1
0
Fork 0

crypto: sunxi-ss - Add Allwinner Security System crypto accelerator

Add support for the Security System included in Allwinner SoC A20.
The Security System is a hardware cryptographic accelerator that support:
- MD5 and SHA1 hash algorithms
- AES block cipher in CBC/ECB mode with 128/196/256bits keys.
- DES and 3DES block cipher in CBC/ECB mode

Signed-off-by: LABBE Corentin <clabbe.montjoie@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
hifive-unleashed-5.1
LABBE Corentin 2015-07-17 16:39:41 +02:00 committed by Herbert Xu
parent e757d5c4c3
commit 6298e94821
7 changed files with 1656 additions and 0 deletions

View File

@ -480,4 +480,21 @@ config CRYPTO_DEV_IMGTEC_HASH
hardware hash accelerator. Supporting MD5/SHA1/SHA224/SHA256
hashing algorithms.
config CRYPTO_DEV_SUN4I_SS
tristate "Support for Allwinner Security System cryptographic accelerator"
depends on ARCH_SUNXI
select CRYPTO_MD5
select CRYPTO_SHA1
select CRYPTO_AES
select CRYPTO_DES
select CRYPTO_BLKCIPHER
help
Some Allwinner SoC have a crypto accelerator named
Security System. Select this if you want to use it.
The Security System handle AES/DES/3DES ciphers in CBC mode
and SHA1 and MD5 hash algorithms.
To compile this driver as a module, choose M here: the module
will be called sun4i-ss.
endif # CRYPTO_HW

View File

@ -28,3 +28,4 @@ obj-$(CONFIG_CRYPTO_DEV_UX500) += ux500/
obj-$(CONFIG_CRYPTO_DEV_QAT) += qat/
obj-$(CONFIG_CRYPTO_DEV_QCE) += qce/
obj-$(CONFIG_CRYPTO_DEV_VMX) += vmx/
obj-$(CONFIG_CRYPTO_DEV_SUN4I_SS) += sunxi-ss/

View File

@ -0,0 +1,2 @@
obj-$(CONFIG_CRYPTO_DEV_SUN4I_SS) += sun4i-ss.o
sun4i-ss-y += sun4i-ss-core.o sun4i-ss-hash.o sun4i-ss-cipher.o

