1
0
Fork 0

dm: add clone target

Add the dm-clone target, which allows cloning of arbitrary block
devices.

dm-clone produces a one-to-one copy of an existing, read-only source
device into a writable destination device: It presents a virtual block
device which makes all data appear immediately, and redirects reads and
writes accordingly.

The main use case of dm-clone is to clone a potentially remote,
high-latency, read-only, archival-type block device into a writable,
fast, primary-type device for fast, low-latency I/O. The cloned device
is visible/mountable immediately and the copy of the source device to
the destination device happens in the background, in parallel with user
I/O.

When the cloning completes, the dm-clone table can be removed altogether
and be replaced, e.g., by a linear table, mapping directly to the
destination device.

For further information and examples of how to use dm-clone, please read
Documentation/admin-guide/device-mapper/dm-clone.rst

Suggested-by: Vangelis Koukis <vkoukis@arrikto.com>
Co-developed-by: Ilias Tsitsimpis <iliastsi@arrikto.com>
Signed-off-by: Ilias Tsitsimpis <iliastsi@arrikto.com>
Signed-off-by: Nikos Tsironis <ntsironis@arrikto.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
alistair/sunxi64-5.4-dsi
Nikos Tsironis 2019-09-11 17:36:40 +03:00 committed by Mike Snitzer
parent c8156fc77d
commit 7431b7835f
6 changed files with 3662 additions and 0 deletions

