1
0
Fork 0

Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/async_tx

* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/async_tx:
  DMAENGINE: extend the control command to include an arg
  async_tx: trim dma_async_tx_descriptor in 'no channel switch' case
  DMAENGINE: DMA40 fix for allocation of logical channel 0
  DMAENGINE: DMA40 support paused channel status
  dmaengine: mpc512x: Use resource_size
  DMA ENGINE: Do not reset 'private' of channel
  ioat: Remove duplicated devm_kzalloc() calls for ioatdma_device
  ioat3: disable cacheline-unaligned transfers for raid operations
  ioat2,3: convert to producer/consumer locking
  ioat: convert to circ_buf
  DMAENGINE: Support for ST-Ericssons DMA40 block v3
  async_tx: use of kzalloc/kfree requires the include of slab.h
  dmaengine: provide helper for setting txstate
  DMAENGINE: generic channel status v2
  DMAENGINE: generic slave control v2
  dma: timb-dma: Update comment and fix compiler warning
  dma: Add timb-dma
  DMAENGINE: COH 901 318 fix bytesleft
  DMAENGINE: COH 901 318 rename confusing vars
hifive-unleashed-5.1
Linus Torvalds 2010-05-21 17:05:46 -07:00
commit 6f68fbaafb
33 changed files with 5286 additions and 511 deletions

View File

@ -102,27 +102,6 @@ struct coh901318_platform {
const int max_channels; const int max_channels;
}; };
/**
* coh901318_get_bytes_left() - Get number of bytes left on a current transfer
* @chan: dma channel handle
* return number of bytes left, or negative on error
*/
u32 coh901318_get_bytes_left(struct dma_chan *chan);
/**
* coh901318_stop() - Stops dma transfer
* @chan: dma channel handle
* return 0 on success otherwise negative value
*/
void coh901318_stop(struct dma_chan *chan);
/**
* coh901318_continue() - Resumes a stopped dma transfer
* @chan: dma channel handle
* return 0 on success otherwise negative value
*/
void coh901318_continue(struct dma_chan *chan);
/** /**
* coh901318_filter_id() - DMA channel filter function * coh901318_filter_id() - DMA channel filter function
* @chan: dma channel handle * @chan: dma channel handle

View File

@ -0,0 +1,239 @@
/*
* arch/arm/plat-nomadik/include/plat/ste_dma40.h
*
* Copyright (C) ST-Ericsson 2007-2010
* License terms: GNU General Public License (GPL) version 2
* Author: Per Friden <per.friden@stericsson.com>
* Author: Jonas Aaberg <jonas.aberg@stericsson.com>
*/
#ifndef STE_DMA40_H
#define STE_DMA40_H
#include <linux/dmaengine.h>
#include <linux/workqueue.h>
#include <linux/interrupt.h>
#include <linux/dmaengine.h>
/* dev types for memcpy */
#define STEDMA40_DEV_DST_MEMORY (-1)
#define STEDMA40_DEV_SRC_MEMORY (-1)
/*
* Description of bitfields of channel_type variable is available in
* the info structure.
*/
/* Priority */
#define STEDMA40_INFO_PRIO_TYPE_POS 2
#define STEDMA40_HIGH_PRIORITY_CHANNEL (0x1 << STEDMA40_INFO_PRIO_TYPE_POS)
#define STEDMA40_LOW_PRIORITY_CHANNEL (0x2 << STEDMA40_INFO_PRIO_TYPE_POS)
/* Mode */
#define STEDMA40_INFO_CH_MODE_TYPE_POS 6
#define STEDMA40_CHANNEL_IN_PHY_MODE (0x1 << STEDMA40_INFO_CH_MODE_TYPE_POS)
#define STEDMA40_CHANNEL_IN_LOG_MODE (0x2 << STEDMA40_INFO_CH_MODE_TYPE_POS)
#define STEDMA40_CHANNEL_IN_OPER_MODE (0x3 << STEDMA40_INFO_CH_MODE_TYPE_POS)
/* Mode options */
#define STEDMA40_INFO_CH_MODE_OPT_POS 8
#define STEDMA40_PCHAN_BASIC_MODE (0x1 << STEDMA40_INFO_CH_MODE_OPT_POS)
#define STEDMA40_PCHAN_MODULO_MODE (0x2 << STEDMA40_INFO_CH_MODE_OPT_POS)
#define STEDMA40_PCHAN_DOUBLE_DST_MODE (0x3 << STEDMA40_INFO_CH_MODE_OPT_POS)
#define STEDMA40_LCHAN_SRC_PHY_DST_LOG (0x1 << STEDMA40_INFO_CH_MODE_OPT_POS)
#define STEDMA40_LCHAN_SRC_LOG_DST_PHS (0x2 << STEDMA40_INFO_CH_MODE_OPT_POS)
#define STEDMA40_LCHAN_SRC_LOG_DST_LOG (0x3 << STEDMA40_INFO_CH_MODE_OPT_POS)
/* Interrupt */
#define STEDMA40_INFO_TIM_POS 10
#define STEDMA40_NO_TIM_FOR_LINK (0x0 << STEDMA40_INFO_TIM_POS)
#define STEDMA40_TIM_FOR_LINK (0x1 << STEDMA40_INFO_TIM_POS)
/* End of channel_type configuration */
#define STEDMA40_ESIZE_8_BIT 0x0
#define STEDMA40_ESIZE_16_BIT 0x1
#define STEDMA40_ESIZE_32_BIT 0x2
#define STEDMA40_ESIZE_64_BIT 0x3
/* The value 4 indicates that PEN-reg shall be set to 0 */
#define STEDMA40_PSIZE_PHY_1 0x4
#define STEDMA40_PSIZE_PHY_2 0x0
#define STEDMA40_PSIZE_PHY_4 0x1
#define STEDMA40_PSIZE_PHY_8 0x2
#define STEDMA40_PSIZE_PHY_16 0x3
/*
* The number of elements differ in logical and
* physical mode
*/
#define STEDMA40_PSIZE_LOG_1 STEDMA40_PSIZE_PHY_2
#define STEDMA40_PSIZE_LOG_4 STEDMA40_PSIZE_PHY_4
#define STEDMA40_PSIZE_LOG_8 STEDMA40_PSIZE_PHY_8
#define STEDMA40_PSIZE_LOG_16 STEDMA40_PSIZE_PHY_16
enum stedma40_flow_ctrl {
STEDMA40_NO_FLOW_CTRL,
STEDMA40_FLOW_CTRL,
};
enum stedma40_endianess {
STEDMA40_LITTLE_ENDIAN,
STEDMA40_BIG_ENDIAN
};
enum stedma40_periph_data_width {
STEDMA40_BYTE_WIDTH = STEDMA40_ESIZE_8_BIT,
STEDMA40_HALFWORD_WIDTH = STEDMA40_ESIZE_16_BIT,
STEDMA40_WORD_WIDTH = STEDMA40_ESIZE_32_BIT,
STEDMA40_DOUBLEWORD_WIDTH = STEDMA40_ESIZE_64_BIT
};
struct stedma40_half_channel_info {
enum stedma40_endianess endianess;
enum stedma40_periph_data_width data_width;
int psize;
enum stedma40_flow_ctrl flow_ctrl;
};
enum stedma40_xfer_dir {
STEDMA40_MEM_TO_MEM,
STEDMA40_MEM_TO_PERIPH,
STEDMA40_PERIPH_TO_MEM,
STEDMA40_PERIPH_TO_PERIPH
};
/**
* struct stedma40_chan_cfg - Structure to be filled by client drivers.
*
* @dir: MEM 2 MEM, PERIPH 2 MEM , MEM 2 PERIPH, PERIPH 2 PERIPH
* @channel_type: priority, mode, mode options and interrupt configuration.
* @src_dev_type: Src device type
* @dst_dev_type: Dst device type
* @src_info: Parameters for dst half channel
* @dst_info: Parameters for dst half channel
* @pre_transfer_data: Data to be passed on to the pre_transfer() function.
* @pre_transfer: Callback used if needed before preparation of transfer.
* Only called if device is set. size of bytes to transfer
* (in case of multiple element transfer size is size of the first element).
*
*
* This structure has to be filled by the client drivers.
* It is recommended to do all dma configurations for clients in the machine.
*
*/
struct stedma40_chan_cfg {
enum stedma40_xfer_dir dir;
unsigned int channel_type;
int src_dev_type;
int dst_dev_type;
struct stedma40_half_channel_info src_info;
struct stedma40_half_channel_info dst_info;
void *pre_transfer_data;
int (*pre_transfer) (struct dma_chan *chan,
void *data,
int size);
};
/**
* struct stedma40_platform_data - Configuration struct for the dma device.
*
* @dev_len: length of dev_tx and dev_rx
* @dev_tx: mapping between destination event line and io address
* @dev_rx: mapping between source event line and io address
* @memcpy: list of memcpy event lines
* @memcpy_len: length of memcpy
* @memcpy_conf_phy: default configuration of physical channel memcpy
* @memcpy_conf_log: default configuration of logical channel memcpy
* @llis_per_log: number of max linked list items per logical channel
*
*/
struct stedma40_platform_data {
u32 dev_len;
const dma_addr_t *dev_tx;
const dma_addr_t *dev_rx;
int *memcpy;
u32 memcpy_len;
struct stedma40_chan_cfg *memcpy_conf_phy;
struct stedma40_chan_cfg *memcpy_conf_log;
unsigned int llis_per_log;
};
/**
* setdma40_set_psize() - Used for changing the package size of an
* already configured dma channel.
*
* @chan: dmaengine handle
* @src_psize: new package side for src. (STEDMA40_PSIZE*)
* @src_psize: new package side for dst. (STEDMA40_PSIZE*)
*
* returns 0 on ok, otherwise negative error number.
*/
int stedma40_set_psize(struct dma_chan *chan,
int src_psize,
int dst_psize);
/**
* stedma40_filter() - Provides stedma40_chan_cfg to the
* ste_dma40 dma driver via the dmaengine framework.
* does some checking of what's provided.
*
* Never directly called by client. It used by dmaengine.
* @chan: dmaengine handle.
* @data: Must be of type: struct stedma40_chan_cfg and is
* the configuration of the framework.
*
*
*/
bool stedma40_filter(struct dma_chan *chan, void *data);
/**
* stedma40_memcpy_sg() - extension of the dma framework, memcpy to/from
* scattergatter lists.
*
* @chan: dmaengine handle
* @sgl_dst: Destination scatter list
* @sgl_src: Source scatter list
* @sgl_len: The length of each scatterlist. Both lists must be of equal length
* and each element must match the corresponding element in the other scatter
* list.
* @flags: is actually enum dma_ctrl_flags. See dmaengine.h
*/
struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
struct scatterlist *sgl_dst,
struct scatterlist *sgl_src,
unsigned int sgl_len,
unsigned long flags);
/**
* stedma40_slave_mem() - Transfers a raw data buffer to or from a slave
* (=device)
*
* @chan: dmaengine handle
* @addr: source or destination physicall address.
* @size: bytes to transfer
* @direction: direction of transfer
* @flags: is actually enum dma_ctrl_flags. See dmaengine.h
*/
static inline struct
dma_async_tx_descriptor *stedma40_slave_mem(struct dma_chan *chan,
dma_addr_t addr,
unsigned int size,
enum dma_data_direction direction,
unsigned long flags)
{
struct scatterlist sg;
sg_init_table(&sg, 1);
sg.dma_address = addr;
sg.length = size;
return chan->device->device_prep_slave_sg(chan, &sg, 1,
direction, flags);
}
#endif

View File

@ -81,18 +81,13 @@ async_tx_channel_switch(struct dma_async_tx_descriptor *depend_tx,
struct dma_device *device = chan->device; struct dma_device *device = chan->device;
struct dma_async_tx_descriptor *intr_tx = (void *) ~0; struct dma_async_tx_descriptor *intr_tx = (void *) ~0;
#ifdef CONFIG_ASYNC_TX_DISABLE_CHANNEL_SWITCH
BUG();
#endif
/* first check to see if we can still append to depend_tx */ /* first check to see if we can still append to depend_tx */
spin_lock_bh(&depend_tx->lock); txd_lock(depend_tx);
if (depend_tx->parent && depend_tx->chan == tx->chan) { if (txd_parent(depend_tx) && depend_tx->chan == tx->chan) {
tx->parent = depend_tx; txd_chain(depend_tx, tx);
depend_tx->next = tx;
intr_tx = NULL; intr_tx = NULL;
} }
spin_unlock_bh(&depend_tx->lock); txd_unlock(depend_tx);
/* attached dependency, flush the parent channel */ /* attached dependency, flush the parent channel */
if (!intr_tx) { if (!intr_tx) {
@ -111,24 +106,22 @@ async_tx_channel_switch(struct dma_async_tx_descriptor *depend_tx,
if (intr_tx) { if (intr_tx) {
intr_tx->callback = NULL; intr_tx->callback = NULL;
intr_tx->callback_param = NULL; intr_tx->callback_param = NULL;
tx->parent = intr_tx; /* safe to chain outside the lock since we know we are
/* safe to set ->next outside the lock since we know we are
* not submitted yet * not submitted yet
*/ */
intr_tx->next = tx; txd_chain(intr_tx, tx);
/* check if we need to append */ /* check if we need to append */
spin_lock_bh(&depend_tx->lock); txd_lock(depend_tx);
if (depend_tx->parent) { if (txd_parent(depend_tx)) {
intr_tx->parent = depend_tx; txd_chain(depend_tx, intr_tx);
depend_tx->next = intr_tx;
async_tx_ack(intr_tx); async_tx_ack(intr_tx);
intr_tx = NULL; intr_tx = NULL;
} }
spin_unlock_bh(&depend_tx->lock); txd_unlock(depend_tx);
if (intr_tx) { if (intr_tx) {
intr_tx->parent = NULL; txd_clear_parent(intr_tx);
intr_tx->tx_submit(intr_tx); intr_tx->tx_submit(intr_tx);
async_tx_ack(intr_tx); async_tx_ack(intr_tx);
} }
@ -176,21 +169,20 @@ async_tx_submit(struct dma_chan *chan, struct dma_async_tx_descriptor *tx,
* 2/ dependencies are 1:1 i.e. two transactions can * 2/ dependencies are 1:1 i.e. two transactions can
* not depend on the same parent * not depend on the same parent
*/ */
BUG_ON(async_tx_test_ack(depend_tx) || depend_tx->next || BUG_ON(async_tx_test_ack(depend_tx) || txd_next(depend_tx) ||
tx->parent); txd_parent(tx));
/* the lock prevents async_tx_run_dependencies from missing /* the lock prevents async_tx_run_dependencies from missing
* the setting of ->next when ->parent != NULL * the setting of ->next when ->parent != NULL
*/ */
spin_lock_bh(&depend_tx->lock); txd_lock(depend_tx);
if (depend_tx->parent) { if (txd_parent(depend_tx)) {
/* we have a parent so we can not submit directly /* we have a parent so we can not submit directly
* if we are staying on the same channel: append * if we are staying on the same channel: append
* else: channel switch * else: channel switch
*/ */
if (depend_tx->chan == chan) { if (depend_tx->chan == chan) {
tx->parent = depend_tx; txd_chain(depend_tx, tx);
depend_tx->next = tx;
s = ASYNC_TX_SUBMITTED; s = ASYNC_TX_SUBMITTED;
} else } else
s = ASYNC_TX_CHANNEL_SWITCH; s = ASYNC_TX_CHANNEL_SWITCH;
@ -203,7 +195,7 @@ async_tx_submit(struct dma_chan *chan, struct dma_async_tx_descriptor *tx,
else else
s = ASYNC_TX_CHANNEL_SWITCH; s = ASYNC_TX_CHANNEL_SWITCH;
} }
spin_unlock_bh(&depend_tx->lock); txd_unlock(depend_tx);
switch (s) { switch (s) {
case ASYNC_TX_SUBMITTED: case ASYNC_TX_SUBMITTED:
@ -212,12 +204,12 @@ async_tx_submit(struct dma_chan *chan, struct dma_async_tx_descriptor *tx,
async_tx_channel_switch(depend_tx, tx); async_tx_channel_switch(depend_tx, tx);
break; break;
case ASYNC_TX_DIRECT_SUBMIT: case ASYNC_TX_DIRECT_SUBMIT:
tx->parent = NULL; txd_clear_parent(tx);
tx->tx_submit(tx); tx->tx_submit(tx);
break; break;
} }
} else { } else {
tx->parent = NULL; txd_clear_parent(tx);
tx->tx_submit(tx); tx->tx_submit(tx);
} }

View File

@ -141,6 +141,13 @@ config COH901318
help help
Enable support for ST-Ericsson COH 901 318 DMA. Enable support for ST-Ericsson COH 901 318 DMA.
config STE_DMA40
bool "ST-Ericsson DMA40 support"
depends on ARCH_U8500
select DMA_ENGINE
help
Support for ST-Ericsson DMA40 controller
config AMCC_PPC440SPE_ADMA config AMCC_PPC440SPE_ADMA
tristate "AMCC PPC440SPe ADMA support" tristate "AMCC PPC440SPe ADMA support"
depends on 440SPe || 440SP depends on 440SPe || 440SP
@ -149,6 +156,13 @@ config AMCC_PPC440SPE_ADMA
help help
Enable support for the AMCC PPC440SPe RAID engines. Enable support for the AMCC PPC440SPe RAID engines.
config TIMB_DMA
tristate "Timberdale FPGA DMA support"
depends on MFD_TIMBERDALE || HAS_IOMEM
select DMA_ENGINE
help
Enable support for the Timberdale FPGA DMA engine.
config ARCH_HAS_ASYNC_TX_FIND_CHANNEL config ARCH_HAS_ASYNC_TX_FIND_CHANNEL
bool bool

View File

@ -20,3 +20,5 @@ obj-$(CONFIG_TXX9_DMAC) += txx9dmac.o
obj-$(CONFIG_SH_DMAE) += shdma.o obj-$(CONFIG_SH_DMAE) += shdma.o
obj-$(CONFIG_COH901318) += coh901318.o coh901318_lli.o obj-$(CONFIG_COH901318) += coh901318.o coh901318_lli.o
obj-$(CONFIG_AMCC_PPC440SPE_ADMA) += ppc4xx/ obj-$(CONFIG_AMCC_PPC440SPE_ADMA) += ppc4xx/
obj-$(CONFIG_TIMB_DMA) += timb_dma.o
obj-$(CONFIG_STE_DMA40) += ste_dma40.o ste_dma40_ll.o

View File

@ -760,13 +760,18 @@ err_desc_get:
return NULL; return NULL;
} }
static void atc_terminate_all(struct dma_chan *chan) static int atc_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
unsigned long arg)
{ {
struct at_dma_chan *atchan = to_at_dma_chan(chan); struct at_dma_chan *atchan = to_at_dma_chan(chan);
struct at_dma *atdma = to_at_dma(chan->device); struct at_dma *atdma = to_at_dma(chan->device);
struct at_desc *desc, *_desc; struct at_desc *desc, *_desc;
LIST_HEAD(list); LIST_HEAD(list);
/* Only supports DMA_TERMINATE_ALL */
if (cmd != DMA_TERMINATE_ALL)
return -ENXIO;
/* /*
* This is only called when something went wrong elsewhere, so * This is only called when something went wrong elsewhere, so
* we don't really care about the data. Just disable the * we don't really care about the data. Just disable the
@ -790,32 +795,30 @@ static void atc_terminate_all(struct dma_chan *chan)
/* Flush all pending and queued descriptors */ /* Flush all pending and queued descriptors */
list_for_each_entry_safe(desc, _desc, &list, desc_node) list_for_each_entry_safe(desc, _desc, &list, desc_node)
atc_chain_complete(atchan, desc); atc_chain_complete(atchan, desc);
return 0;
} }
/** /**
* atc_is_tx_complete - poll for transaction completion * atc_tx_status - poll for transaction completion
* @chan: DMA channel * @chan: DMA channel
* @cookie: transaction identifier to check status of * @cookie: transaction identifier to check status of
* @done: if not %NULL, updated with last completed transaction * @txstate: if not %NULL updated with transaction state
* @used: if not %NULL, updated with last used transaction
* *
* If @done and @used are passed in, upon return they reflect the driver * If @txstate is passed in, upon return it reflect the driver
* internal state and can be used with dma_async_is_complete() to check * internal state and can be used with dma_async_is_complete() to check
* the status of multiple cookies without re-checking hardware state. * the status of multiple cookies without re-checking hardware state.
*/ */
static enum dma_status static enum dma_status
atc_is_tx_complete(struct dma_chan *chan, atc_tx_status(struct dma_chan *chan,
dma_cookie_t cookie, dma_cookie_t cookie,
dma_cookie_t *done, dma_cookie_t *used) struct dma_tx_state *txstate)
{ {
struct at_dma_chan *atchan = to_at_dma_chan(chan); struct at_dma_chan *atchan = to_at_dma_chan(chan);
dma_cookie_t last_used; dma_cookie_t last_used;
dma_cookie_t last_complete; dma_cookie_t last_complete;
enum dma_status ret; enum dma_status ret;
dev_vdbg(chan2dev(chan), "is_tx_complete: %d (d%d, u%d)\n",
cookie, done ? *done : 0, used ? *used : 0);
spin_lock_bh(&atchan->lock); spin_lock_bh(&atchan->lock);
last_complete = atchan->completed_cookie; last_complete = atchan->completed_cookie;
@ -833,10 +836,10 @@ atc_is_tx_complete(struct dma_chan *chan,
spin_unlock_bh(&atchan->lock); spin_unlock_bh(&atchan->lock);
if (done) dma_set_tx_state(txstate, last_complete, last_used, 0);
*done = last_complete; dev_vdbg(chan2dev(chan), "tx_status: %d (d%d, u%d)\n",
if (used) cookie, last_complete ? last_complete : 0,
*used = last_used; last_used ? last_used : 0);
return ret; return ret;
} }
@ -1082,7 +1085,7 @@ static int __init at_dma_probe(struct platform_device *pdev)
/* set base routines */ /* set base routines */
atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources; atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources;
atdma->dma_common.device_free_chan_resources = atc_free_chan_resources; atdma->dma_common.device_free_chan_resources = atc_free_chan_resources;
atdma->dma_common.device_is_tx_complete = atc_is_tx_complete; atdma->dma_common.device_tx_status = atc_tx_status;
atdma->dma_common.device_issue_pending = atc_issue_pending; atdma->dma_common.device_issue_pending = atc_issue_pending;
atdma->dma_common.dev = &pdev->dev; atdma->dma_common.dev = &pdev->dev;
@ -1092,7 +1095,7 @@ static int __init at_dma_probe(struct platform_device *pdev)
if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) { if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) {
atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg; atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg;
atdma->dma_common.device_terminate_all = atc_terminate_all; atdma->dma_common.device_control = atc_control;
} }
dma_writel(atdma, EN, AT_DMA_ENABLE); dma_writel(atdma, EN, AT_DMA_ENABLE);

