1
0
Fork 0

Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/torvalds/linux-2.6 into rmobile-latest

Conflicts:
	arch/arm/mach-shmobile/Kconfig

Signed-off-by: Paul Mundt <lethal@linux-sh.org>
hifive-unleashed-5.1
Paul Mundt 2011-01-07 10:29:26 +09:00
commit 5e93c6b4ec
2575 changed files with 200907 additions and 101644 deletions

View File

@ -2365,8 +2365,6 @@ E: acme@redhat.com
W: http://oops.ghostprotocols.net:81/blog/
P: 1024D/9224DF01 D5DF E3BB E3C8 BCBB F8AD 841A B6AB 4681 9224 DF01
D: IPX, LLC, DCCP, cyc2x, wl3501_cs, net/ hacks
S: R. Brasílio Itiberê, 4270/1010 - Água Verde
S: 80240-060 - Curitiba - Paraná
S: Brazil
N: Karsten Merker

View File

@ -0,0 +1,14 @@
What: /sys/class/net/<iface>/batman-adv/mesh_iface
Date: May 2010
Contact: Marek Lindner <lindner_marek@yahoo.de>
Description:
The /sys/class/net/<iface>/batman-adv/mesh_iface file
displays the batman mesh interface this <iface>
currently is associated with.
What: /sys/class/net/<iface>/batman-adv/iface_status
Date: May 2010
Contact: Marek Lindner <lindner_marek@yahoo.de>
Description:
Indicates the status of <iface> as it is seen by batman.

View File

@ -0,0 +1,69 @@
What: /sys/class/net/<mesh_iface>/mesh/aggregated_ogms
Date: May 2010
Contact: Marek Lindner <lindner_marek@yahoo.de>
Description:
Indicates whether the batman protocol messages of the
mesh <mesh_iface> shall be aggregated or not.
What: /sys/class/net/<mesh_iface>/mesh/bonding
Date: June 2010
Contact: Simon Wunderlich <siwu@hrz.tu-chemnitz.de>
Description:
Indicates whether the data traffic going through the
mesh will be sent using multiple interfaces at the
same time (if available).
What: /sys/class/net/<mesh_iface>/mesh/fragmentation
Date: October 2010
Contact: Andreas Langer <an.langer@gmx.de>
Description:
Indicates whether the data traffic going through the
mesh will be fragmented or silently discarded if the
packet size exceeds the outgoing interface MTU.
What: /sys/class/net/<mesh_iface>/mesh/gw_bandwidth
Date: October 2010
Contact: Marek Lindner <lindner_marek@yahoo.de>
Description:
Defines the bandwidth which is propagated by this
node if gw_mode was set to 'server'.
What: /sys/class/net/<mesh_iface>/mesh/gw_mode
Date: October 2010
Contact: Marek Lindner <lindner_marek@yahoo.de>
Description:
Defines the state of the gateway features. Can be
either 'off', 'client' or 'server'.
What: /sys/class/net/<mesh_iface>/mesh/gw_sel_class
Date: October 2010
Contact: Marek Lindner <lindner_marek@yahoo.de>
Description:
Defines the selection criteria this node will use
to choose a gateway if gw_mode was set to 'client'.
What: /sys/class/net/<mesh_iface>/mesh/orig_interval
Date: May 2010
Contact: Marek Lindner <lindner_marek@yahoo.de>
Description:
Defines the interval in milliseconds in which batman
sends its protocol messages.
What: /sys/class/net/<mesh_iface>/mesh/hop_penalty
Date: Oct 2010
Contact: Linus Lüssing <linus.luessing@web.de>
Description:
Defines the penalty which will be applied to an
originator message's tq-field on every hop.
What: /sys/class/net/<mesh_iface>/mesh/vis_mode
Date: May 2010
Contact: Marek Lindner <lindner_marek@yahoo.de>
Description:
Each batman node only maintains information about its
own local neighborhood, therefore generating graphs
showing the topology of the entire mesh is not easily
feasible without having a central instance to collect
the local topologies from all nodes. This file allows
to activate the collecting (server) mode.

View File

@ -146,6 +146,7 @@
!Finclude/net/cfg80211.h cfg80211_rx_mgmt
!Finclude/net/cfg80211.h cfg80211_mgmt_tx_status
!Finclude/net/cfg80211.h cfg80211_cqm_rssi_notify
!Finclude/net/cfg80211.h cfg80211_cqm_pktloss_notify
!Finclude/net/cfg80211.h cfg80211_michael_mic_failure
</chapter>
<chapter>
@ -332,10 +333,16 @@
<title>functions/definitions</title>
!Finclude/net/mac80211.h ieee80211_rx_status
!Finclude/net/mac80211.h mac80211_rx_flags
!Finclude/net/mac80211.h mac80211_tx_control_flags
!Finclude/net/mac80211.h mac80211_rate_control_flags
!Finclude/net/mac80211.h ieee80211_tx_rate
!Finclude/net/mac80211.h ieee80211_tx_info
!Finclude/net/mac80211.h ieee80211_tx_info_clear_status
!Finclude/net/mac80211.h ieee80211_rx
!Finclude/net/mac80211.h ieee80211_rx_ni
!Finclude/net/mac80211.h ieee80211_rx_irqsafe
!Finclude/net/mac80211.h ieee80211_tx_status
!Finclude/net/mac80211.h ieee80211_tx_status_ni
!Finclude/net/mac80211.h ieee80211_tx_status_irqsafe
!Finclude/net/mac80211.h ieee80211_rts_get
!Finclude/net/mac80211.h ieee80211_rts_duration
@ -346,6 +353,7 @@
!Finclude/net/mac80211.h ieee80211_stop_queue
!Finclude/net/mac80211.h ieee80211_wake_queues
!Finclude/net/mac80211.h ieee80211_stop_queues
!Finclude/net/mac80211.h ieee80211_queue_stopped
</sect1>
</chapter>
@ -354,6 +362,13 @@
!Pinclude/net/mac80211.h Frame filtering
!Finclude/net/mac80211.h ieee80211_filter_flags
</chapter>
<chapter id="workqueue">
<title>The mac80211 workqueue</title>
!Pinclude/net/mac80211.h mac80211 workqueue
!Finclude/net/mac80211.h ieee80211_queue_work
!Finclude/net/mac80211.h ieee80211_queue_delayed_work
</chapter>
</part>
<part id="advanced">
@ -374,6 +389,9 @@
!Finclude/net/mac80211.h set_key_cmd
!Finclude/net/mac80211.h ieee80211_key_conf
!Finclude/net/mac80211.h ieee80211_key_flags
!Finclude/net/mac80211.h ieee80211_tkip_key_type
!Finclude/net/mac80211.h ieee80211_get_tkip_key
!Finclude/net/mac80211.h ieee80211_key_removed
</chapter>
<chapter id="powersave">
@ -417,6 +435,18 @@
supported by mac80211, add notes about supporting hw crypto
with it.
</para>
!Finclude/net/mac80211.h ieee80211_iterate_active_interfaces
!Finclude/net/mac80211.h ieee80211_iterate_active_interfaces_atomic
</chapter>
<chapter id="station-handling">
<title>Station handling</title>
<para>TODO</para>
!Finclude/net/mac80211.h ieee80211_sta
!Finclude/net/mac80211.h sta_notify_cmd
!Finclude/net/mac80211.h ieee80211_find_sta
!Finclude/net/mac80211.h ieee80211_find_sta_by_ifaddr
!Finclude/net/mac80211.h ieee80211_sta_block_awake
</chapter>
<chapter id="hardware-scan-offload">
@ -424,6 +454,28 @@
<para>TBD</para>
!Finclude/net/mac80211.h ieee80211_scan_completed
</chapter>
<chapter id="aggregation">
<title>Aggregation</title>
<sect1>
<title>TX A-MPDU aggregation</title>
!Pnet/mac80211/agg-tx.c TX A-MPDU aggregation
!Cnet/mac80211/agg-tx.c
</sect1>
<sect1>
<title>RX A-MPDU aggregation</title>
!Pnet/mac80211/agg-rx.c RX A-MPDU aggregation
!Cnet/mac80211/agg-rx.c
</sect1>
!Finclude/net/mac80211.h ieee80211_ampdu_mlme_action
</chapter>
<chapter id="smps">
<title>Spatial Multiplexing Powersave (SMPS)</title>
!Pinclude/net/mac80211.h Spatial multiplexing power save
!Finclude/net/mac80211.h ieee80211_request_smps
!Finclude/net/mac80211.h ieee80211_smps_mode
</chapter>
</part>
<part id="rate-control">
@ -435,9 +487,16 @@
interface and how it relates to mac80211 and drivers.
</para>
</partintro>
<chapter id="dummy">
<title>dummy chapter</title>
<chapter id="ratecontrol-api">
<title>Rate Control API</title>
<para>TBD</para>
!Finclude/net/mac80211.h ieee80211_start_tx_ba_session
!Finclude/net/mac80211.h ieee80211_start_tx_ba_cb_irqsafe
!Finclude/net/mac80211.h ieee80211_stop_tx_ba_session
!Finclude/net/mac80211.h ieee80211_stop_tx_ba_cb_irqsafe
!Finclude/net/mac80211.h rate_control_changed
!Finclude/net/mac80211.h ieee80211_tx_rate_control
!Finclude/net/mac80211.h rate_control_send_low
</chapter>
</part>
@ -485,6 +544,13 @@
</sect1>
</chapter>
<chapter id="aggregation-internals">
<title>Aggregation</title>
!Fnet/mac80211/sta_info.h sta_ampdu_mlme
!Fnet/mac80211/sta_info.h tid_ampdu_tx
!Fnet/mac80211/sta_info.h tid_ampdu_rx
</chapter>
<chapter id="synchronisation">
<title>Synchronisation</title>
<para>TBD</para>

View File

@ -1,18 +1,22 @@
CONFIG_RCU_TRACE debugfs Files and Formats
The rcutree implementation of RCU provides debugfs trace output that
summarizes counters and state. This information is useful for debugging
RCU itself, and can sometimes also help to debug abuses of RCU.
The following sections describe the debugfs files and formats.
The rcutree and rcutiny implementations of RCU provide debugfs trace
output that summarizes counters and state. This information is useful for
debugging RCU itself, and can sometimes also help to debug abuses of RCU.
The following sections describe the debugfs files and formats, first
for rcutree and next for rcutiny.
Hierarchical RCU debugfs Files and Formats
CONFIG_TREE_RCU and CONFIG_TREE_PREEMPT_RCU debugfs Files and Formats
This implementation of RCU provides three debugfs files under the
These implementations of RCU provides five debugfs files under the
top-level directory RCU: rcu/rcudata (which displays fields in struct
rcu_data), rcu/rcugp (which displays grace-period counters), and
rcu/rcuhier (which displays the struct rcu_node hierarchy).
rcu_data), rcu/rcudata.csv (which is a .csv spreadsheet version of
rcu/rcudata), rcu/rcugp (which displays grace-period counters),
rcu/rcuhier (which displays the struct rcu_node hierarchy), and
rcu/rcu_pending (which displays counts of the reasons that the
rcu_pending() function decided that there was core RCU work to do).
The output of "cat rcu/rcudata" looks as follows:
@ -130,7 +134,8 @@ o "ci" is the number of RCU callbacks that have been invoked for
been registered in absence of CPU-hotplug activity.
o "co" is the number of RCU callbacks that have been orphaned due to
this CPU going offline.
this CPU going offline. These orphaned callbacks have been moved
to an arbitrarily chosen online CPU.
o "ca" is the number of RCU callbacks that have been adopted due to
other CPUs going offline. Note that ci+co-ca+ql is the number of
@ -168,12 +173,12 @@ o "gpnum" is the number of grace periods that have started. It is
The output of "cat rcu/rcuhier" looks as follows, with very long lines:
c=6902 g=6903 s=2 jfq=3 j=72c7 nfqs=13142/nfqsng=0(13142) fqlh=6 oqlen=0
c=6902 g=6903 s=2 jfq=3 j=72c7 nfqs=13142/nfqsng=0(13142) fqlh=6
1/1 .>. 0:127 ^0
3/3 .>. 0:35 ^0 0/0 .>. 36:71 ^1 0/0 .>. 72:107 ^2 0/0 .>. 108:127 ^3
3/3f .>. 0:5 ^0 2/3 .>. 6:11 ^1 0/0 .>. 12:17 ^2 0/0 .>. 18:23 ^3 0/0 .>. 24:29 ^4 0/0 .>. 30:35 ^5 0/0 .>. 36:41 ^0 0/0 .>. 42:47 ^1 0/0 .>. 48:53 ^2 0/0 .>. 54:59 ^3 0/0 .>. 60:65 ^4 0/0 .>. 66:71 ^5 0/0 .>. 72:77 ^0 0/0 .>. 78:83 ^1 0/0 .>. 84:89 ^2 0/0 .>. 90:95 ^3 0/0 .>. 96:101 ^4 0/0 .>. 102:107 ^5 0/0 .>. 108:113 ^0 0/0 .>. 114:119 ^1 0/0 .>. 120:125 ^2 0/0 .>. 126:127 ^3
rcu_bh:
c=-226 g=-226 s=1 jfq=-5701 j=72c7 nfqs=88/nfqsng=0(88) fqlh=0 oqlen=0
c=-226 g=-226 s=1 jfq=-5701 j=72c7 nfqs=88/nfqsng=0(88) fqlh=0
0/1 .>. 0:127 ^0
0/3 .>. 0:35 ^0 0/0 .>. 36:71 ^1 0/0 .>. 72:107 ^2 0/0 .>. 108:127 ^3
0/3f .>. 0:5 ^0 0/3 .>. 6:11 ^1 0/0 .>. 12:17 ^2 0/0 .>. 18:23 ^3 0/0 .>. 24:29 ^4 0/0 .>. 30:35 ^5 0/0 .>. 36:41 ^0 0/0 .>. 42:47 ^1 0/0 .>. 48:53 ^2 0/0 .>. 54:59 ^3 0/0 .>. 60:65 ^4 0/0 .>. 66:71 ^5 0/0 .>. 72:77 ^0 0/0 .>. 78:83 ^1 0/0 .>. 84:89 ^2 0/0 .>. 90:95 ^3 0/0 .>. 96:101 ^4 0/0 .>. 102:107 ^5 0/0 .>. 108:113 ^0 0/0 .>. 114:119 ^1 0/0 .>. 120:125 ^2 0/0 .>. 126:127 ^3
@ -212,11 +217,6 @@ o "fqlh" is the number of calls to force_quiescent_state() that
exited immediately (without even being counted in nfqs above)
due to contention on ->fqslock.
o "oqlen" is the number of callbacks on the "orphan" callback
list. RCU callbacks are placed on this list by CPUs going
offline, and are "adopted" either by the CPU helping the outgoing
CPU or by the next rcu_barrier*() call, whichever comes first.
o Each element of the form "1/1 0:127 ^0" represents one struct
rcu_node. Each line represents one level of the hierarchy, from
root to leaves. It is best to think of the rcu_data structures
@ -326,3 +326,115 @@ o "nn" is the number of times that this CPU needed nothing. Alert
readers will note that the rcu "nn" number for a given CPU very
closely matches the rcu_bh "np" number for that same CPU. This
is due to short-circuit evaluation in rcu_pending().
CONFIG_TINY_RCU and CONFIG_TINY_PREEMPT_RCU debugfs Files and Formats
These implementations of RCU provides a single debugfs file under the
top-level directory RCU, namely rcu/rcudata, which displays fields in
rcu_bh_ctrlblk, rcu_sched_ctrlblk and, for CONFIG_TINY_PREEMPT_RCU,
rcu_preempt_ctrlblk.
The output of "cat rcu/rcudata" is as follows:
rcu_preempt: qlen=24 gp=1097669 g197/p197/c197 tasks=...
ttb=. btg=no ntb=184 neb=0 nnb=183 j=01f7 bt=0274
normal balk: nt=1097669 gt=0 bt=371 b=0 ny=25073378 nos=0
exp balk: bt=0 nos=0
rcu_sched: qlen: 0
rcu_bh: qlen: 0
This is split into rcu_preempt, rcu_sched, and rcu_bh sections, with the
rcu_preempt section appearing only in CONFIG_TINY_PREEMPT_RCU builds.
The last three lines of the rcu_preempt section appear only in
CONFIG_RCU_BOOST kernel builds. The fields are as follows:
o "qlen" is the number of RCU callbacks currently waiting either
for an RCU grace period or waiting to be invoked. This is the
only field present for rcu_sched and rcu_bh, due to the
short-circuiting of grace period in those two cases.
o "gp" is the number of grace periods that have completed.
o "g197/p197/c197" displays the grace-period state, with the
"g" number being the number of grace periods that have started
(mod 256), the "p" number being the number of grace periods
that the CPU has responded to (also mod 256), and the "c"
number being the number of grace periods that have completed
(once again mode 256).
Why have both "gp" and "g"? Because the data flowing into
"gp" is only present in a CONFIG_RCU_TRACE kernel.
o "tasks" is a set of bits. The first bit is "T" if there are
currently tasks that have recently blocked within an RCU
read-side critical section, the second bit is "N" if any of the
aforementioned tasks are blocking the current RCU grace period,
and the third bit is "E" if any of the aforementioned tasks are
blocking the current expedited grace period. Each bit is "."
if the corresponding condition does not hold.
o "ttb" is a single bit. It is "B" if any of the blocked tasks
need to be priority boosted and "." otherwise.
o "btg" indicates whether boosting has been carried out during
the current grace period, with "exp" indicating that boosting
is in progress for an expedited grace period, "no" indicating
that boosting has not yet started for a normal grace period,
"begun" indicating that boosting has bebug for a normal grace
period, and "done" indicating that boosting has completed for
a normal grace period.
o "ntb" is the total number of tasks subjected to RCU priority boosting
periods since boot.
o "neb" is the number of expedited grace periods that have had
to resort to RCU priority boosting since boot.
o "nnb" is the number of normal grace periods that have had
to resort to RCU priority boosting since boot.
o "j" is the low-order 12 bits of the jiffies counter in hexadecimal.
o "bt" is the low-order 12 bits of the value that the jiffies counter
will have at the next time that boosting is scheduled to begin.
o In the line beginning with "normal balk", the fields are as follows:
o "nt" is the number of times that the system balked from
boosting because there were no blocked tasks to boost.
Note that the system will balk from boosting even if the
grace period is overdue when the currently running task
is looping within an RCU read-side critical section.
There is no point in boosting in this case, because
boosting a running task won't make it run any faster.
o "gt" is the number of times that the system balked
from boosting because, although there were blocked tasks,
none of them were preventing the current grace period
from completing.
o "bt" is the number of times that the system balked
from boosting because boosting was already in progress.
o "b" is the number of times that the system balked from
boosting because boosting had already completed for
the grace period in question.
o "ny" is the number of times that the system balked from
boosting because it was not yet time to start boosting
the grace period in question.
o "nos" is the number of times that the system balked from
boosting for inexplicable ("not otherwise specified")
reasons. This can actually happen due to races involving
increments of the jiffies counter.
o In the line beginning with "exp balk", the fields are as follows:
o "bt" is the number of times that the system balked from
boosting because there were no blocked tasks to boost.
o "nos" is the number of times that the system balked from
boosting for inexplicable ("not otherwise specified")
reasons.

View File

@ -516,6 +516,7 @@ int main(int argc, char *argv[])
default:
fprintf(stderr, "Unknown nla_type %d\n",
na->nla_type);
case TASKSTATS_TYPE_NULL:
break;
}
na = (struct nlattr *) (GENLMSG_DATA(&msg) + len);

View File

@ -34,3 +34,5 @@ memory.txt
- description of the virtual memory layout
nwfpe/
- NWFPE floating point emulator documentation
swp_emulation
- SWP/SWPB emulation handler/logging description

View File

@ -0,0 +1,27 @@
Software emulation of deprecated SWP instruction (CONFIG_SWP_EMULATE)
---------------------------------------------------------------------
ARMv6 architecture deprecates use of the SWP/SWPB instructions, and recommeds
moving to the load-locked/store-conditional instructions LDREX and STREX.
ARMv7 multiprocessing extensions introduce the ability to disable these
instructions, triggering an undefined instruction exception when executed.
Trapped instructions are emulated using an LDREX/STREX or LDREXB/STREXB
sequence. If a memory access fault (an abort) occurs, a segmentation fault is
signalled to the triggering process.
/proc/cpu/swp_emulation holds some statistics/information, including the PID of
the last process to trigger the emulation to be invocated. For example:
---
Emulated SWP: 12
Emulated SWPB: 0
Aborted SWP{B}: 1
Last process: 314
---
NOTE: when accessing uncached shared regions, LDREX/STREX rely on an external
transaction monitoring block called a global monitor to maintain update
atomicity. If your system does not implement a global monitor, this option can
cause programs that perform SWP operations to uncached memory to deadlock, as
the STREX operation will always fail.

View File

@ -62,6 +62,10 @@ aic7*reg_print.c*
aic7*seq.h*
aicasm
aicdb.h*
altivec1.c
altivec2.c
altivec4.c
altivec8.c
asm-offsets.h
asm_offsets.h
autoconf.h*
@ -76,6 +80,7 @@ btfixupprep
build
bvmlinux
bzImage*
capflags.c
classlist.h*
comp*.log
compile.h*
@ -94,6 +99,7 @@ devlist.h*
docproc
elf2ecoff
elfconfig.h*
evergreen_reg_safe.h
fixdep
flask.h
fore200e_mkfirm
@ -108,9 +114,16 @@ genksyms
*_gray256.c
ihex2fw
ikconfig.h*
inat-tables.c
initramfs_data.cpio
initramfs_data.cpio.gz
initramfs_list
int16.c
int1.c
int2.c
int32.c
int4.c
int8.c
kallsyms
kconfig
keywords.c
@ -140,6 +153,7 @@ mkprep
mktables
mktree
modpost
modules.builtin
modules.order
modversions.h*
ncscope.*
@ -153,14 +167,23 @@ pca200e.bin
pca200e_ecd.bin2
piggy.gz
piggyback
piggy.S
pnmtologo
ppc_defs.h*
pss_boot.h
qconf
r100_reg_safe.h
r200_reg_safe.h
r300_reg_safe.h
r420_reg_safe.h
r600_reg_safe.h
raid6altivec*.c
raid6int*.c
raid6tables.c
relocs
rn50_reg_safe.h
rs600_reg_safe.h
rv515_reg_safe.h
series
setup
setup.bin
@ -169,6 +192,7 @@ sImage
sm_tbl*
split-include
syscalltab.h
tables.c
tags
tftpboot.img
timeconst.h
@ -190,6 +214,7 @@ vmlinux
vmlinux-*
vmlinux.aout
vmlinux.lds
voffset.h
vsyscall.lds
vsyscall_32.lds
wanxlfw.inc
@ -200,3 +225,4 @@ wakeup.elf
wakeup.lds
zImage*
zconf.hash.c
zoffset.h

View File

@ -18,7 +18,6 @@ prototypes:
char *(*d_dname)((struct dentry *dentry, char *buffer, int buflen);
locking rules:
none have BKL
dcache_lock rename_lock ->d_lock may block
d_revalidate: no no no yes
d_hash no no no yes
@ -42,18 +41,23 @@ ata *);
int (*rename) (struct inode *, struct dentry *,
struct inode *, struct dentry *);
int (*readlink) (struct dentry *, char __user *,int);
int (*follow_link) (struct dentry *, struct nameidata *);
void * (*follow_link) (struct dentry *, struct nameidata *);
void (*put_link) (struct dentry *, struct nameidata *, void *);
void (*truncate) (struct inode *);
int (*permission) (struct inode *, int, struct nameidata *);
int (*check_acl)(struct inode *, int);
int (*setattr) (struct dentry *, struct iattr *);
int (*getattr) (struct vfsmount *, struct dentry *, struct kstat *);
int (*setxattr) (struct dentry *, const char *,const void *,size_t,int);
ssize_t (*getxattr) (struct dentry *, const char *, void *, size_t);
ssize_t (*listxattr) (struct dentry *, char *, size_t);
int (*removexattr) (struct dentry *, const char *);
void (*truncate_range)(struct inode *, loff_t, loff_t);
long (*fallocate)(struct inode *inode, int mode, loff_t offset, loff_t len);
int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 start, u64 len);
locking rules:
all may block, none have BKL
all may block
i_mutex(inode)
lookup: yes
create: yes
@ -66,19 +70,24 @@ rmdir: yes (both) (see below)
rename: yes (all) (see below)
readlink: no
follow_link: no
put_link: no
truncate: yes (see below)
setattr: yes
permission: no
check_acl: no
getattr: no
setxattr: yes
getxattr: no
listxattr: no
removexattr: yes
truncate_range: yes
fallocate: no
fiemap: no
Additionally, ->rmdir(), ->unlink() and ->rename() have ->i_mutex on
victim.
cross-directory ->rename() has (per-superblock) ->s_vfs_rename_sem.
->truncate() is never called directly - it's a callback, not a
method. It's called by vmtruncate() - library function normally used by
method. It's called by vmtruncate() - deprecated library function used by
->setattr(). Locking information above applies to that call (i.e. is
inherited from ->setattr() - vmtruncate() is used when ATTR_SIZE had been
passed).
@ -91,7 +100,7 @@ prototypes:
struct inode *(*alloc_inode)(struct super_block *sb);
void (*destroy_inode)(struct inode *);
void (*dirty_inode) (struct inode *);
int (*write_inode) (struct inode *, int);
int (*write_inode) (struct inode *, struct writeback_control *wbc);
int (*drop_inode) (struct inode *);
void (*evict_inode) (struct inode *);
void (*put_super) (struct super_block *);
@ -105,10 +114,10 @@ prototypes:
int (*show_options)(struct seq_file *, struct vfsmount *);
ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t);
ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t);
int (*bdev_try_to_free_page)(struct super_block*, struct page*, gfp_t);
locking rules:
All may block [not true, see below]
None have BKL
s_umount
alloc_inode:
destroy_inode:
@ -127,6 +136,7 @@ umount_begin: no
show_options: no (namespace_sem)
quota_read: no (see below)
quota_write: no (see below)
bdev_try_to_free_page: no (see below)
->statfs() has s_umount (shared) when called by ustat(2) (native or
compat), but that's an accident of bad API; s_umount is used to pin
@ -139,19 +149,25 @@ be the only ones operating on the quota file by the quota code (via
dqio_sem) (unless an admin really wants to screw up something and
writes to quota files with quotas on). For other details about locking
see also dquot_operations section.
->bdev_try_to_free_page is called from the ->releasepage handler of
the block device inode. See there for more details.
--------------------------- file_system_type ---------------------------
prototypes:
int (*get_sb) (struct file_system_type *, int,
const char *, void *, struct vfsmount *);
struct dentry *(*mount) (struct file_system_type *, int,
const char *, void *);
void (*kill_sb) (struct super_block *);
locking rules:
may block BKL
get_sb yes no
kill_sb yes no
may block
get_sb yes
mount yes
kill_sb yes
->get_sb() returns error or 0 with locked superblock attached to the vfsmount
(exclusive on ->s_umount).
->mount() returns ERR_PTR or the root dentry.
->kill_sb() takes a write-locked superblock, does all shutdown work on it,
unlocks and drops the reference.
@ -176,27 +192,35 @@ prototypes:
void (*freepage)(struct page *);
int (*direct_IO)(int, struct kiocb *, const struct iovec *iov,
loff_t offset, unsigned long nr_segs);
int (*launder_page) (struct page *);
int (*get_xip_mem)(struct address_space *, pgoff_t, int, void **,
unsigned long *);
int (*migratepage)(struct address_space *, struct page *, struct page *);
int (*launder_page)(struct page *);
int (*is_partially_uptodate)(struct page *, read_descriptor_t *, unsigned long);
int (*error_remove_page)(struct address_space *, struct page *);
locking rules:
All except set_page_dirty and freepage may block
BKL PageLocked(page) i_mutex
writepage: no yes, unlocks (see below)
readpage: no yes, unlocks
sync_page: no maybe
writepages: no
set_page_dirty no no
readpages: no
write_begin: no locks the page yes
write_end: no yes, unlocks yes
perform_write: no n/a yes
bmap: no
invalidatepage: no yes
releasepage: no yes
freepage: no yes
direct_IO: no
launder_page: no yes
PageLocked(page) i_mutex
writepage: yes, unlocks (see below)
readpage: yes, unlocks
sync_page: maybe
writepages:
set_page_dirty no
readpages:
write_begin: locks the page yes
write_end: yes, unlocks yes
bmap:
invalidatepage: yes
releasepage: yes
freepage: yes
direct_IO:
get_xip_mem: maybe
migratepage: yes (both)
launder_page: yes
is_partially_uptodate: yes
error_remove_page: yes
->write_begin(), ->write_end(), ->sync_page() and ->readpage()
may be called from the request handler (/dev/loop).
@ -276,9 +300,8 @@ under spinlock (it cannot block) and is sometimes called with the page
not locked.
->bmap() is currently used by legacy ioctl() (FIBMAP) provided by some
filesystems and by the swapper. The latter will eventually go away. All
instances do not actually need the BKL. Please, keep it that way and don't
breed new callers.
filesystems and by the swapper. The latter will eventually go away. Please,
keep it that way and don't breed new callers.
->invalidatepage() is called when the filesystem must attempt to drop
some or all of the buffers from the page when it is being truncated. It
@ -299,47 +322,37 @@ cleaned, or an error value if not. Note that in order to prevent the page
getting mapped back in and redirtied, it needs to be kept locked
across the entire operation.
Note: currently almost all instances of address_space methods are
using BKL for internal serialization and that's one of the worst sources
of contention. Normally they are calling library functions (in fs/buffer.c)
and pass foo_get_block() as a callback (on local block-based filesystems,
indeed). BKL is not needed for library stuff and is usually taken by
foo_get_block(). It's an overkill, since block bitmaps can be protected by
internal fs locking and real critical areas are much smaller than the areas
filesystems protect now.
----------------------- file_lock_operations ------------------------------
prototypes:
void (*fl_insert)(struct file_lock *); /* lock insertion callback */
void (*fl_remove)(struct file_lock *); /* lock removal callback */
void (*fl_copy_lock)(struct file_lock *, struct file_lock *);
void (*fl_release_private)(struct file_lock *);
locking rules:
BKL may block
fl_insert: yes no
fl_remove: yes no
fl_copy_lock: yes no
fl_release_private: yes yes
file_lock_lock may block
fl_copy_lock: yes no
fl_release_private: maybe no
----------------------- lock_manager_operations ---------------------------
prototypes:
int (*fl_compare_owner)(struct file_lock *, struct file_lock *);
void (*fl_notify)(struct file_lock *); /* unblock callback */
int (*fl_grant)(struct file_lock *, struct file_lock *, int);
void (*fl_release_private)(struct file_lock *);
void (*fl_break)(struct file_lock *); /* break_lease callback */
int (*fl_mylease)(struct file_lock *, struct file_lock *);
int (*fl_change)(struct file_lock **, int);
locking rules:
BKL may block
fl_compare_owner: yes no
fl_notify: yes no
fl_release_private: yes yes
fl_break: yes no
file_lock_lock may block
fl_compare_owner: yes no
fl_notify: yes no
fl_grant: no no
fl_release_private: maybe no
fl_break: yes no
fl_mylease: yes no
fl_change yes no
Currently only NFSD and NLM provide instances of this class. None of the
them block. If you have out-of-tree instances - please, show up. Locking
in that area will change.
--------------------------- buffer_head -----------------------------------
prototypes:
void (*b_end_io)(struct buffer_head *bh, int uptodate);
@ -364,17 +377,17 @@ prototypes:
void (*swap_slot_free_notify) (struct block_device *, unsigned long);
locking rules:
BKL bd_mutex
open: no yes
release: no yes
ioctl: no no
compat_ioctl: no no
direct_access: no no
media_changed: no no
unlock_native_capacity: no no
revalidate_disk: no no
getgeo: no no
swap_slot_free_notify: no no (see below)
bd_mutex
open: yes
release: yes
ioctl: no
compat_ioctl: no
direct_access: no
media_changed: no
unlock_native_capacity: no
revalidate_disk: no
getgeo: no
swap_slot_free_notify: no (see below)
media_changed, unlock_native_capacity and revalidate_disk are called only from
check_disk_change().
@ -413,34 +426,21 @@ prototypes:
unsigned long (*get_unmapped_area)(struct file *, unsigned long,
unsigned long, unsigned long, unsigned long);
int (*check_flags)(int);
int (*flock) (struct file *, int, struct file_lock *);
ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *,
size_t, unsigned int);
ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *,
size_t, unsigned int);
int (*setlease)(struct file *, long, struct file_lock **);
};
locking rules:
All may block.
BKL
llseek: no (see below)
read: no
aio_read: no
write: no
aio_write: no
readdir: no
poll: no
unlocked_ioctl: no
compat_ioctl: no
mmap: no
open: no
flush: no
release: no
fsync: no (see below)
aio_fsync: no
fasync: no
lock: yes
readv: no
writev: no
sendfile: no
sendpage: no
get_unmapped_area: no
check_flags: no
All may block except for ->setlease.
No VFS locks held on entry except for ->fsync and ->setlease.
->fsync() has i_mutex on inode.
->setlease has the file_list_lock held and must not sleep.
->llseek() locking has moved from llseek to the individual llseek
implementations. If your fs is not using generic_file_llseek, you
@ -450,17 +450,10 @@ mutex or just to use i_size_read() instead.
Note: this does not protect the file->f_pos against concurrent modifications
since this is something the userspace has to take care about.
Note: ext2_release() was *the* source of contention on fs-intensive
loads and dropping BKL on ->release() helps to get rid of that (we still
grab BKL for cases when we close a file that had been opened r/w, but that
can and should be done using the internal locking with smaller critical areas).
Current worst offender is ext2_get_block()...
->fasync() is called without BKL protection, and is responsible for
maintaining the FASYNC bit in filp->f_flags. Most instances call
fasync_helper(), which does that maintenance, so it's not normally
something one needs to worry about. Return values > 0 will be mapped to
zero in the VFS layer.
->fasync() is responsible for maintaining the FASYNC bit in filp->f_flags.
Most instances call fasync_helper(), which does that maintenance, so it's
not normally something one needs to worry about. Return values > 0 will be
mapped to zero in the VFS layer.
->readdir() and ->ioctl() on directories must be changed. Ideally we would
move ->readdir() to inode_operations and use a separate method for directory
@ -471,8 +464,6 @@ components. And there are other reasons why the current interface is a mess...
->read on directories probably must go away - we should just enforce -EISDIR
in sys_read() and friends.
->fsync() has i_mutex on inode.
--------------------------- dquot_operations -------------------------------
prototypes:
int (*write_dquot) (struct dquot *);
@ -507,12 +498,12 @@ prototypes:
int (*access)(struct vm_area_struct *, unsigned long, void*, int, int);
locking rules:
BKL mmap_sem PageLocked(page)
open: no yes
close: no yes
fault: no yes can return with page locked
page_mkwrite: no yes can return with page locked
access: no yes
mmap_sem PageLocked(page)
open: yes
close: yes
fault: yes can return with page locked
page_mkwrite: yes can return with page locked
access: yes
->fault() is called when a previously not present pte is about
to be faulted in. The filesystem must find and return the page associated
@ -539,6 +530,3 @@ VM_IO | VM_PFNMAP VMAs.
(if you break something or notice that it is broken and do not fix it yourself
- at least put it here)
ipc/shm.c::shm_delete() - may need BKL.
->read() and ->write() in many drivers are (probably) missing BKL.