View File

@ -0,0 +1,542 @@
/*
* sun4i-ss-cipher.c - hardware cryptographic accelerator for Allwinner A20 SoC
*
* Copyright (C) 2013-2015 Corentin LABBE <clabbe.montjoie@gmail.com>
*
* This file add support for AES cipher with 128,192,256 bits
* keysize in CBC and ECB mode.
* Add support also for DES and 3DES in CBC and ECB mode.
*
* You could find the datasheet in Documentation/arm/sunxi/README
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include "sun4i-ss.h"
static int sun4i_ss_opti_poll(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
struct sun4i_ss_ctx *ss = op->ss;
unsigned int ivsize = crypto_ablkcipher_ivsize(tfm);
struct sun4i_cipher_req_ctx *ctx = ablkcipher_request_ctx(areq);
u32 mode = ctx->mode;
/* when activating SS, the default FIFO space is SS_RX_DEFAULT(32) */
u32 rx_cnt = SS_RX_DEFAULT;
u32 tx_cnt = 0;
u32 spaces;
u32 v;
int i, err = 0;
unsigned int ileft = areq->nbytes;
unsigned int oleft = areq->nbytes;
unsigned int todo;
struct sg_mapping_iter mi, mo;
unsigned int oi, oo; /* offset for in and out */
if (areq->nbytes == 0)
return 0;
if (!areq->info) {
dev_err_ratelimited(ss->dev, "ERROR: Empty IV\n");
return -EINVAL;
}
if (!areq->src || !areq->dst) {
dev_err_ratelimited(ss->dev, "ERROR: Some SGs are NULL\n");
return -EINVAL;
}
spin_lock_bh(&ss->slock);
for (i = 0; i < op->keylen; i += 4)
writel(*(op->key + i / 4), ss->base + SS_KEY0 + i);
if (areq->info) {
for (i = 0; i < 4 && i < ivsize / 4; i++) {
v = *(u32 *)(areq->info + i * 4);
writel(v, ss->base + SS_IV0 + i * 4);
}
}
writel(mode, ss->base + SS_CTL);
sg_miter_start(&mi, areq->src, sg_nents(areq->src),
SG_MITER_FROM_SG | SG_MITER_ATOMIC);
sg_miter_start(&mo, areq->dst, sg_nents(areq->dst),
SG_MITER_TO_SG | SG_MITER_ATOMIC);
sg_miter_next(&mi);
sg_miter_next(&mo);
if (!mi.addr || !mo.addr) {
dev_err_ratelimited(ss->dev, "ERROR: sg_miter return null\n");
err = -EINVAL;
goto release_ss;
}
ileft = areq->nbytes / 4;
oleft = areq->nbytes / 4;
oi = 0;
oo = 0;
do {
todo = min3(rx_cnt, ileft, (mi.length - oi) / 4);
if (todo > 0) {
ileft -= todo;
writesl(ss->base + SS_RXFIFO, mi.addr + oi, todo);
oi += todo * 4;
}
if (oi == mi.length) {
sg_miter_next(&mi);
oi = 0;
}
spaces = readl(ss->base + SS_FCSR);
rx_cnt = SS_RXFIFO_SPACES(spaces);
tx_cnt = SS_TXFIFO_SPACES(spaces);
todo = min3(tx_cnt, oleft, (mo.length - oo) / 4);
if (todo > 0) {
oleft -= todo;
readsl(ss->base + SS_TXFIFO, mo.addr + oo, todo);
oo += todo * 4;
}
if (oo == mo.length) {
sg_miter_next(&mo);
oo = 0;
}
} while (mo.length > 0);
if (areq->info) {
for (i = 0; i < 4 && i < ivsize / 4; i++) {
v = readl(ss->base + SS_IV0 + i * 4);
*(u32 *)(areq->info + i * 4) = v;
}
}
release_ss:
sg_miter_stop(&mi);
sg_miter_stop(&mo);
writel(0, ss->base + SS_CTL);
spin_unlock_bh(&ss->slock);
return err;
}
/* Generic function that support SG with size not multiple of 4 */
static int sun4i_ss_cipher_poll(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
struct sun4i_ss_ctx *ss = op->ss;
int no_chunk = 1;
struct scatterlist *in_sg = areq->src;
struct scatterlist *out_sg = areq->dst;
unsigned int ivsize = crypto_ablkcipher_ivsize(tfm);
struct sun4i_cipher_req_ctx *ctx = ablkcipher_request_ctx(areq);
u32 mode = ctx->mode;
/* when activating SS, the default FIFO space is SS_RX_DEFAULT(32) */
u32 rx_cnt = SS_RX_DEFAULT;
u32 tx_cnt = 0;
u32 v;
u32 spaces;
int i, err = 0;
unsigned int ileft = areq->nbytes;
unsigned int oleft = areq->nbytes;
unsigned int todo;
struct sg_mapping_iter mi, mo;
unsigned int oi, oo; /* offset for in and out */
char buf[4 * SS_RX_MAX];/* buffer for linearize SG src */
char bufo[4 * SS_TX_MAX]; /* buffer for linearize SG dst */
unsigned int ob = 0; /* offset in buf */
unsigned int obo = 0; /* offset in bufo*/
unsigned int obl = 0; /* length of data in bufo */
if (areq->nbytes == 0)
return 0;
if (!areq->info) {
dev_err_ratelimited(ss->dev, "ERROR: Empty IV\n");
return -EINVAL;
}
if (!areq->src || !areq->dst) {
dev_err_ratelimited(ss->dev, "ERROR: Some SGs are NULL\n");
return -EINVAL;
}
/*
* if we have only SGs with size multiple of 4,
* we can use the SS optimized function
*/
while (in_sg && no_chunk == 1) {
if ((in_sg->length % 4) != 0)
no_chunk = 0;
in_sg = sg_next(in_sg);
}
while (out_sg && no_chunk == 1) {
if ((out_sg->length % 4) != 0)
no_chunk = 0;
out_sg = sg_next(out_sg);
}
if (no_chunk == 1)
return sun4i_ss_opti_poll(areq);
spin_lock_bh(&ss->slock);
for (i = 0; i < op->keylen; i += 4)
writel(*(op->key + i / 4), ss->base + SS_KEY0 + i);
if (areq->info) {
for (i = 0; i < 4 && i < ivsize / 4; i++) {
v = *(u32 *)(areq->info + i * 4);
writel(v, ss->base + SS_IV0 + i * 4);
}
}
writel(mode, ss->base + SS_CTL);
sg_miter_start(&mi, areq->src, sg_nents(areq->src),
SG_MITER_FROM_SG | SG_MITER_ATOMIC);
sg_miter_start(&mo, areq->dst, sg_nents(areq->dst),
SG_MITER_TO_SG | SG_MITER_ATOMIC);
sg_miter_next(&mi);
sg_miter_next(&mo);
if (!mi.addr || !mo.addr) {
dev_err_ratelimited(ss->dev, "ERROR: sg_miter return null\n");
err = -EINVAL;
goto release_ss;
}
ileft = areq->nbytes;
oleft = areq->nbytes;
oi = 0;
oo = 0;
while (oleft > 0) {
if (ileft > 0) {
/*
* todo is the number of consecutive 4byte word that we
* can read from current SG
*/
todo = min3(rx_cnt, ileft / 4, (mi.length - oi) / 4);
if (todo > 0 && ob == 0) {
writesl(ss->base + SS_RXFIFO, mi.addr + oi,
todo);
ileft -= todo * 4;
oi += todo * 4;
} else {
/*
* not enough consecutive bytes, so we need to
* linearize in buf. todo is in bytes
* After that copy, if we have a multiple of 4
* we need to be able to write all buf in one
* pass, so it is why we min() with rx_cnt
*/
todo = min3(rx_cnt * 4 - ob, ileft,
mi.length - oi);
memcpy(buf + ob, mi.addr + oi, todo);
ileft -= todo;
oi += todo;
ob += todo;
if (ob % 4 == 0) {
writesl(ss->base + SS_RXFIFO, buf,
ob / 4);
ob = 0;
}
}