View File

@ -37,7 +37,7 @@ struct coh901318_desc {
struct list_head node; struct list_head node;
struct scatterlist *sg; struct scatterlist *sg;
unsigned int sg_len; unsigned int sg_len;
struct coh901318_lli *data; struct coh901318_lli *lli;
enum dma_data_direction dir; enum dma_data_direction dir;
unsigned long flags; unsigned long flags;
}; };
@ -283,7 +283,7 @@ static int coh901318_start(struct coh901318_chan *cohc)
} }
static int coh901318_prep_linked_list(struct coh901318_chan *cohc, static int coh901318_prep_linked_list(struct coh901318_chan *cohc,
struct coh901318_lli *data) struct coh901318_lli *lli)
{ {
int channel = cohc->id; int channel = cohc->id;
void __iomem *virtbase = cohc->base->virtbase; void __iomem *virtbase = cohc->base->virtbase;
@ -292,18 +292,18 @@ static int coh901318_prep_linked_list(struct coh901318_chan *cohc,
COH901318_CX_STAT_SPACING*channel) & COH901318_CX_STAT_SPACING*channel) &
COH901318_CX_STAT_ACTIVE); COH901318_CX_STAT_ACTIVE);
writel(data->src_addr, writel(lli->src_addr,
virtbase + COH901318_CX_SRC_ADDR + virtbase + COH901318_CX_SRC_ADDR +
COH901318_CX_SRC_ADDR_SPACING * channel); COH901318_CX_SRC_ADDR_SPACING * channel);
writel(data->dst_addr, virtbase + writel(lli->dst_addr, virtbase +
COH901318_CX_DST_ADDR + COH901318_CX_DST_ADDR +
COH901318_CX_DST_ADDR_SPACING * channel); COH901318_CX_DST_ADDR_SPACING * channel);
writel(data->link_addr, virtbase + COH901318_CX_LNK_ADDR + writel(lli->link_addr, virtbase + COH901318_CX_LNK_ADDR +
COH901318_CX_LNK_ADDR_SPACING * channel); COH901318_CX_LNK_ADDR_SPACING * channel);
writel(data->control, virtbase + COH901318_CX_CTRL + writel(lli->control, virtbase + COH901318_CX_CTRL +
COH901318_CX_CTRL_SPACING * channel); COH901318_CX_CTRL_SPACING * channel);
return 0; return 0;
@ -408,33 +408,107 @@ coh901318_first_queued(struct coh901318_chan *cohc)
return d; return d;
} }
/* static inline u32 coh901318_get_bytes_in_lli(struct coh901318_lli *in_lli)
* DMA start/stop controls {
*/ struct coh901318_lli *lli = in_lli;
u32 coh901318_get_bytes_left(struct dma_chan *chan) u32 bytes = 0;
while (lli) {
bytes += lli->control & COH901318_CX_CTRL_TC_VALUE_MASK;
lli = lli->virt_link_addr;
}
return bytes;
}
/*
* Get the number of bytes left to transfer on this channel,
* it is unwise to call this before stopping the channel for
* absolute measures, but for a rough guess you can still call
* it.
*/
static u32 coh901318_get_bytes_left(struct dma_chan *chan)
{ {
unsigned long flags;
u32 ret;
struct coh901318_chan *cohc = to_coh901318_chan(chan); struct coh901318_chan *cohc = to_coh901318_chan(chan);
struct coh901318_desc *cohd;
struct list_head *pos;
unsigned long flags;
u32 left = 0;
int i = 0;
spin_lock_irqsave(&cohc->lock, flags); spin_lock_irqsave(&cohc->lock, flags);
/* Read transfer count value */ /*
ret = readl(cohc->base->virtbase + * If there are many queued jobs, we iterate and add the
COH901318_CX_CTRL+COH901318_CX_CTRL_SPACING * * size of them all. We take a special look on the first
cohc->id) & COH901318_CX_CTRL_TC_VALUE_MASK; * job though, since it is probably active.
*/
list_for_each(pos, &cohc->active) {
/*
* The first job in the list will be working on the
* hardware. The job can be stopped but still active,
* so that the transfer counter is somewhere inside
* the buffer.
*/
cohd = list_entry(pos, struct coh901318_desc, node);
if (i == 0) {
struct coh901318_lli *lli;
dma_addr_t ladd;
/* Read current transfer count value */
left = readl(cohc->base->virtbase +
COH901318_CX_CTRL +
COH901318_CX_CTRL_SPACING * cohc->id) &
COH901318_CX_CTRL_TC_VALUE_MASK;
/* See if the transfer is linked... */
ladd = readl(cohc->base->virtbase +
COH901318_CX_LNK_ADDR +
COH901318_CX_LNK_ADDR_SPACING *
cohc->id) &
~COH901318_CX_LNK_LINK_IMMEDIATE;
/* Single transaction */
if (!ladd)
continue;
/*
* Linked transaction, follow the lli, find the
* currently processing lli, and proceed to the next
*/
lli = cohd->lli;
while (lli && lli->link_addr != ladd)
lli = lli->virt_link_addr;
if (lli)
lli = lli->virt_link_addr;
/*
* Follow remaining lli links around to count the total
* number of bytes left
*/
left += coh901318_get_bytes_in_lli(lli);
} else {
left += coh901318_get_bytes_in_lli(cohd->lli);
}
i++;
}
/* Also count bytes in the queued jobs */
list_for_each(pos, &cohc->queue) {
cohd = list_entry(pos, struct coh901318_desc, node);
left += coh901318_get_bytes_in_lli(cohd->lli);
}
spin_unlock_irqrestore(&cohc->lock, flags); spin_unlock_irqrestore(&cohc->lock, flags);
return ret; return left;
} }
EXPORT_SYMBOL(coh901318_get_bytes_left);
/*
/* Stops a transfer without losing data. Enables power save. * Pauses a transfer without losing data. Enables power save.
Use this function in conjunction with coh901318_continue(..) * Use this function in conjunction with coh901318_resume.
*/ */
void coh901318_stop(struct dma_chan *chan) static void coh901318_pause(struct dma_chan *chan)
{ {
u32 val; u32 val;
unsigned long flags; unsigned long flags;
@ -475,12 +549,11 @@ void coh901318_stop(struct dma_chan *chan)
spin_unlock_irqrestore(&cohc->lock, flags); spin_unlock_irqrestore(&cohc->lock, flags);
} }
EXPORT_SYMBOL(coh901318_stop);
/* Continues a transfer that has been stopped via 300_dma_stop(..). /* Resumes a transfer that has been stopped via 300_dma_stop(..).
Power save is handled. Power save is handled.
*/ */
void coh901318_continue(struct dma_chan *chan) static void coh901318_resume(struct dma_chan *chan)
{ {
u32 val; u32 val;
unsigned long flags; unsigned long flags;
@ -506,7 +579,6 @@ void coh901318_continue(struct dma_chan *chan)
spin_unlock_irqrestore(&cohc->lock, flags); spin_unlock_irqrestore(&cohc->lock, flags);
} }
EXPORT_SYMBOL(coh901318_continue);
bool coh901318_filter_id(struct dma_chan *chan, void *chan_id) bool coh901318_filter_id(struct dma_chan *chan, void *chan_id)
{ {
@ -565,29 +637,30 @@ static int coh901318_config(struct coh901318_chan *cohc,
*/ */
static struct coh901318_desc *coh901318_queue_start(struct coh901318_chan *cohc) static struct coh901318_desc *coh901318_queue_start(struct coh901318_chan *cohc)
{ {
struct coh901318_desc *cohd_que; struct coh901318_desc *cohd;
/* start queued jobs, if any /*
* start queued jobs, if any
* TODO: transmit all queued jobs in one go * TODO: transmit all queued jobs in one go
*/ */
cohd_que = coh901318_first_queued(cohc); cohd = coh901318_first_queued(cohc);
if (cohd_que != NULL) { if (cohd != NULL) {
/* Remove from queue */ /* Remove from queue */
coh901318_desc_remove(cohd_que); coh901318_desc_remove(cohd);
/* initiate DMA job */ /* initiate DMA job */
cohc->busy = 1; cohc->busy = 1;
coh901318_desc_submit(cohc, cohd_que); coh901318_desc_submit(cohc, cohd);
coh901318_prep_linked_list(cohc, cohd_que->data); coh901318_prep_linked_list(cohc, cohd->lli);
/* start dma job */ /* start dma job on this channel */
coh901318_start(cohc); coh901318_start(cohc);
} }
return cohd_que; return cohd;
} }
/* /*
@ -622,7 +695,7 @@ static void dma_tasklet(unsigned long data)
cohc->completed = cohd_fin->desc.cookie; cohc->completed = cohd_fin->desc.cookie;
/* release the lli allocation and remove the descriptor */ /* release the lli allocation and remove the descriptor */
coh901318_lli_free(&cohc->base->pool, &cohd_fin->data); coh901318_lli_free(&cohc->base->pool, &cohd_fin->lli);
/* return desc to free-list */ /* return desc to free-list */
coh901318_desc_remove(cohd_fin); coh901318_desc_remove(cohd_fin);
@ -666,23 +739,44 @@ static void dma_tasklet(unsigned long data)
/* called from interrupt context */ /* called from interrupt context */
static void dma_tc_handle(struct coh901318_chan *cohc) static void dma_tc_handle(struct coh901318_chan *cohc)
{ {
BUG_ON(!cohc->allocated && (list_empty(&cohc->active) || /*
list_empty(&cohc->queue))); * If the channel is not allocated, then we shouldn't have
* any TC interrupts on it.
if (!cohc->allocated) */
if (!cohc->allocated) {
dev_err(COHC_2_DEV(cohc), "spurious interrupt from "
"unallocated channel\n");
return; return;
}
spin_lock(&cohc->lock); spin_lock(&cohc->lock);
/*
* When we reach this point, at least one queue item
* should have been moved over from cohc->queue to
* cohc->active and run to completion, that is why we're
* getting a terminal count interrupt is it not?
* If you get this BUG() the most probable cause is that
* the individual nodes in the lli chain have IRQ enabled,
* so check your platform config for lli chain ctrl.
*/
BUG_ON(list_empty(&cohc->active));
cohc->nbr_active_done++; cohc->nbr_active_done++;
/*
* This attempt to take a job from cohc->queue, put it
* into cohc->active and start it.
*/
if (coh901318_queue_start(cohc) == NULL) if (coh901318_queue_start(cohc) == NULL)
cohc->busy = 0; cohc->busy = 0;
BUG_ON(list_empty(&cohc->active));
spin_unlock(&cohc->lock); spin_unlock(&cohc->lock);
/*
* This tasklet will remove items from cohc->active
* and thus terminates them.
*/
if (cohc_chan_conf(cohc)->priority_high) if (cohc_chan_conf(cohc)->priority_high)
tasklet_hi_schedule(&cohc->tasklet); tasklet_hi_schedule(&cohc->tasklet);
else else
@ -809,6 +903,7 @@ static irqreturn_t dma_irq_handler(int irq, void *dev_id)
static int coh901318_alloc_chan_resources(struct dma_chan *chan) static int coh901318_alloc_chan_resources(struct dma_chan *chan)
{ {
struct coh901318_chan *cohc = to_coh901318_chan(chan); struct coh901318_chan *cohc = to_coh901318_chan(chan);
unsigned long flags;
dev_vdbg(COHC_2_DEV(cohc), "[%s] DMA channel %d\n", dev_vdbg(COHC_2_DEV(cohc), "[%s] DMA channel %d\n",
__func__, cohc->id); __func__, cohc->id);
@ -816,11 +911,15 @@ static int coh901318_alloc_chan_resources(struct dma_chan *chan)
if (chan->client_count > 1) if (chan->client_count > 1)
return -EBUSY; return -EBUSY;
spin_lock_irqsave(&cohc->lock, flags);
coh901318_config(cohc, NULL); coh901318_config(cohc, NULL);
cohc->allocated = 1; cohc->allocated = 1;
cohc->completed = chan->cookie = 1; cohc->completed = chan->cookie = 1;
spin_unlock_irqrestore(&cohc->lock, flags);
return 1; return 1;
} }
@ -843,7 +942,7 @@ coh901318_free_chan_resources(struct dma_chan *chan)
spin_unlock_irqrestore(&cohc->lock, flags); spin_unlock_irqrestore(&cohc->lock, flags);
chan->device->device_terminate_all(chan); chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
} }
@ -870,7 +969,7 @@ static struct dma_async_tx_descriptor *
coh901318_prep_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, coh901318_prep_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
size_t size, unsigned long flags) size_t size, unsigned long flags)
{ {
struct coh901318_lli *data; struct coh901318_lli *lli;
struct coh901318_desc *cohd; struct coh901318_desc *cohd;
unsigned long flg; unsigned long flg;
struct coh901318_chan *cohc = to_coh901318_chan(chan); struct coh901318_chan *cohc = to_coh901318_chan(chan);
@ -892,23 +991,23 @@ coh901318_prep_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
if ((lli_len << MAX_DMA_PACKET_SIZE_SHIFT) < size) if ((lli_len << MAX_DMA_PACKET_SIZE_SHIFT) < size)
lli_len++; lli_len++;
data = coh901318_lli_alloc(&cohc->base->pool, lli_len); lli = coh901318_lli_alloc(&cohc->base->pool, lli_len);
if (data == NULL) if (lli == NULL)
goto err; goto err;
ret = coh901318_lli_fill_memcpy( ret = coh901318_lli_fill_memcpy(
&cohc->base->pool, data, src, size, dest, &cohc->base->pool, lli, src, size, dest,
cohc_chan_param(cohc)->ctrl_lli_chained, cohc_chan_param(cohc)->ctrl_lli_chained,
ctrl_last); ctrl_last);
if (ret) if (ret)
goto err; goto err;
COH_DBG(coh901318_list_print(cohc, data)); COH_DBG(coh901318_list_print(cohc, lli));
/* Pick a descriptor to handle this transfer */ /* Pick a descriptor to handle this transfer */
cohd = coh901318_desc_get(cohc); cohd = coh901318_desc_get(cohc);
cohd->data = data; cohd->lli = lli;
cohd->flags = flags; cohd->flags = flags;
cohd->desc.tx_submit = coh901318_tx_submit; cohd->desc.tx_submit = coh901318_tx_submit;
@ -926,7 +1025,7 @@ coh901318_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
unsigned long flags) unsigned long flags)
{ {
struct coh901318_chan *cohc = to_coh901318_chan(chan); struct coh901318_chan *cohc = to_coh901318_chan(chan);
struct coh901318_lli *data; struct coh901318_lli *lli;
struct coh901318_desc *cohd; struct coh901318_desc *cohd;
const struct coh901318_params *params; const struct coh901318_params *params;
struct scatterlist *sg; struct scatterlist *sg;
@ -999,13 +1098,13 @@ coh901318_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
} }
pr_debug("Allocate %d lli:s for this transfer\n", len); pr_debug("Allocate %d lli:s for this transfer\n", len);
data = coh901318_lli_alloc(&cohc->base->pool, len); lli = coh901318_lli_alloc(&cohc->base->pool, len);
if (data == NULL) if (lli == NULL)
goto err_dma_alloc; goto err_dma_alloc;
/* initiate allocated data list */ /* initiate allocated lli list */
ret = coh901318_lli_fill_sg(&cohc->base->pool, data, sgl, sg_len, ret = coh901318_lli_fill_sg(&cohc->base->pool, lli, sgl, sg_len,
cohc_dev_addr(cohc), cohc_dev_addr(cohc),
ctrl_chained, ctrl_chained,
ctrl, ctrl,
@ -1014,14 +1113,14 @@ coh901318_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
if (ret) if (ret)
goto err_lli_fill; goto err_lli_fill;
COH_DBG(coh901318_list_print(cohc, data)); COH_DBG(coh901318_list_print(cohc, lli));
/* Pick a descriptor to handle this transfer */ /* Pick a descriptor to handle this transfer */
cohd = coh901318_desc_get(cohc); cohd = coh901318_desc_get(cohc);
cohd->dir = direction; cohd->dir = direction;
cohd->flags = flags; cohd->flags = flags;
cohd->desc.tx_submit = coh901318_tx_submit; cohd->desc.tx_submit = coh901318_tx_submit;
cohd->data = data; cohd->lli = lli;
spin_unlock_irqrestore(&cohc->lock, flg); spin_unlock_irqrestore(&cohc->lock, flg);
@ -1035,9 +1134,8 @@ coh901318_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
} }
static enum dma_status static enum dma_status
coh901318_is_tx_complete(struct dma_chan *chan, coh901318_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
dma_cookie_t cookie, dma_cookie_t *done, struct dma_tx_state *txstate)
dma_cookie_t *used)
{ {
struct coh901318_chan *cohc = to_coh901318_chan(chan); struct coh901318_chan *cohc = to_coh901318_chan(chan);
dma_cookie_t last_used; dma_cookie_t last_used;
@ -1049,10 +1147,10 @@ coh901318_is_tx_complete(struct dma_chan *chan,
ret = dma_async_is_complete(cookie, last_complete, last_used); ret = dma_async_is_complete(cookie, last_complete, last_used);
if (done) dma_set_tx_state(txstate, last_complete, last_used,
*done = last_complete; coh901318_get_bytes_left(chan));
if (used) if (ret == DMA_IN_PROGRESS && cohc->stopped)
*used = last_used; ret = DMA_PAUSED;
return ret; return ret;
} }
@ -1065,23 +1163,42 @@ coh901318_issue_pending(struct dma_chan *chan)
spin_lock_irqsave(&cohc->lock, flags); spin_lock_irqsave(&cohc->lock, flags);
/* Busy means that pending jobs are already being processed */ /*
* Busy means that pending jobs are already being processed,
* and then there is no point in starting the queue: the
* terminal count interrupt on the channel will take the next
* job on the queue and execute it anyway.
*/
if (!cohc->busy) if (!cohc->busy)
coh901318_queue_start(cohc); coh901318_queue_start(cohc);
spin_unlock_irqrestore(&cohc->lock, flags); spin_unlock_irqrestore(&cohc->lock, flags);
} }
static void static int
coh901318_terminate_all(struct dma_chan *chan) coh901318_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
unsigned long arg)
{ {
unsigned long flags; unsigned long flags;
struct coh901318_chan *cohc = to_coh901318_chan(chan); struct coh901318_chan *cohc = to_coh901318_chan(chan);
struct coh901318_desc *cohd; struct coh901318_desc *cohd;
void __iomem *virtbase = cohc->base->virtbase; void __iomem *virtbase = cohc->base->virtbase;
coh901318_stop(chan); if (cmd == DMA_PAUSE) {
coh901318_pause(chan);
return 0;
}
if (cmd == DMA_RESUME) {
coh901318_resume(chan);
return 0;
}
if (cmd != DMA_TERMINATE_ALL)
return -ENXIO;
/* The remainder of this function terminates the transfer */
coh901318_pause(chan);
spin_lock_irqsave(&cohc->lock, flags); spin_lock_irqsave(&cohc->lock, flags);
/* Clear any pending BE or TC interrupt */ /* Clear any pending BE or TC interrupt */
@ -1099,7 +1216,7 @@ coh901318_terminate_all(struct dma_chan *chan)
while ((cohd = coh901318_first_active_get(cohc))) { while ((cohd = coh901318_first_active_get(cohc))) {
/* release the lli allocation*/ /* release the lli allocation*/
coh901318_lli_free(&cohc->base->pool, &cohd->data); coh901318_lli_free(&cohc->base->pool, &cohd->lli);
/* return desc to free-list */ /* return desc to free-list */
coh901318_desc_remove(cohd); coh901318_desc_remove(cohd);
@ -1108,7 +1225,7 @@ coh901318_terminate_all(struct dma_chan *chan)
while ((cohd = coh901318_first_queued(cohc))) { while ((cohd = coh901318_first_queued(cohc))) {
/* release the lli allocation*/ /* release the lli allocation*/
coh901318_lli_free(&cohc->base->pool, &cohd->data); coh901318_lli_free(&cohc->base->pool, &cohd->lli);
/* return desc to free-list */ /* return desc to free-list */
coh901318_desc_remove(cohd); coh901318_desc_remove(cohd);
@ -1120,6 +1237,8 @@ coh901318_terminate_all(struct dma_chan *chan)
cohc->busy = 0; cohc->busy = 0;
spin_unlock_irqrestore(&cohc->lock, flags); spin_unlock_irqrestore(&cohc->lock, flags);
return 0;
} }
void coh901318_base_init(struct dma_device *dma, const int *pick_chans, void coh901318_base_init(struct dma_device *dma, const int *pick_chans,
struct coh901318_base *base) struct coh901318_base *base)
@ -1235,9 +1354,9 @@ static int __init coh901318_probe(struct platform_device *pdev)
base->dma_slave.device_alloc_chan_resources = coh901318_alloc_chan_resources; base->dma_slave.device_alloc_chan_resources = coh901318_alloc_chan_resources;
base->dma_slave.device_free_chan_resources = coh901318_free_chan_resources; base->dma_slave.device_free_chan_resources = coh901318_free_chan_resources;
base->dma_slave.device_prep_slave_sg = coh901318_prep_slave_sg; base->dma_slave.device_prep_slave_sg = coh901318_prep_slave_sg;
base->dma_slave.device_is_tx_complete = coh901318_is_tx_complete; base->dma_slave.device_tx_status = coh901318_tx_status;
base->dma_slave.device_issue_pending = coh901318_issue_pending; base->dma_slave.device_issue_pending = coh901318_issue_pending;
base->dma_slave.device_terminate_all = coh901318_terminate_all; base->dma_slave.device_control = coh901318_control;
base->dma_slave.dev = &pdev->dev; base->dma_slave.dev = &pdev->dev;
err = dma_async_device_register(&base->dma_slave); err = dma_async_device_register(&base->dma_slave);
@ -1255,9 +1374,9 @@ static int __init coh901318_probe(struct platform_device *pdev)
base->dma_memcpy.device_alloc_chan_resources = coh901318_alloc_chan_resources; base->dma_memcpy.device_alloc_chan_resources = coh901318_alloc_chan_resources;
base->dma_memcpy.device_free_chan_resources = coh901318_free_chan_resources; base->dma_memcpy.device_free_chan_resources = coh901318_free_chan_resources;
base->dma_memcpy.device_prep_dma_memcpy = coh901318_prep_memcpy; base->dma_memcpy.device_prep_dma_memcpy = coh901318_prep_memcpy;
base->dma_memcpy.device_is_tx_complete = coh901318_is_tx_complete; base->dma_memcpy.device_tx_status = coh901318_tx_status;
base->dma_memcpy.device_issue_pending = coh901318_issue_pending; base->dma_memcpy.device_issue_pending = coh901318_issue_pending;
base->dma_memcpy.device_terminate_all = coh901318_terminate_all; base->dma_memcpy.device_control = coh901318_control;
base->dma_memcpy.dev = &pdev->dev; base->dma_memcpy.dev = &pdev->dev;
/* /*
* This controller can only access address at even 32bit boundaries, * This controller can only access address at even 32bit boundaries,

View File

@ -515,7 +515,6 @@ struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, v
break; break;
if (--device->privatecnt == 0) if (--device->privatecnt == 0)
dma_cap_clear(DMA_PRIVATE, device->cap_mask); dma_cap_clear(DMA_PRIVATE, device->cap_mask);
chan->private = NULL;
chan = NULL; chan = NULL;
} }
} }
@ -537,7 +536,6 @@ void dma_release_channel(struct dma_chan *chan)
/* drop PRIVATE cap enabled by __dma_request_channel() */ /* drop PRIVATE cap enabled by __dma_request_channel() */
if (--chan->device->privatecnt == 0) if (--chan->device->privatecnt == 0)
dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask); dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
chan->private = NULL;
mutex_unlock(&dma_list_mutex); mutex_unlock(&dma_list_mutex);
} }
EXPORT_SYMBOL_GPL(dma_release_channel); EXPORT_SYMBOL_GPL(dma_release_channel);
@ -695,11 +693,11 @@ int dma_async_device_register(struct dma_device *device)
BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) && BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) &&
!device->device_prep_slave_sg); !device->device_prep_slave_sg);
BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) && BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) &&
!device->device_terminate_all); !device->device_control);
BUG_ON(!device->device_alloc_chan_resources); BUG_ON(!device->device_alloc_chan_resources);
BUG_ON(!device->device_free_chan_resources); BUG_ON(!device->device_free_chan_resources);
BUG_ON(!device->device_is_tx_complete); BUG_ON(!device->device_tx_status);
BUG_ON(!device->device_issue_pending); BUG_ON(!device->device_issue_pending);
BUG_ON(!device->dev); BUG_ON(!device->dev);
@ -978,7 +976,9 @@ void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
struct dma_chan *chan) struct dma_chan *chan)
{ {
tx->chan = chan; tx->chan = chan;
#ifndef CONFIG_ASYNC_TX_DISABLE_CHANNEL_SWITCH
spin_lock_init(&tx->lock); spin_lock_init(&tx->lock);
#endif
} }
EXPORT_SYMBOL(dma_async_tx_descriptor_init); EXPORT_SYMBOL(dma_async_tx_descriptor_init);
@ -1011,7 +1011,7 @@ EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
*/ */
void dma_run_dependencies(struct dma_async_tx_descriptor *tx) void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
{ {
struct dma_async_tx_descriptor *dep = tx->next; struct dma_async_tx_descriptor *dep = txd_next(tx);
struct dma_async_tx_descriptor *dep_next; struct dma_async_tx_descriptor *dep_next;
struct dma_chan *chan; struct dma_chan *chan;
@ -1019,7 +1019,7 @@ void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
return; return;
/* we'll submit tx->next now, so clear the link */ /* we'll submit tx->next now, so clear the link */
tx->next = NULL; txd_clear_next(tx);
chan = dep->chan; chan = dep->chan;
/* keep submitting up until a channel switch is detected /* keep submitting up until a channel switch is detected
@ -1027,14 +1027,14 @@ void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
* processing the interrupt from async_tx_channel_switch * processing the interrupt from async_tx_channel_switch
*/ */
for (; dep; dep = dep_next) { for (; dep; dep = dep_next) {
spin_lock_bh(&dep->lock); txd_lock(dep);
dep->parent = NULL; txd_clear_parent(dep);
dep_next = dep->next; dep_next = txd_next(dep);
if (dep_next && dep_next->chan == chan) if (dep_next && dep_next->chan == chan)
dep->next = NULL; /* ->next will be submitted */ txd_clear_next(dep); /* ->next will be submitted */
else else
dep_next = NULL; /* submit current dep and terminate */ dep_next = NULL; /* submit current dep and terminate */
spin_unlock_bh(&dep->lock); txd_unlock(dep);
dep->tx_submit(dep); dep->tx_submit(dep);
} }

