staging: fsl-dpaa2/rtc: add rtc driver

This patch is to add driver for the DPAA2 1588 timer module (RTC)
which interfaces to up to an unlimited number of 10/100/1000 or
10G ethernet MACs, providing current time, alarm, and fiper support.
The 1588 IP control block includes these distinctive features.

- External GPIO trigger for time-stamping
- 2 Time-stamp alarms
- 3 FIPER pulse generators
- Phase adjusted output timer clock

Currently this driver only supports basic functions like
settime/gettime/adjtime/adjfreq.

Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This commit is contained in:
Yangbo Lu 2018-04-23 11:55:00 +08:00 committed by Greg Kroah-Hartman
parent d08e2f9728
commit 9bdf43b3d4
7 changed files with 1251 additions and 2 deletions

View file

@ -24,3 +24,11 @@ config FSL_DPAA2_ETHSW
---help---
Driver for Freescale DPAA2 Ethernet Switch. Select
BRIDGE to have support for bridge tools.
config FSL_DPAA2_PTP_CLOCK
tristate "Freescale DPAA2 PTP Clock"
depends on FSL_DPAA2
select PTP_1588_CLOCK
help
This driver adds support for using the DPAA2 1588 timer module
as a PTP clock.

View file

@ -2,5 +2,6 @@
# Freescale DataPath Acceleration Architecture Gen2 (DPAA2) drivers
#
obj-$(CONFIG_FSL_DPAA2_ETH) += ethernet/
obj-$(CONFIG_FSL_DPAA2_ETHSW) += ethsw/
obj-$(CONFIG_FSL_DPAA2_ETH) += ethernet/
obj-$(CONFIG_FSL_DPAA2_ETHSW) += ethsw/
obj-$(CONFIG_FSL_DPAA2_PTP_CLOCK) += rtc/

View file

@ -0,0 +1,7 @@
#
# Makefile for the Freescale DPAA2 PTP clock
#
obj-$(CONFIG_FSL_DPAA2_PTP_CLOCK) += dpaa2-rtc.o
dpaa2-rtc-objs := rtc.o dprtc.o

View file

@ -0,0 +1,137 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2013-2016 Freescale Semiconductor Inc.
* Copyright 2016-2018 NXP
*/
#ifndef _FSL_DPRTC_CMD_H
#define _FSL_DPRTC_CMD_H
/* DPRTC Version */
#define DPRTC_VER_MAJOR 2
#define DPRTC_VER_MINOR 0
/* Command versioning */
#define DPRTC_CMD_BASE_VERSION 1
#define DPRTC_CMD_ID_OFFSET 4
#define DPRTC_CMD(id) (((id) << DPRTC_CMD_ID_OFFSET) | DPRTC_CMD_BASE_VERSION)
/* Command IDs */
#define DPRTC_CMDID_CLOSE DPRTC_CMD(0x800)
#define DPRTC_CMDID_OPEN DPRTC_CMD(0x810)
#define DPRTC_CMDID_CREATE DPRTC_CMD(0x910)
#define DPRTC_CMDID_DESTROY DPRTC_CMD(0x990)
#define DPRTC_CMDID_GET_API_VERSION DPRTC_CMD(0xa10)
#define DPRTC_CMDID_ENABLE DPRTC_CMD(0x002)
#define DPRTC_CMDID_DISABLE DPRTC_CMD(0x003)
#define DPRTC_CMDID_GET_ATTR DPRTC_CMD(0x004)
#define DPRTC_CMDID_RESET DPRTC_CMD(0x005)
#define DPRTC_CMDID_IS_ENABLED DPRTC_CMD(0x006)
#define DPRTC_CMDID_SET_IRQ_ENABLE DPRTC_CMD(0x012)
#define DPRTC_CMDID_GET_IRQ_ENABLE DPRTC_CMD(0x013)
#define DPRTC_CMDID_SET_IRQ_MASK DPRTC_CMD(0x014)
#define DPRTC_CMDID_GET_IRQ_MASK DPRTC_CMD(0x015)
#define DPRTC_CMDID_GET_IRQ_STATUS DPRTC_CMD(0x016)
#define DPRTC_CMDID_CLEAR_IRQ_STATUS DPRTC_CMD(0x017)
#define DPRTC_CMDID_SET_CLOCK_OFFSET DPRTC_CMD(0x1d0)
#define DPRTC_CMDID_SET_FREQ_COMPENSATION DPRTC_CMD(0x1d1)
#define DPRTC_CMDID_GET_FREQ_COMPENSATION DPRTC_CMD(0x1d2)
#define DPRTC_CMDID_GET_TIME DPRTC_CMD(0x1d3)
#define DPRTC_CMDID_SET_TIME DPRTC_CMD(0x1d4)
#define DPRTC_CMDID_SET_ALARM DPRTC_CMD(0x1d5)
#define DPRTC_CMDID_SET_PERIODIC_PULSE DPRTC_CMD(0x1d6)
#define DPRTC_CMDID_CLEAR_PERIODIC_PULSE DPRTC_CMD(0x1d7)
#define DPRTC_CMDID_SET_EXT_TRIGGER DPRTC_CMD(0x1d8)
#define DPRTC_CMDID_CLEAR_EXT_TRIGGER DPRTC_CMD(0x1d9)
#define DPRTC_CMDID_GET_EXT_TRIGGER_TIMESTAMP DPRTC_CMD(0x1dA)
/* Macros for accessing command fields smaller than 1byte */
#define DPRTC_MASK(field) \
GENMASK(DPRTC_##field##_SHIFT + DPRTC_##field##_SIZE - 1, \
DPRTC_##field##_SHIFT)
#define dprtc_get_field(var, field) \
(((var) & DPRTC_MASK(field)) >> DPRTC_##field##_SHIFT)
#pragma pack(push, 1)
struct dprtc_cmd_open {
__le32 dprtc_id;
};
struct dprtc_cmd_destroy {
__le32 object_id;
};
#define DPRTC_ENABLE_SHIFT 0
#define DPRTC_ENABLE_SIZE 1
struct dprtc_rsp_is_enabled {
u8 en;
};
struct dprtc_cmd_get_irq {
__le32 pad;
u8 irq_index;
};
struct dprtc_cmd_set_irq_enable {
u8 en;
u8 pad[3];
u8 irq_index;
};
struct dprtc_rsp_get_irq_enable {
u8 en;
};
struct dprtc_cmd_set_irq_mask {
__le32 mask;
u8 irq_index;
};
struct dprtc_rsp_get_irq_mask {
__le32 mask;
};
struct dprtc_cmd_get_irq_status {
__le32 status;
u8 irq_index;
};
struct dprtc_rsp_get_irq_status {
__le32 status;
};
struct dprtc_cmd_clear_irq_status {
__le32 status;
u8 irq_index;
};
struct dprtc_rsp_get_attributes {
__le32 pad;
__le32 id;
};
struct dprtc_cmd_set_clock_offset {
__le64 offset;
};
struct dprtc_get_freq_compensation {
__le32 freq_compensation;
};
struct dprtc_time {
__le64 time;
};
struct dprtc_rsp_get_api_version {
__le16 major;
__le16 minor;
};
#pragma pack(pop)
#endif /* _FSL_DPRTC_CMD_H */

