1
0
Fork 0

crypto: aes-ni - Add support to Intel AES-NI instructions for x86_64 platform

Intel AES-NI is a new set of Single Instruction Multiple Data (SIMD)
instructions that are going to be introduced in the next generation of
Intel processor, as of 2009. These instructions enable fast and secure
data encryption and decryption, using the Advanced Encryption Standard
(AES), defined by FIPS Publication number 197.  The architecture
introduces six instructions that offer full hardware support for
AES. Four of them support high performance data encryption and
decryption, and the other two instructions support the AES key
expansion procedure.

The white paper can be downloaded from:

http://softwarecommunity.intel.com/isn/downloads/intelavx/AES-Instructions-Set_WP.pdf

AES may be used in soft_irq context, but MMX/SSE context can not be
touched safely in soft_irq context. So in_interrupt() is checked, if
in IRQ or soft_irq context, the general x86_64 implementation are used
instead.

Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
hifive-unleashed-5.1
Huang Ying 2009-01-18 16:28:34 +11:00 committed by Herbert Xu
parent 1cac2cbc76
commit 54b6a1bd53
5 changed files with 1386 additions and 0 deletions

View File

@ -9,6 +9,7 @@ obj-$(CONFIG_CRYPTO_SALSA20_586) += salsa20-i586.o
obj-$(CONFIG_CRYPTO_AES_X86_64) += aes-x86_64.o
obj-$(CONFIG_CRYPTO_TWOFISH_X86_64) += twofish-x86_64.o
obj-$(CONFIG_CRYPTO_SALSA20_X86_64) += salsa20-x86_64.o
obj-$(CONFIG_CRYPTO_AES_NI_INTEL) += aesni-intel.o
obj-$(CONFIG_CRYPTO_CRC32C_INTEL) += crc32c-intel.o
@ -19,3 +20,5 @@ salsa20-i586-y := salsa20-i586-asm_32.o salsa20_glue.o
aes-x86_64-y := aes-x86_64-asm_64.o aes_glue.o
twofish-x86_64-y := twofish-x86_64-asm_64.o twofish_glue.o
salsa20-x86_64-y := salsa20-x86_64-asm_64.o salsa20_glue.o
aesni-intel-y := aesni-intel_asm.o aesni-intel_glue.o