View File

@ -781,13 +781,18 @@ err_desc_get:
return NULL; return NULL;
} }
static void dwc_terminate_all(struct dma_chan *chan) static int dwc_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
unsigned long arg)
{ {
struct dw_dma_chan *dwc = to_dw_dma_chan(chan); struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
struct dw_dma *dw = to_dw_dma(chan->device); struct dw_dma *dw = to_dw_dma(chan->device);
struct dw_desc *desc, *_desc; struct dw_desc *desc, *_desc;
LIST_HEAD(list); LIST_HEAD(list);
/* Only supports DMA_TERMINATE_ALL */
if (cmd != DMA_TERMINATE_ALL)
return -ENXIO;
/* /*
* This is only called when something went wrong elsewhere, so * This is only called when something went wrong elsewhere, so
* we don't really care about the data. Just disable the * we don't really care about the data. Just disable the
@ -810,12 +815,14 @@ static void dwc_terminate_all(struct dma_chan *chan)
/* Flush all pending and queued descriptors */ /* Flush all pending and queued descriptors */
list_for_each_entry_safe(desc, _desc, &list, desc_node) list_for_each_entry_safe(desc, _desc, &list, desc_node)
dwc_descriptor_complete(dwc, desc); dwc_descriptor_complete(dwc, desc);
return 0;
} }
static enum dma_status static enum dma_status
dwc_is_tx_complete(struct dma_chan *chan, dwc_tx_status(struct dma_chan *chan,
dma_cookie_t cookie, dma_cookie_t cookie,
dma_cookie_t *done, dma_cookie_t *used) struct dma_tx_state *txstate)
{ {
struct dw_dma_chan *dwc = to_dw_dma_chan(chan); struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
dma_cookie_t last_used; dma_cookie_t last_used;
@ -835,10 +842,7 @@ dwc_is_tx_complete(struct dma_chan *chan,
ret = dma_async_is_complete(cookie, last_complete, last_used); ret = dma_async_is_complete(cookie, last_complete, last_used);
} }
if (done) dma_set_tx_state(txstate, last_complete, last_used, 0);
*done = last_complete;
if (used)
*used = last_used;
return ret; return ret;
} }
@ -1338,9 +1342,9 @@ static int __init dw_probe(struct platform_device *pdev)
dw->dma.device_prep_dma_memcpy = dwc_prep_dma_memcpy; dw->dma.device_prep_dma_memcpy = dwc_prep_dma_memcpy;
dw->dma.device_prep_slave_sg = dwc_prep_slave_sg; dw->dma.device_prep_slave_sg = dwc_prep_slave_sg;
dw->dma.device_terminate_all = dwc_terminate_all; dw->dma.device_control = dwc_control;
dw->dma.device_is_tx_complete = dwc_is_tx_complete; dw->dma.device_tx_status = dwc_tx_status;
dw->dma.device_issue_pending = dwc_issue_pending; dw->dma.device_issue_pending = dwc_issue_pending;
dma_writel(dw, CFG, DW_CFG_DMA_EN); dma_writel(dw, CFG, DW_CFG_DMA_EN);

View File

@ -775,13 +775,18 @@ fail:
return NULL; return NULL;
} }
static void fsl_dma_device_terminate_all(struct dma_chan *dchan) static int fsl_dma_device_control(struct dma_chan *dchan,
enum dma_ctrl_cmd cmd, unsigned long arg)
{ {
struct fsldma_chan *chan; struct fsldma_chan *chan;
unsigned long flags; unsigned long flags;
/* Only supports DMA_TERMINATE_ALL */
if (cmd != DMA_TERMINATE_ALL)
return -ENXIO;
if (!dchan) if (!dchan)
return; return -EINVAL;
chan = to_fsl_chan(dchan); chan = to_fsl_chan(dchan);
@ -795,6 +800,8 @@ static void fsl_dma_device_terminate_all(struct dma_chan *dchan)
fsldma_free_desc_list(chan, &chan->ld_running); fsldma_free_desc_list(chan, &chan->ld_running);
spin_unlock_irqrestore(&chan->desc_lock, flags); spin_unlock_irqrestore(&chan->desc_lock, flags);
return 0;
} }
/** /**
@ -965,13 +972,12 @@ static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
} }
/** /**
* fsl_dma_is_complete - Determine the DMA status * fsl_tx_status - Determine the DMA status
* @chan : Freescale DMA channel * @chan : Freescale DMA channel
*/ */
static enum dma_status fsl_dma_is_complete(struct dma_chan *dchan, static enum dma_status fsl_tx_status(struct dma_chan *dchan,
dma_cookie_t cookie, dma_cookie_t cookie,
dma_cookie_t *done, struct dma_tx_state *txstate)
dma_cookie_t *used)
{ {
struct fsldma_chan *chan = to_fsl_chan(dchan); struct fsldma_chan *chan = to_fsl_chan(dchan);
dma_cookie_t last_used; dma_cookie_t last_used;
@ -982,11 +988,7 @@ static enum dma_status fsl_dma_is_complete(struct dma_chan *dchan,
last_used = dchan->cookie; last_used = dchan->cookie;
last_complete = chan->completed_cookie; last_complete = chan->completed_cookie;
if (done) dma_set_tx_state(txstate, last_complete, last_used, 0);
*done = last_complete;
if (used)
*used = last_used;
return dma_async_is_complete(cookie, last_complete, last_used); return dma_async_is_complete(cookie, last_complete, last_used);
} }
@ -1330,10 +1332,10 @@ static int __devinit fsldma_of_probe(struct of_device *op,
fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources; fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt; fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt;
fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy; fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
fdev->common.device_is_tx_complete = fsl_dma_is_complete; fdev->common.device_tx_status = fsl_tx_status;
fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending; fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg; fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg;
fdev->common.device_terminate_all = fsl_dma_device_terminate_all; fdev->common.device_control = fsl_dma_device_control;
fdev->common.dev = &op->dev; fdev->common.dev = &op->dev;
dev_set_drvdata(&op->dev, fdev); dev_set_drvdata(&op->dev, fdev);

View File

@ -727,18 +727,18 @@ static void ioat1_timer_event(unsigned long data)
} }
enum dma_status enum dma_status
ioat_is_dma_complete(struct dma_chan *c, dma_cookie_t cookie, ioat_dma_tx_status(struct dma_chan *c, dma_cookie_t cookie,
dma_cookie_t *done, dma_cookie_t *used) struct dma_tx_state *txstate)
{ {
struct ioat_chan_common *chan = to_chan_common(c); struct ioat_chan_common *chan = to_chan_common(c);
struct ioatdma_device *device = chan->device; struct ioatdma_device *device = chan->device;
if (ioat_is_complete(c, cookie, done, used) == DMA_SUCCESS) if (ioat_tx_status(c, cookie, txstate) == DMA_SUCCESS)
return DMA_SUCCESS; return DMA_SUCCESS;
device->cleanup_fn((unsigned long) c); device->cleanup_fn((unsigned long) c);
return ioat_is_complete(c, cookie, done, used); return ioat_tx_status(c, cookie, txstate);
} }
static void ioat1_dma_start_null_desc(struct ioat_dma_chan *ioat) static void ioat1_dma_start_null_desc(struct ioat_dma_chan *ioat)
@ -858,7 +858,7 @@ int __devinit ioat_dma_self_test(struct ioatdma_device *device)
tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000)); tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
if (tmo == 0 || if (tmo == 0 ||
dma->device_is_tx_complete(dma_chan, cookie, NULL, NULL) dma->device_tx_status(dma_chan, cookie, NULL)
!= DMA_SUCCESS) { != DMA_SUCCESS) {
dev_err(dev, "Self-test copy timed out, disabling\n"); dev_err(dev, "Self-test copy timed out, disabling\n");
err = -ENODEV; err = -ENODEV;
@ -1199,7 +1199,7 @@ int __devinit ioat1_dma_probe(struct ioatdma_device *device, int dca)
dma->device_issue_pending = ioat1_dma_memcpy_issue_pending; dma->device_issue_pending = ioat1_dma_memcpy_issue_pending;
dma->device_alloc_chan_resources = ioat1_dma_alloc_chan_resources; dma->device_alloc_chan_resources = ioat1_dma_alloc_chan_resources;
dma->device_free_chan_resources = ioat1_dma_free_chan_resources; dma->device_free_chan_resources = ioat1_dma_free_chan_resources;
dma->device_is_tx_complete = ioat_is_dma_complete; dma->device_tx_status = ioat_dma_tx_status;
err = ioat_probe(device); err = ioat_probe(device);
if (err) if (err)

View File

@ -96,6 +96,7 @@ struct ioat_chan_common {
#define IOAT_COMPLETION_ACK 1 #define IOAT_COMPLETION_ACK 1
#define IOAT_RESET_PENDING 2 #define IOAT_RESET_PENDING 2
#define IOAT_KOBJ_INIT_FAIL 3 #define IOAT_KOBJ_INIT_FAIL 3
#define IOAT_RESHAPE_PENDING 4
struct timer_list timer; struct timer_list timer;
#define COMPLETION_TIMEOUT msecs_to_jiffies(100) #define COMPLETION_TIMEOUT msecs_to_jiffies(100)
#define IDLE_TIMEOUT msecs_to_jiffies(2000) #define IDLE_TIMEOUT msecs_to_jiffies(2000)
@ -142,15 +143,14 @@ static inline struct ioat_dma_chan *to_ioat_chan(struct dma_chan *c)
} }
/** /**
* ioat_is_complete - poll the status of an ioat transaction * ioat_tx_status - poll the status of an ioat transaction
* @c: channel handle * @c: channel handle
* @cookie: transaction identifier * @cookie: transaction identifier
* @done: if set, updated with last completed transaction * @txstate: if set, updated with the transaction state
* @used: if set, updated with last used transaction
*/ */
static inline enum dma_status static inline enum dma_status
ioat_is_complete(struct dma_chan *c, dma_cookie_t cookie, ioat_tx_status(struct dma_chan *c, dma_cookie_t cookie,
dma_cookie_t *done, dma_cookie_t *used) struct dma_tx_state *txstate)
{ {
struct ioat_chan_common *chan = to_chan_common(c); struct ioat_chan_common *chan = to_chan_common(c);
dma_cookie_t last_used; dma_cookie_t last_used;
@ -159,10 +159,7 @@ ioat_is_complete(struct dma_chan *c, dma_cookie_t cookie,
last_used = c->cookie; last_used = c->cookie;
last_complete = chan->completed_cookie; last_complete = chan->completed_cookie;
if (done) dma_set_tx_state(txstate, last_complete, last_used, 0);
*done = last_complete;
if (used)
*used = last_used;
return dma_async_is_complete(cookie, last_complete, last_used); return dma_async_is_complete(cookie, last_complete, last_used);
} }
@ -338,8 +335,8 @@ struct dca_provider * __devinit ioat_dca_init(struct pci_dev *pdev,
unsigned long ioat_get_current_completion(struct ioat_chan_common *chan); unsigned long ioat_get_current_completion(struct ioat_chan_common *chan);
void ioat_init_channel(struct ioatdma_device *device, void ioat_init_channel(struct ioatdma_device *device,
struct ioat_chan_common *chan, int idx); struct ioat_chan_common *chan, int idx);
enum dma_status ioat_is_dma_complete(struct dma_chan *c, dma_cookie_t cookie, enum dma_status ioat_dma_tx_status(struct dma_chan *c, dma_cookie_t cookie,
dma_cookie_t *done, dma_cookie_t *used); struct dma_tx_state *txstate);
void ioat_dma_unmap(struct ioat_chan_common *chan, enum dma_ctrl_flags flags, void ioat_dma_unmap(struct ioat_chan_common *chan, enum dma_ctrl_flags flags,
size_t len, struct ioat_dma_descriptor *hw); size_t len, struct ioat_dma_descriptor *hw);
bool ioat_cleanup_preamble(struct ioat_chan_common *chan, bool ioat_cleanup_preamble(struct ioat_chan_common *chan,

View File

@ -56,8 +56,6 @@ void __ioat2_issue_pending(struct ioat2_dma_chan *ioat)
ioat->dmacount += ioat2_ring_pending(ioat); ioat->dmacount += ioat2_ring_pending(ioat);
ioat->issued = ioat->head; ioat->issued = ioat->head;
/* make descriptor updates globally visible before notifying channel */
wmb();
writew(ioat->dmacount, chan->reg_base + IOAT_CHAN_DMACOUNT_OFFSET); writew(ioat->dmacount, chan->reg_base + IOAT_CHAN_DMACOUNT_OFFSET);
dev_dbg(to_dev(chan), dev_dbg(to_dev(chan),
"%s: head: %#x tail: %#x issued: %#x count: %#x\n", "%s: head: %#x tail: %#x issued: %#x count: %#x\n",
@ -69,9 +67,9 @@ void ioat2_issue_pending(struct dma_chan *c)
struct ioat2_dma_chan *ioat = to_ioat2_chan(c); struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
if (ioat2_ring_pending(ioat)) { if (ioat2_ring_pending(ioat)) {
spin_lock_bh(&ioat->ring_lock); spin_lock_bh(&ioat->prep_lock);
__ioat2_issue_pending(ioat); __ioat2_issue_pending(ioat);
spin_unlock_bh(&ioat->ring_lock); spin_unlock_bh(&ioat->prep_lock);
} }
} }
@ -80,7 +78,7 @@ void ioat2_issue_pending(struct dma_chan *c)
* @ioat: ioat2+ channel * @ioat: ioat2+ channel
* *
* Check if the number of unsubmitted descriptors has exceeded the * Check if the number of unsubmitted descriptors has exceeded the
* watermark. Called with ring_lock held * watermark. Called with prep_lock held
*/ */
static void ioat2_update_pending(struct ioat2_dma_chan *ioat) static void ioat2_update_pending(struct ioat2_dma_chan *ioat)
{ {
@ -92,7 +90,6 @@ static void __ioat2_start_null_desc(struct ioat2_dma_chan *ioat)
{ {
struct ioat_ring_ent *desc; struct ioat_ring_ent *desc;
struct ioat_dma_descriptor *hw; struct ioat_dma_descriptor *hw;
int idx;
if (ioat2_ring_space(ioat) < 1) { if (ioat2_ring_space(ioat) < 1) {
dev_err(to_dev(&ioat->base), dev_err(to_dev(&ioat->base),
@ -102,8 +99,7 @@ static void __ioat2_start_null_desc(struct ioat2_dma_chan *ioat)
dev_dbg(to_dev(&ioat->base), "%s: head: %#x tail: %#x issued: %#x\n", dev_dbg(to_dev(&ioat->base), "%s: head: %#x tail: %#x issued: %#x\n",
__func__, ioat->head, ioat->tail, ioat->issued); __func__, ioat->head, ioat->tail, ioat->issued);
idx = ioat2_desc_alloc(ioat, 1); desc = ioat2_get_ring_ent(ioat, ioat->head);
desc = ioat2_get_ring_ent(ioat, idx);
hw = desc->hw; hw = desc->hw;
hw->ctl = 0; hw->ctl = 0;
@ -117,14 +113,16 @@ static void __ioat2_start_null_desc(struct ioat2_dma_chan *ioat)
async_tx_ack(&desc->txd); async_tx_ack(&desc->txd);
ioat2_set_chainaddr(ioat, desc->txd.phys); ioat2_set_chainaddr(ioat, desc->txd.phys);
dump_desc_dbg(ioat, desc); dump_desc_dbg(ioat, desc);
wmb();
ioat->head += 1;
__ioat2_issue_pending(ioat); __ioat2_issue_pending(ioat);
} }
static void ioat2_start_null_desc(struct ioat2_dma_chan *ioat) static void ioat2_start_null_desc(struct ioat2_dma_chan *ioat)
{ {
spin_lock_bh(&ioat->ring_lock); spin_lock_bh(&ioat->prep_lock);
__ioat2_start_null_desc(ioat); __ioat2_start_null_desc(ioat);
spin_unlock_bh(&ioat->ring_lock); spin_unlock_bh(&ioat->prep_lock);
} }
static void __cleanup(struct ioat2_dma_chan *ioat, unsigned long phys_complete) static void __cleanup(struct ioat2_dma_chan *ioat, unsigned long phys_complete)
@ -134,15 +132,16 @@ static void __cleanup(struct ioat2_dma_chan *ioat, unsigned long phys_complete)
struct ioat_ring_ent *desc; struct ioat_ring_ent *desc;
bool seen_current = false; bool seen_current = false;
u16 active; u16 active;
int i; int idx = ioat->tail, i;
dev_dbg(to_dev(chan), "%s: head: %#x tail: %#x issued: %#x\n", dev_dbg(to_dev(chan), "%s: head: %#x tail: %#x issued: %#x\n",
__func__, ioat->head, ioat->tail, ioat->issued); __func__, ioat->head, ioat->tail, ioat->issued);
active = ioat2_ring_active(ioat); active = ioat2_ring_active(ioat);
for (i = 0; i < active && !seen_current; i++) { for (i = 0; i < active && !seen_current; i++) {
prefetch(ioat2_get_ring_ent(ioat, ioat->tail + i + 1)); smp_read_barrier_depends();
desc = ioat2_get_ring_ent(ioat, ioat->tail + i); prefetch(ioat2_get_ring_ent(ioat, idx + i + 1));
desc = ioat2_get_ring_ent(ioat, idx + i);
tx = &desc->txd; tx = &desc->txd;
dump_desc_dbg(ioat, desc); dump_desc_dbg(ioat, desc);
if (tx->cookie) { if (tx->cookie) {
@ -158,11 +157,12 @@ static void __cleanup(struct ioat2_dma_chan *ioat, unsigned long phys_complete)
if (tx->phys == phys_complete) if (tx->phys == phys_complete)
seen_current = true; seen_current = true;
} }
ioat->tail += i; smp_mb(); /* finish all descriptor reads before incrementing tail */
ioat->tail = idx + i;
BUG_ON(active && !seen_current); /* no active descs have written a completion? */ BUG_ON(active && !seen_current); /* no active descs have written a completion? */
chan->last_completion = phys_complete; chan->last_completion = phys_complete;
if (ioat->head == ioat->tail) { if (active - i == 0) {
dev_dbg(to_dev(chan), "%s: cancel completion timeout\n", dev_dbg(to_dev(chan), "%s: cancel completion timeout\n",
__func__); __func__);
clear_bit(IOAT_COMPLETION_PENDING, &chan->state); clear_bit(IOAT_COMPLETION_PENDING, &chan->state);
@ -179,24 +179,9 @@ static void ioat2_cleanup(struct ioat2_dma_chan *ioat)
struct ioat_chan_common *chan = &ioat->base; struct ioat_chan_common *chan = &ioat->base;
unsigned long phys_complete; unsigned long phys_complete;
prefetch(chan->completion); spin_lock_bh(&chan->cleanup_lock);
if (ioat_cleanup_preamble(chan, &phys_complete))
if (!spin_trylock_bh(&chan->cleanup_lock)) __cleanup(ioat, phys_complete);
return;
if (!ioat_cleanup_preamble(chan, &phys_complete)) {
spin_unlock_bh(&chan->cleanup_lock);
return;
}
if (!spin_trylock_bh(&ioat->ring_lock)) {
spin_unlock_bh(&chan->cleanup_lock);
return;
}
__cleanup(ioat, phys_complete);
spin_unlock_bh(&ioat->ring_lock);
spin_unlock_bh(&chan->cleanup_lock); spin_unlock_bh(&chan->cleanup_lock);
} }
@ -287,12 +272,10 @@ void ioat2_timer_event(unsigned long data)
struct ioat2_dma_chan *ioat = to_ioat2_chan((void *) data); struct ioat2_dma_chan *ioat = to_ioat2_chan((void *) data);
struct ioat_chan_common *chan = &ioat->base; struct ioat_chan_common *chan = &ioat->base;
spin_lock_bh(&chan->cleanup_lock);
if (test_bit(IOAT_COMPLETION_PENDING, &chan->state)) { if (test_bit(IOAT_COMPLETION_PENDING, &chan->state)) {
unsigned long phys_complete; unsigned long phys_complete;
u64 status; u64 status;
spin_lock_bh(&ioat->ring_lock);
status = ioat_chansts(chan); status = ioat_chansts(chan);
/* when halted due to errors check for channel /* when halted due to errors check for channel
@ -311,26 +294,31 @@ void ioat2_timer_event(unsigned long data)
* acknowledged a pending completion once, then be more * acknowledged a pending completion once, then be more
* forceful with a restart * forceful with a restart
*/ */
if (ioat_cleanup_preamble(chan, &phys_complete)) spin_lock_bh(&chan->cleanup_lock);
if (ioat_cleanup_preamble(chan, &phys_complete)) {
__cleanup(ioat, phys_complete); __cleanup(ioat, phys_complete);
else if (test_bit(IOAT_COMPLETION_ACK, &chan->state)) } else if (test_bit(IOAT_COMPLETION_ACK, &chan->state)) {
spin_lock_bh(&ioat->prep_lock);
ioat2_restart_channel(ioat); ioat2_restart_channel(ioat);
else { spin_unlock_bh(&ioat->prep_lock);
} else {
set_bit(IOAT_COMPLETION_ACK, &chan->state); set_bit(IOAT_COMPLETION_ACK, &chan->state);
mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT); mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT);
} }
spin_unlock_bh(&ioat->ring_lock); spin_unlock_bh(&chan->cleanup_lock);
} else { } else {
u16 active; u16 active;
/* if the ring is idle, empty, and oversized try to step /* if the ring is idle, empty, and oversized try to step
* down the size * down the size
*/ */
spin_lock_bh(&ioat->ring_lock); spin_lock_bh(&chan->cleanup_lock);
spin_lock_bh(&ioat->prep_lock);
active = ioat2_ring_active(ioat); active = ioat2_ring_active(ioat);
if (active == 0 && ioat->alloc_order > ioat_get_alloc_order()) if (active == 0 && ioat->alloc_order > ioat_get_alloc_order())
reshape_ring(ioat, ioat->alloc_order-1); reshape_ring(ioat, ioat->alloc_order-1);
spin_unlock_bh(&ioat->ring_lock); spin_unlock_bh(&ioat->prep_lock);
spin_unlock_bh(&chan->cleanup_lock);
/* keep shrinking until we get back to our minimum /* keep shrinking until we get back to our minimum
* default size * default size
@ -338,7 +326,6 @@ void ioat2_timer_event(unsigned long data)
if (ioat->alloc_order > ioat_get_alloc_order()) if (ioat->alloc_order > ioat_get_alloc_order())
mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT); mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT);
} }
spin_unlock_bh(&chan->cleanup_lock);
} }
static int ioat2_reset_hw(struct ioat_chan_common *chan) static int ioat2_reset_hw(struct ioat_chan_common *chan)
@ -392,7 +379,7 @@ int ioat2_enumerate_channels(struct ioatdma_device *device)
ioat_init_channel(device, &ioat->base, i); ioat_init_channel(device, &ioat->base, i);
ioat->xfercap_log = xfercap_log; ioat->xfercap_log = xfercap_log;
spin_lock_init(&ioat->ring_lock); spin_lock_init(&ioat->prep_lock);
if (device->reset_hw(&ioat->base)) { if (device->reset_hw(&ioat->base)) {
i = 0; i = 0;
break; break;
@ -418,8 +405,17 @@ static dma_cookie_t ioat2_tx_submit_unlock(struct dma_async_tx_descriptor *tx)
if (!test_and_set_bit(IOAT_COMPLETION_PENDING, &chan->state)) if (!test_and_set_bit(IOAT_COMPLETION_PENDING, &chan->state))
mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT); mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT);
/* make descriptor updates visible before advancing ioat->head,
* this is purposefully not smp_wmb() since we are also
* publishing the descriptor updates to a dma device
*/
wmb();
ioat->head += ioat->produce;
ioat2_update_pending(ioat); ioat2_update_pending(ioat);
spin_unlock_bh(&ioat->ring_lock); spin_unlock_bh(&ioat->prep_lock);
return cookie; return cookie;
} }
@ -531,13 +527,15 @@ int ioat2_alloc_chan_resources(struct dma_chan *c)
if (!ring) if (!ring)
return -ENOMEM; return -ENOMEM;
spin_lock_bh(&ioat->ring_lock); spin_lock_bh(&chan->cleanup_lock);
spin_lock_bh(&ioat->prep_lock);
ioat->ring = ring; ioat->ring = ring;
ioat->head = 0; ioat->head = 0;
ioat->issued = 0; ioat->issued = 0;
ioat->tail = 0; ioat->tail = 0;
ioat->alloc_order = order; ioat->alloc_order = order;
spin_unlock_bh(&ioat->ring_lock); spin_unlock_bh(&ioat->prep_lock);
spin_unlock_bh(&chan->cleanup_lock);
tasklet_enable(&chan->cleanup_task); tasklet_enable(&chan->cleanup_task);
ioat2_start_null_desc(ioat); ioat2_start_null_desc(ioat);
@ -553,7 +551,7 @@ bool reshape_ring(struct ioat2_dma_chan *ioat, int order)
*/ */
struct ioat_chan_common *chan = &ioat->base; struct ioat_chan_common *chan = &ioat->base;
struct dma_chan *c = &chan->common; struct dma_chan *c = &chan->common;
const u16 curr_size = ioat2_ring_mask(ioat) + 1; const u16 curr_size = ioat2_ring_size(ioat);
const u16 active = ioat2_ring_active(ioat); const u16 active = ioat2_ring_active(ioat);
const u16 new_size = 1 << order; const u16 new_size = 1 << order;
struct ioat_ring_ent **ring; struct ioat_ring_ent **ring;
@ -653,54 +651,61 @@ bool reshape_ring(struct ioat2_dma_chan *ioat, int order)
} }
/** /**
* ioat2_alloc_and_lock - common descriptor alloc boilerplate for ioat2,3 ops * ioat2_check_space_lock - verify space and grab ring producer lock
* @idx: gets starting descriptor index on successful allocation
* @ioat: ioat2,3 channel (ring) to operate on * @ioat: ioat2,3 channel (ring) to operate on
* @num_descs: allocation length * @num_descs: allocation length
*/ */
int ioat2_alloc_and_lock(u16 *idx, struct ioat2_dma_chan *ioat, int num_descs) int ioat2_check_space_lock(struct ioat2_dma_chan *ioat, int num_descs)
{ {
struct ioat_chan_common *chan = &ioat->base; struct ioat_chan_common *chan = &ioat->base;
bool retry;
spin_lock_bh(&ioat->ring_lock); retry:
spin_lock_bh(&ioat->prep_lock);
/* never allow the last descriptor to be consumed, we need at /* never allow the last descriptor to be consumed, we need at
* least one free at all times to allow for on-the-fly ring * least one free at all times to allow for on-the-fly ring
* resizing. * resizing.
*/ */
while (unlikely(ioat2_ring_space(ioat) <= num_descs)) { if (likely(ioat2_ring_space(ioat) > num_descs)) {
if (reshape_ring(ioat, ioat->alloc_order + 1) && dev_dbg(to_dev(chan), "%s: num_descs: %d (%x:%x:%x)\n",
ioat2_ring_space(ioat) > num_descs) __func__, num_descs, ioat->head, ioat->tail, ioat->issued);
break; ioat->produce = num_descs;
return 0; /* with ioat->prep_lock held */
}
retry = test_and_set_bit(IOAT_RESHAPE_PENDING, &chan->state);
spin_unlock_bh(&ioat->prep_lock);
if (printk_ratelimit()) /* is another cpu already trying to expand the ring? */
dev_dbg(to_dev(chan), if (retry)
"%s: ring full! num_descs: %d (%x:%x:%x)\n", goto retry;
__func__, num_descs, ioat->head, ioat->tail,
ioat->issued);
spin_unlock_bh(&ioat->ring_lock);
/* progress reclaim in the allocation failure case we spin_lock_bh(&chan->cleanup_lock);
* may be called under bh_disabled so we need to trigger spin_lock_bh(&ioat->prep_lock);
* the timer event directly retry = reshape_ring(ioat, ioat->alloc_order + 1);
*/ clear_bit(IOAT_RESHAPE_PENDING, &chan->state);
spin_lock_bh(&chan->cleanup_lock); spin_unlock_bh(&ioat->prep_lock);
if (jiffies > chan->timer.expires && spin_unlock_bh(&chan->cleanup_lock);
timer_pending(&chan->timer)) {
struct ioatdma_device *device = chan->device;
mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT); /* if we were able to expand the ring retry the allocation */
spin_unlock_bh(&chan->cleanup_lock); if (retry)
device->timer_fn((unsigned long) &chan->common); goto retry;
} else
spin_unlock_bh(&chan->cleanup_lock); if (printk_ratelimit())
return -ENOMEM; dev_dbg(to_dev(chan), "%s: ring full! num_descs: %d (%x:%x:%x)\n",
__func__, num_descs, ioat->head, ioat->tail, ioat->issued);
/* progress reclaim in the allocation failure case we may be
* called under bh_disabled so we need to trigger the timer
* event directly
*/
if (jiffies > chan->timer.expires && timer_pending(&chan->timer)) {
struct ioatdma_device *device = chan->device;
mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT);
device->timer_fn((unsigned long) &chan->common);
} }
dev_dbg(to_dev(chan), "%s: num_descs: %d (%x:%x:%x)\n", return -ENOMEM;
__func__, num_descs, ioat->head, ioat->tail, ioat->issued);
*idx = ioat2_desc_alloc(ioat, num_descs);
return 0; /* with ioat->ring_lock held */
} }
struct dma_async_tx_descriptor * struct dma_async_tx_descriptor *
@ -713,14 +718,11 @@ ioat2_dma_prep_memcpy_lock(struct dma_chan *c, dma_addr_t dma_dest,
dma_addr_t dst = dma_dest; dma_addr_t dst = dma_dest;
dma_addr_t src = dma_src; dma_addr_t src = dma_src;
size_t total_len = len; size_t total_len = len;
int num_descs; int num_descs, idx, i;
u16 idx;
int i;
num_descs = ioat2_xferlen_to_descs(ioat, len); num_descs = ioat2_xferlen_to_descs(ioat, len);
if (likely(num_descs) && if (likely(num_descs) && ioat2_check_space_lock(ioat, num_descs) == 0)
ioat2_alloc_and_lock(&idx, ioat, num_descs) == 0) idx = ioat->head;
/* pass */;
else else
return NULL; return NULL;
i = 0; i = 0;
@ -777,7 +779,8 @@ void ioat2_free_chan_resources(struct dma_chan *c)
device->cleanup_fn((unsigned long) c); device->cleanup_fn((unsigned long) c);
device->reset_hw(chan); device->reset_hw(chan);
spin_lock_bh(&ioat->ring_lock); spin_lock_bh(&chan->cleanup_lock);
spin_lock_bh(&ioat->prep_lock);
descs = ioat2_ring_space(ioat); descs = ioat2_ring_space(ioat);
dev_dbg(to_dev(chan), "freeing %d idle descriptors\n", descs); dev_dbg(to_dev(chan), "freeing %d idle descriptors\n", descs);
for (i = 0; i < descs; i++) { for (i = 0; i < descs; i++) {
@ -800,7 +803,8 @@ void ioat2_free_chan_resources(struct dma_chan *c)
ioat->alloc_order = 0; ioat->alloc_order = 0;
pci_pool_free(device->completion_pool, chan->completion, pci_pool_free(device->completion_pool, chan->completion,
chan->completion_dma); chan->completion_dma);
spin_unlock_bh(&ioat->ring_lock); spin_unlock_bh(&ioat->prep_lock);
spin_unlock_bh(&chan->cleanup_lock);
chan->last_completion = 0; chan->last_completion = 0;
chan->completion_dma = 0; chan->completion_dma = 0;
@ -855,7 +859,7 @@ int __devinit ioat2_dma_probe(struct ioatdma_device *device, int dca)
dma->device_issue_pending = ioat2_issue_pending; dma->device_issue_pending = ioat2_issue_pending;
dma->device_alloc_chan_resources = ioat2_alloc_chan_resources; dma->device_alloc_chan_resources = ioat2_alloc_chan_resources;
dma->device_free_chan_resources = ioat2_free_chan_resources; dma->device_free_chan_resources = ioat2_free_chan_resources;
dma->device_is_tx_complete = ioat_is_dma_complete; dma->device_tx_status = ioat_tx_status;
err = ioat_probe(device); err = ioat_probe(device);
if (err) if (err)