View file

@ -0,0 +1,701 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2013-2016 Freescale Semiconductor Inc.
* Copyright 2016-2018 NXP
*/
#include <linux/fsl/mc.h>
#include "dprtc.h"
#include "dprtc-cmd.h"
/**
* dprtc_open() - Open a control session for the specified object.
* @mc_io: Pointer to MC portal's I/O object
* @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_'
* @dprtc_id: DPRTC unique ID
* @token: Returned token; use in subsequent API calls
*
* This function can be used to open a control session for an
* already created object; an object may have been declared in
* the DPL or by calling the dprtc_create function.
* This function returns a unique authentication token,
* associated with the specific object ID and the specific MC
* portal; this token must be used in all subsequent commands for
* this specific object
*
* Return: '0' on Success; Error code otherwise.
*/
int dprtc_open(struct fsl_mc_io *mc_io,
u32 cmd_flags,
int dprtc_id,
u16 *token)
{
struct dprtc_cmd_open *cmd_params;
struct fsl_mc_command cmd = { 0 };
int err;
cmd.header = mc_encode_cmd_header(DPRTC_CMDID_OPEN,
cmd_flags,
0);
cmd_params = (struct dprtc_cmd_open *)cmd.params;
cmd_params->dprtc_id = cpu_to_le32(dprtc_id);
err = mc_send_command(mc_io, &cmd);
if (err)
return err;
*token = mc_cmd_hdr_read_token(&cmd);
return 0;
}
/**
* dprtc_close() - Close the control session of the object
* @mc_io: Pointer to MC portal's I/O object
* @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_'
* @token: Token of DPRTC object
*
* After this function is called, no further operations are
* allowed on the object without opening a new control session.
*
* Return: '0' on Success; Error code otherwise.
*/
int dprtc_close(struct fsl_mc_io *mc_io,
u32 cmd_flags,
u16 token)
{
struct fsl_mc_command cmd = { 0 };
cmd.header = mc_encode_cmd_header(DPRTC_CMDID_CLOSE, cmd_flags,
token);
return mc_send_command(mc_io, &cmd);
}
/**
* dprtc_create() - Create the DPRTC object.
* @mc_io: Pointer to MC portal's I/O object
* @dprc_token: Parent container token; '0' for default container
* @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_'
* @cfg: Configuration structure
* @obj_id: Returned object id
*
* Create the DPRTC object, allocate required resources and
* perform required initialization.
*
* The function accepts an authentication token of a parent
* container that this object should be assigned to. The token
* can be '0' so the object will be assigned to the default container.
* The newly created object can be opened with the returned
* object id and using the container's associated tokens and MC portals.
*
* Return: '0' on Success; Error code otherwise.
*/
int dprtc_create(struct fsl_mc_io *mc_io,
u16 dprc_token,
u32 cmd_flags,
const struct dprtc_cfg *cfg,
u32 *obj_id)
{
struct fsl_mc_command cmd = { 0 };
int err;
cmd.header = mc_encode_cmd_header(DPRTC_CMDID_CREATE,
cmd_flags,
dprc_token);
err = mc_send_command(mc_io, &cmd);
if (err)
return err;
*obj_id = mc_cmd_read_object_id(&cmd);
return 0;
}
/**
* dprtc_destroy() - Destroy the DPRTC object and release all its resources.
* @mc_io: Pointer to MC portal's I/O object
* @dprc_token: Parent container token; '0' for default container
* @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_'
* @object_id: The object id; it must be a valid id within the container that
* created this object;
*
* The function accepts the authentication token of the parent container that
* created the object (not the one that currently owns the object). The object
* is searched within parent using the provided 'object_id'.
* All tokens to the object must be closed before calling destroy.
*
* Return: '0' on Success; error code otherwise.
*/
int dprtc_destroy(struct fsl_mc_io *mc_io,
u16 dprc_token,
u32 cmd_flags,
u32 object_id)
{
struct dprtc_cmd_destroy *cmd_params;
struct fsl_mc_command cmd = { 0 };
cmd.header = mc_encode_cmd_header(DPRTC_CMDID_DESTROY,
cmd_flags,
dprc_token);
cmd_params = (struct dprtc_cmd_destroy *)cmd.params;
cmd_params->object_id = cpu_to_le32(object_id);
return mc_send_command(mc_io, &cmd);
}
/**
* dprtc_enable() - Enable the DPRTC.
* @mc_io: Pointer to MC portal's I/O object
* @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_'
* @token: Token of DPRTC object
*
* Return: '0' on Success; Error code otherwise.
*/
int dprtc_enable(struct fsl_mc_io *mc_io,
u32 cmd_flags,
u16 token)
{
struct fsl_mc_command cmd = { 0 };