View File

@ -0,0 +1,333 @@
.. SPDX-License-Identifier: GPL-2.0-only
========
dm-clone
========
Introduction
============
dm-clone is a device mapper target which produces a one-to-one copy of an
existing, read-only source device into a writable destination device: It
presents a virtual block device which makes all data appear immediately, and
redirects reads and writes accordingly.
The main use case of dm-clone is to clone a potentially remote, high-latency,
read-only, archival-type block device into a writable, fast, primary-type device
for fast, low-latency I/O. The cloned device is visible/mountable immediately
and the copy of the source device to the destination device happens in the
background, in parallel with user I/O.
For example, one could restore an application backup from a read-only copy,
accessible through a network storage protocol (NBD, Fibre Channel, iSCSI, AoE,
etc.), into a local SSD or NVMe device, and start using the device immediately,
without waiting for the restore to complete.
When the cloning completes, the dm-clone table can be removed altogether and be
replaced, e.g., by a linear table, mapping directly to the destination device.
The dm-clone target reuses the metadata library used by the thin-provisioning
target.
Glossary
========
Hydration
The process of filling a region of the destination device with data from
the same region of the source device, i.e., copying the region from the
source to the destination device.
Once a region gets hydrated we redirect all I/O regarding it to the destination
device.
Design
======
Sub-devices
-----------
The target is constructed by passing three devices to it (along with other
parameters detailed later):
1. A source device - the read-only device that gets cloned and source of the
hydration.
2. A destination device - the destination of the hydration, which will become a
clone of the source device.
3. A small metadata device - it records which regions are already valid in the
destination device, i.e., which regions have already been hydrated, or have
been written to directly, via user I/O.
The size of the destination device must be at least equal to the size of the
source device.
Regions
-------
dm-clone divides the source and destination devices in fixed sized regions.
Regions are the unit of hydration, i.e., the minimum amount of data copied from
the source to the destination device.
The region size is configurable when you first create the dm-clone device. The
recommended region size is the same as the file system block size, which usually
is 4KB. The region size must be between 8 sectors (4KB) and 2097152 sectors
(1GB) and a power of two.
Reads and writes from/to hydrated regions are serviced from the destination
device.
A read to a not yet hydrated region is serviced directly from the source device.
A write to a not yet hydrated region will be delayed until the corresponding
region has been hydrated and the hydration of the region starts immediately.
Note that a write request with size equal to region size will skip copying of
the corresponding region from the source device and overwrite the region of the
destination device directly.
Discards
--------
dm-clone interprets a discard request to a range that hasn't been hydrated yet
as a hint to skip hydration of the regions covered by the request, i.e., it
skips copying the region's data from the source to the destination device, and
only updates its metadata.
If the destination device supports discards, then by default dm-clone will pass
down discard requests to it.
Background Hydration
--------------------
dm-clone copies continuously from the source to the destination device, until
all of the device has been copied.
Copying data from the source to the destination device uses bandwidth. The user
can set a throttle to prevent more than a certain amount of copying occurring at
any one time. Moreover, dm-clone takes into account user I/O traffic going to
the devices and pauses the background hydration when there is I/O in-flight.
A message `hydration_threshold <#regions>` can be used to set the maximum number
of regions being copied, the default being 1 region.
dm-clone employs dm-kcopyd for copying portions of the source device to the
destination device. By default, we issue copy requests of size equal to the
region size. A message `hydration_batch_size <#regions>` can be used to tune the
size of these copy requests. Increasing the hydration batch size results in
dm-clone trying to batch together contiguous regions, so we copy the data in
batches of this many regions.
When the hydration of the destination device finishes, a dm event will be sent
to user space.
Updating on-disk metadata
-------------------------
On-disk metadata is committed every time a FLUSH or FUA bio is written. If no
such requests are made then commits will occur every second. This means the
dm-clone device behaves like a physical disk that has a volatile write cache. If
power is lost you may lose some recent writes. The metadata should always be
consistent in spite of any crash.
Target Interface
================
Constructor
-----------
::
clone <metadata dev> <destination dev> <source dev> <region size>
[<#feature args> [<feature arg>]* [<#core args> [<core arg>]*]]
================ ==============================================================
metadata dev Fast device holding the persistent metadata
destination dev The destination device, where the source will be cloned
source dev Read only device containing the data that gets cloned
region size The size of a region in sectors
#feature args Number of feature arguments passed
feature args no_hydration or no_discard_passdown
#core args An even number of arguments corresponding to key/value pairs
passed to dm-clone
core args Key/value pairs passed to dm-clone, e.g. `hydration_threshold
256`
================ ==============================================================
Optional feature arguments are:
==================== =========================================================
no_hydration Create a dm-clone instance with background hydration
disabled
no_discard_passdown Disable passing down discards to the destination device
==================== =========================================================
Optional core arguments are:
================================ ==============================================
hydration_threshold <#regions> Maximum number of regions being copied from
the source to the destination device at any
one time, during background hydration.
hydration_batch_size <#regions> During background hydration, try to batch
together contiguous regions, so we copy data
from the source to the destination device in
batches of this many regions.
================================ ==============================================
Status
------
::
<metadata block size> <#used metadata blocks>/<#total metadata blocks>
<region size> <#hydrated regions>/<#total regions> <#hydrating regions>
<#feature args> <feature args>* <#core args> <core args>*
<clone metadata mode>
======================= =======================================================
metadata block size Fixed block size for each metadata block in sectors
#used metadata blocks Number of metadata blocks used
#total metadata blocks Total number of metadata blocks
region size Configurable region size for the device in sectors
#hydrated regions Number of regions that have finished hydrating
#total regions Total number of regions to hydrate
#hydrating regions Number of regions currently hydrating
#feature args Number of feature arguments to follow
feature args Feature arguments, e.g. `no_hydration`
#core args Even number of core arguments to follow
core args Key/value pairs for tuning the core, e.g.
`hydration_threshold 256`
clone metadata mode ro if read-only, rw if read-write
In serious cases where even a read-only mode is deemed
unsafe no further I/O will be permitted and the status
will just contain the string 'Fail'. If the metadata
mode changes, a dm event will be sent to user space.
======================= =======================================================
Messages
--------
`disable_hydration`
Disable the background hydration of the destination device.
`enable_hydration`
Enable the background hydration of the destination device.
`hydration_threshold <#regions>`
Set background hydration threshold.
`hydration_batch_size <#regions>`
Set background hydration batch size.
Examples
========
Clone a device containing a file system
---------------------------------------
1. Create the dm-clone device.
::
dmsetup create clone --table "0 1048576000 clone $metadata_dev $dest_dev \
$source_dev 8 1 no_hydration"
2. Mount the device and trim the file system. dm-clone interprets the discards
sent by the file system and it will not hydrate the unused space.
::
mount /dev/mapper/clone /mnt/cloned-fs
fstrim /mnt/cloned-fs
3. Enable background hydration of the destination device.
::
dmsetup message clone 0 enable_hydration
4. When the hydration finishes, we can replace the dm-clone table with a linear
table.
::
dmsetup suspend clone
dmsetup load clone --table "0 1048576000 linear $dest_dev 0"
dmsetup resume clone
The metadata device is no longer needed and can be safely discarded or reused
for other purposes.
Known issues
============
1. We redirect reads, to not-yet-hydrated regions, to the source device. If
reading the source device has high latency and the user repeatedly reads from
the same regions, this behaviour could degrade performance. We should use
these reads as hints to hydrate the relevant regions sooner. Currently, we
rely on the page cache to cache these regions, so we hopefully don't end up
reading them multiple times from the source device.
2. Release in-core resources, i.e., the bitmaps tracking which regions are
hydrated, after the hydration has finished.
3. During background hydration, if we fail to read the source or write to the
destination device, we print an error message, but the hydration process
continues indefinitely, until it succeeds. We should stop the background
hydration after a number of failures and emit a dm event for user space to
notice.
Why not...?
===========
We explored the following alternatives before implementing dm-clone:
1. Use dm-cache with cache size equal to the source device and implement a new
cloning policy:
* The resulting cache device is not a one-to-one mirror of the source device
and thus we cannot remove the cache device once cloning completes.
* dm-cache writes to the source device, which violates our requirement that
the source device must be treated as read-only.
* Caching is semantically different from cloning.
2. Use dm-snapshot with a COW device equal to the source device:
* dm-snapshot stores its metadata in the COW device, so the resulting device
is not a one-to-one mirror of the source device.
* No background copying mechanism.
* dm-snapshot needs to commit its metadata whenever a pending exception
completes, to ensure snapshot consistency. In the case of cloning, we don't
need to be so strict and can rely on committing metadata every time a FLUSH
or FUA bio is written, or periodically, like dm-thin and dm-cache do. This
improves the performance significantly.
3. Use dm-mirror: The mirror target has a background copying/mirroring
mechanism, but it writes to all mirrors, thus violating our requirement that
the source device must be treated as read-only.
4. Use dm-thin's external snapshot functionality. This approach is the most
promising among all alternatives, as the thinly-provisioned volume is a
one-to-one mirror of the source device and handles reads and writes to
un-provisioned/not-yet-cloned areas the same way as dm-clone does.
Still:
* There is no background copying mechanism, though one could be implemented.
* Most importantly, we want to support arbitrary block devices as the
destination of the cloning process and not restrict ourselves to
thinly-provisioned volumes. Thin-provisioning has an inherent metadata
overhead, for maintaining the thin volume mappings, which significantly
degrades performance.
Moreover, cloning a device shouldn't force the use of thin-provisioning. On
the other hand, if we wish to use thin provisioning, we can just use a thin
LV as dm-clone's destination device.