View File

@ -22,6 +22,7 @@
#define IOATDMA_V2_H #define IOATDMA_V2_H
#include <linux/dmaengine.h> #include <linux/dmaengine.h>
#include <linux/circ_buf.h>
#include "dma.h" #include "dma.h"
#include "hw.h" #include "hw.h"
@ -49,8 +50,9 @@ extern int ioat_ring_alloc_order;
* @tail: cleanup index * @tail: cleanup index
* @dmacount: identical to 'head' except for occasionally resetting to zero * @dmacount: identical to 'head' except for occasionally resetting to zero
* @alloc_order: log2 of the number of allocated descriptors * @alloc_order: log2 of the number of allocated descriptors
* @produce: number of descriptors to produce at submit time
* @ring: software ring buffer implementation of hardware ring * @ring: software ring buffer implementation of hardware ring
* @ring_lock: protects ring attributes * @prep_lock: serializes descriptor preparation (producers)
*/ */
struct ioat2_dma_chan { struct ioat2_dma_chan {
struct ioat_chan_common base; struct ioat_chan_common base;
@ -60,8 +62,9 @@ struct ioat2_dma_chan {
u16 tail; u16 tail;
u16 dmacount; u16 dmacount;
u16 alloc_order; u16 alloc_order;
u16 produce;
struct ioat_ring_ent **ring; struct ioat_ring_ent **ring;
spinlock_t ring_lock; spinlock_t prep_lock;
}; };
static inline struct ioat2_dma_chan *to_ioat2_chan(struct dma_chan *c) static inline struct ioat2_dma_chan *to_ioat2_chan(struct dma_chan *c)
@ -71,38 +74,26 @@ static inline struct ioat2_dma_chan *to_ioat2_chan(struct dma_chan *c)
return container_of(chan, struct ioat2_dma_chan, base); return container_of(chan, struct ioat2_dma_chan, base);
} }
static inline u16 ioat2_ring_mask(struct ioat2_dma_chan *ioat) static inline u16 ioat2_ring_size(struct ioat2_dma_chan *ioat)
{ {
return (1 << ioat->alloc_order) - 1; return 1 << ioat->alloc_order;
} }
/* count of descriptors in flight with the engine */ /* count of descriptors in flight with the engine */
static inline u16 ioat2_ring_active(struct ioat2_dma_chan *ioat) static inline u16 ioat2_ring_active(struct ioat2_dma_chan *ioat)
{ {
return (ioat->head - ioat->tail) & ioat2_ring_mask(ioat); return CIRC_CNT(ioat->head, ioat->tail, ioat2_ring_size(ioat));
} }
/* count of descriptors pending submission to hardware */ /* count of descriptors pending submission to hardware */
static inline u16 ioat2_ring_pending(struct ioat2_dma_chan *ioat) static inline u16 ioat2_ring_pending(struct ioat2_dma_chan *ioat)
{ {
return (ioat->head - ioat->issued) & ioat2_ring_mask(ioat); return CIRC_CNT(ioat->head, ioat->issued, ioat2_ring_size(ioat));
} }
static inline u16 ioat2_ring_space(struct ioat2_dma_chan *ioat) static inline u16 ioat2_ring_space(struct ioat2_dma_chan *ioat)
{ {
u16 num_descs = ioat2_ring_mask(ioat) + 1; return ioat2_ring_size(ioat) - ioat2_ring_active(ioat);
u16 active = ioat2_ring_active(ioat);
BUG_ON(active > num_descs);
return num_descs - active;
}
/* assumes caller already checked space */
static inline u16 ioat2_desc_alloc(struct ioat2_dma_chan *ioat, u16 len)
{
ioat->head += len;
return ioat->head - len;
} }
static inline u16 ioat2_xferlen_to_descs(struct ioat2_dma_chan *ioat, size_t len) static inline u16 ioat2_xferlen_to_descs(struct ioat2_dma_chan *ioat, size_t len)
@ -151,7 +142,7 @@ struct ioat_ring_ent {
static inline struct ioat_ring_ent * static inline struct ioat_ring_ent *
ioat2_get_ring_ent(struct ioat2_dma_chan *ioat, u16 idx) ioat2_get_ring_ent(struct ioat2_dma_chan *ioat, u16 idx)
{ {
return ioat->ring[idx & ioat2_ring_mask(ioat)]; return ioat->ring[idx & (ioat2_ring_size(ioat) - 1)];
} }
static inline void ioat2_set_chainaddr(struct ioat2_dma_chan *ioat, u64 addr) static inline void ioat2_set_chainaddr(struct ioat2_dma_chan *ioat, u64 addr)
@ -168,7 +159,7 @@ int __devinit ioat2_dma_probe(struct ioatdma_device *dev, int dca);
int __devinit ioat3_dma_probe(struct ioatdma_device *dev, int dca); int __devinit ioat3_dma_probe(struct ioatdma_device *dev, int dca);
struct dca_provider * __devinit ioat2_dca_init(struct pci_dev *pdev, void __iomem *iobase); struct dca_provider * __devinit ioat2_dca_init(struct pci_dev *pdev, void __iomem *iobase);
struct dca_provider * __devinit ioat3_dca_init(struct pci_dev *pdev, void __iomem *iobase); struct dca_provider * __devinit ioat3_dca_init(struct pci_dev *pdev, void __iomem *iobase);
int ioat2_alloc_and_lock(u16 *idx, struct ioat2_dma_chan *ioat, int num_descs); int ioat2_check_space_lock(struct ioat2_dma_chan *ioat, int num_descs);
int ioat2_enumerate_channels(struct ioatdma_device *device); int ioat2_enumerate_channels(struct ioatdma_device *device);
struct dma_async_tx_descriptor * struct dma_async_tx_descriptor *
ioat2_dma_prep_memcpy_lock(struct dma_chan *c, dma_addr_t dma_dest, ioat2_dma_prep_memcpy_lock(struct dma_chan *c, dma_addr_t dma_dest,

View File

@ -260,8 +260,8 @@ static void __cleanup(struct ioat2_dma_chan *ioat, unsigned long phys_complete)
struct ioat_chan_common *chan = &ioat->base; struct ioat_chan_common *chan = &ioat->base;
struct ioat_ring_ent *desc; struct ioat_ring_ent *desc;
bool seen_current = false; bool seen_current = false;
int idx = ioat->tail, i;
u16 active; u16 active;
int i;
dev_dbg(to_dev(chan), "%s: head: %#x tail: %#x issued: %#x\n", dev_dbg(to_dev(chan), "%s: head: %#x tail: %#x issued: %#x\n",
__func__, ioat->head, ioat->tail, ioat->issued); __func__, ioat->head, ioat->tail, ioat->issued);
@ -270,13 +270,14 @@ static void __cleanup(struct ioat2_dma_chan *ioat, unsigned long phys_complete)
for (i = 0; i < active && !seen_current; i++) { for (i = 0; i < active && !seen_current; i++) {
struct dma_async_tx_descriptor *tx; struct dma_async_tx_descriptor *tx;
prefetch(ioat2_get_ring_ent(ioat, ioat->tail + i + 1)); smp_read_barrier_depends();
desc = ioat2_get_ring_ent(ioat, ioat->tail + i); prefetch(ioat2_get_ring_ent(ioat, idx + i + 1));
desc = ioat2_get_ring_ent(ioat, idx + i);
dump_desc_dbg(ioat, desc); dump_desc_dbg(ioat, desc);
tx = &desc->txd; tx = &desc->txd;
if (tx->cookie) { if (tx->cookie) {
chan->completed_cookie = tx->cookie; chan->completed_cookie = tx->cookie;
ioat3_dma_unmap(ioat, desc, ioat->tail + i); ioat3_dma_unmap(ioat, desc, idx + i);
tx->cookie = 0; tx->cookie = 0;
if (tx->callback) { if (tx->callback) {
tx->callback(tx->callback_param); tx->callback(tx->callback_param);
@ -293,69 +294,30 @@ static void __cleanup(struct ioat2_dma_chan *ioat, unsigned long phys_complete)
i++; i++;
} }
} }
ioat->tail += i; smp_mb(); /* finish all descriptor reads before incrementing tail */
ioat->tail = idx + i;
BUG_ON(active && !seen_current); /* no active descs have written a completion? */ BUG_ON(active && !seen_current); /* no active descs have written a completion? */
chan->last_completion = phys_complete; chan->last_completion = phys_complete;
active = ioat2_ring_active(ioat); if (active - i == 0) {
if (active == 0) {
dev_dbg(to_dev(chan), "%s: cancel completion timeout\n", dev_dbg(to_dev(chan), "%s: cancel completion timeout\n",
__func__); __func__);
clear_bit(IOAT_COMPLETION_PENDING, &chan->state); clear_bit(IOAT_COMPLETION_PENDING, &chan->state);
mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT); mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT);
} }
/* 5 microsecond delay per pending descriptor */ /* 5 microsecond delay per pending descriptor */
writew(min((5 * active), IOAT_INTRDELAY_MASK), writew(min((5 * (active - i)), IOAT_INTRDELAY_MASK),
chan->device->reg_base + IOAT_INTRDELAY_OFFSET); chan->device->reg_base + IOAT_INTRDELAY_OFFSET);
} }
/* try to cleanup, but yield (via spin_trylock) to incoming submissions static void ioat3_cleanup(struct ioat2_dma_chan *ioat)
* with the expectation that we will immediately poll again shortly
*/
static void ioat3_cleanup_poll(struct ioat2_dma_chan *ioat)
{ {
struct ioat_chan_common *chan = &ioat->base; struct ioat_chan_common *chan = &ioat->base;
unsigned long phys_complete; unsigned long phys_complete;
prefetch(chan->completion);
if (!spin_trylock_bh(&chan->cleanup_lock))
return;
if (!ioat_cleanup_preamble(chan, &phys_complete)) {
spin_unlock_bh(&chan->cleanup_lock);
return;
}
if (!spin_trylock_bh(&ioat->ring_lock)) {
spin_unlock_bh(&chan->cleanup_lock);
return;
}
__cleanup(ioat, phys_complete);
spin_unlock_bh(&ioat->ring_lock);
spin_unlock_bh(&chan->cleanup_lock);
}
/* run cleanup now because we already delayed the interrupt via INTRDELAY */
static void ioat3_cleanup_sync(struct ioat2_dma_chan *ioat)
{
struct ioat_chan_common *chan = &ioat->base;
unsigned long phys_complete;
prefetch(chan->completion);
spin_lock_bh(&chan->cleanup_lock); spin_lock_bh(&chan->cleanup_lock);
if (!ioat_cleanup_preamble(chan, &phys_complete)) { if (ioat_cleanup_preamble(chan, &phys_complete))
spin_unlock_bh(&chan->cleanup_lock); __cleanup(ioat, phys_complete);
return;
}
spin_lock_bh(&ioat->ring_lock);
__cleanup(ioat, phys_complete);
spin_unlock_bh(&ioat->ring_lock);
spin_unlock_bh(&chan->cleanup_lock); spin_unlock_bh(&chan->cleanup_lock);
} }
@ -363,7 +325,7 @@ static void ioat3_cleanup_event(unsigned long data)
{ {
struct ioat2_dma_chan *ioat = to_ioat2_chan((void *) data); struct ioat2_dma_chan *ioat = to_ioat2_chan((void *) data);
ioat3_cleanup_sync(ioat); ioat3_cleanup(ioat);
writew(IOAT_CHANCTRL_RUN, ioat->base.reg_base + IOAT_CHANCTRL_OFFSET); writew(IOAT_CHANCTRL_RUN, ioat->base.reg_base + IOAT_CHANCTRL_OFFSET);
} }
@ -384,12 +346,10 @@ static void ioat3_timer_event(unsigned long data)
struct ioat2_dma_chan *ioat = to_ioat2_chan((void *) data); struct ioat2_dma_chan *ioat = to_ioat2_chan((void *) data);
struct ioat_chan_common *chan = &ioat->base; struct ioat_chan_common *chan = &ioat->base;
spin_lock_bh(&chan->cleanup_lock);
if (test_bit(IOAT_COMPLETION_PENDING, &chan->state)) { if (test_bit(IOAT_COMPLETION_PENDING, &chan->state)) {
unsigned long phys_complete; unsigned long phys_complete;
u64 status; u64 status;
spin_lock_bh(&ioat->ring_lock);
status = ioat_chansts(chan); status = ioat_chansts(chan);
/* when halted due to errors check for channel /* when halted due to errors check for channel
@ -408,26 +368,31 @@ static void ioat3_timer_event(unsigned long data)
* acknowledged a pending completion once, then be more * acknowledged a pending completion once, then be more
* forceful with a restart * forceful with a restart
*/ */
spin_lock_bh(&chan->cleanup_lock);
if (ioat_cleanup_preamble(chan, &phys_complete)) if (ioat_cleanup_preamble(chan, &phys_complete))
__cleanup(ioat, phys_complete); __cleanup(ioat, phys_complete);
else if (test_bit(IOAT_COMPLETION_ACK, &chan->state)) else if (test_bit(IOAT_COMPLETION_ACK, &chan->state)) {
spin_lock_bh(&ioat->prep_lock);
ioat3_restart_channel(ioat); ioat3_restart_channel(ioat);
else { spin_unlock_bh(&ioat->prep_lock);
} else {
set_bit(IOAT_COMPLETION_ACK, &chan->state); set_bit(IOAT_COMPLETION_ACK, &chan->state);
mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT); mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT);
} }
spin_unlock_bh(&ioat->ring_lock); spin_unlock_bh(&chan->cleanup_lock);
} else { } else {
u16 active; u16 active;
/* if the ring is idle, empty, and oversized try to step /* if the ring is idle, empty, and oversized try to step
* down the size * down the size
*/ */
spin_lock_bh(&ioat->ring_lock); spin_lock_bh(&chan->cleanup_lock);
spin_lock_bh(&ioat->prep_lock);
active = ioat2_ring_active(ioat); active = ioat2_ring_active(ioat);
if (active == 0 && ioat->alloc_order > ioat_get_alloc_order()) if (active == 0 && ioat->alloc_order > ioat_get_alloc_order())
reshape_ring(ioat, ioat->alloc_order-1); reshape_ring(ioat, ioat->alloc_order-1);
spin_unlock_bh(&ioat->ring_lock); spin_unlock_bh(&ioat->prep_lock);
spin_unlock_bh(&chan->cleanup_lock);
/* keep shrinking until we get back to our minimum /* keep shrinking until we get back to our minimum
* default size * default size
@ -435,21 +400,20 @@ static void ioat3_timer_event(unsigned long data)
if (ioat->alloc_order > ioat_get_alloc_order()) if (ioat->alloc_order > ioat_get_alloc_order())
mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT); mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT);
} }
spin_unlock_bh(&chan->cleanup_lock);
} }
static enum dma_status static enum dma_status
ioat3_is_complete(struct dma_chan *c, dma_cookie_t cookie, ioat3_tx_status(struct dma_chan *c, dma_cookie_t cookie,
dma_cookie_t *done, dma_cookie_t *used) struct dma_tx_state *txstate)
{ {
struct ioat2_dma_chan *ioat = to_ioat2_chan(c); struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
if (ioat_is_complete(c, cookie, done, used) == DMA_SUCCESS) if (ioat_tx_status(c, cookie, txstate) == DMA_SUCCESS)
return DMA_SUCCESS; return DMA_SUCCESS;
ioat3_cleanup_poll(ioat); ioat3_cleanup(ioat);
return ioat_is_complete(c, cookie, done, used); return ioat_tx_status(c, cookie, txstate);
} }
static struct dma_async_tx_descriptor * static struct dma_async_tx_descriptor *
@ -460,15 +424,12 @@ ioat3_prep_memset_lock(struct dma_chan *c, dma_addr_t dest, int value,
struct ioat_ring_ent *desc; struct ioat_ring_ent *desc;
size_t total_len = len; size_t total_len = len;
struct ioat_fill_descriptor *fill; struct ioat_fill_descriptor *fill;
int num_descs;
u64 src_data = (0x0101010101010101ULL) * (value & 0xff); u64 src_data = (0x0101010101010101ULL) * (value & 0xff);
u16 idx; int num_descs, idx, i;
int i;
num_descs = ioat2_xferlen_to_descs(ioat, len); num_descs = ioat2_xferlen_to_descs(ioat, len);
if (likely(num_descs) && if (likely(num_descs) && ioat2_check_space_lock(ioat, num_descs) == 0)
ioat2_alloc_and_lock(&idx, ioat, num_descs) == 0) idx = ioat->head;
/* pass */;
else else
return NULL; return NULL;
i = 0; i = 0;
@ -513,11 +474,8 @@ __ioat3_prep_xor_lock(struct dma_chan *c, enum sum_check_flags *result,
struct ioat_xor_descriptor *xor; struct ioat_xor_descriptor *xor;
struct ioat_xor_ext_descriptor *xor_ex = NULL; struct ioat_xor_ext_descriptor *xor_ex = NULL;
struct ioat_dma_descriptor *hw; struct ioat_dma_descriptor *hw;
int num_descs, with_ext, idx, i;
u32 offset = 0; u32 offset = 0;
int num_descs;
int with_ext;
int i;
u16 idx;
u8 op = result ? IOAT_OP_XOR_VAL : IOAT_OP_XOR; u8 op = result ? IOAT_OP_XOR_VAL : IOAT_OP_XOR;
BUG_ON(src_cnt < 2); BUG_ON(src_cnt < 2);
@ -537,9 +495,8 @@ __ioat3_prep_xor_lock(struct dma_chan *c, enum sum_check_flags *result,
* (legacy) descriptor to ensure all completion writes arrive in * (legacy) descriptor to ensure all completion writes arrive in
* order. * order.
*/ */
if (likely(num_descs) && if (likely(num_descs) && ioat2_check_space_lock(ioat, num_descs+1) == 0)
ioat2_alloc_and_lock(&idx, ioat, num_descs+1) == 0) idx = ioat->head;
/* pass */;
else else
return NULL; return NULL;
i = 0; i = 0;
@ -657,11 +614,8 @@ __ioat3_prep_pq_lock(struct dma_chan *c, enum sum_check_flags *result,
struct ioat_pq_ext_descriptor *pq_ex = NULL; struct ioat_pq_ext_descriptor *pq_ex = NULL;
struct ioat_dma_descriptor *hw; struct ioat_dma_descriptor *hw;
u32 offset = 0; u32 offset = 0;
int num_descs;
int with_ext;
int i, s;
u16 idx;
u8 op = result ? IOAT_OP_PQ_VAL : IOAT_OP_PQ; u8 op = result ? IOAT_OP_PQ_VAL : IOAT_OP_PQ;
int i, s, idx, with_ext, num_descs;
dev_dbg(to_dev(chan), "%s\n", __func__); dev_dbg(to_dev(chan), "%s\n", __func__);
/* the engine requires at least two sources (we provide /* the engine requires at least two sources (we provide
@ -687,8 +641,8 @@ __ioat3_prep_pq_lock(struct dma_chan *c, enum sum_check_flags *result,
* order. * order.
*/ */
if (likely(num_descs) && if (likely(num_descs) &&
ioat2_alloc_and_lock(&idx, ioat, num_descs+1) == 0) ioat2_check_space_lock(ioat, num_descs+1) == 0)
/* pass */; idx = ioat->head;
else else
return NULL; return NULL;
i = 0; i = 0;
@ -851,10 +805,9 @@ ioat3_prep_interrupt_lock(struct dma_chan *c, unsigned long flags)
struct ioat2_dma_chan *ioat = to_ioat2_chan(c); struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
struct ioat_ring_ent *desc; struct ioat_ring_ent *desc;
struct ioat_dma_descriptor *hw; struct ioat_dma_descriptor *hw;
u16 idx;
if (ioat2_alloc_and_lock(&idx, ioat, 1) == 0) if (ioat2_check_space_lock(ioat, 1) == 0)
desc = ioat2_get_ring_ent(ioat, idx); desc = ioat2_get_ring_ent(ioat, ioat->head);
else else
return NULL; return NULL;
@ -977,7 +930,7 @@ static int __devinit ioat_xor_val_self_test(struct ioatdma_device *device)
tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000)); tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
if (dma->device_is_tx_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) { if (dma->device_tx_status(dma_chan, cookie, NULL) != DMA_SUCCESS) {
dev_err(dev, "Self-test xor timed out\n"); dev_err(dev, "Self-test xor timed out\n");
err = -ENODEV; err = -ENODEV;
goto free_resources; goto free_resources;
@ -1031,7 +984,7 @@ static int __devinit ioat_xor_val_self_test(struct ioatdma_device *device)
tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000)); tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
if (dma->device_is_tx_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) { if (dma->device_tx_status(dma_chan, cookie, NULL) != DMA_SUCCESS) {
dev_err(dev, "Self-test validate timed out\n"); dev_err(dev, "Self-test validate timed out\n");
err = -ENODEV; err = -ENODEV;
goto free_resources; goto free_resources;
@ -1072,7 +1025,7 @@ static int __devinit ioat_xor_val_self_test(struct ioatdma_device *device)
tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000)); tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
if (dma->device_is_tx_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) { if (dma->device_tx_status(dma_chan, cookie, NULL) != DMA_SUCCESS) {
dev_err(dev, "Self-test memset timed out\n"); dev_err(dev, "Self-test memset timed out\n");
err = -ENODEV; err = -ENODEV;
goto free_resources; goto free_resources;
@ -1115,7 +1068,7 @@ static int __devinit ioat_xor_val_self_test(struct ioatdma_device *device)
tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000)); tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
if (dma->device_is_tx_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) { if (dma->device_tx_status(dma_chan, cookie, NULL) != DMA_SUCCESS) {
dev_err(dev, "Self-test 2nd validate timed out\n"); dev_err(dev, "Self-test 2nd validate timed out\n");
err = -ENODEV; err = -ENODEV;
goto free_resources; goto free_resources;
@ -1222,7 +1175,7 @@ int __devinit ioat3_dma_probe(struct ioatdma_device *device, int dca)
if (cap & IOAT_CAP_XOR) { if (cap & IOAT_CAP_XOR) {
is_raid_device = true; is_raid_device = true;
dma->max_xor = 8; dma->max_xor = 8;
dma->xor_align = 2; dma->xor_align = 6;
dma_cap_set(DMA_XOR, dma->cap_mask); dma_cap_set(DMA_XOR, dma->cap_mask);
dma->device_prep_dma_xor = ioat3_prep_xor; dma->device_prep_dma_xor = ioat3_prep_xor;
@ -1233,7 +1186,7 @@ int __devinit ioat3_dma_probe(struct ioatdma_device *device, int dca)
if (cap & IOAT_CAP_PQ) { if (cap & IOAT_CAP_PQ) {
is_raid_device = true; is_raid_device = true;
dma_set_maxpq(dma, 8, 0); dma_set_maxpq(dma, 8, 0);
dma->pq_align = 2; dma->pq_align = 6;
dma_cap_set(DMA_PQ, dma->cap_mask); dma_cap_set(DMA_PQ, dma->cap_mask);
dma->device_prep_dma_pq = ioat3_prep_pq; dma->device_prep_dma_pq = ioat3_prep_pq;
@ -1243,7 +1196,7 @@ int __devinit ioat3_dma_probe(struct ioatdma_device *device, int dca)
if (!(cap & IOAT_CAP_XOR)) { if (!(cap & IOAT_CAP_XOR)) {
dma->max_xor = 8; dma->max_xor = 8;
dma->xor_align = 2; dma->xor_align = 6;
dma_cap_set(DMA_XOR, dma->cap_mask); dma_cap_set(DMA_XOR, dma->cap_mask);
dma->device_prep_dma_xor = ioat3_prep_pqxor; dma->device_prep_dma_xor = ioat3_prep_pqxor;
@ -1259,11 +1212,11 @@ int __devinit ioat3_dma_probe(struct ioatdma_device *device, int dca)
if (is_raid_device) { if (is_raid_device) {
dma->device_is_tx_complete = ioat3_is_complete; dma->device_tx_status = ioat3_tx_status;
device->cleanup_fn = ioat3_cleanup_event; device->cleanup_fn = ioat3_cleanup_event;
device->timer_fn = ioat3_timer_event; device->timer_fn = ioat3_timer_event;
} else { } else {
dma->device_is_tx_complete = ioat_is_dma_complete; dma->device_tx_status = ioat_dma_tx_status;
device->cleanup_fn = ioat2_cleanup_event; device->cleanup_fn = ioat2_cleanup_event;
device->timer_fn = ioat2_timer_event; device->timer_fn = ioat2_timer_event;
} }