if (oi == mi.length) {
sg_miter_next(&mi);
oi = 0;
}
}
spaces = readl(ss->base + SS_FCSR);
rx_cnt = SS_RXFIFO_SPACES(spaces);
tx_cnt = SS_TXFIFO_SPACES(spaces);
dev_dbg(ss->dev, "%x %u/%u %u/%u cnt=%u %u/%u %u/%u cnt=%u %u %u\n",
mode,
oi, mi.length, ileft, areq->nbytes, rx_cnt,
oo, mo.length, oleft, areq->nbytes, tx_cnt,
todo, ob);
if (tx_cnt == 0)
continue;
/* todo in 4bytes word */
todo = min3(tx_cnt, oleft / 4, (mo.length - oo) / 4);
if (todo > 0) {
readsl(ss->base + SS_TXFIFO, mo.addr + oo, todo);
oleft -= todo * 4;
oo += todo * 4;
if (oo == mo.length) {
sg_miter_next(&mo);
oo = 0;
}
} else {
/*
* read obl bytes in bufo, we read at maximum for
* emptying the device
*/
readsl(ss->base + SS_TXFIFO, bufo, tx_cnt);
obl = tx_cnt * 4;
obo = 0;
do {
/*
* how many bytes we can copy ?
* no more than remaining SG size
* no more than remaining buffer
* no need to test against oleft
*/
todo = min(mo.length - oo, obl - obo);
memcpy(mo.addr + oo, bufo + obo, todo);
oleft -= todo;
obo += todo;
oo += todo;
if (oo == mo.length) {
sg_miter_next(&mo);
oo = 0;
}
} while (obo < obl);
/* bufo must be fully used here */
}
}
if (areq->info) {
for (i = 0; i < 4 && i < ivsize / 4; i++) {
v = readl(ss->base + SS_IV0 + i * 4);
*(u32 *)(areq->info + i * 4) = v;
}
}
release_ss:
sg_miter_stop(&mi);
sg_miter_stop(&mo);
writel(0, ss->base + SS_CTL);
spin_unlock_bh(&ss->slock);
return err;
}
/* CBC AES */
int sun4i_ss_cbc_aes_encrypt(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
rctx->mode = SS_OP_AES | SS_CBC | SS_ENABLED | SS_ENCRYPTION |
op->keymode;
return sun4i_ss_cipher_poll(areq);
}
int sun4i_ss_cbc_aes_decrypt(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
rctx->mode = SS_OP_AES | SS_CBC | SS_ENABLED | SS_DECRYPTION |
op->keymode;
return sun4i_ss_cipher_poll(areq);
}
/* ECB AES */
int sun4i_ss_ecb_aes_encrypt(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
rctx->mode = SS_OP_AES | SS_ECB | SS_ENABLED | SS_ENCRYPTION |
op->keymode;
return sun4i_ss_cipher_poll(areq);
}
int sun4i_ss_ecb_aes_decrypt(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
rctx->mode = SS_OP_AES | SS_ECB | SS_ENABLED | SS_DECRYPTION |
op->keymode;
return sun4i_ss_cipher_poll(areq);
}
/* CBC DES */
int sun4i_ss_cbc_des_encrypt(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
rctx->mode = SS_OP_DES | SS_CBC | SS_ENABLED | SS_ENCRYPTION |
op->keymode;
return sun4i_ss_cipher_poll(areq);
}
int sun4i_ss_cbc_des_decrypt(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
rctx->mode = SS_OP_DES | SS_CBC | SS_ENABLED | SS_DECRYPTION |
op->keymode;
return sun4i_ss_cipher_poll(areq);
}
/* ECB DES */
int sun4i_ss_ecb_des_encrypt(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
rctx->mode = SS_OP_DES | SS_ECB | SS_ENABLED | SS_ENCRYPTION |
op->keymode;
return sun4i_ss_cipher_poll(areq);
}
int sun4i_ss_ecb_des_decrypt(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
rctx->mode = SS_OP_DES | SS_ECB | SS_ENABLED | SS_DECRYPTION |
op->keymode;
return sun4i_ss_cipher_poll(areq);
}
/* CBC 3DES */
int sun4i_ss_cbc_des3_encrypt(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
rctx->mode = SS_OP_3DES | SS_CBC | SS_ENABLED | SS_ENCRYPTION |
op->keymode;
return sun4i_ss_cipher_poll(areq);
}
int sun4i_ss_cbc_des3_decrypt(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
rctx->mode = SS_OP_3DES | SS_CBC | SS_ENABLED | SS_DECRYPTION |
op->keymode;
return sun4i_ss_cipher_poll(areq);
}
/* ECB 3DES */
int sun4i_ss_ecb_des3_encrypt(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
rctx->mode = SS_OP_3DES | SS_ECB | SS_ENABLED | SS_ENCRYPTION |
op->keymode;
return sun4i_ss_cipher_poll(areq);
}
int sun4i_ss_ecb_des3_decrypt(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
rctx->mode = SS_OP_3DES | SS_ECB | SS_ENABLED | SS_DECRYPTION |
op->keymode;
return sun4i_ss_cipher_poll(areq);
}
int sun4i_ss_cipher_init(struct crypto_tfm *tfm)
{
struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm);
struct crypto_alg *alg = tfm->__crt_alg;
struct sun4i_ss_alg_template *algt;
memset(op, 0, sizeof(struct sun4i_tfm_ctx));
algt = container_of(alg, struct sun4i_ss_alg_template, alg.crypto);
op->ss = algt->ss;
tfm->crt_ablkcipher.reqsize = sizeof(struct sun4i_cipher_req_ctx);
return 0;
}
/* check and set the AES key, prepare the mode to be used */
int sun4i_ss_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
struct sun4i_ss_ctx *ss = op->ss;
switch (keylen) {
case 128 / 8:
op->keymode = SS_AES_128BITS;
break;
case 192 / 8:
op->keymode = SS_AES_192BITS;
break;
case 256 / 8:
op->keymode = SS_AES_256BITS;
break;
default:
dev_err(ss->dev, "ERROR: Invalid keylen %u\n", keylen);
crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
op->keylen = keylen;
memcpy(op->key, key, keylen);
return 0;
}
/* check and set the DES key, prepare the mode to be used */
int sun4i_ss_des_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
struct sun4i_ss_ctx *ss = op->ss;
u32 flags;
u32 tmp[DES_EXPKEY_WORDS];
int ret;
if (unlikely(keylen != DES_KEY_SIZE)) {
dev_err(ss->dev, "Invalid keylen %u\n", keylen);
crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
flags = crypto_ablkcipher_get_flags(tfm);
ret = des_ekey(tmp, key);
if (unlikely(ret == 0) && (flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_WEAK_KEY);
dev_dbg(ss->dev, "Weak key %u\n", keylen);
return -EINVAL;
}
op->keylen = keylen;
memcpy(op->key, key, keylen);
return 0;
}
/* check and set the 3DES key, prepare the mode to be used */
int sun4i_ss_des3_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
struct sun4i_ss_ctx *ss = op->ss;
if (unlikely(keylen != 3 * DES_KEY_SIZE)) {
dev_err(ss->dev, "Invalid keylen %u\n", keylen);
crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
op->keylen = keylen;
memcpy(op->key, key, keylen);
return 0;
}