View File

@ -347,6 +347,20 @@ config DM_ERA
over time. Useful for maintaining cache coherency when using
vendor snapshots.
config DM_CLONE
tristate "Clone target (EXPERIMENTAL)"
depends on BLK_DEV_DM
default n
select DM_PERSISTENT_DATA
---help---
dm-clone produces a one-to-one copy of an existing, read-only source
device into a writable destination device. The cloned device is
visible/mountable immediately and the copy of the source device to the
destination device happens in the background, in parallel with user
I/O.
If unsure, say N.
config DM_MIRROR
tristate "Mirror target"
depends on BLK_DEV_DM

View File

@ -18,6 +18,7 @@ dm-cache-y += dm-cache-target.o dm-cache-metadata.o dm-cache-policy.o \
dm-cache-background-tracker.o
dm-cache-smq-y += dm-cache-policy-smq.o
dm-era-y += dm-era-target.o
dm-clone-y += dm-clone-target.o dm-clone-metadata.o
dm-verity-y += dm-verity-target.o
md-mod-y += md.o md-bitmap.o
raid456-y += raid5.o raid5-cache.o raid5-ppl.o
@ -65,6 +66,7 @@ obj-$(CONFIG_DM_VERITY) += dm-verity.o
obj-$(CONFIG_DM_CACHE) += dm-cache.o
obj-$(CONFIG_DM_CACHE_SMQ) += dm-cache-smq.o
obj-$(CONFIG_DM_ERA) += dm-era.o
obj-$(CONFIG_DM_CLONE) += dm-clone.o
obj-$(CONFIG_DM_LOG_WRITES) += dm-log-writes.o
obj-$(CONFIG_DM_INTEGRITY) += dm-integrity.o
obj-$(CONFIG_DM_ZONED) += dm-zoned.o