View File

@ -138,15 +138,10 @@ static int __devinit ioat_pci_probe(struct pci_dev *pdev, const struct pci_devic
if (err) if (err)
return err; return err;
device = devm_kzalloc(dev, sizeof(*device), GFP_KERNEL);
if (!device)
return -ENOMEM;
pci_set_master(pdev);
device = alloc_ioatdma(pdev, iomap[IOAT_MMIO_BAR]); device = alloc_ioatdma(pdev, iomap[IOAT_MMIO_BAR]);
if (!device) if (!device)
return -ENOMEM; return -ENOMEM;
pci_set_master(pdev);
pci_set_drvdata(pdev, device); pci_set_drvdata(pdev, device);
device->version = readb(device->reg_base + IOAT_VER_OFFSET); device->version = readb(device->reg_base + IOAT_VER_OFFSET);

View File

@ -894,14 +894,14 @@ static void iop_adma_free_chan_resources(struct dma_chan *chan)
} }
/** /**
* iop_adma_is_complete - poll the status of an ADMA transaction * iop_adma_status - poll the status of an ADMA transaction
* @chan: ADMA channel handle * @chan: ADMA channel handle
* @cookie: ADMA transaction identifier * @cookie: ADMA transaction identifier
* @txstate: a holder for the current state of the channel or NULL
*/ */
static enum dma_status iop_adma_is_complete(struct dma_chan *chan, static enum dma_status iop_adma_status(struct dma_chan *chan,
dma_cookie_t cookie, dma_cookie_t cookie,
dma_cookie_t *done, struct dma_tx_state *txstate)
dma_cookie_t *used)
{ {
struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan); struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
dma_cookie_t last_used; dma_cookie_t last_used;
@ -910,12 +910,7 @@ static enum dma_status iop_adma_is_complete(struct dma_chan *chan,
last_used = chan->cookie; last_used = chan->cookie;
last_complete = iop_chan->completed_cookie; last_complete = iop_chan->completed_cookie;
dma_set_tx_state(txstate, last_complete, last_used, 0);
if (done)
*done = last_complete;
if (used)
*used = last_used;
ret = dma_async_is_complete(cookie, last_complete, last_used); ret = dma_async_is_complete(cookie, last_complete, last_used);
if (ret == DMA_SUCCESS) if (ret == DMA_SUCCESS)
return ret; return ret;
@ -924,11 +919,7 @@ static enum dma_status iop_adma_is_complete(struct dma_chan *chan,
last_used = chan->cookie; last_used = chan->cookie;
last_complete = iop_chan->completed_cookie; last_complete = iop_chan->completed_cookie;
dma_set_tx_state(txstate, last_complete, last_used, 0);
if (done)
*done = last_complete;
if (used)
*used = last_used;
return dma_async_is_complete(cookie, last_complete, last_used); return dma_async_is_complete(cookie, last_complete, last_used);
} }
@ -1043,7 +1034,7 @@ static int __devinit iop_adma_memcpy_self_test(struct iop_adma_device *device)
iop_adma_issue_pending(dma_chan); iop_adma_issue_pending(dma_chan);
msleep(1); msleep(1);
if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) != if (iop_adma_status(dma_chan, cookie, NULL) !=
DMA_SUCCESS) { DMA_SUCCESS) {
dev_printk(KERN_ERR, dma_chan->device->dev, dev_printk(KERN_ERR, dma_chan->device->dev,
"Self-test copy timed out, disabling\n"); "Self-test copy timed out, disabling\n");
@ -1143,7 +1134,7 @@ iop_adma_xor_val_self_test(struct iop_adma_device *device)
iop_adma_issue_pending(dma_chan); iop_adma_issue_pending(dma_chan);
msleep(8); msleep(8);
if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) != if (iop_adma_status(dma_chan, cookie, NULL) !=
DMA_SUCCESS) { DMA_SUCCESS) {
dev_printk(KERN_ERR, dma_chan->device->dev, dev_printk(KERN_ERR, dma_chan->device->dev,
"Self-test xor timed out, disabling\n"); "Self-test xor timed out, disabling\n");
@ -1190,7 +1181,7 @@ iop_adma_xor_val_self_test(struct iop_adma_device *device)
iop_adma_issue_pending(dma_chan); iop_adma_issue_pending(dma_chan);
msleep(8); msleep(8);
if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) { if (iop_adma_status(dma_chan, cookie, NULL) != DMA_SUCCESS) {
dev_printk(KERN_ERR, dma_chan->device->dev, dev_printk(KERN_ERR, dma_chan->device->dev,
"Self-test zero sum timed out, disabling\n"); "Self-test zero sum timed out, disabling\n");
err = -ENODEV; err = -ENODEV;
@ -1214,7 +1205,7 @@ iop_adma_xor_val_self_test(struct iop_adma_device *device)
iop_adma_issue_pending(dma_chan); iop_adma_issue_pending(dma_chan);
msleep(8); msleep(8);
if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) { if (iop_adma_status(dma_chan, cookie, NULL) != DMA_SUCCESS) {
dev_printk(KERN_ERR, dma_chan->device->dev, dev_printk(KERN_ERR, dma_chan->device->dev,
"Self-test memset timed out, disabling\n"); "Self-test memset timed out, disabling\n");
err = -ENODEV; err = -ENODEV;
@ -1246,7 +1237,7 @@ iop_adma_xor_val_self_test(struct iop_adma_device *device)
iop_adma_issue_pending(dma_chan); iop_adma_issue_pending(dma_chan);
msleep(8); msleep(8);
if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) { if (iop_adma_status(dma_chan, cookie, NULL) != DMA_SUCCESS) {
dev_printk(KERN_ERR, dma_chan->device->dev, dev_printk(KERN_ERR, dma_chan->device->dev,
"Self-test non-zero sum timed out, disabling\n"); "Self-test non-zero sum timed out, disabling\n");
err = -ENODEV; err = -ENODEV;
@ -1341,7 +1332,7 @@ iop_adma_pq_zero_sum_self_test(struct iop_adma_device *device)
iop_adma_issue_pending(dma_chan); iop_adma_issue_pending(dma_chan);
msleep(8); msleep(8);
if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) != if (iop_adma_status(dma_chan, cookie, NULL) !=
DMA_SUCCESS) { DMA_SUCCESS) {
dev_err(dev, "Self-test pq timed out, disabling\n"); dev_err(dev, "Self-test pq timed out, disabling\n");
err = -ENODEV; err = -ENODEV;
@ -1378,7 +1369,7 @@ iop_adma_pq_zero_sum_self_test(struct iop_adma_device *device)
iop_adma_issue_pending(dma_chan); iop_adma_issue_pending(dma_chan);
msleep(8); msleep(8);
if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) != if (iop_adma_status(dma_chan, cookie, NULL) !=
DMA_SUCCESS) { DMA_SUCCESS) {
dev_err(dev, "Self-test pq-zero-sum timed out, disabling\n"); dev_err(dev, "Self-test pq-zero-sum timed out, disabling\n");
err = -ENODEV; err = -ENODEV;
@ -1410,7 +1401,7 @@ iop_adma_pq_zero_sum_self_test(struct iop_adma_device *device)
iop_adma_issue_pending(dma_chan); iop_adma_issue_pending(dma_chan);
msleep(8); msleep(8);
if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) != if (iop_adma_status(dma_chan, cookie, NULL) !=
DMA_SUCCESS) { DMA_SUCCESS) {
dev_err(dev, "Self-test !pq-zero-sum timed out, disabling\n"); dev_err(dev, "Self-test !pq-zero-sum timed out, disabling\n");
err = -ENODEV; err = -ENODEV;
@ -1508,7 +1499,7 @@ static int __devinit iop_adma_probe(struct platform_device *pdev)
/* set base routines */ /* set base routines */
dma_dev->device_alloc_chan_resources = iop_adma_alloc_chan_resources; dma_dev->device_alloc_chan_resources = iop_adma_alloc_chan_resources;
dma_dev->device_free_chan_resources = iop_adma_free_chan_resources; dma_dev->device_free_chan_resources = iop_adma_free_chan_resources;
dma_dev->device_is_tx_complete = iop_adma_is_complete; dma_dev->device_tx_status = iop_adma_status;
dma_dev->device_issue_pending = iop_adma_issue_pending; dma_dev->device_issue_pending = iop_adma_issue_pending;
dma_dev->dev = &pdev->dev; dma_dev->dev = &pdev->dev;

View File

@ -1472,13 +1472,18 @@ static void idmac_issue_pending(struct dma_chan *chan)
*/ */
} }
static void __idmac_terminate_all(struct dma_chan *chan) static int __idmac_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
unsigned long arg)
{ {
struct idmac_channel *ichan = to_idmac_chan(chan); struct idmac_channel *ichan = to_idmac_chan(chan);
struct idmac *idmac = to_idmac(chan->device); struct idmac *idmac = to_idmac(chan->device);
unsigned long flags; unsigned long flags;
int i; int i;
/* Only supports DMA_TERMINATE_ALL */
if (cmd != DMA_TERMINATE_ALL)
return -ENXIO;
ipu_disable_channel(idmac, ichan, ipu_disable_channel(idmac, ichan,
ichan->status >= IPU_CHANNEL_ENABLED); ichan->status >= IPU_CHANNEL_ENABLED);
@ -1505,17 +1510,23 @@ static void __idmac_terminate_all(struct dma_chan *chan)
tasklet_enable(&to_ipu(idmac)->tasklet); tasklet_enable(&to_ipu(idmac)->tasklet);
ichan->status = IPU_CHANNEL_INITIALIZED; ichan->status = IPU_CHANNEL_INITIALIZED;
return 0;
} }
static void idmac_terminate_all(struct dma_chan *chan) static int idmac_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
unsigned long arg)
{ {
struct idmac_channel *ichan = to_idmac_chan(chan); struct idmac_channel *ichan = to_idmac_chan(chan);
int ret;
mutex_lock(&ichan->chan_mutex); mutex_lock(&ichan->chan_mutex);
__idmac_terminate_all(chan); ret = __idmac_control(chan, cmd, arg);
mutex_unlock(&ichan->chan_mutex); mutex_unlock(&ichan->chan_mutex);
return ret;
} }
#ifdef DEBUG #ifdef DEBUG
@ -1607,7 +1618,7 @@ static void idmac_free_chan_resources(struct dma_chan *chan)
mutex_lock(&ichan->chan_mutex); mutex_lock(&ichan->chan_mutex);
__idmac_terminate_all(chan); __idmac_control(chan, DMA_TERMINATE_ALL, 0);
if (ichan->status > IPU_CHANNEL_FREE) { if (ichan->status > IPU_CHANNEL_FREE) {
#ifdef DEBUG #ifdef DEBUG
@ -1637,15 +1648,12 @@ static void idmac_free_chan_resources(struct dma_chan *chan)
tasklet_schedule(&to_ipu(idmac)->tasklet); tasklet_schedule(&to_ipu(idmac)->tasklet);
} }
static enum dma_status idmac_is_tx_complete(struct dma_chan *chan, static enum dma_status idmac_tx_status(struct dma_chan *chan,
dma_cookie_t cookie, dma_cookie_t *done, dma_cookie_t *used) dma_cookie_t cookie, struct dma_tx_state *txstate)
{ {
struct idmac_channel *ichan = to_idmac_chan(chan); struct idmac_channel *ichan = to_idmac_chan(chan);
if (done) dma_set_tx_state(txstate, ichan->completed, chan->cookie, 0);
*done = ichan->completed;
if (used)
*used = chan->cookie;
if (cookie != chan->cookie) if (cookie != chan->cookie)
return DMA_ERROR; return DMA_ERROR;
return DMA_SUCCESS; return DMA_SUCCESS;
@ -1664,12 +1672,12 @@ static int __init ipu_idmac_init(struct ipu *ipu)
dma->dev = ipu->dev; dma->dev = ipu->dev;
dma->device_alloc_chan_resources = idmac_alloc_chan_resources; dma->device_alloc_chan_resources = idmac_alloc_chan_resources;
dma->device_free_chan_resources = idmac_free_chan_resources; dma->device_free_chan_resources = idmac_free_chan_resources;
dma->device_is_tx_complete = idmac_is_tx_complete; dma->device_tx_status = idmac_tx_status;
dma->device_issue_pending = idmac_issue_pending; dma->device_issue_pending = idmac_issue_pending;
/* Compulsory for DMA_SLAVE fields */ /* Compulsory for DMA_SLAVE fields */
dma->device_prep_slave_sg = idmac_prep_slave_sg; dma->device_prep_slave_sg = idmac_prep_slave_sg;
dma->device_terminate_all = idmac_terminate_all; dma->device_control = idmac_control;
INIT_LIST_HEAD(&dma->channels); INIT_LIST_HEAD(&dma->channels);
for (i = 0; i < IPU_CHANNELS_NUM; i++) { for (i = 0; i < IPU_CHANNELS_NUM; i++) {
@ -1703,7 +1711,7 @@ static void __exit ipu_idmac_exit(struct ipu *ipu)
for (i = 0; i < IPU_CHANNELS_NUM; i++) { for (i = 0; i < IPU_CHANNELS_NUM; i++) {
struct idmac_channel *ichan = ipu->channel + i; struct idmac_channel *ichan = ipu->channel + i;
idmac_terminate_all(&ichan->dma_chan); idmac_control(&ichan->dma_chan, DMA_TERMINATE_ALL, 0);
idmac_prep_slave_sg(&ichan->dma_chan, NULL, 0, DMA_NONE, 0); idmac_prep_slave_sg(&ichan->dma_chan, NULL, 0, DMA_NONE, 0);
} }

View File

@ -541,8 +541,8 @@ static void mpc_dma_issue_pending(struct dma_chan *chan)
/* Check request completion status */ /* Check request completion status */
static enum dma_status static enum dma_status
mpc_dma_is_tx_complete(struct dma_chan *chan, dma_cookie_t cookie, mpc_dma_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
dma_cookie_t *done, dma_cookie_t *used) struct dma_tx_state *txstate)
{ {
struct mpc_dma_chan *mchan = dma_chan_to_mpc_dma_chan(chan); struct mpc_dma_chan *mchan = dma_chan_to_mpc_dma_chan(chan);
unsigned long flags; unsigned long flags;
@ -554,12 +554,7 @@ mpc_dma_is_tx_complete(struct dma_chan *chan, dma_cookie_t cookie,
last_complete = mchan->completed_cookie; last_complete = mchan->completed_cookie;
spin_unlock_irqrestore(&mchan->lock, flags); spin_unlock_irqrestore(&mchan->lock, flags);
if (done) dma_set_tx_state(txstate, last_complete, last_used, 0);
*done = last_complete;
if (used)
*used = last_used;
return dma_async_is_complete(cookie, last_complete, last_used); return dma_async_is_complete(cookie, last_complete, last_used);
} }
@ -663,7 +658,7 @@ static int __devinit mpc_dma_probe(struct of_device *op,
} }
regs_start = res.start; regs_start = res.start;
regs_size = res.end - res.start + 1; regs_size = resource_size(&res);
if (!devm_request_mem_region(dev, regs_start, regs_size, DRV_NAME)) { if (!devm_request_mem_region(dev, regs_start, regs_size, DRV_NAME)) {
dev_err(dev, "Error requesting memory region!\n"); dev_err(dev, "Error requesting memory region!\n");
@ -694,7 +689,7 @@ static int __devinit mpc_dma_probe(struct of_device *op,
dma->device_alloc_chan_resources = mpc_dma_alloc_chan_resources; dma->device_alloc_chan_resources = mpc_dma_alloc_chan_resources;
dma->device_free_chan_resources = mpc_dma_free_chan_resources; dma->device_free_chan_resources = mpc_dma_free_chan_resources;
dma->device_issue_pending = mpc_dma_issue_pending; dma->device_issue_pending = mpc_dma_issue_pending;
dma->device_is_tx_complete = mpc_dma_is_tx_complete; dma->device_tx_status = mpc_dma_tx_status;
dma->device_prep_dma_memcpy = mpc_dma_prep_memcpy; dma->device_prep_dma_memcpy = mpc_dma_prep_memcpy;
INIT_LIST_HEAD(&dma->channels); INIT_LIST_HEAD(&dma->channels);

View File

@ -810,14 +810,14 @@ static void mv_xor_free_chan_resources(struct dma_chan *chan)
} }
/** /**
* mv_xor_is_complete - poll the status of an XOR transaction * mv_xor_status - poll the status of an XOR transaction
* @chan: XOR channel handle * @chan: XOR channel handle
* @cookie: XOR transaction identifier * @cookie: XOR transaction identifier
* @txstate: XOR transactions state holder (or NULL)
*/ */
static enum dma_status mv_xor_is_complete(struct dma_chan *chan, static enum dma_status mv_xor_status(struct dma_chan *chan,
dma_cookie_t cookie, dma_cookie_t cookie,
dma_cookie_t *done, struct dma_tx_state *txstate)
dma_cookie_t *used)
{ {
struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan); struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
dma_cookie_t last_used; dma_cookie_t last_used;
@ -827,10 +827,7 @@ static enum dma_status mv_xor_is_complete(struct dma_chan *chan,
last_used = chan->cookie; last_used = chan->cookie;
last_complete = mv_chan->completed_cookie; last_complete = mv_chan->completed_cookie;
mv_chan->is_complete_cookie = cookie; mv_chan->is_complete_cookie = cookie;
if (done) dma_set_tx_state(txstate, last_complete, last_used, 0);
*done = last_complete;
if (used)
*used = last_used;
ret = dma_async_is_complete(cookie, last_complete, last_used); ret = dma_async_is_complete(cookie, last_complete, last_used);
if (ret == DMA_SUCCESS) { if (ret == DMA_SUCCESS) {
@ -842,11 +839,7 @@ static enum dma_status mv_xor_is_complete(struct dma_chan *chan,
last_used = chan->cookie; last_used = chan->cookie;
last_complete = mv_chan->completed_cookie; last_complete = mv_chan->completed_cookie;
if (done) dma_set_tx_state(txstate, last_complete, last_used, 0);
*done = last_complete;
if (used)
*used = last_used;
return dma_async_is_complete(cookie, last_complete, last_used); return dma_async_is_complete(cookie, last_complete, last_used);
} }
@ -975,7 +968,7 @@ static int __devinit mv_xor_memcpy_self_test(struct mv_xor_device *device)
async_tx_ack(tx); async_tx_ack(tx);
msleep(1); msleep(1);
if (mv_xor_is_complete(dma_chan, cookie, NULL, NULL) != if (mv_xor_status(dma_chan, cookie, NULL) !=
DMA_SUCCESS) { DMA_SUCCESS) {
dev_printk(KERN_ERR, dma_chan->device->dev, dev_printk(KERN_ERR, dma_chan->device->dev,
"Self-test copy timed out, disabling\n"); "Self-test copy timed out, disabling\n");
@ -1073,7 +1066,7 @@ mv_xor_xor_self_test(struct mv_xor_device *device)
async_tx_ack(tx); async_tx_ack(tx);
msleep(8); msleep(8);
if (mv_xor_is_complete(dma_chan, cookie, NULL, NULL) != if (mv_xor_status(dma_chan, cookie, NULL) !=
DMA_SUCCESS) { DMA_SUCCESS) {
dev_printk(KERN_ERR, dma_chan->device->dev, dev_printk(KERN_ERR, dma_chan->device->dev,
"Self-test xor timed out, disabling\n"); "Self-test xor timed out, disabling\n");
@ -1168,7 +1161,7 @@ static int __devinit mv_xor_probe(struct platform_device *pdev)
/* set base routines */ /* set base routines */
dma_dev->device_alloc_chan_resources = mv_xor_alloc_chan_resources; dma_dev->device_alloc_chan_resources = mv_xor_alloc_chan_resources;
dma_dev->device_free_chan_resources = mv_xor_free_chan_resources; dma_dev->device_free_chan_resources = mv_xor_free_chan_resources;
dma_dev->device_is_tx_complete = mv_xor_is_complete; dma_dev->device_tx_status = mv_xor_status;
dma_dev->device_issue_pending = mv_xor_issue_pending; dma_dev->device_issue_pending = mv_xor_issue_pending;
dma_dev->dev = &pdev->dev; dma_dev->dev = &pdev->dev;