View File

@ -537,7 +537,7 @@
Notes: Further information in
http://www.oreilly.com/catalog/linuxdrive2/
* Title: "Linux Device Drivers, 3nd Edition"
* Title: "Linux Device Drivers, 3rd Edition"
Authors: Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman
Publisher: O'Reilly & Associates.
Date: 2005.
@ -592,14 +592,6 @@
Pages: 600.
ISBN: 0-13-101908-2
* Title: "The Design and Implementation of the 4.4 BSD UNIX
Operating System"
Author: Marshall Kirk McKusick, Keith Bostic, Michael J. Karels,
John S. Quarterman.
Publisher: Addison-Wesley.
Date: 1996.
ISBN: 0-201-54979-4
* Title: "Programming for the real world - POSIX.4"
Author: Bill O. Gallmeister.
Publisher: O'Reilly & Associates, Inc..
@ -610,28 +602,13 @@
POSIX. Good reference.
* Title: "UNIX Systems for Modern Architectures: Symmetric
Multiprocesssing and Caching for Kernel Programmers"
Multiprocessing and Caching for Kernel Programmers"
Author: Curt Schimmel.
Publisher: Addison Wesley.
Date: June, 1994.
Pages: 432.
ISBN: 0-201-63338-8
* Title: "The Design and Implementation of the 4.3 BSD UNIX
Operating System"
Author: Samuel J. Leffler, Marshall Kirk McKusick, Michael J.
Karels, John S. Quarterman.
Publisher: Addison-Wesley.
Date: 1989 (reprinted with corrections on October, 1990).
ISBN: 0-201-06196-1
* Title: "The Design of the UNIX Operating System"
Author: Maurice J. Bach.
Publisher: Prentice Hall.
Date: 1986.
Pages: 471.
ISBN: 0-13-201757-1
MISCELLANEOUS:
* Name: linux/Documentation

View File

@ -1579,20 +1579,12 @@ and is between 256 and 4096 characters. It is defined in the file
nmi_watchdog= [KNL,BUGS=X86] Debugging features for SMP kernels
Format: [panic,][num]
Valid num: 0,1,2
Valid num: 0
0 - turn nmi_watchdog off
1 - use the IO-APIC timer for the NMI watchdog
2 - use the local APIC for the NMI watchdog using
a performance counter. Note: This will use one
performance counter and the local APIC's performance
vector.
When panic is specified, panic when an NMI watchdog
timeout occurs.
This is useful when you use a panic=... timeout and
need the box quickly up again.
Instead of 1 and 2 it is possible to use the following
symbolic names: lapic and ioapic
Example: nmi_watchdog=2 or nmi_watchdog=panic,lapic
netpoll.carrier_timeout=
[NET] Specifies amount of time (in seconds) that
@ -1622,6 +1614,8 @@ and is between 256 and 4096 characters. It is defined in the file
noapic [SMP,APIC] Tells the kernel to not make use of any
IOAPICs that may be present in the system.
noautogroup Disable scheduler automatic task group creation.
nobats [PPC] Do not use BATs for mapping kernel lowmem
on "Classic" PPC cores.
@ -1759,7 +1753,7 @@ and is between 256 and 4096 characters. It is defined in the file
nousb [USB] Disable the USB subsystem
nowatchdog [KNL] Disable the lockup detector.
nowatchdog [KNL] Disable the lockup detector (NMI watchdog).
nowb [ARM]
@ -2175,11 +2169,6 @@ and is between 256 and 4096 characters. It is defined in the file
reset_devices [KNL] Force drivers to reset the underlying device
during initialization.
resource_alloc_from_bottom
Allocate new resources from the beginning of available
space, not the end. If you need to use this, please
report a bug.
resume= [SWSUSP]
Specify the partition device for software suspend
@ -2472,12 +2461,13 @@ and is between 256 and 4096 characters. It is defined in the file
to facilitate early boot debugging.
See also Documentation/trace/events.txt
tsc= Disable clocksource-must-verify flag for TSC.
tsc= Disable clocksource stability checks for TSC.
Format: <string>
[x86] reliable: mark tsc clocksource as reliable, this
disables clocksource verification at runtime.
Used to enable high-resolution timer mode on older
hardware, and in virtualized environment.
disables clocksource verification at runtime, as well
as the stability checks done at bootup. Used to enable
high-resolution timer mode on older hardware, and in
virtualized environment.
[x86] noirqtime: Do not use TSC to do irq accounting.
Used to run time disable IRQ_TIME_ACCOUNTING on any
platforms where RDTSC is slow and this accounting

View File

@ -0,0 +1,327 @@
Copyright (c) 2009-2010 QLogic Corporation
QLogic Linux qlcnic NIC Driver
This program includes a device driver for Linux 2.6 that may be
distributed with QLogic hardware specific firmware binary file.
You may modify and redistribute the device driver code under the
GNU General Public License (a copy of which is attached hereto as
Exhibit A) published by the Free Software Foundation (version 2).
You may redistribute the hardware specific firmware binary file
under the following terms:
1. Redistribution of source code (only if applicable),
must retain the above copyright notice, this list of
conditions and the following disclaimer.
2. Redistribution in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
3. The name of QLogic Corporation may not be used to
endorse or promote products derived from this software
without specific prior written permission
REGARDLESS OF WHAT LICENSING MECHANISM IS USED OR APPLICABLE,
THIS PROGRAM IS PROVIDED BY QLOGIC CORPORATION "AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
USER ACKNOWLEDGES AND AGREES THAT USE OF THIS PROGRAM WILL NOT
CREATE OR GIVE GROUNDS FOR A LICENSE BY IMPLICATION, ESTOPPEL, OR
OTHERWISE IN ANY INTELLECTUAL PROPERTY RIGHTS (PATENT, COPYRIGHT,
TRADE SECRET, MASK WORK, OR OTHER PROPRIETARY RIGHT) EMBODIED IN
ANY OTHER QLOGIC HARDWARE OR SOFTWARE EITHER SOLELY OR IN
COMBINATION WITH THIS PROGRAM.
EXHIBIT A
GNU GENERAL PUBLIC LICENSE
Version 2, June 1991
Copyright (C) 1989, 1991 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.
We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.
Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.
Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.
The precise terms and conditions for copying, distribution and
modification follow.
GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.
1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.
You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.
2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.
b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.
c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.
In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:
a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,
b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,
c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)
The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.
If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.
4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.
5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.
6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.
7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.
9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.
10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.
NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.
12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

View File

@ -0,0 +1,240 @@
[state: 21-11-2010]
BATMAN-ADV
----------
Batman advanced is a new approach to wireless networking which
does no longer operate on the IP basis. Unlike the batman daemon,
which exchanges information using UDP packets and sets routing
tables, batman-advanced operates on ISO/OSI Layer 2 only and uses
and routes (or better: bridges) Ethernet Frames. It emulates a
virtual network switch of all nodes participating. Therefore all
nodes appear to be link local, thus all higher operating proto-
cols won't be affected by any changes within the network. You can
run almost any protocol above batman advanced, prominent examples
are: IPv4, IPv6, DHCP, IPX.
Batman advanced was implemented as a Linux kernel driver to re-
duce the overhead to a minimum. It does not depend on any (other)
network driver, and can be used on wifi as well as ethernet lan,
vpn, etc ... (anything with ethernet-style layer 2).
CONFIGURATION
-------------
Load the batman-adv module into your kernel:
# insmod batman-adv.ko
The module is now waiting for activation. You must add some in-
terfaces on which batman can operate. After loading the module
batman advanced will scan your systems interfaces to search for
compatible interfaces. Once found, it will create subfolders in
the /sys directories of each supported interface, e.g.
# ls /sys/class/net/eth0/batman_adv/
# iface_status mesh_iface
If an interface does not have the "batman_adv" subfolder it prob-
ably is not supported. Not supported interfaces are: loopback,
non-ethernet and batman's own interfaces.
Note: After the module was loaded it will continuously watch for
new interfaces to verify the compatibility. There is no need to
reload the module if you plug your USB wifi adapter into your ma-
chine after batman advanced was initially loaded.
To activate a given interface simply write "bat0" into its
"mesh_iface" file inside the batman_adv subfolder:
# echo bat0 > /sys/class/net/eth0/batman_adv/mesh_iface
Repeat this step for all interfaces you wish to add. Now batman
starts using/broadcasting on this/these interface(s).
By reading the "iface_status" file you can check its status:
# cat /sys/class/net/eth0/batman_adv/iface_status
# active
To deactivate an interface you have to write "none" into its
"mesh_iface" file:
# echo none > /sys/class/net/eth0/batman_adv/mesh_iface
All mesh wide settings can be found in batman's own interface
folder:
# ls /sys/class/net/bat0/mesh/
# aggregated_ogms bonding fragmentation orig_interval
# vis_mode
There is a special folder for debugging informations:
# ls /sys/kernel/debug/batman_adv/bat0/
# originators socket transtable_global transtable_local
# vis_data
Some of the files contain all sort of status information regard-
ing the mesh network. For example, you can view the table of
originators (mesh participants) with:
# cat /sys/kernel/debug/batman_adv/bat0/originators
Other files allow to change batman's behaviour to better fit your
requirements. For instance, you can check the current originator
interval (value in milliseconds which determines how often batman
sends its broadcast packets):
# cat /sys/class/net/bat0/mesh/orig_interval
# 1000
and also change its value:
# echo 3000 > /sys/class/net/bat0/mesh/orig_interval
In very mobile scenarios, you might want to adjust the originator
interval to a lower value. This will make the mesh more respon-
sive to topology changes, but will also increase the overhead.
USAGE
-----
To make use of your newly created mesh, batman advanced provides
a new interface "bat0" which you should use from this point on.
All interfaces added to batman advanced are not relevant any
longer because batman handles them for you. Basically, one "hands
over" the data by using the batman interface and batman will make
sure it reaches its destination.
The "bat0" interface can be used like any other regular inter-
face. It needs an IP address which can be either statically con-
figured or dynamically (by using DHCP or similar services):
# NodeA: ifconfig bat0 192.168.0.1
# NodeB: ifconfig bat0 192.168.0.2
# NodeB: ping 192.168.0.1
Note: In order to avoid problems remove all IP addresses previ-
ously assigned to interfaces now used by batman advanced, e.g.
# ifconfig eth0 0.0.0.0
VISUALIZATION
-------------
If you want topology visualization, at least one mesh node must
be configured as VIS-server:
# echo "server" > /sys/class/net/bat0/mesh/vis_mode
Each node is either configured as "server" or as "client" (de-
fault: "client"). Clients send their topology data to the server
next to them, and server synchronize with other servers. If there
is no server configured (default) within the mesh, no topology
information will be transmitted. With these "synchronizing
servers", there can be 1 or more vis servers sharing the same (or
at least very similar) data.
When configured as server, you can get a topology snapshot of
your mesh:
# cat /sys/kernel/debug/batman_adv/bat0/vis_data
This raw output is intended to be easily parsable and convertable
with other tools. Have a look at the batctl README if you want a
vis output in dot or json format for instance and how those out-
puts could then be visualised in an image.
The raw format consists of comma separated values per entry where
each entry is giving information about a certain source inter-
face. Each entry can/has to have the following values:
-> "mac" - mac address of an originator's source interface
(each line begins with it)
-> "TQ mac value" - src mac's link quality towards mac address
of a neighbor originator's interface which
is being used for routing
-> "HNA mac" - HNA announced by source mac
-> "PRIMARY" - this is a primary interface
-> "SEC mac" - secondary mac address of source
(requires preceding PRIMARY)
The TQ value has a range from 4 to 255 with 255 being the best.
The HNA entries are showing which hosts are connected to the mesh
via bat0 or being bridged into the mesh network. The PRIMARY/SEC
values are only applied on primary interfaces
LOGGING/DEBUGGING
-----------------
All error messages, warnings and information messages are sent to
the kernel log. Depending on your operating system distribution
this can be read in one of a number of ways. Try using the com-
mands: dmesg, logread, or looking in the files /var/log/kern.log
or /var/log/syslog. All batman-adv messages are prefixed with
"batman-adv:" So to see just these messages try
# dmesg | grep batman-adv
When investigating problems with your mesh network it is some-
times necessary to see more detail debug messages. This must be
enabled when compiling the batman-adv module. When building bat-
man-adv as part of kernel, use "make menuconfig" and enable the
option "B.A.T.M.A.N. debugging".
Those additional debug messages can be accessed using a special
file in debugfs
# cat /sys/kernel/debug/batman_adv/bat0/log
The additional debug output is by default disabled. It can be en-
abled during run time. Following log_levels are defined:
0 - All debug output disabled
1 - Enable messages related to routing / flooding / broadcasting
2 - Enable route or hna added / changed / deleted
3 - Enable all messages
The debug output can be changed at runtime using the file
/sys/class/net/bat0/mesh/log_level. e.g.
# echo 2 > /sys/class/net/bat0/mesh/log_level
will enable debug messages for when routes or HNAs change.
BATCTL
------
As batman advanced operates on layer 2 all hosts participating in
the virtual switch are completely transparent for all protocols
above layer 2. Therefore the common diagnosis tools do not work
as expected. To overcome these problems batctl was created. At
the moment the batctl contains ping, traceroute, tcpdump and
interfaces to the kernel module settings.
For more information, please see the manpage (man batctl).
batctl is available on http://www.open-mesh.org/
CONTACT
-------
Please send us comments, experiences, questions, anything :)
IRC: #batman on irc.freenode.org
Mailing-list: b.a.t.m.a.n@b.a.t.m.a.n@lists.open-mesh.org
(optional subscription at
https://lists.open-mesh.org/mm/listinfo/b.a.t.m.a.n)
You can also contact the Authors:
Marek Lindner <lindner_marek@yahoo.de>
Simon Wunderlich <siwu@hrz.tu-chemnitz.de>

View File

@ -47,6 +47,26 @@ http://linux-net.osdl.org/index.php/DCCP_Testing#Experimental_DCCP_source_tree
Socket options
==============
DCCP_SOCKOPT_QPOLICY_ID sets the dequeuing policy for outgoing packets. It takes
a policy ID as argument and can only be set before the connection (i.e. changes
during an established connection are not supported). Currently, two policies are
defined: the "simple" policy (DCCPQ_POLICY_SIMPLE), which does nothing special,
and a priority-based variant (DCCPQ_POLICY_PRIO). The latter allows to pass an
u32 priority value as ancillary data to sendmsg(), where higher numbers indicate
a higher packet priority (similar to SO_PRIORITY). This ancillary data needs to
be formatted using a cmsg(3) message header filled in as follows:
cmsg->cmsg_level = SOL_DCCP;
cmsg->cmsg_type = DCCP_SCM_PRIORITY;
cmsg->cmsg_len = CMSG_LEN(sizeof(uint32_t)); /* or CMSG_LEN(4) */
DCCP_SOCKOPT_QPOLICY_TXQLEN sets the maximum length of the output queue. A zero
value is always interpreted as unbounded queue length. If different from zero,
the interpretation of this parameter depends on the current dequeuing policy
(see above): the "simple" policy will enforce a fixed queue size by returning
EAGAIN, whereas the "prio" policy enforces a fixed queue length by dropping the
lowest-priority packet first. The default value for this parameter is
initialised from /proc/sys/net/dccp/default/tx_qlen.
DCCP_SOCKOPT_SERVICE sets the service. The specification mandates use of
service codes (RFC 4340, sec. 8.1.2); if this socket option is not set,
the socket will fall back to 0 (which means that no meaningful service code

View File

@ -72,7 +72,7 @@ Tx Descriptors: Number of transmit descriptors. A transmit descriptor is a data
ethtool -G eth? tx n, where n is the number of desired tx descriptors.
Speed/Duplex: The driver auto-negotiates the link speed and duplex settings by
default. Ethtool can be used as follows to force speed/duplex.
default. The ethtool utility can be used as follows to force speed/duplex.
ethtool -s eth? autoneg off speed {10|100} duplex {full|half}
@ -126,30 +126,21 @@ Additional Configurations
-------
The driver utilizes the ethtool interface for driver configuration and
diagnostics, as well as displaying statistical information. Ethtool
diagnostics, as well as displaying statistical information. The ethtool
version 1.6 or later is required for this functionality.
The latest release of ethtool can be found from
http://sourceforge.net/projects/gkernel.
NOTE: Ethtool 1.6 only supports a limited set of ethtool options. Support
for a more complete ethtool feature set can be enabled by upgrading
ethtool to ethtool-1.8.1.
http://ftp.kernel.org/pub/software/network/ethtool/
Enabling Wake on LAN* (WoL)
---------------------------
WoL is provided through the Ethtool* utility. Ethtool is included with Red
Hat* 8.0. For other Linux distributions, download and install Ethtool from
the following website: http://sourceforge.net/projects/gkernel.
For instructions on enabling WoL with Ethtool, refer to the Ethtool man page.
WoL is provided through the ethtool* utility. For instructions on enabling
WoL with ethtool, refer to the ethtool man page.
WoL will be enabled on the system during the next shut down or reboot. For
this driver version, in order to enable WoL, the e100 driver must be
loaded when shutting down or rebooting the system.
NAPI
----

View File

@ -79,7 +79,7 @@ InterruptThrottleRate
---------------------
(not supported on Intel(R) 82542, 82543 or 82544-based adapters)
Valid Range: 0,1,3,4,100-100000 (0=off, 1=dynamic, 3=dynamic conservative,
4=simplified balancing)
4=simplified balancing)
Default Value: 3
The driver can limit the amount of interrupts per second that the adapter
@ -124,8 +124,8 @@ InterruptThrottleRate is set to mode 1. In this mode, which operates
the same as mode 3, the InterruptThrottleRate will be increased stepwise to
70000 for traffic in class "Lowest latency".
In simplified mode the interrupt rate is based on the ratio of Tx and
Rx traffic. If the bytes per second rate is approximately equal, the
In simplified mode the interrupt rate is based on the ratio of TX and
RX traffic. If the bytes per second rate is approximately equal, the
interrupt rate will drop as low as 2000 interrupts per second. If the
traffic is mostly transmit or mostly receive, the interrupt rate could
be as high as 8000.
@ -245,7 +245,7 @@ NOTE: Depending on the available system resources, the request for a
TxDescriptorStep
----------------
Valid Range: 1 (use every Tx Descriptor)
4 (use every 4th Tx Descriptor)
4 (use every 4th Tx Descriptor)
Default Value: 1 (use every Tx Descriptor)
@ -312,7 +312,7 @@ Valid Range: 0-xxxxxxx (0=off)
Default Value: 256
Usage: insmod e1000.ko copybreak=128
Driver copies all packets below or equaling this size to a fresh Rx
Driver copies all packets below or equaling this size to a fresh RX
buffer before handing it up the stack.
This parameter is different than other parameters, in that it is a
@ -431,15 +431,15 @@ Additional Configurations
Ethtool
-------
The driver utilizes the ethtool interface for driver configuration and
diagnostics, as well as displaying statistical information. Ethtool
diagnostics, as well as displaying statistical information. The ethtool
version 1.6 or later is required for this functionality.
The latest release of ethtool can be found from
http://sourceforge.net/projects/gkernel.
http://ftp.kernel.org/pub/software/network/ethtool/
Enabling Wake on LAN* (WoL)
---------------------------
WoL is configured through the Ethtool* utility.
WoL is configured through the ethtool* utility.
WoL will be enabled on the system during the next shut down or reboot.
For this driver version, in order to enable WoL, the e1000 driver must be

View File

@ -1,5 +1,5 @@
Linux* Driver for Intel(R) Network Connection
===============================================================
=============================================
Intel Gigabit Linux driver.
Copyright(c) 1999 - 2010 Intel Corporation.
@ -61,6 +61,12 @@ per second, even if more packets have come in. This reduces interrupt
load on the system and can lower CPU utilization under heavy load,
but will increase latency as packets are not processed as quickly.
The default behaviour of the driver previously assumed a static
InterruptThrottleRate value of 8000, providing a good fallback value for
all traffic types, but lacking in small packet performance and latency.
The hardware can handle many more small packets per second however, and
for this reason an adaptive interrupt moderation algorithm was implemented.
The driver has two adaptive modes (setting 1 or 3) in which
it dynamically adjusts the InterruptThrottleRate value based on the traffic
that it receives. After determining the type of incoming traffic in the last
@ -86,8 +92,8 @@ InterruptThrottleRate is set to mode 1. In this mode, which operates
the same as mode 3, the InterruptThrottleRate will be increased stepwise to
70000 for traffic in class "Lowest latency".
In simplified mode the interrupt rate is based on the ratio of Tx and
Rx traffic. If the bytes per second rate is approximately equal the
In simplified mode the interrupt rate is based on the ratio of TX and
RX traffic. If the bytes per second rate is approximately equal, the
interrupt rate will drop as low as 2000 interrupts per second. If the
traffic is mostly transmit or mostly receive, the interrupt rate could
be as high as 8000.
@ -177,7 +183,7 @@ Copybreak
Valid Range: 0-xxxxxxx (0=off)
Default Value: 256
Driver copies all packets below or equaling this size to a fresh Rx
Driver copies all packets below or equaling this size to a fresh RX
buffer before handing it up the stack.
This parameter is different than other parameters, in that it is a
@ -223,17 +229,17 @@ loading or enabling the driver, try disabling this feature.
WriteProtectNVM
---------------
Valid Range: 0-1
Default Value: 1 (enabled)
Valid Range: 0,1
Default Value: 1
Set the hardware to ignore all write/erase cycles to the GbE region in the
ICHx NVM (non-volatile memory). This feature can be disabled by the
WriteProtectNVM module parameter (enabled by default) only after a hardware
reset, but the machine must be power cycled before trying to enable writes.
Note: the kernel boot option iomem=relaxed may need to be set if the kernel
config option CONFIG_STRICT_DEVMEM=y, if the root user wants to write the
NVM from user space via ethtool.
If set to 1, configure the hardware to ignore all write/erase cycles to the
GbE region in the ICHx NVM (in order to prevent accidental corruption of the
NVM). This feature can be disabled by setting the parameter to 0 during initial
driver load.
NOTE: The machine must be power cycled (full off/on) when enabling NVM writes
via setting the parameter to zero. Once the NVM has been locked (via the
parameter at 1 when the driver loads) it cannot be unlocked except via power
cycle.
Additional Configurations
=========================
@ -259,32 +265,30 @@ Additional Configurations
- Some adapters limit Jumbo Frames sized packets to a maximum of
4096 bytes and some adapters do not support Jumbo Frames.
Ethtool
-------
The driver utilizes the ethtool interface for driver configuration and
diagnostics, as well as displaying statistical information. We
strongly recommend downloading the latest version of Ethtool at:
strongly recommend downloading the latest version of ethtool at:
http://sourceforge.net/projects/gkernel.
http://ftp.kernel.org/pub/software/network/ethtool/
Speed and Duplex
----------------
Speed and Duplex are configured through the Ethtool* utility. For
instructions, refer to the Ethtool man page.
Speed and Duplex are configured through the ethtool* utility. For
instructions, refer to the ethtool man page.
Enabling Wake on LAN* (WoL)
---------------------------
WoL is configured through the Ethtool* utility. For instructions on
enabling WoL with Ethtool, refer to the Ethtool man page.
WoL is configured through the ethtool* utility. For instructions on
enabling WoL with ethtool, refer to the ethtool man page.
WoL will be enabled on the system during the next shut down or reboot.
For this driver version, in order to enable WoL, the e1000e driver must be
loaded when shutting down or rebooting the system.
In most cases Wake On LAN is only supported on port A for multiple port
adapters. To verify if a port supports Wake on LAN run ethtool eth<X>.
adapters. To verify if a port supports Wake on Lan run ethtool eth<X>.
Support
=======

View File

@ -36,6 +36,7 @@ Default Value: 0
This parameter adds support for SR-IOV. It causes the driver to spawn up to
max_vfs worth of virtual function.
Additional Configurations
=========================
@ -60,15 +61,16 @@ Additional Configurations
Ethtool
-------
The driver utilizes the ethtool interface for driver configuration and
diagnostics, as well as displaying statistical information.
diagnostics, as well as displaying statistical information. The latest
version of ethtool can be found at:
http://sourceforge.net/projects/gkernel.
http://ftp.kernel.org/pub/software/network/ethtool/
Enabling Wake on LAN* (WoL)
---------------------------
WoL is configured through the Ethtool* utility.
WoL is configured through the ethtool* utility.
For instructions on enabling WoL with Ethtool, refer to the Ethtool man page.
For instructions on enabling WoL with ethtool, refer to the ethtool man page.
WoL will be enabled on the system during the next shut down or reboot.
For this driver version, in order to enable WoL, the igb driver must be
@ -91,31 +93,6 @@ Additional Configurations
REQUIREMENTS: MSI-X support is required for Multiqueue. If MSI-X is not
found, the system will fallback to MSI or to Legacy interrupts.
LRO
---
Large Receive Offload (LRO) is a technique for increasing inbound throughput
of high-bandwidth network connections by reducing CPU overhead. It works by
aggregating multiple incoming packets from a single stream into a larger
buffer before they are passed higher up the networking stack, thus reducing
the number of packets that have to be processed. LRO combines multiple
Ethernet frames into a single receive in the stack, thereby potentially
decreasing CPU utilization for receives.
NOTE: You need to have inet_lro enabled via either the CONFIG_INET_LRO or
CONFIG_INET_LRO_MODULE kernel config option. Additionally, if
CONFIG_INET_LRO_MODULE is used, the inet_lro module needs to be loaded
before the igb driver.
You can verify that the driver is using LRO by looking at these counters in
Ethtool:
lro_aggregated - count of total packets that were combined
lro_flushed - counts the number of packets flushed out of LRO
lro_no_desc - counts the number of times an LRO descriptor was not available
for the LRO packet
NOTE: IPv6 and UDP are not supported by LRO.
Support
=======

View File

@ -58,9 +58,11 @@ Additional Configurations
Ethtool
-------
The driver utilizes the ethtool interface for driver configuration and
diagnostics, as well as displaying statistical information.
diagnostics, as well as displaying statistical information. The ethtool
version 3.0 or later is required for this functionality, although we
strongly recommend downloading the latest version at:
http://sourceforge.net/projects/gkernel.
http://ftp.kernel.org/pub/software/network/ethtool/
Support
=======

View File

@ -11,7 +11,9 @@ ip_forward - BOOLEAN
for routers)
ip_default_ttl - INTEGER
default 64
Default value of TTL field (Time To Live) for outgoing (but not
forwarded) IP packets. Should be between 1 and 255 inclusive.
Default: 64 (as recommended by RFC1700)
ip_no_pmtu_disc - BOOLEAN
Disable Path MTU Discovery.
@ -708,10 +710,28 @@ igmp_max_memberships - INTEGER
Change the maximum number of multicast groups we can subscribe to.
Default: 20
conf/interface/* changes special settings per interface (where "interface" is
the name of your network interface)
conf/all/* is special, changes the settings for all interfaces
Theoretical maximum value is bounded by having to send a membership
report in a single datagram (i.e. the report can't span multiple
datagrams, or risk confusing the switch and leaving groups you don't
intend to).
The number of supported groups 'M' is bounded by the number of group
report entries you can fit into a single datagram of 65535 bytes.
M = 65536-sizeof (ip header)/(sizeof(Group record))
Group records are variable length, with a minimum of 12 bytes.
So net.ipv4.igmp_max_memberships should not be set higher than:
(65536-24) / 12 = 5459
The value 5459 assumes no IP header options, so in practice
this number may be lower.
conf/interface/* changes special settings per interface (where
"interface" is the name of your network interface)
conf/all/* is special, changes the settings for all interfaces
log_martians - BOOLEAN
Log packets with impossible addresses to kernel log.

View File

@ -309,15 +309,15 @@ Additional Configurations
Ethtool
-------
The driver utilizes the ethtool interface for driver configuration and
diagnostics, as well as displaying statistical information. Ethtool
diagnostics, as well as displaying statistical information. The ethtool
version 1.6 or later is required for this functionality.
The latest release of ethtool can be found from
http://sourceforge.net/projects/gkernel
http://ftp.kernel.org/pub/software/network/ethtool/
NOTE: Ethtool 1.6 only supports a limited set of ethtool options. Support
for a more complete ethtool feature set can be enabled by upgrading
to the latest version.
NOTE: The ethtool version 1.6 only supports a limited set of ethtool options.
Support for a more complete ethtool feature set can be enabled by
upgrading to the latest version.
NAPI

View File

@ -1,107 +1,126 @@
Linux Base Driver for 10 Gigabit PCI Express Intel(R) Network Connection
========================================================================
March 10, 2009
Intel Gigabit Linux driver.
Copyright(c) 1999 - 2010 Intel Corporation.
Contents
========
- In This Release
- Identifying Your Adapter
- Building and Installation
- Additional Configurations
- Performance Tuning
- Known Issues
- Support
In This Release
===============
This file describes the ixgbe Linux Base Driver for the 10 Gigabit PCI
Express Intel(R) Network Connection. This driver includes support for
Itanium(R)2-based systems.
For questions related to hardware requirements, refer to the documentation
supplied with your 10 Gigabit adapter. All hardware requirements listed apply
to use with Linux.
The following features are available in this kernel:
- Native VLANs
- Channel Bonding (teaming)
- SNMP
- Generic Receive Offload
- Data Center Bridging
Channel Bonding documentation can be found in the Linux kernel source:
/Documentation/networking/bonding.txt
Ethtool, lspci, and ifconfig can be used to display device and driver
specific information.
Identifying Your Adapter
========================
This driver supports devices based on the 82598 controller and the 82599
controller.
The driver in this release is compatible with 82598 and 82599-based Intel
Network Connections.
For specific information on identifying which adapter you have, please visit:
For more information on how to identify your adapter, go to the Adapter &
Driver ID Guide at:
http://support.intel.com/support/network/sb/CS-008441.htm
http://support.intel.com/support/network/sb/CS-012904.htm
SFP+ Devices with Pluggable Optics
----------------------------------
82599-BASED ADAPTERS
NOTES: If your 82599-based Intel(R) Network Adapter came with Intel optics, or
is an Intel(R) Ethernet Server Adapter X520-2, then it only supports Intel
optics and/or the direct attach cables listed below.
When 82599-based SFP+ devices are connected back to back, they should be set to
the same Speed setting via ethtool. Results may vary if you mix speed settings.
82598-based adapters support all passive direct attach cables that comply
with SFF-8431 v4.1 and SFF-8472 v10.4 specifications. Active direct attach
cables are not supported.
Supplier Type Part Numbers
SR Modules
Intel DUAL RATE 1G/10G SFP+ SR (bailed) FTLX8571D3BCV-IT
Intel DUAL RATE 1G/10G SFP+ SR (bailed) AFBR-703SDDZ-IN1
Intel DUAL RATE 1G/10G SFP+ SR (bailed) AFBR-703SDZ-IN2
LR Modules
Intel DUAL RATE 1G/10G SFP+ LR (bailed) FTLX1471D3BCV-IT
Intel DUAL RATE 1G/10G SFP+ LR (bailed) AFCT-701SDDZ-IN1
Intel DUAL RATE 1G/10G SFP+ LR (bailed) AFCT-701SDZ-IN2
The following is a list of 3rd party SFP+ modules and direct attach cables that
have received some testing. Not all modules are applicable to all devices.
Supplier Type Part Numbers
Finisar SFP+ SR bailed, 10g single rate FTLX8571D3BCL
Avago SFP+ SR bailed, 10g single rate AFBR-700SDZ
Finisar SFP+ LR bailed, 10g single rate FTLX1471D3BCL
Finisar DUAL RATE 1G/10G SFP+ SR (No Bail) FTLX8571D3QCV-IT
Avago DUAL RATE 1G/10G SFP+ SR (No Bail) AFBR-703SDZ-IN1
Finisar DUAL RATE 1G/10G SFP+ LR (No Bail) FTLX1471D3QCV-IT
Avago DUAL RATE 1G/10G SFP+ LR (No Bail) AFCT-701SDZ-IN1
Finistar 1000BASE-T SFP FCLF8522P2BTL
Avago 1000BASE-T SFP ABCU-5710RZ
82599-based adapters support all passive and active limiting direct attach
cables that comply with SFF-8431 v4.1 and SFF-8472 v10.4 specifications.
Laser turns off for SFP+ when ifconfig down
-------------------------------------------
"ifconfig down" turns off the laser for 82599-based SFP+ fiber adapters.
"ifconfig up" turns on the later.
Building and Installation
=========================
82598-BASED ADAPTERS
select m for "Intel(R) 10GbE PCI Express adapters support" located at:
Location:
-> Device Drivers
-> Network device support (NETDEVICES [=y])
-> Ethernet (10000 Mbit) (NETDEV_10000 [=y])
NOTES for 82598-Based Adapters:
- Intel(R) Network Adapters that support removable optical modules only support
their original module type (i.e., the Intel(R) 10 Gigabit SR Dual Port
Express Module only supports SR optical modules). If you plug in a different
type of module, the driver will not load.
- Hot Swapping/hot plugging optical modules is not supported.
- Only single speed, 10 gigabit modules are supported.
- LAN on Motherboard (LOMs) may support DA, SR, or LR modules. Other module
types are not supported. Please see your system documentation for details.
1. make modules & make modules_install
The following is a list of 3rd party SFP+ modules and direct attach cables that
have received some testing. Not all modules are applicable to all devices.
2. Load the module:
Supplier Type Part Numbers
# modprobe ixgbe
Finisar SFP+ SR bailed, 10g single rate FTLX8571D3BCL
Avago SFP+ SR bailed, 10g single rate AFBR-700SDZ
Finisar SFP+ LR bailed, 10g single rate FTLX1471D3BCL
The insmod command can be used if the full
path to the driver module is specified. For example:
82598-based adapters support all passive direct attach cables that comply
with SFF-8431 v4.1 and SFF-8472 v10.4 specifications. Active direct attach
cables are not supported.
insmod /lib/modules/<KERNEL VERSION>/kernel/drivers/net/ixgbe/ixgbe.ko
With 2.6 based kernels also make sure that older ixgbe drivers are
removed from the kernel, before loading the new module:
Flow Control
------------
Ethernet Flow Control (IEEE 802.3x) can be configured with ethtool to enable
receiving and transmitting pause frames for ixgbe. When TX is enabled, PAUSE
frames are generated when the receive packet buffer crosses a predefined
threshold. When rx is enabled, the transmit unit will halt for the time delay
specified when a PAUSE frame is received.
rmmod ixgbe; modprobe ixgbe
Flow Control is enabled by default. If you want to disable a flow control
capable link partner, use ethtool:
3. Assign an IP address to the interface by entering the following, where
x is the interface number:
ifconfig ethx <IP_address>
4. Verify that the interface works. Enter the following, where <IP_address>
is the IP address for another machine on the same subnet as the interface
that is being tested:
ping <IP_address>
ethtool -A eth? autoneg off RX off TX off
NOTE: For 82598 backplane cards entering 1 gig mode, flow control default
behavior is changed to off. Flow control in 1 gig mode on these devices can
lead to Tx hangs.
Additional Configurations
=========================
Viewing Link Messages
---------------------
Link messages will not be displayed to the console if the distribution is
restricting system messages. In order to see network driver link messages on
your console, set dmesg to eight by entering the following:
dmesg -n 8
NOTE: This setting is not saved across reboots.
Jumbo Frames
------------
The driver supports Jumbo Frames for all adapters. Jumbo Frames support is
@ -123,13 +142,8 @@ Additional Configurations
other protocols besides TCP. It's also safe to use with configurations that
are problematic for LRO, namely bridging and iSCSI.
GRO is enabled by default in the driver. Future versions of ethtool will
support disabling and re-enabling GRO on the fly.
Data Center Bridging, aka DCB
-----------------------------
DCB is a configuration Quality of Service implementation in hardware.
It uses the VLAN priority tag (802.1p) to filter traffic. That means
that there are 8 different priorities that traffic can be filtered into.
@ -163,24 +177,71 @@ Additional Configurations
http://e1000.sf.net
Ethtool
-------
The driver utilizes the ethtool interface for driver configuration and
diagnostics, as well as displaying statistical information. Ethtool
version 3.0 or later is required for this functionality.
diagnostics, as well as displaying statistical information. The latest
ethtool version is required for this functionality.
The latest release of ethtool can be found from
http://sourceforge.net/projects/gkernel.
http://ftp.kernel.org/pub/software/network/ethtool/
NAPI
FCoE
----
This release of the ixgbe driver contains new code to enable users to use
Fiber Channel over Ethernet (FCoE) and Data Center Bridging (DCB)
functionality that is supported by the 82598-based hardware. This code has
no default effect on the regular driver operation, and configuring DCB and
FCoE is outside the scope of this driver README. Refer to
http://www.open-fcoe.org/ for FCoE project information and contact
e1000-eedc@lists.sourceforge.net for DCB information.
NAPI (Rx polling mode) is supported in the ixgbe driver. NAPI is enabled
by default in the driver.
MAC and VLAN anti-spoofing feature
----------------------------------
When a malicious driver attempts to send a spoofed packet, it is dropped by
the hardware and not transmitted. An interrupt is sent to the PF driver
notifying it of the spoof attempt.
See www.cyberus.ca/~hadi/usenix-paper.tgz for more information on NAPI.
When a spoofed packet is detected the PF driver will send the following
message to the system log (displayed by the "dmesg" command):
Spoof event(s) detected on VF (n)
Where n=the VF that attempted to do the spoofing.
Performance Tuning
==================
An excellent article on performance tuning can be found at:
http://www.redhat.com/promo/summit/2008/downloads/pdf/Thursday/Mark_Wagner.pdf
Known Issues
============
Enabling SR-IOV in a 32-bit Microsoft* Windows* Server 2008 Guest OS using
Intel (R) 82576-based GbE or Intel (R) 82599-based 10GbE controller under KVM
-----------------------------------------------------------------------------
KVM Hypervisor/VMM supports direct assignment of a PCIe device to a VM. This
includes traditional PCIe devices, as well as SR-IOV-capable devices using
Intel 82576-based and 82599-based controllers.
While direct assignment of a PCIe device or an SR-IOV Virtual Function (VF)
to a Linux-based VM running 2.6.32 or later kernel works fine, there is a
known issue with Microsoft Windows Server 2008 VM that results in a "yellow
bang" error. This problem is within the KVM VMM itself, not the Intel driver,
or the SR-IOV logic of the VMM, but rather that KVM emulates an older CPU
model for the guests, and this older CPU model does not support MSI-X
interrupts, which is a requirement for Intel SR-IOV.
If you wish to use the Intel 82576 or 82599-based controllers in SR-IOV mode
with KVM and a Microsoft Windows Server 2008 guest try the following
workaround. The workaround is to tell KVM to emulate a different model of CPU
when using qemu to create the KVM guest:
"-cpu qemu64,model=13"
Support

View File

@ -35,10 +35,6 @@ Driver ID Guide at:
Known Issues/Troubleshooting
============================
Unloading Physical Function (PF) Driver Causes System Reboots When VM is
Running and VF is Loaded on the VM
------------------------------------------------------------------------
Do not unload the PF driver (ixgbe) while VFs are assigned to guests.
Support
=======

View File

@ -7,7 +7,7 @@ This is the driver for the MAC 10/100/1000 on-chip Ethernet controllers
(Synopsys IP blocks); it has been fully tested on STLinux platforms.
Currently this network device driver is for all STM embedded MAC/GMAC
(7xxx SoCs).
(7xxx SoCs). Other platforms start using it i.e. ARM SPEAr.
DWC Ether MAC 10/100/1000 Universal version 3.41a and DWC Ether MAC 10/100
Universal version 4.0 have been used for developing the first code
@ -95,9 +95,14 @@ Several information came from the platform; please refer to the
driver's Header file in include/linux directory.
struct plat_stmmacenet_data {
int bus_id;
int pbl;
int has_gmac;
int bus_id;
int pbl;
int clk_csr;
int has_gmac;
int enh_desc;
int tx_coe;
int bugged_jumbo;
int pmt;
void (*fix_mac_speed)(void *priv, unsigned int speed);
void (*bus_setup)(unsigned long ioaddr);
#ifdef CONFIG_STM_DRIVERS
@ -114,6 +119,12 @@ Where:
registers (on STM platforms);
- has_gmac: GMAC core is on board (get it at run-time in the next step);
- bus_id: bus identifier.
- tx_coe: core is able to perform the tx csum in HW.
- enh_desc: if sets the MAC will use the enhanced descriptor structure.
- clk_csr: CSR Clock range selection.
- bugged_jumbo: some HWs are not able to perform the csum in HW for
over-sized frames due to limited buffer sizes. Setting this
flag the csum will be done in SW on JUMBO frames.
struct plat_stmmacphy_data {
int bus_id;
@ -131,13 +142,28 @@ Where:
- interface: physical MII interface mode;
- phy_reset: hook to reset HW function.
SOURCES:
- Kconfig
- Makefile
- stmmac_main.c: main network device driver;
- stmmac_mdio.c: mdio functions;
- stmmac_ethtool.c: ethtool support;
- stmmac_timer.[ch]: timer code used for mitigating the driver dma interrupts
Only tested on ST40 platforms based.
- stmmac.h: private driver structure;
- common.h: common definitions and VFTs;
- descs.h: descriptor structure definitions;
- dwmac1000_core.c: GMAC core functions;
- dwmac1000_dma.c: dma functions for the GMAC chip;
- dwmac1000.h: specific header file for the GMAC;
- dwmac100_core: MAC 100 core and dma code;
- dwmac100_dma.c: dma funtions for the MAC chip;
- dwmac1000.h: specific header file for the MAC;
- dwmac_lib.c: generic DMA functions shared among chips
- enh_desc.c: functions for handling enhanced descriptors
- norm_desc.c: functions for handling normal descriptors
TODO:
- Continue to make the driver more generic and suitable for other Synopsys
Ethernet controllers used on other architectures (i.e. ARM).
- 10G controllers are not supported.
- MAC uses Normal descriptors and GMAC uses enhanced ones.
This is a limit that should be reviewed. MAC could want to
use the enhanced structure.
- Checksumming: Rx/Tx csum is done in HW in case of GMAC only.
- XGMAC controller is not supported.
- Review the timer optimisation code to use an embedded device that seems to be
available in new chip generations.

View File

@ -379,8 +379,8 @@ drivers/base/power/runtime.c and include/linux/pm_runtime.h:
zero)
bool pm_runtime_suspended(struct device *dev);
- return true if the device's runtime PM status is 'suspended', or false
otherwise
- return true if the device's runtime PM status is 'suspended' and its
'power.disable_depth' field is equal to zero, or false otherwise
void pm_runtime_allow(struct device *dev);
- set the power.runtime_auto flag for the device and decrease its usage

View File

@ -1044,9 +1044,9 @@ Details:
/**
* queuecommand - queue scsi command, invoke 'done' on completion
* queuecommand - queue scsi command, invoke scp->scsi_done on completion
* @shost: pointer to the scsi host object
* @scp: pointer to scsi command object
* @done: function pointer to be invoked on completion
*
* Returns 0 on success.
*
@ -1074,42 +1074,45 @@ Details:
*
* Other types of errors that are detected immediately may be
* flagged by setting scp->result to an appropriate value,
* invoking the 'done' callback, and then returning 0 from this
* function. If the command is not performed immediately (and the
* LLD is starting (or will start) the given command) then this
* function should place 0 in scp->result and return 0.
* invoking the scp->scsi_done callback, and then returning 0
* from this function. If the command is not performed
* immediately (and the LLD is starting (or will start) the given
* command) then this function should place 0 in scp->result and
* return 0.
*
* Command ownership. If the driver returns zero, it owns the
* command and must take responsibility for ensuring the 'done'
* callback is executed. Note: the driver may call done before
* returning zero, but after it has called done, it may not
* return any value other than zero. If the driver makes a
* non-zero return, it must not execute the command's done
* callback at any time.
* command and must take responsibility for ensuring the
* scp->scsi_done callback is executed. Note: the driver may
* call scp->scsi_done before returning zero, but after it has
* called scp->scsi_done, it may not return any value other than
* zero. If the driver makes a non-zero return, it must not
* execute the command's scsi_done callback at any time.
*
* Locks: struct Scsi_Host::host_lock held on entry (with "irqsave")
* and is expected to be held on return.
* Locks: up to and including 2.6.36, struct Scsi_Host::host_lock
* held on entry (with "irqsave") and is expected to be
* held on return. From 2.6.37 onwards, queuecommand is
* called without any locks held.
*
* Calling context: in interrupt (soft irq) or process context
*
* Notes: This function should be relatively fast. Normally it will
* not wait for IO to complete. Hence the 'done' callback is invoked
* (often directly from an interrupt service routine) some time after
* this function has returned. In some cases (e.g. pseudo adapter
* drivers that manufacture the response to a SCSI INQUIRY)
* the 'done' callback may be invoked before this function returns.
* If the 'done' callback is not invoked within a certain period
* the SCSI mid level will commence error processing.
* If a status of CHECK CONDITION is placed in "result" when the
* 'done' callback is invoked, then the LLD driver should
* perform autosense and fill in the struct scsi_cmnd::sense_buffer
* Notes: This function should be relatively fast. Normally it
* will not wait for IO to complete. Hence the scp->scsi_done
* callback is invoked (often directly from an interrupt service
* routine) some time after this function has returned. In some
* cases (e.g. pseudo adapter drivers that manufacture the
* response to a SCSI INQUIRY) the scp->scsi_done callback may be
* invoked before this function returns. If the scp->scsi_done
* callback is not invoked within a certain period the SCSI mid
* level will commence error processing. If a status of CHECK
* CONDITION is placed in "result" when the scp->scsi_done
* callback is invoked, then the LLD driver should perform
* autosense and fill in the struct scsi_cmnd::sense_buffer
* array. The scsi_cmnd::sense_buffer array is zeroed prior to
* the mid level queuing a command to an LLD.
*
* Defined in: LLD
**/
int queuecommand(struct scsi_cmnd * scp,
void (*done)(struct scsi_cmnd *))
int queuecommand(struct Scsi_Host *shost, struct scsi_cmnd * scp)
/**

View File

@ -0,0 +1,90 @@
Subsystem Trace Points: power
The power tracing system captures events related to power transitions
within the kernel. Broadly speaking there are three major subheadings:
o Power state switch which reports events related to suspend (S-states),
cpuidle (C-states) and cpufreq (P-states)
o System clock related changes
o Power domains related changes and transitions
This document describes what each of the tracepoints is and why they
might be useful.
Cf. include/trace/events/power.h for the events definitions.
1. Power state switch events
============================
1.1 New trace API
-----------------
A 'cpu' event class gathers the CPU-related events: cpuidle and
cpufreq.
cpu_idle "state=%lu cpu_id=%lu"
cpu_frequency "state=%lu cpu_id=%lu"
A suspend event is used to indicate the system going in and out of the
suspend mode:
machine_suspend "state=%lu"
Note: the value of '-1' or '4294967295' for state means an exit from the current state,
i.e. trace_cpu_idle(4, smp_processor_id()) means that the system
enters the idle state 4, while trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id())
means that the system exits the previous idle state.
The event which has 'state=4294967295' in the trace is very important to the user
space tools which are using it to detect the end of the current state, and so to
correctly draw the states diagrams and to calculate accurate statistics etc.
1.2 DEPRECATED trace API
------------------------
A new Kconfig option CONFIG_EVENT_POWER_TRACING_DEPRECATED with the default value of
'y' has been created. This allows the legacy trace power API to be used conjointly
with the new trace API.
The Kconfig option, the old trace API (in include/trace/events/power.h) and the
old trace points will disappear in a future release (namely 2.6.41).
power_start "type=%lu state=%lu cpu_id=%lu"
power_frequency "type=%lu state=%lu cpu_id=%lu"
power_end "cpu_id=%lu"
The 'type' parameter takes one of those macros:
. POWER_NONE = 0,
. POWER_CSTATE = 1, /* C-State */
. POWER_PSTATE = 2, /* Fequency change or DVFS */
The 'state' parameter is set depending on the type:
. Target C-state for type=POWER_CSTATE,
. Target frequency for type=POWER_PSTATE,
power_end is used to indicate the exit of a state, corresponding to the latest
power_start event.
2. Clocks events
================
The clock events are used for clock enable/disable and for
clock rate change.
clock_enable "%s state=%lu cpu_id=%lu"
clock_disable "%s state=%lu cpu_id=%lu"
clock_set_rate "%s state=%lu cpu_id=%lu"
The first parameter gives the clock name (e.g. "gpio1_iclk").
The second parameter is '1' for enable, '0' for disable, the target
clock rate for set_rate.
3. Power domains events
=======================
The power domain events are used for power domains transitions
power_domain_target "%s state=%lu cpu_id=%lu"
The first parameter gives the power domain name (e.g. "mpu_pwrdm").
The second parameter is the power domain target state.