View File

@ -0,0 +1,896 @@
/*
* Implement AES algorithm in Intel AES-NI instructions.
*
* The white paper of AES-NI instructions can be downloaded from:
* http://softwarecommunity.intel.com/isn/downloads/intelavx/AES-Instructions-Set_WP.pdf
*
* Copyright (C) 2008, Intel Corp.
* Author: Huang Ying <ying.huang@intel.com>
* Vinodh Gopal <vinodh.gopal@intel.com>
* Kahraman Akdemir
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/linkage.h>
.text
#define STATE1 %xmm0
#define STATE2 %xmm4
#define STATE3 %xmm5
#define STATE4 %xmm6
#define STATE STATE1
#define IN1 %xmm1
#define IN2 %xmm7
#define IN3 %xmm8
#define IN4 %xmm9
#define IN IN1
#define KEY %xmm2
#define IV %xmm3
#define KEYP %rdi
#define OUTP %rsi
#define INP %rdx
#define LEN %rcx
#define IVP %r8
#define KLEN %r9d
#define T1 %r10
#define TKEYP T1
#define T2 %r11
_key_expansion_128:
_key_expansion_256a:
pshufd $0b11111111, %xmm1, %xmm1
shufps $0b00010000, %xmm0, %xmm4
pxor %xmm4, %xmm0
shufps $0b10001100, %xmm0, %xmm4
pxor %xmm4, %xmm0
pxor %xmm1, %xmm0
movaps %xmm0, (%rcx)
add $0x10, %rcx
ret
_key_expansion_192a:
pshufd $0b01010101, %xmm1, %xmm1
shufps $0b00010000, %xmm0, %xmm4
pxor %xmm4, %xmm0
shufps $0b10001100, %xmm0, %xmm4
pxor %xmm4, %xmm0
pxor %xmm1, %xmm0
movaps %xmm2, %xmm5
movaps %xmm2, %xmm6
pslldq $4, %xmm5
pshufd $0b11111111, %xmm0, %xmm3
pxor %xmm3, %xmm2
pxor %xmm5, %xmm2
movaps %xmm0, %xmm1
shufps $0b01000100, %xmm0, %xmm6
movaps %xmm6, (%rcx)
shufps $0b01001110, %xmm2, %xmm1
movaps %xmm1, 16(%rcx)
add $0x20, %rcx
ret
_key_expansion_192b:
pshufd $0b01010101, %xmm1, %xmm1
shufps $0b00010000, %xmm0, %xmm4
pxor %xmm4, %xmm0
shufps $0b10001100, %xmm0, %xmm4
pxor %xmm4, %xmm0
pxor %xmm1, %xmm0
movaps %xmm2, %xmm5
pslldq $4, %xmm5
pshufd $0b11111111, %xmm0, %xmm3
pxor %xmm3, %xmm2
pxor %xmm5, %xmm2
movaps %xmm0, (%rcx)
add $0x10, %rcx
ret
_key_expansion_256b:
pshufd $0b10101010, %xmm1, %xmm1
shufps $0b00010000, %xmm2, %xmm4
pxor %xmm4, %xmm2
shufps $0b10001100, %xmm2, %xmm4
pxor %xmm4, %xmm2
pxor %xmm1, %xmm2
movaps %xmm2, (%rcx)
add $0x10, %rcx
ret
/*
* int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
* unsigned int key_len)
*/
ENTRY(aesni_set_key)
movups (%rsi), %xmm0 # user key (first 16 bytes)
movaps %xmm0, (%rdi)
lea 0x10(%rdi), %rcx # key addr
movl %edx, 480(%rdi)
pxor %xmm4, %xmm4 # xmm4 is assumed 0 in _key_expansion_x
cmp $24, %dl
jb .Lenc_key128
je .Lenc_key192
movups 0x10(%rsi), %xmm2 # other user key
movaps %xmm2, (%rcx)
add $0x10, %rcx
# aeskeygenassist $0x1, %xmm2, %xmm1 # round 1
.byte 0x66, 0x0f, 0x3a, 0xdf, 0xca, 0x01
call _key_expansion_256a
# aeskeygenassist $0x1, %xmm0, %xmm1
.byte 0x66, 0x0f, 0x3a, 0xdf, 0xc8, 0x01
call _key_expansion_256b
# aeskeygenassist $0x2, %xmm2, %xmm1 # round 2
.byte 0x66, 0x0f, 0x3a, 0xdf, 0xca, 0x02
call _key_expansion_256a
# aeskeygenassist $0x2, %xmm0, %xmm1
.byte 0x66, 0x0f, 0x3a, 0xdf, 0xc8, 0x02
call _key_expansion_256b
# aeskeygenassist $0x4, %xmm2, %xmm1 # round 3
.byte 0x66, 0x0f, 0x3a, 0xdf, 0xca, 0x04
call _key_expansion_256a
# aeskeygenassist $0x4, %xmm0, %xmm1
.byte 0x66, 0x0f, 0x3a, 0xdf, 0xc8, 0x04
call _key_expansion_256b
# aeskeygenassist $0x8, %xmm2, %xmm1 # round 4
.byte 0x66, 0x0f, 0x3a, 0xdf, 0xca, 0x08
call _key_expansion_256a
# aeskeygenassist $0x8, %xmm0, %xmm1
.byte 0x66, 0x0f, 0x3a, 0xdf, 0xc8, 0x08
call _key_expansion_256b
# aeskeygenassist $0x10, %xmm2, %xmm1 # round 5
.byte 0x66, 0x0f, 0x3a, 0xdf, 0xca, 0x10
call _key_expansion_256a
# aeskeygenassist $0x10, %xmm0, %xmm1
.byte 0x66, 0x0f, 0x3a, 0xdf, 0xc8, 0x10
call _key_expansion_256b
# aeskeygenassist $0x20, %xmm2, %xmm1 # round 6
.byte 0x66, 0x0f, 0x3a, 0xdf, 0xca, 0x20
call _key_expansion_256a
# aeskeygenassist $0x20, %xmm0, %xmm1
.byte 0x66, 0x0f, 0x3a, 0xdf, 0xc8, 0x20
call _key_expansion_256b
# aeskeygenassist $0x40, %xmm2, %xmm1 # round 7
.byte 0x66, 0x0f, 0x3a, 0xdf, 0xca, 0x40
call _key_expansion_256a
jmp .Ldec_key
.Lenc_key192:
movq 0x10(%rsi), %xmm2 # other user key
# aeskeygenassist $0x1, %xmm2, %xmm1 # round 1
.byte 0x66, 0x0f, 0x3a, 0xdf, 0xca, 0x01
call _key_expansion_192a
# aeskeygenassist $0x2, %xmm2, %xmm1 # round 2
.byte 0x66, 0x0f, 0x3a, 0xdf, 0xca, 0x02
call _key_expansion_192b
