1
0
Fork 0

One NULL pointer dereference, and two fixes for regressions introduced

during the merge window.  The rest are fixes for MIPS, s390 and nested VMX.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJYG2H5AAoJEL/70l94x66DK/cH/0jEQ3ynuLAd5CKux7JxI/EP
 msSJh1Xqr4+XhXZnuDpGQWrdsBlxoiqA6PsJrUTtyi4nQCDXlT8g+2MDuvqhWIHz
 7vw58j/EMJDCVQzYAbN5VDUfk13uB5aSWTo3M9Rf09v0hU1Ql7z8u4CtKEdLpN5Y
 LY9bT9fxUmXO7REKP7bdW6ZrDX/hUShYHgMqzXGFMyGBG3ym3a9bggXEzTCD6eNQ
 ioogQIWqg+icdhta0iLNAwFClPlcKB2/xo4IUuNgrPwGoHFGJN/8+qxT4+sVbp2B
 v8u1zOXlCFXBcskWE+yRRsGe72+mIzz6QScCyO+5HbhKYVfbE9H7KBlFX9rZZ2c=
 =IbKx
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "One NULL pointer dereference, and two fixes for regressions introduced
  during the merge window.

  The rest are fixes for MIPS, s390 and nested VMX"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
  kvm: x86: Check memopp before dereference (CVE-2016-8630)
  kvm: nVMX: VMCLEAR an active shadow VMCS after last use
  KVM: x86: drop TSC offsetting kvm_x86_ops to fix KVM_GET/SET_CLOCK
  KVM: x86: fix wbinvd_dirty_mask use-after-free
  kvm/x86: Show WRMSR data is in hex
  kvm: nVMX: Fix kernel panics induced by illegal INVEPT/INVVPID types
  KVM: document lock orders
  KVM: fix OOPS on flush_work
  KVM: s390: Fix STHYI buffer alignment for diag224
  KVM: MIPS: Precalculate MMIO load resume PC
  KVM: MIPS: Make ERET handle ERL before EXL
  KVM: MIPS: Fix lazy user ASID regenerate for SMP
hifive-unleashed-5.1
Linus Torvalds 2016-11-04 13:08:05 -07:00
commit 66cecb6789
13 changed files with 95 additions and 106 deletions

View File

@ -4,7 +4,17 @@ KVM Lock Overview
1. Acquisition Orders
---------------------
(to be written)
The acquisition orders for mutexes are as follows:
- kvm->lock is taken outside vcpu->mutex
- kvm->lock is taken outside kvm->slots_lock and kvm->irq_lock
- kvm->slots_lock is taken outside kvm->irq_lock, though acquiring
them together is quite rare.
For spinlocks, kvm_lock is taken outside kvm->mmu_lock. Everything
else is a leaf: no other lock is taken inside the critical sections.
2: Exception
------------

View File

@ -293,7 +293,10 @@ struct kvm_vcpu_arch {
/* Host KSEG0 address of the EI/DI offset */
void *kseg0_commpage;
u32 io_gpr; /* GPR used as IO source/target */
/* Resume PC after MMIO completion */
unsigned long io_pc;
/* GPR used as IO source/target */
u32 io_gpr;
struct hrtimer comparecount_timer;
/* Count timer control KVM register */
@ -315,8 +318,6 @@ struct kvm_vcpu_arch {
/* Bitmask of pending exceptions to be cleared */
unsigned long pending_exceptions_clr;
u32 pending_load_cause;
/* Save/Restore the entryhi register when are are preempted/scheduled back in */
unsigned long preempt_entryhi;