View File

@ -373,9 +373,18 @@ EVENT_PROCESS:
print " $regex_lru_isolate/o\n";
next;
}
my $isolate_mode = $1;
my $nr_scanned = $4;
my $nr_contig_dirty = $7;
$perprocesspid{$process_pid}->{HIGH_NR_SCANNED} += $nr_scanned;
# To closer match vmstat scanning statistics, only count isolate_both
# and isolate_inactive as scanning. isolate_active is rotation
# isolate_inactive == 0
# isolate_active == 1
# isolate_both == 2
if ($isolate_mode != 1) {
$perprocesspid{$process_pid}->{HIGH_NR_SCANNED} += $nr_scanned;
}
$perprocesspid{$process_pid}->{HIGH_NR_CONTIG_DIRTY} += $nr_contig_dirty;
} elsif ($tracepoint eq "mm_vmscan_lru_shrink_inactive") {
$details = $5;

View File

@ -600,6 +600,7 @@ Protocol: 2.07+
0x00000001 lguest
0x00000002 Xen
0x00000003 Moorestown MID
0x00000004 CE4100 TV Platform
Field name: hardware_subarch_data
Type: write (subarch-dependent)

View File

@ -166,9 +166,8 @@ F: drivers/serial/8250*
F: include/linux/serial_8250.h
8390 NETWORK DRIVERS [WD80x3/SMC-ELITE, SMC-ULTRA, NE2000, 3C503, etc.]
M: Paul Gortmaker <p_gortmaker@yahoo.com>
L: netdev@vger.kernel.org
S: Maintained
S: Orphan / Obsolete
F: drivers/net/*8390*
F: drivers/net/ax88796.c
@ -405,7 +404,7 @@ S: Supported
F: drivers/usb/gadget/amd5536udc.*
AMD GEODE PROCESSOR/CHIPSET SUPPORT
P: Jordan Crouse
P: Andres Salomon <dilinger@queued.net>
L: linux-geode@lists.infradead.org (moderated for non-subscribers)
W: http://www.amd.com/us-en/ConnectivitySolutions/TechnicalResources/0,,50_2334_2452_11363,00.html
S: Supported
@ -792,11 +791,14 @@ S: Maintained
ARM/NOMADIK ARCHITECTURE
M: Alessandro Rubini <rubini@unipv.it>
M: Linus Walleij <linus.walleij@stericsson.com>
M: STEricsson <STEricsson_nomadik_linux@list.st.com>
L: linux-arm-kernel@lists.infradead.org (moderated for non-subscribers)
S: Maintained
F: arch/arm/mach-nomadik/
F: arch/arm/plat-nomadik/
F: drivers/i2c/busses/i2c-nomadik.c
T: git git://git.kernel.org/pub/scm/linux/kernel/git/linusw/linux-stericsson.git
ARM/OPENMOKO NEO FREERUNNER (GTA02) MACHINE SUPPORT
M: Nelson Castillo <arhuaco@freaks-unidos.net>
@ -998,12 +1000,24 @@ F: drivers/i2c/busses/i2c-stu300.c
F: drivers/rtc/rtc-coh901331.c
F: drivers/watchdog/coh901327_wdt.c
F: drivers/dma/coh901318*
F: drivers/mfd/ab3100*
F: drivers/rtc/rtc-ab3100.c
F: drivers/rtc/rtc-coh901331.c
T: git git://git.kernel.org/pub/scm/linux/kernel/git/linusw/linux-stericsson.git
ARM/U8500 ARM ARCHITECTURE
ARM/Ux500 ARM ARCHITECTURE
M: Srinidhi Kasagar <srinidhi.kasagar@stericsson.com>
M: Linus Walleij <linus.walleij@stericsson.com>
L: linux-arm-kernel@lists.infradead.org (moderated for non-subscribers)
S: Maintained
F: arch/arm/mach-ux500/
F: drivers/dma/ste_dma40*
F: drivers/mfd/ab3550*
F: drivers/mfd/abx500*
F: drivers/mfd/ab8500*
F: drivers/mfd/stmpe*
F: drivers/rtc/rtc-ab8500.c
T: git git://git.kernel.org/pub/scm/linux/kernel/git/linusw/linux-stericsson.git
ARM/VFP SUPPORT
M: Russell King <linux@arm.linux.org.uk>
@ -1080,6 +1094,12 @@ S: Supported
F: Documentation/aoe/
F: drivers/block/aoe/
ATHEROS ATH GENERIC UTILITIES
M: "Luis R. Rodriguez" <lrodriguez@atheros.com>
L: linux-wireless@vger.kernel.org
S: Supported
F: drivers/net/wireless/ath/*
ATHEROS ATH5K WIRELESS DRIVER
M: Jiri Slaby <jirislaby@gmail.com>
M: Nick Kossifidis <mickflemm@gmail.com>
@ -1258,6 +1278,15 @@ S: Maintained
F: drivers/video/backlight/
F: include/linux/backlight.h
BATMAN ADVANCED
M: Marek Lindner <lindner_marek@yahoo.de>
M: Simon Wunderlich <siwu@hrz.tu-chemnitz.de>
M: Sven Eckelmann <sven@narfation.org>
L: b.a.t.m.a.n@lists.open-mesh.org
W: http://www.open-mesh.org/
S: Maintained
F: net/batman-adv/
BAYCOM/HDLCDRV DRIVERS FOR AX.25
M: Thomas Sailer <t.sailer@alumni.ethz.ch>
L: linux-hams@vger.kernel.org
@ -2797,6 +2826,10 @@ M: Thomas Gleixner <tglx@linutronix.de>
S: Maintained
F: Documentation/timers/
F: kernel/hrtimer.c
F: kernel/time/clockevents.c
F: kernel/time/tick*.*
F: kernel/time/timer_*.c
F include/linux/clockevents.h
F: include/linux/hrtimer.h
HIGH-SPEED SCC DRIVER FOR AX.25
@ -3120,6 +3153,8 @@ M: Alex Duyck <alexander.h.duyck@intel.com>
M: John Ronciak <john.ronciak@intel.com>
L: e1000-devel@lists.sourceforge.net
W: http://e1000.sourceforge.net/
T: git git://git.kernel.org/pub/scm/linux/kernel/git/jkirsher/net-2.6.git
T: git git://git.kernel.org/pub/scm/linux/kernel/git/jkirsher/net-next-2.6.git
S: Supported
F: Documentation/networking/e100.txt
F: Documentation/networking/e1000.txt
@ -4590,7 +4625,7 @@ F: drivers/pcmcia/
F: include/pcmcia/
PCNET32 NETWORK DRIVER
M: Don Fry <pcnet32@verizon.net>
M: Don Fry <pcnet32@frontier.com>
L: netdev@vger.kernel.org
S: Maintained
F: drivers/net/pcnet32.c
@ -4612,7 +4647,7 @@ PERFORMANCE EVENTS SUBSYSTEM
M: Peter Zijlstra <a.p.zijlstra@chello.nl>
M: Paul Mackerras <paulus@samba.org>
M: Ingo Molnar <mingo@elte.hu>
M: Arnaldo Carvalho de Melo <acme@redhat.com>
M: Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
S: Supported
F: kernel/perf_event*.c
F: include/linux/perf_event.h
@ -5037,7 +5072,7 @@ L: linux-wireless@vger.kernel.org
W: http://linuxwireless.org/
T: git git://git.kernel.org/pub/scm/linux/kernel/git/linville/wireless-testing.git
S: Maintained
F: drivers/net/wireless/rtl818x/rtl8180*
F: drivers/net/wireless/rtl818x/rtl8180/
RTL8187 WIRELESS DRIVER
M: Herton Ronaldo Krzesinski <herton@mandriva.com.br>
@ -5047,7 +5082,17 @@ L: linux-wireless@vger.kernel.org
W: http://linuxwireless.org/
T: git git://git.kernel.org/pub/scm/linux/kernel/git/linville/wireless-testing.git
S: Maintained
F: drivers/net/wireless/rtl818x/rtl8187*
F: drivers/net/wireless/rtl818x/rtl8187/
RTL8192CE WIRELESS DRIVER
M: Larry Finger <Larry.Finger@lwfinger.net>
M: Chaoming Li <chaoming_li@realsil.com.cn>
L: linux-wireless@vger.kernel.org
W: http://linuxwireless.org/
T: git git://git.kernel.org/pub/scm/linux/kernel/git/linville/wireless-testing.git
S: Maintained
F: drivers/net/wireless/rtlwifi/
F: drivers/net/wireless/rtlwifi/rtl8192ce/
S3 SAVAGE FRAMEBUFFER DRIVER
M: Antonino Daplas <adaplas@gmail.com>
@ -5127,6 +5172,18 @@ L: alsa-devel@alsa-project.org (moderated for non-subscribers)
S: Supported
F: sound/soc/s3c24xx
TIMEKEEPING, NTP
M: John Stultz <johnstul@us.ibm.com>
M: Thomas Gleixner <tglx@linutronix.de>
S: Supported
F: include/linux/clocksource.h
F: include/linux/time.h
F: include/linux/timex.h
F: include/linux/timekeeping.h
F: kernel/time/clocksource.c
F: kernel/time/time*.c
F: kernel/time/ntp.c
TLG2300 VIDEO4LINUX-2 DRIVER
M: Huang Shijie <shijie8@gmail.com>
M: Kang Yong <kangyong@telegent.com>

View File

@ -1,7 +1,7 @@
VERSION = 2
PATCHLEVEL = 6
SUBLEVEL = 37
EXTRAVERSION = -rc6
EXTRAVERSION =
NAME = Flesh-Eating Bats with Fangs
# *DOCUMENTATION*

View File

@ -175,4 +175,7 @@ config HAVE_PERF_EVENTS_NMI
config HAVE_ARCH_JUMP_LABEL
bool
config HAVE_ARCH_MUTEX_CPU_RELAX
bool
source "kernel/gcov/Kconfig"

View File

@ -1,10 +1,4 @@
#ifndef __ASM_ALPHA_PERF_EVENT_H
#define __ASM_ALPHA_PERF_EVENT_H
#ifdef CONFIG_PERF_EVENTS
extern void init_hw_perf_events(void);
#else
static inline void init_hw_perf_events(void) { }
#endif
#endif /* __ASM_ALPHA_PERF_EVENT_H */

View File

@ -112,8 +112,6 @@ init_IRQ(void)
wrent(entInt, 0);
alpha_mv.init_irq();
init_hw_perf_events();
}
/*

View File

@ -14,6 +14,7 @@
#include <linux/kernel.h>
#include <linux/kdebug.h>
#include <linux/mutex.h>
#include <linux/init.h>
#include <asm/hwrpb.h>
#include <asm/atomic.h>
@ -863,13 +864,13 @@ static void alpha_perf_event_irq_handler(unsigned long la_ptr,
/*
* Init call to initialise performance events at kernel startup.
*/
void __init init_hw_perf_events(void)
int __init init_hw_perf_events(void)
{
pr_info("Performance events: ");
if (!supported_cpu()) {
pr_cont("No support for your CPU.\n");
return;
return 0;
}
pr_cont("Supported CPU type!\n");
@ -881,6 +882,8 @@ void __init init_hw_perf_events(void)
/* And set up PMU specification */
alpha_pmu = &ev67_pmu;
perf_pmu_register(&pmu);
}
perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
return 0;
}
early_initcall(init_hw_perf_events);

View File

@ -2,6 +2,7 @@ config ARM
bool
default y
select HAVE_AOUT
select HAVE_DMA_API_DEBUG
select HAVE_IDE
select HAVE_MEMBLOCK
select RTC_LIB
@ -14,6 +15,7 @@ config ARM
select HAVE_FUNCTION_TRACER if (!XIP_KERNEL)
select HAVE_FTRACE_MCOUNT_RECORD if (!XIP_KERNEL)
select HAVE_DYNAMIC_FTRACE if (!XIP_KERNEL)
select HAVE_FUNCTION_GRAPH_TRACER if (!THUMB2_KERNEL)
select HAVE_GENERIC_DMA_COHERENT
select HAVE_KERNEL_GZIP
select HAVE_KERNEL_LZO
@ -23,6 +25,7 @@ config ARM
select PERF_USE_VMALLOC
select HAVE_REGS_AND_STACK_ACCESS_API
select HAVE_HW_BREAKPOINT if (PERF_EVENTS && (CPU_V6 || CPU_V7))
select HAVE_C_RECORDMCOUNT
help
The ARM series is a line of low-power-consumption RISC chip designs
licensed by ARM Ltd and targeted at embedded applications and
@ -34,9 +37,15 @@ config ARM
config HAVE_PWM
bool
config MIGHT_HAVE_PCI
bool
config SYS_SUPPORTS_APM_EMULATION
bool
config HAVE_SCHED_CLOCK
bool
config GENERIC_GPIO
bool
@ -221,7 +230,7 @@ config ARCH_INTEGRATOR
bool "ARM Ltd. Integrator family"
select ARM_AMBA
select ARCH_HAS_CPUFREQ
select COMMON_CLKDEV
select CLKDEV_LOOKUP
select ICST
select GENERIC_CLOCKEVENTS
select PLAT_VERSATILE
@ -231,7 +240,8 @@ config ARCH_INTEGRATOR
config ARCH_REALVIEW
bool "ARM Ltd. RealView family"
select ARM_AMBA
select COMMON_CLKDEV
select CLKDEV_LOOKUP
select HAVE_SCHED_CLOCK
select ICST
select GENERIC_CLOCKEVENTS
select ARCH_WANT_OPTIONAL_GPIOLIB
@ -245,7 +255,8 @@ config ARCH_VERSATILE
bool "ARM Ltd. Versatile family"
select ARM_AMBA
select ARM_VIC
select COMMON_CLKDEV
select CLKDEV_LOOKUP
select HAVE_SCHED_CLOCK
select ICST
select GENERIC_CLOCKEVENTS
select ARCH_WANT_OPTIONAL_GPIOLIB
@ -259,9 +270,10 @@ config ARCH_VEXPRESS
select ARCH_WANT_OPTIONAL_GPIOLIB
select ARM_AMBA
select ARM_TIMER_SP804
select COMMON_CLKDEV
select CLKDEV_LOOKUP
select GENERIC_CLOCKEVENTS
select HAVE_CLK
select HAVE_SCHED_CLOCK
select ICST
select PLAT_VERSATILE
help
@ -280,7 +292,7 @@ config ARCH_BCMRING
depends on MMU
select CPU_V6
select ARM_AMBA
select COMMON_CLKDEV
select CLKDEV_LOOKUP
select GENERIC_CLOCKEVENTS
select ARCH_WANT_OPTIONAL_GPIOLIB
help
@ -298,6 +310,7 @@ config ARCH_CNS3XXX
select CPU_V6
select GENERIC_CLOCKEVENTS
select ARM_GIC
select MIGHT_HAVE_PCI
select PCI_DOMAINS if PCI
help
Support for Cavium Networks CNS3XXX platform.
@ -327,7 +340,7 @@ config ARCH_EP93XX
select CPU_ARM920T
select ARM_AMBA
select ARM_VIC
select COMMON_CLKDEV
select CLKDEV_LOOKUP
select ARCH_REQUIRE_GPIOLIB
select ARCH_HAS_HOLES_MEMORYMODEL
select ARCH_USES_GETTIMEOFFSET
@ -347,14 +360,22 @@ config ARCH_MXC
bool "Freescale MXC/iMX-based"
select GENERIC_CLOCKEVENTS
select ARCH_REQUIRE_GPIOLIB
select COMMON_CLKDEV
select CLKDEV_LOOKUP
help
Support for Freescale MXC/iMX-based family of processors
config ARCH_MXS
bool "Freescale MXS-based"
select GENERIC_CLOCKEVENTS
select ARCH_REQUIRE_GPIOLIB
select COMMON_CLKDEV
help
Support for Freescale MXS-based family of processors
config ARCH_STMP3XXX
bool "Freescale STMP3xxx"
select CPU_ARM926T
select COMMON_CLKDEV
select CLKDEV_LOOKUP
select ARCH_REQUIRE_GPIOLIB
select GENERIC_CLOCKEVENTS
select USB_ARCH_HAS_EHCI
@ -433,6 +454,8 @@ config ARCH_IXP4XX
select CPU_XSCALE
select GENERIC_GPIO
select GENERIC_CLOCKEVENTS
select HAVE_SCHED_CLOCK
select MIGHT_HAVE_PCI
select DMABOUNCE if PCI
help
Support for Intel's IXP4XX (XScale) family of processors.
@ -472,7 +495,7 @@ config ARCH_LPC32XX
select HAVE_IDE
select ARM_AMBA
select USB_ARCH_HAS_OHCI
select COMMON_CLKDEV
select CLKDEV_LOOKUP
select GENERIC_TIME
select GENERIC_CLOCKEVENTS
help
@ -506,8 +529,9 @@ config ARCH_MMP
bool "Marvell PXA168/910/MMP2"
depends on MMU
select ARCH_REQUIRE_GPIOLIB
select COMMON_CLKDEV
select CLKDEV_LOOKUP
select GENERIC_CLOCKEVENTS
select HAVE_SCHED_CLOCK
select TICK_ONESHOT
select PLAT_PXA
select SPARSE_IRQ
@ -539,7 +563,7 @@ config ARCH_W90X900
bool "Nuvoton W90X900 CPU"
select CPU_ARM926T
select ARCH_REQUIRE_GPIOLIB
select COMMON_CLKDEV
select CLKDEV_LOOKUP
select GENERIC_CLOCKEVENTS
help
Support for Nuvoton (Winbond logic dept.) ARM9 processor,
@ -553,18 +577,19 @@ config ARCH_W90X900
config ARCH_NUC93X
bool "Nuvoton NUC93X CPU"
select CPU_ARM926T
select COMMON_CLKDEV
select CLKDEV_LOOKUP
help
Support for Nuvoton (Winbond logic dept.) NUC93X MCU,The NUC93X is a
low-power and high performance MPEG-4/JPEG multimedia controller chip.
config ARCH_TEGRA
bool "NVIDIA Tegra"
select CLKDEV_LOOKUP
select GENERIC_TIME
select GENERIC_CLOCKEVENTS
select GENERIC_GPIO
select HAVE_CLK
select COMMON_CLKDEV
select HAVE_SCHED_CLOCK
select ARCH_HAS_BARRIERS if CACHE_L2X0
select ARCH_HAS_CPUFREQ
help
@ -574,7 +599,7 @@ config ARCH_TEGRA
config ARCH_PNX4008
bool "Philips Nexperia PNX4008 Mobile"
select CPU_ARM926T
select COMMON_CLKDEV
select CLKDEV_LOOKUP
select ARCH_USES_GETTIMEOFFSET
help
This enables support for Philips PNX4008 mobile platform.
@ -584,9 +609,10 @@ config ARCH_PXA
depends on MMU
select ARCH_MTD_XIP
select ARCH_HAS_CPUFREQ
select COMMON_CLKDEV
select CLKDEV_LOOKUP
select ARCH_REQUIRE_GPIOLIB
select GENERIC_CLOCKEVENTS
select HAVE_SCHED_CLOCK
select TICK_ONESHOT
select PLAT_PXA
select SPARSE_IRQ
@ -608,7 +634,7 @@ config ARCH_MSM
config ARCH_SHMOBILE
bool "Renesas SH-Mobile / R-Mobile"
select HAVE_CLK
select COMMON_CLKDEV
select CLKDEV_LOOKUP
select GENERIC_CLOCKEVENTS
select NO_IOPORT
select SPARSE_IRQ
@ -640,6 +666,7 @@ config ARCH_SA1100
select CPU_FREQ
select GENERIC_CLOCKEVENTS
select HAVE_CLK
select HAVE_SCHED_CLOCK
select TICK_ONESHOT
select ARCH_REQUIRE_GPIOLIB
help
@ -766,7 +793,7 @@ config ARCH_TCC_926
bool "Telechips TCC ARM926-based systems"
select CPU_ARM926T
select HAVE_CLK
select COMMON_CLKDEV
select CLKDEV_LOOKUP
select GENERIC_CLOCKEVENTS
help
Support for Telechips TCC ARM926-based systems.
@ -786,11 +813,12 @@ config ARCH_U300
bool "ST-Ericsson U300 Series"
depends on MMU
select CPU_ARM926T
select HAVE_SCHED_CLOCK
select HAVE_TCM
select ARM_AMBA
select ARM_VIC
select GENERIC_CLOCKEVENTS
select COMMON_CLKDEV
select CLKDEV_LOOKUP
select GENERIC_GPIO
help
Support for ST-Ericsson U300 series mobile platforms.
@ -800,8 +828,9 @@ config ARCH_U8500
select CPU_V7
select ARM_AMBA
select GENERIC_CLOCKEVENTS
select COMMON_CLKDEV
select CLKDEV_LOOKUP
select ARCH_REQUIRE_GPIOLIB
select ARCH_HAS_CPUFREQ
help
Support for ST-Ericsson's Ux500 architecture
@ -810,7 +839,7 @@ config ARCH_NOMADIK
select ARM_AMBA
select ARM_VIC
select CPU_ARM926T
select COMMON_CLKDEV
select CLKDEV_LOOKUP
select GENERIC_CLOCKEVENTS
select ARCH_REQUIRE_GPIOLIB
help
@ -822,7 +851,7 @@ config ARCH_DAVINCI
select ARCH_REQUIRE_GPIOLIB
select ZONE_DMA
select HAVE_IDE
select COMMON_CLKDEV
select CLKDEV_LOOKUP
select GENERIC_ALLOCATOR
select ARCH_HAS_HOLES_MEMORYMODEL
help
@ -834,6 +863,7 @@ config ARCH_OMAP
select ARCH_REQUIRE_GPIOLIB
select ARCH_HAS_CPUFREQ
select GENERIC_CLOCKEVENTS
select HAVE_SCHED_CLOCK
select ARCH_HAS_HOLES_MEMORYMODEL
help
Support for TI's OMAP platform (OMAP1/2/3/4).
@ -842,7 +872,7 @@ config PLAT_SPEAR
bool "ST SPEAr"
select ARM_AMBA
select ARCH_REQUIRE_GPIOLIB
select COMMON_CLKDEV
select CLKDEV_LOOKUP
select GENERIC_CLOCKEVENTS
select HAVE_CLK
help
@ -907,6 +937,8 @@ source "arch/arm/mach-mv78xx0/Kconfig"
source "arch/arm/plat-mxc/Kconfig"
source "arch/arm/mach-mxs/Kconfig"
source "arch/arm/mach-netx/Kconfig"
source "arch/arm/mach-nomadik/Kconfig"
@ -987,9 +1019,11 @@ config ARCH_ACORN
config PLAT_IOP
bool
select GENERIC_CLOCKEVENTS
select HAVE_SCHED_CLOCK
config PLAT_ORION
bool
select HAVE_SCHED_CLOCK
config PLAT_PXA
bool
@ -1004,8 +1038,8 @@ source arch/arm/mm/Kconfig
config IWMMXT
bool "Enable iWMMXt support"
depends on CPU_XSCALE || CPU_XSC3 || CPU_MOHAWK
default y if PXA27x || PXA3xx || ARCH_MMP
depends on CPU_XSCALE || CPU_XSC3 || CPU_MOHAWK || CPU_PJ4
default y if PXA27x || PXA3xx || PXA95x || ARCH_MMP
help
Enable support for iWMMXt context switching at run time if
running on a CPU that supports it.
@ -1022,6 +1056,11 @@ config CPU_HAS_PMU
default y
bool
config MULTI_IRQ_HANDLER
bool
help
Allow each machine to specify it's own IRQ handler at run time.
if !MMU
source "arch/arm/Kconfig-nommu"
endif
@ -1169,7 +1208,7 @@ config ISA_DMA_API
bool
config PCI
bool "PCI support" if ARCH_INTEGRATOR_AP || ARCH_VERSATILE_PB || ARCH_IXP4XX || ARCH_KS8695 || MACH_ARMCORE || ARCH_CNS3XXX
bool "PCI support" if MIGHT_HAVE_PCI
help
Find out whether you have a PCI motherboard. PCI is the name of a
bus system, i.e. the way the CPU talks to the other stuff inside
@ -1180,6 +1219,12 @@ config PCI_DOMAINS
bool
depends on PCI
config PCI_NANOENGINE
bool "BSE nanoEngine PCI support"
depends on SA1100_NANOENGINE
help
Enable PCI on the BSE nanoEngine board.
config PCI_SYSCALL
def_bool PCI
@ -1210,10 +1255,11 @@ config SMP
depends on EXPERIMENTAL
depends on GENERIC_CLOCKEVENTS
depends on REALVIEW_EB_ARM11MP || REALVIEW_EB_A9MP || \
MACH_REALVIEW_PB11MP || MACH_REALVIEW_PBX || ARCH_OMAP4 ||\
ARCH_S5PV310 || ARCH_TEGRA || ARCH_U8500 || ARCH_VEXPRESS_CA9X4
MACH_REALVIEW_PB11MP || MACH_REALVIEW_PBX || ARCH_OMAP4 || \
ARCH_S5PV310 || ARCH_TEGRA || ARCH_U8500 || ARCH_VEXPRESS_CA9X4 || \
ARCH_MSM_SCORPIONMP
select USE_GENERIC_SMP_HELPERS
select HAVE_ARM_SCU
select HAVE_ARM_SCU if !ARCH_MSM_SCORPIONMP
help
This enables support for systems with more than one CPU. If you have
a system with only one CPU, like most personal computers, say N. If
@ -1234,7 +1280,7 @@ config SMP
config SMP_ON_UP
bool "Allow booting SMP kernel on uniprocessor systems (EXPERIMENTAL)"
depends on EXPERIMENTAL
depends on SMP && !XIP && !THUMB2_KERNEL
depends on SMP && !XIP
default y
help
SMP kernels contain instructions which fail on non-SMP processors.
@ -1253,6 +1299,7 @@ config HAVE_ARM_SCU
config HAVE_ARM_TWD
bool
depends on SMP
select TICK_ONESHOT
help
This options enables support for the ARM timer and watchdog unit
@ -1288,6 +1335,7 @@ config NR_CPUS
config HOTPLUG_CPU
bool "Support for hot-pluggable CPUs (EXPERIMENTAL)"
depends on SMP && HOTPLUG && EXPERIMENTAL
depends on !ARCH_MSM
help
Say Y here to experiment with turning CPUs off and on. CPUs
can be controlled through /sys/devices/system/cpu.
@ -1296,7 +1344,7 @@ config LOCAL_TIMERS
bool "Use local timer interrupts"
depends on SMP
default y
select HAVE_ARM_TWD
select HAVE_ARM_TWD if !ARCH_MSM_SCORPIONMP
help
Enable support for local timers on SMP platforms, rather then the
legacy IPI broadcast method. Local timers allows the system
@ -1315,7 +1363,7 @@ config HZ
default 100
config THUMB2_KERNEL
bool "Compile the kernel in Thumb-2 mode"
bool "Compile the kernel in Thumb-2 mode (EXPERIMENTAL)"
depends on CPU_V7 && !CPU_V6 && EXPERIMENTAL
select AEABI
select ARM_ASM_UNIFIED
@ -1529,6 +1577,7 @@ config SECCOMP
config CC_STACKPROTECTOR
bool "Enable -fstack-protector buffer overflow detection (EXPERIMENTAL)"
depends on EXPERIMENTAL
help
This option turns on the -fstack-protector GCC feature. This
feature puts, at the beginning of functions, a canary value on
@ -1655,6 +1704,19 @@ config ATAGS_PROC
Should the atags used to boot the kernel be exported in an "atags"
file in procfs. Useful with kexec.
config CRASH_DUMP
bool "Build kdump crash kernel (EXPERIMENTAL)"
depends on EXPERIMENTAL
help
Generate crash dump after being started by kexec. This should
be normally only set in special crash dump kernels which are
loaded in the main kernel with kexec-tools into a specially
reserved region and then later executed after a crash by
kdump/kexec. The crash dump kernel must be compiled to a
memory address not used by the main kernel
For more details see Documentation/kdump/kdump.txt
config AUTO_ZRELADDR
bool "Auto calculation of the decompressed kernel image address"
depends on !ZBOOT_ROM && !ARCH_U300
@ -1712,7 +1774,7 @@ config CPU_FREQ_S3C
Internal configuration node for common cpufreq on Samsung SoC
config CPU_FREQ_S3C24XX
bool "CPUfreq driver for Samsung S3C24XX series CPUs"
bool "CPUfreq driver for Samsung S3C24XX series CPUs (EXPERIMENTAL)"
depends on ARCH_S3C2410 && CPU_FREQ && EXPERIMENTAL
select CPU_FREQ_S3C
help
@ -1724,7 +1786,7 @@ config CPU_FREQ_S3C24XX
If in doubt, say N.
config CPU_FREQ_S3C24XX_PLL
bool "Support CPUfreq changing of PLL frequency"
bool "Support CPUfreq changing of PLL frequency (EXPERIMENTAL)"
depends on CPU_FREQ_S3C24XX && EXPERIMENTAL
help
Compile in support for changing the PLL frequency from the

View File

@ -23,7 +23,7 @@ config STRICT_DEVMEM
config FRAME_POINTER
bool
depends on !THUMB2_KERNEL
default y if !ARM_UNWIND
default y if !ARM_UNWIND || FUNCTION_GRAPH_TRACER
help
If you say N here, the resulting kernel will be slightly smaller and
faster. However, if neither FRAME_POINTER nor ARM_UNWIND are enabled,
@ -31,7 +31,7 @@ config FRAME_POINTER
reported is severely limited.
config ARM_UNWIND
bool "Enable stack unwinding support"
bool "Enable stack unwinding support (EXPERIMENTAL)"
depends on AEABI && EXPERIMENTAL
default y
help

View File

@ -154,10 +154,11 @@ machine-$(CONFIG_ARCH_MSM) := msm
machine-$(CONFIG_ARCH_MV78XX0) := mv78xx0
machine-$(CONFIG_ARCH_MX1) := imx
machine-$(CONFIG_ARCH_MX2) := imx
machine-$(CONFIG_ARCH_MX25) := mx25
machine-$(CONFIG_ARCH_MX25) := imx
machine-$(CONFIG_ARCH_MX3) := mx3
machine-$(CONFIG_ARCH_MX5) := mx5
machine-$(CONFIG_ARCH_MXC91231) := mxc91231
machine-$(CONFIG_ARCH_MXS) := mxs
machine-$(CONFIG_ARCH_NETX) := netx
machine-$(CONFIG_ARCH_NOMADIK) := nomadik
machine-$(CONFIG_ARCH_NS9XXX) := ns9xxx

View File

@ -45,6 +45,10 @@ else
endif
endif
ifeq ($(CONFIG_ARCH_SHMOBILE),y)
OBJS += head-shmobile.o
endif
#
# We now have a PIC decompressor implementation. Decompressors running
# from RAM should not define ZTEXTADDR. Decompressors running directly

View File

@ -0,0 +1,53 @@
/*
* The head-file for SH-Mobile ARM platforms
*
* Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
* Simon Horman <horms@verge.net.au>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifdef CONFIG_ZBOOT_ROM
.section ".start", "ax"
/* load board-specific initialization code */
#include <mach/zboot.h>
b 1f
__atags:@ tag #1
.long 12 @ tag->hdr.size = tag_size(tag_core);
.long 0x54410001 @ tag->hdr.tag = ATAG_CORE;
.long 0 @ tag->u.core.flags = 0;
.long 0 @ tag->u.core.pagesize = 0;
.long 0 @ tag->u.core.rootdev = 0;
@ tag #2
.long 8 @ tag->hdr.size = tag_size(tag_mem32);
.long 0x54410002 @ tag->hdr.tag = ATAG_MEM;
.long CONFIG_MEMORY_SIZE @ tag->u.mem.size = CONFIG_MEMORY_SIZE;
.long CONFIG_MEMORY_START @ @ tag->u.mem.start = CONFIG_MEMORY_START;
@ tag #3
.long 0 @ tag->hdr.size = 0
.long 0 @ tag->hdr.tag = ATAG_NONE;
1:
/* Set board ID necessary for boot */
ldr r7, 1f @ Set machine type register
adr r8, __atags @ Set atag register
b 2f
1 : .long MACH_TYPE
2 :
#endif /* CONFIG_ZBOOT_ROM */

View File

@ -37,7 +37,3 @@ config SHARP_PARAM
config SHARP_SCOOP
bool
config COMMON_CLKDEV
bool
select HAVE_CLK

View File

@ -17,3 +17,4 @@ obj-$(CONFIG_ARCH_IXP2000) += uengine.o
obj-$(CONFIG_ARCH_IXP23XX) += uengine.o
obj-$(CONFIG_PCI_HOST_ITE8152) += it8152.o
obj-$(CONFIG_COMMON_CLKDEV) += clkdev.o
obj-$(CONFIG_ARM_TIMER_SP804) += timer-sp.o

View File

@ -328,7 +328,7 @@ static inline void unmap_single(struct device *dev, dma_addr_t dma_addr,
* substitute the safe buffer for the unsafe one.
* (basically move the buffer from an unsafe area to a safe one)
*/
dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size,
dma_addr_t __dma_map_single(struct device *dev, void *ptr, size_t size,
enum dma_data_direction dir)
{
dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
@ -338,7 +338,7 @@ dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size,
return map_single(dev, ptr, size, dir);
}
EXPORT_SYMBOL(dma_map_single);
EXPORT_SYMBOL(__dma_map_single);
/*
* see if a mapped address was really a "safe" buffer and if so, copy
@ -346,7 +346,7 @@ EXPORT_SYMBOL(dma_map_single);
* the safe buffer. (basically return things back to the way they
* should be)
*/
void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
void __dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
enum dma_data_direction dir)
{
dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
@ -354,9 +354,9 @@ void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
unmap_single(dev, dma_addr, size, dir);
}
EXPORT_SYMBOL(dma_unmap_single);
EXPORT_SYMBOL(__dma_unmap_single);
dma_addr_t dma_map_page(struct device *dev, struct page *page,
dma_addr_t __dma_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size, enum dma_data_direction dir)
{
dev_dbg(dev, "%s(page=%p,off=%#lx,size=%zx,dir=%x)\n",
@ -372,7 +372,7 @@ dma_addr_t dma_map_page(struct device *dev, struct page *page,
return map_single(dev, page_address(page) + offset, size, dir);
}
EXPORT_SYMBOL(dma_map_page);
EXPORT_SYMBOL(__dma_map_page);
/*
* see if a mapped address was really a "safe" buffer and if so, copy
@ -380,7 +380,7 @@ EXPORT_SYMBOL(dma_map_page);
* the safe buffer. (basically return things back to the way they
* should be)
*/
void dma_unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
void __dma_unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
enum dma_data_direction dir)
{
dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
@ -388,7 +388,7 @@ void dma_unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
unmap_single(dev, dma_addr, size, dir);
}
EXPORT_SYMBOL(dma_unmap_page);
EXPORT_SYMBOL(__dma_unmap_page);
int dmabounce_sync_for_cpu(struct device *dev, dma_addr_t addr,
unsigned long off, size_t sz, enum dma_data_direction dir)

View File

@ -35,6 +35,9 @@
static DEFINE_SPINLOCK(irq_controller_lock);
/* Address of GIC 0 CPU interface */
void __iomem *gic_cpu_base_addr __read_mostly;
struct gic_chip_data {
unsigned int irq_offset;
void __iomem *dist_base;
@ -45,7 +48,7 @@ struct gic_chip_data {
#define MAX_GIC_NR 1
#endif
static struct gic_chip_data gic_data[MAX_GIC_NR];
static struct gic_chip_data gic_data[MAX_GIC_NR] __read_mostly;
static inline void __iomem *gic_dist_base(unsigned int irq)
{
@ -213,21 +216,16 @@ void __init gic_cascade_irq(unsigned int gic_nr, unsigned int irq)
set_irq_chained_handler(irq, gic_handle_cascade_irq);
}
void __init gic_dist_init(unsigned int gic_nr, void __iomem *base,
unsigned int irq_start)
static void __init gic_dist_init(struct gic_chip_data *gic,
unsigned int irq_start)
{
unsigned int gic_irqs, irq_limit, i;
void __iomem *base = gic->dist_base;
u32 cpumask = 1 << smp_processor_id();
if (gic_nr >= MAX_GIC_NR)
BUG();
cpumask |= cpumask << 8;
cpumask |= cpumask << 16;
gic_data[gic_nr].dist_base = base;
gic_data[gic_nr].irq_offset = (irq_start - 1) & ~31;
writel(0, base + GIC_DIST_CTRL);
/*
@ -267,7 +265,7 @@ void __init gic_dist_init(unsigned int gic_nr, void __iomem *base,
/*
* Limit number of interrupts registered to the platform maximum
*/
irq_limit = gic_data[gic_nr].irq_offset + gic_irqs;
irq_limit = gic->irq_offset + gic_irqs;
if (WARN_ON(irq_limit > NR_IRQS))
irq_limit = NR_IRQS;
@ -276,7 +274,7 @@ void __init gic_dist_init(unsigned int gic_nr, void __iomem *base,
*/
for (i = irq_start; i < irq_limit; i++) {
set_irq_chip(i, &gic_chip);
set_irq_chip_data(i, &gic_data[gic_nr]);
set_irq_chip_data(i, gic);
set_irq_handler(i, handle_level_irq);
set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
}
@ -284,19 +282,12 @@ void __init gic_dist_init(unsigned int gic_nr, void __iomem *base,
writel(1, base + GIC_DIST_CTRL);
}
void __cpuinit gic_cpu_init(unsigned int gic_nr, void __iomem *base)
static void __cpuinit gic_cpu_init(struct gic_chip_data *gic)
{
void __iomem *dist_base;
void __iomem *dist_base = gic->dist_base;
void __iomem *base = gic->cpu_base;
int i;
if (gic_nr >= MAX_GIC_NR)
BUG();
dist_base = gic_data[gic_nr].dist_base;
BUG_ON(!dist_base);
gic_data[gic_nr].cpu_base = base;
/*
* Deal with the banked PPI and SGI interrupts - disable all
* PPI interrupts, ensure all SGI interrupts are enabled.
@ -314,6 +305,42 @@ void __cpuinit gic_cpu_init(unsigned int gic_nr, void __iomem *base)
writel(1, base + GIC_CPU_CTRL);
}
void __init gic_init(unsigned int gic_nr, unsigned int irq_start,
void __iomem *dist_base, void __iomem *cpu_base)
{
struct gic_chip_data *gic;
BUG_ON(gic_nr >= MAX_GIC_NR);
gic = &gic_data[gic_nr];
gic->dist_base = dist_base;
gic->cpu_base = cpu_base;
gic->irq_offset = (irq_start - 1) & ~31;
if (gic_nr == 0)
gic_cpu_base_addr = cpu_base;
gic_dist_init(gic, irq_start);
gic_cpu_init(gic);
}
void __cpuinit gic_secondary_init(unsigned int gic_nr)
{
BUG_ON(gic_nr >= MAX_GIC_NR);
gic_cpu_init(&gic_data[gic_nr]);
}
void __cpuinit gic_enable_ppi(unsigned int irq)
{
unsigned long flags;
local_irq_save(flags);
irq_to_desc(irq)->status |= IRQ_NOPROBE;
gic_unmask_irq(irq);
local_irq_restore(flags);
}
#ifdef CONFIG_SMP
void gic_raise_softirq(const struct cpumask *mask, unsigned int irq)
{

