Staging: et131x: de-hungarianise a bit

bOverrideAddress is write only so kill it rather than fix it

Signed-off-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This commit is contained in:
Alan Cox 2009-08-27 11:00:36 +01:00 committed by Greg Kroah-Hartman
parent 8c5f20f36a
commit 9fa8109921
8 changed files with 375 additions and 391 deletions

View file

@ -137,34 +137,34 @@
* Define macros that allow individual register values to be extracted from a
* DWORD1 register grouping
*/
#define EXTRACT_DATA_REGISTER(x) (uint8_t)(x & 0xFF)
#define EXTRACT_STATUS_REGISTER(x) (uint8_t)((x >> 16) & 0xFF)
#define EXTRACT_CONTROL_REG(x) (uint8_t)((x >> 8) & 0xFF)
#define EXTRACT_DATA_REGISTER(x) (u8)(x & 0xFF)
#define EXTRACT_STATUS_REGISTER(x) (u8)((x >> 16) & 0xFF)
#define EXTRACT_CONTROL_REG(x) (u8)((x >> 8) & 0xFF)
/**
* EepromWriteByte - Write a byte to the ET1310's EEPROM
* @etdev: pointer to our private adapter structure
* @unAddress: the address to write
* @bData: the value to write
* @unEepronId: the ID of the EEPROM
* @unAddressingMode: how the EEPROM is to be accessed
* @addr: the address to write
* @data: the value to write
* @eeprom_id: the ID of the EEPROM
* @addrmode: how the EEPROM is to be accessed
*
* Returns SUCCESS or FAILURE
*/
int32_t EepromWriteByte(struct et131x_adapter *etdev, uint32_t unAddress,
uint8_t bData, uint32_t unEepromId,
uint32_t unAddressingMode)
int EepromWriteByte(struct et131x_adapter *etdev, u32 addr,
u8 data, u32 eeprom_id,
u32 addrmode)
{
struct pci_dev *pdev = etdev->pdev;
int32_t nIndex;
int32_t nRetries;
int32_t nError = false;
int32_t nI2CWriteActive = 0;
int32_t nWriteSuccessful = 0;
uint8_t bControl;
uint8_t bStatus = 0;
uint32_t unDword1 = 0;
uint32_t unData = 0;
int index;
int retries;
int err = 0;
int i2c_wack = 0;
int writeok = 0;
u8 control;
u8 status = 0;
u32 dword1 = 0;
u32 val = 0;
/*
* The following excerpt is from "Serial EEPROM HW Design
@ -215,89 +215,89 @@ int32_t EepromWriteByte(struct et131x_adapter *etdev, uint32_t unAddress,
*/
/* Step 1: */
for (nIndex = 0; nIndex < MAX_NUM_REGISTER_POLLS; nIndex++) {
for (index = 0; index < MAX_NUM_REGISTER_POLLS; index++) {
/* Read registers grouped in DWORD1 */
if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP_OFFSET,
&unDword1)) {
nError = 1;
&dword1)) {
err = 1;
break;
}
bStatus = EXTRACT_STATUS_REGISTER(unDword1);
status = EXTRACT_STATUS_REGISTER(dword1);
if (bStatus & LBCIF_STATUS_PHY_QUEUE_AVAIL &&
bStatus & LBCIF_STATUS_I2C_IDLE)
if (status & LBCIF_STATUS_PHY_QUEUE_AVAIL &&
status & LBCIF_STATUS_I2C_IDLE)
/* bits 1:0 are equal to 1 */
break;
}
if (nError || (nIndex >= MAX_NUM_REGISTER_POLLS))
if (err || (index >= MAX_NUM_REGISTER_POLLS))
return FAILURE;
/* Step 2: */
bControl = 0;
bControl |= LBCIF_CONTROL_LBCIF_ENABLE | LBCIF_CONTROL_I2C_WRITE;
control = 0;
control |= LBCIF_CONTROL_LBCIF_ENABLE | LBCIF_CONTROL_I2C_WRITE;
if (unAddressingMode == DUAL_BYTE)
bControl |= LBCIF_CONTROL_TWO_BYTE_ADDR;
if (addrmode == DUAL_BYTE)
control |= LBCIF_CONTROL_TWO_BYTE_ADDR;
if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER_OFFSET,
bControl)) {
control)) {
return FAILURE;
}
nI2CWriteActive = 1;
i2c_wack = 1;
/* Prepare EEPROM address for Step 3 */
unAddress |= (unAddressingMode == DUAL_BYTE) ?
(unEepromId << 16) : (unEepromId << 8);
addr |= (addrmode == DUAL_BYTE) ?
(eeprom_id << 16) : (eeprom_id << 8);
for (nRetries = 0; nRetries < MAX_NUM_WRITE_RETRIES; nRetries++) {
for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
/* Step 3:*/
if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER_OFFSET,
unAddress)) {
addr)) {
break;
}
/* Step 4: */
if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER_OFFSET,
bData)) {
data)) {
break;