View File

@ -0,0 +1,964 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2019 Arrikto, Inc. All Rights Reserved.
*/
#include <linux/mm.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/rwsem.h>
#include <linux/bitops.h>
#include <linux/bitmap.h>
#include <linux/device-mapper.h>
#include "persistent-data/dm-bitset.h"
#include "persistent-data/dm-space-map.h"
#include "persistent-data/dm-block-manager.h"
#include "persistent-data/dm-transaction-manager.h"
#include "dm-clone-metadata.h"
#define DM_MSG_PREFIX "clone metadata"
#define SUPERBLOCK_LOCATION 0
#define SUPERBLOCK_MAGIC 0x8af27f64
#define SUPERBLOCK_CSUM_XOR 257649492
#define DM_CLONE_MAX_CONCURRENT_LOCKS 5
#define UUID_LEN 16
/* Min and max dm-clone metadata versions supported */
#define DM_CLONE_MIN_METADATA_VERSION 1
#define DM_CLONE_MAX_METADATA_VERSION 1
/*
* On-disk metadata layout
*/
struct superblock_disk {
__le32 csum;
__le32 flags;
__le64 blocknr;
__u8 uuid[UUID_LEN];
__le64 magic;
__le32 version;
__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
__le64 region_size;
__le64 target_size;
__le64 bitset_root;
} __packed;
/*
* Region and Dirty bitmaps.
*
* dm-clone logically splits the source and destination devices in regions of
* fixed size. The destination device's regions are gradually hydrated, i.e.,
* we copy (clone) the source's regions to the destination device. Eventually,
* all regions will get hydrated and all I/O will be served from the
* destination device.
*
* We maintain an on-disk bitmap which tracks the state of each of the
* destination device's regions, i.e., whether they are hydrated or not.
*
* To save constantly doing look ups on disk we keep an in core copy of the
* on-disk bitmap, the region_map.
*
* To further reduce metadata I/O overhead we use a second bitmap, the dmap
* (dirty bitmap), which tracks the dirty words, i.e. longs, of the region_map.
*
* When a region finishes hydrating dm-clone calls
* dm_clone_set_region_hydrated(), or for discard requests
* dm_clone_cond_set_range(), which sets the corresponding bits in region_map
* and dmap.
*
* During a metadata commit we scan the dmap for dirty region_map words (longs)
* and update accordingly the on-disk metadata. Thus, we don't have to flush to
* disk the whole region_map. We can just flush the dirty region_map words.
*
* We use a dirty bitmap, which is smaller than the original region_map, to
* reduce the amount of memory accesses during a metadata commit. As dm-bitset
* accesses the on-disk bitmap in 64-bit word granularity, there is no
* significant benefit in tracking the dirty region_map bits with a smaller
* granularity.
*
* We could update directly the on-disk bitmap, when dm-clone calls either
* dm_clone_set_region_hydrated() or dm_clone_cond_set_range(), buts this
* inserts significant metadata I/O overhead in dm-clone's I/O path. Also, as
* these two functions don't block, we can call them in interrupt context,
* e.g., in a hooked overwrite bio's completion routine, and further reduce the
* I/O completion latency.
*
* We maintain two dirty bitmaps. During a metadata commit we atomically swap
* the currently used dmap with the unused one. This allows the metadata update
* functions to run concurrently with an ongoing commit.
*/
struct dirty_map {
unsigned long *dirty_words;
unsigned int changed;
};
struct dm_clone_metadata {
/* The metadata block device */
struct block_device *bdev;
sector_t target_size;
sector_t region_size;
unsigned long nr_regions;
unsigned long nr_words;
/* Spinlock protecting the region and dirty bitmaps. */
spinlock_t bitmap_lock;
struct dirty_map dmap[2];
struct dirty_map *current_dmap;
/*
* In core copy of the on-disk bitmap to save constantly doing look ups
* on disk.
*/
unsigned long *region_map;
/* Protected by bitmap_lock */
unsigned int read_only;
struct dm_block_manager *bm;
struct dm_space_map *sm;
struct dm_transaction_manager *tm;
struct rw_semaphore lock;
struct dm_disk_bitset bitset_info;
dm_block_t bitset_root;
/*
* Reading the space map root can fail, so we read it into this
* buffer before the superblock is locked and updated.
*/
__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
bool hydration_done:1;
bool fail_io:1;
};
/*---------------------------------------------------------------------------*/
/*
* Superblock validation.
*/
static void sb_prepare_for_write(struct dm_block_validator *v,
struct dm_block *b, size_t sb_block_size)
{
struct superblock_disk *sb;
u32 csum;
sb = dm_block_data(b);
sb->blocknr = cpu_to_le64(dm_block_location(b));
csum = dm_bm_checksum(&sb->flags, sb_block_size - sizeof(__le32),
SUPERBLOCK_CSUM_XOR);
sb->csum = cpu_to_le32(csum);
}
static int sb_check(struct dm_block_validator *v, struct dm_block *b,
size_t sb_block_size)
{
struct superblock_disk *sb;
u32 csum, metadata_version;
sb = dm_block_data(b);
if (dm_block_location(b) != le64_to_cpu(sb->blocknr)) {
DMERR("Superblock check failed: blocknr %llu, expected %llu",
le64_to_cpu(sb->blocknr),
(unsigned long long)dm_block_location(b));
return -ENOTBLK;
}
if (le64_to_cpu(sb->magic) != SUPERBLOCK_MAGIC) {
DMERR("Superblock check failed: magic %llu, expected %llu",
le64_to_cpu(sb->magic),
(unsigned long long)SUPERBLOCK_MAGIC);
return -EILSEQ;
}
csum = dm_bm_checksum(&sb->flags, sb_block_size - sizeof(__le32),
SUPERBLOCK_CSUM_XOR);
if (sb->csum != cpu_to_le32(csum)) {
DMERR("Superblock check failed: checksum %u, expected %u",