View File

@ -352,3 +352,4 @@ struct pci_bus * __init it8152_pci_scan_bus(int nr, struct pci_sys_data *sys)
return pci_scan_bus(nr, &it8152_ops, sys);
}
EXPORT_SYMBOL(dma_set_coherent_mask);

View File

@ -1,5 +1,5 @@
/*
* linux/arch/arm/plat-versatile/timer-sp.c
* linux/arch/arm/common/timer-sp.c
*
* Copyright (C) 1999 - 2003 ARM Limited
* Copyright (C) 2000 Deep Blue Solutions Ltd
@ -26,8 +26,6 @@
#include <asm/hardware/arm_timer.h>
#include <plat/timer-sp.h>
/*
* These timers are currently always setup to be clocked at 1MHz.
*/
@ -46,7 +44,6 @@ static struct clocksource clocksource_sp804 = {
.rating = 200,
.read = sp804_read,
.mask = CLOCKSOURCE_MASK(32),
.shift = 20,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
@ -63,8 +60,7 @@ void __init sp804_clocksource_init(void __iomem *base)
writel(TIMER_CTRL_32BIT | TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC,
clksrc_base + TIMER_CTRL);
cs->mult = clocksource_khz2mult(TIMER_FREQ_KHZ, cs->shift);
clocksource_register(cs);
clocksource_register_khz(cs, TIMER_FREQ_KHZ);
}

View File

@ -84,6 +84,7 @@ CONFIG_SERIAL_IMX_CONSOLE=y
CONFIG_I2C=y
CONFIG_I2C_CHARDEV=y
CONFIG_I2C_IMX=y
CONFIG_SPI=y
CONFIG_W1=y
CONFIG_W1_MASTER_MXC=y
CONFIG_W1_SLAVE_THERM=y

View File

@ -18,6 +18,7 @@
#endif
#include <asm/ptrace.h>
#include <asm/domain.h>
/*
* Endian independent macros for shifting bytes within registers.
@ -157,16 +158,24 @@
#ifdef CONFIG_SMP
#define ALT_SMP(instr...) \
9998: instr
/*
* Note: if you get assembler errors from ALT_UP() when building with
* CONFIG_THUMB2_KERNEL, you almost certainly need to use
* ALT_SMP( W(instr) ... )
*/
#define ALT_UP(instr...) \
.pushsection ".alt.smp.init", "a" ;\
.long 9998b ;\
instr ;\
9997: instr ;\
.if . - 9997b != 4 ;\
.error "ALT_UP() content must assemble to exactly 4 bytes";\
.endif ;\
.popsection
#define ALT_UP_B(label) \
.equ up_b_offset, label - 9998b ;\
.pushsection ".alt.smp.init", "a" ;\
.long 9998b ;\
b . + up_b_offset ;\
W(b) . + up_b_offset ;\
.popsection
#else
#define ALT_SMP(instr...)
@ -177,16 +186,24 @@
/*
* SMP data memory barrier
*/
.macro smp_dmb
.macro smp_dmb mode
#ifdef CONFIG_SMP
#if __LINUX_ARM_ARCH__ >= 7
.ifeqs "\mode","arm"
ALT_SMP(dmb)
.else
ALT_SMP(W(dmb))
.endif
#elif __LINUX_ARM_ARCH__ == 6
ALT_SMP(mcr p15, 0, r0, c7, c10, 5) @ dmb
#else
#error Incompatible SMP platform
#endif
.ifeqs "\mode","arm"
ALT_UP(nop)
.else
ALT_UP(W(nop))
.endif
#endif
.endm
@ -206,12 +223,12 @@
*/
#ifdef CONFIG_THUMB2_KERNEL
.macro usraccoff, instr, reg, ptr, inc, off, cond, abort
.macro usraccoff, instr, reg, ptr, inc, off, cond, abort, t=T()
9999:
.if \inc == 1
\instr\cond\()bt \reg, [\ptr, #\off]
\instr\cond\()b\()\t\().w \reg, [\ptr, #\off]
.elseif \inc == 4
\instr\cond\()t \reg, [\ptr, #\off]
\instr\cond\()\t\().w \reg, [\ptr, #\off]
.else
.error "Unsupported inc macro argument"
.endif
@ -246,13 +263,13 @@
#else /* !CONFIG_THUMB2_KERNEL */
.macro usracc, instr, reg, ptr, inc, cond, rept, abort
.macro usracc, instr, reg, ptr, inc, cond, rept, abort, t=T()
.rept \rept
9999:
.if \inc == 1
\instr\cond\()bt \reg, [\ptr], #\inc
\instr\cond\()b\()\t \reg, [\ptr], #\inc
.elseif \inc == 4
\instr\cond\()t \reg, [\ptr], #\inc
\instr\cond\()\t \reg, [\ptr], #\inc
.else
.error "Unsupported inc macro argument"
.endif

View File

@ -23,4 +23,6 @@
#define ARCH_SLAB_MINALIGN 8
#endif
#define __read_mostly __attribute__((__section__(".data..read_mostly")))
#endif

View File

@ -12,23 +12,13 @@
#ifndef __ASM_CLKDEV_H
#define __ASM_CLKDEV_H
struct clk;
struct device;
#include <linux/slab.h>
struct clk_lookup {
struct list_head node;
const char *dev_id;
const char *con_id;
struct clk *clk;
};
#include <mach/clkdev.h>
struct clk_lookup *clkdev_alloc(struct clk *clk, const char *con_id,
const char *dev_fmt, ...);
void clkdev_add(struct clk_lookup *cl);
void clkdev_drop(struct clk_lookup *cl);
void clkdev_add_table(struct clk_lookup *, size_t);
int clk_add_alias(const char *, const char *, char *, struct device *);
static inline struct clk_lookup_alloc *__clkdev_alloc(size_t size)
{
return kzalloc(size, GFP_KERNEL);
}
#endif

View File

@ -5,24 +5,29 @@
#include <linux/mm_types.h>
#include <linux/scatterlist.h>
#include <linux/dma-debug.h>
#include <asm-generic/dma-coherent.h>
#include <asm/memory.h>
#ifdef __arch_page_to_dma
#error Please update to __arch_pfn_to_dma
#endif
/*
* page_to_dma/dma_to_virt/virt_to_dma are architecture private functions
* used internally by the DMA-mapping API to provide DMA addresses. They
* must not be used by drivers.
* dma_to_pfn/pfn_to_dma/dma_to_virt/virt_to_dma are architecture private
* functions used internally by the DMA-mapping API to provide DMA
* addresses. They must not be used by drivers.
*/
#ifndef __arch_page_to_dma
static inline dma_addr_t page_to_dma(struct device *dev, struct page *page)
#ifndef __arch_pfn_to_dma
static inline dma_addr_t pfn_to_dma(struct device *dev, unsigned long pfn)
{
return (dma_addr_t)__pfn_to_bus(page_to_pfn(page));
return (dma_addr_t)__pfn_to_bus(pfn);
}
static inline struct page *dma_to_page(struct device *dev, dma_addr_t addr)
static inline unsigned long dma_to_pfn(struct device *dev, dma_addr_t addr)
{
return pfn_to_page(__bus_to_pfn(addr));
return __bus_to_pfn(addr);
}
static inline void *dma_to_virt(struct device *dev, dma_addr_t addr)
@ -35,14 +40,14 @@ static inline dma_addr_t virt_to_dma(struct device *dev, void *addr)
return (dma_addr_t)__virt_to_bus((unsigned long)(addr));
}
#else
static inline dma_addr_t page_to_dma(struct device *dev, struct page *page)
static inline dma_addr_t pfn_to_dma(struct device *dev, unsigned long pfn)
{
return __arch_page_to_dma(dev, page);
return __arch_pfn_to_dma(dev, pfn);
}
static inline struct page *dma_to_page(struct device *dev, dma_addr_t addr)
static inline unsigned long dma_to_pfn(struct device *dev, dma_addr_t addr)
{
return __arch_dma_to_page(dev, addr);
return __arch_dma_to_pfn(dev, addr);
}
static inline void *dma_to_virt(struct device *dev, dma_addr_t addr)
@ -293,13 +298,13 @@ extern int dma_needs_bounce(struct device*, dma_addr_t, size_t);
/*
* The DMA API, implemented by dmabounce.c. See below for descriptions.
*/
extern dma_addr_t dma_map_single(struct device *, void *, size_t,
extern dma_addr_t __dma_map_single(struct device *, void *, size_t,
enum dma_data_direction);
extern void dma_unmap_single(struct device *, dma_addr_t, size_t,
extern void __dma_unmap_single(struct device *, dma_addr_t, size_t,
enum dma_data_direction);
extern dma_addr_t dma_map_page(struct device *, struct page *,
extern dma_addr_t __dma_map_page(struct device *, struct page *,
unsigned long, size_t, enum dma_data_direction);
extern void dma_unmap_page(struct device *, dma_addr_t, size_t,
extern void __dma_unmap_page(struct device *, dma_addr_t, size_t,
enum dma_data_direction);
/*
@ -323,6 +328,34 @@ static inline int dmabounce_sync_for_device(struct device *d, dma_addr_t addr,
}
static inline dma_addr_t __dma_map_single(struct device *dev, void *cpu_addr,
size_t size, enum dma_data_direction dir)
{
__dma_single_cpu_to_dev(cpu_addr, size, dir);
return virt_to_dma(dev, cpu_addr);
}
static inline dma_addr_t __dma_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size, enum dma_data_direction dir)
{
__dma_page_cpu_to_dev(page, offset, size, dir);
return pfn_to_dma(dev, page_to_pfn(page)) + offset;
}
static inline void __dma_unmap_single(struct device *dev, dma_addr_t handle,
size_t size, enum dma_data_direction dir)
{
__dma_single_dev_to_cpu(dma_to_virt(dev, handle), size, dir);
}
static inline void __dma_unmap_page(struct device *dev, dma_addr_t handle,
size_t size, enum dma_data_direction dir)
{
__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
handle & ~PAGE_MASK, size, dir);
}
#endif /* CONFIG_DMABOUNCE */
/**
* dma_map_single - map a single buffer for streaming DMA
* @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
@ -340,11 +373,16 @@ static inline int dmabounce_sync_for_device(struct device *d, dma_addr_t addr,
static inline dma_addr_t dma_map_single(struct device *dev, void *cpu_addr,
size_t size, enum dma_data_direction dir)
{
dma_addr_t addr;
BUG_ON(!valid_dma_direction(dir));
__dma_single_cpu_to_dev(cpu_addr, size, dir);
addr = __dma_map_single(dev, cpu_addr, size, dir);
debug_dma_map_page(dev, virt_to_page(cpu_addr),
(unsigned long)cpu_addr & ~PAGE_MASK, size,
dir, addr, true);
return virt_to_dma(dev, cpu_addr);
return addr;
}
/**
@ -364,11 +402,14 @@ static inline dma_addr_t dma_map_single(struct device *dev, void *cpu_addr,
static inline dma_addr_t dma_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size, enum dma_data_direction dir)
{
dma_addr_t addr;
BUG_ON(!valid_dma_direction(dir));
__dma_page_cpu_to_dev(page, offset, size, dir);
addr = __dma_map_page(dev, page, offset, size, dir);
debug_dma_map_page(dev, page, offset, size, dir, addr, false);
return page_to_dma(dev, page) + offset;
return addr;
}
/**
@ -388,7 +429,8 @@ static inline dma_addr_t dma_map_page(struct device *dev, struct page *page,
static inline void dma_unmap_single(struct device *dev, dma_addr_t handle,
size_t size, enum dma_data_direction dir)
{
__dma_single_dev_to_cpu(dma_to_virt(dev, handle), size, dir);
debug_dma_unmap_page(dev, handle, size, dir, true);
__dma_unmap_single(dev, handle, size, dir);
}
/**
@ -408,10 +450,9 @@ static inline void dma_unmap_single(struct device *dev, dma_addr_t handle,
static inline void dma_unmap_page(struct device *dev, dma_addr_t handle,
size_t size, enum dma_data_direction dir)
{
__dma_page_dev_to_cpu(dma_to_page(dev, handle), handle & ~PAGE_MASK,
size, dir);
debug_dma_unmap_page(dev, handle, size, dir, false);
__dma_unmap_page(dev, handle, size, dir);
}
#endif /* CONFIG_DMABOUNCE */
/**
* dma_sync_single_range_for_cpu
@ -437,6 +478,8 @@ static inline void dma_sync_single_range_for_cpu(struct device *dev,
{
BUG_ON(!valid_dma_direction(dir));
debug_dma_sync_single_for_cpu(dev, handle + offset, size, dir);
if (!dmabounce_sync_for_cpu(dev, handle, offset, size, dir))
return;
@ -449,6 +492,8 @@ static inline void dma_sync_single_range_for_device(struct device *dev,
{
BUG_ON(!valid_dma_direction(dir));
debug_dma_sync_single_for_device(dev, handle + offset, size, dir);
if (!dmabounce_sync_for_device(dev, handle, offset, size, dir))
return;

View File

@ -45,13 +45,17 @@
*/
#define DOMAIN_NOACCESS 0
#define DOMAIN_CLIENT 1
#ifdef CONFIG_CPU_USE_DOMAINS
#define DOMAIN_MANAGER 3
#else
#define DOMAIN_MANAGER 1
#endif
#define domain_val(dom,type) ((type) << (2*(dom)))
#ifndef __ASSEMBLY__
#ifdef CONFIG_MMU
#ifdef CONFIG_CPU_USE_DOMAINS
#define set_domain(x) \
do { \
__asm__ __volatile__( \
@ -74,5 +78,28 @@
#define modify_domain(dom,type) do { } while (0)
#endif
/*
* Generate the T (user) versions of the LDR/STR and related
* instructions (inline assembly)
*/
#ifdef CONFIG_CPU_USE_DOMAINS
#define T(instr) #instr "t"
#else
#define T(instr) #instr
#endif
#endif /* !__ASSEMBLY__ */
#else /* __ASSEMBLY__ */
/*
* Generate the T (user) versions of the LDR/STR and related
* instructions
*/
#ifdef CONFIG_CPU_USE_DOMAINS
#define T(instr) instr ## t
#else
#define T(instr) instr
#endif
#endif /* __ASSEMBLY__ */
#endif /* !__ASM_PROC_DOMAIN_H */

View File

@ -99,6 +99,8 @@ struct elf32_hdr;
extern int elf_check_arch(const struct elf32_hdr *);
#define elf_check_arch elf_check_arch
#define vmcore_elf64_check_arch(x) (0)
extern int arm_elf_read_implies_exec(const struct elf32_hdr *, int);
#define elf_read_implies_exec(ex,stk) arm_elf_read_implies_exec(&(ex), stk)

View File

@ -0,0 +1,44 @@
/*
* Interrupt handling. Preserves r7, r8, r9
*/
.macro arch_irq_handler_default
get_irqnr_preamble r5, lr
1: get_irqnr_and_base r0, r6, r5, lr
movne r1, sp
@
@ routine called with r0 = irq number, r1 = struct pt_regs *
@
adrne lr, BSYM(1b)
bne asm_do_IRQ
#ifdef CONFIG_SMP
/*
* XXX
*
* this macro assumes that irqstat (r6) and base (r5) are
* preserved from get_irqnr_and_base above
*/
ALT_SMP(test_for_ipi r0, r6, r5, lr)
ALT_UP_B(9997f)
movne r1, sp
adrne lr, BSYM(1b)
bne do_IPI
#ifdef CONFIG_LOCAL_TIMERS
test_for_ltirq r0, r6, r5, lr
movne r0, sp
adrne lr, BSYM(1b)
bne do_local_timer
#endif
#endif
9997:
.endm
.macro arch_irq_handler, symbol_name
.align 5
.global \symbol_name
\symbol_name:
mov r4, lr
arch_irq_handler_default
mov pc, r4
.endm

View File

@ -13,12 +13,13 @@
#include <linux/preempt.h>
#include <linux/uaccess.h>
#include <asm/errno.h>
#include <asm/domain.h>
#define __futex_atomic_op(insn, ret, oldval, uaddr, oparg) \
__asm__ __volatile__( \
"1: ldrt %1, [%2]\n" \
"1: " T(ldr) " %1, [%2]\n" \
" " insn "\n" \
"2: strt %0, [%2]\n" \
"2: " T(str) " %0, [%2]\n" \
" mov %0, #0\n" \
"3:\n" \
" .pushsection __ex_table,\"a\"\n" \
@ -97,10 +98,10 @@ futex_atomic_cmpxchg_inatomic(int __user *uaddr, int oldval, int newval)
pagefault_disable(); /* implies preempt_disable() */
__asm__ __volatile__("@futex_atomic_cmpxchg_inatomic\n"
"1: ldrt %0, [%3]\n"
"1: " T(ldr) " %0, [%3]\n"
" teq %0, %1\n"
" it eq @ explicit IT needed for the 2b label\n"
"2: streqt %2, [%3]\n"
"2: " T(streq) " %2, [%3]\n"
"3:\n"
" .pushsection __ex_table,\"a\"\n"
" .align 3\n"

View File

@ -5,13 +5,31 @@
#include <linux/threads.h>
#include <asm/irq.h>
#define NR_IPI 5
typedef struct {
unsigned int __softirq_pending;
#ifdef CONFIG_LOCAL_TIMERS
unsigned int local_timer_irqs;
#endif
#ifdef CONFIG_SMP
unsigned int ipi_irqs[NR_IPI];
#endif
} ____cacheline_aligned irq_cpustat_t;
#include <linux/irq_cpustat.h> /* Standard mappings for irq_cpustat_t above */
#define __inc_irq_stat(cpu, member) __IRQ_STAT(cpu, member)++
#define __get_irq_stat(cpu, member) __IRQ_STAT(cpu, member)
#ifdef CONFIG_SMP
u64 smp_irq_stat_cpu(unsigned int cpu);
#else
#define smp_irq_stat_cpu(cpu) 0
#endif
#define arch_irq_stat_cpu smp_irq_stat_cpu
#if NR_IRQS > 512
#define HARDIRQ_BITS 10
#elif NR_IRQS > 256

View File

@ -0,0 +1,75 @@
/*
* arch/arm/include/asm/hardware/entry-macro-gic.S
*
* Low-level IRQ helper macros for GIC
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*/
#include <asm/hardware/gic.h>
#ifndef HAVE_GET_IRQNR_PREAMBLE
.macro get_irqnr_preamble, base, tmp
ldr \base, =gic_cpu_base_addr
ldr \base, [\base]
.endm
#endif
/*
* The interrupt numbering scheme is defined in the
* interrupt controller spec. To wit:
*
* Interrupts 0-15 are IPI
* 16-28 are reserved
* 29-31 are local. We allow 30 to be used for the watchdog.
* 32-1020 are global
* 1021-1022 are reserved
* 1023 is "spurious" (no interrupt)
*
* For now, we ignore all local interrupts so only return an interrupt if it's
* between 30 and 1020. The test_for_ipi routine below will pick up on IPIs.
*
* A simple read from the controller will tell us the number of the highest
* priority enabled interrupt. We then just need to check whether it is in the
* valid range for an IRQ (30-1020 inclusive).
*/
.macro get_irqnr_and_base, irqnr, irqstat, base, tmp
ldr \irqstat, [\base, #GIC_CPU_INTACK]
/* bits 12-10 = src CPU, 9-0 = int # */
ldr \tmp, =1021
bic \irqnr, \irqstat, #0x1c00
cmp \irqnr, #29
cmpcc \irqnr, \irqnr
cmpne \irqnr, \tmp
cmpcs \irqnr, \irqnr
.endm
/* We assume that irqstat (the raw value of the IRQ acknowledge
* register) is preserved from the macro above.
* If there is an IPI, we immediately signal end of interrupt on the
* controller, since this requires the original irqstat value which
* we won't easily be able to recreate later.
*/
.macro test_for_ipi, irqnr, irqstat, base, tmp
bic \irqnr, \irqstat, #0x1c00
cmp \irqnr, #16
strcc \irqstat, [\base, #GIC_CPU_EOI]
cmpcs \irqnr, \irqnr
.endm
/* As above, this assumes that irqstat and base are preserved.. */
.macro test_for_ltirq, irqnr, irqstat, base, tmp
bic \irqnr, \irqstat, #0x1c00
mov \tmp, #0
cmp \irqnr, #29
moveq \tmp, #1
streq \irqstat, [\base, #GIC_CPU_EOI]
cmp \tmp, #0
.endm

View File

@ -33,10 +33,13 @@
#define GIC_DIST_SOFTINT 0xf00
#ifndef __ASSEMBLY__
void gic_dist_init(unsigned int gic_nr, void __iomem *base, unsigned int irq_start);
void gic_cpu_init(unsigned int gic_nr, void __iomem *base);
extern void __iomem *gic_cpu_base_addr;
void gic_init(unsigned int, unsigned int, void __iomem *, void __iomem *);
void gic_secondary_init(unsigned int);
void gic_cascade_irq(unsigned int gic_nr, unsigned int irq);
void gic_raise_softirq(const struct cpumask *mask, unsigned int irq);
void gic_enable_ppi(unsigned int);
#endif
#endif

View File

@ -76,6 +76,7 @@ extern unsigned long it8152_base_address;
IT8152_PD_IRQ(0) Audio controller (ACR)
*/
#define IT8152_IRQ(x) (IRQ_BOARD_START + (x))
#define IT8152_LAST_IRQ (IRQ_BOARD_START + 40)
/* IRQ-sources in 3 groups - local devices, LPC (serial), and external PCI */
#define IT8152_LD_IRQ_COUNT 9

View File

@ -25,9 +25,6 @@ extern void *kmap_high(struct page *page);
extern void *kmap_high_get(struct page *page);
extern void kunmap_high(struct page *page);
extern void *kmap_high_l1_vipt(struct page *page, pte_t *saved_pte);
extern void kunmap_high_l1_vipt(struct page *page, pte_t saved_pte);
/*
* The following functions are already defined by <linux/highmem.h>
* when CONFIG_HIGHMEM is not set.

View File

@ -20,8 +20,8 @@ struct arch_hw_breakpoint_ctrl {
struct arch_hw_breakpoint {
u32 address;
u32 trigger;
struct perf_event *suspended_wp;
struct arch_hw_breakpoint_ctrl ctrl;
struct arch_hw_breakpoint_ctrl step_ctrl;
struct arch_hw_breakpoint_ctrl ctrl;
};
static inline u32 encode_ctrl_reg(struct arch_hw_breakpoint_ctrl ctrl)

View File

@ -241,18 +241,15 @@ extern void _memset_io(volatile void __iomem *, int, size_t);
*
*/
#ifndef __arch_ioremap
#define ioremap(cookie,size) __arm_ioremap(cookie, size, MT_DEVICE)
#define ioremap_nocache(cookie,size) __arm_ioremap(cookie, size, MT_DEVICE)
#define ioremap_cached(cookie,size) __arm_ioremap(cookie, size, MT_DEVICE_CACHED)
#define ioremap_wc(cookie,size) __arm_ioremap(cookie, size, MT_DEVICE_WC)
#define iounmap(cookie) __iounmap(cookie)
#else
#define __arch_ioremap __arm_ioremap
#define __arch_iounmap __iounmap
#endif
#define ioremap(cookie,size) __arch_ioremap((cookie), (size), MT_DEVICE)
#define ioremap_nocache(cookie,size) __arch_ioremap((cookie), (size), MT_DEVICE)
#define ioremap_cached(cookie,size) __arch_ioremap((cookie), (size), MT_DEVICE_CACHED)
#define ioremap_wc(cookie,size) __arch_ioremap((cookie), (size), MT_DEVICE_WC)
#define iounmap(cookie) __arch_iounmap(cookie)
#endif
#define iounmap __arch_iounmap
/*
* io{read,write}{8,16,32} macros

View File

@ -33,10 +33,20 @@ static inline void crash_setup_regs(struct pt_regs *newregs,
if (oldregs) {
memcpy(newregs, oldregs, sizeof(*newregs));
} else {
__asm__ __volatile__ ("stmia %0, {r0 - r15}"
: : "r" (&newregs->ARM_r0));
__asm__ __volatile__ ("mrs %0, cpsr"
: "=r" (newregs->ARM_cpsr));
__asm__ __volatile__ (
"stmia %[regs_base], {r0-r12}\n\t"
"mov %[_ARM_sp], sp\n\t"
"str lr, %[_ARM_lr]\n\t"
"adr %[_ARM_pc], 1f\n\t"
"mrs %[_ARM_cpsr], cpsr\n\t"
"1:"
: [_ARM_pc] "=r" (newregs->ARM_pc),
[_ARM_cpsr] "=r" (newregs->ARM_cpsr),
[_ARM_sp] "=r" (newregs->ARM_sp),
[_ARM_lr] "=o" (newregs->ARM_lr)
: [regs_base] "r" (&newregs->ARM_r0)
: "memory"
);
}
}

View File

@ -30,7 +30,6 @@ asmlinkage void do_local_timer(struct pt_regs *);
#include "smp_twd.h"
#define local_timer_ack() twd_timer_ack()
#define local_timer_stop() twd_timer_stop()
#else
@ -40,11 +39,6 @@ asmlinkage void do_local_timer(struct pt_regs *);
*/
int local_timer_ack(void);
/*
* Stop a local timer interrupt.
*/
void local_timer_stop(void);
#endif
/*
@ -52,12 +46,6 @@ void local_timer_stop(void);
*/
void local_timer_setup(struct clock_event_device *);
#else
static inline void local_timer_stop(void)
{
}
#endif
#endif

View File

@ -37,11 +37,20 @@ struct machine_desc {
struct meminfo *);
void (*reserve)(void);/* reserve mem blocks */
void (*map_io)(void);/* IO mapping function */
void (*init_early)(void);
void (*init_irq)(void);
struct sys_timer *timer; /* system tick timer */
void (*init_machine)(void);
#ifdef CONFIG_MULTI_IRQ_HANDLER
void (*handle_irq)(struct pt_regs *);
#endif
};
/*
* Current machine - only accessible during boot.
*/
extern struct machine_desc *machine_desc;
/*
* Set of macros to define architecture features. This is built into
* a table by the linker.

View File

@ -17,10 +17,12 @@ struct seq_file;
/*
* This is internal. Do not use it.
*/
extern unsigned int arch_nr_irqs;
extern void (*init_arch_irq)(void);
extern void init_FIQ(void);
extern int show_fiq_list(struct seq_file *, void *);
extern int show_fiq_list(struct seq_file *, int);
#ifdef CONFIG_MULTI_IRQ_HANDLER
extern void (*handle_arch_irq)(struct pt_regs *);
#endif
/*
* This is for easy migration, but should be changed in the source

View File

@ -43,7 +43,6 @@ struct sys_timer {
#endif
};
extern struct sys_timer *system_timer;
extern void timer_tick(void);
#endif

View File

@ -8,11 +8,6 @@
struct unwind_table;
#ifdef CONFIG_ARM_UNWIND
struct arm_unwind_mapping {
Elf_Shdr *unw_sec;
Elf_Shdr *sec_text;
struct unwind_table *unwind;
};
enum {
ARM_SEC_INIT,
ARM_SEC_DEVINIT,
@ -21,14 +16,14 @@ enum {
ARM_SEC_DEVEXIT,
ARM_SEC_MAX,
};
struct mod_arch_specific {
struct arm_unwind_mapping map[ARM_SEC_MAX];
};
#else
struct mod_arch_specific {
};
#endif
struct mod_arch_specific {
#ifdef CONFIG_ARM_UNWIND
struct unwind_table *unwind[ARM_SEC_MAX];
#endif
};
/*
* Include the ARM architecture version.
*/

View File

@ -151,13 +151,15 @@ extern void __cpu_copy_user_highpage(struct page *to, struct page *from,
#define clear_page(page) memset((void *)(page), 0, PAGE_SIZE)
extern void copy_page(void *to, const void *from);
typedef unsigned long pteval_t;
#undef STRICT_MM_TYPECHECKS
#ifdef STRICT_MM_TYPECHECKS
/*
* These are used to make use of C type-checking..
*/
typedef struct { unsigned long pte; } pte_t;
typedef struct { pteval_t pte; } pte_t;
typedef struct { unsigned long pmd; } pmd_t;
typedef struct { unsigned long pgd[2]; } pgd_t;
typedef struct { unsigned long pgprot; } pgprot_t;
@ -175,7 +177,7 @@ typedef struct { unsigned long pgprot; } pgprot_t;
/*
* .. while these make it easier on the compiler
*/
typedef unsigned long pte_t;
typedef pteval_t pte_t;
typedef unsigned long pmd_t;
typedef unsigned long pgd_t[2];
typedef unsigned long pgprot_t;

View File

@ -30,14 +30,16 @@
#define pmd_free(mm, pmd) do { } while (0)
#define pgd_populate(mm,pmd,pte) BUG()
extern pgd_t *get_pgd_slow(struct mm_struct *mm);
extern void free_pgd_slow(struct mm_struct *mm, pgd_t *pgd);
#define pgd_alloc(mm) get_pgd_slow(mm)
#define pgd_free(mm, pgd) free_pgd_slow(mm, pgd)
extern pgd_t *pgd_alloc(struct mm_struct *mm);
extern void pgd_free(struct mm_struct *mm, pgd_t *pgd);
#define PGALLOC_GFP (GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO)
static inline void clean_pte_table(pte_t *pte)
{
clean_dcache_area(pte + PTE_HWTABLE_PTRS, PTE_HWTABLE_SIZE);
}
/*
* Allocate one PTE table.
*
@ -45,14 +47,14 @@ extern void free_pgd_slow(struct mm_struct *mm, pgd_t *pgd);
* into one table thus:
*
* +------------+
* | h/w pt 0 |
* +------------+
* | h/w pt 1 |
* +------------+
* | Linux pt 0 |
* +------------+
* | Linux pt 1 |
* +------------+
* | h/w pt 0 |
* +------------+
* | h/w pt 1 |
* +------------+
*/
static inline pte_t *
pte_alloc_one_kernel(struct mm_struct *mm, unsigned long addr)
@ -60,10 +62,8 @@ pte_alloc_one_kernel(struct mm_struct *mm, unsigned long addr)
pte_t *pte;
pte = (pte_t *)__get_free_page(PGALLOC_GFP);
if (pte) {
clean_dcache_area(pte, sizeof(pte_t) * PTRS_PER_PTE);
pte += PTRS_PER_PTE;
}
if (pte)
clean_pte_table(pte);
return pte;
}
@ -79,10 +79,8 @@ pte_alloc_one(struct mm_struct *mm, unsigned long addr)
pte = alloc_pages(PGALLOC_GFP, 0);
#endif
if (pte) {
if (!PageHighMem(pte)) {
void *page = page_address(pte);
clean_dcache_area(page, sizeof(pte_t) * PTRS_PER_PTE);
}
if (!PageHighMem(pte))
clean_pte_table(page_address(pte));
pgtable_page_ctor(pte);
}
@ -94,10 +92,8 @@ pte_alloc_one(struct mm_struct *mm, unsigned long addr)
*/
static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
{
if (pte) {
pte -= PTRS_PER_PTE;
if (pte)
free_page((unsigned long)pte);
}
}
static inline void pte_free(struct mm_struct *mm, pgtable_t pte)
@ -106,8 +102,10 @@ static inline void pte_free(struct mm_struct *mm, pgtable_t pte)
__free_page(pte);
}
static inline void __pmd_populate(pmd_t *pmdp, unsigned long pmdval)
static inline void __pmd_populate(pmd_t *pmdp, phys_addr_t pte,
unsigned long prot)
{
unsigned long pmdval = (pte + PTE_HWTABLE_OFF) | prot;
pmdp[0] = __pmd(pmdval);
pmdp[1] = __pmd(pmdval + 256 * sizeof(pte_t));
flush_pmd_entry(pmdp);
@ -122,20 +120,16 @@ static inline void __pmd_populate(pmd_t *pmdp, unsigned long pmdval)
static inline void
pmd_populate_kernel(struct mm_struct *mm, pmd_t *pmdp, pte_t *ptep)
{
unsigned long pte_ptr = (unsigned long)ptep;
/*
* The pmd must be loaded with the physical
* address of the PTE table
* The pmd must be loaded with the physical address of the PTE table
*/
pte_ptr -= PTRS_PER_PTE * sizeof(void *);
__pmd_populate(pmdp, __pa(pte_ptr) | _PAGE_KERNEL_TABLE);
__pmd_populate(pmdp, __pa(ptep), _PAGE_KERNEL_TABLE);
}
static inline void
pmd_populate(struct mm_struct *mm, pmd_t *pmdp, pgtable_t ptep)
{
__pmd_populate(pmdp, page_to_pfn(ptep) << PAGE_SHIFT | _PAGE_USER_TABLE);
__pmd_populate(pmdp, page_to_phys(ptep), _PAGE_USER_TABLE);
}
#define pmd_pgtable(pmd) pmd_page(pmd)