View File

@ -0,0 +1,403 @@
/*
* sun4i-ss-core.c - hardware cryptographic accelerator for Allwinner A20 SoC
*
* Copyright (C) 2013-2015 Corentin LABBE <clabbe.montjoie@gmail.com>
*
* Core file which registers crypto algorithms supported by the SS.
*
* You could find a link for the datasheet in Documentation/arm/sunxi/README
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/clk.h>
#include <linux/crypto.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <crypto/scatterwalk.h>
#include <linux/scatterlist.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include "sun4i-ss.h"
static struct sun4i_ss_alg_template ss_algs[] = {
{ .type = CRYPTO_ALG_TYPE_AHASH,
.mode = SS_OP_MD5,
.alg.hash = {
.init = sun4i_hash_init,
.update = sun4i_hash_update,
.final = sun4i_hash_final,
.finup = sun4i_hash_finup,
.digest = sun4i_hash_digest,
.export = sun4i_hash_export_md5,
.import = sun4i_hash_import_md5,
.halg = {
.digestsize = MD5_DIGEST_SIZE,
.base = {
.cra_name = "md5",
.cra_driver_name = "md5-sun4i-ss",
.cra_priority = 300,
.cra_alignmask = 3,
.cra_flags = CRYPTO_ALG_TYPE_AHASH,
.cra_blocksize = MD5_HMAC_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct sun4i_req_ctx),
.cra_module = THIS_MODULE,
.cra_type = &crypto_ahash_type,
.cra_init = sun4i_hash_crainit
}
}
}
},
{ .type = CRYPTO_ALG_TYPE_AHASH,
.mode = SS_OP_SHA1,
.alg.hash = {
.init = sun4i_hash_init,
.update = sun4i_hash_update,
.final = sun4i_hash_final,
.finup = sun4i_hash_finup,
.digest = sun4i_hash_digest,
.export = sun4i_hash_export_sha1,
.import = sun4i_hash_import_sha1,
.halg = {
.digestsize = SHA1_DIGEST_SIZE,
.base = {
.cra_name = "sha1",
.cra_driver_name = "sha1-sun4i-ss",
.cra_priority = 300,
.cra_alignmask = 3,
.cra_flags = CRYPTO_ALG_TYPE_AHASH,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct sun4i_req_ctx),
.cra_module = THIS_MODULE,
.cra_type = &crypto_ahash_type,
.cra_init = sun4i_hash_crainit
}
}
}
},
{ .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
.alg.crypto = {
.cra_name = "cbc(aes)",
.cra_driver_name = "cbc-aes-sun4i-ss",
.cra_priority = 300,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER,
.cra_ctxsize = sizeof(struct sun4i_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_alignmask = 3,
.cra_type = &crypto_ablkcipher_type,
.cra_init = sun4i_ss_cipher_init,
.cra_ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = sun4i_ss_aes_setkey,
.encrypt = sun4i_ss_cbc_aes_encrypt,
.decrypt = sun4i_ss_cbc_aes_decrypt,
}
}
},
{ .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
.alg.crypto = {
.cra_name = "ecb(aes)",
.cra_driver_name = "ecb-aes-sun4i-ss",
.cra_priority = 300,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER,
.cra_ctxsize = sizeof(struct sun4i_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_alignmask = 3,
.cra_type = &crypto_ablkcipher_type,
.cra_init = sun4i_ss_cipher_init,
.cra_ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = sun4i_ss_aes_setkey,
.encrypt = sun4i_ss_ecb_aes_encrypt,
.decrypt = sun4i_ss_ecb_aes_decrypt,
}
}
},
{ .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
.alg.crypto = {
.cra_name = "cbc(des)",
.cra_driver_name = "cbc-des-sun4i-ss",
.cra_priority = 300,
.cra_blocksize = DES_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER,
.cra_ctxsize = sizeof(struct sun4i_req_ctx),
.cra_module = THIS_MODULE,
.cra_alignmask = 3,
.cra_type = &crypto_ablkcipher_type,
.cra_init = sun4i_ss_cipher_init,
.cra_u.ablkcipher = {
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.ivsize = DES_BLOCK_SIZE,
.setkey = sun4i_ss_des_setkey,
.encrypt = sun4i_ss_cbc_des_encrypt,
.decrypt = sun4i_ss_cbc_des_decrypt,
}
}
},
{ .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
.alg.crypto = {
.cra_name = "ecb(des)",
.cra_driver_name = "ecb-des-sun4i-ss",
.cra_priority = 300,
.cra_blocksize = DES_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER,
.cra_ctxsize = sizeof(struct sun4i_req_ctx),
.cra_module = THIS_MODULE,
.cra_alignmask = 3,
.cra_type = &crypto_ablkcipher_type,
.cra_init = sun4i_ss_cipher_init,
.cra_u.ablkcipher = {
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.setkey = sun4i_ss_des_setkey,
.encrypt = sun4i_ss_ecb_des_encrypt,
.decrypt = sun4i_ss_ecb_des_decrypt,
}
}
},
{ .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
.alg.crypto = {
.cra_name = "cbc(des3_ede)",
.cra_driver_name = "cbc-des3-sun4i-ss",
.cra_priority = 300,
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER,
.cra_ctxsize = sizeof(struct sun4i_req_ctx),
.cra_module = THIS_MODULE,
.cra_alignmask = 3,
.cra_type = &crypto_ablkcipher_type,
.cra_init = sun4i_ss_cipher_init,
.cra_u.ablkcipher = {
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.ivsize = DES3_EDE_BLOCK_SIZE,
.setkey = sun4i_ss_des3_setkey,
.encrypt = sun4i_ss_cbc_des3_encrypt,
.decrypt = sun4i_ss_cbc_des3_decrypt,
}
}
},
{ .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
.alg.crypto = {
.cra_name = "ecb(des3_ede)",
.cra_driver_name = "ecb-des3-sun4i-ss",
.cra_priority = 300,