csum, le32_to_cpu(sb->csum));
return -EILSEQ;
}
/* Check metadata version */
metadata_version = le32_to_cpu(sb->version);
if (metadata_version < DM_CLONE_MIN_METADATA_VERSION ||
metadata_version > DM_CLONE_MAX_METADATA_VERSION) {
DMERR("Clone metadata version %u found, but only versions between %u and %u supported.",
metadata_version, DM_CLONE_MIN_METADATA_VERSION,
DM_CLONE_MAX_METADATA_VERSION);
return -EINVAL;
}
return 0;
}
static struct dm_block_validator sb_validator = {
.name = "superblock",
.prepare_for_write = sb_prepare_for_write,
.check = sb_check
};
/*
* Check if the superblock is formatted or not. We consider the superblock to
* be formatted in case we find non-zero bytes in it.
*/
static int __superblock_all_zeroes(struct dm_block_manager *bm, bool *formatted)
{
int r;
unsigned int i, nr_words;
struct dm_block *sblock;
__le64 *data_le, zero = cpu_to_le64(0);
/*
* We don't use a validator here because the superblock could be all
* zeroes.
*/
r = dm_bm_read_lock(bm, SUPERBLOCK_LOCATION, NULL, &sblock);
if (r) {
DMERR("Failed to read_lock superblock");
return r;
}
data_le = dm_block_data(sblock);
*formatted = false;
/* This assumes that the block size is a multiple of 8 bytes */
BUG_ON(dm_bm_block_size(bm) % sizeof(__le64));
nr_words = dm_bm_block_size(bm) / sizeof(__le64);
for (i = 0; i < nr_words; i++) {
if (data_le[i] != zero) {
*formatted = true;
break;
}
}
dm_bm_unlock(sblock);
return 0;
}
/*---------------------------------------------------------------------------*/
/*
* Low-level metadata handling.
*/
static inline int superblock_read_lock(struct dm_clone_metadata *cmd,
struct dm_block **sblock)
{
return dm_bm_read_lock(cmd->bm, SUPERBLOCK_LOCATION, &sb_validator, sblock);
}
static inline int superblock_write_lock(struct dm_clone_metadata *cmd,
struct dm_block **sblock)
{
return dm_bm_write_lock(cmd->bm, SUPERBLOCK_LOCATION, &sb_validator, sblock);
}
static inline int superblock_write_lock_zero(struct dm_clone_metadata *cmd,
struct dm_block **sblock)
{
return dm_bm_write_lock_zero(cmd->bm, SUPERBLOCK_LOCATION, &sb_validator, sblock);
}
static int __copy_sm_root(struct dm_clone_metadata *cmd)
{
int r;
size_t root_size;
r = dm_sm_root_size(cmd->sm, &root_size);
if (r)
return r;
return dm_sm_copy_root(cmd->sm, &cmd->metadata_space_map_root, root_size);
}
/* Save dm-clone metadata in superblock */
static void __prepare_superblock(struct dm_clone_metadata *cmd,
struct superblock_disk *sb)
{
sb->flags = cpu_to_le32(0UL);
/* FIXME: UUID is currently unused */
memset(sb->uuid, 0, sizeof(sb->uuid));
sb->magic = cpu_to_le64(SUPERBLOCK_MAGIC);
sb->version = cpu_to_le32(DM_CLONE_MAX_METADATA_VERSION);
/* Save the metadata space_map root */
memcpy(&sb->metadata_space_map_root, &cmd->metadata_space_map_root,
sizeof(cmd->metadata_space_map_root));
sb->region_size = cpu_to_le64(cmd->region_size);
sb->target_size = cpu_to_le64(cmd->target_size);
sb->bitset_root = cpu_to_le64(cmd->bitset_root);
}
static int __open_metadata(struct dm_clone_metadata *cmd)
{
int r;
struct dm_block *sblock;
struct superblock_disk *sb;
r = superblock_read_lock(cmd, &sblock);
if (r) {
DMERR("Failed to read_lock superblock");
return r;
}
sb = dm_block_data(sblock);
/* Verify that target_size and region_size haven't changed. */
if (cmd->region_size != le64_to_cpu(sb->region_size) ||
cmd->target_size != le64_to_cpu(sb->target_size)) {
DMERR("Region and/or target size don't match the ones in metadata");
r = -EINVAL;
goto out_with_lock;
}
r = dm_tm_open_with_sm(cmd->bm, SUPERBLOCK_LOCATION,
sb->metadata_space_map_root,
sizeof(sb->metadata_space_map_root),
&cmd->tm, &cmd->sm);
if (r) {
DMERR("dm_tm_open_with_sm failed");
goto out_with_lock;
}
dm_disk_bitset_init(cmd->tm, &cmd->bitset_info);
cmd->bitset_root = le64_to_cpu(sb->bitset_root);
out_with_lock:
dm_bm_unlock(sblock);
return r;
}
static int __format_metadata(struct dm_clone_metadata *cmd)
{
int r;
struct dm_block *sblock;
struct superblock_disk *sb;
r = dm_tm_create_with_sm(cmd->bm, SUPERBLOCK_LOCATION, &cmd->tm, &cmd->sm);
if (r) {
DMERR("Failed to create transaction manager");
return r;
}
dm_disk_bitset_init(cmd->tm, &cmd->bitset_info);
r = dm_bitset_empty(&cmd->bitset_info, &cmd->bitset_root);
if (r) {
DMERR("Failed to create empty on-disk bitset");
goto err_with_tm;
}
r = dm_bitset_resize(&cmd->bitset_info, cmd->bitset_root, 0,
cmd->nr_regions, false, &cmd->bitset_root);
if (r) {
DMERR("Failed to resize on-disk bitset to %lu entries", cmd->nr_regions);
goto err_with_tm;
}
/* Flush to disk all blocks, except the superblock */
r = dm_tm_pre_commit(cmd->tm);
if (r) {
DMERR("dm_tm_pre_commit failed");
goto err_with_tm;
}
r = __copy_sm_root(cmd);
if (r) {
DMERR("__copy_sm_root failed");
goto err_with_tm;
}
r = superblock_write_lock_zero(cmd, &sblock);
if (r) {
DMERR("Failed to write_lock superblock");
goto err_with_tm;
}
sb = dm_block_data(sblock);
__prepare_superblock(cmd, sb);
r = dm_tm_commit(cmd->tm, sblock);
if (r) {
DMERR("Failed to commit superblock");
goto err_with_tm;
}
return 0;
err_with_tm:
dm_sm_destroy(cmd->sm);
dm_tm_destroy(cmd->tm);
return r;
}
static int __open_or_format_metadata(struct dm_clone_metadata *cmd, bool may_format_device)
{
int r;
bool formatted = false;
r = __superblock_all_zeroes(cmd->bm, &formatted);
if (r)
return r;
if (!formatted)
return may_format_device ? __format_metadata(cmd) : -EPERM;
return __open_metadata(cmd);