View File

@ -3935,12 +3935,13 @@ static void ppc440spe_adma_free_chan_resources(struct dma_chan *chan)
} }
/** /**
* ppc440spe_adma_is_complete - poll the status of an ADMA transaction * ppc440spe_adma_tx_status - poll the status of an ADMA transaction
* @chan: ADMA channel handle * @chan: ADMA channel handle
* @cookie: ADMA transaction identifier * @cookie: ADMA transaction identifier
* @txstate: a holder for the current state of the channel
*/ */
static enum dma_status ppc440spe_adma_is_complete(struct dma_chan *chan, static enum dma_status ppc440spe_adma_tx_status(struct dma_chan *chan,
dma_cookie_t cookie, dma_cookie_t *done, dma_cookie_t *used) dma_cookie_t cookie, struct dma_tx_state *txstate)
{ {
struct ppc440spe_adma_chan *ppc440spe_chan; struct ppc440spe_adma_chan *ppc440spe_chan;
dma_cookie_t last_used; dma_cookie_t last_used;
@ -3951,10 +3952,7 @@ static enum dma_status ppc440spe_adma_is_complete(struct dma_chan *chan,
last_used = chan->cookie; last_used = chan->cookie;
last_complete = ppc440spe_chan->completed_cookie; last_complete = ppc440spe_chan->completed_cookie;
if (done) dma_set_tx_state(txstate, last_complete, last_used, 0);
*done = last_complete;
if (used)
*used = last_used;
ret = dma_async_is_complete(cookie, last_complete, last_used); ret = dma_async_is_complete(cookie, last_complete, last_used);
if (ret == DMA_SUCCESS) if (ret == DMA_SUCCESS)
@ -3965,10 +3963,7 @@ static enum dma_status ppc440spe_adma_is_complete(struct dma_chan *chan,
last_used = chan->cookie; last_used = chan->cookie;
last_complete = ppc440spe_chan->completed_cookie; last_complete = ppc440spe_chan->completed_cookie;
if (done) dma_set_tx_state(txstate, last_complete, last_used, 0);
*done = last_complete;
if (used)
*used = last_used;
return dma_async_is_complete(cookie, last_complete, last_used); return dma_async_is_complete(cookie, last_complete, last_used);
} }
@ -4180,7 +4175,7 @@ static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device *adev)
ppc440spe_adma_alloc_chan_resources; ppc440spe_adma_alloc_chan_resources;
adev->common.device_free_chan_resources = adev->common.device_free_chan_resources =
ppc440spe_adma_free_chan_resources; ppc440spe_adma_free_chan_resources;
adev->common.device_is_tx_complete = ppc440spe_adma_is_complete; adev->common.device_tx_status = ppc440spe_adma_tx_status;
adev->common.device_issue_pending = ppc440spe_adma_issue_pending; adev->common.device_issue_pending = ppc440spe_adma_issue_pending;
/* Set prep routines based on capability */ /* Set prep routines based on capability */

View File

@ -597,12 +597,17 @@ static struct dma_async_tx_descriptor *sh_dmae_prep_slave_sg(
direction, flags); direction, flags);
} }
static void sh_dmae_terminate_all(struct dma_chan *chan) static int sh_dmae_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
unsigned long arg)
{ {
struct sh_dmae_chan *sh_chan = to_sh_chan(chan); struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
/* Only supports DMA_TERMINATE_ALL */
if (cmd != DMA_TERMINATE_ALL)
return -ENXIO;
if (!chan) if (!chan)
return; return -EINVAL;
dmae_halt(sh_chan); dmae_halt(sh_chan);
@ -618,6 +623,8 @@ static void sh_dmae_terminate_all(struct dma_chan *chan)
spin_unlock_bh(&sh_chan->desc_lock); spin_unlock_bh(&sh_chan->desc_lock);
sh_dmae_chan_ld_cleanup(sh_chan, true); sh_dmae_chan_ld_cleanup(sh_chan, true);
return 0;
} }
static dma_async_tx_callback __ld_cleanup(struct sh_dmae_chan *sh_chan, bool all) static dma_async_tx_callback __ld_cleanup(struct sh_dmae_chan *sh_chan, bool all)
@ -749,10 +756,9 @@ static void sh_dmae_memcpy_issue_pending(struct dma_chan *chan)
sh_chan_xfer_ld_queue(sh_chan); sh_chan_xfer_ld_queue(sh_chan);
} }
static enum dma_status sh_dmae_is_complete(struct dma_chan *chan, static enum dma_status sh_dmae_tx_status(struct dma_chan *chan,
dma_cookie_t cookie, dma_cookie_t cookie,
dma_cookie_t *done, struct dma_tx_state *txstate)
dma_cookie_t *used)
{ {
struct sh_dmae_chan *sh_chan = to_sh_chan(chan); struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
dma_cookie_t last_used; dma_cookie_t last_used;
@ -764,12 +770,7 @@ static enum dma_status sh_dmae_is_complete(struct dma_chan *chan,
last_used = chan->cookie; last_used = chan->cookie;
last_complete = sh_chan->completed_cookie; last_complete = sh_chan->completed_cookie;
BUG_ON(last_complete < 0); BUG_ON(last_complete < 0);
dma_set_tx_state(txstate, last_complete, last_used, 0);
if (done)
*done = last_complete;
if (used)
*used = last_used;
spin_lock_bh(&sh_chan->desc_lock); spin_lock_bh(&sh_chan->desc_lock);
@ -1041,12 +1042,12 @@ static int __init sh_dmae_probe(struct platform_device *pdev)
= sh_dmae_alloc_chan_resources; = sh_dmae_alloc_chan_resources;
shdev->common.device_free_chan_resources = sh_dmae_free_chan_resources; shdev->common.device_free_chan_resources = sh_dmae_free_chan_resources;
shdev->common.device_prep_dma_memcpy = sh_dmae_prep_memcpy; shdev->common.device_prep_dma_memcpy = sh_dmae_prep_memcpy;
shdev->common.device_is_tx_complete = sh_dmae_is_complete; shdev->common.device_tx_status = sh_dmae_tx_status;
shdev->common.device_issue_pending = sh_dmae_memcpy_issue_pending; shdev->common.device_issue_pending = sh_dmae_memcpy_issue_pending;
/* Compulsory for DMA_SLAVE fields */ /* Compulsory for DMA_SLAVE fields */
shdev->common.device_prep_slave_sg = sh_dmae_prep_slave_sg; shdev->common.device_prep_slave_sg = sh_dmae_prep_slave_sg;
shdev->common.device_terminate_all = sh_dmae_terminate_all; shdev->common.device_control = sh_dmae_control;
shdev->common.dev = &pdev->dev; shdev->common.dev = &pdev->dev;
/* Default transfer size of 32 bytes requires 32-byte alignment */ /* Default transfer size of 32 bytes requires 32-byte alignment */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,454 @@
/*
* driver/dma/ste_dma40_ll.c
*
* Copyright (C) ST-Ericsson 2007-2010
* License terms: GNU General Public License (GPL) version 2
* Author: Per Friden <per.friden@stericsson.com>
* Author: Jonas Aaberg <jonas.aberg@stericsson.com>
*/
#include <linux/kernel.h>
#include <plat/ste_dma40.h>
#include "ste_dma40_ll.h"
/* Sets up proper LCSP1 and LCSP3 register for a logical channel */
void d40_log_cfg(struct stedma40_chan_cfg *cfg,
u32 *lcsp1, u32 *lcsp3)
{
u32 l3 = 0; /* dst */
u32 l1 = 0; /* src */
/* src is mem? -> increase address pos */
if (cfg->dir == STEDMA40_MEM_TO_PERIPH ||
cfg->dir == STEDMA40_MEM_TO_MEM)
l1 |= 1 << D40_MEM_LCSP1_SCFG_INCR_POS;
/* dst is mem? -> increase address pos */
if (cfg->dir == STEDMA40_PERIPH_TO_MEM ||
cfg->dir == STEDMA40_MEM_TO_MEM)
l3 |= 1 << D40_MEM_LCSP3_DCFG_INCR_POS;
/* src is hw? -> master port 1 */
if (cfg->dir == STEDMA40_PERIPH_TO_MEM ||
cfg->dir == STEDMA40_PERIPH_TO_PERIPH)
l1 |= 1 << D40_MEM_LCSP1_SCFG_MST_POS;
/* dst is hw? -> master port 1 */
if (cfg->dir == STEDMA40_MEM_TO_PERIPH ||
cfg->dir == STEDMA40_PERIPH_TO_PERIPH)
l3 |= 1 << D40_MEM_LCSP3_DCFG_MST_POS;
l3 |= 1 << D40_MEM_LCSP3_DCFG_TIM_POS;
l3 |= 1 << D40_MEM_LCSP3_DCFG_EIM_POS;
l3 |= cfg->dst_info.psize << D40_MEM_LCSP3_DCFG_PSIZE_POS;
l3 |= cfg->dst_info.data_width << D40_MEM_LCSP3_DCFG_ESIZE_POS;
l3 |= 1 << D40_MEM_LCSP3_DTCP_POS;
l1 |= 1 << D40_MEM_LCSP1_SCFG_EIM_POS;
l1 |= cfg->src_info.psize << D40_MEM_LCSP1_SCFG_PSIZE_POS;
l1 |= cfg->src_info.data_width << D40_MEM_LCSP1_SCFG_ESIZE_POS;
l1 |= 1 << D40_MEM_LCSP1_STCP_POS;
*lcsp1 = l1;
*lcsp3 = l3;
}
/* Sets up SRC and DST CFG register for both logical and physical channels */
void d40_phy_cfg(struct stedma40_chan_cfg *cfg,
u32 *src_cfg, u32 *dst_cfg, bool is_log)
{
u32 src = 0;
u32 dst = 0;
if (!is_log) {
/* Physical channel */
if ((cfg->dir == STEDMA40_PERIPH_TO_MEM) ||
(cfg->dir == STEDMA40_PERIPH_TO_PERIPH)) {
/* Set master port to 1 */
src |= 1 << D40_SREG_CFG_MST_POS;
src |= D40_TYPE_TO_EVENT(cfg->src_dev_type);
if (cfg->src_info.flow_ctrl == STEDMA40_NO_FLOW_CTRL)
src |= 1 << D40_SREG_CFG_PHY_TM_POS;
else
src |= 3 << D40_SREG_CFG_PHY_TM_POS;
}
if ((cfg->dir == STEDMA40_MEM_TO_PERIPH) ||
(cfg->dir == STEDMA40_PERIPH_TO_PERIPH)) {
/* Set master port to 1 */
dst |= 1 << D40_SREG_CFG_MST_POS;
dst |= D40_TYPE_TO_EVENT(cfg->dst_dev_type);
if (cfg->dst_info.flow_ctrl == STEDMA40_NO_FLOW_CTRL)
dst |= 1 << D40_SREG_CFG_PHY_TM_POS;
else
dst |= 3 << D40_SREG_CFG_PHY_TM_POS;
}
/* Interrupt on end of transfer for destination */
dst |= 1 << D40_SREG_CFG_TIM_POS;
/* Generate interrupt on error */
src |= 1 << D40_SREG_CFG_EIM_POS;
dst |= 1 << D40_SREG_CFG_EIM_POS;
/* PSIZE */
if (cfg->src_info.psize != STEDMA40_PSIZE_PHY_1) {
src |= 1 << D40_SREG_CFG_PHY_PEN_POS;
src |= cfg->src_info.psize << D40_SREG_CFG_PSIZE_POS;
}
if (cfg->dst_info.psize != STEDMA40_PSIZE_PHY_1) {
dst |= 1 << D40_SREG_CFG_PHY_PEN_POS;
dst |= cfg->dst_info.psize << D40_SREG_CFG_PSIZE_POS;
}
/* Element size */
src |= cfg->src_info.data_width << D40_SREG_CFG_ESIZE_POS;
dst |= cfg->dst_info.data_width << D40_SREG_CFG_ESIZE_POS;
} else {
/* Logical channel */
dst |= 1 << D40_SREG_CFG_LOG_GIM_POS;
src |= 1 << D40_SREG_CFG_LOG_GIM_POS;
}
if (cfg->channel_type & STEDMA40_HIGH_PRIORITY_CHANNEL) {
src |= 1 << D40_SREG_CFG_PRI_POS;
dst |= 1 << D40_SREG_CFG_PRI_POS;
}
src |= cfg->src_info.endianess << D40_SREG_CFG_LBE_POS;
dst |= cfg->dst_info.endianess << D40_SREG_CFG_LBE_POS;
*src_cfg = src;
*dst_cfg = dst;
}
int d40_phy_fill_lli(struct d40_phy_lli *lli,
dma_addr_t data,
u32 data_size,
int psize,
dma_addr_t next_lli,
u32 reg_cfg,
bool term_int,
u32 data_width,
bool is_device)
{
int num_elems;
if (psize == STEDMA40_PSIZE_PHY_1)
num_elems = 1;
else
num_elems = 2 << psize;
/*
* Size is 16bit. data_width is 8, 16, 32 or 64 bit
* Block large than 64 KiB must be split.
*/
if (data_size > (0xffff << data_width))
return -EINVAL;
/* Must be aligned */
if (!IS_ALIGNED(data, 0x1 << data_width))
return -EINVAL;
/* Transfer size can't be smaller than (num_elms * elem_size) */
if (data_size < num_elems * (0x1 << data_width))
return -EINVAL;
/* The number of elements. IE now many chunks */
lli->reg_elt = (data_size >> data_width) << D40_SREG_ELEM_PHY_ECNT_POS;
/*
* Distance to next element sized entry.
* Usually the size of the element unless you want gaps.
*/
if (!is_device)
lli->reg_elt |= (0x1 << data_width) <<
D40_SREG_ELEM_PHY_EIDX_POS;
/* Where the data is */
lli->reg_ptr = data;
lli->reg_cfg = reg_cfg;
/* If this scatter list entry is the last one, no next link */
if (next_lli == 0)
lli->reg_lnk = 0x1 << D40_SREG_LNK_PHY_TCP_POS;
else
lli->reg_lnk = next_lli;
/* Set/clear interrupt generation on this link item.*/
if (term_int)
lli->reg_cfg |= 0x1 << D40_SREG_CFG_TIM_POS;
else
lli->reg_cfg &= ~(0x1 << D40_SREG_CFG_TIM_POS);
/* Post link */
lli->reg_lnk |= 0 << D40_SREG_LNK_PHY_PRE_POS;
return 0;
}
int d40_phy_sg_to_lli(struct scatterlist *sg,
int sg_len,
dma_addr_t target,
struct d40_phy_lli *lli,
dma_addr_t lli_phys,
u32 reg_cfg,
u32 data_width,
int psize,
bool term_int)
{
int total_size = 0;
int i;
struct scatterlist *current_sg = sg;
dma_addr_t next_lli_phys;
dma_addr_t dst;
int err = 0;
for_each_sg(sg, current_sg, sg_len, i) {
total_size += sg_dma_len(current_sg);
/* If this scatter list entry is the last one, no next link */
if (sg_len - 1 == i)
next_lli_phys = 0;
else
next_lli_phys = ALIGN(lli_phys + (i + 1) *
sizeof(struct d40_phy_lli),
D40_LLI_ALIGN);
if (target)
dst = target;
else
dst = sg_phys(current_sg);
err = d40_phy_fill_lli(&lli[i],
dst,
sg_dma_len(current_sg),
psize,
next_lli_phys,
reg_cfg,
!next_lli_phys,
data_width,
target == dst);
if (err)
goto err;
}
return total_size;
err:
return err;
}
void d40_phy_lli_write(void __iomem *virtbase,
u32 phy_chan_num,
struct d40_phy_lli *lli_dst,
struct d40_phy_lli *lli_src)
{
writel(lli_src->reg_cfg, virtbase + D40_DREG_PCBASE +
phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SSCFG);
writel(lli_src->reg_elt, virtbase + D40_DREG_PCBASE +
phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SSELT);
writel(lli_src->reg_ptr, virtbase + D40_DREG_PCBASE +
phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SSPTR);
writel(lli_src->reg_lnk, virtbase + D40_DREG_PCBASE +
phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SSLNK);
writel(lli_dst->reg_cfg, virtbase + D40_DREG_PCBASE +
phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SDCFG);
writel(lli_dst->reg_elt, virtbase + D40_DREG_PCBASE +
phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SDELT);
writel(lli_dst->reg_ptr, virtbase + D40_DREG_PCBASE +
phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SDPTR);
writel(lli_dst->reg_lnk, virtbase + D40_DREG_PCBASE +
phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SDLNK);
}
/* DMA logical lli operations */
void d40_log_fill_lli(struct d40_log_lli *lli,
dma_addr_t data, u32 data_size,
u32 lli_next_off, u32 reg_cfg,
u32 data_width,
bool term_int, bool addr_inc)
{
lli->lcsp13 = reg_cfg;
/* The number of elements to transfer */
lli->lcsp02 = ((data_size >> data_width) <<
D40_MEM_LCSP0_ECNT_POS) & D40_MEM_LCSP0_ECNT_MASK;
/* 16 LSBs address of the current element */
lli->lcsp02 |= data & D40_MEM_LCSP0_SPTR_MASK;
/* 16 MSBs address of the current element */
lli->lcsp13 |= data & D40_MEM_LCSP1_SPTR_MASK;
if (addr_inc)
lli->lcsp13 |= D40_MEM_LCSP1_SCFG_INCR_MASK;
lli->lcsp13 |= D40_MEM_LCSP3_DTCP_MASK;
/* If this scatter list entry is the last one, no next link */
lli->lcsp13 |= (lli_next_off << D40_MEM_LCSP1_SLOS_POS) &
D40_MEM_LCSP1_SLOS_MASK;
if (term_int)
lli->lcsp13 |= D40_MEM_LCSP1_SCFG_TIM_MASK;
else
lli->lcsp13 &= ~D40_MEM_LCSP1_SCFG_TIM_MASK;
}
int d40_log_sg_to_dev(struct d40_lcla_elem *lcla,
struct scatterlist *sg,
int sg_len,
struct d40_log_lli_bidir *lli,
struct d40_def_lcsp *lcsp,
u32 src_data_width,
u32 dst_data_width,
enum dma_data_direction direction,
bool term_int, dma_addr_t dev_addr, int max_len,
int llis_per_log)
{
int total_size = 0;
struct scatterlist *current_sg = sg;
int i;
u32 next_lli_off_dst;
u32 next_lli_off_src;
next_lli_off_src = 0;
next_lli_off_dst = 0;
for_each_sg(sg, current_sg, sg_len, i) {
total_size += sg_dma_len(current_sg);
/*
* If this scatter list entry is the last one or
* max length, terminate link.
*/
if (sg_len - 1 == i || ((i+1) % max_len == 0)) {
next_lli_off_src = 0;
next_lli_off_dst = 0;
} else {
if (next_lli_off_dst == 0 &&
next_lli_off_src == 0) {
/* The first lli will be at next_lli_off */
next_lli_off_dst = (lcla->dst_id *
llis_per_log + 1);
next_lli_off_src = (lcla->src_id *
llis_per_log + 1);
} else {
next_lli_off_dst++;
next_lli_off_src++;
}
}
if (direction == DMA_TO_DEVICE) {
d40_log_fill_lli(&lli->src[i],
sg_phys(current_sg),
sg_dma_len(current_sg),
next_lli_off_src,
lcsp->lcsp1, src_data_width,
term_int && !next_lli_off_src,
true);
d40_log_fill_lli(&lli->dst[i],
dev_addr,
sg_dma_len(current_sg),
next_lli_off_dst,
lcsp->lcsp3, dst_data_width,
/* No next == terminal interrupt */
term_int && !next_lli_off_dst,
false);
} else {
d40_log_fill_lli(&lli->dst[i],
sg_phys(current_sg),
sg_dma_len(current_sg),
next_lli_off_dst,
lcsp->lcsp3, dst_data_width,
/* No next == terminal interrupt */
term_int && !next_lli_off_dst,
true);
d40_log_fill_lli(&lli->src[i],
dev_addr,
sg_dma_len(current_sg),
next_lli_off_src,
lcsp->lcsp1, src_data_width,
term_int && !next_lli_off_src,
false);
}
}
return total_size;
}
int d40_log_sg_to_lli(int lcla_id,
struct scatterlist *sg,
int sg_len,
struct d40_log_lli *lli_sg,
u32 lcsp13, /* src or dst*/
u32 data_width,
bool term_int, int max_len, int llis_per_log)
{
int total_size = 0;
struct scatterlist *current_sg = sg;
int i;
u32 next_lli_off = 0;
for_each_sg(sg, current_sg, sg_len, i) {
total_size += sg_dma_len(current_sg);
/*
* If this scatter list entry is the last one or
* max length, terminate link.
*/
if (sg_len - 1 == i || ((i+1) % max_len == 0))
next_lli_off = 0;
else {
if (next_lli_off == 0)
/* The first lli will be at next_lli_off */
next_lli_off = lcla_id * llis_per_log + 1;
else
next_lli_off++;
}
d40_log_fill_lli(&lli_sg[i],
sg_phys(current_sg),
sg_dma_len(current_sg),
next_lli_off,
lcsp13, data_width,
term_int && !next_lli_off,
true);
}
return total_size;
}
void d40_log_lli_write(struct d40_log_lli_full *lcpa,
struct d40_log_lli *lcla_src,
struct d40_log_lli *lcla_dst,
struct d40_log_lli *lli_dst,
struct d40_log_lli *lli_src,
int llis_per_log)
{
u32 slos = 0;
u32 dlos = 0;
int i;
lcpa->lcsp0 = lli_src->lcsp02;
lcpa->lcsp1 = lli_src->lcsp13;
lcpa->lcsp2 = lli_dst->lcsp02;
lcpa->lcsp3 = lli_dst->lcsp13;
slos = lli_src->lcsp13 & D40_MEM_LCSP1_SLOS_MASK;
dlos = lli_dst->lcsp13 & D40_MEM_LCSP3_DLOS_MASK;
for (i = 0; (i < llis_per_log) && slos && dlos; i++) {
writel(lli_src[i+1].lcsp02, &lcla_src[i].lcsp02);
writel(lli_src[i+1].lcsp13, &lcla_src[i].lcsp13);
writel(lli_dst[i+1].lcsp02, &lcla_dst[i].lcsp02);
writel(lli_dst[i+1].lcsp13, &lcla_dst[i].lcsp13);
slos = lli_src[i+1].lcsp13 & D40_MEM_LCSP1_SLOS_MASK;
dlos = lli_dst[i+1].lcsp13 & D40_MEM_LCSP3_DLOS_MASK;
}
}