View File

@ -790,15 +790,15 @@ enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
struct mips_coproc *cop0 = vcpu->arch.cop0;
enum emulation_result er = EMULATE_DONE;
if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
kvm_clear_c0_guest_status(cop0, ST0_ERL);
vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
} else if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
kvm_read_c0_guest_epc(cop0));
kvm_clear_c0_guest_status(cop0, ST0_EXL);
vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
} else if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
kvm_clear_c0_guest_status(cop0, ST0_ERL);
vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
} else {
kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
vcpu->arch.pc);
@ -1528,13 +1528,25 @@ enum emulation_result kvm_mips_emulate_load(union mips_instruction inst,
struct kvm_vcpu *vcpu)
{
enum emulation_result er = EMULATE_DO_MMIO;
unsigned long curr_pc;
u32 op, rt;
u32 bytes;
rt = inst.i_format.rt;
op = inst.i_format.opcode;
vcpu->arch.pending_load_cause = cause;
/*
* Find the resume PC now while we have safe and easy access to the
* prior branch instruction, and save it for
* kvm_mips_complete_mmio_load() to restore later.
*/
curr_pc = vcpu->arch.pc;
er = update_pc(vcpu, cause);
if (er == EMULATE_FAIL)
return er;
vcpu->arch.io_pc = vcpu->arch.pc;
vcpu->arch.pc = curr_pc;
vcpu->arch.io_gpr = rt;
switch (op) {
@ -2494,9 +2506,8 @@ enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu,
goto done;
}
er = update_pc(vcpu, vcpu->arch.pending_load_cause);
if (er == EMULATE_FAIL)
return er;
/* Restore saved resume PC */
vcpu->arch.pc = vcpu->arch.io_pc;
switch (run->mmio.len) {
case 4:
@ -2518,11 +2529,6 @@ enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu,
break;
}
if (vcpu->arch.pending_load_cause & CAUSEF_BD)
kvm_debug("[%#lx] Completing %d byte BD Load to gpr %d (0x%08lx) type %d\n",
vcpu->arch.pc, run->mmio.len, vcpu->arch.io_gpr, *gpr,
vcpu->mmio_needed);
done:
return er;
}

View File

@ -426,7 +426,7 @@ int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
static void kvm_mips_check_asids(struct kvm_vcpu *vcpu)
{
struct mips_coproc *cop0 = vcpu->arch.cop0;
int cpu = smp_processor_id();
int i, cpu = smp_processor_id();
unsigned int gasid;
/*
@ -442,6 +442,9 @@ static void kvm_mips_check_asids(struct kvm_vcpu *vcpu)
vcpu);
vcpu->arch.guest_user_asid[cpu] =
vcpu->arch.guest_user_mm.context.asid[cpu];
for_each_possible_cpu(i)
if (i != cpu)
vcpu->arch.guest_user_asid[cpu] = 0;
vcpu->arch.last_user_gasid = gasid;
}
}

View File

@ -260,13 +260,9 @@ void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
if ((vcpu->arch.guest_user_asid[cpu] ^ asid_cache(cpu)) &
asid_version_mask(cpu)) {
u32 gasid = kvm_read_c0_guest_entryhi(vcpu->arch.cop0) &
KVM_ENTRYHI_ASID;
kvm_get_new_mmu_context(&vcpu->arch.guest_user_mm, cpu, vcpu);
vcpu->arch.guest_user_asid[cpu] =
vcpu->arch.guest_user_mm.context.asid[cpu];
vcpu->arch.last_user_gasid = gasid;
newasid++;
kvm_debug("[%d]: cpu_context: %#lx\n", cpu,

View File

@ -315,7 +315,7 @@ static void fill_diag(struct sthyi_sctns *sctns)
if (r < 0)
goto out;
diag224_buf = kmalloc(PAGE_SIZE, GFP_KERNEL | GFP_DMA);
diag224_buf = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
if (!diag224_buf || diag224(diag224_buf))
goto out;
@ -378,7 +378,7 @@ static void fill_diag(struct sthyi_sctns *sctns)
sctns->par.infpval1 |= PAR_WGHT_VLD;
out:
kfree(diag224_buf);
free_page((unsigned long)diag224_buf);
vfree(diag204_buf);
}

View File

@ -948,7 +948,6 @@ struct kvm_x86_ops {
int (*get_lpage_level)(void);
bool (*rdtscp_supported)(void);
bool (*invpcid_supported)(void);
void (*adjust_tsc_offset_guest)(struct kvm_vcpu *vcpu, s64 adjustment);
void (*set_tdp_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
@ -958,8 +957,6 @@ struct kvm_x86_ops {
void (*write_tsc_offset)(struct kvm_vcpu *vcpu, u64 offset);
u64 (*read_l1_tsc)(struct kvm_vcpu *vcpu, u64 host_tsc);
void (*get_exit_info)(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2);
int (*check_intercept)(struct kvm_vcpu *vcpu,