}
static int __create_persistent_data_structures(struct dm_clone_metadata *cmd,
bool may_format_device)
{
int r;
/* Create block manager */
cmd->bm = dm_block_manager_create(cmd->bdev,
DM_CLONE_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
DM_CLONE_MAX_CONCURRENT_LOCKS);
if (IS_ERR(cmd->bm)) {
DMERR("Failed to create block manager");
return PTR_ERR(cmd->bm);
}
r = __open_or_format_metadata(cmd, may_format_device);
if (r)
dm_block_manager_destroy(cmd->bm);
return r;
}
static void __destroy_persistent_data_structures(struct dm_clone_metadata *cmd)
{
dm_sm_destroy(cmd->sm);
dm_tm_destroy(cmd->tm);
dm_block_manager_destroy(cmd->bm);
}
/*---------------------------------------------------------------------------*/
static size_t bitmap_size(unsigned long nr_bits)
{
return BITS_TO_LONGS(nr_bits) * sizeof(long);
}
static int dirty_map_init(struct dm_clone_metadata *cmd)
{
cmd->dmap[0].changed = 0;
cmd->dmap[0].dirty_words = kvzalloc(bitmap_size(cmd->nr_words), GFP_KERNEL);
if (!cmd->dmap[0].dirty_words) {
DMERR("Failed to allocate dirty bitmap");
return -ENOMEM;
}
cmd->dmap[1].changed = 0;
cmd->dmap[1].dirty_words = kvzalloc(bitmap_size(cmd->nr_words), GFP_KERNEL);
if (!cmd->dmap[1].dirty_words) {
DMERR("Failed to allocate dirty bitmap");
kvfree(cmd->dmap[0].dirty_words);
return -ENOMEM;
}
cmd->current_dmap = &cmd->dmap[0];
return 0;
}
static void dirty_map_exit(struct dm_clone_metadata *cmd)
{
kvfree(cmd->dmap[0].dirty_words);
kvfree(cmd->dmap[1].dirty_words);
}
static int __load_bitset_in_core(struct dm_clone_metadata *cmd)
{
int r;
unsigned long i;
struct dm_bitset_cursor c;
/* Flush bitset cache */
r = dm_bitset_flush(&cmd->bitset_info, cmd->bitset_root, &cmd->bitset_root);
if (r)
return r;
r = dm_bitset_cursor_begin(&cmd->bitset_info, cmd->bitset_root, cmd->nr_regions, &c);
if (r)
return r;
for (i = 0; ; i++) {
if (dm_bitset_cursor_get_value(&c))
__set_bit(i, cmd->region_map);
else
__clear_bit(i, cmd->region_map);
if (i >= (cmd->nr_regions - 1))
break;
r = dm_bitset_cursor_next(&c);
if (r)
break;
}
dm_bitset_cursor_end(&c);
return r;
}
struct dm_clone_metadata *dm_clone_metadata_open(struct block_device *bdev,
sector_t target_size,
sector_t region_size)
{
int r;
struct dm_clone_metadata *cmd;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (!cmd) {
DMERR("Failed to allocate memory for dm-clone metadata");
return ERR_PTR(-ENOMEM);
}
cmd->bdev = bdev;
cmd->target_size = target_size;
cmd->region_size = region_size;
cmd->nr_regions = dm_sector_div_up(cmd->target_size, cmd->region_size);
cmd->nr_words = BITS_TO_LONGS(cmd->nr_regions);
init_rwsem(&cmd->lock);
spin_lock_init(&cmd->bitmap_lock);
cmd->read_only = 0;
cmd->fail_io = false;
cmd->hydration_done = false;
cmd->region_map = kvmalloc(bitmap_size(cmd->nr_regions), GFP_KERNEL);
if (!cmd->region_map) {
DMERR("Failed to allocate memory for region bitmap");
r = -ENOMEM;
goto out_with_md;
}
r = __create_persistent_data_structures(cmd, true);
if (r)
goto out_with_region_map;
r = __load_bitset_in_core(cmd);
if (r) {
DMERR("Failed to load on-disk region map");
goto out_with_pds;
}
r = dirty_map_init(cmd);
if (r)
goto out_with_pds;
if (bitmap_full(cmd->region_map, cmd->nr_regions))
cmd->hydration_done = true;
return cmd;
out_with_pds:
__destroy_persistent_data_structures(cmd);
out_with_region_map:
kvfree(cmd->region_map);
out_with_md:
kfree(cmd);
return ERR_PTR(r);
}
void dm_clone_metadata_close(struct dm_clone_metadata *cmd)
{
if (!cmd->fail_io)
__destroy_persistent_data_structures(cmd);
dirty_map_exit(cmd);
kvfree(cmd->region_map);
kfree(cmd);
}
bool dm_clone_is_hydration_done(struct dm_clone_metadata *cmd)
{
return cmd->hydration_done;
}
bool dm_clone_is_region_hydrated(struct dm_clone_metadata *cmd, unsigned long region_nr)
{
return dm_clone_is_hydration_done(cmd) || test_bit(region_nr, cmd->region_map);
}
bool dm_clone_is_range_hydrated(struct dm_clone_metadata *cmd,
unsigned long start, unsigned long nr_regions)
{
unsigned long bit;
if (dm_clone_is_hydration_done(cmd))
return true;
bit = find_next_zero_bit(cmd->region_map, cmd->nr_regions, start);
return (bit >= (start + nr_regions));
}
unsigned long dm_clone_nr_of_hydrated_regions(struct dm_clone_metadata *cmd)
{
return bitmap_weight(cmd->region_map, cmd->nr_regions);
}
unsigned long dm_clone_find_next_unhydrated_region(struct dm_clone_metadata *cmd,
unsigned long start)
{
return find_next_zero_bit(cmd->region_map, cmd->nr_regions, start);
}
static int __update_metadata_word(struct dm_clone_metadata *cmd, unsigned long word)
{
int r;
unsigned long index = word * BITS_PER_LONG;
unsigned long max_index = min(cmd->nr_regions, (word + 1) * BITS_PER_LONG);
while (index < max_index) {
if (test_bit(index, cmd->region_map)) {
r = dm_bitset_set_bit(&cmd->bitset_info, cmd->bitset_root,
index, &cmd->bitset_root);
if (r) {
DMERR("dm_bitset_set_bit failed");
return r;
}
}
index++;
}
return 0;
}
static int __metadata_commit(struct dm_clone_metadata *cmd)
{
int r;
struct dm_block *sblock;
struct superblock_disk *sb;
/* Flush bitset cache */
r = dm_bitset_flush(&cmd->bitset_info, cmd->bitset_root, &cmd->bitset_root);
if (r) {
DMERR("dm_bitset_flush failed");
return r;
}
/* Flush to disk all blocks, except the superblock */
r = dm_tm_pre_commit(cmd->tm);
if (r) {
DMERR("dm_tm_pre_commit failed");
return r;
}
/* Save the space map root in cmd->metadata_space_map_root */
r = __copy_sm_root(cmd);