cmd.header = mc_encode_cmd_header(DPRTC_CMDID_ENABLE, cmd_flags,
token);
return mc_send_command(mc_io, &cmd);
}
/**
* dprtc_disable() - Disable the DPRTC.
* @mc_io: Pointer to MC portal's I/O object
* @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_'
* @token: Token of DPRTC object
*
* Return: '0' on Success; Error code otherwise.
*/
int dprtc_disable(struct fsl_mc_io *mc_io,
u32 cmd_flags,
u16 token)
{
struct fsl_mc_command cmd = { 0 };
cmd.header = mc_encode_cmd_header(DPRTC_CMDID_DISABLE,
cmd_flags,
token);
return mc_send_command(mc_io, &cmd);
}
/**
* dprtc_is_enabled() - Check if the DPRTC is enabled.
* @mc_io: Pointer to MC portal's I/O object
* @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_'
* @token: Token of DPRTC object
* @en: Returns '1' if object is enabled; '0' otherwise
*
* Return: '0' on Success; Error code otherwise.
*/
int dprtc_is_enabled(struct fsl_mc_io *mc_io,
u32 cmd_flags,
u16 token,
int *en)
{
struct dprtc_rsp_is_enabled *rsp_params;
struct fsl_mc_command cmd = { 0 };
int err;
cmd.header = mc_encode_cmd_header(DPRTC_CMDID_IS_ENABLED, cmd_flags,
token);
err = mc_send_command(mc_io, &cmd);
if (err)
return err;
rsp_params = (struct dprtc_rsp_is_enabled *)cmd.params;
*en = dprtc_get_field(rsp_params->en, ENABLE);
return 0;
}
/**
* dprtc_reset() - Reset the DPRTC, returns the object to initial state.
* @mc_io: Pointer to MC portal's I/O object
* @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_'
* @token: Token of DPRTC object
*
* Return: '0' on Success; Error code otherwise.
*/
int dprtc_reset(struct fsl_mc_io *mc_io,
u32 cmd_flags,
u16 token)
{
struct fsl_mc_command cmd = { 0 };
cmd.header = mc_encode_cmd_header(DPRTC_CMDID_RESET,
cmd_flags,
token);
return mc_send_command(mc_io, &cmd);
}
/**
* dprtc_set_irq_enable() - Set overall interrupt state.
* @mc_io: Pointer to MC portal's I/O object
* @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_'
* @token: Token of DPRTC object
* @irq_index: The interrupt index to configure
* @en: Interrupt state - enable = 1, disable = 0
*
* Allows GPP software to control when interrupts are generated.
* Each interrupt can have up to 32 causes. The enable/disable control's the
* overall interrupt state. if the interrupt is disabled no causes will cause
* an interrupt.
*
* Return: '0' on Success; Error code otherwise.
*/
int dprtc_set_irq_enable(struct fsl_mc_io *mc_io,
u32 cmd_flags,
u16 token,
u8 irq_index,
u8 en)
{
struct dprtc_cmd_set_irq_enable *cmd_params;
struct fsl_mc_command cmd = { 0 };
cmd.header = mc_encode_cmd_header(DPRTC_CMDID_SET_IRQ_ENABLE,
cmd_flags,
token);
cmd_params = (struct dprtc_cmd_set_irq_enable *)cmd.params;
cmd_params->irq_index = irq_index;
cmd_params->en = en;
return mc_send_command(mc_io, &cmd);
}
/**
* dprtc_get_irq_enable() - Get overall interrupt state
* @mc_io: Pointer to MC portal's I/O object
* @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_'
* @token: Token of DPRTC object
* @irq_index: The interrupt index to configure
* @en: Returned interrupt state - enable = 1, disable = 0
*
* Return: '0' on Success; Error code otherwise.
*/
int dprtc_get_irq_enable(struct fsl_mc_io *mc_io,
u32 cmd_flags,
u16 token,
u8 irq_index,
u8 *en)
{
struct dprtc_rsp_get_irq_enable *rsp_params;
struct dprtc_cmd_get_irq *cmd_params;
struct fsl_mc_command cmd = { 0 };
int err;
cmd.header = mc_encode_cmd_header(DPRTC_CMDID_GET_IRQ_ENABLE,
cmd_flags,
token);
cmd_params = (struct dprtc_cmd_get_irq *)cmd.params;
cmd_params->irq_index = irq_index;
err = mc_send_command(mc_io, &cmd);
if (err)
return err;
rsp_params = (struct dprtc_rsp_get_irq_enable *)cmd.params;
*en = rsp_params->en;
return 0;
}
/**
* dprtc_set_irq_mask() - Set interrupt mask.
* @mc_io: Pointer to MC portal's I/O object
* @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_'
* @token: Token of DPRTC object
* @irq_index: The interrupt index to configure
* @mask: Event mask to trigger interrupt;
* each bit:
* 0 = ignore event
* 1 = consider event for asserting IRQ
*
* Every interrupt can have up to 32 causes and the interrupt model supports
* masking/unmasking each cause independently
*
* Return: '0' on Success; Error code otherwise.
*/
int dprtc_set_irq_mask(struct fsl_mc_io *mc_io,
u32 cmd_flags,
u16 token,
u8 irq_index,
u32 mask)
{
struct dprtc_cmd_set_irq_mask *cmd_params;
struct fsl_mc_command cmd = { 0 };
cmd.header = mc_encode_cmd_header(DPRTC_CMDID_SET_IRQ_MASK,
cmd_flags,
token);
cmd_params = (struct dprtc_cmd_set_irq_mask *)cmd.params;