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER,
.cra_ctxsize = sizeof(struct sun4i_req_ctx),
.cra_module = THIS_MODULE,
.cra_alignmask = 3,
.cra_type = &crypto_ablkcipher_type,
.cra_init = sun4i_ss_cipher_init,
.cra_u.ablkcipher = {
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.ivsize = DES3_EDE_BLOCK_SIZE,
.setkey = sun4i_ss_des3_setkey,
.encrypt = sun4i_ss_ecb_des3_encrypt,
.decrypt = sun4i_ss_ecb_des3_decrypt,
}
}
},
};
static int sun4i_ss_probe(struct platform_device *pdev)
{
struct resource *res;
u32 v;
int err, i;
unsigned long cr;
const unsigned long cr_ahb = 24 * 1000 * 1000;
const unsigned long cr_mod = 150 * 1000 * 1000;
struct sun4i_ss_ctx *ss;
if (!pdev->dev.of_node)
return -ENODEV;
ss = devm_kzalloc(&pdev->dev, sizeof(*ss), GFP_KERNEL);
if (!ss)
return -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
ss->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(ss->base)) {
dev_err(&pdev->dev, "Cannot request MMIO\n");
return PTR_ERR(ss->base);
}
ss->ssclk = devm_clk_get(&pdev->dev, "mod");
if (IS_ERR(ss->ssclk)) {
err = PTR_ERR(ss->ssclk);
dev_err(&pdev->dev, "Cannot get SS clock err=%d\n", err);
return err;
}
dev_dbg(&pdev->dev, "clock ss acquired\n");
ss->busclk = devm_clk_get(&pdev->dev, "ahb");
if (IS_ERR(ss->busclk)) {
err = PTR_ERR(ss->busclk);
dev_err(&pdev->dev, "Cannot get AHB SS clock err=%d\n", err);
return err;
}
dev_dbg(&pdev->dev, "clock ahb_ss acquired\n");
/* Enable both clocks */
err = clk_prepare_enable(ss->busclk);
if (err != 0) {
dev_err(&pdev->dev, "Cannot prepare_enable busclk\n");
return err;
}
err = clk_prepare_enable(ss->ssclk);
if (err != 0) {
dev_err(&pdev->dev, "Cannot prepare_enable ssclk\n");
goto error_ssclk;
}
/*
* Check that clock have the correct rates given in the datasheet
* Try to set the clock to the maximum allowed
*/
err = clk_set_rate(ss->ssclk, cr_mod);
if (err != 0) {
dev_err(&pdev->dev, "Cannot set clock rate to ssclk\n");
goto error_clk;
}
/*
* The only impact on clocks below requirement are bad performance,
* so do not print "errors"
* warn on Overclocked clocks
*/
cr = clk_get_rate(ss->busclk);
if (cr >= cr_ahb)
dev_dbg(&pdev->dev, "Clock bus %lu (%lu MHz) (must be >= %lu)\n",
cr, cr / 1000000, cr_ahb);
else
dev_warn(&pdev->dev, "Clock bus %lu (%lu MHz) (must be >= %lu)\n",
cr, cr / 1000000, cr_ahb);
cr = clk_get_rate(ss->ssclk);
if (cr <= cr_mod)
if (cr < cr_mod)
dev_warn(&pdev->dev, "Clock ss %lu (%lu MHz) (must be <= %lu)\n",
cr, cr / 1000000, cr_mod);
else
dev_dbg(&pdev->dev, "Clock ss %lu (%lu MHz) (must be <= %lu)\n",
cr, cr / 1000000, cr_mod);
else
dev_warn(&pdev->dev, "Clock ss is at %lu (%lu MHz) (must be <= %lu)\n",
cr, cr / 1000000, cr_mod);
/*
* Datasheet named it "Die Bonding ID"
* I expect to be a sort of Security System Revision number.
* Since the A80 seems to have an other version of SS
* this info could be useful
*/
writel(SS_ENABLED, ss->base + SS_CTL);
v = readl(ss->base + SS_CTL);
v >>= 16;
v &= 0x07;
dev_info(&pdev->dev, "Die ID %d\n", v);
writel(0, ss->base + SS_CTL);
ss->dev = &pdev->dev;
spin_lock_init(&ss->slock);
for (i = 0; i < ARRAY_SIZE(ss_algs); i++) {
ss_algs[i].ss = ss;
switch (ss_algs[i].type) {
case CRYPTO_ALG_TYPE_ABLKCIPHER:
err = crypto_register_alg(&ss_algs[i].alg.crypto);
if (err != 0) {
dev_err(ss->dev, "Fail to register %s\n",
ss_algs[i].alg.crypto.cra_name);
goto error_alg;
}
break;
case CRYPTO_ALG_TYPE_AHASH:
err = crypto_register_ahash(&ss_algs[i].alg.hash);
if (err != 0) {
dev_err(ss->dev, "Fail to register %s\n",
ss_algs[i].alg.hash.halg.base.cra_name);
goto error_alg;
}
break;
}
}
platform_set_drvdata(pdev, ss);
return 0;
error_alg:
i--;
for (; i >= 0; i--) {
switch (ss_algs[i].type) {
case CRYPTO_ALG_TYPE_ABLKCIPHER:
crypto_unregister_alg(&ss_algs[i].alg.crypto);
break;
case CRYPTO_ALG_TYPE_AHASH:
crypto_unregister_ahash(&ss_algs[i].alg.hash);
break;
}
}
error_clk:
clk_disable_unprepare(ss->ssclk);
error_ssclk:
clk_disable_unprepare(ss->busclk);
return err;
}
static int sun4i_ss_remove(struct platform_device *pdev)
{
int i;
struct sun4i_ss_ctx *ss = platform_get_drvdata(pdev);
for (i = 0; i < ARRAY_SIZE(ss_algs); i++) {
switch (ss_algs[i].type) {
case CRYPTO_ALG_TYPE_ABLKCIPHER:
crypto_unregister_alg(&ss_algs[i].alg.crypto);
break;
case CRYPTO_ALG_TYPE_AHASH:
crypto_unregister_ahash(&ss_algs[i].alg.hash);
break;
}
}
writel(0, ss->base + SS_CTL);
clk_disable_unprepare(ss->busclk);
clk_disable_unprepare(ss->ssclk);
return 0;
}
static const struct of_device_id a20ss_crypto_of_match_table[] = {
{ .compatible = "allwinner,sun4i-a10-crypto" },
{}
};
MODULE_DEVICE_TABLE(of, a20ss_crypto_of_match_table);
static struct platform_driver sun4i_ss_driver = {
.probe = sun4i_ss_probe,
.remove = sun4i_ss_remove,
.driver = {
.name = "sun4i-ss",
.of_match_table = a20ss_crypto_of_match_table,
},
};
module_platform_driver(sun4i_ss_driver);
MODULE_DESCRIPTION("Allwinner Security System cryptographic accelerator");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Corentin LABBE <clabbe.montjoie@gmail.com>");