# aeskeygenassist $0x4, %xmm2, %xmm1 # round 3
.byte 0x66, 0x0f, 0x3a, 0xdf, 0xca, 0x04
call _key_expansion_192a
# aeskeygenassist $0x8, %xmm2, %xmm1 # round 4
.byte 0x66, 0x0f, 0x3a, 0xdf, 0xca, 0x08
call _key_expansion_192b
# aeskeygenassist $0x10, %xmm2, %xmm1 # round 5
.byte 0x66, 0x0f, 0x3a, 0xdf, 0xca, 0x10
call _key_expansion_192a
# aeskeygenassist $0x20, %xmm2, %xmm1 # round 6
.byte 0x66, 0x0f, 0x3a, 0xdf, 0xca, 0x20
call _key_expansion_192b
# aeskeygenassist $0x40, %xmm2, %xmm1 # round 7
.byte 0x66, 0x0f, 0x3a, 0xdf, 0xca, 0x40
call _key_expansion_192a
# aeskeygenassist $0x80, %xmm2, %xmm1 # round 8
.byte 0x66, 0x0f, 0x3a, 0xdf, 0xca, 0x80
call _key_expansion_192b
jmp .Ldec_key
.Lenc_key128:
# aeskeygenassist $0x1, %xmm0, %xmm1 # round 1
.byte 0x66, 0x0f, 0x3a, 0xdf, 0xc8, 0x01
call _key_expansion_128
# aeskeygenassist $0x2, %xmm0, %xmm1 # round 2
.byte 0x66, 0x0f, 0x3a, 0xdf, 0xc8, 0x02
call _key_expansion_128
# aeskeygenassist $0x4, %xmm0, %xmm1 # round 3
.byte 0x66, 0x0f, 0x3a, 0xdf, 0xc8, 0x04
call _key_expansion_128
# aeskeygenassist $0x8, %xmm0, %xmm1 # round 4
.byte 0x66, 0x0f, 0x3a, 0xdf, 0xc8, 0x08
call _key_expansion_128
# aeskeygenassist $0x10, %xmm0, %xmm1 # round 5
.byte 0x66, 0x0f, 0x3a, 0xdf, 0xc8, 0x10
call _key_expansion_128
# aeskeygenassist $0x20, %xmm0, %xmm1 # round 6
.byte 0x66, 0x0f, 0x3a, 0xdf, 0xc8, 0x20
call _key_expansion_128
# aeskeygenassist $0x40, %xmm0, %xmm1 # round 7
.byte 0x66, 0x0f, 0x3a, 0xdf, 0xc8, 0x40
call _key_expansion_128
# aeskeygenassist $0x80, %xmm0, %xmm1 # round 8
.byte 0x66, 0x0f, 0x3a, 0xdf, 0xc8, 0x80
call _key_expansion_128
# aeskeygenassist $0x1b, %xmm0, %xmm1 # round 9
.byte 0x66, 0x0f, 0x3a, 0xdf, 0xc8, 0x1b
call _key_expansion_128
# aeskeygenassist $0x36, %xmm0, %xmm1 # round 10
.byte 0x66, 0x0f, 0x3a, 0xdf, 0xc8, 0x36
call _key_expansion_128
.Ldec_key:
sub $0x10, %rcx
movaps (%rdi), %xmm0
movaps (%rcx), %xmm1
movaps %xmm0, 240(%rcx)
movaps %xmm1, 240(%rdi)
add $0x10, %rdi
lea 240-16(%rcx), %rsi
.align 4
.Ldec_key_loop:
movaps (%rdi), %xmm0
# aesimc %xmm0, %xmm1
.byte 0x66, 0x0f, 0x38, 0xdb, 0xc8
movaps %xmm1, (%rsi)
add $0x10, %rdi
sub $0x10, %rsi
cmp %rcx, %rdi
jb .Ldec_key_loop
xor %rax, %rax
ret
/*
* void aesni_enc(struct crypto_aes_ctx *ctx, u8 *dst, const u8 *src)
*/
ENTRY(aesni_enc)
movl 480(KEYP), KLEN # key length
movups (INP), STATE # input
call _aesni_enc1
movups STATE, (OUTP) # output
ret
/*
* _aesni_enc1: internal ABI
* input:
* KEYP: key struct pointer
* KLEN: round count
* STATE: initial state (input)
* output:
* STATE: finial state (output)
* changed:
* KEY
* TKEYP (T1)
*/
_aesni_enc1:
movaps (KEYP), KEY # key
mov KEYP, TKEYP
pxor KEY, STATE # round 0
add $0x30, TKEYP
cmp $24, KLEN
jb .Lenc128
lea 0x20(TKEYP), TKEYP
je .Lenc192
add $0x20, TKEYP
movaps -0x60(TKEYP), KEY
# aesenc KEY, STATE
.byte 0x66, 0x0f, 0x38, 0xdc, 0xc2
movaps -0x50(TKEYP), KEY
# aesenc KEY, STATE
.byte 0x66, 0x0f, 0x38, 0xdc, 0xc2
.align 4
.Lenc192:
movaps -0x40(TKEYP), KEY
# aesenc KEY, STATE
.byte 0x66, 0x0f, 0x38, 0xdc, 0xc2
movaps -0x30(TKEYP), KEY
# aesenc KEY, STATE
.byte 0x66, 0x0f, 0x38, 0xdc, 0xc2
.align 4
.Lenc128:
movaps -0x20(TKEYP), KEY
# aesenc KEY, STATE
.byte 0x66, 0x0f, 0x38, 0xdc, 0xc2
movaps -0x10(TKEYP), KEY
# aesenc KEY, STATE
.byte 0x66, 0x0f, 0x38, 0xdc, 0xc2
movaps (TKEYP), KEY
# aesenc KEY, STATE
.byte 0x66, 0x0f, 0x38, 0xdc, 0xc2
movaps 0x10(TKEYP), KEY
# aesenc KEY, STATE
.byte 0x66, 0x0f, 0x38, 0xdc, 0xc2
movaps 0x20(TKEYP), KEY
# aesenc KEY, STATE
.byte 0x66, 0x0f, 0x38, 0xdc, 0xc2
movaps 0x30(TKEYP), KEY
# aesenc KEY, STATE
.byte 0x66, 0x0f, 0x38, 0xdc, 0xc2
movaps 0x40(TKEYP), KEY
# aesenc KEY, STATE
.byte 0x66, 0x0f, 0x38, 0xdc, 0xc2
movaps 0x50(TKEYP), KEY
# aesenc KEY, STATE
.byte 0x66, 0x0f, 0x38, 0xdc, 0xc2
movaps 0x60(TKEYP), KEY
# aesenc KEY, STATE
.byte 0x66, 0x0f, 0x38, 0xdc, 0xc2
movaps 0x70(TKEYP), KEY
# aesenclast KEY, STATE # last round
.byte 0x66, 0x0f, 0x38, 0xdd, 0xc2
ret
/*
* _aesni_enc4: internal ABI
* input:
* KEYP: key struct pointer
* KLEN: round count
* STATE1: initial state (input)
* STATE2
* STATE3
* STATE4
* output:
* STATE1: finial state (output)
* STATE2
* STATE3
* STATE4
* changed:
* KEY