View File

@ -0,0 +1,354 @@
/*
* driver/dma/ste_dma40_ll.h
*
* Copyright (C) ST-Ericsson 2007-2010
* License terms: GNU General Public License (GPL) version 2
* Author: Per Friden <per.friden@stericsson.com>
* Author: Jonas Aaberg <jonas.aberg@stericsson.com>
*/
#ifndef STE_DMA40_LL_H
#define STE_DMA40_LL_H
#define D40_DREG_PCBASE 0x400
#define D40_DREG_PCDELTA (8 * 4)
#define D40_LLI_ALIGN 16 /* LLI alignment must be 16 bytes. */
#define D40_TYPE_TO_GROUP(type) (type / 16)
#define D40_TYPE_TO_EVENT(type) (type % 16)
/* Most bits of the CFG register are the same in log as in phy mode */
#define D40_SREG_CFG_MST_POS 15
#define D40_SREG_CFG_TIM_POS 14
#define D40_SREG_CFG_EIM_POS 13
#define D40_SREG_CFG_LOG_INCR_POS 12
#define D40_SREG_CFG_PHY_PEN_POS 12
#define D40_SREG_CFG_PSIZE_POS 10
#define D40_SREG_CFG_ESIZE_POS 8
#define D40_SREG_CFG_PRI_POS 7
#define D40_SREG_CFG_LBE_POS 6
#define D40_SREG_CFG_LOG_GIM_POS 5
#define D40_SREG_CFG_LOG_MFU_POS 4
#define D40_SREG_CFG_PHY_TM_POS 4
#define D40_SREG_CFG_PHY_EVTL_POS 0
/* Standard channel parameters - basic mode (element register) */
#define D40_SREG_ELEM_PHY_ECNT_POS 16
#define D40_SREG_ELEM_PHY_EIDX_POS 0
#define D40_SREG_ELEM_PHY_ECNT_MASK (0xFFFF << D40_SREG_ELEM_PHY_ECNT_POS)
/* Standard channel parameters - basic mode (Link register) */
#define D40_SREG_LNK_PHY_TCP_POS 0
#define D40_SREG_LNK_PHY_LMP_POS 1
#define D40_SREG_LNK_PHY_PRE_POS 2
/*
* Source destination link address. Contains the
* 29-bit byte word aligned address of the reload area.
*/
#define D40_SREG_LNK_PHYS_LNK_MASK 0xFFFFFFF8UL
/* Standard basic channel logical mode */
/* Element register */
#define D40_SREG_ELEM_LOG_ECNT_POS 16
#define D40_SREG_ELEM_LOG_LIDX_POS 8
#define D40_SREG_ELEM_LOG_LOS_POS 1
#define D40_SREG_ELEM_LOG_TCP_POS 0
#define D40_SREG_ELEM_LOG_LIDX_MASK (0xFF << D40_SREG_ELEM_LOG_LIDX_POS)
/* Link register */
#define D40_DEACTIVATE_EVENTLINE 0x0
#define D40_ACTIVATE_EVENTLINE 0x1
#define D40_EVENTLINE_POS(i) (2 * i)
#define D40_EVENTLINE_MASK(i) (0x3 << D40_EVENTLINE_POS(i))
/* Standard basic channel logical params in memory */
/* LCSP0 */
#define D40_MEM_LCSP0_ECNT_POS 16
#define D40_MEM_LCSP0_SPTR_POS 0
#define D40_MEM_LCSP0_ECNT_MASK (0xFFFF << D40_MEM_LCSP0_ECNT_POS)
#define D40_MEM_LCSP0_SPTR_MASK (0xFFFF << D40_MEM_LCSP0_SPTR_POS)
/* LCSP1 */
#define D40_MEM_LCSP1_SPTR_POS 16
#define D40_MEM_LCSP1_SCFG_MST_POS 15
#define D40_MEM_LCSP1_SCFG_TIM_POS 14
#define D40_MEM_LCSP1_SCFG_EIM_POS 13
#define D40_MEM_LCSP1_SCFG_INCR_POS 12
#define D40_MEM_LCSP1_SCFG_PSIZE_POS 10
#define D40_MEM_LCSP1_SCFG_ESIZE_POS 8
#define D40_MEM_LCSP1_SLOS_POS 1
#define D40_MEM_LCSP1_STCP_POS 0
#define D40_MEM_LCSP1_SPTR_MASK (0xFFFF << D40_MEM_LCSP1_SPTR_POS)
#define D40_MEM_LCSP1_SCFG_TIM_MASK (0x1 << D40_MEM_LCSP1_SCFG_TIM_POS)
#define D40_MEM_LCSP1_SCFG_INCR_MASK (0x1 << D40_MEM_LCSP1_SCFG_INCR_POS)
#define D40_MEM_LCSP1_SCFG_PSIZE_MASK (0x3 << D40_MEM_LCSP1_SCFG_PSIZE_POS)
#define D40_MEM_LCSP1_SLOS_MASK (0x7F << D40_MEM_LCSP1_SLOS_POS)
#define D40_MEM_LCSP1_STCP_MASK (0x1 << D40_MEM_LCSP1_STCP_POS)
/* LCSP2 */
#define D40_MEM_LCSP2_ECNT_POS 16
#define D40_MEM_LCSP2_ECNT_MASK (0xFFFF << D40_MEM_LCSP2_ECNT_POS)
/* LCSP3 */
#define D40_MEM_LCSP3_DCFG_MST_POS 15
#define D40_MEM_LCSP3_DCFG_TIM_POS 14
#define D40_MEM_LCSP3_DCFG_EIM_POS 13
#define D40_MEM_LCSP3_DCFG_INCR_POS 12
#define D40_MEM_LCSP3_DCFG_PSIZE_POS 10
#define D40_MEM_LCSP3_DCFG_ESIZE_POS 8
#define D40_MEM_LCSP3_DLOS_POS 1
#define D40_MEM_LCSP3_DTCP_POS 0
#define D40_MEM_LCSP3_DLOS_MASK (0x7F << D40_MEM_LCSP3_DLOS_POS)
#define D40_MEM_LCSP3_DTCP_MASK (0x1 << D40_MEM_LCSP3_DTCP_POS)
/* Standard channel parameter register offsets */
#define D40_CHAN_REG_SSCFG 0x00
#define D40_CHAN_REG_SSELT 0x04
#define D40_CHAN_REG_SSPTR 0x08
#define D40_CHAN_REG_SSLNK 0x0C
#define D40_CHAN_REG_SDCFG 0x10
#define D40_CHAN_REG_SDELT 0x14
#define D40_CHAN_REG_SDPTR 0x18
#define D40_CHAN_REG_SDLNK 0x1C
/* DMA Register Offsets */
#define D40_DREG_GCC 0x000
#define D40_DREG_PRTYP 0x004
#define D40_DREG_PRSME 0x008
#define D40_DREG_PRSMO 0x00C
#define D40_DREG_PRMSE 0x010
#define D40_DREG_PRMSO 0x014
#define D40_DREG_PRMOE 0x018
#define D40_DREG_PRMOO 0x01C
#define D40_DREG_LCPA 0x020
#define D40_DREG_LCLA 0x024
#define D40_DREG_ACTIVE 0x050
#define D40_DREG_ACTIVO 0x054
#define D40_DREG_FSEB1 0x058
#define D40_DREG_FSEB2 0x05C
#define D40_DREG_PCMIS 0x060
#define D40_DREG_PCICR 0x064
#define D40_DREG_PCTIS 0x068
#define D40_DREG_PCEIS 0x06C
#define D40_DREG_LCMIS0 0x080
#define D40_DREG_LCMIS1 0x084
#define D40_DREG_LCMIS2 0x088
#define D40_DREG_LCMIS3 0x08C
#define D40_DREG_LCICR0 0x090
#define D40_DREG_LCICR1 0x094
#define D40_DREG_LCICR2 0x098
#define D40_DREG_LCICR3 0x09C
#define D40_DREG_LCTIS0 0x0A0
#define D40_DREG_LCTIS1 0x0A4
#define D40_DREG_LCTIS2 0x0A8
#define D40_DREG_LCTIS3 0x0AC
#define D40_DREG_LCEIS0 0x0B0
#define D40_DREG_LCEIS1 0x0B4
#define D40_DREG_LCEIS2 0x0B8
#define D40_DREG_LCEIS3 0x0BC
#define D40_DREG_STFU 0xFC8
#define D40_DREG_ICFG 0xFCC
#define D40_DREG_PERIPHID0 0xFE0
#define D40_DREG_PERIPHID1 0xFE4
#define D40_DREG_PERIPHID2 0xFE8
#define D40_DREG_PERIPHID3 0xFEC
#define D40_DREG_CELLID0 0xFF0
#define D40_DREG_CELLID1 0xFF4
#define D40_DREG_CELLID2 0xFF8
#define D40_DREG_CELLID3 0xFFC
/* LLI related structures */
/**
* struct d40_phy_lli - The basic configration register for each physical
* channel.
*
* @reg_cfg: The configuration register.
* @reg_elt: The element register.
* @reg_ptr: The pointer register.
* @reg_lnk: The link register.
*
* These registers are set up for both physical and logical transfers
* Note that the bit in each register means differently in logical and
* physical(standard) mode.
*
* This struct must be 16 bytes aligned, and only contain physical registers
* since it will be directly accessed by the DMA.
*/
struct d40_phy_lli {
u32 reg_cfg;
u32 reg_elt;
u32 reg_ptr;
u32 reg_lnk;
};
/**
* struct d40_phy_lli_bidir - struct for a transfer.
*
* @src: Register settings for src channel.
* @dst: Register settings for dst channel.
* @dst_addr: Physical destination address.
* @src_addr: Physical source address.
*
* All DMA transfers have a source and a destination.
*/
struct d40_phy_lli_bidir {
struct d40_phy_lli *src;
struct d40_phy_lli *dst;
dma_addr_t dst_addr;
dma_addr_t src_addr;
};
/**
* struct d40_log_lli - logical lli configuration
*
* @lcsp02: Either maps to register lcsp0 if src or lcsp2 if dst.
* @lcsp13: Either maps to register lcsp1 if src or lcsp3 if dst.
*
* This struct must be 8 bytes aligned since it will be accessed directy by
* the DMA. Never add any none hw mapped registers to this struct.
*/
struct d40_log_lli {
u32 lcsp02;
u32 lcsp13;
};
/**
* struct d40_log_lli_bidir - For both src and dst
*
* @src: pointer to src lli configuration.
* @dst: pointer to dst lli configuration.
*
* You always have a src and a dst when doing DMA transfers.
*/
struct d40_log_lli_bidir {
struct d40_log_lli *src;
struct d40_log_lli *dst;
};
/**
* struct d40_log_lli_full - LCPA layout
*
* @lcsp0: Logical Channel Standard Param 0 - Src.
* @lcsp1: Logical Channel Standard Param 1 - Src.
* @lcsp2: Logical Channel Standard Param 2 - Dst.
* @lcsp3: Logical Channel Standard Param 3 - Dst.
*
* This struct maps to LCPA physical memory layout. Must map to
* the hw.
*/
struct d40_log_lli_full {
u32 lcsp0;
u32 lcsp1;
u32 lcsp2;
u32 lcsp3;
};
/**
* struct d40_def_lcsp - Default LCSP1 and LCSP3 settings
*
* @lcsp3: The default configuration for dst.
* @lcsp1: The default configuration for src.
*/
struct d40_def_lcsp {
u32 lcsp3;
u32 lcsp1;
};
/**
* struct d40_lcla_elem - Info for one LCA element.
*
* @src_id: logical channel src id
* @dst_id: logical channel dst id
* @src: LCPA formated src parameters
* @dst: LCPA formated dst parameters
*
*/
struct d40_lcla_elem {
int src_id;
int dst_id;
struct d40_log_lli *src;
struct d40_log_lli *dst;
};
/* Physical channels */
void d40_phy_cfg(struct stedma40_chan_cfg *cfg,
u32 *src_cfg, u32 *dst_cfg, bool is_log);
void d40_log_cfg(struct stedma40_chan_cfg *cfg,
u32 *lcsp1, u32 *lcsp2);
int d40_phy_sg_to_lli(struct scatterlist *sg,
int sg_len,
dma_addr_t target,
struct d40_phy_lli *lli,
dma_addr_t lli_phys,
u32 reg_cfg,
u32 data_width,
int psize,
bool term_int);
int d40_phy_fill_lli(struct d40_phy_lli *lli,
dma_addr_t data,
u32 data_size,
int psize,
dma_addr_t next_lli,
u32 reg_cfg,
bool term_int,
u32 data_width,
bool is_device);
void d40_phy_lli_write(void __iomem *virtbase,
u32 phy_chan_num,
struct d40_phy_lli *lli_dst,
struct d40_phy_lli *lli_src);
/* Logical channels */
void d40_log_fill_lli(struct d40_log_lli *lli,
dma_addr_t data, u32 data_size,
u32 lli_next_off, u32 reg_cfg,
u32 data_width,
bool term_int, bool addr_inc);
int d40_log_sg_to_dev(struct d40_lcla_elem *lcla,
struct scatterlist *sg,
int sg_len,
struct d40_log_lli_bidir *lli,
struct d40_def_lcsp *lcsp,
u32 src_data_width,
u32 dst_data_width,
enum dma_data_direction direction,
bool term_int, dma_addr_t dev_addr, int max_len,
int llis_per_log);
void d40_log_lli_write(struct d40_log_lli_full *lcpa,
struct d40_log_lli *lcla_src,
struct d40_log_lli *lcla_dst,
struct d40_log_lli *lli_dst,
struct d40_log_lli *lli_src,
int llis_per_log);
int d40_log_sg_to_lli(int lcla_id,
struct scatterlist *sg,
int sg_len,
struct d40_log_lli *lli_sg,
u32 lcsp13, /* src or dst*/
u32 data_width,
bool term_int, int max_len, int llis_per_log);
#endif /* STE_DMA40_LLI_H */

View File

@ -0,0 +1,860 @@
/*
* timb_dma.c timberdale FPGA DMA driver
* Copyright (c) 2010 Intel Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/* Supports:
* Timberdale FPGA DMA engine
*/
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/timb_dma.h>
#define DRIVER_NAME "timb-dma"
/* Global DMA registers */
#define TIMBDMA_ACR 0x34
#define TIMBDMA_32BIT_ADDR 0x01
#define TIMBDMA_ISR 0x080000
#define TIMBDMA_IPR 0x080004
#define TIMBDMA_IER 0x080008
/* Channel specific registers */
/* RX instances base addresses are 0x00, 0x40, 0x80 ...
* TX instances base addresses are 0x18, 0x58, 0x98 ...
*/
#define TIMBDMA_INSTANCE_OFFSET 0x40
#define TIMBDMA_INSTANCE_TX_OFFSET 0x18
/* RX registers, relative the instance base */
#define TIMBDMA_OFFS_RX_DHAR 0x00
#define TIMBDMA_OFFS_RX_DLAR 0x04
#define TIMBDMA_OFFS_RX_LR 0x0C
#define TIMBDMA_OFFS_RX_BLR 0x10
#define TIMBDMA_OFFS_RX_ER 0x14
#define TIMBDMA_RX_EN 0x01
/* bytes per Row, video specific register
* which is placed after the TX registers...
*/
#define TIMBDMA_OFFS_RX_BPRR 0x30
/* TX registers, relative the instance base */
#define TIMBDMA_OFFS_TX_DHAR 0x00
#define TIMBDMA_OFFS_TX_DLAR 0x04
#define TIMBDMA_OFFS_TX_BLR 0x0C
#define TIMBDMA_OFFS_TX_LR 0x14
#define TIMB_DMA_DESC_SIZE 8
struct timb_dma_desc {
struct list_head desc_node;
struct dma_async_tx_descriptor txd;
u8 *desc_list;
unsigned int desc_list_len;
bool interrupt;
};
struct timb_dma_chan {
struct dma_chan chan;
void __iomem *membase;
spinlock_t lock; /* Used to protect data structures,
especially the lists and descriptors,
from races between the tasklet and calls
from above */
dma_cookie_t last_completed_cookie;
bool ongoing;
struct list_head active_list;
struct list_head queue;
struct list_head free_list;
unsigned int bytes_per_line;
enum dma_data_direction direction;
unsigned int descs; /* Descriptors to allocate */
unsigned int desc_elems; /* number of elems per descriptor */
};
struct timb_dma {
struct dma_device dma;
void __iomem *membase;
struct tasklet_struct tasklet;
struct timb_dma_chan channels[0];
};
static struct device *chan2dev(struct dma_chan *chan)
{
return &chan->dev->device;
}
static struct device *chan2dmadev(struct dma_chan *chan)
{
return chan2dev(chan)->parent->parent;
}
static struct timb_dma *tdchantotd(struct timb_dma_chan *td_chan)
{
int id = td_chan->chan.chan_id;
return (struct timb_dma *)((u8 *)td_chan -
id * sizeof(struct timb_dma_chan) - sizeof(struct timb_dma));
}
/* Must be called with the spinlock held */
static void __td_enable_chan_irq(struct timb_dma_chan *td_chan)
{
int id = td_chan->chan.chan_id;
struct timb_dma *td = tdchantotd(td_chan);
u32 ier;
/* enable interrupt for this channel */
ier = ioread32(td->membase + TIMBDMA_IER);
ier |= 1 << id;
dev_dbg(chan2dev(&td_chan->chan), "Enabling irq: %d, IER: 0x%x\n", id,
ier);
iowrite32(ier, td->membase + TIMBDMA_IER);
}
/* Should be called with the spinlock held */
static bool __td_dma_done_ack(struct timb_dma_chan *td_chan)
{
int id = td_chan->chan.chan_id;
struct timb_dma *td = (struct timb_dma *)((u8 *)td_chan -
id * sizeof(struct timb_dma_chan) - sizeof(struct timb_dma));
u32 isr;
bool done = false;
dev_dbg(chan2dev(&td_chan->chan), "Checking irq: %d, td: %p\n", id, td);
isr = ioread32(td->membase + TIMBDMA_ISR) & (1 << id);
if (isr) {
iowrite32(isr, td->membase + TIMBDMA_ISR);
done = true;
}
return done;
}
static void __td_unmap_desc(struct timb_dma_chan *td_chan, const u8 *dma_desc,
bool single)
{
dma_addr_t addr;
int len;
addr = (dma_desc[7] << 24) | (dma_desc[6] << 16) | (dma_desc[5] << 8) |
dma_desc[4];
len = (dma_desc[3] << 8) | dma_desc[2];
if (single)
dma_unmap_single(chan2dev(&td_chan->chan), addr, len,
td_chan->direction);
else
dma_unmap_page(chan2dev(&td_chan->chan), addr, len,
td_chan->direction);
}
static void __td_unmap_descs(struct timb_dma_desc *td_desc, bool single)
{
struct timb_dma_chan *td_chan = container_of(td_desc->txd.chan,
struct timb_dma_chan, chan);
u8 *descs;
for (descs = td_desc->desc_list; ; descs += TIMB_DMA_DESC_SIZE) {
__td_unmap_desc(td_chan, descs, single);
if (descs[0] & 0x02)
break;
}
}
static int td_fill_desc(struct timb_dma_chan *td_chan, u8 *dma_desc,
struct scatterlist *sg, bool last)
{
if (sg_dma_len(sg) > USHORT_MAX) {
dev_err(chan2dev(&td_chan->chan), "Too big sg element\n");
return -EINVAL;
}
/* length must be word aligned */
if (sg_dma_len(sg) % sizeof(u32)) {
dev_err(chan2dev(&td_chan->chan), "Incorrect length: %d\n",
sg_dma_len(sg));
return -EINVAL;
}
dev_dbg(chan2dev(&td_chan->chan), "desc: %p, addr: %p\n",
dma_desc, (void *)sg_dma_address(sg));
dma_desc[7] = (sg_dma_address(sg) >> 24) & 0xff;
dma_desc[6] = (sg_dma_address(sg) >> 16) & 0xff;
dma_desc[5] = (sg_dma_address(sg) >> 8) & 0xff;
dma_desc[4] = (sg_dma_address(sg) >> 0) & 0xff;
dma_desc[3] = (sg_dma_len(sg) >> 8) & 0xff;
dma_desc[2] = (sg_dma_len(sg) >> 0) & 0xff;
dma_desc[1] = 0x00;
dma_desc[0] = 0x21 | (last ? 0x02 : 0); /* tran, valid */
return 0;
}
/* Must be called with the spinlock held */
static void __td_start_dma(struct timb_dma_chan *td_chan)
{
struct timb_dma_desc *td_desc;
if (td_chan->ongoing) {
dev_err(chan2dev(&td_chan->chan),
"Transfer already ongoing\n");
return;
}
td_desc = list_entry(td_chan->active_list.next, struct timb_dma_desc,
desc_node);
dev_dbg(chan2dev(&td_chan->chan),
"td_chan: %p, chan: %d, membase: %p\n",
td_chan, td_chan->chan.chan_id, td_chan->membase);
if (td_chan->direction == DMA_FROM_DEVICE) {
/* descriptor address */
iowrite32(0, td_chan->membase + TIMBDMA_OFFS_RX_DHAR);
iowrite32(td_desc->txd.phys, td_chan->membase +
TIMBDMA_OFFS_RX_DLAR);
/* Bytes per line */
iowrite32(td_chan->bytes_per_line, td_chan->membase +
TIMBDMA_OFFS_RX_BPRR);
/* enable RX */
iowrite32(TIMBDMA_RX_EN, td_chan->membase + TIMBDMA_OFFS_RX_ER);
} else {
/* address high */
iowrite32(0, td_chan->membase + TIMBDMA_OFFS_TX_DHAR);
iowrite32(td_desc->txd.phys, td_chan->membase +
TIMBDMA_OFFS_TX_DLAR);
}
td_chan->ongoing = true;
if (td_desc->interrupt)
__td_enable_chan_irq(td_chan);
}
static void __td_finish(struct timb_dma_chan *td_chan)
{
dma_async_tx_callback callback;
void *param;
struct dma_async_tx_descriptor *txd;
struct timb_dma_desc *td_desc;
/* can happen if the descriptor is canceled */
if (list_empty(&td_chan->active_list))
return;
td_desc = list_entry(td_chan->active_list.next, struct timb_dma_desc,
desc_node);
txd = &td_desc->txd;
dev_dbg(chan2dev(&td_chan->chan), "descriptor %u complete\n",
txd->cookie);
/* make sure to stop the transfer */
if (td_chan->direction == DMA_FROM_DEVICE)
iowrite32(0, td_chan->membase + TIMBDMA_OFFS_RX_ER);
/* Currently no support for stopping DMA transfers
else
iowrite32(0, td_chan->membase + TIMBDMA_OFFS_TX_DLAR);
*/
td_chan->last_completed_cookie = txd->cookie;
td_chan->ongoing = false;
callback = txd->callback;
param = txd->callback_param;
list_move(&td_desc->desc_node, &td_chan->free_list);
if (!(txd->flags & DMA_COMPL_SKIP_SRC_UNMAP))
__td_unmap_descs(td_desc,
txd->flags & DMA_COMPL_SRC_UNMAP_SINGLE);
/*
* The API requires that no submissions are done from a
* callback, so we don't need to drop the lock here
*/
if (callback)
callback(param);
}
static u32 __td_ier_mask(struct timb_dma *td)
{
int i;
u32 ret = 0;
for (i = 0; i < td->dma.chancnt; i++) {
struct timb_dma_chan *td_chan = td->channels + i;
if (td_chan->ongoing) {
struct timb_dma_desc *td_desc =
list_entry(td_chan->active_list.next,
struct timb_dma_desc, desc_node);
if (td_desc->interrupt)
ret |= 1 << i;
}
}
return ret;
}
static void __td_start_next(struct timb_dma_chan *td_chan)
{
struct timb_dma_desc *td_desc;
BUG_ON(list_empty(&td_chan->queue));
BUG_ON(td_chan->ongoing);
td_desc = list_entry(td_chan->queue.next, struct timb_dma_desc,
desc_node);
dev_dbg(chan2dev(&td_chan->chan), "%s: started %u\n",
__func__, td_desc->txd.cookie);
list_move(&td_desc->desc_node, &td_chan->active_list);
__td_start_dma(td_chan);
}
static dma_cookie_t td_tx_submit(struct dma_async_tx_descriptor *txd)
{
struct timb_dma_desc *td_desc = container_of(txd, struct timb_dma_desc,
txd);
struct timb_dma_chan *td_chan = container_of(txd->chan,
struct timb_dma_chan, chan);
dma_cookie_t cookie;
spin_lock_bh(&td_chan->lock);
cookie = txd->chan->cookie;
if (++cookie < 0)
cookie = 1;
txd->chan->cookie = cookie;
txd->cookie = cookie;
if (list_empty(&td_chan->active_list)) {
dev_dbg(chan2dev(txd->chan), "%s: started %u\n", __func__,
txd->cookie);
list_add_tail(&td_desc->desc_node, &td_chan->active_list);
__td_start_dma(td_chan);
} else {
dev_dbg(chan2dev(txd->chan), "tx_submit: queued %u\n",
txd->cookie);
list_add_tail(&td_desc->desc_node, &td_chan->queue);
}
spin_unlock_bh(&td_chan->lock);
return cookie;
}
static struct timb_dma_desc *td_alloc_init_desc(struct timb_dma_chan *td_chan)
{
struct dma_chan *chan = &td_chan->chan;
struct timb_dma_desc *td_desc;
int err;
td_desc = kzalloc(sizeof(struct timb_dma_desc), GFP_KERNEL);
if (!td_desc) {
dev_err(chan2dev(chan), "Failed to alloc descriptor\n");
goto err;
}
td_desc->desc_list_len = td_chan->desc_elems * TIMB_DMA_DESC_SIZE;
td_desc->desc_list = kzalloc(td_desc->desc_list_len, GFP_KERNEL);
if (!td_desc->desc_list) {
dev_err(chan2dev(chan), "Failed to alloc descriptor\n");
goto err;
}
dma_async_tx_descriptor_init(&td_desc->txd, chan);
td_desc->txd.tx_submit = td_tx_submit;
td_desc->txd.flags = DMA_CTRL_ACK;
td_desc->txd.phys = dma_map_single(chan2dmadev(chan),
td_desc->desc_list, td_desc->desc_list_len, DMA_TO_DEVICE);
err = dma_mapping_error(chan2dmadev(chan), td_desc->txd.phys);
if (err) {
dev_err(chan2dev(chan), "DMA mapping error: %d\n", err);
goto err;
}
return td_desc;
err:
kfree(td_desc->desc_list);
kfree(td_desc);
return NULL;
}
static void td_free_desc(struct timb_dma_desc *td_desc)
{
dev_dbg(chan2dev(td_desc->txd.chan), "Freeing desc: %p\n", td_desc);
dma_unmap_single(chan2dmadev(td_desc->txd.chan), td_desc->txd.phys,
td_desc->desc_list_len, DMA_TO_DEVICE);
kfree(td_desc->desc_list);
kfree(td_desc);
}
static void td_desc_put(struct timb_dma_chan *td_chan,
struct timb_dma_desc *td_desc)
{
dev_dbg(chan2dev(&td_chan->chan), "Putting desc: %p\n", td_desc);
spin_lock_bh(&td_chan->lock);
list_add(&td_desc->desc_node, &td_chan->free_list);
spin_unlock_bh(&td_chan->lock);
}
static struct timb_dma_desc *td_desc_get(struct timb_dma_chan *td_chan)
{
struct timb_dma_desc *td_desc, *_td_desc;
struct timb_dma_desc *ret = NULL;
spin_lock_bh(&td_chan->lock);
list_for_each_entry_safe(td_desc, _td_desc, &td_chan->free_list,
desc_node) {
if (async_tx_test_ack(&td_desc->txd)) {
list_del(&td_desc->desc_node);
ret = td_desc;
break;
}
dev_dbg(chan2dev(&td_chan->chan), "desc %p not ACKed\n",
td_desc);
}
spin_unlock_bh(&td_chan->lock);
return ret;
}
static int td_alloc_chan_resources(struct dma_chan *chan)
{
struct timb_dma_chan *td_chan =
container_of(chan, struct timb_dma_chan, chan);
int i;
dev_dbg(chan2dev(chan), "%s: entry\n", __func__);
BUG_ON(!list_empty(&td_chan->free_list));
for (i = 0; i < td_chan->descs; i++) {
struct timb_dma_desc *td_desc = td_alloc_init_desc(td_chan);
if (!td_desc) {
if (i)
break;
else {
dev_err(chan2dev(chan),
"Couldnt allocate any descriptors\n");
return -ENOMEM;
}
}
td_desc_put(td_chan, td_desc);
}
spin_lock_bh(&td_chan->lock);
td_chan->last_completed_cookie = 1;
chan->cookie = 1;
spin_unlock_bh(&td_chan->lock);
return 0;
}
static void td_free_chan_resources(struct dma_chan *chan)
{
struct timb_dma_chan *td_chan =
container_of(chan, struct timb_dma_chan, chan);
struct timb_dma_desc *td_desc, *_td_desc;
LIST_HEAD(list);
dev_dbg(chan2dev(chan), "%s: Entry\n", __func__);
/* check that all descriptors are free */
BUG_ON(!list_empty(&td_chan->active_list));
BUG_ON(!list_empty(&td_chan->queue));
spin_lock_bh(&td_chan->lock);
list_splice_init(&td_chan->free_list, &list);
spin_unlock_bh(&td_chan->lock);
list_for_each_entry_safe(td_desc, _td_desc, &list, desc_node) {
dev_dbg(chan2dev(chan), "%s: Freeing desc: %p\n", __func__,
td_desc);
td_free_desc(td_desc);
}
}
static enum dma_status td_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
struct timb_dma_chan *td_chan =
container_of(chan, struct timb_dma_chan, chan);
dma_cookie_t last_used;
dma_cookie_t last_complete;
int ret;
dev_dbg(chan2dev(chan), "%s: Entry\n", __func__);
last_complete = td_chan->last_completed_cookie;
last_used = chan->cookie;
ret = dma_async_is_complete(cookie, last_complete, last_used);
dma_set_tx_state(txstate, last_complete, last_used, 0);
dev_dbg(chan2dev(chan),
"%s: exit, ret: %d, last_complete: %d, last_used: %d\n",
__func__, ret, last_complete, last_used);
return ret;
}
static void td_issue_pending(struct dma_chan *chan)
{
struct timb_dma_chan *td_chan =
container_of(chan, struct timb_dma_chan, chan);
dev_dbg(chan2dev(chan), "%s: Entry\n", __func__);
spin_lock_bh(&td_chan->lock);
if (!list_empty(&td_chan->active_list))
/* transfer ongoing */
if (__td_dma_done_ack(td_chan))
__td_finish(td_chan);
if (list_empty(&td_chan->active_list) && !list_empty(&td_chan->queue))
__td_start_next(td_chan);
spin_unlock_bh(&td_chan->lock);
}
static struct dma_async_tx_descriptor *td_prep_slave_sg(struct dma_chan *chan,
struct scatterlist *sgl, unsigned int sg_len,
enum dma_data_direction direction, unsigned long flags)
{
struct timb_dma_chan *td_chan =
container_of(chan, struct timb_dma_chan, chan);
struct timb_dma_desc *td_desc;
struct scatterlist *sg;
unsigned int i;
unsigned int desc_usage = 0;
if (!sgl || !sg_len) {
dev_err(chan2dev(chan), "%s: No SG list\n", __func__);
return NULL;
}
/* even channels are for RX, odd for TX */
if (td_chan->direction != direction) {
dev_err(chan2dev(chan),
"Requesting channel in wrong direction\n");
return NULL;
}
td_desc = td_desc_get(td_chan);
if (!td_desc) {
dev_err(chan2dev(chan), "Not enough descriptors available\n");
return NULL;
}
td_desc->interrupt = (flags & DMA_PREP_INTERRUPT) != 0;
for_each_sg(sgl, sg, sg_len, i) {
int err;
if (desc_usage > td_desc->desc_list_len) {
dev_err(chan2dev(chan), "No descriptor space\n");
return NULL;
}
err = td_fill_desc(td_chan, td_desc->desc_list + desc_usage, sg,
i == (sg_len - 1));
if (err) {
dev_err(chan2dev(chan), "Failed to update desc: %d\n",
err);
td_desc_put(td_chan, td_desc);
return NULL;
}
desc_usage += TIMB_DMA_DESC_SIZE;
}
dma_sync_single_for_device(chan2dmadev(chan), td_desc->txd.phys,
td_desc->desc_list_len, DMA_TO_DEVICE);
return &td_desc->txd;
}
static int td_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
unsigned long arg)
{
struct timb_dma_chan *td_chan =
container_of(chan, struct timb_dma_chan, chan);
struct timb_dma_desc *td_desc, *_td_desc;
dev_dbg(chan2dev(chan), "%s: Entry\n", __func__);
if (cmd != DMA_TERMINATE_ALL)
return -ENXIO;
/* first the easy part, put the queue into the free list */
spin_lock_bh(&td_chan->lock);
list_for_each_entry_safe(td_desc, _td_desc, &td_chan->queue,
desc_node)
list_move(&td_desc->desc_node, &td_chan->free_list);
/* now tear down the runnning */
__td_finish(td_chan);
spin_unlock_bh(&td_chan->lock);
return 0;
}
static void td_tasklet(unsigned long data)
{
struct timb_dma *td = (struct timb_dma *)data;
u32 isr;
u32 ipr;
u32 ier;
int i;
isr = ioread32(td->membase + TIMBDMA_ISR);
ipr = isr & __td_ier_mask(td);
/* ack the interrupts */
iowrite32(ipr, td->membase + TIMBDMA_ISR);
for (i = 0; i < td->dma.chancnt; i++)
if (ipr & (1 << i)) {
struct timb_dma_chan *td_chan = td->channels + i;
spin_lock(&td_chan->lock);
__td_finish(td_chan);
if (!list_empty(&td_chan->queue))
__td_start_next(td_chan);
spin_unlock(&td_chan->lock);
}
ier = __td_ier_mask(td);
iowrite32(ier, td->membase + TIMBDMA_IER);
}
static irqreturn_t td_irq(int irq, void *devid)
{
struct timb_dma *td = devid;
u32 ipr = ioread32(td->membase + TIMBDMA_IPR);
if (ipr) {
/* disable interrupts, will be re-enabled in tasklet */
iowrite32(0, td->membase + TIMBDMA_IER);
tasklet_schedule(&td->tasklet);
return IRQ_HANDLED;
} else
return IRQ_NONE;
}
static int __devinit td_probe(struct platform_device *pdev)
{
struct timb_dma_platform_data *pdata = pdev->dev.platform_data;
struct timb_dma *td;
struct resource *iomem;
int irq;
int err;
int i;
if (!pdata) {
dev_err(&pdev->dev, "No platform data\n");
return -EINVAL;
}
iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!iomem)
return -EINVAL;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
if (!request_mem_region(iomem->start, resource_size(iomem),
DRIVER_NAME))
return -EBUSY;
td = kzalloc(sizeof(struct timb_dma) +
sizeof(struct timb_dma_chan) * pdata->nr_channels, GFP_KERNEL);
if (!td) {
err = -ENOMEM;
goto err_release_region;
}
dev_dbg(&pdev->dev, "Allocated TD: %p\n", td);
td->membase = ioremap(iomem->start, resource_size(iomem));
if (!td->membase) {
dev_err(&pdev->dev, "Failed to remap I/O memory\n");
err = -ENOMEM;
goto err_free_mem;
}
/* 32bit addressing */
iowrite32(TIMBDMA_32BIT_ADDR, td->membase + TIMBDMA_ACR);
/* disable and clear any interrupts */
iowrite32(0x0, td->membase + TIMBDMA_IER);
iowrite32(0xFFFFFFFF, td->membase + TIMBDMA_ISR);
tasklet_init(&td->tasklet, td_tasklet, (unsigned long)td);
err = request_irq(irq, td_irq, IRQF_SHARED, DRIVER_NAME, td);
if (err) {
dev_err(&pdev->dev, "Failed to request IRQ\n");
goto err_tasklet_kill;
}
td->dma.device_alloc_chan_resources = td_alloc_chan_resources;
td->dma.device_free_chan_resources = td_free_chan_resources;
td->dma.device_tx_status = td_tx_status;
td->dma.device_issue_pending = td_issue_pending;
dma_cap_set(DMA_SLAVE, td->dma.cap_mask);
dma_cap_set(DMA_PRIVATE, td->dma.cap_mask);
td->dma.device_prep_slave_sg = td_prep_slave_sg;
td->dma.device_control = td_control;
td->dma.dev = &pdev->dev;
INIT_LIST_HEAD(&td->dma.channels);
for (i = 0; i < pdata->nr_channels; i++, td->dma.chancnt++) {
struct timb_dma_chan *td_chan = &td->channels[i];
struct timb_dma_platform_data_channel *pchan =
pdata->channels + i;
/* even channels are RX, odd are TX */
if (((i % 2) && pchan->rx) || (!(i % 2) && !pchan->rx)) {
dev_err(&pdev->dev, "Wrong channel configuration\n");
err = -EINVAL;
goto err_tasklet_kill;
}
td_chan->chan.device = &td->dma;
td_chan->chan.cookie = 1;
td_chan->chan.chan_id = i;
spin_lock_init(&td_chan->lock);
INIT_LIST_HEAD(&td_chan->active_list);
INIT_LIST_HEAD(&td_chan->queue);
INIT_LIST_HEAD(&td_chan->free_list);
td_chan->descs = pchan->descriptors;
td_chan->desc_elems = pchan->descriptor_elements;
td_chan->bytes_per_line = pchan->bytes_per_line;
td_chan->direction = pchan->rx ? DMA_FROM_DEVICE :
DMA_TO_DEVICE;
td_chan->membase = td->membase +
(i / 2) * TIMBDMA_INSTANCE_OFFSET +
(pchan->rx ? 0 : TIMBDMA_INSTANCE_TX_OFFSET);
dev_dbg(&pdev->dev, "Chan: %d, membase: %p\n",
i, td_chan->membase);
list_add_tail(&td_chan->chan.device_node, &td->dma.channels);
}
err = dma_async_device_register(&td->dma);
if (err) {
dev_err(&pdev->dev, "Failed to register async device\n");
goto err_free_irq;
}
platform_set_drvdata(pdev, td);
dev_dbg(&pdev->dev, "Probe result: %d\n", err);
return err;
err_free_irq:
free_irq(irq, td);
err_tasklet_kill:
tasklet_kill(&td->tasklet);
iounmap(td->membase);
err_free_mem:
kfree(td);
err_release_region:
release_mem_region(iomem->start, resource_size(iomem));
return err;
}
static int __devexit td_remove(struct platform_device *pdev)
{
struct timb_dma *td = platform_get_drvdata(pdev);
struct resource *iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
int irq = platform_get_irq(pdev, 0);
dma_async_device_unregister(&td->dma);
free_irq(irq, td);
tasklet_kill(&td->tasklet);
iounmap(td->membase);
kfree(td);
release_mem_region(iomem->start, resource_size(iomem));
platform_set_drvdata(pdev, NULL);
dev_dbg(&pdev->dev, "Removed...\n");
return 0;
}
static struct platform_driver td_driver = {
.driver = {
.name = DRIVER_NAME,
.owner = THIS_MODULE,
},
.probe = td_probe,
.remove = __exit_p(td_remove),
};
static int __init td_init(void)
{
return platform_driver_register(&td_driver);
}
module_init(td_init);
static void __exit td_exit(void)
{
platform_driver_unregister(&td_driver);
}
module_exit(td_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Timberdale DMA controller driver");
MODULE_AUTHOR("Pelagicore AB <info@pelagicore.com>");
MODULE_ALIAS("platform:"DRIVER_NAME);