View File

@ -5045,7 +5045,7 @@ done_prefixes:
/* Decode and fetch the destination operand: register or memory. */
rc = decode_operand(ctxt, &ctxt->dst, (ctxt->d >> DstShift) & OpMask);
if (ctxt->rip_relative)
if (ctxt->rip_relative && likely(ctxt->memopp))
ctxt->memopp->addr.mem.ea = address_mask(ctxt,
ctxt->memopp->addr.mem.ea + ctxt->_eip);

View File

@ -1138,21 +1138,6 @@ static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
}
static void svm_adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, s64 adjustment)
{
struct vcpu_svm *svm = to_svm(vcpu);
svm->vmcb->control.tsc_offset += adjustment;
if (is_guest_mode(vcpu))
svm->nested.hsave->control.tsc_offset += adjustment;
else
trace_kvm_write_tsc_offset(vcpu->vcpu_id,
svm->vmcb->control.tsc_offset - adjustment,
svm->vmcb->control.tsc_offset);
mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
}
static void avic_init_vmcb(struct vcpu_svm *svm)
{
struct vmcb *vmcb = svm->vmcb;
@ -3449,12 +3434,6 @@ static int cr8_write_interception(struct vcpu_svm *svm)
return 0;
}
static u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
{
struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
return vmcb->control.tsc_offset + host_tsc;
}
static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
{
struct vcpu_svm *svm = to_svm(vcpu);
@ -5422,8 +5401,6 @@ static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
.has_wbinvd_exit = svm_has_wbinvd_exit,
.write_tsc_offset = svm_write_tsc_offset,
.adjust_tsc_offset_guest = svm_adjust_tsc_offset_guest,
.read_l1_tsc = svm_read_l1_tsc,
.set_tdp_cr3 = set_tdp_cr3,