* TKEYP (T1)
*/
_aesni_enc4:
movaps (KEYP), KEY # key
mov KEYP, TKEYP
pxor KEY, STATE1 # round 0
pxor KEY, STATE2
pxor KEY, STATE3
pxor KEY, STATE4
add $0x30, TKEYP
cmp $24, KLEN
jb .L4enc128
lea 0x20(TKEYP), TKEYP
je .L4enc192
add $0x20, TKEYP
movaps -0x60(TKEYP), KEY
# aesenc KEY, STATE1
.byte 0x66, 0x0f, 0x38, 0xdc, 0xc2
# aesenc KEY, STATE2
.byte 0x66, 0x0f, 0x38, 0xdc, 0xe2
# aesenc KEY, STATE3
.byte 0x66, 0x0f, 0x38, 0xdc, 0xea
# aesenc KEY, STATE4
.byte 0x66, 0x0f, 0x38, 0xdc, 0xf2
movaps -0x50(TKEYP), KEY
# aesenc KEY, STATE1
.byte 0x66, 0x0f, 0x38, 0xdc, 0xc2
# aesenc KEY, STATE2
.byte 0x66, 0x0f, 0x38, 0xdc, 0xe2
# aesenc KEY, STATE3
.byte 0x66, 0x0f, 0x38, 0xdc, 0xea
# aesenc KEY, STATE4
.byte 0x66, 0x0f, 0x38, 0xdc, 0xf2
#.align 4
.L4enc192:
movaps -0x40(TKEYP), KEY
# aesenc KEY, STATE1
.byte 0x66, 0x0f, 0x38, 0xdc, 0xc2
# aesenc KEY, STATE2
.byte 0x66, 0x0f, 0x38, 0xdc, 0xe2
# aesenc KEY, STATE3
.byte 0x66, 0x0f, 0x38, 0xdc, 0xea
# aesenc KEY, STATE4
.byte 0x66, 0x0f, 0x38, 0xdc, 0xf2
movaps -0x30(TKEYP), KEY
# aesenc KEY, STATE1
.byte 0x66, 0x0f, 0x38, 0xdc, 0xc2
# aesenc KEY, STATE2
.byte 0x66, 0x0f, 0x38, 0xdc, 0xe2
# aesenc KEY, STATE3
.byte 0x66, 0x0f, 0x38, 0xdc, 0xea
# aesenc KEY, STATE4
.byte 0x66, 0x0f, 0x38, 0xdc, 0xf2
#.align 4
.L4enc128:
movaps -0x20(TKEYP), KEY
# aesenc KEY, STATE1
.byte 0x66, 0x0f, 0x38, 0xdc, 0xc2
# aesenc KEY, STATE2
.byte 0x66, 0x0f, 0x38, 0xdc, 0xe2
# aesenc KEY, STATE3
.byte 0x66, 0x0f, 0x38, 0xdc, 0xea
# aesenc KEY, STATE4
.byte 0x66, 0x0f, 0x38, 0xdc, 0xf2
movaps -0x10(TKEYP), KEY
# aesenc KEY, STATE1
.byte 0x66, 0x0f, 0x38, 0xdc, 0xc2
# aesenc KEY, STATE2
.byte 0x66, 0x0f, 0x38, 0xdc, 0xe2
# aesenc KEY, STATE3
.byte 0x66, 0x0f, 0x38, 0xdc, 0xea
# aesenc KEY, STATE4
.byte 0x66, 0x0f, 0x38, 0xdc, 0xf2
movaps (TKEYP), KEY
# aesenc KEY, STATE1
.byte 0x66, 0x0f, 0x38, 0xdc, 0xc2
# aesenc KEY, STATE2
.byte 0x66, 0x0f, 0x38, 0xdc, 0xe2
# aesenc KEY, STATE3
.byte 0x66, 0x0f, 0x38, 0xdc, 0xea
# aesenc KEY, STATE4
.byte 0x66, 0x0f, 0x38, 0xdc, 0xf2
movaps 0x10(TKEYP), KEY
# aesenc KEY, STATE1
.byte 0x66, 0x0f, 0x38, 0xdc, 0xc2
# aesenc KEY, STATE2
.byte 0x66, 0x0f, 0x38, 0xdc, 0xe2
# aesenc KEY, STATE3
.byte 0x66, 0x0f, 0x38, 0xdc, 0xea
# aesenc KEY, STATE4
.byte 0x66, 0x0f, 0x38, 0xdc, 0xf2
movaps 0x20(TKEYP), KEY
# aesenc KEY, STATE1
.byte 0x66, 0x0f, 0x38, 0xdc, 0xc2
# aesenc KEY, STATE2
.byte 0x66, 0x0f, 0x38, 0xdc, 0xe2
# aesenc KEY, STATE3
.byte 0x66, 0x0f, 0x38, 0xdc, 0xea
# aesenc KEY, STATE4
.byte 0x66, 0x0f, 0x38, 0xdc, 0xf2
movaps 0x30(TKEYP), KEY
# aesenc KEY, STATE1
.byte 0x66, 0x0f, 0x38, 0xdc, 0xc2
# aesenc KEY, STATE2
.byte 0x66, 0x0f, 0x38, 0xdc, 0xe2
# aesenc KEY, STATE3
.byte 0x66, 0x0f, 0x38, 0xdc, 0xea
# aesenc KEY, STATE4
.byte 0x66, 0x0f, 0x38, 0xdc, 0xf2
movaps 0x40(TKEYP), KEY
# aesenc KEY, STATE1
.byte 0x66, 0x0f, 0x38, 0xdc, 0xc2
# aesenc KEY, STATE2
.byte 0x66, 0x0f, 0x38, 0xdc, 0xe2
# aesenc KEY, STATE3
.byte 0x66, 0x0f, 0x38, 0xdc, 0xea
# aesenc KEY, STATE4
.byte 0x66, 0x0f, 0x38, 0xdc, 0xf2
movaps 0x50(TKEYP), KEY
# aesenc KEY, STATE1
.byte 0x66, 0x0f, 0x38, 0xdc, 0xc2
# aesenc KEY, STATE2
.byte 0x66, 0x0f, 0x38, 0xdc, 0xe2
# aesenc KEY, STATE3
.byte 0x66, 0x0f, 0x38, 0xdc, 0xea
# aesenc KEY, STATE4
.byte 0x66, 0x0f, 0x38, 0xdc, 0xf2
movaps 0x60(TKEYP), KEY
# aesenc KEY, STATE1
.byte 0x66, 0x0f, 0x38, 0xdc, 0xc2
# aesenc KEY, STATE2
.byte 0x66, 0x0f, 0x38, 0xdc, 0xe2
# aesenc KEY, STATE3
.byte 0x66, 0x0f, 0x38, 0xdc, 0xea
# aesenc KEY, STATE4
.byte 0x66, 0x0f, 0x38, 0xdc, 0xf2
movaps 0x70(TKEYP), KEY
# aesenclast KEY, STATE1 # last round
.byte 0x66, 0x0f, 0x38, 0xdd, 0xc2
# aesenclast KEY, STATE2
.byte 0x66, 0x0f, 0x38, 0xdd, 0xe2
# aesenclast KEY, STATE3
.byte 0x66, 0x0f, 0x38, 0xdd, 0xea
# aesenclast KEY, STATE4
.byte 0x66, 0x0f, 0x38, 0xdd, 0xf2
ret
/*
* void aesni_dec (struct crypto_aes_ctx *ctx, u8 *dst, const u8 *src)
*/
ENTRY(aesni_dec)
mov 480(KEYP), KLEN # key length
add $240, KEYP
movups (INP), STATE # input
call _aesni_dec1
movups STATE, (OUTP) #output
ret
/*
* _aesni_dec1: internal ABI
* input:
* KEYP: key struct pointer
* KLEN: key length
* STATE: initial state (input)
* output:
* STATE: finial state (output)
* changed:
* KEY
* TKEYP (T1)
*/
_aesni_dec1:
movaps (KEYP), KEY # key
mov KEYP, TKEYP
pxor KEY, STATE # round 0
add $0x30, TKEYP
cmp $24, KLEN
jb .Ldec128
lea 0x20(TKEYP), TKEYP
je .Ldec192
add $0x20, TKEYP
movaps -0x60(TKEYP), KEY
# aesdec KEY, STATE
.byte 0x66, 0x0f, 0x38, 0xde, 0xc2
movaps -0x50(TKEYP), KEY
# aesdec KEY, STATE
.byte 0x66, 0x0f, 0x38, 0xde, 0xc2
.align 4
.Ldec192:
movaps -0x40(TKEYP), KEY
# aesdec KEY, STATE
.byte 0x66, 0x0f, 0x38, 0xde, 0xc2
movaps -0x30(TKEYP), KEY
# aesdec KEY, STATE
.byte 0x66, 0x0f, 0x38, 0xde, 0xc2
.align 4
.Ldec128:
movaps -0x20(TKEYP), KEY
# aesdec KEY, STATE
.byte 0x66, 0x0f, 0x38, 0xde, 0xc2
movaps -0x10(TKEYP), KEY
# aesdec KEY, STATE
.byte 0x66, 0x0f, 0x38, 0xde, 0xc2
movaps (TKEYP), KEY
# aesdec KEY, STATE
.byte 0x66, 0x0f, 0x38, 0xde, 0xc2
movaps 0x10(TKEYP), KEY
# aesdec KEY, STATE
.byte 0x66, 0x0f, 0x38, 0xde, 0xc2
movaps 0x20(TKEYP), KEY
# aesdec KEY, STATE
.byte 0x66, 0x0f, 0x38, 0xde, 0xc2
movaps 0x30(TKEYP), KEY
# aesdec KEY, STATE
.byte 0x66, 0x0f, 0x38, 0xde, 0xc2
movaps 0x40(TKEYP), KEY
# aesdec KEY, STATE
.byte 0x66, 0x0f, 0x38, 0xde, 0xc2
movaps 0x50(TKEYP), KEY
# aesdec KEY, STATE
.byte 0x66, 0x0f, 0x38, 0xde, 0xc2
movaps 0x60(TKEYP), KEY
# aesdec KEY, STATE
.byte 0x66, 0x0f, 0x38, 0xde, 0xc2
movaps 0x70(TKEYP), KEY
# aesdeclast KEY, STATE # last round
.byte 0x66, 0x0f, 0x38, 0xdf, 0xc2
ret
/*
* _aesni_dec4: internal ABI
* input:
* KEYP: key struct pointer
* KLEN: key length
* STATE1: initial state (input)
* STATE2
* STATE3
* STATE4
* output:
* STATE1: finial state (output)
* STATE2
* STATE3
* STATE4
* changed:
* KEY
* TKEYP (T1)
*/
_aesni_dec4:
movaps (KEYP), KEY # key
mov KEYP, TKEYP
pxor KEY, STATE1 # round 0
pxor KEY, STATE2
pxor KEY, STATE3
pxor KEY, STATE4
add $0x30, TKEYP
cmp $24, KLEN
jb .L4dec128
lea 0x20(TKEYP), TKEYP
je .L4dec192
add $0x20, TKEYP
movaps -0x60(TKEYP), KEY
# aesdec KEY, STATE1
.byte 0x66, 0x0f, 0x38, 0xde, 0xc2
# aesdec KEY, STATE2
.byte 0x66, 0x0f, 0x38, 0xde, 0xe2
# aesdec KEY, STATE3
.byte 0x66, 0x0f, 0x38, 0xde, 0xea
# aesdec KEY, STATE4
.byte 0x66, 0x0f, 0x38, 0xde, 0xf2
movaps -0x50(TKEYP), KEY
# aesdec KEY, STATE1
.byte 0x66, 0x0f, 0x38, 0xde, 0xc2
# aesdec KEY, STATE2
.byte 0x66, 0x0f, 0x38, 0xde, 0xe2
# aesdec KEY, STATE3
.byte 0x66, 0x0f, 0x38, 0xde, 0xea
# aesdec KEY, STATE4
.byte 0x66, 0x0f, 0x38, 0xde, 0xf2
.align 4
.L4dec192:
movaps -0x40(TKEYP), KEY
# aesdec KEY, STATE1
.byte 0x66, 0x0f, 0x38, 0xde, 0xc2
# aesdec KEY, STATE2
.byte 0x66, 0x0f, 0x38, 0xde, 0xe2
# aesdec KEY, STATE3
.byte 0x66, 0x0f, 0x38, 0xde, 0xea
# aesdec KEY, STATE4
.byte 0x66, 0x0f, 0x38, 0xde, 0xf2
movaps -0x30(TKEYP), KEY
# aesdec KEY, STATE1
.byte 0x66, 0x0f, 0x38, 0xde, 0xc2
# aesdec KEY, STATE2
.byte 0x66, 0x0f, 0x38, 0xde, 0xe2
# aesdec KEY, STATE3
.byte 0x66, 0x0f, 0x38, 0xde, 0xea
# aesdec KEY, STATE4
.byte 0x66, 0x0f, 0x38, 0xde, 0xf2
.align 4
.L4dec128:
movaps -0x20(TKEYP), KEY
# aesdec KEY, STATE1
.byte 0x66, 0x0f, 0x38, 0xde, 0xc2
# aesdec KEY, STATE2
.byte 0x66, 0x0f, 0x38, 0xde, 0xe2
# aesdec KEY, STATE3
.byte 0x66, 0x0f, 0x38, 0xde, 0xea
# aesdec KEY, STATE4
.byte 0x66, 0x0f, 0x38, 0xde, 0xf2
movaps -0x10(TKEYP), KEY
# aesdec KEY, STATE1
.byte 0x66, 0x0f, 0x38, 0xde, 0xc2
# aesdec KEY, STATE2
.byte 0x66, 0x0f, 0x38, 0xde, 0xe2
# aesdec KEY, STATE3
.byte 0x66, 0x0f, 0x38, 0xde, 0xea
# aesdec KEY, STATE4
.byte 0x66, 0x0f, 0x38, 0xde, 0xf2
movaps (TKEYP), KEY
# aesdec KEY, STATE1
.byte 0x66, 0x0f, 0x38, 0xde, 0xc2
# aesdec KEY, STATE2
.byte 0x66, 0x0f, 0x38, 0xde, 0xe2
# aesdec KEY, STATE3
.byte 0x66, 0x0f, 0x38, 0xde, 0xea
# aesdec KEY, STATE4
.byte 0x66, 0x0f, 0x38, 0xde, 0xf2
movaps 0x10(TKEYP), KEY
# aesdec KEY, STATE1
.byte 0x66, 0x0f, 0x38, 0xde, 0xc2
# aesdec KEY, STATE2
.byte 0x66, 0x0f, 0x38, 0xde, 0xe2
# aesdec KEY, STATE3
.byte 0x66, 0x0f, 0x38, 0xde, 0xea
# aesdec KEY, STATE4
.byte 0x66, 0x0f, 0x38, 0xde, 0xf2
movaps 0x20(TKEYP), KEY
# aesdec KEY, STATE1
.byte 0x66, 0x0f, 0x38, 0xde, 0xc2
# aesdec KEY, STATE2
.byte 0x66, 0x0f, 0x38, 0xde, 0xe2
# aesdec KEY, STATE3
.byte 0x66, 0x0f, 0x38, 0xde, 0xea
# aesdec KEY, STATE4
.byte 0x66, 0x0f, 0x38, 0xde, 0xf2
movaps 0x30(TKEYP), KEY
# aesdec KEY, STATE1
.byte 0x66, 0x0f, 0x38, 0xde, 0xc2
