1
0
Fork 0

doc: completion: context, scope and language fixes

Fix for imprecise/wrong statements on context in which wait_for_completion*()
can be called, updated notes on "going out of scope" problems and some
language fixups.

Signed-off-by: Nicholas Mc Guire <hofrat@osadl.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
hifive-unleashed-5.1
Nicholas Mc Guire 2015-02-20 12:28:48 -05:00 committed by Jonathan Corbet
parent 4997166a39
commit 4988aaa6e5
1 changed files with 55 additions and 44 deletions

View File

@ -11,11 +11,11 @@ to have reached a point or a specific state, completions can provide a race
free solution to this problem. Semantically they are somewhat like a
pthread_barriers and have similar use-cases.
Completions are a code synchronization mechanism that is preferable to any
Completions are a code synchronization mechanism which are preferable to any
misuse of locks. Any time you think of using yield() or some quirky
msleep(1); loop to allow something else to proceed, you probably want to
look into using one of the wait_for_completion*() calls instead. The
advantage of using completions is clear intent of the code but also more
advantage of using completions is clear intent of the code, but also more
efficient code as both threads can continue until the result is actually
needed.
@ -24,7 +24,7 @@ with the event reduced to a simple flag appropriately called "done" in
struct completion, that tells the waiting threads of execution if they
can continue safely.
As completions are scheduling related the code is found in
As completions are scheduling related, the code is found in
kernel/sched/completion.c - for details on completion design and
implementation see completions-design.txt
@ -32,9 +32,9 @@ implementation see completions-design.txt
Usage:
------
There are three parts to the using completions, the initialization of the
There are three parts to using completions, the initialization of the
struct completion, the waiting part through a call to one of the variants of
wait_for_completion() and the signaling side through a call to complete(),
wait_for_completion() and the signaling side through a call to complete()
or complete_all(). Further there are some helper functions for checking the
state of completions.
@ -50,7 +50,7 @@ handling of completions is:
providing the wait queue to place tasks on for waiting and the flag for
indicating the state of affairs.
Completions should be named to convey the intent of the waiter. A good
Completions should be named to convey the intent of the waiter. A good
example is:
wait_for_completion(&early_console_added);
@ -73,7 +73,7 @@ the default state to "not available", that is, "done" is set to 0.
The re-initialization function, reinit_completion(), simply resets the
done element to "not available", thus again to 0, without touching the
wait queue. Calling init_completion() on the same completions object is
wait queue. Calling init_completion() on the same completion object is
most likely a bug as it re-initializes the queue to an empty queue and
enqueued tasks could get "lost" - use reinit_completion() in that case.
@ -87,10 +87,17 @@ initialization should always use:
DECLARE_COMPLETION_ONSTACK(setup_done)
suitable for automatic/local variables on the stack and will make lockdep
happy. Note also that one needs to making *sure* the completion passt to
happy. Note also that one needs to make *sure* the completion passed to
work threads remains in-scope, and no references remain to on-stack data
when the initiating function returns.
Using on-stack completions for code that calls any of the _timeout or
_interruptible/_killable variants is not advisable as they will require
additional synchronization to prevent the on-stack completion object in
the timeout/signal cases from going out of scope. Consider using dynamically
allocated completions when intending to use the _interruptible/_killable
or _timeout variants of wait_for_completion().
Waiting for completions:
------------------------
@ -101,21 +108,22 @@ A typical usage scenario is:
structure completion setup_done;
init_completion(&setup_done);
initialze_work(...,&setup_done,...)
initialize_work(...,&setup_done,...)
/* run non-dependent code */ /* do setup */
wait_for_completion(&seupt_done); complete(setup_done)
wait_for_completion(&setup_done); complete(setup_done)
This is not implying any temporal order of wait_for_completion() and the
This is not implying any temporal order on wait_for_completion() and the
call to complete() - if the call to complete() happened before the call
to wait_for_completion() then the waiting side simply will continue
immediately as all dependencies are satisfied.
immediately as all dependencies are satisfied if not it will block until
completion is signaled by complete().
Note that wait_for_completion() is calling spin_lock_irq/spin_unlock_irq
so it can only be called safely when you know that interrupts are enabled.
Calling it from hard-irq context will result in hard to detect spurious
enabling of interrupts.
Calling it from hard-irq or irqs-off atomic contexts will result in hard
to detect spurious enabling of interrupts.
wait_for_completion():
@ -123,10 +131,13 @@ wait_for_completion():
The default behavior is to wait without a timeout and mark the task as
uninterruptible. wait_for_completion() and its variants are only safe
in soft-interrupt or process context but not in hard-irq context.
in process context (as they can sleep) but not in atomic context,
interrupt context, with disabled irqs. or preemption is disabled - see also
try_wait_for_completion() below for handling completion in atomic/interrupt
context.
As all variants of wait_for_completion() can (obviously) block for a long
time, you probably don't want to call this with held locks - see also
try_wait_for_completion() below.
time, you probably don't want to call this with held mutexes.