View File

@ -187,6 +187,7 @@ struct vmcs {
*/
struct loaded_vmcs {
struct vmcs *vmcs;
struct vmcs *shadow_vmcs;
int cpu;
int launched;
struct list_head loaded_vmcss_on_cpu_link;
@ -411,7 +412,6 @@ struct nested_vmx {
* memory during VMXOFF, VMCLEAR, VMPTRLD.
*/
struct vmcs12 *cached_vmcs12;
struct vmcs *current_shadow_vmcs;
/*
* Indicates if the shadow vmcs must be updated with the
* data hold by vmcs12
@ -421,7 +421,6 @@ struct nested_vmx {
/* vmcs02_list cache of VMCSs recently used to run L2 guests */
struct list_head vmcs02_pool;
int vmcs02_num;
u64 vmcs01_tsc_offset;
bool change_vmcs01_virtual_x2apic_mode;
/* L2 must run next, and mustn't decide to exit to L1. */
bool nested_run_pending;
@ -1419,6 +1418,8 @@ static void vmcs_clear(struct vmcs *vmcs)
static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
{
vmcs_clear(loaded_vmcs->vmcs);
if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
vmcs_clear(loaded_vmcs->shadow_vmcs);
loaded_vmcs->cpu = -1;
loaded_vmcs->launched = 0;
}
@ -2604,20 +2605,6 @@ static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
}
/*
* Like guest_read_tsc, but always returns L1's notion of the timestamp
* counter, even if a nested guest (L2) is currently running.
*/
static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
{
u64 tsc_offset;
tsc_offset = is_guest_mode(vcpu) ?
to_vmx(vcpu)->nested.vmcs01_tsc_offset :
vmcs_read64(TSC_OFFSET);
return host_tsc + tsc_offset;
}
/*
* writes 'offset' into guest's timestamp counter offset register
*/
@ -2631,7 +2618,6 @@ static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
* to the newly set TSC to get L2's TSC.
*/
struct vmcs12 *vmcs12;
to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
/* recalculate vmcs02.TSC_OFFSET: */
vmcs12 = get_vmcs12(vcpu);
vmcs_write64(TSC_OFFSET, offset +
@ -2644,19 +2630,6 @@ static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
}
}
static void vmx_adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, s64 adjustment)
{
u64 offset = vmcs_read64(TSC_OFFSET);
vmcs_write64(TSC_OFFSET, offset + adjustment);
if (is_guest_mode(vcpu)) {
/* Even when running L2, the adjustment needs to apply to L1 */
to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
} else
trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
offset + adjustment);
}
static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
{
struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
@ -3562,6 +3535,7 @@ static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
loaded_vmcs_clear(loaded_vmcs);
free_vmcs(loaded_vmcs->vmcs);
loaded_vmcs->vmcs = NULL;
WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
}
static void free_kvm_area(void)
@ -6696,6 +6670,7 @@ static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
if (!item)
return NULL;
item->vmcs02.vmcs = alloc_vmcs();
item->vmcs02.shadow_vmcs = NULL;
if (!item->vmcs02.vmcs) {
kfree(item);
return NULL;
@ -7072,7 +7047,7 @@ static int handle_vmon(struct kvm_vcpu *vcpu)
shadow_vmcs->revision_id |= (1u << 31);
/* init shadow vmcs */
vmcs_clear(shadow_vmcs);
vmx->nested.current_shadow_vmcs = shadow_vmcs;
vmx->vmcs01.shadow_vmcs = shadow_vmcs;
}
INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
@ -7174,8 +7149,11 @@ static void free_nested(struct vcpu_vmx *vmx)
free_page((unsigned long)vmx->nested.msr_bitmap);
vmx->nested.msr_bitmap = NULL;
}
if (enable_shadow_vmcs)
free_vmcs(vmx->nested.current_shadow_vmcs);
if (enable_shadow_vmcs) {
vmcs_clear(vmx->vmcs01.shadow_vmcs);
free_vmcs(vmx->vmcs01.shadow_vmcs);
vmx->vmcs01.shadow_vmcs = NULL;
}
kfree(vmx->nested.cached_vmcs12);
/* Unpin physical memory we referred to in current vmcs02 */
if (vmx->nested.apic_access_page) {
@ -7352,7 +7330,7 @@ static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
int i;
unsigned long field;
u64 field_value;
struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
const unsigned long *fields = shadow_read_write_fields;
const int num_fields = max_shadow_read_write_fields;
@ -7401,7 +7379,7 @@ static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
int i, q;
unsigned long field;
u64 field_value = 0;
struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
vmcs_load(shadow_vmcs);
@ -7591,7 +7569,7 @@ static int handle_vmptrld(struct kvm_vcpu *vcpu)
vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
SECONDARY_EXEC_SHADOW_VMCS);
vmcs_write64(VMCS_LINK_POINTER,
__pa(vmx->nested.current_shadow_vmcs));
__pa(vmx->vmcs01.shadow_vmcs));
vmx->nested.sync_shadow_vmcs = true;
}
}
@ -7659,7 +7637,7 @@ static int handle_invept(struct kvm_vcpu *vcpu)
types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
if (!(types & (1UL << type))) {
if (type >= 32 || !(types & (1 << type))) {
nested_vmx_failValid(vcpu,
VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
skip_emulated_instruction(vcpu);
@ -7722,7 +7700,7 @@ static int handle_invvpid(struct kvm_vcpu *vcpu)
types = (vmx->nested.nested_vmx_vpid_caps >> 8) & 0x7;
if (!(types & (1UL << type))) {
if (type >= 32 || !(types & (1 << type))) {
nested_vmx_failValid(vcpu,
VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
skip_emulated_instruction(vcpu);
@ -9156,6 +9134,7 @@ static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
vmx->loaded_vmcs = &vmx->vmcs01;
vmx->loaded_vmcs->vmcs = alloc_vmcs();
vmx->loaded_vmcs->shadow_vmcs = NULL;
if (!vmx->loaded_vmcs->vmcs)
goto free_msrs;
if (!vmm_exclusive)
@ -10061,9 +10040,9 @@ static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
vmcs_write64(TSC_OFFSET,
vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
vcpu->arch.tsc_offset + vmcs12->tsc_offset);
else
vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
if (kvm_has_tsc_control)
decache_tsc_multiplier(vmx);
@ -10293,8 +10272,6 @@ static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
enter_guest_mode(vcpu);
vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
@ -10818,7 +10795,7 @@ static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
load_vmcs12_host_state(vcpu, vmcs12);
/* Update any VMCS fields that might have changed while L2 ran */
vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
if (vmx->hv_deadline_tsc == -1)
vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
PIN_BASED_VMX_PREEMPTION_TIMER);
@ -11339,8 +11316,6 @@ static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
.write_tsc_offset = vmx_write_tsc_offset,
.adjust_tsc_offset_guest = vmx_adjust_tsc_offset_guest,
.read_l1_tsc = vmx_read_l1_tsc,
.set_tdp_cr3 = vmx_set_cr3,