# aesdec KEY, STATE2
.byte 0x66, 0x0f, 0x38, 0xde, 0xe2
# aesdec KEY, STATE3
.byte 0x66, 0x0f, 0x38, 0xde, 0xea
# aesdec KEY, STATE4
.byte 0x66, 0x0f, 0x38, 0xde, 0xf2
movaps 0x40(TKEYP), KEY
# aesdec KEY, STATE1
.byte 0x66, 0x0f, 0x38, 0xde, 0xc2
# aesdec KEY, STATE2
.byte 0x66, 0x0f, 0x38, 0xde, 0xe2
# aesdec KEY, STATE3
.byte 0x66, 0x0f, 0x38, 0xde, 0xea
# aesdec KEY, STATE4
.byte 0x66, 0x0f, 0x38, 0xde, 0xf2
movaps 0x50(TKEYP), KEY
# aesdec KEY, STATE1
.byte 0x66, 0x0f, 0x38, 0xde, 0xc2
# aesdec KEY, STATE2
.byte 0x66, 0x0f, 0x38, 0xde, 0xe2
# aesdec KEY, STATE3
.byte 0x66, 0x0f, 0x38, 0xde, 0xea
# aesdec KEY, STATE4
.byte 0x66, 0x0f, 0x38, 0xde, 0xf2
movaps 0x60(TKEYP), KEY
# aesdec KEY, STATE1
.byte 0x66, 0x0f, 0x38, 0xde, 0xc2
# aesdec KEY, STATE2
.byte 0x66, 0x0f, 0x38, 0xde, 0xe2
# aesdec KEY, STATE3
.byte 0x66, 0x0f, 0x38, 0xde, 0xea
# aesdec KEY, STATE4
.byte 0x66, 0x0f, 0x38, 0xde, 0xf2
movaps 0x70(TKEYP), KEY
# aesdeclast KEY, STATE1 # last round
.byte 0x66, 0x0f, 0x38, 0xdf, 0xc2
# aesdeclast KEY, STATE2
.byte 0x66, 0x0f, 0x38, 0xdf, 0xe2
# aesdeclast KEY, STATE3
.byte 0x66, 0x0f, 0x38, 0xdf, 0xea
# aesdeclast KEY, STATE4
.byte 0x66, 0x0f, 0x38, 0xdf, 0xf2
ret
/*
* void aesni_ecb_enc(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src,
* size_t len)
*/
ENTRY(aesni_ecb_enc)
test LEN, LEN # check length
jz .Lecb_enc_ret
mov 480(KEYP), KLEN
cmp $16, LEN
jb .Lecb_enc_ret
cmp $64, LEN
jb .Lecb_enc_loop1
.align 4
.Lecb_enc_loop4:
movups (INP), STATE1
movups 0x10(INP), STATE2
movups 0x20(INP), STATE3
movups 0x30(INP), STATE4
call _aesni_enc4
movups STATE1, (OUTP)
movups STATE2, 0x10(OUTP)
movups STATE3, 0x20(OUTP)
movups STATE4, 0x30(OUTP)
sub $64, LEN
add $64, INP
add $64, OUTP
cmp $64, LEN
jge .Lecb_enc_loop4
cmp $16, LEN
jb .Lecb_enc_ret
.align 4
.Lecb_enc_loop1:
movups (INP), STATE1
call _aesni_enc1
movups STATE1, (OUTP)
sub $16, LEN
add $16, INP
add $16, OUTP
cmp $16, LEN
jge .Lecb_enc_loop1
.Lecb_enc_ret:
ret
/*
* void aesni_ecb_dec(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src,
* size_t len);
*/
ENTRY(aesni_ecb_dec)
test LEN, LEN
jz .Lecb_dec_ret
mov 480(KEYP), KLEN
add $240, KEYP
cmp $16, LEN
jb .Lecb_dec_ret
cmp $64, LEN
jb .Lecb_dec_loop1
.align 4
.Lecb_dec_loop4:
movups (INP), STATE1
movups 0x10(INP), STATE2
movups 0x20(INP), STATE3
movups 0x30(INP), STATE4
call _aesni_dec4
movups STATE1, (OUTP)
movups STATE2, 0x10(OUTP)
movups STATE3, 0x20(OUTP)
movups STATE4, 0x30(OUTP)
sub $64, LEN
add $64, INP
add $64, OUTP
cmp $64, LEN
jge .Lecb_dec_loop4
cmp $16, LEN
jb .Lecb_dec_ret
.align 4
.Lecb_dec_loop1:
movups (INP), STATE1
call _aesni_dec1
movups STATE1, (OUTP)
sub $16, LEN
add $16, INP
add $16, OUTP
cmp $16, LEN
jge .Lecb_dec_loop1
.Lecb_dec_ret:
ret
/*
* void aesni_cbc_enc(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src,
* size_t len, u8 *iv)
*/
ENTRY(aesni_cbc_enc)
cmp $16, LEN
jb .Lcbc_enc_ret
mov 480(KEYP), KLEN
movups (IVP), STATE # load iv as initial state
.align 4
.Lcbc_enc_loop:
movups (INP), IN # load input
pxor IN, STATE
call _aesni_enc1
movups STATE, (OUTP) # store output
sub $16, LEN
add $16, INP
add $16, OUTP
cmp $16, LEN
jge .Lcbc_enc_loop
movups STATE, (IVP)
.Lcbc_enc_ret:
ret
/*
* void aesni_cbc_dec(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src,
* size_t len, u8 *iv)
*/
ENTRY(aesni_cbc_dec)
cmp $16, LEN
jb .Lcbc_dec_ret
mov 480(KEYP), KLEN
add $240, KEYP
movups (IVP), IV
cmp $64, LEN
jb .Lcbc_dec_loop1
.align 4
.Lcbc_dec_loop4:
movups (INP), IN1
movaps IN1, STATE1
movups 0x10(INP), IN2
movaps IN2, STATE2
movups 0x20(INP), IN3
movaps IN3, STATE3
movups 0x30(INP), IN4
movaps IN4, STATE4
call _aesni_dec4
pxor IV, STATE1
pxor IN1, STATE2
pxor IN2, STATE3
pxor IN3, STATE4
movaps IN4, IV
movups STATE1, (OUTP)
movups STATE2, 0x10(OUTP)
movups STATE3, 0x20(OUTP)
movups STATE4, 0x30(OUTP)
sub $64, LEN
add $64, INP
add $64, OUTP
cmp $64, LEN
jge .Lcbc_dec_loop4
cmp $16, LEN
jb .Lcbc_dec_ret
.align 4
.Lcbc_dec_loop1:
movups (INP), IN
movaps IN, STATE
call _aesni_dec1
pxor IV, STATE
movups STATE, (OUTP)
movaps IN, IV
sub $16, LEN
add $16, INP
add $16, OUTP
cmp $16, LEN
jge .Lcbc_dec_loop1
movups IV, (IVP)
.Lcbc_dec_ret:
ret