View File

@ -0,0 +1,492 @@
/*
* sun4i-ss-hash.c - hardware cryptographic accelerator for Allwinner A20 SoC
*
* Copyright (C) 2013-2015 Corentin LABBE <clabbe.montjoie@gmail.com>
*
* This file add support for MD5 and SHA1.
*
* You could find the datasheet in Documentation/arm/sunxi/README
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include "sun4i-ss.h"
#include <linux/scatterlist.h>
/* This is a totally arbitrary value */
#define SS_TIMEOUT 100
int sun4i_hash_crainit(struct crypto_tfm *tfm)
{
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct sun4i_req_ctx));
return 0;
}
/* sun4i_hash_init: initialize request context */
int sun4i_hash_init(struct ahash_request *areq)
{
struct sun4i_req_ctx *op = ahash_request_ctx(areq);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
struct ahash_alg *alg = __crypto_ahash_alg(tfm->base.__crt_alg);
struct sun4i_ss_alg_template *algt;
struct sun4i_ss_ctx *ss;
memset(op, 0, sizeof(struct sun4i_req_ctx));
algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
ss = algt->ss;
op->ss = algt->ss;
op->mode = algt->mode;
return 0;
}
int sun4i_hash_export_md5(struct ahash_request *areq, void *out)
{
struct sun4i_req_ctx *op = ahash_request_ctx(areq);
struct md5_state *octx = out;
int i;
octx->byte_count = op->byte_count + op->len;
memcpy(octx->block, op->buf, op->len);
if (op->byte_count > 0) {
for (i = 0; i < 4; i++)
octx->hash[i] = op->hash[i];
} else {
octx->hash[0] = SHA1_H0;
octx->hash[1] = SHA1_H1;
octx->hash[2] = SHA1_H2;
octx->hash[3] = SHA1_H3;
}
return 0;
}
int sun4i_hash_import_md5(struct ahash_request *areq, const void *in)
{
struct sun4i_req_ctx *op = ahash_request_ctx(areq);
const struct md5_state *ictx = in;
int i;
sun4i_hash_init(areq);
op->byte_count = ictx->byte_count & ~0x3F;
op->len = ictx->byte_count & 0x3F;
memcpy(op->buf, ictx->block, op->len);
for (i = 0; i < 4; i++)
op->hash[i] = ictx->hash[i];
return 0;
}
int sun4i_hash_export_sha1(struct ahash_request *areq, void *out)
{
struct sun4i_req_ctx *op = ahash_request_ctx(areq);
struct sha1_state *octx = out;
int i;
octx->count = op->byte_count + op->len;
memcpy(octx->buffer, op->buf, op->len);
if (op->byte_count > 0) {
for (i = 0; i < 5; i++)
octx->state[i] = op->hash[i];
} else {
octx->state[0] = SHA1_H0;
octx->state[1] = SHA1_H1;
octx->state[2] = SHA1_H2;
octx->state[3] = SHA1_H3;
octx->state[4] = SHA1_H4;
}
return 0;
}
int sun4i_hash_import_sha1(struct ahash_request *areq, const void *in)
{
struct sun4i_req_ctx *op = ahash_request_ctx(areq);
const struct sha1_state *ictx = in;
int i;
sun4i_hash_init(areq);
op->byte_count = ictx->count & ~0x3F;
op->len = ictx->count & 0x3F;
memcpy(op->buf, ictx->buffer, op->len);
for (i = 0; i < 5; i++)
op->hash[i] = ictx->state[i];
return 0;
}
/*
* sun4i_hash_update: update hash engine
*
* Could be used for both SHA1 and MD5
* Write data by step of 32bits and put then in the SS.
*
* Since we cannot leave partial data and hash state in the engine,
* we need to get the hash state at the end of this function.
* We can get the hash state every 64 bytes
*
* So the first work is to get the number of bytes to write to SS modulo 64
* The extra bytes will go to a temporary buffer op->buf storing op->len bytes
*
* So at the begin of update()
* if op->len + areq->nbytes < 64
* => all data will be written to wait buffer (op->buf) and end=0
* if not, write all data from op->buf to the device and position end to
* complete to 64bytes
*
* example 1:
* update1 60o => op->len=60
* update2 60o => need one more word to have 64 bytes
* end=4
* so write all data from op->buf and one word of SGs
* write remaining data in op->buf
* final state op->len=56
*/
int sun4i_hash_update(struct ahash_request *areq)
{
u32 v, ivmode = 0;
unsigned int i = 0;
/*
* i is the total bytes read from SGs, to be compared to areq->nbytes
* i is important because we cannot rely on SG length since the sum of
* SG->length could be greater than areq->nbytes
*/
struct sun4i_req_ctx *op = ahash_request_ctx(areq);
struct sun4i_ss_ctx *ss = op->ss;
struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
unsigned int in_i = 0; /* advancement in the current SG */
unsigned int end;
/*
* end is the position when we need to stop writing to the device,
* to be compared to i
*/
int in_r, err = 0;
unsigned int todo;
u32 spaces, rx_cnt = SS_RX_DEFAULT;
size_t copied = 0;
struct sg_mapping_iter mi;
dev_dbg(ss->dev, "%s %s bc=%llu len=%u mode=%x wl=%u h0=%0x",
__func__, crypto_tfm_alg_name(areq->base.tfm),
op->byte_count, areq->nbytes, op->mode,
op->len, op->hash[0]);
if (areq->nbytes == 0)
return 0;
/* protect against overflow */
if (areq->nbytes > UINT_MAX - op->len) {
dev_err(ss->dev, "Cannot process too large request\n");
return -EINVAL;
}
if (op->len + areq->nbytes < 64) {
/* linearize data to op->buf */
copied = sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
op->buf + op->len, areq->nbytes, 0);
op->len += copied;
return 0;
}
end = ((areq->nbytes + op->len) / 64) * 64 - op->len;
if (end > areq->nbytes || areq->nbytes - end > 63) {
dev_err(ss->dev, "ERROR: Bound error %u %u\n",
end, areq->nbytes);
return -EINVAL;
}
spin_lock_bh(&ss->slock);
/*
* if some data have been processed before,
* we need to restore the partial hash state
*/
if (op->byte_count > 0) {
ivmode = SS_IV_ARBITRARY;
for (i = 0; i < 5; i++)
writel(op->hash[i], ss->base + SS_IV0 + i * 4);
}
/* Enable the device */
writel(op->mode | SS_ENABLED | ivmode, ss->base + SS_CTL);
i = 0;
sg_miter_start(&mi, areq->src, sg_nents(areq->src),
SG_MITER_FROM_SG | SG_MITER_ATOMIC);
sg_miter_next(&mi);
in_i = 0;
do {
/*
* we need to linearize in two case:
* - the buffer is already used
* - the SG does not have enough byte remaining ( < 4)
*/
if (op->len > 0 || (mi.length - in_i) < 4) {
/*
* if we have entered here we have two reason to stop