View File

@ -10,6 +10,7 @@
#ifndef _ASMARM_PGTABLE_H
#define _ASMARM_PGTABLE_H
#include <linux/const.h>
#include <asm-generic/4level-fixup.h>
#include <asm/proc-fns.h>
@ -54,7 +55,7 @@
* Therefore, we tweak the implementation slightly - we tell Linux that we
* have 2048 entries in the first level, each of which is 8 bytes (iow, two
* hardware pointers to the second level.) The second level contains two
* hardware PTE tables arranged contiguously, followed by Linux versions
* hardware PTE tables arranged contiguously, preceded by Linux versions
* which contain the state information Linux needs. We, therefore, end up
* with 512 entries in the "PTE" level.
*
@ -62,15 +63,15 @@
*
* pgd pte
* | |
* +--------+ +0
* | |-----> +------------+ +0
* +- - - - + +4 | h/w pt 0 |
* | |-----> +------------+ +1024
* +--------+ +8 | h/w pt 1 |
* | | +------------+ +2048
* +--------+
* | | +------------+ +0
* +- - - - + | Linux pt 0 |
* | | +------------+ +3072
* +--------+ | Linux pt 1 |
* | | +------------+ +1024
* +--------+ +0 | Linux pt 1 |
* | |-----> +------------+ +2048
* +- - - - + +4 | h/w pt 0 |
* | |-----> +------------+ +3072
* +--------+ +8 | h/w pt 1 |
* | | +------------+ +4096
*
* See L_PTE_xxx below for definitions of bits in the "Linux pt", and
@ -102,6 +103,10 @@
#define PTRS_PER_PMD 1
#define PTRS_PER_PGD 2048
#define PTE_HWTABLE_PTRS (PTRS_PER_PTE)
#define PTE_HWTABLE_OFF (PTE_HWTABLE_PTRS * sizeof(pte_t))
#define PTE_HWTABLE_SIZE (PTRS_PER_PTE * sizeof(u32))
/*
* PMD_SHIFT determines the size of the area a second-level page table can map
* PGDIR_SHIFT determines what a third-level page table entry can map
@ -112,13 +117,13 @@
#define LIBRARY_TEXT_START 0x0c000000
#ifndef __ASSEMBLY__
extern void __pte_error(const char *file, int line, unsigned long val);
extern void __pmd_error(const char *file, int line, unsigned long val);
extern void __pgd_error(const char *file, int line, unsigned long val);
extern void __pte_error(const char *file, int line, pte_t);
extern void __pmd_error(const char *file, int line, pmd_t);
extern void __pgd_error(const char *file, int line, pgd_t);
#define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte_val(pte))
#define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd_val(pmd))
#define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd_val(pgd))
#define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte)
#define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd)
#define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd)
#endif /* !__ASSEMBLY__ */
#define PMD_SIZE (1UL << PMD_SHIFT)
@ -133,8 +138,7 @@ extern void __pgd_error(const char *file, int line, unsigned long val);
*/
#define FIRST_USER_ADDRESS PAGE_SIZE
#define FIRST_USER_PGD_NR 1
#define USER_PTRS_PER_PGD ((TASK_SIZE/PGDIR_SIZE) - FIRST_USER_PGD_NR)
#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
/*
* section address mask and size definitions.
@ -161,30 +165,30 @@ extern void __pgd_error(const char *file, int line, unsigned long val);
* The PTE table pointer refers to the hardware entries; the "Linux"
* entries are stored 1024 bytes below.
*/
#define L_PTE_PRESENT (1 << 0)
#define L_PTE_YOUNG (1 << 1)
#define L_PTE_FILE (1 << 2) /* only when !PRESENT */
#define L_PTE_DIRTY (1 << 6)
#define L_PTE_WRITE (1 << 7)
#define L_PTE_USER (1 << 8)
#define L_PTE_EXEC (1 << 9)
#define L_PTE_SHARED (1 << 10) /* shared(v6), coherent(xsc3) */
#define L_PTE_PRESENT (_AT(pteval_t, 1) << 0)
#define L_PTE_YOUNG (_AT(pteval_t, 1) << 1)
#define L_PTE_FILE (_AT(pteval_t, 1) << 2) /* only when !PRESENT */
#define L_PTE_DIRTY (_AT(pteval_t, 1) << 6)
#define L_PTE_RDONLY (_AT(pteval_t, 1) << 7)
#define L_PTE_USER (_AT(pteval_t, 1) << 8)
#define L_PTE_XN (_AT(pteval_t, 1) << 9)
#define L_PTE_SHARED (_AT(pteval_t, 1) << 10) /* shared(v6), coherent(xsc3) */
/*
* These are the memory types, defined to be compatible with
* pre-ARMv6 CPUs cacheable and bufferable bits: XXCB
*/
#define L_PTE_MT_UNCACHED (0x00 << 2) /* 0000 */
#define L_PTE_MT_BUFFERABLE (0x01 << 2) /* 0001 */
#define L_PTE_MT_WRITETHROUGH (0x02 << 2) /* 0010 */
#define L_PTE_MT_WRITEBACK (0x03 << 2) /* 0011 */
#define L_PTE_MT_MINICACHE (0x06 << 2) /* 0110 (sa1100, xscale) */
#define L_PTE_MT_WRITEALLOC (0x07 << 2) /* 0111 */
#define L_PTE_MT_DEV_SHARED (0x04 << 2) /* 0100 */
#define L_PTE_MT_DEV_NONSHARED (0x0c << 2) /* 1100 */
#define L_PTE_MT_DEV_WC (0x09 << 2) /* 1001 */
#define L_PTE_MT_DEV_CACHED (0x0b << 2) /* 1011 */
#define L_PTE_MT_MASK (0x0f << 2)
#define L_PTE_MT_UNCACHED (_AT(pteval_t, 0x00) << 2) /* 0000 */
#define L_PTE_MT_BUFFERABLE (_AT(pteval_t, 0x01) << 2) /* 0001 */
#define L_PTE_MT_WRITETHROUGH (_AT(pteval_t, 0x02) << 2) /* 0010 */
#define L_PTE_MT_WRITEBACK (_AT(pteval_t, 0x03) << 2) /* 0011 */
#define L_PTE_MT_MINICACHE (_AT(pteval_t, 0x06) << 2) /* 0110 (sa1100, xscale) */
#define L_PTE_MT_WRITEALLOC (_AT(pteval_t, 0x07) << 2) /* 0111 */
#define L_PTE_MT_DEV_SHARED (_AT(pteval_t, 0x04) << 2) /* 0100 */
#define L_PTE_MT_DEV_NONSHARED (_AT(pteval_t, 0x0c) << 2) /* 1100 */
#define L_PTE_MT_DEV_WC (_AT(pteval_t, 0x09) << 2) /* 1001 */
#define L_PTE_MT_DEV_CACHED (_AT(pteval_t, 0x0b) << 2) /* 1011 */
#define L_PTE_MT_MASK (_AT(pteval_t, 0x0f) << 2)
#ifndef __ASSEMBLY__
@ -201,23 +205,44 @@ extern pgprot_t pgprot_kernel;
#define _MOD_PROT(p, b) __pgprot(pgprot_val(p) | (b))
#define PAGE_NONE pgprot_user
#define PAGE_SHARED _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_WRITE)
#define PAGE_SHARED_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_WRITE | L_PTE_EXEC)
#define PAGE_COPY _MOD_PROT(pgprot_user, L_PTE_USER)
#define PAGE_COPY_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_EXEC)
#define PAGE_READONLY _MOD_PROT(pgprot_user, L_PTE_USER)
#define PAGE_READONLY_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_EXEC)
#define PAGE_KERNEL pgprot_kernel
#define PAGE_KERNEL_EXEC _MOD_PROT(pgprot_kernel, L_PTE_EXEC)
#define PAGE_NONE _MOD_PROT(pgprot_user, L_PTE_XN | L_PTE_RDONLY)
#define PAGE_SHARED _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_XN)
#define PAGE_SHARED_EXEC _MOD_PROT(pgprot_user, L_PTE_USER)
#define PAGE_COPY _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
#define PAGE_COPY_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
#define PAGE_READONLY _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
#define PAGE_READONLY_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
#define PAGE_KERNEL _MOD_PROT(pgprot_kernel, L_PTE_XN)
#define PAGE_KERNEL_EXEC pgprot_kernel
#define __PAGE_NONE __pgprot(_L_PTE_DEFAULT)
#define __PAGE_SHARED __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_WRITE)
#define __PAGE_SHARED_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_WRITE | L_PTE_EXEC)
#define __PAGE_COPY __pgprot(_L_PTE_DEFAULT | L_PTE_USER)
#define __PAGE_COPY_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_EXEC)
#define __PAGE_READONLY __pgprot(_L_PTE_DEFAULT | L_PTE_USER)
#define __PAGE_READONLY_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_EXEC)
#define __PAGE_NONE __pgprot(_L_PTE_DEFAULT | L_PTE_RDONLY | L_PTE_XN)
#define __PAGE_SHARED __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_XN)
#define __PAGE_SHARED_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER)
#define __PAGE_COPY __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
#define __PAGE_COPY_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
#define __PAGE_READONLY __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
#define __PAGE_READONLY_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
#define __pgprot_modify(prot,mask,bits) \
__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
#define pgprot_noncached(prot) \
__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
#define pgprot_writecombine(prot) \
__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE)
#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
#define pgprot_dmacoherent(prot) \
__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE | L_PTE_XN)
#define __HAVE_PHYS_MEM_ACCESS_PROT
struct file;
extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
unsigned long size, pgprot_t vma_prot);
#else
#define pgprot_dmacoherent(prot) \
__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED | L_PTE_XN)
#endif
#endif /* __ASSEMBLY__ */
@ -255,94 +280,31 @@ extern pgprot_t pgprot_kernel;
extern struct page *empty_zero_page;
#define ZERO_PAGE(vaddr) (empty_zero_page)
#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
#define pfn_pte(pfn,prot) (__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)))
#define pte_none(pte) (!pte_val(pte))
#define pte_clear(mm,addr,ptep) set_pte_ext(ptep, __pte(0), 0)
#define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
#define pte_offset_kernel(dir,addr) (pmd_page_vaddr(*(dir)) + __pte_index(addr))
extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
#define pte_offset_map(dir,addr) (__pte_map(dir) + __pte_index(addr))
#define pte_unmap(pte) __pte_unmap(pte)
/* to find an entry in a page-table-directory */
#define pgd_index(addr) ((addr) >> PGDIR_SHIFT)
#ifndef CONFIG_HIGHPTE
#define __pte_map(dir) pmd_page_vaddr(*(dir))
#define __pte_unmap(pte) do { } while (0)
#else
#define __pte_map(dir) ((pte_t *)kmap_atomic(pmd_page(*(dir))) + PTRS_PER_PTE)
#define __pte_unmap(pte) kunmap_atomic((pte - PTRS_PER_PTE))
#endif
#define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr))
#define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext)
#if __LINUX_ARM_ARCH__ < 6
static inline void __sync_icache_dcache(pte_t pteval)
{
}
#else
extern void __sync_icache_dcache(pte_t pteval);
#endif
static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pteval)
{
if (addr >= TASK_SIZE)
set_pte_ext(ptep, pteval, 0);
else {
__sync_icache_dcache(pteval);
set_pte_ext(ptep, pteval, PTE_EXT_NG);
}
}
/* to find an entry in a kernel page-table-directory */
#define pgd_offset_k(addr) pgd_offset(&init_mm, addr)
/*
* The following only work if pte_present() is true.
* Undefined behaviour if not..
* The "pgd_xxx()" functions here are trivial for a folded two-level
* setup: the pgd is never bad, and a pmd always exists (as it's folded
* into the pgd entry)
*/
#define pte_present(pte) (pte_val(pte) & L_PTE_PRESENT)
#define pte_write(pte) (pte_val(pte) & L_PTE_WRITE)
#define pte_dirty(pte) (pte_val(pte) & L_PTE_DIRTY)
#define pte_young(pte) (pte_val(pte) & L_PTE_YOUNG)
#define pte_exec(pte) (pte_val(pte) & L_PTE_EXEC)
#define pte_special(pte) (0)
#define pgd_none(pgd) (0)
#define pgd_bad(pgd) (0)
#define pgd_present(pgd) (1)
#define pgd_clear(pgdp) do { } while (0)
#define set_pgd(pgd,pgdp) do { } while (0)
#define pte_present_user(pte) \
((pte_val(pte) & (L_PTE_PRESENT | L_PTE_USER)) == \
(L_PTE_PRESENT | L_PTE_USER))
#define PTE_BIT_FUNC(fn,op) \
static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }
PTE_BIT_FUNC(wrprotect, &= ~L_PTE_WRITE);
PTE_BIT_FUNC(mkwrite, |= L_PTE_WRITE);
PTE_BIT_FUNC(mkclean, &= ~L_PTE_DIRTY);
PTE_BIT_FUNC(mkdirty, |= L_PTE_DIRTY);
PTE_BIT_FUNC(mkold, &= ~L_PTE_YOUNG);
PTE_BIT_FUNC(mkyoung, |= L_PTE_YOUNG);
static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
#define __pgprot_modify(prot,mask,bits) \
__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
/*
* Mark the prot value as uncacheable and unbufferable.
*/
#define pgprot_noncached(prot) \
__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
#define pgprot_writecombine(prot) \
__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE)
#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
#define pgprot_dmacoherent(prot) \
__pgprot_modify(prot, L_PTE_MT_MASK|L_PTE_EXEC, L_PTE_MT_BUFFERABLE)
#define __HAVE_PHYS_MEM_ACCESS_PROT
struct file;
extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
unsigned long size, pgprot_t vma_prot);
#else
#define pgprot_dmacoherent(prot) \
__pgprot_modify(prot, L_PTE_MT_MASK|L_PTE_EXEC, L_PTE_MT_UNCACHED)
#endif
/* Find an entry in the second-level page table.. */
#define pmd_offset(dir, addr) ((pmd_t *)(dir))
#define pmd_none(pmd) (!pmd_val(pmd))
#define pmd_present(pmd) (pmd_val(pmd))
@ -364,12 +326,7 @@ extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
static inline pte_t *pmd_page_vaddr(pmd_t pmd)
{
unsigned long ptr;
ptr = pmd_val(pmd) & ~(PTRS_PER_PTE * sizeof(void *) - 1);
ptr += PTRS_PER_PTE * sizeof(void *);
return __va(ptr);
return __va(pmd_val(pmd) & PAGE_MASK);
}
#define pmd_page(pmd) pfn_to_page(__phys_to_pfn(pmd_val(pmd)))
@ -377,46 +334,81 @@ static inline pte_t *pmd_page_vaddr(pmd_t pmd)
/* we don't need complex calculations here as the pmd is folded into the pgd */
#define pmd_addr_end(addr,end) (end)
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*/
#define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot)
/*
* The "pgd_xxx()" functions here are trivial for a folded two-level
* setup: the pgd is never bad, and a pmd always exists (as it's folded
* into the pgd entry)
*/
#define pgd_none(pgd) (0)
#define pgd_bad(pgd) (0)
#define pgd_present(pgd) (1)
#define pgd_clear(pgdp) do { } while (0)
#define set_pgd(pgd,pgdp) do { } while (0)
#ifndef CONFIG_HIGHPTE
#define __pte_map(pmd) pmd_page_vaddr(*(pmd))
#define __pte_unmap(pte) do { } while (0)
#else
#define __pte_map(pmd) (pte_t *)kmap_atomic(pmd_page(*(pmd)))
#define __pte_unmap(pte) kunmap_atomic(pte)
#endif
/* to find an entry in a page-table-directory */
#define pgd_index(addr) ((addr) >> PGDIR_SHIFT)
#define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
#define pgd_offset(mm, addr) ((mm)->pgd+pgd_index(addr))
#define pte_offset_kernel(pmd,addr) (pmd_page_vaddr(*(pmd)) + pte_index(addr))
/* to find an entry in a kernel page-table-directory */
#define pgd_offset_k(addr) pgd_offset(&init_mm, addr)
#define pte_offset_map(pmd,addr) (__pte_map(pmd) + pte_index(addr))
#define pte_unmap(pte) __pte_unmap(pte)
/* Find an entry in the second-level page table.. */
#define pmd_offset(dir, addr) ((pmd_t *)(dir))
#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
#define pfn_pte(pfn,prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
/* Find an entry in the third-level page table.. */
#define __pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
#define pte_page(pte) pfn_to_page(pte_pfn(pte))
#define mk_pte(page,prot) pfn_pte(page_to_pfn(page), prot)
#define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext)
#define pte_clear(mm,addr,ptep) set_pte_ext(ptep, __pte(0), 0)
#if __LINUX_ARM_ARCH__ < 6
static inline void __sync_icache_dcache(pte_t pteval)
{
}
#else
extern void __sync_icache_dcache(pte_t pteval);
#endif
static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pteval)
{
if (addr >= TASK_SIZE)
set_pte_ext(ptep, pteval, 0);
else {
__sync_icache_dcache(pteval);
set_pte_ext(ptep, pteval, PTE_EXT_NG);
}
}
#define pte_none(pte) (!pte_val(pte))
#define pte_present(pte) (pte_val(pte) & L_PTE_PRESENT)
#define pte_write(pte) (!(pte_val(pte) & L_PTE_RDONLY))
#define pte_dirty(pte) (pte_val(pte) & L_PTE_DIRTY)
#define pte_young(pte) (pte_val(pte) & L_PTE_YOUNG)
#define pte_exec(pte) (!(pte_val(pte) & L_PTE_XN))
#define pte_special(pte) (0)
#define pte_present_user(pte) \
((pte_val(pte) & (L_PTE_PRESENT | L_PTE_USER)) == \
(L_PTE_PRESENT | L_PTE_USER))
#define PTE_BIT_FUNC(fn,op) \
static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }
PTE_BIT_FUNC(wrprotect, |= L_PTE_RDONLY);
PTE_BIT_FUNC(mkwrite, &= ~L_PTE_RDONLY);
PTE_BIT_FUNC(mkclean, &= ~L_PTE_DIRTY);
PTE_BIT_FUNC(mkdirty, |= L_PTE_DIRTY);
PTE_BIT_FUNC(mkold, &= ~L_PTE_YOUNG);
PTE_BIT_FUNC(mkyoung, |= L_PTE_YOUNG);
static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
const unsigned long mask = L_PTE_EXEC | L_PTE_WRITE | L_PTE_USER;
const pteval_t mask = L_PTE_XN | L_PTE_RDONLY | L_PTE_USER;
pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
return pte;
}
extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
/*
* Encode and decode a swap entry. Swap entries are stored in the Linux
* page tables as follows:
@ -481,6 +473,9 @@ extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
#define pgtable_cache_init() do { } while (0)
void identity_mapping_add(pgd_t *, unsigned long, unsigned long);
void identity_mapping_del(pgd_t *, unsigned long, unsigned long);
#endif /* !__ASSEMBLY__ */
#endif /* CONFIG_MMU */

View File

@ -0,0 +1,118 @@
/*
* sched_clock.h: support for extending counters to full 64-bit ns counter
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef ASM_SCHED_CLOCK
#define ASM_SCHED_CLOCK
#include <linux/kernel.h>
#include <linux/types.h>
struct clock_data {
u64 epoch_ns;
u32 epoch_cyc;
u32 epoch_cyc_copy;
u32 mult;
u32 shift;
};
#define DEFINE_CLOCK_DATA(name) struct clock_data name
static inline u64 cyc_to_ns(u64 cyc, u32 mult, u32 shift)
{
return (cyc * mult) >> shift;
}
/*
* Atomically update the sched_clock epoch. Your update callback will
* be called from a timer before the counter wraps - read the current
* counter value, and call this function to safely move the epochs
* forward. Only use this from the update callback.
*/
static inline void update_sched_clock(struct clock_data *cd, u32 cyc, u32 mask)
{
unsigned long flags;
u64 ns = cd->epoch_ns +
cyc_to_ns((cyc - cd->epoch_cyc) & mask, cd->mult, cd->shift);
/*
* Write epoch_cyc and epoch_ns in a way that the update is
* detectable in cyc_to_fixed_sched_clock().
*/
raw_local_irq_save(flags);
cd->epoch_cyc = cyc;
smp_wmb();
cd->epoch_ns = ns;
smp_wmb();
cd->epoch_cyc_copy = cyc;
raw_local_irq_restore(flags);
}
/*
* If your clock rate is known at compile time, using this will allow
* you to optimize the mult/shift loads away. This is paired with
* init_fixed_sched_clock() to ensure that your mult/shift are correct.
*/
static inline unsigned long long cyc_to_fixed_sched_clock(struct clock_data *cd,
u32 cyc, u32 mask, u32 mult, u32 shift)
{
u64 epoch_ns;
u32 epoch_cyc;
/*
* Load the epoch_cyc and epoch_ns atomically. We do this by
* ensuring that we always write epoch_cyc, epoch_ns and
* epoch_cyc_copy in strict order, and read them in strict order.
* If epoch_cyc and epoch_cyc_copy are not equal, then we're in
* the middle of an update, and we should repeat the load.
*/
do {
epoch_cyc = cd->epoch_cyc;
smp_rmb();
epoch_ns = cd->epoch_ns;
smp_rmb();
} while (epoch_cyc != cd->epoch_cyc_copy);
return epoch_ns + cyc_to_ns((cyc - epoch_cyc) & mask, mult, shift);
}
/*
* Otherwise, you need to use this, which will obtain the mult/shift
* from the clock_data structure. Use init_sched_clock() with this.
*/
static inline unsigned long long cyc_to_sched_clock(struct clock_data *cd,
u32 cyc, u32 mask)
{
return cyc_to_fixed_sched_clock(cd, cyc, mask, cd->mult, cd->shift);
}
/*
* Initialize the clock data - calculate the appropriate multiplier
* and shift. Also setup a timer to ensure that the epoch is refreshed
* at the appropriate time interval, which will call your update
* handler.
*/
void init_sched_clock(struct clock_data *, void (*)(void),
unsigned int, unsigned long);
/*
* Use this initialization function rather than init_sched_clock() if
* you're using cyc_to_fixed_sched_clock, which will warn if your
* constants are incorrect.
*/
static inline void init_fixed_sched_clock(struct clock_data *cd,
void (*update)(void), unsigned int bits, unsigned long rate,
u32 mult, u32 shift)
{
init_sched_clock(cd, update, bits, rate);
if (cd->mult != mult || cd->shift != shift) {
pr_crit("sched_clock: wrong multiply/shift: %u>>%u vs calculated %u>>%u\n"
"sched_clock: fix multiply/shift to avoid scheduler hiccups\n",
mult, shift, cd->mult, cd->shift);
}
}
#endif

View File

@ -13,9 +13,6 @@
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* DO NOT EDIT!! - this file automatically generated
* from .s file by awk -f s2h.awk
*/
/* Size definitions
* Copyright (C) ARM Limited 1998. All rights reserved.
*/
@ -25,6 +22,9 @@
/* handy sizes */
#define SZ_16 0x00000010
#define SZ_32 0x00000020
#define SZ_64 0x00000040
#define SZ_128 0x00000080
#define SZ_256 0x00000100
#define SZ_512 0x00000200

View File

@ -33,27 +33,23 @@ struct seq_file;
/*
* generate IPI list text
*/
extern void show_ipi_list(struct seq_file *p);
extern void show_ipi_list(struct seq_file *, int);
/*
* Called from assembly code, this handles an IPI.
*/
asmlinkage void do_IPI(struct pt_regs *regs);
asmlinkage void do_IPI(int ipinr, struct pt_regs *regs);
/*
* Setup the set of possible CPUs (via set_cpu_possible)
*/
extern void smp_init_cpus(void);
/*
* Move global data into per-processor storage.
*/
extern void smp_store_cpu_info(unsigned int cpuid);
/*
* Raise an IPI cross call on CPUs in callmap.
*/
extern void smp_cross_call(const struct cpumask *mask);
extern void smp_cross_call(const struct cpumask *mask, int ipi);
/*
* Boot a secondary CPU, and assign it the specified idle task.
@ -72,6 +68,11 @@ asmlinkage void secondary_start_kernel(void);
*/
extern void platform_secondary_init(unsigned int cpu);
/*
* Initialize cpu_possible map, and enable coherency
*/
extern void platform_smp_prepare_cpus(unsigned int);
/*
* Initial data for bringing up a secondary CPU.
*/
@ -97,6 +98,6 @@ extern void arch_send_call_function_ipi_mask(const struct cpumask *mask);
/*
* show local interrupt info
*/
extern void show_local_irqs(struct seq_file *);
extern void show_local_irqs(struct seq_file *, int);
#endif /* ifndef __ASM_ARM_SMP_H */

View File

@ -1,17 +0,0 @@
#ifndef ASMARM_SMP_MIDR_H
#define ASMARM_SMP_MIDR_H
#define hard_smp_processor_id() \
({ \
unsigned int cpunum; \
__asm__("\n" \
"1: mrc p15, 0, %0, c0, c0, 5\n" \
" .pushsection \".alt.smp.init\", \"a\"\n"\
" .long 1b\n" \
" mov %0, #0\n" \
" .popsection" \
: "=r" (cpunum)); \
cpunum &= 0x0F; \
})
#endif

View File

@ -22,7 +22,6 @@ struct clock_event_device;
extern void __iomem *twd_base;
void twd_timer_stop(void);
int twd_timer_ack(void);
void twd_timer_setup(struct clock_event_device *);

View File

@ -63,6 +63,11 @@
#include <asm/outercache.h>
#define __exception __attribute__((section(".exception.text")))
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
#define __exception_irq_entry __irq_entry
#else
#define __exception_irq_entry __exception
#endif
struct thread_info;
struct task_struct;
@ -119,6 +124,13 @@ extern unsigned int user_debug;
#define vectors_high() (0)
#endif
#if __LINUX_ARM_ARCH__ >= 7 || \
(__LINUX_ARM_ARCH__ == 6 && defined(CONFIG_CPU_32v6K))
#define sev() __asm__ __volatile__ ("sev" : : : "memory")
#define wfe() __asm__ __volatile__ ("wfe" : : : "memory")
#define wfi() __asm__ __volatile__ ("wfi" : : : "memory")
#endif
#if __LINUX_ARM_ARCH__ >= 7
#define isb() __asm__ __volatile__ ("isb" : : : "memory")
#define dsb() __asm__ __volatile__ ("dsb" : : : "memory")
@ -150,6 +162,7 @@ extern unsigned int user_debug;
#define rmb() dmb()
#define wmb() mb()
#else
#include <asm/memory.h>
#define mb() do { if (arch_is_coherent()) dmb(); else barrier(); } while (0)
#define rmb() do { if (arch_is_coherent()) dmb(); else barrier(); } while (0)
#define wmb() do { if (arch_is_coherent()) dmb(); else barrier(); } while (0)

View File

@ -15,16 +15,37 @@ struct undef_hook {
void register_undef_hook(struct undef_hook *hook);
void unregister_undef_hook(struct undef_hook *hook);
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
static inline int __in_irqentry_text(unsigned long ptr)
{
extern char __irqentry_text_start[];
extern char __irqentry_text_end[];
return ptr >= (unsigned long)&__irqentry_text_start &&
ptr < (unsigned long)&__irqentry_text_end;
}
#else
static inline int __in_irqentry_text(unsigned long ptr)
{
return 0;
}
#endif
static inline int in_exception_text(unsigned long ptr)
{
extern char __exception_text_start[];
extern char __exception_text_end[];
int in;
return ptr >= (unsigned long)&__exception_text_start &&
ptr < (unsigned long)&__exception_text_end;
in = ptr >= (unsigned long)&__exception_text_start &&
ptr < (unsigned long)&__exception_text_end;
return in ? : __in_irqentry_text(ptr);
}
extern void __init early_trap_init(void);
extern void dump_backtrace_entry(unsigned long where, unsigned long from, unsigned long frame);
extern void *vectors_page;
#endif

View File

@ -227,7 +227,7 @@ do { \
#define __get_user_asm_byte(x,addr,err) \
__asm__ __volatile__( \
"1: ldrbt %1,[%2]\n" \
"1: " T(ldrb) " %1,[%2],#0\n" \
"2:\n" \
" .pushsection .fixup,\"ax\"\n" \
" .align 2\n" \
@ -263,7 +263,7 @@ do { \
#define __get_user_asm_word(x,addr,err) \
__asm__ __volatile__( \
"1: ldrt %1,[%2]\n" \
"1: " T(ldr) " %1,[%2],#0\n" \
"2:\n" \
" .pushsection .fixup,\"ax\"\n" \
" .align 2\n" \
@ -308,7 +308,7 @@ do { \
#define __put_user_asm_byte(x,__pu_addr,err) \
__asm__ __volatile__( \
"1: strbt %1,[%2]\n" \
"1: " T(strb) " %1,[%2],#0\n" \
"2:\n" \
" .pushsection .fixup,\"ax\"\n" \
" .align 2\n" \
@ -341,7 +341,7 @@ do { \
#define __put_user_asm_word(x,__pu_addr,err) \
__asm__ __volatile__( \
"1: strt %1,[%2]\n" \
"1: " T(str) " %1,[%2],#0\n" \
"2:\n" \
" .pushsection .fixup,\"ax\"\n" \
" .align 2\n" \
@ -366,10 +366,10 @@ do { \
#define __put_user_asm_dword(x,__pu_addr,err) \
__asm__ __volatile__( \
ARM( "1: strt " __reg_oper1 ", [%1], #4\n" ) \
ARM( "2: strt " __reg_oper0 ", [%1]\n" ) \
THUMB( "1: strt " __reg_oper1 ", [%1]\n" ) \
THUMB( "2: strt " __reg_oper0 ", [%1, #4]\n" ) \
ARM( "1: " T(str) " " __reg_oper1 ", [%1], #4\n" ) \
ARM( "2: " T(str) " " __reg_oper0 ", [%1]\n" ) \
THUMB( "1: " T(str) " " __reg_oper1 ", [%1]\n" ) \
THUMB( "2: " T(str) " " __reg_oper0 ", [%1, #4]\n" ) \
"3:\n" \
" .pushsection .fixup,\"ax\"\n" \
" .align 2\n" \

View File

@ -5,7 +5,7 @@
CPPFLAGS_vmlinux.lds := -DTEXT_OFFSET=$(TEXT_OFFSET)
AFLAGS_head.o := -DTEXT_OFFSET=$(TEXT_OFFSET)
ifdef CONFIG_DYNAMIC_FTRACE
ifdef CONFIG_FUNCTION_TRACER
CFLAGS_REMOVE_ftrace.o = -pg
endif
@ -29,10 +29,12 @@ obj-$(CONFIG_MODULES) += armksyms.o module.o
obj-$(CONFIG_ARTHUR) += arthur.o
obj-$(CONFIG_ISA_DMA) += dma-isa.o
obj-$(CONFIG_PCI) += bios32.o isa.o
obj-$(CONFIG_SMP) += smp.o
obj-$(CONFIG_HAVE_SCHED_CLOCK) += sched_clock.o
obj-$(CONFIG_SMP) += smp.o smp_tlb.o
obj-$(CONFIG_HAVE_ARM_SCU) += smp_scu.o
obj-$(CONFIG_HAVE_ARM_TWD) += smp_twd.o
obj-$(CONFIG_DYNAMIC_FTRACE) += ftrace.o
obj-$(CONFIG_FUNCTION_GRAPH_TRACER) += ftrace.o
obj-$(CONFIG_KEXEC) += machine_kexec.o relocate_kernel.o
obj-$(CONFIG_KPROBES) += kprobes.o kprobes-decode.o
obj-$(CONFIG_ATAGS_PROC) += atags.o
@ -42,6 +44,8 @@ obj-$(CONFIG_KGDB) += kgdb.o
obj-$(CONFIG_ARM_UNWIND) += unwind.o
obj-$(CONFIG_HAVE_TCM) += tcm.o
obj-$(CONFIG_CRASH_DUMP) += crash_dump.o
obj-$(CONFIG_SWP_EMULATE) += swp_emulate.o
CFLAGS_swp_emulate.o := -Wa,-march=armv7-a
obj-$(CONFIG_HAVE_HW_BREAKPOINT) += hw_breakpoint.o
obj-$(CONFIG_CRUNCH) += crunch.o crunch-bits.o
@ -50,6 +54,7 @@ AFLAGS_crunch-bits.o := -Wa,-mcpu=ep9312
obj-$(CONFIG_CPU_XSCALE) += xscale-cp0.o
obj-$(CONFIG_CPU_XSC3) += xscale-cp0.o
obj-$(CONFIG_CPU_MOHAWK) += xscale-cp0.o
obj-$(CONFIG_CPU_PJ4) += pj4-cp0.o
obj-$(CONFIG_IWMMXT) += iwmmxt.o
obj-$(CONFIG_CPU_HAS_PMU) += pmu.o
obj-$(CONFIG_HW_PERF_EVENTS) += perf_event.o

View File

@ -25,42 +25,22 @@
#include <asm/tls.h>
#include "entry-header.S"
#include <asm/entry-macro-multi.S>
/*
* Interrupt handling. Preserves r7, r8, r9
*/
.macro irq_handler
get_irqnr_preamble r5, lr
1: get_irqnr_and_base r0, r6, r5, lr
movne r1, sp
@
@ routine called with r0 = irq number, r1 = struct pt_regs *
@
adrne lr, BSYM(1b)
bne asm_do_IRQ
#ifdef CONFIG_SMP
/*
* XXX
*
* this macro assumes that irqstat (r6) and base (r5) are
* preserved from get_irqnr_and_base above
*/
ALT_SMP(test_for_ipi r0, r6, r5, lr)
ALT_UP_B(9997f)
movne r0, sp
adrne lr, BSYM(1b)
bne do_IPI
#ifdef CONFIG_LOCAL_TIMERS
test_for_ltirq r0, r6, r5, lr
movne r0, sp
adrne lr, BSYM(1b)
bne do_local_timer
#ifdef CONFIG_MULTI_IRQ_HANDLER
ldr r5, =handle_arch_irq
mov r0, sp
ldr r5, [r5]
adr lr, BSYM(9997f)
teq r5, #0
movne pc, r5
#endif
arch_irq_handler_default
9997:
#endif
.endm
#ifdef CONFIG_KPROBES
@ -198,6 +178,7 @@ __dabt_svc:
@
@ set desired IRQ state, then call main handler
@
debug_entry r1
msr cpsr_c, r9
mov r2, sp
bl do_DataAbort
@ -324,6 +305,7 @@ __pabt_svc:
#else
bl CPU_PABORT_HANDLER
#endif
debug_entry r1
msr cpsr_c, r9 @ Maybe enable interrupts
mov r2, sp @ regs
bl do_PrefetchAbort @ call abort handler
@ -439,6 +421,7 @@ __dabt_usr:
@
@ IRQs on, then call the main handler
@
debug_entry r1
enable_irq
mov r2, sp
adr lr, BSYM(ret_from_exception)
@ -703,6 +686,7 @@ __pabt_usr:
#else
bl CPU_PABORT_HANDLER
#endif
debug_entry r1
enable_irq @ Enable interrupts
mov r2, sp @ regs
bl do_PrefetchAbort @ call abort handler
@ -735,7 +719,7 @@ ENTRY(__switch_to)
THUMB( stmia ip!, {r4 - sl, fp} ) @ Store most regs on stack
THUMB( str sp, [ip], #4 )
THUMB( str lr, [ip], #4 )
#ifdef CONFIG_MMU
#ifdef CONFIG_CPU_USE_DOMAINS
ldr r6, [r2, #TI_CPU_DOMAIN]
#endif
set_tls r3, r4, r5
@ -744,7 +728,7 @@ ENTRY(__switch_to)
ldr r8, =__stack_chk_guard
ldr r7, [r7, #TSK_STACK_CANARY]
#endif
#ifdef CONFIG_MMU
#ifdef CONFIG_CPU_USE_DOMAINS
mcr p15, 0, r6, c3, c0, 0 @ Set domain register
#endif
mov r5, r0
@ -842,7 +826,7 @@ __kuser_helper_start:
*/
__kuser_memory_barrier: @ 0xffff0fa0
smp_dmb
smp_dmb arm
usr_ret lr
.align 5
@ -959,7 +943,7 @@ kuser_cmpxchg_fixup:
#else
smp_dmb
smp_dmb arm
1: ldrex r3, [r2]
subs r3, r3, r0
strexeq r3, r1, [r2]
@ -1245,3 +1229,9 @@ cr_alignment:
.space 4
cr_no_alignment:
.space 4
#ifdef CONFIG_MULTI_IRQ_HANDLER
.globl handle_arch_irq
handle_arch_irq:
.space 4
#endif

View File

@ -29,6 +29,9 @@ ret_fast_syscall:
ldr r1, [tsk, #TI_FLAGS]
tst r1, #_TIF_WORK_MASK
bne fast_work_pending
#if defined(CONFIG_IRQSOFF_TRACER)
asm_trace_hardirqs_on
#endif
/* perform architecture specific actions before user return */
arch_ret_to_user r1, lr
@ -65,6 +68,9 @@ ret_slow_syscall:
tst r1, #_TIF_WORK_MASK
bne work_pending
no_work_pending:
#if defined(CONFIG_IRQSOFF_TRACER)
asm_trace_hardirqs_on
#endif
/* perform architecture specific actions before user return */
arch_ret_to_user r1, lr
@ -141,98 +147,170 @@ ENDPROC(ret_from_fork)
#endif
#endif
#ifdef CONFIG_DYNAMIC_FTRACE
ENTRY(__gnu_mcount_nc)
mov ip, lr
ldmia sp!, {lr}
mov pc, ip
ENDPROC(__gnu_mcount_nc)
ENTRY(ftrace_caller)
stmdb sp!, {r0-r3, lr}
mov r0, lr
sub r0, r0, #MCOUNT_INSN_SIZE
ldr r1, [sp, #20]
.global ftrace_call
ftrace_call:
bl ftrace_stub
ldmia sp!, {r0-r3, ip, lr}
mov pc, ip
ENDPROC(ftrace_caller)
#ifdef CONFIG_OLD_MCOUNT
ENTRY(mcount)
stmdb sp!, {lr}
ldr lr, [fp, #-4]
ldmia sp!, {pc}
ENDPROC(mcount)
ENTRY(ftrace_caller_old)
stmdb sp!, {r0-r3, lr}
ldr r1, [fp, #-4]
mov r0, lr
sub r0, r0, #MCOUNT_INSN_SIZE
.globl ftrace_call_old
ftrace_call_old:
bl ftrace_stub
ldr lr, [fp, #-4] @ restore lr
ldmia sp!, {r0-r3, pc}
ENDPROC(ftrace_caller_old)
#endif
#else
ENTRY(__gnu_mcount_nc)
stmdb sp!, {r0-r3, lr}
.macro __mcount suffix
mcount_enter
ldr r0, =ftrace_trace_function
ldr r2, [r0]
adr r0, .Lftrace_stub
cmp r0, r2
bne gnu_trace
ldmia sp!, {r0-r3, ip, lr}
mov pc, ip
bne 1f
gnu_trace:
ldr r1, [sp, #20] @ lr of instrumented routine
mov r0, lr
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
ldr r1, =ftrace_graph_return
ldr r2, [r1]
cmp r0, r2
bne ftrace_graph_caller\suffix
ldr r1, =ftrace_graph_entry
ldr r2, [r1]
ldr r0, =ftrace_graph_entry_stub
cmp r0, r2
bne ftrace_graph_caller\suffix
#endif
mcount_exit
1: mcount_get_lr r1 @ lr of instrumented func
mov r0, lr @ instrumented function
sub r0, r0, #MCOUNT_INSN_SIZE
adr lr, BSYM(1f)
adr lr, BSYM(2f)
mov pc, r2
1:
ldmia sp!, {r0-r3, ip, lr}
mov pc, ip
ENDPROC(__gnu_mcount_nc)
2: mcount_exit
.endm
.macro __ftrace_caller suffix
mcount_enter
mcount_get_lr r1 @ lr of instrumented func
mov r0, lr @ instrumented function
sub r0, r0, #MCOUNT_INSN_SIZE
.globl ftrace_call\suffix
ftrace_call\suffix:
bl ftrace_stub
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
.globl ftrace_graph_call\suffix
ftrace_graph_call\suffix:
mov r0, r0
#endif
mcount_exit
.endm
.macro __ftrace_graph_caller
sub r0, fp, #4 @ &lr of instrumented routine (&parent)
#ifdef CONFIG_DYNAMIC_FTRACE
@ called from __ftrace_caller, saved in mcount_enter
ldr r1, [sp, #16] @ instrumented routine (func)
#else
@ called from __mcount, untouched in lr
mov r1, lr @ instrumented routine (func)
#endif
sub r1, r1, #MCOUNT_INSN_SIZE
mov r2, fp @ frame pointer
bl prepare_ftrace_return
mcount_exit
.endm
#ifdef CONFIG_OLD_MCOUNT
/*
* This is under an ifdef in order to force link-time errors for people trying
* to build with !FRAME_POINTER with a GCC which doesn't use the new-style
* mcount.
* mcount
*/
ENTRY(mcount)
stmdb sp!, {r0-r3, lr}
ldr r0, =ftrace_trace_function
ldr r2, [r0]
adr r0, ftrace_stub
cmp r0, r2
bne trace
ldr lr, [fp, #-4] @ restore lr
ldmia sp!, {r0-r3, pc}
trace:
ldr r1, [fp, #-4] @ lr of instrumented routine
mov r0, lr
sub r0, r0, #MCOUNT_INSN_SIZE
mov lr, pc
mov pc, r2
ldr lr, [fp, #-4] @ restore lr
.macro mcount_enter
stmdb sp!, {r0-r3, lr}
.endm
.macro mcount_get_lr reg
ldr \reg, [fp, #-4]
.endm
.macro mcount_exit
ldr lr, [fp, #-4]
ldmia sp!, {r0-r3, pc}
.endm
ENTRY(mcount)
#ifdef CONFIG_DYNAMIC_FTRACE
stmdb sp!, {lr}
ldr lr, [fp, #-4]
ldmia sp!, {pc}
#else
__mcount _old
#endif
ENDPROC(mcount)
#ifdef CONFIG_DYNAMIC_FTRACE
ENTRY(ftrace_caller_old)
__ftrace_caller _old
ENDPROC(ftrace_caller_old)
#endif
#endif /* CONFIG_DYNAMIC_FTRACE */
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
ENTRY(ftrace_graph_caller_old)
__ftrace_graph_caller
ENDPROC(ftrace_graph_caller_old)
#endif
.purgem mcount_enter
.purgem mcount_get_lr
.purgem mcount_exit
#endif
/*
* __gnu_mcount_nc
*/
.macro mcount_enter
stmdb sp!, {r0-r3, lr}
.endm
.macro mcount_get_lr reg
ldr \reg, [sp, #20]
.endm
.macro mcount_exit
ldmia sp!, {r0-r3, ip, lr}
mov pc, ip
.endm
ENTRY(__gnu_mcount_nc)
#ifdef CONFIG_DYNAMIC_FTRACE
mov ip, lr
ldmia sp!, {lr}
mov pc, ip
#else
__mcount
#endif
ENDPROC(__gnu_mcount_nc)
#ifdef CONFIG_DYNAMIC_FTRACE
ENTRY(ftrace_caller)
__ftrace_caller
ENDPROC(ftrace_caller)
#endif
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
ENTRY(ftrace_graph_caller)
__ftrace_graph_caller
ENDPROC(ftrace_graph_caller)
#endif
.purgem mcount_enter
.purgem mcount_get_lr
.purgem mcount_exit
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
.globl return_to_handler
return_to_handler:
stmdb sp!, {r0-r3}
mov r0, fp @ frame pointer
bl ftrace_return_to_handler
mov lr, r0 @ r0 has real ret addr
ldmia sp!, {r0-r3}
mov pc, lr
#endif
ENTRY(ftrace_stub)
.Lftrace_stub:

View File

@ -165,6 +165,25 @@
.endm
#endif /* !CONFIG_THUMB2_KERNEL */
@
@ Debug exceptions are taken as prefetch or data aborts.
@ We must disable preemption during the handler so that
@ we can access the debug registers safely.
@
.macro debug_entry, fsr
#if defined(CONFIG_HAVE_HW_BREAKPOINT) && defined(CONFIG_PREEMPT)
ldr r4, =0x40f @ mask out fsr.fs
and r5, r4, \fsr
cmp r5, #2 @ debug exception
bne 1f
get_thread_info r10
ldr r6, [r10, #TI_PREEMPT] @ get preempt count
add r11, r6, #1 @ increment it
str r11, [r10, #TI_PREEMPT]
1:
#endif
.endm
/*
* These are the registers used in the syscall handler, and allow us to
* have in theory up to 7 arguments to a function - r0 to r6.