cmd_params->mask = cpu_to_le32(mask);
cmd_params->irq_index = irq_index;
return mc_send_command(mc_io, &cmd);
}
/**
* dprtc_get_irq_mask() - Get interrupt mask.
* @mc_io: Pointer to MC portal's I/O object
* @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_'
* @token: Token of DPRTC object
* @irq_index: The interrupt index to configure
* @mask: Returned event mask to trigger interrupt
*
* Every interrupt can have up to 32 causes and the interrupt model supports
* masking/unmasking each cause independently
*
* Return: '0' on Success; Error code otherwise.
*/
int dprtc_get_irq_mask(struct fsl_mc_io *mc_io,
u32 cmd_flags,
u16 token,
u8 irq_index,
u32 *mask)
{
struct dprtc_rsp_get_irq_mask *rsp_params;
struct dprtc_cmd_get_irq *cmd_params;
struct fsl_mc_command cmd = { 0 };
int err;
cmd.header = mc_encode_cmd_header(DPRTC_CMDID_GET_IRQ_MASK,
cmd_flags,
token);
cmd_params = (struct dprtc_cmd_get_irq *)cmd.params;
cmd_params->irq_index = irq_index;
err = mc_send_command(mc_io, &cmd);
if (err)
return err;
rsp_params = (struct dprtc_rsp_get_irq_mask *)cmd.params;
*mask = le32_to_cpu(rsp_params->mask);
return 0;
}
/**
* dprtc_get_irq_status() - Get the current status of any pending interrupts.
*
* @mc_io: Pointer to MC portal's I/O object
* @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_'
* @token: Token of DPRTC object
* @irq_index: The interrupt index to configure
* @status: Returned interrupts status - one bit per cause:
* 0 = no interrupt pending
* 1 = interrupt pending
*
* Return: '0' on Success; Error code otherwise.
*/
int dprtc_get_irq_status(struct fsl_mc_io *mc_io,
u32 cmd_flags,
u16 token,
u8 irq_index,
u32 *status)
{
struct dprtc_cmd_get_irq_status *cmd_params;
struct dprtc_rsp_get_irq_status *rsp_params;
struct fsl_mc_command cmd = { 0 };
int err;
cmd.header = mc_encode_cmd_header(DPRTC_CMDID_GET_IRQ_STATUS,
cmd_flags,
token);
cmd_params = (struct dprtc_cmd_get_irq_status *)cmd.params;
cmd_params->status = cpu_to_le32(*status);
cmd_params->irq_index = irq_index;
err = mc_send_command(mc_io, &cmd);
if (err)
return err;
rsp_params = (struct dprtc_rsp_get_irq_status *)cmd.params;
*status = le32_to_cpu(rsp_params->status);
return 0;
}
/**
* dprtc_clear_irq_status() - Clear a pending interrupt's status
*
* @mc_io: Pointer to MC portal's I/O object
* @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_'
* @token: Token of DPRTC object
* @irq_index: The interrupt index to configure
* @status: Bits to clear (W1C) - one bit per cause:
* 0 = don't change
* 1 = clear status bit
*
* Return: '0' on Success; Error code otherwise.
*/
int dprtc_clear_irq_status(struct fsl_mc_io *mc_io,
u32 cmd_flags,
u16 token,
u8 irq_index,
u32 status)
{
struct dprtc_cmd_clear_irq_status *cmd_params;
struct fsl_mc_command cmd = { 0 };
cmd.header = mc_encode_cmd_header(DPRTC_CMDID_CLEAR_IRQ_STATUS,
cmd_flags,
token);
cmd_params = (struct dprtc_cmd_clear_irq_status *)cmd.params;
cmd_params->irq_index = irq_index;
cmd_params->status = cpu_to_le32(status);
return mc_send_command(mc_io, &cmd);
}
/**
* dprtc_get_attributes - Retrieve DPRTC attributes.
*
* @mc_io: Pointer to MC portal's I/O object
* @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_'
* @token: Token of DPRTC object
* @attr: Returned object's attributes
*
* Return: '0' on Success; Error code otherwise.
*/
int dprtc_get_attributes(struct fsl_mc_io *mc_io,
u32 cmd_flags,
u16 token,
struct dprtc_attr *attr)
{
struct dprtc_rsp_get_attributes *rsp_params;
struct fsl_mc_command cmd = { 0 };
int err;
cmd.header = mc_encode_cmd_header(DPRTC_CMDID_GET_ATTR,
cmd_flags,
token);
err = mc_send_command(mc_io, &cmd);
if (err)
return err;
rsp_params = (struct dprtc_rsp_get_attributes *)cmd.params;
attr->id = le32_to_cpu(rsp_params->id);
return 0;
}
/**
* dprtc_set_clock_offset() - Sets the clock's offset
* (usually relative to another clock).
*
* @mc_io: Pointer to MC portal's I/O object
* @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_'
* @token: Token of DPRTC object
* @offset: New clock offset (in nanoseconds).
*
* Return: '0' on Success; Error code otherwise.
*/
int dprtc_set_clock_offset(struct fsl_mc_io *mc_io,
u32 cmd_flags,
u16 token,
int64_t offset)
{
struct dprtc_cmd_set_clock_offset *cmd_params;
struct fsl_mc_command cmd = { 0 };
cmd.header = mc_encode_cmd_header(DPRTC_CMDID_SET_CLOCK_OFFSET,
cmd_flags,
token);
cmd_params = (struct dprtc_cmd_set_clock_offset *)cmd.params;
cmd_params->offset = cpu_to_le64(offset);