View File

@ -938,12 +938,17 @@ txx9dmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
return &first->txd; return &first->txd;
} }
static void txx9dmac_terminate_all(struct dma_chan *chan) static int txx9dmac_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
unsigned long arg)
{ {
struct txx9dmac_chan *dc = to_txx9dmac_chan(chan); struct txx9dmac_chan *dc = to_txx9dmac_chan(chan);
struct txx9dmac_desc *desc, *_desc; struct txx9dmac_desc *desc, *_desc;
LIST_HEAD(list); LIST_HEAD(list);
/* Only supports DMA_TERMINATE_ALL */
if (cmd != DMA_TERMINATE_ALL)
return -EINVAL;
dev_vdbg(chan2dev(chan), "terminate_all\n"); dev_vdbg(chan2dev(chan), "terminate_all\n");
spin_lock_bh(&dc->lock); spin_lock_bh(&dc->lock);
@ -958,12 +963,13 @@ static void txx9dmac_terminate_all(struct dma_chan *chan)
/* Flush all pending and queued descriptors */ /* Flush all pending and queued descriptors */
list_for_each_entry_safe(desc, _desc, &list, desc_node) list_for_each_entry_safe(desc, _desc, &list, desc_node)
txx9dmac_descriptor_complete(dc, desc); txx9dmac_descriptor_complete(dc, desc);
return 0;
} }
static enum dma_status static enum dma_status
txx9dmac_is_tx_complete(struct dma_chan *chan, txx9dmac_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
dma_cookie_t cookie, struct dma_tx_state *txstate)
dma_cookie_t *done, dma_cookie_t *used)
{ {
struct txx9dmac_chan *dc = to_txx9dmac_chan(chan); struct txx9dmac_chan *dc = to_txx9dmac_chan(chan);
dma_cookie_t last_used; dma_cookie_t last_used;
@ -985,10 +991,7 @@ txx9dmac_is_tx_complete(struct dma_chan *chan,
ret = dma_async_is_complete(cookie, last_complete, last_used); ret = dma_async_is_complete(cookie, last_complete, last_used);
} }
if (done) dma_set_tx_state(txstate, last_complete, last_used, 0);
*done = last_complete;
if (used)
*used = last_used;
return ret; return ret;
} }
@ -1153,8 +1156,8 @@ static int __init txx9dmac_chan_probe(struct platform_device *pdev)
dc->dma.dev = &pdev->dev; dc->dma.dev = &pdev->dev;
dc->dma.device_alloc_chan_resources = txx9dmac_alloc_chan_resources; dc->dma.device_alloc_chan_resources = txx9dmac_alloc_chan_resources;
dc->dma.device_free_chan_resources = txx9dmac_free_chan_resources; dc->dma.device_free_chan_resources = txx9dmac_free_chan_resources;
dc->dma.device_terminate_all = txx9dmac_terminate_all; dc->dma.device_control = txx9dmac_control;
dc->dma.device_is_tx_complete = txx9dmac_is_tx_complete; dc->dma.device_tx_status = txx9dmac_tx_status;
dc->dma.device_issue_pending = txx9dmac_issue_pending; dc->dma.device_issue_pending = txx9dmac_issue_pending;
if (pdata && pdata->memcpy_chan == ch) { if (pdata && pdata->memcpy_chan == ch) {
dc->dma.device_prep_dma_memcpy = txx9dmac_prep_dma_memcpy; dc->dma.device_prep_dma_memcpy = txx9dmac_prep_dma_memcpy;

View File

@ -580,7 +580,7 @@ static void atmci_stop_dma(struct atmel_mci *host)
struct dma_chan *chan = host->data_chan; struct dma_chan *chan = host->data_chan;
if (chan) { if (chan) {
chan->device->device_terminate_all(chan); chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
atmci_dma_cleanup(host); atmci_dma_cleanup(host);
} else { } else {
/* Data transfer was stopped by the interrupt handler */ /* Data transfer was stopped by the interrupt handler */

View File

@ -1091,7 +1091,7 @@ static void work_fn_rx(struct work_struct *work)
unsigned long flags; unsigned long flags;
int count; int count;
chan->device->device_terminate_all(chan); chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
dev_dbg(port->dev, "Read %u bytes with cookie %d\n", dev_dbg(port->dev, "Read %u bytes with cookie %d\n",
sh_desc->partial, sh_desc->cookie); sh_desc->partial, sh_desc->cookie);

View File

@ -387,7 +387,8 @@ static void sdc_disable_channel(struct mx3fb_info *mx3_fbi)
spin_unlock_irqrestore(&mx3fb->lock, flags); spin_unlock_irqrestore(&mx3fb->lock, flags);
mx3_fbi->txd->chan->device->device_terminate_all(mx3_fbi->txd->chan); mx3_fbi->txd->chan->device->device_control(mx3_fbi->txd->chan,
DMA_TERMINATE_ALL, 0);
mx3_fbi->txd = NULL; mx3_fbi->txd = NULL;
mx3_fbi->cookie = -EINVAL; mx3_fbi->cookie = -EINVAL;
} }

View File

@ -40,11 +40,13 @@ typedef s32 dma_cookie_t;
* enum dma_status - DMA transaction status * enum dma_status - DMA transaction status
* @DMA_SUCCESS: transaction completed successfully * @DMA_SUCCESS: transaction completed successfully
* @DMA_IN_PROGRESS: transaction not yet processed * @DMA_IN_PROGRESS: transaction not yet processed
* @DMA_PAUSED: transaction is paused
* @DMA_ERROR: transaction failed * @DMA_ERROR: transaction failed
*/ */
enum dma_status { enum dma_status {
DMA_SUCCESS, DMA_SUCCESS,
DMA_IN_PROGRESS, DMA_IN_PROGRESS,
DMA_PAUSED,
DMA_ERROR, DMA_ERROR,
}; };
@ -106,6 +108,19 @@ enum dma_ctrl_flags {
DMA_PREP_FENCE = (1 << 9), DMA_PREP_FENCE = (1 << 9),
}; };
/**
* enum dma_ctrl_cmd - DMA operations that can optionally be exercised
* on a running channel.
* @DMA_TERMINATE_ALL: terminate all ongoing transfers
* @DMA_PAUSE: pause ongoing transfers
* @DMA_RESUME: resume paused transfer
*/
enum dma_ctrl_cmd {
DMA_TERMINATE_ALL,
DMA_PAUSE,
DMA_RESUME,
};
/** /**
* enum sum_check_bits - bit position of pq_check_flags * enum sum_check_bits - bit position of pq_check_flags
*/ */
@ -230,9 +245,84 @@ struct dma_async_tx_descriptor {
dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx); dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
dma_async_tx_callback callback; dma_async_tx_callback callback;
void *callback_param; void *callback_param;
#ifndef CONFIG_ASYNC_TX_DISABLE_CHANNEL_SWITCH
struct dma_async_tx_descriptor *next; struct dma_async_tx_descriptor *next;
struct dma_async_tx_descriptor *parent; struct dma_async_tx_descriptor *parent;
spinlock_t lock; spinlock_t lock;
#endif
};
#ifdef CONFIG_ASYNC_TX_DISABLE_CHANNEL_SWITCH
static inline void txd_lock(struct dma_async_tx_descriptor *txd)
{
}
static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
{
}
static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
{
BUG();
}
static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
{
}
static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
{
}
static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
{
return NULL;
}
static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
{
return NULL;
}
#else
static inline void txd_lock(struct dma_async_tx_descriptor *txd)
{
spin_lock_bh(&txd->lock);
}
static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
{
spin_unlock_bh(&txd->lock);
}
static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
{
txd->next = next;
next->parent = txd;
}
static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
{
txd->parent = NULL;
}
static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
{
txd->next = NULL;
}
static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
{
return txd->parent;
}
static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
{
return txd->next;
}
#endif
/**
* struct dma_tx_state - filled in to report the status of
* a transfer.
* @last: last completed DMA cookie
* @used: last issued DMA cookie (i.e. the one in progress)
* @residue: the remaining number of bytes left to transmit
* on the selected transfer for states DMA_IN_PROGRESS and
* DMA_PAUSED if this is implemented in the driver, else 0
*/
struct dma_tx_state {
dma_cookie_t last;
dma_cookie_t used;
u32 residue;
}; };
/** /**
@ -261,8 +351,12 @@ struct dma_async_tx_descriptor {
* @device_prep_dma_memset: prepares a memset operation * @device_prep_dma_memset: prepares a memset operation
* @device_prep_dma_interrupt: prepares an end of chain interrupt operation * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
* @device_prep_slave_sg: prepares a slave dma operation * @device_prep_slave_sg: prepares a slave dma operation
* @device_terminate_all: terminate all pending operations * @device_control: manipulate all pending operations on a channel, returns
* @device_is_tx_complete: poll for transaction completion * zero or error code
* @device_tx_status: poll for transaction completion, the optional
* txstate parameter can be supplied with a pointer to get a
* struct with auxilary transfer status information, otherwise the call
* will just return a simple status code
* @device_issue_pending: push pending transactions to hardware * @device_issue_pending: push pending transactions to hardware
*/ */
struct dma_device { struct dma_device {
@ -313,11 +407,12 @@ struct dma_device {
struct dma_chan *chan, struct scatterlist *sgl, struct dma_chan *chan, struct scatterlist *sgl,
unsigned int sg_len, enum dma_data_direction direction, unsigned int sg_len, enum dma_data_direction direction,
unsigned long flags); unsigned long flags);
void (*device_terminate_all)(struct dma_chan *chan); int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
unsigned long arg);
enum dma_status (*device_is_tx_complete)(struct dma_chan *chan, enum dma_status (*device_tx_status)(struct dma_chan *chan,
dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t cookie,
dma_cookie_t *used); struct dma_tx_state *txstate);
void (*device_issue_pending)(struct dma_chan *chan); void (*device_issue_pending)(struct dma_chan *chan);
}; };
@ -558,7 +653,15 @@ static inline void dma_async_issue_pending(struct dma_chan *chan)
static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan, static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used) dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
{ {
return chan->device->device_is_tx_complete(chan, cookie, last, used); struct dma_tx_state state;
enum dma_status status;
status = chan->device->device_tx_status(chan, cookie, &state);
if (last)
*last = state.last;
if (used)
*used = state.used;
return status;
} }
#define dma_async_memcpy_complete(chan, cookie, last, used)\ #define dma_async_memcpy_complete(chan, cookie, last, used)\
@ -586,6 +689,16 @@ static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
return DMA_IN_PROGRESS; return DMA_IN_PROGRESS;
} }
static inline void
dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
{
if (st) {
st->last = last;
st->used = used;
st->residue = residue;
}
}
enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie); enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
#ifdef CONFIG_DMA_ENGINE #ifdef CONFIG_DMA_ENGINE
enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx); enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);

View File

@ -0,0 +1,55 @@
/*
* timb_dma.h timberdale FPGA DMA driver defines
* Copyright (c) 2010 Intel Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/* Supports:
* Timberdale FPGA DMA engine
*/
#ifndef _LINUX_TIMB_DMA_H
#define _LINUX_TIMB_DMA_H
/**
* struct timb_dma_platform_data_channel - Description of each individual
* DMA channel for the timberdale DMA driver
* @rx: true if this channel handles data in the direction to
* the CPU.
* @bytes_per_line: Number of bytes per line, this is specific for channels
* handling video data. For other channels this shall be left to 0.
* @descriptors: Number of descriptors to allocate for this channel.
* @descriptor_elements: Number of elements in each descriptor.
*
*/
struct timb_dma_platform_data_channel {
bool rx;
unsigned int bytes_per_line;
unsigned int descriptors;
unsigned int descriptor_elements;
};
/**
* struct timb_dma_platform_data - Platform data of the timberdale DMA driver
* @nr_channels: Number of defined channels in the channels array.
* @channels: Definition of the each channel.
*
*/
struct timb_dma_platform_data {
unsigned nr_channels;
struct timb_dma_platform_data_channel channels[32];
};
#endif

View File

@ -160,7 +160,7 @@ static void txx9aclc_dma_tasklet(unsigned long data)
void __iomem *base = drvdata->base; void __iomem *base = drvdata->base;
spin_unlock_irqrestore(&dmadata->dma_lock, flags); spin_unlock_irqrestore(&dmadata->dma_lock, flags);
chan->device->device_terminate_all(chan); chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
/* first time */ /* first time */
for (i = 0; i < NR_DMA_CHAIN; i++) { for (i = 0; i < NR_DMA_CHAIN; i++) {
desc = txx9aclc_dma_submit(dmadata, desc = txx9aclc_dma_submit(dmadata,
@ -268,7 +268,7 @@ static int txx9aclc_pcm_close(struct snd_pcm_substream *substream)
struct dma_chan *chan = dmadata->dma_chan; struct dma_chan *chan = dmadata->dma_chan;
dmadata->frag_count = -1; dmadata->frag_count = -1;
chan->device->device_terminate_all(chan); chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
return 0; return 0;
} }
@ -397,7 +397,8 @@ static int txx9aclc_pcm_remove(struct platform_device *pdev)
struct dma_chan *chan = dmadata->dma_chan; struct dma_chan *chan = dmadata->dma_chan;
if (chan) { if (chan) {
dmadata->frag_count = -1; dmadata->frag_count = -1;
chan->device->device_terminate_all(chan); chan->device->device_control(chan,
DMA_TERMINATE_ALL, 0);
dma_release_channel(chan); dma_release_channel(chan);
} }
dev->dmadata[i].dma_chan = NULL; dev->dmadata[i].dma_chan = NULL;