View File

@ -45,6 +45,7 @@
#include <asm/fiq.h>
#include <asm/irq.h>
#include <asm/system.h>
#include <asm/traps.h>
static unsigned long no_fiq_insn;
@ -67,17 +68,22 @@ static struct fiq_handler default_owner = {
static struct fiq_handler *current_fiq = &default_owner;
int show_fiq_list(struct seq_file *p, void *v)
int show_fiq_list(struct seq_file *p, int prec)
{
if (current_fiq != &default_owner)
seq_printf(p, "FIQ: %s\n", current_fiq->name);
seq_printf(p, "%*s: %s\n", prec, "FIQ",
current_fiq->name);
return 0;
}
void set_fiq_handler(void *start, unsigned int length)
{
#if defined(CONFIG_CPU_USE_DOMAINS)
memcpy((void *)0xffff001c, start, length);
#else
memcpy(vectors_page + 0x1c, start, length);
#endif
flush_icache_range(0xffff001c, 0xffff001c + length);
if (!vectors_high())
flush_icache_range(0x1c, 0x1c + length);

View File

@ -24,6 +24,7 @@
#define NOP 0xe8bd4000 /* pop {lr} */
#endif
#ifdef CONFIG_DYNAMIC_FTRACE
#ifdef CONFIG_OLD_MCOUNT
#define OLD_MCOUNT_ADDR ((unsigned long) mcount)
#define OLD_FTRACE_ADDR ((unsigned long) ftrace_caller_old)
@ -59,9 +60,9 @@ static unsigned long adjust_address(struct dyn_ftrace *rec, unsigned long addr)
}
#endif
/* construct a branch (BL) instruction to addr */
#ifdef CONFIG_THUMB2_KERNEL
static unsigned long ftrace_call_replace(unsigned long pc, unsigned long addr)
static unsigned long ftrace_gen_branch(unsigned long pc, unsigned long addr,
bool link)
{
unsigned long s, j1, j2, i1, i2, imm10, imm11;
unsigned long first, second;
@ -83,15 +84,22 @@ static unsigned long ftrace_call_replace(unsigned long pc, unsigned long addr)
j2 = (!i2) ^ s;
first = 0xf000 | (s << 10) | imm10;
second = 0xd000 | (j1 << 13) | (j2 << 11) | imm11;
second = 0x9000 | (j1 << 13) | (j2 << 11) | imm11;
if (link)
second |= 1 << 14;
return (second << 16) | first;
}
#else
static unsigned long ftrace_call_replace(unsigned long pc, unsigned long addr)
static unsigned long ftrace_gen_branch(unsigned long pc, unsigned long addr,
bool link)
{
unsigned long opcode = 0xea000000;
long offset;
if (link)
opcode |= 1 << 24;
offset = (long)addr - (long)(pc + 8);
if (unlikely(offset < -33554432 || offset > 33554428)) {
/* Can't generate branches that far (from ARM ARM). Ftrace
@ -103,10 +111,15 @@ static unsigned long ftrace_call_replace(unsigned long pc, unsigned long addr)
offset = (offset >> 2) & 0x00ffffff;
return 0xeb000000 | offset;
return opcode | offset;
}
#endif
static unsigned long ftrace_call_replace(unsigned long pc, unsigned long addr)
{
return ftrace_gen_branch(pc, addr, true);
}
static int ftrace_modify_code(unsigned long pc, unsigned long old,
unsigned long new)
{
@ -193,3 +206,83 @@ int __init ftrace_dyn_arch_init(void *data)
return 0;
}
#endif /* CONFIG_DYNAMIC_FTRACE */
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
void prepare_ftrace_return(unsigned long *parent, unsigned long self_addr,
unsigned long frame_pointer)
{
unsigned long return_hooker = (unsigned long) &return_to_handler;
struct ftrace_graph_ent trace;
unsigned long old;
int err;
if (unlikely(atomic_read(&current->tracing_graph_pause)))
return;
old = *parent;
*parent = return_hooker;
err = ftrace_push_return_trace(old, self_addr, &trace.depth,
frame_pointer);
if (err == -EBUSY) {
*parent = old;
return;
}
trace.func = self_addr;
/* Only trace if the calling function expects to */
if (!ftrace_graph_entry(&trace)) {
current->curr_ret_stack--;
*parent = old;
}
}
#ifdef CONFIG_DYNAMIC_FTRACE
extern unsigned long ftrace_graph_call;
extern unsigned long ftrace_graph_call_old;
extern void ftrace_graph_caller_old(void);
static int __ftrace_modify_caller(unsigned long *callsite,
void (*func) (void), bool enable)
{
unsigned long caller_fn = (unsigned long) func;
unsigned long pc = (unsigned long) callsite;
unsigned long branch = ftrace_gen_branch(pc, caller_fn, false);
unsigned long nop = 0xe1a00000; /* mov r0, r0 */
unsigned long old = enable ? nop : branch;
unsigned long new = enable ? branch : nop;
return ftrace_modify_code(pc, old, new);
}
static int ftrace_modify_graph_caller(bool enable)
{
int ret;
ret = __ftrace_modify_caller(&ftrace_graph_call,
ftrace_graph_caller,
enable);
#ifdef CONFIG_OLD_MCOUNT
if (!ret)
ret = __ftrace_modify_caller(&ftrace_graph_call_old,
ftrace_graph_caller_old,
enable);
#endif
return ret;
}
int ftrace_enable_ftrace_graph_caller(void)
{
return ftrace_modify_graph_caller(true);
}
int ftrace_disable_ftrace_graph_caller(void)
{
return ftrace_modify_graph_caller(false);
}
#endif /* CONFIG_DYNAMIC_FTRACE */
#endif /* CONFIG_FUNCTION_GRAPH_TRACER */

View File

@ -91,6 +91,11 @@ ENTRY(stext)
movs r8, r5 @ invalid machine (r5=0)?
THUMB( it eq ) @ force fixup-able long branch encoding
beq __error_a @ yes, error 'a'
/*
* r1 = machine no, r2 = atags,
* r8 = machinfo, r9 = cpuid, r10 = procinfo
*/
bl __vet_atags
#ifdef CONFIG_SMP_ON_UP
bl __fixup_smp
@ -387,19 +392,19 @@ ENDPROC(__turn_mmu_on)
#ifdef CONFIG_SMP_ON_UP
__fixup_smp:
mov r7, #0x00070000
orr r6, r7, #0xff000000 @ mask 0xff070000
orr r7, r7, #0x41000000 @ val 0x41070000
and r0, r9, r6
teq r0, r7 @ ARM CPU and ARMv6/v7?
mov r4, #0x00070000
orr r3, r4, #0xff000000 @ mask 0xff070000
orr r4, r4, #0x41000000 @ val 0x41070000
and r0, r9, r3
teq r0, r4 @ ARM CPU and ARMv6/v7?
bne __fixup_smp_on_up @ no, assume UP
orr r6, r6, #0x0000ff00
orr r6, r6, #0x000000f0 @ mask 0xff07fff0
orr r7, r7, #0x0000b000
orr r7, r7, #0x00000020 @ val 0x4107b020
and r0, r9, r6
teq r0, r7 @ ARM 11MPCore?
orr r3, r3, #0x0000ff00
orr r3, r3, #0x000000f0 @ mask 0xff07fff0
orr r4, r4, #0x0000b000
orr r4, r4, #0x00000020 @ val 0x4107b020
and r0, r9, r3
teq r0, r4 @ ARM 11MPCore?
moveq pc, lr @ yes, assume SMP
mrc p15, 0, r0, c0, c0, 5 @ read MPIDR
@ -408,15 +413,22 @@ __fixup_smp:
__fixup_smp_on_up:
adr r0, 1f
ldmia r0, {r3, r6, r7}
ldmia r0, {r3 - r5}
sub r3, r0, r3
add r6, r6, r3
add r7, r7, r3
2: cmp r6, r7
ldmia r6!, {r0, r4}
strlo r4, [r0, r3]
blo 2b
mov pc, lr
add r4, r4, r3
add r5, r5, r3
2: cmp r4, r5
movhs pc, lr
ldmia r4!, {r0, r6}
ARM( str r6, [r0, r3] )
THUMB( add r0, r0, r3 )
#ifdef __ARMEB__
THUMB( mov r6, r6, ror #16 ) @ Convert word order for big-endian.
#endif
THUMB( strh r6, [r0], #2 ) @ For Thumb-2, store as two halfwords
THUMB( mov r6, r6, lsr #16 ) @ to be robust against misaligned r3.
THUMB( strh r6, [r0] )
b 2b
ENDPROC(__fixup_smp)
.align

View File

@ -24,6 +24,7 @@
#define pr_fmt(fmt) "hw-breakpoint: " fmt
#include <linux/errno.h>
#include <linux/hardirq.h>
#include <linux/perf_event.h>
#include <linux/hw_breakpoint.h>
#include <linux/smp.h>
@ -44,6 +45,7 @@ static DEFINE_PER_CPU(struct perf_event *, wp_on_reg[ARM_MAX_WRP]);
/* Number of BRP/WRP registers on this CPU. */
static int core_num_brps;
static int core_num_reserved_brps;
static int core_num_wrps;
/* Debug architecture version. */
@ -52,87 +54,6 @@ static u8 debug_arch;
/* Maximum supported watchpoint length. */
static u8 max_watchpoint_len;
/* Determine number of BRP registers available. */
static int get_num_brps(void)
{
u32 didr;
ARM_DBG_READ(c0, 0, didr);
return ((didr >> 24) & 0xf) + 1;
}
/* Determine number of WRP registers available. */
static int get_num_wrps(void)
{
/*
* FIXME: When a watchpoint fires, the only way to work out which
* watchpoint it was is by disassembling the faulting instruction
* and working out the address of the memory access.
*
* Furthermore, we can only do this if the watchpoint was precise
* since imprecise watchpoints prevent us from calculating register
* based addresses.
*
* For the time being, we only report 1 watchpoint register so we
* always know which watchpoint fired. In the future we can either
* add a disassembler and address generation emulator, or we can
* insert a check to see if the DFAR is set on watchpoint exception
* entry [the ARM ARM states that the DFAR is UNKNOWN, but
* experience shows that it is set on some implementations].
*/
#if 0
u32 didr, wrps;
ARM_DBG_READ(c0, 0, didr);
return ((didr >> 28) & 0xf) + 1;
#endif
return 1;
}
int hw_breakpoint_slots(int type)
{
/*
* We can be called early, so don't rely on
* our static variables being initialised.
*/
switch (type) {
case TYPE_INST:
return get_num_brps();
case TYPE_DATA:
return get_num_wrps();
default:
pr_warning("unknown slot type: %d\n", type);
return 0;
}
}
/* Determine debug architecture. */
static u8 get_debug_arch(void)
{
u32 didr;
/* Do we implement the extended CPUID interface? */
if (((read_cpuid_id() >> 16) & 0xf) != 0xf) {
pr_warning("CPUID feature registers not supported. "
"Assuming v6 debug is present.\n");
return ARM_DEBUG_ARCH_V6;
}
ARM_DBG_READ(c0, 0, didr);
return (didr >> 16) & 0xf;
}
/* Does this core support mismatch breakpoints? */
static int core_has_mismatch_bps(void)
{
return debug_arch >= ARM_DEBUG_ARCH_V7_ECP14 && core_num_brps > 1;
}
u8 arch_get_debug_arch(void)
{
return debug_arch;
}
#define READ_WB_REG_CASE(OP2, M, VAL) \
case ((OP2 << 4) + M): \
ARM_DBG_READ(c ## M, OP2, VAL); \
@ -210,6 +131,94 @@ static void write_wb_reg(int n, u32 val)
isb();
}
/* Determine debug architecture. */
static u8 get_debug_arch(void)
{
u32 didr;
/* Do we implement the extended CPUID interface? */
if (((read_cpuid_id() >> 16) & 0xf) != 0xf) {
pr_warning("CPUID feature registers not supported. "
"Assuming v6 debug is present.\n");
return ARM_DEBUG_ARCH_V6;
}
ARM_DBG_READ(c0, 0, didr);
return (didr >> 16) & 0xf;
}
u8 arch_get_debug_arch(void)
{
return debug_arch;
}
/* Determine number of BRP register available. */
static int get_num_brp_resources(void)
{
u32 didr;
ARM_DBG_READ(c0, 0, didr);
return ((didr >> 24) & 0xf) + 1;
}
/* Does this core support mismatch breakpoints? */
static int core_has_mismatch_brps(void)
{
return (get_debug_arch() >= ARM_DEBUG_ARCH_V7_ECP14 &&
get_num_brp_resources() > 1);
}
/* Determine number of usable WRPs available. */
static int get_num_wrps(void)
{
/*
* FIXME: When a watchpoint fires, the only way to work out which
* watchpoint it was is by disassembling the faulting instruction
* and working out the address of the memory access.
*
* Furthermore, we can only do this if the watchpoint was precise
* since imprecise watchpoints prevent us from calculating register
* based addresses.
*
* Providing we have more than 1 breakpoint register, we only report
* a single watchpoint register for the time being. This way, we always
* know which watchpoint fired. In the future we can either add a
* disassembler and address generation emulator, or we can insert a
* check to see if the DFAR is set on watchpoint exception entry
* [the ARM ARM states that the DFAR is UNKNOWN, but experience shows
* that it is set on some implementations].
*/
#if 0
int wrps;
u32 didr;
ARM_DBG_READ(c0, 0, didr);
wrps = ((didr >> 28) & 0xf) + 1;
#endif
int wrps = 1;
if (core_has_mismatch_brps() && wrps >= get_num_brp_resources())
wrps = get_num_brp_resources() - 1;
return wrps;
}
/* We reserve one breakpoint for each watchpoint. */
static int get_num_reserved_brps(void)
{
if (core_has_mismatch_brps())
return get_num_wrps();
return 0;
}
/* Determine number of usable BRPs available. */
static int get_num_brps(void)
{
int brps = get_num_brp_resources();
if (core_has_mismatch_brps())
brps -= get_num_reserved_brps();
return brps;
}
/*
* In order to access the breakpoint/watchpoint control registers,
* we must be running in debug monitor mode. Unfortunately, we can
@ -230,8 +239,12 @@ static int enable_monitor_mode(void)
goto out;
}
/* If monitor mode is already enabled, just return. */
if (dscr & ARM_DSCR_MDBGEN)
goto out;
/* Write to the corresponding DSCR. */
switch (debug_arch) {
switch (get_debug_arch()) {
case ARM_DEBUG_ARCH_V6:
case ARM_DEBUG_ARCH_V6_1:
ARM_DBG_WRITE(c1, 0, (dscr | ARM_DSCR_MDBGEN));
@ -246,15 +259,30 @@ static int enable_monitor_mode(void)
/* Check that the write made it through. */
ARM_DBG_READ(c1, 0, dscr);
if (WARN_ONCE(!(dscr & ARM_DSCR_MDBGEN),
"failed to enable monitor mode.")) {
if (!(dscr & ARM_DSCR_MDBGEN))
ret = -EPERM;
}
out:
return ret;
}
int hw_breakpoint_slots(int type)
{
/*
* We can be called early, so don't rely on
* our static variables being initialised.
*/
switch (type) {
case TYPE_INST:
return get_num_brps();
case TYPE_DATA:
return get_num_wrps();
default:
pr_warning("unknown slot type: %d\n", type);
return 0;
}
}
/*
* Check if 8-bit byte-address select is available.
* This clobbers WRP 0.
@ -268,9 +296,6 @@ static u8 get_max_wp_len(void)
if (debug_arch < ARM_DEBUG_ARCH_V7_ECP14)
goto out;
if (enable_monitor_mode())
goto out;
memset(&ctrl, 0, sizeof(ctrl));
ctrl.len = ARM_BREAKPOINT_LEN_8;
ctrl_reg = encode_ctrl_reg(ctrl);
@ -289,23 +314,6 @@ u8 arch_get_max_wp_len(void)
return max_watchpoint_len;
}
/*
* Handler for reactivating a suspended watchpoint when the single
* step `mismatch' breakpoint is triggered.
*/
static void wp_single_step_handler(struct perf_event *bp, int unused,
struct perf_sample_data *data,
struct pt_regs *regs)
{
perf_event_enable(counter_arch_bp(bp)->suspended_wp);
unregister_hw_breakpoint(bp);
}
static int bp_is_single_step(struct perf_event *bp)
{
return bp->overflow_handler == wp_single_step_handler;
}
/*
* Install a perf counter breakpoint.
*/
@ -314,30 +322,41 @@ int arch_install_hw_breakpoint(struct perf_event *bp)
struct arch_hw_breakpoint *info = counter_arch_bp(bp);
struct perf_event **slot, **slots;
int i, max_slots, ctrl_base, val_base, ret = 0;
u32 addr, ctrl;
/* Ensure that we are in monitor mode and halting mode is disabled. */
ret = enable_monitor_mode();
if (ret)
goto out;
addr = info->address;
ctrl = encode_ctrl_reg(info->ctrl) | 0x1;
if (info->ctrl.type == ARM_BREAKPOINT_EXECUTE) {
/* Breakpoint */
ctrl_base = ARM_BASE_BCR;
val_base = ARM_BASE_BVR;
slots = __get_cpu_var(bp_on_reg);
max_slots = core_num_brps - 1;
if (bp_is_single_step(bp)) {
info->ctrl.mismatch = 1;
i = max_slots;
slots[i] = bp;
goto setup;
slots = (struct perf_event **)__get_cpu_var(bp_on_reg);
max_slots = core_num_brps;
if (info->step_ctrl.enabled) {
/* Override the breakpoint data with the step data. */
addr = info->trigger & ~0x3;
ctrl = encode_ctrl_reg(info->step_ctrl);
}
} else {
/* Watchpoint */
ctrl_base = ARM_BASE_WCR;
val_base = ARM_BASE_WVR;
slots = __get_cpu_var(wp_on_reg);
if (info->step_ctrl.enabled) {
/* Install into the reserved breakpoint region. */
ctrl_base = ARM_BASE_BCR + core_num_brps;
val_base = ARM_BASE_BVR + core_num_brps;
/* Override the watchpoint data with the step data. */
addr = info->trigger & ~0x3;
ctrl = encode_ctrl_reg(info->step_ctrl);
} else {
ctrl_base = ARM_BASE_WCR;
val_base = ARM_BASE_WVR;
}
slots = (struct perf_event **)__get_cpu_var(wp_on_reg);
max_slots = core_num_wrps;
}
@ -355,12 +374,11 @@ int arch_install_hw_breakpoint(struct perf_event *bp)
goto out;
}
setup:
/* Setup the address register. */
write_wb_reg(val_base + i, info->address);
write_wb_reg(val_base + i, addr);
/* Setup the control register. */
write_wb_reg(ctrl_base + i, encode_ctrl_reg(info->ctrl) | 0x1);
write_wb_reg(ctrl_base + i, ctrl);
out:
return ret;
@ -375,18 +393,15 @@ void arch_uninstall_hw_breakpoint(struct perf_event *bp)
if (info->ctrl.type == ARM_BREAKPOINT_EXECUTE) {
/* Breakpoint */
base = ARM_BASE_BCR;
slots = __get_cpu_var(bp_on_reg);
max_slots = core_num_brps - 1;
if (bp_is_single_step(bp)) {
i = max_slots;
slots[i] = NULL;
goto reset;
}
slots = (struct perf_event **)__get_cpu_var(bp_on_reg);
max_slots = core_num_brps;
} else {
/* Watchpoint */
base = ARM_BASE_WCR;
slots = __get_cpu_var(wp_on_reg);
if (info->step_ctrl.enabled)
base = ARM_BASE_BCR + core_num_brps;
else
base = ARM_BASE_WCR;
slots = (struct perf_event **)__get_cpu_var(wp_on_reg);
max_slots = core_num_wrps;
}
@ -403,7 +418,6 @@ void arch_uninstall_hw_breakpoint(struct perf_event *bp)
if (WARN_ONCE(i == max_slots, "Can't find any breakpoint slot"))
return;
reset:
/* Reset the control register. */
write_wb_reg(base + i, 0);
}
@ -537,12 +551,23 @@ static int arch_build_bp_info(struct perf_event *bp)
return -EINVAL;
}
/*
* Breakpoints must be of length 2 (thumb) or 4 (ARM) bytes.
* Watchpoints can be of length 1, 2, 4 or 8 bytes if supported
* by the hardware and must be aligned to the appropriate number of
* bytes.
*/
if (info->ctrl.type == ARM_BREAKPOINT_EXECUTE &&
info->ctrl.len != ARM_BREAKPOINT_LEN_2 &&
info->ctrl.len != ARM_BREAKPOINT_LEN_4)
return -EINVAL;
/* Address */
info->address = bp->attr.bp_addr;
/* Privilege */
info->ctrl.privilege = ARM_BREAKPOINT_USER;
if (arch_check_bp_in_kernelspace(bp) && !bp_is_single_step(bp))
if (arch_check_bp_in_kernelspace(bp))
info->ctrl.privilege |= ARM_BREAKPOINT_PRIV;
/* Enabled? */
@ -561,7 +586,7 @@ int arch_validate_hwbkpt_settings(struct perf_event *bp)
{
struct arch_hw_breakpoint *info = counter_arch_bp(bp);
int ret = 0;
u32 bytelen, max_len, offset, alignment_mask = 0x3;
u32 offset, alignment_mask = 0x3;
/* Build the arch_hw_breakpoint. */
ret = arch_build_bp_info(bp);
@ -571,84 +596,85 @@ int arch_validate_hwbkpt_settings(struct perf_event *bp)
/* Check address alignment. */
if (info->ctrl.len == ARM_BREAKPOINT_LEN_8)
alignment_mask = 0x7;
if (info->address & alignment_mask) {
/*
* Try to fix the alignment. This may result in a length
* that is too large, so we must check for that.
*/
bytelen = get_hbp_len(info->ctrl.len);
max_len = info->ctrl.type == ARM_BREAKPOINT_EXECUTE ? 4 :
max_watchpoint_len;
if (max_len >= 8)
offset = info->address & 0x7;
else
offset = info->address & 0x3;
if (bytelen > (1 << ((max_len - (offset + 1)) >> 1))) {
ret = -EFBIG;
goto out;
}
info->ctrl.len <<= offset;
info->address &= ~offset;
pr_debug("breakpoint alignment fixup: length = 0x%x, "
"address = 0x%x\n", info->ctrl.len, info->address);
offset = info->address & alignment_mask;
switch (offset) {
case 0:
/* Aligned */
break;
case 1:
/* Allow single byte watchpoint. */
if (info->ctrl.len == ARM_BREAKPOINT_LEN_1)
break;
case 2:
/* Allow halfword watchpoints and breakpoints. */
if (info->ctrl.len == ARM_BREAKPOINT_LEN_2)
break;
default:
ret = -EINVAL;
goto out;
}
info->address &= ~alignment_mask;
info->ctrl.len <<= offset;
/*
* Currently we rely on an overflow handler to take
* care of single-stepping the breakpoint when it fires.
* In the case of userspace breakpoints on a core with V7 debug,
* we can use the mismatch feature as a poor-man's hardware single-step.
* we can use the mismatch feature as a poor-man's hardware
* single-step, but this only works for per-task breakpoints.
*/
if (WARN_ONCE(!bp->overflow_handler &&
(arch_check_bp_in_kernelspace(bp) || !core_has_mismatch_bps()),
(arch_check_bp_in_kernelspace(bp) || !core_has_mismatch_brps()
|| !bp->hw.bp_target),
"overflow handler required but none found")) {
ret = -EINVAL;
goto out;
}
out:
return ret;
}
static void update_mismatch_flag(int idx, int flag)
/*
* Enable/disable single-stepping over the breakpoint bp at address addr.
*/
static void enable_single_step(struct perf_event *bp, u32 addr)
{
struct perf_event *bp = __get_cpu_var(bp_on_reg[idx]);
struct arch_hw_breakpoint *info;
struct arch_hw_breakpoint *info = counter_arch_bp(bp);
if (bp == NULL)
return;
arch_uninstall_hw_breakpoint(bp);
info->step_ctrl.mismatch = 1;
info->step_ctrl.len = ARM_BREAKPOINT_LEN_4;
info->step_ctrl.type = ARM_BREAKPOINT_EXECUTE;
info->step_ctrl.privilege = info->ctrl.privilege;
info->step_ctrl.enabled = 1;
info->trigger = addr;
arch_install_hw_breakpoint(bp);
}
info = counter_arch_bp(bp);
/* Update the mismatch field to enter/exit `single-step' mode */
if (!bp->overflow_handler && info->ctrl.mismatch != flag) {
info->ctrl.mismatch = flag;
write_wb_reg(ARM_BASE_BCR + idx, encode_ctrl_reg(info->ctrl) | 0x1);
}
static void disable_single_step(struct perf_event *bp)
{
arch_uninstall_hw_breakpoint(bp);
counter_arch_bp(bp)->step_ctrl.enabled = 0;
arch_install_hw_breakpoint(bp);
}
static void watchpoint_handler(unsigned long unknown, struct pt_regs *regs)
{
int i;
struct perf_event *bp, **slots = __get_cpu_var(wp_on_reg);
struct perf_event *wp, **slots;
struct arch_hw_breakpoint *info;
struct perf_event_attr attr;
slots = (struct perf_event **)__get_cpu_var(wp_on_reg);
/* Without a disassembler, we can only handle 1 watchpoint. */
BUG_ON(core_num_wrps > 1);
hw_breakpoint_init(&attr);
attr.bp_addr = regs->ARM_pc & ~0x3;
attr.bp_len = HW_BREAKPOINT_LEN_4;
attr.bp_type = HW_BREAKPOINT_X;
for (i = 0; i < core_num_wrps; ++i) {
rcu_read_lock();
if (slots[i] == NULL) {
wp = slots[i];
if (wp == NULL) {
rcu_read_unlock();
continue;
}
@ -658,87 +684,121 @@ static void watchpoint_handler(unsigned long unknown, struct pt_regs *regs)
* single watchpoint, we can set the trigger to the lowest
* possible faulting address.
*/
info = counter_arch_bp(slots[i]);
info->trigger = slots[i]->attr.bp_addr;
info = counter_arch_bp(wp);
info->trigger = wp->attr.bp_addr;
pr_debug("watchpoint fired: address = 0x%x\n", info->trigger);
perf_bp_event(slots[i], regs);
perf_bp_event(wp, regs);
/*
* If no overflow handler is present, insert a temporary
* mismatch breakpoint so we can single-step over the
* watchpoint trigger.
*/
if (!slots[i]->overflow_handler) {
bp = register_user_hw_breakpoint(&attr,
wp_single_step_handler,
current);
counter_arch_bp(bp)->suspended_wp = slots[i];
perf_event_disable(slots[i]);
}
if (!wp->overflow_handler)
enable_single_step(wp, instruction_pointer(regs));
rcu_read_unlock();
}
}
static void watchpoint_single_step_handler(unsigned long pc)
{
int i;
struct perf_event *wp, **slots;
struct arch_hw_breakpoint *info;
slots = (struct perf_event **)__get_cpu_var(wp_on_reg);
for (i = 0; i < core_num_reserved_brps; ++i) {
rcu_read_lock();
wp = slots[i];
if (wp == NULL)
goto unlock;
info = counter_arch_bp(wp);
if (!info->step_ctrl.enabled)
goto unlock;
/*
* Restore the original watchpoint if we've completed the
* single-step.
*/
if (info->trigger != pc)
disable_single_step(wp);
unlock:
rcu_read_unlock();
}
}
static void breakpoint_handler(unsigned long unknown, struct pt_regs *regs)
{
int i;
int mismatch;
u32 ctrl_reg, val, addr;
struct perf_event *bp, **slots = __get_cpu_var(bp_on_reg);
struct perf_event *bp, **slots;
struct arch_hw_breakpoint *info;
struct arch_hw_breakpoint_ctrl ctrl;
slots = (struct perf_event **)__get_cpu_var(bp_on_reg);
/* The exception entry code places the amended lr in the PC. */
addr = regs->ARM_pc;
/* Check the currently installed breakpoints first. */
for (i = 0; i < core_num_brps; ++i) {
rcu_read_lock();
bp = slots[i];
if (bp == NULL) {
rcu_read_unlock();
continue;
}
if (bp == NULL)
goto unlock;
mismatch = 0;
info = counter_arch_bp(bp);
/* Check if the breakpoint value matches. */
val = read_wb_reg(ARM_BASE_BVR + i);
if (val != (addr & ~0x3))
goto unlock;
goto mismatch;
/* Possible match, check the byte address select to confirm. */
ctrl_reg = read_wb_reg(ARM_BASE_BCR + i);
decode_ctrl_reg(ctrl_reg, &ctrl);
if ((1 << (addr & 0x3)) & ctrl.len) {
mismatch = 1;
info = counter_arch_bp(bp);
info->trigger = addr;
}
unlock:
if ((mismatch && !info->ctrl.mismatch) || bp_is_single_step(bp)) {
pr_debug("breakpoint fired: address = 0x%x\n", addr);
perf_bp_event(bp, regs);
if (!bp->overflow_handler)
enable_single_step(bp, addr);
goto unlock;
}
update_mismatch_flag(i, mismatch);
mismatch:
/* If we're stepping a breakpoint, it can now be restored. */
if (info->step_ctrl.enabled)
disable_single_step(bp);
unlock:
rcu_read_unlock();
}
/* Handle any pending watchpoint single-step breakpoints. */
watchpoint_single_step_handler(addr);
}
/*
* Called from either the Data Abort Handler [watchpoint] or the
* Prefetch Abort Handler [breakpoint].
* Prefetch Abort Handler [breakpoint] with preemption disabled.
*/
static int hw_breakpoint_pending(unsigned long addr, unsigned int fsr,
struct pt_regs *regs)
{
int ret = 1; /* Unhandled fault. */
int ret = 0;
u32 dscr;
/* We must be called with preemption disabled. */
WARN_ON(preemptible());
/* We only handle watchpoints and hardware breakpoints. */
ARM_DBG_READ(c1, 0, dscr);
@ -753,25 +813,47 @@ static int hw_breakpoint_pending(unsigned long addr, unsigned int fsr,
watchpoint_handler(addr, regs);
break;
default:
goto out;
ret = 1; /* Unhandled fault. */
}
ret = 0;
out:
/*
* Re-enable preemption after it was disabled in the
* low-level exception handling code.
*/
preempt_enable();
return ret;
}
/*
* One-time initialisation.
*/
static void __init reset_ctrl_regs(void *unused)
static void reset_ctrl_regs(void *unused)
{
int i;
/*
* v7 debug contains save and restore registers so that debug state
* can be maintained across low-power modes without leaving
* the debug logic powered up. It is IMPLEMENTATION DEFINED whether
* we can write to the debug registers out of reset, so we must
* unlock the OS Lock Access Register to avoid taking undefined
* instruction exceptions later on.
*/
if (debug_arch >= ARM_DEBUG_ARCH_V7_ECP14) {
/*
* Unconditionally clear the lock by writing a value
* other than 0xC5ACCE55 to the access register.
*/
asm volatile("mcr p14, 0, %0, c1, c0, 4" : : "r" (0));
isb();
}
if (enable_monitor_mode())
return;
for (i = 0; i < core_num_brps; ++i) {
/* We must also reset any reserved registers. */
for (i = 0; i < core_num_brps + core_num_reserved_brps; ++i) {
write_wb_reg(ARM_BASE_BCR + i, 0UL);
write_wb_reg(ARM_BASE_BVR + i, 0UL);
}
@ -782,45 +864,57 @@ static void __init reset_ctrl_regs(void *unused)
}
}
static int __cpuinit dbg_reset_notify(struct notifier_block *self,
unsigned long action, void *cpu)
{
if (action == CPU_ONLINE)
smp_call_function_single((int)cpu, reset_ctrl_regs, NULL, 1);
return NOTIFY_OK;
}
static struct notifier_block __cpuinitdata dbg_reset_nb = {
.notifier_call = dbg_reset_notify,
};
static int __init arch_hw_breakpoint_init(void)
{
int ret = 0;
u32 dscr;
debug_arch = get_debug_arch();
if (debug_arch > ARM_DEBUG_ARCH_V7_ECP14) {
pr_info("debug architecture 0x%x unsupported.\n", debug_arch);
ret = -ENODEV;
goto out;
return 0;
}
/* Determine how many BRPs/WRPs are available. */
core_num_brps = get_num_brps();
core_num_reserved_brps = get_num_reserved_brps();
core_num_wrps = get_num_wrps();
pr_info("found %d breakpoint and %d watchpoint registers.\n",
core_num_brps, core_num_wrps);
core_num_brps + core_num_reserved_brps, core_num_wrps);
if (core_has_mismatch_bps())
pr_info("1 breakpoint reserved for watchpoint single-step.\n");
if (core_num_reserved_brps)
pr_info("%d breakpoint(s) reserved for watchpoint "
"single-step.\n", core_num_reserved_brps);
ARM_DBG_READ(c1, 0, dscr);
if (dscr & ARM_DSCR_HDBGEN) {
pr_warning("halting debug mode enabled. Assuming maximum "
"watchpoint size of 4 bytes.");
} else {
/* Work out the maximum supported watchpoint length. */
max_watchpoint_len = get_max_wp_len();
pr_info("maximum watchpoint size is %u bytes.\n",
max_watchpoint_len);
/*
* Reset the breakpoint resources. We assume that a halting
* debugger will leave the world in a nice state for us.
*/
smp_call_function(reset_ctrl_regs, NULL, 1);
reset_ctrl_regs(NULL);
/* Work out the maximum supported watchpoint length. */
max_watchpoint_len = get_max_wp_len();
pr_info("maximum watchpoint size is %u bytes.\n",
max_watchpoint_len);
}
/* Register debug fault handler. */
@ -829,8 +923,9 @@ static int __init arch_hw_breakpoint_init(void)
hook_ifault_code(2, hw_breakpoint_pending, SIGTRAP, TRAP_HWBKPT,
"breakpoint debug exception");
out:
return ret;
/* Register hotplug notifier. */
register_cpu_notifier(&dbg_reset_nb);
return 0;
}
arch_initcall(arch_hw_breakpoint_init);

View File

@ -35,8 +35,10 @@
#include <linux/list.h>
#include <linux/kallsyms.h>
#include <linux/proc_fs.h>
#include <linux/ftrace.h>
#include <asm/system.h>
#include <asm/mach/arch.h>
#include <asm/mach/irq.h>
#include <asm/mach/time.h>
@ -47,8 +49,6 @@
#define irq_finish(irq) do { } while (0)
#endif
unsigned int arch_nr_irqs;
void (*init_arch_irq)(void) __initdata = NULL;
unsigned long irq_err_count;
int show_interrupts(struct seq_file *p, void *v)
@ -57,11 +57,20 @@ int show_interrupts(struct seq_file *p, void *v)
struct irq_desc *desc;
struct irqaction * action;
unsigned long flags;
int prec, n;
for (prec = 3, n = 1000; prec < 10 && n <= nr_irqs; prec++)
n *= 10;
#ifdef CONFIG_SMP
if (prec < 4)
prec = 4;
#endif
if (i == 0) {
char cpuname[12];
seq_printf(p, " ");
seq_printf(p, "%*s ", prec, "");
for_each_present_cpu(cpu) {
sprintf(cpuname, "CPU%d", cpu);
seq_printf(p, " %10s", cpuname);
@ -76,7 +85,7 @@ int show_interrupts(struct seq_file *p, void *v)
if (!action)
goto unlock;
seq_printf(p, "%3d: ", i);
seq_printf(p, "%*d: ", prec, i);
for_each_present_cpu(cpu)
seq_printf(p, "%10u ", kstat_irqs_cpu(i, cpu));
seq_printf(p, " %10s", desc->chip->name ? : "-");
@ -89,13 +98,15 @@ unlock:
raw_spin_unlock_irqrestore(&desc->lock, flags);
} else if (i == nr_irqs) {
#ifdef CONFIG_FIQ
show_fiq_list(p, v);
show_fiq_list(p, prec);
#endif
#ifdef CONFIG_SMP
show_ipi_list(p);
show_local_irqs(p);
show_ipi_list(p, prec);
#endif
seq_printf(p, "Err: %10lu\n", irq_err_count);
#ifdef CONFIG_LOCAL_TIMERS
show_local_irqs(p, prec);
#endif
seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count);
}
return 0;
}
@ -105,7 +116,8 @@ unlock:
* come via this function. Instead, they should provide their
* own 'handler'
*/
asmlinkage void __exception asm_do_IRQ(unsigned int irq, struct pt_regs *regs)
asmlinkage void __exception_irq_entry
asm_do_IRQ(unsigned int irq, struct pt_regs *regs)
{
struct pt_regs *old_regs = set_irq_regs(regs);
@ -154,13 +166,13 @@ void set_irq_flags(unsigned int irq, unsigned int iflags)
void __init init_IRQ(void)
{
init_arch_irq();
machine_desc->init_irq();
}
#ifdef CONFIG_SPARSE_IRQ
int __init arch_probe_nr_irqs(void)
{
nr_irqs = arch_nr_irqs ? arch_nr_irqs : NR_IRQS;
nr_irqs = machine_desc->nr_irqs ? machine_desc->nr_irqs : NR_IRQS;
return nr_irqs;
}
#endif

View File

@ -19,6 +19,14 @@
#include <asm/thread_info.h>
#include <asm/asm-offsets.h>
#if defined(CONFIG_CPU_PJ4)
#define PJ4(code...) code
#define XSC(code...)
#else
#define PJ4(code...)
#define XSC(code...) code
#endif
#define MMX_WR0 (0x00)
#define MMX_WR1 (0x08)
#define MMX_WR2 (0x10)
@ -58,11 +66,17 @@
ENTRY(iwmmxt_task_enable)
mrc p15, 0, r2, c15, c1, 0
tst r2, #0x3 @ CP0 and CP1 accessible?
XSC(mrc p15, 0, r2, c15, c1, 0)
PJ4(mrc p15, 0, r2, c1, c0, 2)
@ CP0 and CP1 accessible?
XSC(tst r2, #0x3)
PJ4(tst r2, #0xf)
movne pc, lr @ if so no business here
orr r2, r2, #0x3 @ enable access to CP0 and CP1
mcr p15, 0, r2, c15, c1, 0
@ enable access to CP0 and CP1
XSC(orr r2, r2, #0x3)
XSC(mcr p15, 0, r2, c15, c1, 0)
PJ4(orr r2, r2, #0xf)
PJ4(mcr p15, 0, r2, c1, c0, 2)
ldr r3, =concan_owner
add r0, r10, #TI_IWMMXT_STATE @ get task Concan save area
@ -179,17 +193,26 @@ ENTRY(iwmmxt_task_disable)
teqne r1, r2 @ or specified one?
bne 1f @ no: quit
mrc p15, 0, r4, c15, c1, 0
orr r4, r4, #0x3 @ enable access to CP0 and CP1
mcr p15, 0, r4, c15, c1, 0
@ enable access to CP0 and CP1
XSC(mrc p15, 0, r4, c15, c1, 0)
XSC(orr r4, r4, #0xf)
XSC(mcr p15, 0, r4, c15, c1, 0)
PJ4(mrc p15, 0, r4, c1, c0, 2)
PJ4(orr r4, r4, #0x3)
PJ4(mcr p15, 0, r4, c1, c0, 2)
mov r0, #0 @ nothing to load
str r0, [r3] @ no more current owner
mrc p15, 0, r2, c2, c0, 0
mov r2, r2 @ cpwait
bl concan_save
bic r4, r4, #0x3 @ disable access to CP0 and CP1
mcr p15, 0, r4, c15, c1, 0
@ disable access to CP0 and CP1
XSC(bic r4, r4, #0x3)
XSC(mcr p15, 0, r4, c15, c1, 0)
PJ4(bic r4, r4, #0xf)
PJ4(mcr p15, 0, r4, c1, c0, 2)
mrc p15, 0, r2, c2, c0, 0
mov r2, r2 @ cpwait
@ -277,8 +300,11 @@ ENTRY(iwmmxt_task_restore)
*/
ENTRY(iwmmxt_task_switch)
mrc p15, 0, r1, c15, c1, 0
tst r1, #0x3 @ CP0 and CP1 accessible?
XSC(mrc p15, 0, r1, c15, c1, 0)
PJ4(mrc p15, 0, r1, c1, c0, 2)
@ CP0 and CP1 accessible?
XSC(tst r1, #0x3)
PJ4(tst r1, #0xf)
bne 1f @ yes: block them for next task
ldr r2, =concan_owner
@ -287,8 +313,11 @@ ENTRY(iwmmxt_task_switch)
teq r2, r3 @ next task owns it?
movne pc, lr @ no: leave Concan disabled
1: eor r1, r1, #3 @ flip Concan access
mcr p15, 0, r1, c15, c1, 0
1: @ flip Conan access
XSC(eor r1, r1, #0x3)
XSC(mcr p15, 0, r1, c15, c1, 0)
PJ4(eor r1, r1, #0xf)
PJ4(mcr p15, 0, r1, c1, c0, 2)
mrc p15, 0, r1, c2, c0, 0
sub pc, lr, r1, lsr #32 @ cpwait and return

View File

@ -23,6 +23,8 @@ extern unsigned long kexec_indirection_page;
extern unsigned long kexec_mach_type;
extern unsigned long kexec_boot_atags;
static atomic_t waiting_for_crash_ipi;
/*
* Provide a dummy crash_notes definition while crash dump arrives to arm.
* This prevents breakage of crash_notes attribute in kernel/ksysfs.c.
@ -37,9 +39,37 @@ void machine_kexec_cleanup(struct kimage *image)
{
}
void machine_crash_nonpanic_core(void *unused)
{
struct pt_regs regs;
crash_setup_regs(&regs, NULL);
printk(KERN_DEBUG "CPU %u will stop doing anything useful since another CPU has crashed\n",
smp_processor_id());
crash_save_cpu(&regs, smp_processor_id());
flush_cache_all();
atomic_dec(&waiting_for_crash_ipi);
while (1)
cpu_relax();
}
void machine_crash_shutdown(struct pt_regs *regs)
{
unsigned long msecs;
local_irq_disable();
atomic_set(&waiting_for_crash_ipi, num_online_cpus() - 1);
smp_call_function(machine_crash_nonpanic_core, NULL, false);
msecs = 1000; /* Wait at most a second for the other cpus to stop */
while ((atomic_read(&waiting_for_crash_ipi) > 0) && msecs) {
mdelay(1);
msecs--;
}
if (atomic_read(&waiting_for_crash_ipi) > 0)
printk(KERN_WARNING "Non-crashing CPUs did not react to IPI\n");
crash_save_cpu(regs, smp_processor_id());
printk(KERN_INFO "Loading crashdump kernel...\n");