return mc_send_command(mc_io, &cmd);
}
/**
* dprtc_set_freq_compensation() - Sets a new frequency compensation value.
*
* @mc_io: Pointer to MC portal's I/O object
* @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_'
* @token: Token of DPRTC object
* @freq_compensation: The new frequency compensation value to set.
*
* Return: '0' on Success; Error code otherwise.
*/
int dprtc_set_freq_compensation(struct fsl_mc_io *mc_io,
u32 cmd_flags,
u16 token,
u32 freq_compensation)
{
struct dprtc_get_freq_compensation *cmd_params;
struct fsl_mc_command cmd = { 0 };
cmd.header = mc_encode_cmd_header(DPRTC_CMDID_SET_FREQ_COMPENSATION,
cmd_flags,
token);
cmd_params = (struct dprtc_get_freq_compensation *)cmd.params;
cmd_params->freq_compensation = cpu_to_le32(freq_compensation);
return mc_send_command(mc_io, &cmd);
}
/**
* dprtc_get_freq_compensation() - Retrieves the frequency compensation value
*
* @mc_io: Pointer to MC portal's I/O object
* @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_'
* @token: Token of DPRTC object
* @freq_compensation: Frequency compensation value
*
* Return: '0' on Success; Error code otherwise.
*/
int dprtc_get_freq_compensation(struct fsl_mc_io *mc_io,
u32 cmd_flags,
u16 token,
u32 *freq_compensation)
{
struct dprtc_get_freq_compensation *rsp_params;
struct fsl_mc_command cmd = { 0 };
int err;
cmd.header = mc_encode_cmd_header(DPRTC_CMDID_GET_FREQ_COMPENSATION,
cmd_flags,
token);
err = mc_send_command(mc_io, &cmd);
if (err)
return err;
rsp_params = (struct dprtc_get_freq_compensation *)cmd.params;
*freq_compensation = le32_to_cpu(rsp_params->freq_compensation);
return 0;
}
/**
* dprtc_get_time() - Returns the current RTC time.
*
* @mc_io: Pointer to MC portal's I/O object
* @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_'
* @token: Token of DPRTC object
* @time: Current RTC time.
*
* Return: '0' on Success; Error code otherwise.
*/
int dprtc_get_time(struct fsl_mc_io *mc_io,
u32 cmd_flags,
u16 token,
uint64_t *time)
{
struct dprtc_time *rsp_params;
struct fsl_mc_command cmd = { 0 };
int err;
cmd.header = mc_encode_cmd_header(DPRTC_CMDID_GET_TIME,
cmd_flags,
token);
err = mc_send_command(mc_io, &cmd);
if (err)
return err;
rsp_params = (struct dprtc_time *)cmd.params;
*time = le64_to_cpu(rsp_params->time);
return 0;
}
/**
* dprtc_set_time() - Updates current RTC time.
*
* @mc_io: Pointer to MC portal's I/O object
* @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_'
* @token: Token of DPRTC object
* @time: New RTC time.
*
* Return: '0' on Success; Error code otherwise.
*/
int dprtc_set_time(struct fsl_mc_io *mc_io,
u32 cmd_flags,
u16 token,
uint64_t time)
{
struct dprtc_time *cmd_params;
struct fsl_mc_command cmd = { 0 };
cmd.header = mc_encode_cmd_header(DPRTC_CMDID_SET_TIME,
cmd_flags,
token);
cmd_params = (struct dprtc_time *)cmd.params;
cmd_params->time = cpu_to_le64(time);
return mc_send_command(mc_io, &cmd);
}
/**
* dprtc_set_alarm() - Defines and sets alarm.
*
* @mc_io: Pointer to MC portal's I/O object
* @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_'
* @token: Token of DPRTC object
* @time: In nanoseconds, the time when the alarm
* should go off - must be a multiple of
* 1 microsecond
*
* Return: '0' on Success; Error code otherwise.
*/
int dprtc_set_alarm(struct fsl_mc_io *mc_io,
u32 cmd_flags,
u16 token, uint64_t time)
{
struct dprtc_time *cmd_params;
struct fsl_mc_command cmd = { 0 };
cmd.header = mc_encode_cmd_header(DPRTC_CMDID_SET_ALARM,
cmd_flags,
token);
cmd_params = (struct dprtc_time *)cmd.params;
cmd_params->time = cpu_to_le64(time);
return mc_send_command(mc_io, &cmd);
}
/**
* dprtc_get_api_version() - Get Data Path Real Time Counter API version
* @mc_io: Pointer to MC portal's I/O object
* @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_'
* @major_ver: Major version of data path real time counter API
* @minor_ver: Minor version of data path real time counter API
*
* Return: '0' on Success; Error code otherwise.
*/
int dprtc_get_api_version(struct fsl_mc_io *mc_io,
u32 cmd_flags,
u16 *major_ver,
u16 *minor_ver)
{
struct dprtc_rsp_get_api_version *rsp_params;
struct fsl_mc_command cmd = { 0 };
int err;
cmd.header = mc_encode_cmd_header(DPRTC_CMDID_GET_API_VERSION,
cmd_flags,
0);
err = mc_send_command(mc_io, &cmd);
if (err)
return err;
rsp_params = (struct dprtc_rsp_get_api_version *)cmd.params;
*major_ver = le16_to_cpu(rsp_params->major);
*minor_ver = le16_to_cpu(rsp_params->minor);
return 0;
}