View File

@ -1409,7 +1409,7 @@ static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
{
return kvm_x86_ops->read_l1_tsc(vcpu, kvm_scale_tsc(vcpu, host_tsc));
return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
}
EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
@ -1547,7 +1547,7 @@ EXPORT_SYMBOL_GPL(kvm_write_tsc);
static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
s64 adjustment)
{
kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
}
static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
@ -1555,7 +1555,7 @@ static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
WARN_ON(adjustment < 0);
adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
adjust_tsc_offset_guest(vcpu, adjustment);
}
#ifdef CONFIG_X86_64
@ -2262,7 +2262,7 @@ int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
/* Drop writes to this legacy MSR -- see rdmsr
* counterpart for further detail.
*/
vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
break;
case MSR_AMD64_OSVW_ID_LENGTH:
if (!guest_cpuid_has_osvw(vcpu))
@ -2280,11 +2280,11 @@ int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
if (kvm_pmu_is_valid_msr(vcpu, msr))
return kvm_pmu_set_msr(vcpu, msr_info);
if (!ignore_msrs) {
vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
msr, data);
return 1;
} else {
vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
msr, data);
break;
}
@ -7410,10 +7410,12 @@ void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
kvmclock_reset(vcpu);
free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
kvm_x86_ops->vcpu_free(vcpu);
free_cpumask_var(wbinvd_dirty_mask);
}
struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,

View File

@ -42,6 +42,7 @@
#ifdef CONFIG_HAVE_KVM_IRQFD
static struct workqueue_struct *irqfd_cleanup_wq;
static void
irqfd_inject(struct work_struct *work)
@ -167,7 +168,7 @@ irqfd_deactivate(struct kvm_kernel_irqfd *irqfd)
list_del_init(&irqfd->list);
schedule_work(&irqfd->shutdown);
queue_work(irqfd_cleanup_wq, &irqfd->shutdown);
}
int __attribute__((weak)) kvm_arch_set_irq_inatomic(
@ -554,7 +555,7 @@ kvm_irqfd_deassign(struct kvm *kvm, struct kvm_irqfd *args)
* so that we guarantee there will not be any more interrupts on this
* gsi once this deassign function returns.
*/
flush_work(&irqfd->shutdown);
flush_workqueue(irqfd_cleanup_wq);
return 0;
}
@ -591,7 +592,7 @@ kvm_irqfd_release(struct kvm *kvm)
* Block until we know all outstanding shutdown jobs have completed
* since we do not take a kvm* reference.
*/
flush_work(&irqfd->shutdown);
flush_workqueue(irqfd_cleanup_wq);
}
@ -621,8 +622,23 @@ void kvm_irq_routing_update(struct kvm *kvm)
spin_unlock_irq(&kvm->irqfds.lock);
}
/*
* create a host-wide workqueue for issuing deferred shutdown requests
* aggregated from all vm* instances. We need our own isolated
* queue to ease flushing work items when a VM exits.
*/
int kvm_irqfd_init(void)
{
irqfd_cleanup_wq = alloc_workqueue("kvm-irqfd-cleanup", 0, 0);
if (!irqfd_cleanup_wq)
return -ENOMEM;
return 0;
}
void kvm_irqfd_exit(void)
{
destroy_workqueue(irqfd_cleanup_wq);
}
#endif

View File

@ -3844,7 +3844,12 @@ int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
* kvm_arch_init makes sure there's at most one caller
* for architectures that support multiple implementations,
* like intel and amd on x86.
* kvm_arch_init must be called before kvm_irqfd_init to avoid creating
* conflicts in case kvm is already setup for another implementation.
*/
r = kvm_irqfd_init();
if (r)
goto out_irqfd;
if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
r = -ENOMEM;
@ -3926,6 +3931,7 @@ out_free_0a:
free_cpumask_var(cpus_hardware_enabled);
out_free_0:
kvm_irqfd_exit();
out_irqfd:
kvm_arch_exit();
out_fail:
return r;