View File

@ -0,0 +1,461 @@
/*
* Support for Intel AES-NI instructions. This file contains glue
* code, the real AES implementation is in intel-aes_asm.S.
*
* Copyright (C) 2008, Intel Corp.
* Author: Huang Ying <ying.huang@intel.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/hardirq.h>
#include <linux/types.h>
#include <linux/crypto.h>
#include <linux/err.h>
#include <crypto/algapi.h>
#include <crypto/aes.h>
#include <crypto/cryptd.h>
#include <asm/i387.h>
#include <asm/aes.h>
struct async_aes_ctx {
struct cryptd_ablkcipher *cryptd_tfm;
};
#define AESNI_ALIGN 16
#define AES_BLOCK_MASK (~(AES_BLOCK_SIZE-1))
asmlinkage int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
unsigned int key_len);
asmlinkage void aesni_enc(struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in);
asmlinkage void aesni_dec(struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in);
asmlinkage void aesni_ecb_enc(struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in, unsigned int len);
asmlinkage void aesni_ecb_dec(struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in, unsigned int len);
asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in, unsigned int len, u8 *iv);
asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in, unsigned int len, u8 *iv);
static inline int kernel_fpu_using(void)
{
if (in_interrupt() && !(read_cr0() & X86_CR0_TS))
return 1;
return 0;
}
static inline struct crypto_aes_ctx *aes_ctx(void *raw_ctx)
{
unsigned long addr = (unsigned long)raw_ctx;
unsigned long align = AESNI_ALIGN;
if (align <= crypto_tfm_ctx_alignment())
align = 1;
return (struct crypto_aes_ctx *)ALIGN(addr, align);
}
static int aes_set_key_common(struct crypto_tfm *tfm, void *raw_ctx,
const u8 *in_key, unsigned int key_len)
{
struct crypto_aes_ctx *ctx = aes_ctx(raw_ctx);
u32 *flags = &tfm->crt_flags;
int err;
if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 &&
key_len != AES_KEYSIZE_256) {
*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
return -EINVAL;
}
if (kernel_fpu_using())
err = crypto_aes_expand_key(ctx, in_key, key_len);
else {
kernel_fpu_begin();
err = aesni_set_key(ctx, in_key, key_len);
kernel_fpu_end();
}
return err;
}
static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
unsigned int key_len)
{
return aes_set_key_common(tfm, crypto_tfm_ctx(tfm), in_key, key_len);
}
static void aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
if (kernel_fpu_using())
crypto_aes_encrypt_x86(ctx, dst, src);
else {
kernel_fpu_begin();
aesni_enc(ctx, dst, src);
kernel_fpu_end();
}
}
static void aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
if (kernel_fpu_using())
crypto_aes_decrypt_x86(ctx, dst, src);
else {
kernel_fpu_begin();
aesni_dec(ctx, dst, src);
kernel_fpu_end();
}
}
static struct crypto_alg aesni_alg = {
.cra_name = "aes",
.cra_driver_name = "aes-aesni",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_CIPHER,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypto_aes_ctx)+AESNI_ALIGN-1,
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(aesni_alg.cra_list),
.cra_u = {
.cipher = {
.cia_min_keysize = AES_MIN_KEY_SIZE,
.cia_max_keysize = AES_MAX_KEY_SIZE,
.cia_setkey = aes_set_key,
.cia_encrypt = aes_encrypt,
.cia_decrypt = aes_decrypt
}
}
};
static int ecb_encrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
struct blkcipher_walk walk;
int err;
blkcipher_walk_init(&walk, dst, src, nbytes);
err = blkcipher_walk_virt(desc, &walk);
kernel_fpu_begin();
while ((nbytes = walk.nbytes)) {
aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
nbytes & AES_BLOCK_MASK);
nbytes &= AES_BLOCK_SIZE - 1;
err = blkcipher_walk_done(desc, &walk, nbytes);
}
kernel_fpu_end();
return err;
}
static int ecb_decrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
struct blkcipher_walk walk;
int err;
blkcipher_walk_init(&walk, dst, src, nbytes);
err = blkcipher_walk_virt(desc, &walk);
kernel_fpu_begin();
while ((nbytes = walk.nbytes)) {
aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
nbytes & AES_BLOCK_MASK);
nbytes &= AES_BLOCK_SIZE - 1;
err = blkcipher_walk_done(desc, &walk, nbytes);
}
kernel_fpu_end();
return err;
}
static struct crypto_alg blk_ecb_alg = {
.cra_name = "__ecb-aes-aesni",
.cra_driver_name = "__driver-ecb-aes-aesni",
.cra_priority = 0,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypto_aes_ctx)+AESNI_ALIGN-1,
.cra_alignmask = 0,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(blk_ecb_alg.cra_list),
.cra_u = {
.blkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = aes_set_key,
.encrypt = ecb_encrypt,
.decrypt = ecb_decrypt,
},
},
};
static int cbc_encrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
struct blkcipher_walk walk;
int err;
blkcipher_walk_init(&walk, dst, src, nbytes);
err = blkcipher_walk_virt(desc, &walk);
kernel_fpu_begin();
while ((nbytes = walk.nbytes)) {
aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
nbytes & AES_BLOCK_MASK, walk.iv);
nbytes &= AES_BLOCK_SIZE - 1;
err = blkcipher_walk_done(desc, &walk, nbytes);
}
kernel_fpu_end();
return err;
}
static int cbc_decrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
struct blkcipher_walk walk;
int err;
blkcipher_walk_init(&walk, dst, src, nbytes);
err = blkcipher_walk_virt(desc, &walk);
kernel_fpu_begin();
while ((nbytes = walk.nbytes)) {
aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
nbytes & AES_BLOCK_MASK, walk.iv);
nbytes &= AES_BLOCK_SIZE - 1;
err = blkcipher_walk_done(desc, &walk, nbytes);
}
kernel_fpu_end();
return err;
}
static struct crypto_alg blk_cbc_alg = {
.cra_name = "__cbc-aes-aesni",
.cra_driver_name = "__driver-cbc-aes-aesni",
.cra_priority = 0,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypto_aes_ctx)+AESNI_ALIGN-1,
.cra_alignmask = 0,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(blk_cbc_alg.cra_list),
.cra_u = {
.blkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = aes_set_key,
.encrypt = cbc_encrypt,
.decrypt = cbc_decrypt,
},
},
};
static int ablk_set_key(struct crypto_ablkcipher *tfm, const u8 *key,
unsigned int key_len)
{
struct async_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
return crypto_ablkcipher_setkey(&ctx->cryptd_tfm->base, key, key_len);
}
static int ablk_encrypt(struct ablkcipher_request *req)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
struct async_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
if (kernel_fpu_using()) {
struct ablkcipher_request *cryptd_req =
ablkcipher_request_ctx(req);
memcpy(cryptd_req, req, sizeof(*req));
ablkcipher_request_set_tfm(cryptd_req, &ctx->cryptd_tfm->base);
return crypto_ablkcipher_encrypt(cryptd_req);
} else {
struct blkcipher_desc desc;
desc.tfm = cryptd_ablkcipher_child(ctx->cryptd_tfm);
desc.info = req->info;
desc.flags = 0;
return crypto_blkcipher_crt(desc.tfm)->encrypt(
&desc, req->dst, req->src, req->nbytes);
}
}
static int ablk_decrypt(struct ablkcipher_request *req)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
struct async_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
if (kernel_fpu_using()) {
struct ablkcipher_request *cryptd_req =
ablkcipher_request_ctx(req);
memcpy(cryptd_req, req, sizeof(*req));
ablkcipher_request_set_tfm(cryptd_req, &ctx->cryptd_tfm->base);
return crypto_ablkcipher_decrypt(cryptd_req);
} else {
struct blkcipher_desc desc;
desc.tfm = cryptd_ablkcipher_child(ctx->cryptd_tfm);
desc.info = req->info;
desc.flags = 0;
return crypto_blkcipher_crt(desc.tfm)->decrypt(
&desc, req->dst, req->src, req->nbytes);
}
}
static void ablk_exit(struct crypto_tfm *tfm)
{
struct async_aes_ctx *ctx = crypto_tfm_ctx(tfm);
cryptd_free_ablkcipher(ctx->cryptd_tfm);
}
static void ablk_init_common(struct crypto_tfm *tfm,
struct cryptd_ablkcipher *cryptd_tfm)
{
struct async_aes_ctx *ctx = crypto_tfm_ctx(tfm);
ctx->cryptd_tfm = cryptd_tfm;
tfm->crt_ablkcipher.reqsize = sizeof(struct ablkcipher_request) +
crypto_ablkcipher_reqsize(&cryptd_tfm->base);
}
static int ablk_ecb_init(struct crypto_tfm *tfm)
{
struct cryptd_ablkcipher *cryptd_tfm;
cryptd_tfm = cryptd_alloc_ablkcipher("__driver-ecb-aes-aesni", 0, 0);
if (IS_ERR(cryptd_tfm))
return PTR_ERR(cryptd_tfm);
ablk_init_common(tfm, cryptd_tfm);
return 0;
}
static struct crypto_alg ablk_ecb_alg = {
.cra_name = "ecb(aes)",
.cra_driver_name = "ecb-aes-aesni",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct async_aes_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(ablk_ecb_alg.cra_list),
.cra_init = ablk_ecb_init,
.cra_exit = ablk_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = ablk_set_key,
.encrypt = ablk_encrypt,
.decrypt = ablk_decrypt,
},
},
};
static int ablk_cbc_init(struct crypto_tfm *tfm)
{
struct cryptd_ablkcipher *cryptd_tfm;
cryptd_tfm = cryptd_alloc_ablkcipher("__driver-cbc-aes-aesni", 0, 0);
if (IS_ERR(cryptd_tfm))
return PTR_ERR(cryptd_tfm);
ablk_init_common(tfm, cryptd_tfm);
return 0;
}
static struct crypto_alg ablk_cbc_alg = {
.cra_name = "cbc(aes)",
.cra_driver_name = "cbc-aes-aesni",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct async_aes_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(ablk_cbc_alg.cra_list),
.cra_init = ablk_cbc_init,
.cra_exit = ablk_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = ablk_set_key,
.encrypt = ablk_encrypt,
.decrypt = ablk_decrypt,
},
},
};
static int __init aesni_init(void)
{
int err;
if (!cpu_has_aes) {
printk(KERN_ERR "Intel AES-NI instructions are not detected.\n");
return -ENODEV;
}
if ((err = crypto_register_alg(&aesni_alg)))
goto aes_err;
if ((err = crypto_register_alg(&blk_ecb_alg)))
goto blk_ecb_err;
if ((err = crypto_register_alg(&blk_cbc_alg)))
goto blk_cbc_err;
if ((err = crypto_register_alg(&ablk_ecb_alg)))
goto ablk_ecb_err;
if ((err = crypto_register_alg(&ablk_cbc_alg)))
goto ablk_cbc_err;
return err;
ablk_cbc_err:
crypto_unregister_alg(&ablk_ecb_alg);
ablk_ecb_err:
crypto_unregister_alg(&blk_cbc_alg);
blk_cbc_err:
crypto_unregister_alg(&blk_ecb_alg);
blk_ecb_err:
crypto_unregister_alg(&aesni_alg);
aes_err:
return err;
}
static void __exit aesni_exit(void)
{
crypto_unregister_alg(&ablk_cbc_alg);
crypto_unregister_alg(&ablk_ecb_alg);
crypto_unregister_alg(&blk_cbc_alg);
crypto_unregister_alg(&blk_ecb_alg);
crypto_unregister_alg(&aesni_alg);
}
module_init(aesni_init);
module_exit(aesni_exit);
MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, Intel AES-NI instructions optimized");
MODULE_LICENSE("GPL");
MODULE_ALIAS("aes");

