {
pr_err("error: cannot allocate memory\n");
if (!patt_FF)
goto out_patt_A5A;
}
check_buf = kmalloc(mtd->erasesize, GFP_KERNEL);
if (!check_buf) {
pr_err("error: cannot allocate memory\n");
if (!check_buf)
goto out_patt_FF;
}
bad_ebs = kcalloc(ebcnt, sizeof(*bad_ebs), GFP_KERNEL);
if (!bad_ebs)
goto out_check_buf;
err = 0;
@ -290,7 +286,6 @@ static int __init tort_init(void)
/*
* Check if there is a bad eraseblock among those we are going to test.
*/
memset(&bad_ebs[0], 0, sizeof(int) * ebcnt);
if (mtd_can_have_bb(mtd)) {
for (i = eb; i < eb + ebcnt; i++) {
err = mtd_block_isbad(mtd, (loff_t)i * mtd->erasesize);
@ -394,6 +389,8 @@ out:
pr_info("finished after %u erase cycles\n",
erase_cycles);
kfree(bad_ebs);
out_check_buf:
kfree(check_buf);
out_patt_FF:
kfree(patt_FF);

View File

@ -86,7 +86,7 @@ static inline int ubi_dbg_is_bgt_disabled(const struct ubi_device *ubi)
static inline int ubi_dbg_is_bitflip(const struct ubi_device *ubi)
{
if (ubi->dbg.emulate_bitflips)
return !(random32() % 200);
return !(prandom_u32() % 200);
return 0;
}
@ -100,7 +100,7 @@ static inline int ubi_dbg_is_bitflip(const struct ubi_device *ubi)
static inline int ubi_dbg_is_write_failure(const struct ubi_device *ubi)
{
if (ubi->dbg.emulate_io_failures)
return !(random32() % 500);
return !(prandom_u32() % 500);
return 0;
}
@ -114,7 +114,7 @@ static inline int ubi_dbg_is_write_failure(const struct ubi_device *ubi)
static inline int ubi_dbg_is_erase_failure(const struct ubi_device *ubi)
{
if (ubi->dbg.emulate_io_failures)
return !(random32() % 400);
return !(prandom_u32() % 400);
return 0;
}

View File

@ -528,6 +528,7 @@ struct bcma_sflash {
u32 size;
struct mtd_info *mtd;
void *priv;
};
#endif

View File

@ -245,6 +245,7 @@ struct map_info {
unsigned long pfow_base;
unsigned long map_priv_1;
unsigned long map_priv_2;
struct device_node *device_node;
void *fldrv_priv;
struct mtd_chip_driver *fldrv;
};
@ -328,7 +329,7 @@ static inline int map_word_bitsset(struct map_info *map, map_word val1, map_word
static inline map_word map_word_load(struct map_info *map, const void *ptr)
{
map_word r = {{0} };
map_word r;
if (map_bankwidth_is_1(map))
r.x[0] = *(unsigned char *)ptr;
@ -342,6 +343,8 @@ static inline map_word map_word_load(struct map_info *map, const void *ptr)
#endif
else if (map_bankwidth_is_large(map))
memcpy(r.x, ptr, map->bankwidth);
else
BUG();
return r;
}
@ -391,7 +394,7 @@ static inline map_word map_word_ff(struct map_info *map)
static inline map_word inline_map_read(struct map_info *map, unsigned long ofs)
{
map_word uninitialized_var(r);
map_word r;
if (map_bankwidth_is_1(map))
r.x[0] = __raw_readb(map->virt + ofs);
@ -425,6 +428,8 @@ static inline void inline_map_write(struct map_info *map, const map_word datum,
#endif
else if (map_bankwidth_is_large(map))
memcpy_toio(map->virt+ofs, datum.x, map->bankwidth);
else
BUG();
mb();
}

View File

@ -0,0 +1,54 @@
/*
* BCH Error Location Module
*
* Copyright (C) 2012 Texas Instruments Incorporated - http://www.ti.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#ifndef __ELM_H
#define __ELM_H
enum bch_ecc {
BCH4_ECC = 0,
BCH8_ECC,
};
/* ELM support 8 error syndrome process */
#define ERROR_VECTOR_MAX 8
#define BCH8_ECC_OOB_BYTES 13
#define BCH4_ECC_OOB_BYTES 7
/* RBL requires 14 byte even though BCH8 uses only 13 byte */
#define BCH8_SIZE (BCH8_ECC_OOB_BYTES + 1)
/* Uses 1 extra byte to handle erased pages */
#define BCH4_SIZE (BCH4_ECC_OOB_BYTES + 1)
/**
* struct elm_errorvec - error vector for elm
* @error_reported: set true for vectors error is reported
* @error_uncorrectable: number of uncorrectable errors
* @error_count: number of correctable errors in the sector
* @error_loc: buffer for error location
*
*/
struct elm_errorvec {
bool error_reported;
bool error_uncorrectable;
int error_count;
int error_loc[ERROR_VECTOR_MAX];
};
void elm_decode_bch_error_page(struct device *dev, u8 *ecc_calc,
struct elm_errorvec *err_vec);
void elm_config(struct device *dev, enum bch_ecc bch_type);
#endif /* __ELM_H */