View file

@ -0,0 +1,164 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2013-2016 Freescale Semiconductor Inc.
* Copyright 2016-2018 NXP
*/
#ifndef __FSL_DPRTC_H
#define __FSL_DPRTC_H
/* Data Path Real Time Counter API
* Contains initialization APIs and runtime control APIs for RTC
*/
struct fsl_mc_io;
/**
* Number of irq's
*/
#define DPRTC_MAX_IRQ_NUM 1
#define DPRTC_IRQ_INDEX 0
/**
* Interrupt event masks:
*/
/**
* Interrupt event mask indicating alarm event had occurred
*/
#define DPRTC_EVENT_ALARM 0x40000000
/**
* Interrupt event mask indicating periodic pulse event had occurred
*/
#define DPRTC_EVENT_PPS 0x08000000
int dprtc_open(struct fsl_mc_io *mc_io,
u32 cmd_flags,
int dprtc_id,
u16 *token);
int dprtc_close(struct fsl_mc_io *mc_io,
u32 cmd_flags,
u16 token);
/**
* struct dprtc_cfg - Structure representing DPRTC configuration
* @options: place holder
*/
struct dprtc_cfg {
u32 options;
};
int dprtc_create(struct fsl_mc_io *mc_io,
u16 dprc_token,
u32 cmd_flags,
const struct dprtc_cfg *cfg,
u32 *obj_id);
int dprtc_destroy(struct fsl_mc_io *mc_io,
u16 dprc_token,
u32 cmd_flags,
u32 object_id);
int dprtc_enable(struct fsl_mc_io *mc_io,
u32 cmd_flags,
u16 token);
int dprtc_disable(struct fsl_mc_io *mc_io,
u32 cmd_flags,
u16 token);
int dprtc_is_enabled(struct fsl_mc_io *mc_io,
u32 cmd_flags,
u16 token,
int *en);
int dprtc_reset(struct fsl_mc_io *mc_io,
u32 cmd_flags,
u16 token);
int dprtc_set_clock_offset(struct fsl_mc_io *mc_io,
u32 cmd_flags,
u16 token,
int64_t offset);
int dprtc_set_freq_compensation(struct fsl_mc_io *mc_io,
u32 cmd_flags,
u16 token,
u32 freq_compensation);
int dprtc_get_freq_compensation(struct fsl_mc_io *mc_io,
u32 cmd_flags,
u16 token,
u32 *freq_compensation);
int dprtc_get_time(struct fsl_mc_io *mc_io,
u32 cmd_flags,
u16 token,
uint64_t *time);
int dprtc_set_time(struct fsl_mc_io *mc_io,
u32 cmd_flags,
u16 token,
uint64_t time);
int dprtc_set_alarm(struct fsl_mc_io *mc_io,
u32 cmd_flags,
u16 token,
uint64_t time);
int dprtc_set_irq_enable(struct fsl_mc_io *mc_io,
u32 cmd_flags,
u16 token,
u8 irq_index,
u8 en);
int dprtc_get_irq_enable(struct fsl_mc_io *mc_io,
u32 cmd_flags,
u16 token,
u8 irq_index,
u8 *en);
int dprtc_set_irq_mask(struct fsl_mc_io *mc_io,
u32 cmd_flags,
u16 token,
u8 irq_index,
u32 mask);
int dprtc_get_irq_mask(struct fsl_mc_io *mc_io,
u32 cmd_flags,
u16 token,
u8 irq_index,
u32 *mask);
int dprtc_get_irq_status(struct fsl_mc_io *mc_io,
u32 cmd_flags,
u16 token,
u8 irq_index,
u32 *status);
int dprtc_clear_irq_status(struct fsl_mc_io *mc_io,
u32 cmd_flags,
u16 token,
u8 irq_index,
u32 status);
/**
* struct dprtc_attr - Structure representing DPRTC attributes
* @id: DPRTC object ID
*/
struct dprtc_attr {
int id;
};
int dprtc_get_attributes(struct fsl_mc_io *mc_io,
u32 cmd_flags,
u16 token,
struct dprtc_attr *attr);
int dprtc_get_api_version(struct fsl_mc_io *mc_io,
u32 cmd_flags,
u16 *major_ver,
u16 *minor_ver);
#endif /* __FSL_DPRTC_H */