View File

@ -213,6 +213,7 @@ extern const char * const x86_power_flags[32];
#define cpu_has_xmm boot_cpu_has(X86_FEATURE_XMM)
#define cpu_has_xmm2 boot_cpu_has(X86_FEATURE_XMM2)
#define cpu_has_xmm3 boot_cpu_has(X86_FEATURE_XMM3)
#define cpu_has_aes boot_cpu_has(X86_FEATURE_AES)
#define cpu_has_ht boot_cpu_has(X86_FEATURE_HT)
#define cpu_has_mp boot_cpu_has(X86_FEATURE_MP)
#define cpu_has_nx boot_cpu_has(X86_FEATURE_NX)

View File

@ -470,6 +470,31 @@ config CRYPTO_AES_X86_64
See <http://csrc.nist.gov/encryption/aes/> for more information.
config CRYPTO_AES_NI_INTEL
tristate "AES cipher algorithms (AES-NI)"
depends on (X86 || UML_X86) && 64BIT
select CRYPTO_AES_X86_64
select CRYPTO_CRYPTD
select CRYPTO_ALGAPI
help
Use Intel AES-NI instructions for AES algorithm.
AES cipher algorithms (FIPS-197). AES uses the Rijndael
algorithm.
Rijndael appears to be consistently a very good performer in
both hardware and software across a wide range of computing
environments regardless of its use in feedback or non-feedback
modes. Its key setup time is excellent, and its key agility is
good. Rijndael's very low memory requirements make it very well
suited for restricted-space environments, in which it also
demonstrates excellent performance. Rijndael's operations are
among the easiest to defend against power and timing attacks.
The AES specifies three key sizes: 128, 192 and 256 bits
See <http://csrc.nist.gov/encryption/aes/> for more information.
config CRYPTO_ANUBIS
tristate "Anubis cipher algorithm"
select CRYPTO_ALGAPI