if (r) {
DMERR("__copy_sm_root failed");
return r;
}
/* Lock the superblock */
r = superblock_write_lock_zero(cmd, &sblock);
if (r) {
DMERR("Failed to write_lock superblock");
return r;
}
/* Save the metadata in superblock */
sb = dm_block_data(sblock);
__prepare_superblock(cmd, sb);
/* Unlock superblock and commit it to disk */
r = dm_tm_commit(cmd->tm, sblock);
if (r) {
DMERR("Failed to commit superblock");
return r;
}
/*
* FIXME: Find a more efficient way to check if the hydration is done.
*/
if (bitmap_full(cmd->region_map, cmd->nr_regions))
cmd->hydration_done = true;
return 0;
}
static int __flush_dmap(struct dm_clone_metadata *cmd, struct dirty_map *dmap)
{
int r;
unsigned long word, flags;
word = 0;
do {
word = find_next_bit(dmap->dirty_words, cmd->nr_words, word);
if (word == cmd->nr_words)
break;
r = __update_metadata_word(cmd, word);
if (r)
return r;
__clear_bit(word, dmap->dirty_words);
word++;
} while (word < cmd->nr_words);
r = __metadata_commit(cmd);
if (r)
return r;
/* Update the changed flag */
spin_lock_irqsave(&cmd->bitmap_lock, flags);
dmap->changed = 0;
spin_unlock_irqrestore(&cmd->bitmap_lock, flags);
return 0;
}
int dm_clone_metadata_commit(struct dm_clone_metadata *cmd)
{
int r = -EPERM;
unsigned long flags;
struct dirty_map *dmap, *next_dmap;
down_write(&cmd->lock);
if (cmd->fail_io || dm_bm_is_read_only(cmd->bm))
goto out;
/* Get current dirty bitmap */
dmap = cmd->current_dmap;
/* Get next dirty bitmap */
next_dmap = (dmap == &cmd->dmap[0]) ? &cmd->dmap[1] : &cmd->dmap[0];
/*
* The last commit failed, so we don't have a clean dirty-bitmap to
* use.
*/
if (WARN_ON(next_dmap->changed)) {
r = -EINVAL;
goto out;
}
/* Swap dirty bitmaps */
spin_lock_irqsave(&cmd->bitmap_lock, flags);
cmd->current_dmap = next_dmap;
spin_unlock_irqrestore(&cmd->bitmap_lock, flags);
/*
* No one is accessing the old dirty bitmap anymore, so we can flush
* it.
*/
r = __flush_dmap(cmd, dmap);
out:
up_write(&cmd->lock);
return r;
}
int dm_clone_set_region_hydrated(struct dm_clone_metadata *cmd, unsigned long region_nr)
{
int r = 0;
struct dirty_map *dmap;
unsigned long word, flags;
word = region_nr / BITS_PER_LONG;
spin_lock_irqsave(&cmd->bitmap_lock, flags);
if (cmd->read_only) {
r = -EPERM;
goto out;
}
dmap = cmd->current_dmap;
__set_bit(word, dmap->dirty_words);
__set_bit(region_nr, cmd->region_map);
dmap->changed = 1;
out:
spin_unlock_irqrestore(&cmd->bitmap_lock, flags);
return r;
}
int dm_clone_cond_set_range(struct dm_clone_metadata *cmd, unsigned long start,
unsigned long nr_regions)
{
int r = 0;
struct dirty_map *dmap;
unsigned long word, region_nr, flags;
spin_lock_irqsave(&cmd->bitmap_lock, flags);
if (cmd->read_only) {
r = -EPERM;
goto out;
}
dmap = cmd->current_dmap;
for (region_nr = start; region_nr < (start + nr_regions); region_nr++) {
if (!test_bit(region_nr, cmd->region_map)) {
word = region_nr / BITS_PER_LONG;
__set_bit(word, dmap->dirty_words);
__set_bit(region_nr, cmd->region_map);
dmap->changed = 1;
}
}
out:
spin_unlock_irqrestore(&cmd->bitmap_lock, flags);
return r;
}
/*
* WARNING: This must not be called concurrently with either
* dm_clone_set_region_hydrated() or dm_clone_cond_set_range(), as it changes
* cmd->region_map without taking the cmd->bitmap_lock spinlock. The only
* exception is after setting the metadata to read-only mode, using
* dm_clone_metadata_set_read_only().
*
* We don't take the spinlock because __load_bitset_in_core() does I/O, so it
* may block.
*/
int dm_clone_reload_in_core_bitset(struct dm_clone_metadata *cmd)
{
int r = -EINVAL;
down_write(&cmd->lock);
if (cmd->fail_io)
goto out;
r = __load_bitset_in_core(cmd);
out:
up_write(&cmd->lock);
return r;
}
bool dm_clone_changed_this_transaction(struct dm_clone_metadata *cmd)
{
bool r;
unsigned long flags;
spin_lock_irqsave(&cmd->bitmap_lock, flags);
r = cmd->dmap[0].changed || cmd->dmap[1].changed;
spin_unlock_irqrestore(&cmd->bitmap_lock, flags);
return r;
}
int dm_clone_metadata_abort(struct dm_clone_metadata *cmd)
{
int r = -EPERM;
down_write(&cmd->lock);
if (cmd->fail_io || dm_bm_is_read_only(cmd->bm))
goto out;
__destroy_persistent_data_structures(cmd);
r = __create_persistent_data_structures(cmd, false);
if (r) {
/* If something went wrong we can neither write nor read the metadata */
cmd->fail_io = true;
}
out:
up_write(&cmd->lock);
return r;
}
void dm_clone_metadata_set_read_only(struct dm_clone_metadata *cmd)
{
unsigned long flags;
down_write(&cmd->lock);
spin_lock_irqsave(&cmd->bitmap_lock, flags);
cmd->read_only = 1;
spin_unlock_irqrestore(&cmd->bitmap_lock, flags);
if (!cmd->fail_io)
dm_bm_set_read_only(cmd->bm);
up_write(&cmd->lock);
}
void dm_clone_metadata_set_read_write(struct dm_clone_metadata *cmd)
{
unsigned long flags;
down_write(&cmd->lock);
spin_lock_irqsave(&cmd->bitmap_lock, flags);
cmd->read_only = 0;
spin_unlock_irqrestore(&cmd->bitmap_lock, flags);
if (!cmd->fail_io)
dm_bm_set_read_write(cmd->bm);
up_write(&cmd->lock);
}
int dm_clone_get_free_metadata_block_count(struct dm_clone_metadata *cmd,
dm_block_t *result)
{
int r = -EINVAL;
down_read(&cmd->lock);
if (!cmd->fail_io)
r = dm_sm_get_nr_free(cmd->sm, result);
up_read(&cmd->lock);
return r;
}
int dm_clone_get_metadata_dev_size(struct dm_clone_metadata *cmd,
dm_block_t *result)
{
int r = -EINVAL;
down_read(&cmd->lock);
if (!cmd->fail_io)
r = dm_sm_get_nr_blocks(cmd->sm, result);
up_read(&cmd->lock);
return r;
}