View file

@ -0,0 +1,231 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2013-2016 Freescale Semiconductor Inc.
* Copyright 2016-2018 NXP
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/ptp_clock_kernel.h>
#include <linux/fsl/mc.h>
#include "dprtc.h"
#include "dprtc-cmd.h"
struct ptp_dpaa2_priv {
struct fsl_mc_device *rtc_mc_dev;
struct ptp_clock *clock;
struct ptp_clock_info caps;
int phc_index;
u32 freq_comp;
};
/* PTP clock operations */
static int ptp_dpaa2_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
{
struct ptp_dpaa2_priv *ptp_dpaa2 =
container_of(ptp, struct ptp_dpaa2_priv, caps);
struct fsl_mc_device *mc_dev = ptp_dpaa2->rtc_mc_dev;
struct device *dev = &mc_dev->dev;
u64 adj;
u32 diff, tmr_add;
int neg_adj = 0;
int err = 0;
if (ppb < 0) {
neg_adj = 1;
ppb = -ppb;
}
tmr_add = ptp_dpaa2->freq_comp;
adj = tmr_add;
adj *= ppb;
diff = div_u64(adj, 1000000000ULL);
tmr_add = neg_adj ? tmr_add - diff : tmr_add + diff;
err = dprtc_set_freq_compensation(mc_dev->mc_io, 0,
mc_dev->mc_handle, tmr_add);
if (err)
dev_err(dev, "dprtc_set_freq_compensation err %d\n", err);
return 0;
}
static int ptp_dpaa2_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
struct ptp_dpaa2_priv *ptp_dpaa2 =
container_of(ptp, struct ptp_dpaa2_priv, caps);
struct fsl_mc_device *mc_dev = ptp_dpaa2->rtc_mc_dev;
struct device *dev = &mc_dev->dev;
s64 now;
int err = 0;
err = dprtc_get_time(mc_dev->mc_io, 0, mc_dev->mc_handle, &now);
if (err) {
dev_err(dev, "dprtc_get_time err %d\n", err);
return 0;
}
now += delta;
err = dprtc_set_time(mc_dev->mc_io, 0, mc_dev->mc_handle, now);
if (err) {
dev_err(dev, "dprtc_set_time err %d\n", err);
return 0;
}
return 0;
}
static int ptp_dpaa2_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
{
struct ptp_dpaa2_priv *ptp_dpaa2 =
container_of(ptp, struct ptp_dpaa2_priv, caps);
struct fsl_mc_device *mc_dev = ptp_dpaa2->rtc_mc_dev;
struct device *dev = &mc_dev->dev;
u64 ns;
u32 remainder;
int err = 0;
err = dprtc_get_time(mc_dev->mc_io, 0, mc_dev->mc_handle, &ns);
if (err) {
dev_err(dev, "dprtc_get_time err %d\n", err);
return 0;
}
ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder);
ts->tv_nsec = remainder;
return 0;
}
static int ptp_dpaa2_settime(struct ptp_clock_info *ptp,
const struct timespec64 *ts)
{
struct ptp_dpaa2_priv *ptp_dpaa2 =
container_of(ptp, struct ptp_dpaa2_priv, caps);
struct fsl_mc_device *mc_dev = ptp_dpaa2->rtc_mc_dev;
struct device *dev = &mc_dev->dev;
u64 ns;
int err = 0;
ns = ts->tv_sec * 1000000000ULL;