View File

@ -67,35 +67,6 @@ int module_frob_arch_sections(Elf_Ehdr *hdr,
char *secstrings,
struct module *mod)
{
#ifdef CONFIG_ARM_UNWIND
Elf_Shdr *s, *sechdrs_end = sechdrs + hdr->e_shnum;
struct arm_unwind_mapping *maps = mod->arch.map;
for (s = sechdrs; s < sechdrs_end; s++) {
char const *secname = secstrings + s->sh_name;
if (strcmp(".ARM.exidx.init.text", secname) == 0)
maps[ARM_SEC_INIT].unw_sec = s;
else if (strcmp(".ARM.exidx.devinit.text", secname) == 0)
maps[ARM_SEC_DEVINIT].unw_sec = s;
else if (strcmp(".ARM.exidx", secname) == 0)
maps[ARM_SEC_CORE].unw_sec = s;
else if (strcmp(".ARM.exidx.exit.text", secname) == 0)
maps[ARM_SEC_EXIT].unw_sec = s;
else if (strcmp(".ARM.exidx.devexit.text", secname) == 0)
maps[ARM_SEC_DEVEXIT].unw_sec = s;
else if (strcmp(".init.text", secname) == 0)
maps[ARM_SEC_INIT].sec_text = s;
else if (strcmp(".devinit.text", secname) == 0)
maps[ARM_SEC_DEVINIT].sec_text = s;
else if (strcmp(".text", secname) == 0)
maps[ARM_SEC_CORE].sec_text = s;
else if (strcmp(".exit.text", secname) == 0)
maps[ARM_SEC_EXIT].sec_text = s;
else if (strcmp(".devexit.text", secname) == 0)
maps[ARM_SEC_DEVEXIT].sec_text = s;
}
#endif
return 0;
}
@ -300,41 +271,69 @@ apply_relocate_add(Elf32_Shdr *sechdrs, const char *strtab,
return -ENOEXEC;
}
struct mod_unwind_map {
const Elf_Shdr *unw_sec;
const Elf_Shdr *txt_sec;
};
int module_finalize(const Elf32_Ehdr *hdr, const Elf_Shdr *sechdrs,
struct module *mod)
{
#ifdef CONFIG_ARM_UNWIND
static void register_unwind_tables(struct module *mod)
{
const char *secstrs = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
const Elf_Shdr *s, *sechdrs_end = sechdrs + hdr->e_shnum;
struct mod_unwind_map maps[ARM_SEC_MAX];
int i;
for (i = 0; i < ARM_SEC_MAX; ++i) {
struct arm_unwind_mapping *map = &mod->arch.map[i];
if (map->unw_sec && map->sec_text)
map->unwind = unwind_table_add(map->unw_sec->sh_addr,
map->unw_sec->sh_size,
map->sec_text->sh_addr,
map->sec_text->sh_size);
memset(maps, 0, sizeof(maps));
for (s = sechdrs; s < sechdrs_end; s++) {
const char *secname = secstrs + s->sh_name;
if (!(s->sh_flags & SHF_ALLOC))
continue;
if (strcmp(".ARM.exidx.init.text", secname) == 0)
maps[ARM_SEC_INIT].unw_sec = s;
else if (strcmp(".ARM.exidx.devinit.text", secname) == 0)
maps[ARM_SEC_DEVINIT].unw_sec = s;
else if (strcmp(".ARM.exidx", secname) == 0)
maps[ARM_SEC_CORE].unw_sec = s;
else if (strcmp(".ARM.exidx.exit.text", secname) == 0)
maps[ARM_SEC_EXIT].unw_sec = s;
else if (strcmp(".ARM.exidx.devexit.text", secname) == 0)
maps[ARM_SEC_DEVEXIT].unw_sec = s;
else if (strcmp(".init.text", secname) == 0)
maps[ARM_SEC_INIT].txt_sec = s;
else if (strcmp(".devinit.text", secname) == 0)
maps[ARM_SEC_DEVINIT].txt_sec = s;
else if (strcmp(".text", secname) == 0)
maps[ARM_SEC_CORE].txt_sec = s;
else if (strcmp(".exit.text", secname) == 0)
maps[ARM_SEC_EXIT].txt_sec = s;
else if (strcmp(".devexit.text", secname) == 0)
maps[ARM_SEC_DEVEXIT].txt_sec = s;
}
}
static void unregister_unwind_tables(struct module *mod)
{
int i = ARM_SEC_MAX;
while (--i >= 0)
unwind_table_del(mod->arch.map[i].unwind);
}
#else
static inline void register_unwind_tables(struct module *mod) { }
static inline void unregister_unwind_tables(struct module *mod) { }
for (i = 0; i < ARM_SEC_MAX; i++)
if (maps[i].unw_sec && maps[i].txt_sec)
mod->arch.unwind[i] =
unwind_table_add(maps[i].unw_sec->sh_addr,
maps[i].unw_sec->sh_size,
maps[i].txt_sec->sh_addr,
maps[i].txt_sec->sh_size);
#endif
int
module_finalize(const Elf32_Ehdr *hdr, const Elf_Shdr *sechdrs,
struct module *module)
{
register_unwind_tables(module);
return 0;
}
void
module_arch_cleanup(struct module *mod)
{
unregister_unwind_tables(mod);
#ifdef CONFIG_ARM_UNWIND
int i;
for (i = 0; i < ARM_SEC_MAX; i++)
if (mod->arch.unwind[i])
unwind_table_del(mod->arch.unwind[i]);
#endif
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,672 @@
/*
* ARMv6 Performance counter handling code.
*
* Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
*
* ARMv6 has 2 configurable performance counters and a single cycle counter.
* They all share a single reset bit but can be written to zero so we can use
* that for a reset.
*
* The counters can't be individually enabled or disabled so when we remove
* one event and replace it with another we could get spurious counts from the
* wrong event. However, we can take advantage of the fact that the
* performance counters can export events to the event bus, and the event bus
* itself can be monitored. This requires that we *don't* export the events to
* the event bus. The procedure for disabling a configurable counter is:
* - change the counter to count the ETMEXTOUT[0] signal (0x20). This
* effectively stops the counter from counting.
* - disable the counter's interrupt generation (each counter has it's
* own interrupt enable bit).
* Once stopped, the counter value can be written as 0 to reset.
*
* To enable a counter:
* - enable the counter's interrupt generation.
* - set the new event type.
*
* Note: the dedicated cycle counter only counts cycles and can't be
* enabled/disabled independently of the others. When we want to disable the
* cycle counter, we have to just disable the interrupt reporting and start
* ignoring that counter. When re-enabling, we have to reset the value and
* enable the interrupt.
*/
#ifdef CONFIG_CPU_V6
enum armv6_perf_types {
ARMV6_PERFCTR_ICACHE_MISS = 0x0,
ARMV6_PERFCTR_IBUF_STALL = 0x1,
ARMV6_PERFCTR_DDEP_STALL = 0x2,
ARMV6_PERFCTR_ITLB_MISS = 0x3,
ARMV6_PERFCTR_DTLB_MISS = 0x4,
ARMV6_PERFCTR_BR_EXEC = 0x5,
ARMV6_PERFCTR_BR_MISPREDICT = 0x6,
ARMV6_PERFCTR_INSTR_EXEC = 0x7,
ARMV6_PERFCTR_DCACHE_HIT = 0x9,
ARMV6_PERFCTR_DCACHE_ACCESS = 0xA,
ARMV6_PERFCTR_DCACHE_MISS = 0xB,
ARMV6_PERFCTR_DCACHE_WBACK = 0xC,
ARMV6_PERFCTR_SW_PC_CHANGE = 0xD,
ARMV6_PERFCTR_MAIN_TLB_MISS = 0xF,
ARMV6_PERFCTR_EXPL_D_ACCESS = 0x10,
ARMV6_PERFCTR_LSU_FULL_STALL = 0x11,
ARMV6_PERFCTR_WBUF_DRAINED = 0x12,
ARMV6_PERFCTR_CPU_CYCLES = 0xFF,
ARMV6_PERFCTR_NOP = 0x20,
};
enum armv6_counters {
ARMV6_CYCLE_COUNTER = 1,
ARMV6_COUNTER0,
ARMV6_COUNTER1,
};
/*
* The hardware events that we support. We do support cache operations but
* we have harvard caches and no way to combine instruction and data
* accesses/misses in hardware.
*/
static const unsigned armv6_perf_map[PERF_COUNT_HW_MAX] = {
[PERF_COUNT_HW_CPU_CYCLES] = ARMV6_PERFCTR_CPU_CYCLES,
[PERF_COUNT_HW_INSTRUCTIONS] = ARMV6_PERFCTR_INSTR_EXEC,
[PERF_COUNT_HW_CACHE_REFERENCES] = HW_OP_UNSUPPORTED,
[PERF_COUNT_HW_CACHE_MISSES] = HW_OP_UNSUPPORTED,
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV6_PERFCTR_BR_EXEC,
[PERF_COUNT_HW_BRANCH_MISSES] = ARMV6_PERFCTR_BR_MISPREDICT,
[PERF_COUNT_HW_BUS_CYCLES] = HW_OP_UNSUPPORTED,
};
static const unsigned armv6_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(L1D)] = {
/*
* The performance counters don't differentiate between read
* and write accesses/misses so this isn't strictly correct,
* but it's the best we can do. Writes and reads get
* combined.
*/
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = ARMV6_PERFCTR_DCACHE_ACCESS,
[C(RESULT_MISS)] = ARMV6_PERFCTR_DCACHE_MISS,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = ARMV6_PERFCTR_DCACHE_ACCESS,
[C(RESULT_MISS)] = ARMV6_PERFCTR_DCACHE_MISS,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(L1I)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV6_PERFCTR_ICACHE_MISS,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV6_PERFCTR_ICACHE_MISS,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(LL)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(DTLB)] = {
/*
* The ARM performance counters can count micro DTLB misses,
* micro ITLB misses and main TLB misses. There isn't an event
* for TLB misses, so use the micro misses here and if users
* want the main TLB misses they can use a raw counter.
*/
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV6_PERFCTR_DTLB_MISS,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV6_PERFCTR_DTLB_MISS,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(ITLB)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV6_PERFCTR_ITLB_MISS,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV6_PERFCTR_ITLB_MISS,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(BPU)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
};
enum armv6mpcore_perf_types {
ARMV6MPCORE_PERFCTR_ICACHE_MISS = 0x0,
ARMV6MPCORE_PERFCTR_IBUF_STALL = 0x1,
ARMV6MPCORE_PERFCTR_DDEP_STALL = 0x2,
ARMV6MPCORE_PERFCTR_ITLB_MISS = 0x3,
ARMV6MPCORE_PERFCTR_DTLB_MISS = 0x4,
ARMV6MPCORE_PERFCTR_BR_EXEC = 0x5,
ARMV6MPCORE_PERFCTR_BR_NOTPREDICT = 0x6,
ARMV6MPCORE_PERFCTR_BR_MISPREDICT = 0x7,
ARMV6MPCORE_PERFCTR_INSTR_EXEC = 0x8,
ARMV6MPCORE_PERFCTR_DCACHE_RDACCESS = 0xA,
ARMV6MPCORE_PERFCTR_DCACHE_RDMISS = 0xB,
ARMV6MPCORE_PERFCTR_DCACHE_WRACCESS = 0xC,
ARMV6MPCORE_PERFCTR_DCACHE_WRMISS = 0xD,
ARMV6MPCORE_PERFCTR_DCACHE_EVICTION = 0xE,
ARMV6MPCORE_PERFCTR_SW_PC_CHANGE = 0xF,
ARMV6MPCORE_PERFCTR_MAIN_TLB_MISS = 0x10,
ARMV6MPCORE_PERFCTR_EXPL_MEM_ACCESS = 0x11,
ARMV6MPCORE_PERFCTR_LSU_FULL_STALL = 0x12,
ARMV6MPCORE_PERFCTR_WBUF_DRAINED = 0x13,
ARMV6MPCORE_PERFCTR_CPU_CYCLES = 0xFF,
};
/*
* The hardware events that we support. We do support cache operations but
* we have harvard caches and no way to combine instruction and data
* accesses/misses in hardware.
*/
static const unsigned armv6mpcore_perf_map[PERF_COUNT_HW_MAX] = {
[PERF_COUNT_HW_CPU_CYCLES] = ARMV6MPCORE_PERFCTR_CPU_CYCLES,
[PERF_COUNT_HW_INSTRUCTIONS] = ARMV6MPCORE_PERFCTR_INSTR_EXEC,
[PERF_COUNT_HW_CACHE_REFERENCES] = HW_OP_UNSUPPORTED,
[PERF_COUNT_HW_CACHE_MISSES] = HW_OP_UNSUPPORTED,
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV6MPCORE_PERFCTR_BR_EXEC,
[PERF_COUNT_HW_BRANCH_MISSES] = ARMV6MPCORE_PERFCTR_BR_MISPREDICT,
[PERF_COUNT_HW_BUS_CYCLES] = HW_OP_UNSUPPORTED,
};
static const unsigned armv6mpcore_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(L1D)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] =
ARMV6MPCORE_PERFCTR_DCACHE_RDACCESS,
[C(RESULT_MISS)] =
ARMV6MPCORE_PERFCTR_DCACHE_RDMISS,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] =
ARMV6MPCORE_PERFCTR_DCACHE_WRACCESS,
[C(RESULT_MISS)] =
ARMV6MPCORE_PERFCTR_DCACHE_WRMISS,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(L1I)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ICACHE_MISS,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ICACHE_MISS,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(LL)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(DTLB)] = {
/*
* The ARM performance counters can count micro DTLB misses,
* micro ITLB misses and main TLB misses. There isn't an event
* for TLB misses, so use the micro misses here and if users
* want the main TLB misses they can use a raw counter.
*/
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_DTLB_MISS,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_DTLB_MISS,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(ITLB)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ITLB_MISS,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ITLB_MISS,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(BPU)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
};
static inline unsigned long
armv6_pmcr_read(void)
{
u32 val;
asm volatile("mrc p15, 0, %0, c15, c12, 0" : "=r"(val));
return val;
}
static inline void
armv6_pmcr_write(unsigned long val)
{
asm volatile("mcr p15, 0, %0, c15, c12, 0" : : "r"(val));
}
#define ARMV6_PMCR_ENABLE (1 << 0)
#define ARMV6_PMCR_CTR01_RESET (1 << 1)
#define ARMV6_PMCR_CCOUNT_RESET (1 << 2)
#define ARMV6_PMCR_CCOUNT_DIV (1 << 3)
#define ARMV6_PMCR_COUNT0_IEN (1 << 4)
#define ARMV6_PMCR_COUNT1_IEN (1 << 5)
#define ARMV6_PMCR_CCOUNT_IEN (1 << 6)
#define ARMV6_PMCR_COUNT0_OVERFLOW (1 << 8)
#define ARMV6_PMCR_COUNT1_OVERFLOW (1 << 9)
#define ARMV6_PMCR_CCOUNT_OVERFLOW (1 << 10)
#define ARMV6_PMCR_EVT_COUNT0_SHIFT 20
#define ARMV6_PMCR_EVT_COUNT0_MASK (0xFF << ARMV6_PMCR_EVT_COUNT0_SHIFT)
#define ARMV6_PMCR_EVT_COUNT1_SHIFT 12
#define ARMV6_PMCR_EVT_COUNT1_MASK (0xFF << ARMV6_PMCR_EVT_COUNT1_SHIFT)
#define ARMV6_PMCR_OVERFLOWED_MASK \
(ARMV6_PMCR_COUNT0_OVERFLOW | ARMV6_PMCR_COUNT1_OVERFLOW | \
ARMV6_PMCR_CCOUNT_OVERFLOW)
static inline int
armv6_pmcr_has_overflowed(unsigned long pmcr)
{
return pmcr & ARMV6_PMCR_OVERFLOWED_MASK;
}
static inline int
armv6_pmcr_counter_has_overflowed(unsigned long pmcr,
enum armv6_counters counter)
{
int ret = 0;
if (ARMV6_CYCLE_COUNTER == counter)
ret = pmcr & ARMV6_PMCR_CCOUNT_OVERFLOW;
else if (ARMV6_COUNTER0 == counter)
ret = pmcr & ARMV6_PMCR_COUNT0_OVERFLOW;
else if (ARMV6_COUNTER1 == counter)
ret = pmcr & ARMV6_PMCR_COUNT1_OVERFLOW;
else
WARN_ONCE(1, "invalid counter number (%d)\n", counter);
return ret;
}
static inline u32
armv6pmu_read_counter(int counter)
{
unsigned long value = 0;
if (ARMV6_CYCLE_COUNTER == counter)
asm volatile("mrc p15, 0, %0, c15, c12, 1" : "=r"(value));
else if (ARMV6_COUNTER0 == counter)
asm volatile("mrc p15, 0, %0, c15, c12, 2" : "=r"(value));
else if (ARMV6_COUNTER1 == counter)
asm volatile("mrc p15, 0, %0, c15, c12, 3" : "=r"(value));
else
WARN_ONCE(1, "invalid counter number (%d)\n", counter);
return value;
}
static inline void
armv6pmu_write_counter(int counter,
u32 value)
{
if (ARMV6_CYCLE_COUNTER == counter)
asm volatile("mcr p15, 0, %0, c15, c12, 1" : : "r"(value));
else if (ARMV6_COUNTER0 == counter)
asm volatile("mcr p15, 0, %0, c15, c12, 2" : : "r"(value));
else if (ARMV6_COUNTER1 == counter)
asm volatile("mcr p15, 0, %0, c15, c12, 3" : : "r"(value));
else
WARN_ONCE(1, "invalid counter number (%d)\n", counter);
}
static void
armv6pmu_enable_event(struct hw_perf_event *hwc,
int idx)
{
unsigned long val, mask, evt, flags;
if (ARMV6_CYCLE_COUNTER == idx) {
mask = 0;
evt = ARMV6_PMCR_CCOUNT_IEN;
} else if (ARMV6_COUNTER0 == idx) {
mask = ARMV6_PMCR_EVT_COUNT0_MASK;
evt = (hwc->config_base << ARMV6_PMCR_EVT_COUNT0_SHIFT) |
ARMV6_PMCR_COUNT0_IEN;
} else if (ARMV6_COUNTER1 == idx) {
mask = ARMV6_PMCR_EVT_COUNT1_MASK;
evt = (hwc->config_base << ARMV6_PMCR_EVT_COUNT1_SHIFT) |
ARMV6_PMCR_COUNT1_IEN;
} else {
WARN_ONCE(1, "invalid counter number (%d)\n", idx);
return;
}
/*
* Mask out the current event and set the counter to count the event
* that we're interested in.
*/
raw_spin_lock_irqsave(&pmu_lock, flags);
val = armv6_pmcr_read();
val &= ~mask;
val |= evt;
armv6_pmcr_write(val);
raw_spin_unlock_irqrestore(&pmu_lock, flags);
}
static irqreturn_t
armv6pmu_handle_irq(int irq_num,
void *dev)
{
unsigned long pmcr = armv6_pmcr_read();
struct perf_sample_data data;
struct cpu_hw_events *cpuc;
struct pt_regs *regs;
int idx;
if (!armv6_pmcr_has_overflowed(pmcr))
return IRQ_NONE;
regs = get_irq_regs();
/*
* The interrupts are cleared by writing the overflow flags back to
* the control register. All of the other bits don't have any effect
* if they are rewritten, so write the whole value back.
*/
armv6_pmcr_write(pmcr);
perf_sample_data_init(&data, 0);
cpuc = &__get_cpu_var(cpu_hw_events);
for (idx = 0; idx <= armpmu->num_events; ++idx) {
struct perf_event *event = cpuc->events[idx];
struct hw_perf_event *hwc;
if (!test_bit(idx, cpuc->active_mask))
continue;
/*
* We have a single interrupt for all counters. Check that
* each counter has overflowed before we process it.
*/
if (!armv6_pmcr_counter_has_overflowed(pmcr, idx))
continue;
hwc = &event->hw;
armpmu_event_update(event, hwc, idx);
data.period = event->hw.last_period;
if (!armpmu_event_set_period(event, hwc, idx))
continue;
if (perf_event_overflow(event, 0, &data, regs))
armpmu->disable(hwc, idx);
}
/*
* Handle the pending perf events.
*
* Note: this call *must* be run with interrupts disabled. For
* platforms that can have the PMU interrupts raised as an NMI, this
* will not work.
*/
irq_work_run();
return IRQ_HANDLED;
}
static void
armv6pmu_start(void)
{
unsigned long flags, val;
raw_spin_lock_irqsave(&pmu_lock, flags);
val = armv6_pmcr_read();
val |= ARMV6_PMCR_ENABLE;
armv6_pmcr_write(val);
raw_spin_unlock_irqrestore(&pmu_lock, flags);
}
static void
armv6pmu_stop(void)
{
unsigned long flags, val;
raw_spin_lock_irqsave(&pmu_lock, flags);
val = armv6_pmcr_read();
val &= ~ARMV6_PMCR_ENABLE;
armv6_pmcr_write(val);
raw_spin_unlock_irqrestore(&pmu_lock, flags);
}
static int
armv6pmu_get_event_idx(struct cpu_hw_events *cpuc,
struct hw_perf_event *event)
{
/* Always place a cycle counter into the cycle counter. */
if (ARMV6_PERFCTR_CPU_CYCLES == event->config_base) {
if (test_and_set_bit(ARMV6_CYCLE_COUNTER, cpuc->used_mask))
return -EAGAIN;
return ARMV6_CYCLE_COUNTER;
} else {
/*
* For anything other than a cycle counter, try and use
* counter0 and counter1.
*/
if (!test_and_set_bit(ARMV6_COUNTER1, cpuc->used_mask))
return ARMV6_COUNTER1;
if (!test_and_set_bit(ARMV6_COUNTER0, cpuc->used_mask))
return ARMV6_COUNTER0;
/* The counters are all in use. */
return -EAGAIN;
}
}
static void
armv6pmu_disable_event(struct hw_perf_event *hwc,
int idx)
{
unsigned long val, mask, evt, flags;
if (ARMV6_CYCLE_COUNTER == idx) {
mask = ARMV6_PMCR_CCOUNT_IEN;
evt = 0;
} else if (ARMV6_COUNTER0 == idx) {
mask = ARMV6_PMCR_COUNT0_IEN | ARMV6_PMCR_EVT_COUNT0_MASK;
evt = ARMV6_PERFCTR_NOP << ARMV6_PMCR_EVT_COUNT0_SHIFT;
} else if (ARMV6_COUNTER1 == idx) {
mask = ARMV6_PMCR_COUNT1_IEN | ARMV6_PMCR_EVT_COUNT1_MASK;
evt = ARMV6_PERFCTR_NOP << ARMV6_PMCR_EVT_COUNT1_SHIFT;
} else {
WARN_ONCE(1, "invalid counter number (%d)\n", idx);
return;
}
/*
* Mask out the current event and set the counter to count the number
* of ETM bus signal assertion cycles. The external reporting should
* be disabled and so this should never increment.
*/
raw_spin_lock_irqsave(&pmu_lock, flags);
val = armv6_pmcr_read();
val &= ~mask;
val |= evt;
armv6_pmcr_write(val);
raw_spin_unlock_irqrestore(&pmu_lock, flags);
}
static void
armv6mpcore_pmu_disable_event(struct hw_perf_event *hwc,
int idx)
{
unsigned long val, mask, flags, evt = 0;
if (ARMV6_CYCLE_COUNTER == idx) {
mask = ARMV6_PMCR_CCOUNT_IEN;
} else if (ARMV6_COUNTER0 == idx) {
mask = ARMV6_PMCR_COUNT0_IEN;
} else if (ARMV6_COUNTER1 == idx) {
mask = ARMV6_PMCR_COUNT1_IEN;
} else {
WARN_ONCE(1, "invalid counter number (%d)\n", idx);
return;
}
/*
* Unlike UP ARMv6, we don't have a way of stopping the counters. We
* simply disable the interrupt reporting.
*/
raw_spin_lock_irqsave(&pmu_lock, flags);
val = armv6_pmcr_read();
val &= ~mask;
val |= evt;
armv6_pmcr_write(val);
raw_spin_unlock_irqrestore(&pmu_lock, flags);
}
static const struct arm_pmu armv6pmu = {
.id = ARM_PERF_PMU_ID_V6,
.name = "v6",
.handle_irq = armv6pmu_handle_irq,
.enable = armv6pmu_enable_event,
.disable = armv6pmu_disable_event,
.read_counter = armv6pmu_read_counter,
.write_counter = armv6pmu_write_counter,
.get_event_idx = armv6pmu_get_event_idx,
.start = armv6pmu_start,
.stop = armv6pmu_stop,
.cache_map = &armv6_perf_cache_map,
.event_map = &armv6_perf_map,
.raw_event_mask = 0xFF,
.num_events = 3,
.max_period = (1LLU << 32) - 1,
};
static const struct arm_pmu *__init armv6pmu_init(void)
{
return &armv6pmu;
}
/*
* ARMv6mpcore is almost identical to single core ARMv6 with the exception
* that some of the events have different enumerations and that there is no
* *hack* to stop the programmable counters. To stop the counters we simply
* disable the interrupt reporting and update the event. When unthrottling we
* reset the period and enable the interrupt reporting.
*/
static const struct arm_pmu armv6mpcore_pmu = {
.id = ARM_PERF_PMU_ID_V6MP,
.name = "v6mpcore",
.handle_irq = armv6pmu_handle_irq,
.enable = armv6pmu_enable_event,
.disable = armv6mpcore_pmu_disable_event,
.read_counter = armv6pmu_read_counter,
.write_counter = armv6pmu_write_counter,
.get_event_idx = armv6pmu_get_event_idx,
.start = armv6pmu_start,
.stop = armv6pmu_stop,
.cache_map = &armv6mpcore_perf_cache_map,
.event_map = &armv6mpcore_perf_map,
.raw_event_mask = 0xFF,
.num_events = 3,
.max_period = (1LLU << 32) - 1,
};
static const struct arm_pmu *__init armv6mpcore_pmu_init(void)
{
return &armv6mpcore_pmu;
}
#else
static const struct arm_pmu *__init armv6pmu_init(void)
{
return NULL;
}
static const struct arm_pmu *__init armv6mpcore_pmu_init(void)
{
return NULL;
}
#endif /* CONFIG_CPU_V6 */

View File

@ -0,0 +1,906 @@
/*
* ARMv7 Cortex-A8 and Cortex-A9 Performance Events handling code.
*
* ARMv7 support: Jean Pihet <jpihet@mvista.com>
* 2010 (c) MontaVista Software, LLC.
*
* Copied from ARMv6 code, with the low level code inspired
* by the ARMv7 Oprofile code.
*
* Cortex-A8 has up to 4 configurable performance counters and
* a single cycle counter.
* Cortex-A9 has up to 31 configurable performance counters and
* a single cycle counter.
*
* All counters can be enabled/disabled and IRQ masked separately. The cycle
* counter and all 4 performance counters together can be reset separately.
*/
#ifdef CONFIG_CPU_V7
/* Common ARMv7 event types */
enum armv7_perf_types {
ARMV7_PERFCTR_PMNC_SW_INCR = 0x00,
ARMV7_PERFCTR_IFETCH_MISS = 0x01,
ARMV7_PERFCTR_ITLB_MISS = 0x02,
ARMV7_PERFCTR_DCACHE_REFILL = 0x03,
ARMV7_PERFCTR_DCACHE_ACCESS = 0x04,
ARMV7_PERFCTR_DTLB_REFILL = 0x05,
ARMV7_PERFCTR_DREAD = 0x06,
ARMV7_PERFCTR_DWRITE = 0x07,
ARMV7_PERFCTR_EXC_TAKEN = 0x09,
ARMV7_PERFCTR_EXC_EXECUTED = 0x0A,
ARMV7_PERFCTR_CID_WRITE = 0x0B,
/* ARMV7_PERFCTR_PC_WRITE is equivalent to HW_BRANCH_INSTRUCTIONS.
* It counts:
* - all branch instructions,
* - instructions that explicitly write the PC,
* - exception generating instructions.
*/
ARMV7_PERFCTR_PC_WRITE = 0x0C,
ARMV7_PERFCTR_PC_IMM_BRANCH = 0x0D,
ARMV7_PERFCTR_UNALIGNED_ACCESS = 0x0F,
ARMV7_PERFCTR_PC_BRANCH_MIS_PRED = 0x10,
ARMV7_PERFCTR_CLOCK_CYCLES = 0x11,
ARMV7_PERFCTR_PC_BRANCH_MIS_USED = 0x12,
ARMV7_PERFCTR_CPU_CYCLES = 0xFF
};
/* ARMv7 Cortex-A8 specific event types */
enum armv7_a8_perf_types {
ARMV7_PERFCTR_INSTR_EXECUTED = 0x08,
ARMV7_PERFCTR_PC_PROC_RETURN = 0x0E,
ARMV7_PERFCTR_WRITE_BUFFER_FULL = 0x40,
ARMV7_PERFCTR_L2_STORE_MERGED = 0x41,
ARMV7_PERFCTR_L2_STORE_BUFF = 0x42,
ARMV7_PERFCTR_L2_ACCESS = 0x43,
ARMV7_PERFCTR_L2_CACH_MISS = 0x44,
ARMV7_PERFCTR_AXI_READ_CYCLES = 0x45,
ARMV7_PERFCTR_AXI_WRITE_CYCLES = 0x46,
ARMV7_PERFCTR_MEMORY_REPLAY = 0x47,
ARMV7_PERFCTR_UNALIGNED_ACCESS_REPLAY = 0x48,
ARMV7_PERFCTR_L1_DATA_MISS = 0x49,
ARMV7_PERFCTR_L1_INST_MISS = 0x4A,
ARMV7_PERFCTR_L1_DATA_COLORING = 0x4B,
ARMV7_PERFCTR_L1_NEON_DATA = 0x4C,
ARMV7_PERFCTR_L1_NEON_CACH_DATA = 0x4D,
ARMV7_PERFCTR_L2_NEON = 0x4E,
ARMV7_PERFCTR_L2_NEON_HIT = 0x4F,
ARMV7_PERFCTR_L1_INST = 0x50,
ARMV7_PERFCTR_PC_RETURN_MIS_PRED = 0x51,
ARMV7_PERFCTR_PC_BRANCH_FAILED = 0x52,
ARMV7_PERFCTR_PC_BRANCH_TAKEN = 0x53,
ARMV7_PERFCTR_PC_BRANCH_EXECUTED = 0x54,
ARMV7_PERFCTR_OP_EXECUTED = 0x55,
ARMV7_PERFCTR_CYCLES_INST_STALL = 0x56,
ARMV7_PERFCTR_CYCLES_INST = 0x57,
ARMV7_PERFCTR_CYCLES_NEON_DATA_STALL = 0x58,
ARMV7_PERFCTR_CYCLES_NEON_INST_STALL = 0x59,
ARMV7_PERFCTR_NEON_CYCLES = 0x5A,
ARMV7_PERFCTR_PMU0_EVENTS = 0x70,
ARMV7_PERFCTR_PMU1_EVENTS = 0x71,
ARMV7_PERFCTR_PMU_EVENTS = 0x72,
};
/* ARMv7 Cortex-A9 specific event types */
enum armv7_a9_perf_types {
ARMV7_PERFCTR_JAVA_HW_BYTECODE_EXEC = 0x40,
ARMV7_PERFCTR_JAVA_SW_BYTECODE_EXEC = 0x41,
ARMV7_PERFCTR_JAZELLE_BRANCH_EXEC = 0x42,
ARMV7_PERFCTR_COHERENT_LINE_MISS = 0x50,
ARMV7_PERFCTR_COHERENT_LINE_HIT = 0x51,
ARMV7_PERFCTR_ICACHE_DEP_STALL_CYCLES = 0x60,
ARMV7_PERFCTR_DCACHE_DEP_STALL_CYCLES = 0x61,
ARMV7_PERFCTR_TLB_MISS_DEP_STALL_CYCLES = 0x62,
ARMV7_PERFCTR_STREX_EXECUTED_PASSED = 0x63,
ARMV7_PERFCTR_STREX_EXECUTED_FAILED = 0x64,
ARMV7_PERFCTR_DATA_EVICTION = 0x65,
ARMV7_PERFCTR_ISSUE_STAGE_NO_INST = 0x66,
ARMV7_PERFCTR_ISSUE_STAGE_EMPTY = 0x67,
ARMV7_PERFCTR_INST_OUT_OF_RENAME_STAGE = 0x68,
ARMV7_PERFCTR_PREDICTABLE_FUNCT_RETURNS = 0x6E,
ARMV7_PERFCTR_MAIN_UNIT_EXECUTED_INST = 0x70,
ARMV7_PERFCTR_SECOND_UNIT_EXECUTED_INST = 0x71,
ARMV7_PERFCTR_LD_ST_UNIT_EXECUTED_INST = 0x72,
ARMV7_PERFCTR_FP_EXECUTED_INST = 0x73,
ARMV7_PERFCTR_NEON_EXECUTED_INST = 0x74,
ARMV7_PERFCTR_PLD_FULL_DEP_STALL_CYCLES = 0x80,
ARMV7_PERFCTR_DATA_WR_DEP_STALL_CYCLES = 0x81,
ARMV7_PERFCTR_ITLB_MISS_DEP_STALL_CYCLES = 0x82,
ARMV7_PERFCTR_DTLB_MISS_DEP_STALL_CYCLES = 0x83,
ARMV7_PERFCTR_MICRO_ITLB_MISS_DEP_STALL_CYCLES = 0x84,
ARMV7_PERFCTR_MICRO_DTLB_MISS_DEP_STALL_CYCLES = 0x85,
ARMV7_PERFCTR_DMB_DEP_STALL_CYCLES = 0x86,
ARMV7_PERFCTR_INTGR_CLK_ENABLED_CYCLES = 0x8A,
ARMV7_PERFCTR_DATA_ENGINE_CLK_EN_CYCLES = 0x8B,
ARMV7_PERFCTR_ISB_INST = 0x90,
ARMV7_PERFCTR_DSB_INST = 0x91,
ARMV7_PERFCTR_DMB_INST = 0x92,
ARMV7_PERFCTR_EXT_INTERRUPTS = 0x93,
ARMV7_PERFCTR_PLE_CACHE_LINE_RQST_COMPLETED = 0xA0,
ARMV7_PERFCTR_PLE_CACHE_LINE_RQST_SKIPPED = 0xA1,
ARMV7_PERFCTR_PLE_FIFO_FLUSH = 0xA2,
ARMV7_PERFCTR_PLE_RQST_COMPLETED = 0xA3,
ARMV7_PERFCTR_PLE_FIFO_OVERFLOW = 0xA4,
ARMV7_PERFCTR_PLE_RQST_PROG = 0xA5
};
/*
* Cortex-A8 HW events mapping
*
* The hardware events that we support. We do support cache operations but
* we have harvard caches and no way to combine instruction and data
* accesses/misses in hardware.
*/
static const unsigned armv7_a8_perf_map[PERF_COUNT_HW_MAX] = {
[PERF_COUNT_HW_CPU_CYCLES] = ARMV7_PERFCTR_CPU_CYCLES,
[PERF_COUNT_HW_INSTRUCTIONS] = ARMV7_PERFCTR_INSTR_EXECUTED,
[PERF_COUNT_HW_CACHE_REFERENCES] = HW_OP_UNSUPPORTED,
[PERF_COUNT_HW_CACHE_MISSES] = HW_OP_UNSUPPORTED,
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV7_PERFCTR_PC_WRITE,
[PERF_COUNT_HW_BRANCH_MISSES] = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
[PERF_COUNT_HW_BUS_CYCLES] = ARMV7_PERFCTR_CLOCK_CYCLES,
};
static const unsigned armv7_a8_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(L1D)] = {
/*
* The performance counters don't differentiate between read
* and write accesses/misses so this isn't strictly correct,
* but it's the best we can do. Writes and reads get
* combined.
*/
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = ARMV7_PERFCTR_DCACHE_ACCESS,
[C(RESULT_MISS)] = ARMV7_PERFCTR_DCACHE_REFILL,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = ARMV7_PERFCTR_DCACHE_ACCESS,
[C(RESULT_MISS)] = ARMV7_PERFCTR_DCACHE_REFILL,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(L1I)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = ARMV7_PERFCTR_L1_INST,
[C(RESULT_MISS)] = ARMV7_PERFCTR_L1_INST_MISS,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = ARMV7_PERFCTR_L1_INST,
[C(RESULT_MISS)] = ARMV7_PERFCTR_L1_INST_MISS,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(LL)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = ARMV7_PERFCTR_L2_ACCESS,
[C(RESULT_MISS)] = ARMV7_PERFCTR_L2_CACH_MISS,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = ARMV7_PERFCTR_L2_ACCESS,
[C(RESULT_MISS)] = ARMV7_PERFCTR_L2_CACH_MISS,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(DTLB)] = {
/*
* Only ITLB misses and DTLB refills are supported.
* If users want the DTLB refills misses a raw counter
* must be used.
*/
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV7_PERFCTR_DTLB_REFILL,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV7_PERFCTR_DTLB_REFILL,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(ITLB)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV7_PERFCTR_ITLB_MISS,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV7_PERFCTR_ITLB_MISS,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(BPU)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = ARMV7_PERFCTR_PC_WRITE,
[C(RESULT_MISS)]
= ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = ARMV7_PERFCTR_PC_WRITE,
[C(RESULT_MISS)]
= ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
};
/*
* Cortex-A9 HW events mapping
*/
static const unsigned armv7_a9_perf_map[PERF_COUNT_HW_MAX] = {
[PERF_COUNT_HW_CPU_CYCLES] = ARMV7_PERFCTR_CPU_CYCLES,
[PERF_COUNT_HW_INSTRUCTIONS] =
ARMV7_PERFCTR_INST_OUT_OF_RENAME_STAGE,
[PERF_COUNT_HW_CACHE_REFERENCES] = ARMV7_PERFCTR_COHERENT_LINE_HIT,
[PERF_COUNT_HW_CACHE_MISSES] = ARMV7_PERFCTR_COHERENT_LINE_MISS,
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV7_PERFCTR_PC_WRITE,
[PERF_COUNT_HW_BRANCH_MISSES] = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
[PERF_COUNT_HW_BUS_CYCLES] = ARMV7_PERFCTR_CLOCK_CYCLES,
};
static const unsigned armv7_a9_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(L1D)] = {
/*
* The performance counters don't differentiate between read
* and write accesses/misses so this isn't strictly correct,
* but it's the best we can do. Writes and reads get
* combined.
*/
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = ARMV7_PERFCTR_DCACHE_ACCESS,
[C(RESULT_MISS)] = ARMV7_PERFCTR_DCACHE_REFILL,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = ARMV7_PERFCTR_DCACHE_ACCESS,
[C(RESULT_MISS)] = ARMV7_PERFCTR_DCACHE_REFILL,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(L1I)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV7_PERFCTR_IFETCH_MISS,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV7_PERFCTR_IFETCH_MISS,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(LL)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(DTLB)] = {
/*
* Only ITLB misses and DTLB refills are supported.
* If users want the DTLB refills misses a raw counter
* must be used.
*/
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV7_PERFCTR_DTLB_REFILL,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV7_PERFCTR_DTLB_REFILL,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(ITLB)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV7_PERFCTR_ITLB_MISS,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = ARMV7_PERFCTR_ITLB_MISS,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(BPU)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = ARMV7_PERFCTR_PC_WRITE,
[C(RESULT_MISS)]
= ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = ARMV7_PERFCTR_PC_WRITE,
[C(RESULT_MISS)]
= ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
};
/*
* Perf Events counters
*/
enum armv7_counters {
ARMV7_CYCLE_COUNTER = 1, /* Cycle counter */
ARMV7_COUNTER0 = 2, /* First event counter */
};
/*
* The cycle counter is ARMV7_CYCLE_COUNTER.
* The first event counter is ARMV7_COUNTER0.
* The last event counter is (ARMV7_COUNTER0 + armpmu->num_events - 1).
*/
#define ARMV7_COUNTER_LAST (ARMV7_COUNTER0 + armpmu->num_events - 1)
/*
* ARMv7 low level PMNC access
*/
/*
* Per-CPU PMNC: config reg
*/
#define ARMV7_PMNC_E (1 << 0) /* Enable all counters */
#define ARMV7_PMNC_P (1 << 1) /* Reset all counters */
#define ARMV7_PMNC_C (1 << 2) /* Cycle counter reset */
#define ARMV7_PMNC_D (1 << 3) /* CCNT counts every 64th cpu cycle */
#define ARMV7_PMNC_X (1 << 4) /* Export to ETM */
#define ARMV7_PMNC_DP (1 << 5) /* Disable CCNT if non-invasive debug*/
#define ARMV7_PMNC_N_SHIFT 11 /* Number of counters supported */
#define ARMV7_PMNC_N_MASK 0x1f
#define ARMV7_PMNC_MASK 0x3f /* Mask for writable bits */
/*
* Available counters
*/
#define ARMV7_CNT0 0 /* First event counter */
#define ARMV7_CCNT 31 /* Cycle counter */
/* Perf Event to low level counters mapping */
#define ARMV7_EVENT_CNT_TO_CNTx (ARMV7_COUNTER0 - ARMV7_CNT0)
/*
* CNTENS: counters enable reg
*/
#define ARMV7_CNTENS_P(idx) (1 << (idx - ARMV7_EVENT_CNT_TO_CNTx))
#define ARMV7_CNTENS_C (1 << ARMV7_CCNT)
/*
* CNTENC: counters disable reg
*/
#define ARMV7_CNTENC_P(idx) (1 << (idx - ARMV7_EVENT_CNT_TO_CNTx))
#define ARMV7_CNTENC_C (1 << ARMV7_CCNT)
/*
* INTENS: counters overflow interrupt enable reg
*/
#define ARMV7_INTENS_P(idx) (1 << (idx - ARMV7_EVENT_CNT_TO_CNTx))
#define ARMV7_INTENS_C (1 << ARMV7_CCNT)
/*
* INTENC: counters overflow interrupt disable reg
*/
#define ARMV7_INTENC_P(idx) (1 << (idx - ARMV7_EVENT_CNT_TO_CNTx))
#define ARMV7_INTENC_C (1 << ARMV7_CCNT)
/*
* EVTSEL: Event selection reg
*/
#define ARMV7_EVTSEL_MASK 0xff /* Mask for writable bits */
/*
* SELECT: Counter selection reg
*/
#define ARMV7_SELECT_MASK 0x1f /* Mask for writable bits */
/*
* FLAG: counters overflow flag status reg
*/
#define ARMV7_FLAG_P(idx) (1 << (idx - ARMV7_EVENT_CNT_TO_CNTx))
#define ARMV7_FLAG_C (1 << ARMV7_CCNT)
#define ARMV7_FLAG_MASK 0xffffffff /* Mask for writable bits */
#define ARMV7_OVERFLOWED_MASK ARMV7_FLAG_MASK
static inline unsigned long armv7_pmnc_read(void)
{
u32 val;
asm volatile("mrc p15, 0, %0, c9, c12, 0" : "=r"(val));
return val;
}
static inline void armv7_pmnc_write(unsigned long val)
{
val &= ARMV7_PMNC_MASK;
asm volatile("mcr p15, 0, %0, c9, c12, 0" : : "r"(val));
}
static inline int armv7_pmnc_has_overflowed(unsigned long pmnc)
{
return pmnc & ARMV7_OVERFLOWED_MASK;
}
static inline int armv7_pmnc_counter_has_overflowed(unsigned long pmnc,
enum armv7_counters counter)
{
int ret = 0;
if (counter == ARMV7_CYCLE_COUNTER)
ret = pmnc & ARMV7_FLAG_C;
else if ((counter >= ARMV7_COUNTER0) && (counter <= ARMV7_COUNTER_LAST))
ret = pmnc & ARMV7_FLAG_P(counter);
else
pr_err("CPU%u checking wrong counter %d overflow status\n",
smp_processor_id(), counter);
return ret;
}
static inline int armv7_pmnc_select_counter(unsigned int idx)
{
u32 val;
if ((idx < ARMV7_COUNTER0) || (idx > ARMV7_COUNTER_LAST)) {
pr_err("CPU%u selecting wrong PMNC counter"
" %d\n", smp_processor_id(), idx);
return -1;
}
val = (idx - ARMV7_EVENT_CNT_TO_CNTx) & ARMV7_SELECT_MASK;
asm volatile("mcr p15, 0, %0, c9, c12, 5" : : "r" (val));
return idx;
}
static inline u32 armv7pmu_read_counter(int idx)
{
unsigned long value = 0;
if (idx == ARMV7_CYCLE_COUNTER)
asm volatile("mrc p15, 0, %0, c9, c13, 0" : "=r" (value));
else if ((idx >= ARMV7_COUNTER0) && (idx <= ARMV7_COUNTER_LAST)) {
if (armv7_pmnc_select_counter(idx) == idx)
asm volatile("mrc p15, 0, %0, c9, c13, 2"
: "=r" (value));
} else
pr_err("CPU%u reading wrong counter %d\n",
smp_processor_id(), idx);
return value;
}
static inline void armv7pmu_write_counter(int idx, u32 value)
{
if (idx == ARMV7_CYCLE_COUNTER)
asm volatile("mcr p15, 0, %0, c9, c13, 0" : : "r" (value));
else if ((idx >= ARMV7_COUNTER0) && (idx <= ARMV7_COUNTER_LAST)) {
if (armv7_pmnc_select_counter(idx) == idx)
asm volatile("mcr p15, 0, %0, c9, c13, 2"
: : "r" (value));
} else
pr_err("CPU%u writing wrong counter %d\n",
smp_processor_id(), idx);
}
static inline void armv7_pmnc_write_evtsel(unsigned int idx, u32 val)
{
if (armv7_pmnc_select_counter(idx) == idx) {
val &= ARMV7_EVTSEL_MASK;
asm volatile("mcr p15, 0, %0, c9, c13, 1" : : "r" (val));
}
}
static inline u32 armv7_pmnc_enable_counter(unsigned int idx)
{
u32 val;
if ((idx != ARMV7_CYCLE_COUNTER) &&
((idx < ARMV7_COUNTER0) || (idx > ARMV7_COUNTER_LAST))) {
pr_err("CPU%u enabling wrong PMNC counter"
" %d\n", smp_processor_id(), idx);
return -1;
}
if (idx == ARMV7_CYCLE_COUNTER)
val = ARMV7_CNTENS_C;
else
val = ARMV7_CNTENS_P(idx);
asm volatile("mcr p15, 0, %0, c9, c12, 1" : : "r" (val));
return idx;
}
static inline u32 armv7_pmnc_disable_counter(unsigned int idx)
{
u32 val;
if ((idx != ARMV7_CYCLE_COUNTER) &&
((idx < ARMV7_COUNTER0) || (idx > ARMV7_COUNTER_LAST))) {
pr_err("CPU%u disabling wrong PMNC counter"
" %d\n", smp_processor_id(), idx);
return -1;
}
if (idx == ARMV7_CYCLE_COUNTER)
val = ARMV7_CNTENC_C;
else
val = ARMV7_CNTENC_P(idx);
asm volatile("mcr p15, 0, %0, c9, c12, 2" : : "r" (val));
return idx;
}
static inline u32 armv7_pmnc_enable_intens(unsigned int idx)
{
u32 val;
if ((idx != ARMV7_CYCLE_COUNTER) &&
((idx < ARMV7_COUNTER0) || (idx > ARMV7_COUNTER_LAST))) {
pr_err("CPU%u enabling wrong PMNC counter"
" interrupt enable %d\n", smp_processor_id(), idx);
return -1;
}
if (idx == ARMV7_CYCLE_COUNTER)
val = ARMV7_INTENS_C;
else
val = ARMV7_INTENS_P(idx);
asm volatile("mcr p15, 0, %0, c9, c14, 1" : : "r" (val));
return idx;
}
static inline u32 armv7_pmnc_disable_intens(unsigned int idx)
{
u32 val;
if ((idx != ARMV7_CYCLE_COUNTER) &&
((idx < ARMV7_COUNTER0) || (idx > ARMV7_COUNTER_LAST))) {
pr_err("CPU%u disabling wrong PMNC counter"
" interrupt enable %d\n", smp_processor_id(), idx);
return -1;
}
if (idx == ARMV7_CYCLE_COUNTER)
val = ARMV7_INTENC_C;
else
val = ARMV7_INTENC_P(idx);
asm volatile("mcr p15, 0, %0, c9, c14, 2" : : "r" (val));
return idx;
}
static inline u32 armv7_pmnc_getreset_flags(void)
{
u32 val;
/* Read */
asm volatile("mrc p15, 0, %0, c9, c12, 3" : "=r" (val));
/* Write to clear flags */
val &= ARMV7_FLAG_MASK;
asm volatile("mcr p15, 0, %0, c9, c12, 3" : : "r" (val));
return val;
}
#ifdef DEBUG
static void armv7_pmnc_dump_regs(void)
{
u32 val;
unsigned int cnt;
printk(KERN_INFO "PMNC registers dump:\n");
asm volatile("mrc p15, 0, %0, c9, c12, 0" : "=r" (val));
printk(KERN_INFO "PMNC =0x%08x\n", val);
asm volatile("mrc p15, 0, %0, c9, c12, 1" : "=r" (val));
printk(KERN_INFO "CNTENS=0x%08x\n", val);
asm volatile("mrc p15, 0, %0, c9, c14, 1" : "=r" (val));
printk(KERN_INFO "INTENS=0x%08x\n", val);
asm volatile("mrc p15, 0, %0, c9, c12, 3" : "=r" (val));
printk(KERN_INFO "FLAGS =0x%08x\n", val);
asm volatile("mrc p15, 0, %0, c9, c12, 5" : "=r" (val));
printk(KERN_INFO "SELECT=0x%08x\n", val);
asm volatile("mrc p15, 0, %0, c9, c13, 0" : "=r" (val));
printk(KERN_INFO "CCNT =0x%08x\n", val);
for (cnt = ARMV7_COUNTER0; cnt < ARMV7_COUNTER_LAST; cnt++) {
armv7_pmnc_select_counter(cnt);
asm volatile("mrc p15, 0, %0, c9, c13, 2" : "=r" (val));
printk(KERN_INFO "CNT[%d] count =0x%08x\n",
cnt-ARMV7_EVENT_CNT_TO_CNTx, val);
asm volatile("mrc p15, 0, %0, c9, c13, 1" : "=r" (val));
printk(KERN_INFO "CNT[%d] evtsel=0x%08x\n",
cnt-ARMV7_EVENT_CNT_TO_CNTx, val);
}
}
#endif
static void armv7pmu_enable_event(struct hw_perf_event *hwc, int idx)
{
unsigned long flags;
/*
* Enable counter and interrupt, and set the counter to count
* the event that we're interested in.
*/
raw_spin_lock_irqsave(&pmu_lock, flags);
/*
* Disable counter
*/
armv7_pmnc_disable_counter(idx);
/*
* Set event (if destined for PMNx counters)
* We don't need to set the event if it's a cycle count
*/
if (idx != ARMV7_CYCLE_COUNTER)
armv7_pmnc_write_evtsel(idx, hwc->config_base);
/*
* Enable interrupt for this counter
*/
armv7_pmnc_enable_intens(idx);
/*
* Enable counter
*/
armv7_pmnc_enable_counter(idx);
raw_spin_unlock_irqrestore(&pmu_lock, flags);
}
static void armv7pmu_disable_event(struct hw_perf_event *hwc, int idx)
{
unsigned long flags;
/*
* Disable counter and interrupt
*/
raw_spin_lock_irqsave(&pmu_lock, flags);
/*
* Disable counter
*/
armv7_pmnc_disable_counter(idx);
/*
* Disable interrupt for this counter
*/
armv7_pmnc_disable_intens(idx);
raw_spin_unlock_irqrestore(&pmu_lock, flags);
}
static irqreturn_t armv7pmu_handle_irq(int irq_num, void *dev)
{
unsigned long pmnc;
struct perf_sample_data data;
struct cpu_hw_events *cpuc;
struct pt_regs *regs;
int idx;
/*
* Get and reset the IRQ flags
*/
pmnc = armv7_pmnc_getreset_flags();
/*
* Did an overflow occur?
*/
if (!armv7_pmnc_has_overflowed(pmnc))
return IRQ_NONE;
/*
* Handle the counter(s) overflow(s)
*/
regs = get_irq_regs();
perf_sample_data_init(&data, 0);
cpuc = &__get_cpu_var(cpu_hw_events);
for (idx = 0; idx <= armpmu->num_events; ++idx) {
struct perf_event *event = cpuc->events[idx];
struct hw_perf_event *hwc;
if (!test_bit(idx, cpuc->active_mask))
continue;
/*
* We have a single interrupt for all counters. Check that
* each counter has overflowed before we process it.
*/
if (!armv7_pmnc_counter_has_overflowed(pmnc, idx))
continue;
hwc = &event->hw;
armpmu_event_update(event, hwc, idx);
data.period = event->hw.last_period;
if (!armpmu_event_set_period(event, hwc, idx))
continue;
if (perf_event_overflow(event, 0, &data, regs))
armpmu->disable(hwc, idx);
}
/*
* Handle the pending perf events.
*
* Note: this call *must* be run with interrupts disabled. For
* platforms that can have the PMU interrupts raised as an NMI, this
* will not work.
*/
irq_work_run();
return IRQ_HANDLED;
}
static void armv7pmu_start(void)
{
unsigned long flags;
raw_spin_lock_irqsave(&pmu_lock, flags);
/* Enable all counters */
armv7_pmnc_write(armv7_pmnc_read() | ARMV7_PMNC_E);
raw_spin_unlock_irqrestore(&pmu_lock, flags);
}
static void armv7pmu_stop(void)
{
unsigned long flags;
raw_spin_lock_irqsave(&pmu_lock, flags);
/* Disable all counters */
armv7_pmnc_write(armv7_pmnc_read() & ~ARMV7_PMNC_E);
raw_spin_unlock_irqrestore(&pmu_lock, flags);
}
static int armv7pmu_get_event_idx(struct cpu_hw_events *cpuc,
struct hw_perf_event *event)
{
int idx;
/* Always place a cycle counter into the cycle counter. */
if (event->config_base == ARMV7_PERFCTR_CPU_CYCLES) {
if (test_and_set_bit(ARMV7_CYCLE_COUNTER, cpuc->used_mask))
return -EAGAIN;
return ARMV7_CYCLE_COUNTER;
} else {
/*
* For anything other than a cycle counter, try and use
* the events counters
*/
for (idx = ARMV7_COUNTER0; idx <= armpmu->num_events; ++idx) {
if (!test_and_set_bit(idx, cpuc->used_mask))
return idx;
}
/* The counters are all in use. */
return -EAGAIN;
}
}
static struct arm_pmu armv7pmu = {
.handle_irq = armv7pmu_handle_irq,
.enable = armv7pmu_enable_event,
.disable = armv7pmu_disable_event,
.read_counter = armv7pmu_read_counter,
.write_counter = armv7pmu_write_counter,
.get_event_idx = armv7pmu_get_event_idx,
.start = armv7pmu_start,
.stop = armv7pmu_stop,
.raw_event_mask = 0xFF,
.max_period = (1LLU << 32) - 1,
};
static u32 __init armv7_reset_read_pmnc(void)
{
u32 nb_cnt;
/* Initialize & Reset PMNC: C and P bits */
armv7_pmnc_write(ARMV7_PMNC_P | ARMV7_PMNC_C);
/* Read the nb of CNTx counters supported from PMNC */
nb_cnt = (armv7_pmnc_read() >> ARMV7_PMNC_N_SHIFT) & ARMV7_PMNC_N_MASK;
/* Add the CPU cycles counter and return */
return nb_cnt + 1;
}
static const struct arm_pmu *__init armv7_a8_pmu_init(void)
{
armv7pmu.id = ARM_PERF_PMU_ID_CA8;
armv7pmu.name = "ARMv7 Cortex-A8";
armv7pmu.cache_map = &armv7_a8_perf_cache_map;
armv7pmu.event_map = &armv7_a8_perf_map;
armv7pmu.num_events = armv7_reset_read_pmnc();
return &armv7pmu;
}
static const struct arm_pmu *__init armv7_a9_pmu_init(void)
{
armv7pmu.id = ARM_PERF_PMU_ID_CA9;
armv7pmu.name = "ARMv7 Cortex-A9";
armv7pmu.cache_map = &armv7_a9_perf_cache_map;
armv7pmu.event_map = &armv7_a9_perf_map;
armv7pmu.num_events = armv7_reset_read_pmnc();
return &armv7pmu;
}
#else
static const struct arm_pmu *__init armv7_a8_pmu_init(void)
{
return NULL;
}
static const struct arm_pmu *__init armv7_a9_pmu_init(void)
{
return NULL;
}
#endif /* CONFIG_CPU_V7 */