Variants available:
@ -141,20 +152,20 @@ A common problem that occurs is to have unclean assignment of return types,
so care should be taken with assigning return-values to variables of proper
type. Checking for the specific meaning of return values also has been found
to be quite inaccurate e.g. constructs like
if(!wait_for_completion_interruptible_timeout(...)) would execute the same
if (!wait_for_completion_interruptible_timeout(...)) would execute the same
code path for successful completion and for the interrupted case - which is
probably not what you want.
int wait_for_completion_interruptible(struct completion *done)
marking the task TASK_INTERRUPTIBLE. If a signal was received while waiting.
It will return -ERESTARTSYS and 0 otherwise.
This function marks the task TASK_INTERRUPTIBLE. If a signal was received
while waiting it will return -ERESTARTSYS and 0 otherwise.
unsigned long wait_for_completion_timeout(struct completion *done,
unsigned long timeout)
The task is marked as TASK_UNINTERRUPTIBLE and will wait at most timeout
(in jiffies). If timeout occurs it return 0 else the remaining time in
The task is marked as TASK_UNINTERRUPTIBLE and will wait at most 'timeout'
(in jiffies). If timeout occurs it returns 0 else the remaining time in
jiffies (but at least 1). Timeouts are preferably passed by msecs_to_jiffies()
or usecs_to_jiffies(). If the returned timeout value is deliberately ignored
a comment should probably explain why (e.g. see drivers/mfd/wm8350-core.c
@ -163,21 +174,21 @@ wm8350_read_auxadc())
long wait_for_completion_interruptible_timeout(
struct completion *done, unsigned long timeout)
passing a timeout in jiffies and marking the task as TASK_INTERRUPTIBLE. If a
signal was received it will return -ERESTARTSYS, 0 if completion timed-out and
the remaining time in jiffies if completion occurred.
This function passes a timeout in jiffies and marking the task as
TASK_INTERRUPTIBLE. If a signal was received it will return -ERESTARTSYS, 0 if
completion timed out and the remaining time in jiffies if completion occurred.
Further variants include _killable which passes TASK_KILLABLE as the
designated tasks state and will return a -ERESTARTSYS if interrupted or
else 0 if completions was achieved as well as a _timeout variant.
designated tasks state and will return -ERESTARTSYS if interrupted or
else 0 if completion was achieved as well as a _timeout variant.
long wait_for_completion_killable(struct completion *done)
long wait_for_completion_killable_timeout(struct completion *done,
unsigned long timeout)
The _io variants wait_for_completion_io behave the same as the non-_io
The _io variants wait_for_completion_io() behave the same as the non-_io
variants, except for accounting waiting time as waiting on IO, which has
an impact on how scheduling is calculated.
an impact on how the task is accounted in scheduling stats.
void wait_for_completion_io(struct completion *done)
unsigned long wait_for_completion_io_timeout(struct completion *done
@ -187,13 +198,13 @@ an impact on how scheduling is calculated.
Signaling completions:
----------------------
A thread of execution that wants to signal that the conditions for
continuation have been achieved calls complete() to signal exactly one
of the waiters that it can continue.
A thread that wants to signal that the conditions for continuation have been
achieved calls complete() to signal exactly one of the waiters that it can
continue.
void complete(struct completion *done)
or calls complete_all to signal all current and future waiters.
or calls complete_all() to signal all current and future waiters.
void complete_all(struct completion *done)
@ -205,32 +216,32 @@ wakeup order is the same in which they were enqueued (FIFO order).
If complete() is called multiple times then this will allow for that number
of waiters to continue - each call to complete() will simply increment the
done element. Calling complete_all() multiple times is a bug though. Both
complete() and complete_all() can be called in hard-irq context safely.
complete() and complete_all() can be called in hard-irq/atomic context safely.
There only can be one thread calling complete() or complete_all() on a
particular struct completions at any time - serialized through the wait
particular struct completion at any time - serialized through the wait
queue spinlock. Any such concurrent calls to complete() or complete_all()
probably are a design bug.
Signaling completion from hard-irq context is fine as it will appropriately
lock with spin_lock_irqsave/spin_unlock_irqrestore.
lock with spin_lock_irqsave/spin_unlock_irqrestore and it will never sleep.
try_wait_for_completion()/completion_done():
--------------------------------------------
The try_wait_for_completion will not put the thread on the wait queue but
rather returns false if it would need to enqueue (block) the thread, else it
consumes any posted completions and returns true.
The try_wait_for_completion() function will not put the thread on the wait
queue but rather returns false if it would need to enqueue (block) the thread,
else it consumes any posted completions and returns true.
bool try_wait_for_completion(struct completion *done)
bool try_wait_for_completion(struct completion *done)
Finally to check state of a completions without changing it in any way is
provided by completion_done() returning false if there are any posted
Finally to check state of a completion without changing it in any way is
provided by completion_done() returning false if there is any posted
completion that was not yet consumed by waiters implying that there are
waiters and true otherwise;
bool completion_done(struct completion *done)
bool completion_done(struct completion *done)
Both try_wait_for_completion() and completion_done() are safe to be called in
hard-irq context.
hard-irq or atomic context.