* - the buffer is full
* - reach the end
*/
while (op->len < 64 && i < end) {
/* how many bytes we can read from current SG */
in_r = min3(mi.length - in_i, end - i,
64 - op->len);
memcpy(op->buf + op->len, mi.addr + in_i, in_r);
op->len += in_r;
i += in_r;
in_i += in_r;
if (in_i == mi.length) {
sg_miter_next(&mi);
in_i = 0;
}
}
if (op->len > 3 && (op->len % 4) == 0) {
/* write buf to the device */
writesl(ss->base + SS_RXFIFO, op->buf,
op->len / 4);
op->byte_count += op->len;
op->len = 0;
}
}
if (mi.length - in_i > 3 && i < end) {
/* how many bytes we can read from current SG */
in_r = min3(mi.length - in_i, areq->nbytes - i,
((mi.length - in_i) / 4) * 4);
/* how many bytes we can write in the device*/
todo = min3((u32)(end - i) / 4, rx_cnt, (u32)in_r / 4);
writesl(ss->base + SS_RXFIFO, mi.addr + in_i, todo);
op->byte_count += todo * 4;
i += todo * 4;
in_i += todo * 4;
rx_cnt -= todo;
if (rx_cnt == 0) {
spaces = readl(ss->base + SS_FCSR);
rx_cnt = SS_RXFIFO_SPACES(spaces);
}
if (in_i == mi.length) {
sg_miter_next(&mi);
in_i = 0;
}
}
} while (i < end);
/* final linear */
if ((areq->nbytes - i) < 64) {
while (i < areq->nbytes && in_i < mi.length && op->len < 64) {
/* how many bytes we can read from current SG */
in_r = min3(mi.length - in_i, areq->nbytes - i,
64 - op->len);
memcpy(op->buf + op->len, mi.addr + in_i, in_r);
op->len += in_r;
i += in_r;
in_i += in_r;
if (in_i == mi.length) {
sg_miter_next(&mi);
in_i = 0;
}
}
}
sg_miter_stop(&mi);
writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
i = 0;
do {
v = readl(ss->base + SS_CTL);
i++;
} while (i < SS_TIMEOUT && (v & SS_DATA_END) > 0);
if (i >= SS_TIMEOUT) {
dev_err_ratelimited(ss->dev,
"ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
i, SS_TIMEOUT, v, areq->nbytes);
err = -EIO;
goto release_ss;
}
/* get the partial hash only if something was written */
for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++)
op->hash[i] = readl(ss->base + SS_MD0 + i * 4);
release_ss:
writel(0, ss->base + SS_CTL);
spin_unlock_bh(&ss->slock);
return err;
}
/*
* sun4i_hash_final: finalize hashing operation
*
* If we have some remaining bytes, we write them.
* Then ask the SS for finalizing the hashing operation
*
* I do not check RX FIFO size in this function since the size is 32
* after each enabling and this function neither write more than 32 words.
*/
int sun4i_hash_final(struct ahash_request *areq)
{
u32 v, ivmode = 0;
unsigned int i;
unsigned int j = 0;
int zeros, err = 0;
unsigned int index, padlen;
__be64 bits;
struct sun4i_req_ctx *op = ahash_request_ctx(areq);
struct sun4i_ss_ctx *ss = op->ss;
struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
u32 bf[32];
u32 wb = 0;
unsigned int nwait, nbw = 0;
dev_dbg(ss->dev, "%s: byte=%llu len=%u mode=%x wl=%u h=%x",
__func__, op->byte_count, areq->nbytes, op->mode,
op->len, op->hash[0]);
spin_lock_bh(&ss->slock);
/*
* if we have already written something,
* restore the partial hash state
*/
if (op->byte_count > 0) {
ivmode = SS_IV_ARBITRARY;
for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++)
writel(op->hash[i], ss->base + SS_IV0 + i * 4);
}
writel(op->mode | SS_ENABLED | ivmode, ss->base + SS_CTL);
/* write the remaining words of the wait buffer */
if (op->len > 0) {
nwait = op->len / 4;
if (nwait > 0) {
writesl(ss->base + SS_RXFIFO, op->buf, nwait);
op->byte_count += 4 * nwait;
}
nbw = op->len - 4 * nwait;
wb = *(u32 *)(op->buf + nwait * 4);
wb &= (0xFFFFFFFF >> (4 - nbw) * 8);
}
/* write the remaining bytes of the nbw buffer */
if (nbw > 0) {
wb |= ((1 << 7) << (nbw * 8));
bf[j++] = wb;
} else {
bf[j++] = 1 << 7;
}
/*
* number of space to pad to obtain 64o minus 8(size) minus 4 (final 1)
* I take the operations from other MD5/SHA1 implementations
*/
/* we have already send 4 more byte of which nbw data */
if (op->mode == SS_OP_MD5) {
index = (op->byte_count + 4) & 0x3f;
op->byte_count += nbw;
if (index > 56)
zeros = (120 - index) / 4;
else
zeros = (56 - index) / 4;
} else {
op->byte_count += nbw;
index = op->byte_count & 0x3f;
padlen = (index < 56) ? (56 - index) : ((64 + 56) - index);
zeros = (padlen - 1) / 4;
}
memset(bf + j, 0, 4 * zeros);
j += zeros;
/* write the length of data */
if (op->mode == SS_OP_SHA1) {
bits = cpu_to_be64(op->byte_count << 3);
bf[j++] = bits & 0xffffffff;
bf[j++] = (bits >> 32) & 0xffffffff;
} else {
bf[j++] = (op->byte_count << 3) & 0xffffffff;
bf[j++] = (op->byte_count >> 29) & 0xffffffff;
}
writesl(ss->base + SS_RXFIFO, bf, j);
/* Tell the SS to stop the hashing */
writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
/*
* Wait for SS to finish the hash.
* The timeout could happen only in case of bad overcloking
* or driver bug.
*/
i = 0;
do {
v = readl(ss->base + SS_CTL);
i++;
} while (i < SS_TIMEOUT && (v & SS_DATA_END) > 0);
if (i >= SS_TIMEOUT) {
dev_err_ratelimited(ss->dev,
"ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
i, SS_TIMEOUT, v, areq->nbytes);
err = -EIO;
goto release_ss;
}
/* Get the hash from the device */
if (op->mode == SS_OP_SHA1) {
for (i = 0; i < 5; i++) {
v = cpu_to_be32(readl(ss->base + SS_MD0 + i * 4));
memcpy(areq->result + i * 4, &v, 4);
}
} else {
for (i = 0; i < 4; i++) {
v = readl(ss->base + SS_MD0 + i * 4);
memcpy(areq->result + i * 4, &v, 4);
}
}
release_ss:
writel(0, ss->base + SS_CTL);
spin_unlock_bh(&ss->slock);
return err;
}
/* sun4i_hash_finup: finalize hashing operation after an update */
int sun4i_hash_finup(struct ahash_request *areq)
{
int err;
err = sun4i_hash_update(areq);
if (err != 0)
return err;
return sun4i_hash_final(areq);
}
/* combo of init/update/final functions */
int sun4i_hash_digest(struct ahash_request *areq)
{
int err;
err = sun4i_hash_init(areq);
if (err != 0)
return err;
err = sun4i_hash_update(areq);
if (err != 0)
return err;
return sun4i_hash_final(areq);
}