View File

@ -0,0 +1,807 @@
/*
* ARMv5 [xscale] Performance counter handling code.
*
* Copyright (C) 2010, ARM Ltd., Will Deacon <will.deacon@arm.com>
*
* Based on the previous xscale OProfile code.
*
* There are two variants of the xscale PMU that we support:
* - xscale1pmu: 2 event counters and a cycle counter
* - xscale2pmu: 4 event counters and a cycle counter
* The two variants share event definitions, but have different
* PMU structures.
*/
#ifdef CONFIG_CPU_XSCALE
enum xscale_perf_types {
XSCALE_PERFCTR_ICACHE_MISS = 0x00,
XSCALE_PERFCTR_ICACHE_NO_DELIVER = 0x01,
XSCALE_PERFCTR_DATA_STALL = 0x02,
XSCALE_PERFCTR_ITLB_MISS = 0x03,
XSCALE_PERFCTR_DTLB_MISS = 0x04,
XSCALE_PERFCTR_BRANCH = 0x05,
XSCALE_PERFCTR_BRANCH_MISS = 0x06,
XSCALE_PERFCTR_INSTRUCTION = 0x07,
XSCALE_PERFCTR_DCACHE_FULL_STALL = 0x08,
XSCALE_PERFCTR_DCACHE_FULL_STALL_CONTIG = 0x09,
XSCALE_PERFCTR_DCACHE_ACCESS = 0x0A,
XSCALE_PERFCTR_DCACHE_MISS = 0x0B,
XSCALE_PERFCTR_DCACHE_WRITE_BACK = 0x0C,
XSCALE_PERFCTR_PC_CHANGED = 0x0D,
XSCALE_PERFCTR_BCU_REQUEST = 0x10,
XSCALE_PERFCTR_BCU_FULL = 0x11,
XSCALE_PERFCTR_BCU_DRAIN = 0x12,
XSCALE_PERFCTR_BCU_ECC_NO_ELOG = 0x14,
XSCALE_PERFCTR_BCU_1_BIT_ERR = 0x15,
XSCALE_PERFCTR_RMW = 0x16,
/* XSCALE_PERFCTR_CCNT is not hardware defined */
XSCALE_PERFCTR_CCNT = 0xFE,
XSCALE_PERFCTR_UNUSED = 0xFF,
};
enum xscale_counters {
XSCALE_CYCLE_COUNTER = 1,
XSCALE_COUNTER0,
XSCALE_COUNTER1,
XSCALE_COUNTER2,
XSCALE_COUNTER3,
};
static const unsigned xscale_perf_map[PERF_COUNT_HW_MAX] = {
[PERF_COUNT_HW_CPU_CYCLES] = XSCALE_PERFCTR_CCNT,
[PERF_COUNT_HW_INSTRUCTIONS] = XSCALE_PERFCTR_INSTRUCTION,
[PERF_COUNT_HW_CACHE_REFERENCES] = HW_OP_UNSUPPORTED,
[PERF_COUNT_HW_CACHE_MISSES] = HW_OP_UNSUPPORTED,
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = XSCALE_PERFCTR_BRANCH,
[PERF_COUNT_HW_BRANCH_MISSES] = XSCALE_PERFCTR_BRANCH_MISS,
[PERF_COUNT_HW_BUS_CYCLES] = HW_OP_UNSUPPORTED,
};
static const unsigned xscale_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(L1D)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = XSCALE_PERFCTR_DCACHE_ACCESS,
[C(RESULT_MISS)] = XSCALE_PERFCTR_DCACHE_MISS,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = XSCALE_PERFCTR_DCACHE_ACCESS,
[C(RESULT_MISS)] = XSCALE_PERFCTR_DCACHE_MISS,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(L1I)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = XSCALE_PERFCTR_ICACHE_MISS,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = XSCALE_PERFCTR_ICACHE_MISS,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(LL)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(DTLB)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = XSCALE_PERFCTR_DTLB_MISS,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = XSCALE_PERFCTR_DTLB_MISS,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(ITLB)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = XSCALE_PERFCTR_ITLB_MISS,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = XSCALE_PERFCTR_ITLB_MISS,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
[C(BPU)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
[C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
},
},
};
#define XSCALE_PMU_ENABLE 0x001
#define XSCALE_PMN_RESET 0x002
#define XSCALE_CCNT_RESET 0x004
#define XSCALE_PMU_RESET (CCNT_RESET | PMN_RESET)
#define XSCALE_PMU_CNT64 0x008
#define XSCALE1_OVERFLOWED_MASK 0x700
#define XSCALE1_CCOUNT_OVERFLOW 0x400
#define XSCALE1_COUNT0_OVERFLOW 0x100
#define XSCALE1_COUNT1_OVERFLOW 0x200
#define XSCALE1_CCOUNT_INT_EN 0x040
#define XSCALE1_COUNT0_INT_EN 0x010
#define XSCALE1_COUNT1_INT_EN 0x020
#define XSCALE1_COUNT0_EVT_SHFT 12
#define XSCALE1_COUNT0_EVT_MASK (0xff << XSCALE1_COUNT0_EVT_SHFT)
#define XSCALE1_COUNT1_EVT_SHFT 20
#define XSCALE1_COUNT1_EVT_MASK (0xff << XSCALE1_COUNT1_EVT_SHFT)
static inline u32
xscale1pmu_read_pmnc(void)
{
u32 val;
asm volatile("mrc p14, 0, %0, c0, c0, 0" : "=r" (val));
return val;
}
static inline void
xscale1pmu_write_pmnc(u32 val)
{
/* upper 4bits and 7, 11 are write-as-0 */
val &= 0xffff77f;
asm volatile("mcr p14, 0, %0, c0, c0, 0" : : "r" (val));
}
static inline int
xscale1_pmnc_counter_has_overflowed(unsigned long pmnc,
enum xscale_counters counter)
{
int ret = 0;
switch (counter) {
case XSCALE_CYCLE_COUNTER:
ret = pmnc & XSCALE1_CCOUNT_OVERFLOW;
break;
case XSCALE_COUNTER0:
ret = pmnc & XSCALE1_COUNT0_OVERFLOW;
break;
case XSCALE_COUNTER1:
ret = pmnc & XSCALE1_COUNT1_OVERFLOW;
break;
default:
WARN_ONCE(1, "invalid counter number (%d)\n", counter);
}
return ret;
}
static irqreturn_t
xscale1pmu_handle_irq(int irq_num, void *dev)
{
unsigned long pmnc;
struct perf_sample_data data;
struct cpu_hw_events *cpuc;
struct pt_regs *regs;
int idx;
/*
* NOTE: there's an A stepping erratum that states if an overflow
* bit already exists and another occurs, the previous
* Overflow bit gets cleared. There's no workaround.
* Fixed in B stepping or later.
*/
pmnc = xscale1pmu_read_pmnc();
/*
* Write the value back to clear the overflow flags. Overflow
* flags remain in pmnc for use below. We also disable the PMU
* while we process the interrupt.
*/
xscale1pmu_write_pmnc(pmnc & ~XSCALE_PMU_ENABLE);
if (!(pmnc & XSCALE1_OVERFLOWED_MASK))
return IRQ_NONE;
regs = get_irq_regs();
perf_sample_data_init(&data, 0);
cpuc = &__get_cpu_var(cpu_hw_events);
for (idx = 0; idx <= armpmu->num_events; ++idx) {
struct perf_event *event = cpuc->events[idx];
struct hw_perf_event *hwc;
if (!test_bit(idx, cpuc->active_mask))
continue;
if (!xscale1_pmnc_counter_has_overflowed(pmnc, idx))
continue;
hwc = &event->hw;
armpmu_event_update(event, hwc, idx);
data.period = event->hw.last_period;
if (!armpmu_event_set_period(event, hwc, idx))
continue;
if (perf_event_overflow(event, 0, &data, regs))
armpmu->disable(hwc, idx);
}
irq_work_run();
/*
* Re-enable the PMU.
*/
pmnc = xscale1pmu_read_pmnc() | XSCALE_PMU_ENABLE;
xscale1pmu_write_pmnc(pmnc);
return IRQ_HANDLED;
}
static void
xscale1pmu_enable_event(struct hw_perf_event *hwc, int idx)
{
unsigned long val, mask, evt, flags;
switch (idx) {
case XSCALE_CYCLE_COUNTER:
mask = 0;
evt = XSCALE1_CCOUNT_INT_EN;
break;
case XSCALE_COUNTER0:
mask = XSCALE1_COUNT0_EVT_MASK;
evt = (hwc->config_base << XSCALE1_COUNT0_EVT_SHFT) |
XSCALE1_COUNT0_INT_EN;
break;
case XSCALE_COUNTER1:
mask = XSCALE1_COUNT1_EVT_MASK;
evt = (hwc->config_base << XSCALE1_COUNT1_EVT_SHFT) |
XSCALE1_COUNT1_INT_EN;
break;
default:
WARN_ONCE(1, "invalid counter number (%d)\n", idx);
return;
}
raw_spin_lock_irqsave(&pmu_lock, flags);
val = xscale1pmu_read_pmnc();
val &= ~mask;
val |= evt;
xscale1pmu_write_pmnc(val);
raw_spin_unlock_irqrestore(&pmu_lock, flags);
}
static void
xscale1pmu_disable_event(struct hw_perf_event *hwc, int idx)
{
unsigned long val, mask, evt, flags;
switch (idx) {
case XSCALE_CYCLE_COUNTER:
mask = XSCALE1_CCOUNT_INT_EN;
evt = 0;
break;
case XSCALE_COUNTER0:
mask = XSCALE1_COUNT0_INT_EN | XSCALE1_COUNT0_EVT_MASK;
evt = XSCALE_PERFCTR_UNUSED << XSCALE1_COUNT0_EVT_SHFT;
break;
case XSCALE_COUNTER1:
mask = XSCALE1_COUNT1_INT_EN | XSCALE1_COUNT1_EVT_MASK;
evt = XSCALE_PERFCTR_UNUSED << XSCALE1_COUNT1_EVT_SHFT;
break;
default:
WARN_ONCE(1, "invalid counter number (%d)\n", idx);
return;
}
raw_spin_lock_irqsave(&pmu_lock, flags);
val = xscale1pmu_read_pmnc();
val &= ~mask;
val |= evt;
xscale1pmu_write_pmnc(val);
raw_spin_unlock_irqrestore(&pmu_lock, flags);
}
static int
xscale1pmu_get_event_idx(struct cpu_hw_events *cpuc,
struct hw_perf_event *event)
{
if (XSCALE_PERFCTR_CCNT == event->config_base) {
if (test_and_set_bit(XSCALE_CYCLE_COUNTER, cpuc->used_mask))
return -EAGAIN;
return XSCALE_CYCLE_COUNTER;
} else {
if (!test_and_set_bit(XSCALE_COUNTER1, cpuc->used_mask))
return XSCALE_COUNTER1;
if (!test_and_set_bit(XSCALE_COUNTER0, cpuc->used_mask))
return XSCALE_COUNTER0;
return -EAGAIN;
}
}
static void
xscale1pmu_start(void)
{
unsigned long flags, val;
raw_spin_lock_irqsave(&pmu_lock, flags);
val = xscale1pmu_read_pmnc();
val |= XSCALE_PMU_ENABLE;
xscale1pmu_write_pmnc(val);
raw_spin_unlock_irqrestore(&pmu_lock, flags);
}
static void
xscale1pmu_stop(void)
{
unsigned long flags, val;
raw_spin_lock_irqsave(&pmu_lock, flags);
val = xscale1pmu_read_pmnc();
val &= ~XSCALE_PMU_ENABLE;
xscale1pmu_write_pmnc(val);
raw_spin_unlock_irqrestore(&pmu_lock, flags);
}
static inline u32
xscale1pmu_read_counter(int counter)
{
u32 val = 0;
switch (counter) {
case XSCALE_CYCLE_COUNTER:
asm volatile("mrc p14, 0, %0, c1, c0, 0" : "=r" (val));
break;
case XSCALE_COUNTER0:
asm volatile("mrc p14, 0, %0, c2, c0, 0" : "=r" (val));
break;
case XSCALE_COUNTER1:
asm volatile("mrc p14, 0, %0, c3, c0, 0" : "=r" (val));
break;
}
return val;
}
static inline void
xscale1pmu_write_counter(int counter, u32 val)
{
switch (counter) {
case XSCALE_CYCLE_COUNTER:
asm volatile("mcr p14, 0, %0, c1, c0, 0" : : "r" (val));
break;
case XSCALE_COUNTER0:
asm volatile("mcr p14, 0, %0, c2, c0, 0" : : "r" (val));
break;
case XSCALE_COUNTER1:
asm volatile("mcr p14, 0, %0, c3, c0, 0" : : "r" (val));
break;
}
}
static const struct arm_pmu xscale1pmu = {
.id = ARM_PERF_PMU_ID_XSCALE1,
.name = "xscale1",
.handle_irq = xscale1pmu_handle_irq,
.enable = xscale1pmu_enable_event,
.disable = xscale1pmu_disable_event,
.read_counter = xscale1pmu_read_counter,
.write_counter = xscale1pmu_write_counter,
.get_event_idx = xscale1pmu_get_event_idx,
.start = xscale1pmu_start,
.stop = xscale1pmu_stop,
.cache_map = &xscale_perf_cache_map,
.event_map = &xscale_perf_map,
.raw_event_mask = 0xFF,
.num_events = 3,
.max_period = (1LLU << 32) - 1,
};
static const struct arm_pmu *__init xscale1pmu_init(void)
{
return &xscale1pmu;
}
#define XSCALE2_OVERFLOWED_MASK 0x01f
#define XSCALE2_CCOUNT_OVERFLOW 0x001
#define XSCALE2_COUNT0_OVERFLOW 0x002
#define XSCALE2_COUNT1_OVERFLOW 0x004
#define XSCALE2_COUNT2_OVERFLOW 0x008
#define XSCALE2_COUNT3_OVERFLOW 0x010
#define XSCALE2_CCOUNT_INT_EN 0x001
#define XSCALE2_COUNT0_INT_EN 0x002
#define XSCALE2_COUNT1_INT_EN 0x004
#define XSCALE2_COUNT2_INT_EN 0x008
#define XSCALE2_COUNT3_INT_EN 0x010
#define XSCALE2_COUNT0_EVT_SHFT 0
#define XSCALE2_COUNT0_EVT_MASK (0xff << XSCALE2_COUNT0_EVT_SHFT)
#define XSCALE2_COUNT1_EVT_SHFT 8
#define XSCALE2_COUNT1_EVT_MASK (0xff << XSCALE2_COUNT1_EVT_SHFT)
#define XSCALE2_COUNT2_EVT_SHFT 16
#define XSCALE2_COUNT2_EVT_MASK (0xff << XSCALE2_COUNT2_EVT_SHFT)
#define XSCALE2_COUNT3_EVT_SHFT 24
#define XSCALE2_COUNT3_EVT_MASK (0xff << XSCALE2_COUNT3_EVT_SHFT)
static inline u32
xscale2pmu_read_pmnc(void)
{
u32 val;
asm volatile("mrc p14, 0, %0, c0, c1, 0" : "=r" (val));
/* bits 1-2 and 4-23 are read-unpredictable */
return val & 0xff000009;
}
static inline void
xscale2pmu_write_pmnc(u32 val)
{
/* bits 4-23 are write-as-0, 24-31 are write ignored */
val &= 0xf;
asm volatile("mcr p14, 0, %0, c0, c1, 0" : : "r" (val));
}
static inline u32
xscale2pmu_read_overflow_flags(void)
{
u32 val;
asm volatile("mrc p14, 0, %0, c5, c1, 0" : "=r" (val));
return val;
}
static inline void
xscale2pmu_write_overflow_flags(u32 val)
{
asm volatile("mcr p14, 0, %0, c5, c1, 0" : : "r" (val));
}
static inline u32
xscale2pmu_read_event_select(void)
{
u32 val;
asm volatile("mrc p14, 0, %0, c8, c1, 0" : "=r" (val));
return val;
}
static inline void
xscale2pmu_write_event_select(u32 val)
{
asm volatile("mcr p14, 0, %0, c8, c1, 0" : : "r"(val));
}
static inline u32
xscale2pmu_read_int_enable(void)
{
u32 val;
asm volatile("mrc p14, 0, %0, c4, c1, 0" : "=r" (val));
return val;
}
static void
xscale2pmu_write_int_enable(u32 val)
{
asm volatile("mcr p14, 0, %0, c4, c1, 0" : : "r" (val));
}
static inline int
xscale2_pmnc_counter_has_overflowed(unsigned long of_flags,
enum xscale_counters counter)
{
int ret = 0;
switch (counter) {
case XSCALE_CYCLE_COUNTER:
ret = of_flags & XSCALE2_CCOUNT_OVERFLOW;
break;
case XSCALE_COUNTER0:
ret = of_flags & XSCALE2_COUNT0_OVERFLOW;
break;
case XSCALE_COUNTER1:
ret = of_flags & XSCALE2_COUNT1_OVERFLOW;
break;
case XSCALE_COUNTER2:
ret = of_flags & XSCALE2_COUNT2_OVERFLOW;
break;
case XSCALE_COUNTER3:
ret = of_flags & XSCALE2_COUNT3_OVERFLOW;
break;
default:
WARN_ONCE(1, "invalid counter number (%d)\n", counter);
}
return ret;
}
static irqreturn_t
xscale2pmu_handle_irq(int irq_num, void *dev)
{
unsigned long pmnc, of_flags;
struct perf_sample_data data;
struct cpu_hw_events *cpuc;
struct pt_regs *regs;
int idx;
/* Disable the PMU. */
pmnc = xscale2pmu_read_pmnc();
xscale2pmu_write_pmnc(pmnc & ~XSCALE_PMU_ENABLE);
/* Check the overflow flag register. */
of_flags = xscale2pmu_read_overflow_flags();
if (!(of_flags & XSCALE2_OVERFLOWED_MASK))
return IRQ_NONE;
/* Clear the overflow bits. */
xscale2pmu_write_overflow_flags(of_flags);
regs = get_irq_regs();
perf_sample_data_init(&data, 0);
cpuc = &__get_cpu_var(cpu_hw_events);
for (idx = 0; idx <= armpmu->num_events; ++idx) {
struct perf_event *event = cpuc->events[idx];
struct hw_perf_event *hwc;
if (!test_bit(idx, cpuc->active_mask))
continue;
if (!xscale2_pmnc_counter_has_overflowed(pmnc, idx))
continue;
hwc = &event->hw;
armpmu_event_update(event, hwc, idx);
data.period = event->hw.last_period;
if (!armpmu_event_set_period(event, hwc, idx))
continue;
if (perf_event_overflow(event, 0, &data, regs))
armpmu->disable(hwc, idx);
}
irq_work_run();
/*
* Re-enable the PMU.
*/
pmnc = xscale2pmu_read_pmnc() | XSCALE_PMU_ENABLE;
xscale2pmu_write_pmnc(pmnc);
return IRQ_HANDLED;
}
static void
xscale2pmu_enable_event(struct hw_perf_event *hwc, int idx)
{
unsigned long flags, ien, evtsel;
ien = xscale2pmu_read_int_enable();
evtsel = xscale2pmu_read_event_select();
switch (idx) {
case XSCALE_CYCLE_COUNTER:
ien |= XSCALE2_CCOUNT_INT_EN;
break;
case XSCALE_COUNTER0:
ien |= XSCALE2_COUNT0_INT_EN;
evtsel &= ~XSCALE2_COUNT0_EVT_MASK;
evtsel |= hwc->config_base << XSCALE2_COUNT0_EVT_SHFT;
break;
case XSCALE_COUNTER1:
ien |= XSCALE2_COUNT1_INT_EN;
evtsel &= ~XSCALE2_COUNT1_EVT_MASK;
evtsel |= hwc->config_base << XSCALE2_COUNT1_EVT_SHFT;
break;
case XSCALE_COUNTER2:
ien |= XSCALE2_COUNT2_INT_EN;
evtsel &= ~XSCALE2_COUNT2_EVT_MASK;
evtsel |= hwc->config_base << XSCALE2_COUNT2_EVT_SHFT;
break;
case XSCALE_COUNTER3:
ien |= XSCALE2_COUNT3_INT_EN;
evtsel &= ~XSCALE2_COUNT3_EVT_MASK;
evtsel |= hwc->config_base << XSCALE2_COUNT3_EVT_SHFT;
break;
default:
WARN_ONCE(1, "invalid counter number (%d)\n", idx);
return;
}
raw_spin_lock_irqsave(&pmu_lock, flags);
xscale2pmu_write_event_select(evtsel);
xscale2pmu_write_int_enable(ien);
raw_spin_unlock_irqrestore(&pmu_lock, flags);
}
static void
xscale2pmu_disable_event(struct hw_perf_event *hwc, int idx)
{
unsigned long flags, ien, evtsel;
ien = xscale2pmu_read_int_enable();
evtsel = xscale2pmu_read_event_select();
switch (idx) {
case XSCALE_CYCLE_COUNTER:
ien &= ~XSCALE2_CCOUNT_INT_EN;
break;
case XSCALE_COUNTER0:
ien &= ~XSCALE2_COUNT0_INT_EN;
evtsel &= ~XSCALE2_COUNT0_EVT_MASK;
evtsel |= XSCALE_PERFCTR_UNUSED << XSCALE2_COUNT0_EVT_SHFT;
break;
case XSCALE_COUNTER1:
ien &= ~XSCALE2_COUNT1_INT_EN;
evtsel &= ~XSCALE2_COUNT1_EVT_MASK;
evtsel |= XSCALE_PERFCTR_UNUSED << XSCALE2_COUNT1_EVT_SHFT;
break;
case XSCALE_COUNTER2:
ien &= ~XSCALE2_COUNT2_INT_EN;
evtsel &= ~XSCALE2_COUNT2_EVT_MASK;
evtsel |= XSCALE_PERFCTR_UNUSED << XSCALE2_COUNT2_EVT_SHFT;
break;
case XSCALE_COUNTER3:
ien &= ~XSCALE2_COUNT3_INT_EN;
evtsel &= ~XSCALE2_COUNT3_EVT_MASK;
evtsel |= XSCALE_PERFCTR_UNUSED << XSCALE2_COUNT3_EVT_SHFT;
break;
default:
WARN_ONCE(1, "invalid counter number (%d)\n", idx);
return;
}
raw_spin_lock_irqsave(&pmu_lock, flags);
xscale2pmu_write_event_select(evtsel);
xscale2pmu_write_int_enable(ien);
raw_spin_unlock_irqrestore(&pmu_lock, flags);
}
static int
xscale2pmu_get_event_idx(struct cpu_hw_events *cpuc,
struct hw_perf_event *event)
{
int idx = xscale1pmu_get_event_idx(cpuc, event);
if (idx >= 0)
goto out;
if (!test_and_set_bit(XSCALE_COUNTER3, cpuc->used_mask))
idx = XSCALE_COUNTER3;
else if (!test_and_set_bit(XSCALE_COUNTER2, cpuc->used_mask))
idx = XSCALE_COUNTER2;
out:
return idx;
}
static void
xscale2pmu_start(void)
{
unsigned long flags, val;
raw_spin_lock_irqsave(&pmu_lock, flags);
val = xscale2pmu_read_pmnc() & ~XSCALE_PMU_CNT64;
val |= XSCALE_PMU_ENABLE;
xscale2pmu_write_pmnc(val);
raw_spin_unlock_irqrestore(&pmu_lock, flags);
}
static void
xscale2pmu_stop(void)
{
unsigned long flags, val;
raw_spin_lock_irqsave(&pmu_lock, flags);
val = xscale2pmu_read_pmnc();
val &= ~XSCALE_PMU_ENABLE;
xscale2pmu_write_pmnc(val);
raw_spin_unlock_irqrestore(&pmu_lock, flags);
}
static inline u32
xscale2pmu_read_counter(int counter)
{
u32 val = 0;
switch (counter) {
case XSCALE_CYCLE_COUNTER:
asm volatile("mrc p14, 0, %0, c1, c1, 0" : "=r" (val));
break;
case XSCALE_COUNTER0:
asm volatile("mrc p14, 0, %0, c0, c2, 0" : "=r" (val));
break;
case XSCALE_COUNTER1:
asm volatile("mrc p14, 0, %0, c1, c2, 0" : "=r" (val));
break;
case XSCALE_COUNTER2:
asm volatile("mrc p14, 0, %0, c2, c2, 0" : "=r" (val));
break;
case XSCALE_COUNTER3:
asm volatile("mrc p14, 0, %0, c3, c2, 0" : "=r" (val));
break;
}
return val;
}
static inline void
xscale2pmu_write_counter(int counter, u32 val)
{
switch (counter) {
case XSCALE_CYCLE_COUNTER:
asm volatile("mcr p14, 0, %0, c1, c1, 0" : : "r" (val));
break;
case XSCALE_COUNTER0:
asm volatile("mcr p14, 0, %0, c0, c2, 0" : : "r" (val));
break;
case XSCALE_COUNTER1:
asm volatile("mcr p14, 0, %0, c1, c2, 0" : : "r" (val));
break;
case XSCALE_COUNTER2:
asm volatile("mcr p14, 0, %0, c2, c2, 0" : : "r" (val));
break;
case XSCALE_COUNTER3:
asm volatile("mcr p14, 0, %0, c3, c2, 0" : : "r" (val));
break;
}
}
static const struct arm_pmu xscale2pmu = {
.id = ARM_PERF_PMU_ID_XSCALE2,
.name = "xscale2",
.handle_irq = xscale2pmu_handle_irq,
.enable = xscale2pmu_enable_event,
.disable = xscale2pmu_disable_event,
.read_counter = xscale2pmu_read_counter,
.write_counter = xscale2pmu_write_counter,
.get_event_idx = xscale2pmu_get_event_idx,
.start = xscale2pmu_start,
.stop = xscale2pmu_stop,
.cache_map = &xscale_perf_cache_map,
.event_map = &xscale_perf_map,
.raw_event_mask = 0xFF,
.num_events = 5,
.max_period = (1LLU << 32) - 1,
};
static const struct arm_pmu *__init xscale2pmu_init(void)
{
return &xscale2pmu;
}
#else
static const struct arm_pmu *__init xscale1pmu_init(void)
{
return NULL;
}
static const struct arm_pmu *__init xscale2pmu_init(void)
{
return NULL;
}
#endif /* CONFIG_CPU_XSCALE */

View File

@ -0,0 +1,94 @@
/*
* linux/arch/arm/kernel/pj4-cp0.c
*
* PJ4 iWMMXt coprocessor context switching and handling
*
* Copyright (c) 2010 Marvell International Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/io.h>
#include <asm/thread_notify.h>
static int iwmmxt_do(struct notifier_block *self, unsigned long cmd, void *t)
{
struct thread_info *thread = t;
switch (cmd) {
case THREAD_NOTIFY_FLUSH:
/*
* flush_thread() zeroes thread->fpstate, so no need
* to do anything here.
*
* FALLTHROUGH: Ensure we don't try to overwrite our newly
* initialised state information on the first fault.
*/
case THREAD_NOTIFY_EXIT:
iwmmxt_task_release(thread);
break;
case THREAD_NOTIFY_SWITCH:
iwmmxt_task_switch(thread);
break;
}
return NOTIFY_DONE;
}
static struct notifier_block iwmmxt_notifier_block = {
.notifier_call = iwmmxt_do,
};
static u32 __init pj4_cp_access_read(void)
{
u32 value;
__asm__ __volatile__ (
"mrc p15, 0, %0, c1, c0, 2\n\t"
: "=r" (value));
return value;
}
static void __init pj4_cp_access_write(u32 value)
{
u32 temp;
__asm__ __volatile__ (
"mcr p15, 0, %1, c1, c0, 2\n\t"
"mrc p15, 0, %0, c1, c0, 2\n\t"
"mov %0, %0\n\t"
"sub pc, pc, #4\n\t"
: "=r" (temp) : "r" (value));
}
/*
* Disable CP0/CP1 on boot, and let call_fpe() and the iWMMXt lazy
* switch code handle iWMMXt context switching.
*/
static int __init pj4_cp0_init(void)
{
u32 cp_access;
cp_access = pj4_cp_access_read() & ~0xf;
pj4_cp_access_write(cp_access);
printk(KERN_INFO "PJ4 iWMMXt coprocessor enabled.\n");
elf_hwcap |= HWCAP_IWMMXT;
thread_register_notifier(&iwmmxt_notifier_block);
return 0;
}
late_initcall(pj4_cp0_init);

View File

@ -1060,8 +1060,8 @@ static int ptrace_sethbpregs(struct task_struct *tsk, long num,
goto out;
if ((gen_type & implied_type) != gen_type) {
ret = -EINVAL;
goto out;
ret = -EINVAL;
goto out;
}
attr.bp_len = gen_len;

Some files were not shown because too many files have changed in this diff Show More