ns += ts->tv_nsec;
err = dprtc_set_time(mc_dev->mc_io, 0, mc_dev->mc_handle, ns);
if (err)
dev_err(dev, "dprtc_set_time err %d\n", err);
return 0;
}
static struct ptp_clock_info ptp_dpaa2_caps = {
.owner = THIS_MODULE,
.name = "DPAA2 PTP Clock",
.max_adj = 512000,
.n_alarm = 2,
.n_ext_ts = 2,
.n_per_out = 3,
.n_pins = 0,
.pps = 1,
.adjfreq = ptp_dpaa2_adjfreq,
.adjtime = ptp_dpaa2_adjtime,
.gettime64 = ptp_dpaa2_gettime,
.settime64 = ptp_dpaa2_settime,
};
static int rtc_probe(struct fsl_mc_device *mc_dev)
{
struct device *dev = &mc_dev->dev;
struct ptp_dpaa2_priv *ptp_dpaa2;
u32 tmr_add = 0;
int err;
ptp_dpaa2 = kzalloc(sizeof(*ptp_dpaa2), GFP_KERNEL);
if (!ptp_dpaa2)
return -ENOMEM;
err = fsl_mc_portal_allocate(mc_dev, 0, &mc_dev->mc_io);
if (err) {
dev_err(dev, "fsl_mc_portal_allocate err %d\n", err);
goto err_exit;
}
err = dprtc_open(mc_dev->mc_io, 0, mc_dev->obj_desc.id,
&mc_dev->mc_handle);
if (err) {
dev_err(dev, "dprtc_open err %d\n", err);
goto err_free_mcp;
}
ptp_dpaa2->rtc_mc_dev = mc_dev;
err = dprtc_get_freq_compensation(mc_dev->mc_io, 0,
mc_dev->mc_handle, &tmr_add);
if (err) {
dev_err(dev, "dprtc_get_freq_compensation err %d\n", err);
goto err_close;
}
ptp_dpaa2->freq_comp = tmr_add;
ptp_dpaa2->caps = ptp_dpaa2_caps;
ptp_dpaa2->clock = ptp_clock_register(&ptp_dpaa2->caps, dev);
if (IS_ERR(ptp_dpaa2->clock)) {
err = PTR_ERR(ptp_dpaa2->clock);
goto err_close;
}
ptp_dpaa2->phc_index = ptp_clock_index(ptp_dpaa2->clock);
dev_set_drvdata(dev, ptp_dpaa2);
return 0;
err_close:
dprtc_close(mc_dev->mc_io, 0, mc_dev->mc_handle);
err_free_mcp:
fsl_mc_portal_free(mc_dev->mc_io);
err_exit:
kfree(ptp_dpaa2);
dev_set_drvdata(dev, NULL);
return err;
}
static int rtc_remove(struct fsl_mc_device *mc_dev)
{
struct ptp_dpaa2_priv *ptp_dpaa2;
struct device *dev = &mc_dev->dev;
ptp_dpaa2 = dev_get_drvdata(dev);
ptp_clock_unregister(ptp_dpaa2->clock);
dprtc_close(mc_dev->mc_io, 0, mc_dev->mc_handle);
fsl_mc_portal_free(mc_dev->mc_io);
kfree(ptp_dpaa2);
dev_set_drvdata(dev, NULL);
return 0;
}
static const struct fsl_mc_device_id rtc_match_id_table[] = {
{
.vendor = FSL_MC_VENDOR_FREESCALE,
.obj_type = "dprtc",
},
{}
};
MODULE_DEVICE_TABLE(fslmc, rtc_match_id_table);
static struct fsl_mc_driver rtc_drv = {
.driver = {
.name = KBUILD_MODNAME,
.owner = THIS_MODULE,
},
.probe = rtc_probe,
.remove = rtc_remove,
.match_id_table = rtc_match_id_table,
};
module_fsl_mc_driver(rtc_drv);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("DPAA2 PTP Clock Driver");