View File

@ -0,0 +1,158 @@
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (C) 2019 Arrikto, Inc. All Rights Reserved.
*/
#ifndef DM_CLONE_METADATA_H
#define DM_CLONE_METADATA_H
#include "persistent-data/dm-block-manager.h"
#include "persistent-data/dm-space-map-metadata.h"
#define DM_CLONE_METADATA_BLOCK_SIZE DM_SM_METADATA_BLOCK_SIZE
/*
* The metadata device is currently limited in size.
*/
#define DM_CLONE_METADATA_MAX_SECTORS DM_SM_METADATA_MAX_SECTORS
/*
* A metadata device larger than 16GB triggers a warning.
*/
#define DM_CLONE_METADATA_MAX_SECTORS_WARNING (16 * (1024 * 1024 * 1024 >> SECTOR_SHIFT))
#define SPACE_MAP_ROOT_SIZE 128
/* dm-clone metadata */
struct dm_clone_metadata;
/*
* Set region status to hydrated.
*
* @cmd: The dm-clone metadata
* @region_nr: The region number
*
* This function doesn't block, so it's safe to call it from interrupt context.
*/
int dm_clone_set_region_hydrated(struct dm_clone_metadata *cmd, unsigned long region_nr);
/*
* Set status of all regions in the provided range to hydrated, if not already
* hydrated.
*
* @cmd: The dm-clone metadata
* @start: Starting region number
* @nr_regions: Number of regions in the range
*
* This function doesn't block, so it's safe to call it from interrupt context.
*/
int dm_clone_cond_set_range(struct dm_clone_metadata *cmd, unsigned long start,
unsigned long nr_regions);
/*
* Read existing or create fresh metadata.
*
* @bdev: The device storing the metadata
* @target_size: The target size
* @region_size: The region size
*
* @returns: The dm-clone metadata
*
* This function reads the superblock of @bdev and checks if it's all zeroes.
* If it is, it formats @bdev and creates fresh metadata. If it isn't, it
* validates the metadata stored in @bdev.
*/
struct dm_clone_metadata *dm_clone_metadata_open(struct block_device *bdev,
sector_t target_size,
sector_t region_size);
/*
* Free the resources related to metadata management.
*/
void dm_clone_metadata_close(struct dm_clone_metadata *cmd);
/*
* Commit dm-clone metadata to disk.
*/
int dm_clone_metadata_commit(struct dm_clone_metadata *cmd);
/*
* Reload the in core copy of the on-disk bitmap.
*
* This should be used after aborting a metadata transaction and setting the
* metadata to read-only, to invalidate the in-core cache and make it match the
* on-disk metadata.
*
* WARNING: It must not be called concurrently with either
* dm_clone_set_region_hydrated() or dm_clone_cond_set_range(), as it updates
* the region bitmap without taking the relevant spinlock. We don't take the
* spinlock because dm_clone_reload_in_core_bitset() does I/O, so it may block.
*
* But, it's safe to use it after calling dm_clone_metadata_set_read_only(),
* because the latter sets the metadata to read-only mode. Both
* dm_clone_set_region_hydrated() and dm_clone_cond_set_range() refuse to touch
* the region bitmap, after calling dm_clone_metadata_set_read_only().
*/
int dm_clone_reload_in_core_bitset(struct dm_clone_metadata *cmd);
/*
* Check whether dm-clone's metadata changed this transaction.
*/
bool dm_clone_changed_this_transaction(struct dm_clone_metadata *cmd);
/*
* Abort current metadata transaction and rollback metadata to the last
* committed transaction.
*/
int dm_clone_metadata_abort(struct dm_clone_metadata *cmd);
/*
* Switches metadata to a read only mode. Once read-only mode has been entered
* the following functions will return -EPERM:
*
* dm_clone_metadata_commit()
* dm_clone_set_region_hydrated()
* dm_clone_cond_set_range()
* dm_clone_metadata_abort()
*/
void dm_clone_metadata_set_read_only(struct dm_clone_metadata *cmd);
void dm_clone_metadata_set_read_write(struct dm_clone_metadata *cmd);
/*
* Returns true if the hydration of the destination device is finished.
*/
bool dm_clone_is_hydration_done(struct dm_clone_metadata *cmd);
/*
* Returns true if region @region_nr is hydrated.
*/
bool dm_clone_is_region_hydrated(struct dm_clone_metadata *cmd, unsigned long region_nr);
/*
* Returns true if all the regions in the range are hydrated.
*/
bool dm_clone_is_range_hydrated(struct dm_clone_metadata *cmd,
unsigned long start, unsigned long nr_regions);
/*
* Returns the number of hydrated regions.
*/
unsigned long dm_clone_nr_of_hydrated_regions(struct dm_clone_metadata *cmd);
/*
* Returns the first unhydrated region with region_nr >= @start
*/
unsigned long dm_clone_find_next_unhydrated_region(struct dm_clone_metadata *cmd,
unsigned long start);
/*
* Get the number of free metadata blocks.
*/
int dm_clone_get_free_metadata_block_count(struct dm_clone_metadata *cmd, dm_block_t *result);
/*
* Get the total number of metadata blocks.
*/
int dm_clone_get_metadata_dev_size(struct dm_clone_metadata *cmd, dm_block_t *result);
#endif /* DM_CLONE_METADATA_H */

File diff suppressed because it is too large Load Diff