View File

@ -0,0 +1,199 @@
/*
* sun4i-ss.h - hardware cryptographic accelerator for Allwinner A20 SoC
*
* Copyright (C) 2013-2015 Corentin LABBE <clabbe.montjoie@gmail.com>
*
* Support AES cipher with 128,192,256 bits keysize.
* Support MD5 and SHA1 hash algorithms.
* Support DES and 3DES
*
* You could find the datasheet in Documentation/arm/sunxi/README
*
* Licensed under the GPL-2.
*/
#include <linux/clk.h>
#include <linux/crypto.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <crypto/scatterwalk.h>
#include <linux/scatterlist.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <crypto/md5.h>
#include <crypto/sha.h>
#include <crypto/hash.h>
#include <crypto/internal/hash.h>
#include <crypto/aes.h>
#include <crypto/des.h>
#include <crypto/internal/rng.h>
#define SS_CTL 0x00
#define SS_KEY0 0x04
#define SS_KEY1 0x08
#define SS_KEY2 0x0C
#define SS_KEY3 0x10
#define SS_KEY4 0x14
#define SS_KEY5 0x18
#define SS_KEY6 0x1C
#define SS_KEY7 0x20
#define SS_IV0 0x24
#define SS_IV1 0x28
#define SS_IV2 0x2C
#define SS_IV3 0x30
#define SS_FCSR 0x44
#define SS_MD0 0x4C
#define SS_MD1 0x50
#define SS_MD2 0x54
#define SS_MD3 0x58
#define SS_MD4 0x5C
#define SS_RXFIFO 0x200
#define SS_TXFIFO 0x204
/* SS_CTL configuration values */
/* PRNG generator mode - bit 15 */
#define SS_PRNG_ONESHOT (0 << 15)
#define SS_PRNG_CONTINUE (1 << 15)
/* IV mode for hash */
#define SS_IV_ARBITRARY (1 << 14)
/* SS operation mode - bits 12-13 */
#define SS_ECB (0 << 12)
#define SS_CBC (1 << 12)
#define SS_CTS (3 << 12)
/* Counter width for CNT mode - bits 10-11 */
#define SS_CNT_16BITS (0 << 10)
#define SS_CNT_32BITS (1 << 10)
#define SS_CNT_64BITS (2 << 10)
/* Key size for AES - bits 8-9 */
#define SS_AES_128BITS (0 << 8)
#define SS_AES_192BITS (1 << 8)
#define SS_AES_256BITS (2 << 8)
/* Operation direction - bit 7 */
#define SS_ENCRYPTION (0 << 7)
#define SS_DECRYPTION (1 << 7)
/* SS Method - bits 4-6 */
#define SS_OP_AES (0 << 4)
#define SS_OP_DES (1 << 4)
#define SS_OP_3DES (2 << 4)
#define SS_OP_SHA1 (3 << 4)
#define SS_OP_MD5 (4 << 4)
#define SS_OP_PRNG (5 << 4)
/* Data end bit - bit 2 */
#define SS_DATA_END (1 << 2)
/* PRNG start bit - bit 1 */
#define SS_PRNG_START (1 << 1)
/* SS Enable bit - bit 0 */
#define SS_DISABLED (0 << 0)
#define SS_ENABLED (1 << 0)
/* SS_FCSR configuration values */
/* RX FIFO status - bit 30 */
#define SS_RXFIFO_FREE (1 << 30)
/* RX FIFO empty spaces - bits 24-29 */
#define SS_RXFIFO_SPACES(val) (((val) >> 24) & 0x3f)
/* TX FIFO status - bit 22 */
#define SS_TXFIFO_AVAILABLE (1 << 22)
/* TX FIFO available spaces - bits 16-21 */
#define SS_TXFIFO_SPACES(val) (((val) >> 16) & 0x3f)
#define SS_RX_MAX 32
#define SS_RX_DEFAULT SS_RX_MAX
#define SS_TX_MAX 33
#define SS_RXFIFO_EMP_INT_PENDING (1 << 10)
#define SS_TXFIFO_AVA_INT_PENDING (1 << 8)
#define SS_RXFIFO_EMP_INT_ENABLE (1 << 2)
#define SS_TXFIFO_AVA_INT_ENABLE (1 << 0)
struct sun4i_ss_ctx {
void __iomem *base;
int irq;
struct clk *busclk;
struct clk *ssclk;
struct device *dev;
struct resource *res;
spinlock_t slock; /* control the use of the device */
};
struct sun4i_ss_alg_template {
u32 type;
u32 mode;
union {
struct crypto_alg crypto;
struct ahash_alg hash;
} alg;
struct sun4i_ss_ctx *ss;
};
struct sun4i_tfm_ctx {
u32 key[AES_MAX_KEY_SIZE / 4];/* divided by sizeof(u32) */
u32 keylen;
u32 keymode;
struct sun4i_ss_ctx *ss;
};
struct sun4i_cipher_req_ctx {
u32 mode;
};
struct sun4i_req_ctx {
u32 mode;
u64 byte_count; /* number of bytes "uploaded" to the device */
u32 hash[5]; /* for storing SS_IVx register */
char buf[64];
unsigned int len;
struct sun4i_ss_ctx *ss;
};
int sun4i_hash_crainit(struct crypto_tfm *tfm);
int sun4i_hash_init(struct ahash_request *areq);
int sun4i_hash_update(struct ahash_request *areq);
int sun4i_hash_final(struct ahash_request *areq);
int sun4i_hash_finup(struct ahash_request *areq);
int sun4i_hash_digest(struct ahash_request *areq);
int sun4i_hash_export_md5(struct ahash_request *areq, void *out);
int sun4i_hash_import_md5(struct ahash_request *areq, const void *in);
int sun4i_hash_export_sha1(struct ahash_request *areq, void *out);
int sun4i_hash_import_sha1(struct ahash_request *areq, const void *in);
int sun4i_ss_cbc_aes_encrypt(struct ablkcipher_request *areq);
int sun4i_ss_cbc_aes_decrypt(struct ablkcipher_request *areq);
int sun4i_ss_ecb_aes_encrypt(struct ablkcipher_request *areq);
int sun4i_ss_ecb_aes_decrypt(struct ablkcipher_request *areq);
int sun4i_ss_cbc_des_encrypt(struct ablkcipher_request *areq);
int sun4i_ss_cbc_des_decrypt(struct ablkcipher_request *areq);
int sun4i_ss_ecb_des_encrypt(struct ablkcipher_request *areq);
int sun4i_ss_ecb_des_decrypt(struct ablkcipher_request *areq);
int sun4i_ss_cbc_des3_encrypt(struct ablkcipher_request *areq);
int sun4i_ss_cbc_des3_decrypt(struct ablkcipher_request *areq);
int sun4i_ss_ecb_des3_encrypt(struct ablkcipher_request *areq);
int sun4i_ss_ecb_des3_decrypt(struct ablkcipher_request *areq);
int sun4i_ss_cipher_init(struct crypto_tfm *tfm);
int sun4i_ss_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
unsigned int keylen);
int sun4i_ss_des_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
unsigned int keylen);
int sun4i_ss_des3_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
unsigned int keylen);