}
/* Step 5: */
for (nIndex = 0; nIndex < MAX_NUM_REGISTER_POLLS; nIndex++) {
for (index = 0; index < MAX_NUM_REGISTER_POLLS; index++) {
/* Read registers grouped in DWORD1 */
if (pci_read_config_dword(pdev,
LBCIF_DWORD1_GROUP_OFFSET,
&unDword1)) {
nError = 1;
&dword1)) {
err = 1;
break;
}
bStatus = EXTRACT_STATUS_REGISTER(unDword1);
status = EXTRACT_STATUS_REGISTER(dword1);
if (bStatus & LBCIF_STATUS_PHY_QUEUE_AVAIL &&
bStatus & LBCIF_STATUS_I2C_IDLE) {
if (status & LBCIF_STATUS_PHY_QUEUE_AVAIL &&
status & LBCIF_STATUS_I2C_IDLE) {
/* I2C write complete */
break;
}
}
if (nError || (nIndex >= MAX_NUM_REGISTER_POLLS))
if (err || (index >= MAX_NUM_REGISTER_POLLS))
break;
/*
* Step 6: Don't break here if we are revision 1, this is
* so we do a blind write for load bug.
*/
if (bStatus & LBCIF_STATUS_GENERAL_ERROR
if (status & LBCIF_STATUS_GENERAL_ERROR
&& etdev->pdev->revision == 0) {
break;
}
/* Step 7 */
if (bStatus & LBCIF_STATUS_ACK_ERROR) {
if (status & LBCIF_STATUS_ACK_ERROR) {
/*
* This could be due to an actual hardware failure
* or the EEPROM may still be in its internal write
@ -308,19 +308,19 @@ int32_t EepromWriteByte(struct et131x_adapter *etdev, uint32_t unAddress,
continue;
}
nWriteSuccessful = 1;
writeok = 1;
break;
}
/* Step 8: */
udelay(10);
nIndex = 0;
while (nI2CWriteActive) {
bControl &= ~LBCIF_CONTROL_I2C_WRITE;
index = 0;
while (i2c_wack) {
control &= ~LBCIF_CONTROL_I2C_WRITE;
if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER_OFFSET,
bControl)) {
nWriteSuccessful = 0;
control)) {
writeok = 0;
}
/* Do read until internal ACK_ERROR goes away meaning write
@ -329,44 +329,44 @@ int32_t EepromWriteByte(struct et131x_adapter *etdev, uint32_t unAddress,
do {
pci_write_config_dword(pdev,
LBCIF_ADDRESS_REGISTER_OFFSET,
unAddress);
addr);
do {
pci_read_config_dword(pdev,
LBCIF_DATA_REGISTER_OFFSET, &unData);
} while ((unData & 0x00010000) == 0);
} while (unData & 0x00040000);
LBCIF_DATA_REGISTER_OFFSET, &val);
} while ((val & 0x00010000) == 0);
} while (val & 0x00040000);
bControl = EXTRACT_CONTROL_REG(unData);
control = EXTRACT_CONTROL_REG(val);
if (bControl != 0xC0 || nIndex == 10000)
if (control != 0xC0 || index == 10000)
break;
nIndex++;
index++;
}
return nWriteSuccessful ? SUCCESS : FAILURE;
return writeok ? SUCCESS : FAILURE;
}
/**
* EepromReadByte - Read a byte from the ET1310's EEPROM
* @etdev: pointer to our private adapter structure
* @unAddress: the address from which to read
* @pbData: a pointer to a byte in which to store the value of the read
* @unEepronId: the ID of the EEPROM
* @unAddressingMode: how the EEPROM is to be accessed
* @addr: the address from which to read
* @pdata: a pointer to a byte in which to store the value of the read
* @eeprom_id: the ID of the EEPROM
* @addrmode: how the EEPROM is to be accessed
*
* Returns SUCCESS or FAILURE
*/
int32_t EepromReadByte(struct et131x_adapter *etdev, uint32_t unAddress,
uint8_t *pbData, uint32_t unEepromId,
uint32_t unAddressingMode)
int EepromReadByte(struct et131x_adapter *etdev, u32 addr,
u8 *pdata, u32 eeprom_id,
u32 addrmode)
{
struct pci_dev *pdev = etdev->pdev;
int32_t nIndex;
int32_t nError = 0;
uint8_t bControl;
uint8_t bStatus = 0;
uint32_t unDword1 = 0;
int index;
int err = 0;
u8 control;
u8 status = 0;
u32 dword1 = 0;
/*
* The following excerpt is from "Serial EEPROM HW Design
@ -403,70 +403,70 @@ int32_t EepromReadByte(struct et131x_adapter *etdev, uint32_t unAddress,
*/
/* Step 1: */
for (nIndex = 0; nIndex < MAX_NUM_REGISTER_POLLS; nIndex++) {
for (index = 0; index < MAX_NUM_REGISTER_POLLS; index++) {
/* Read registers grouped in DWORD1 */
if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP_OFFSET,
&unDword1)) {
nError = 1;
&dword1)) {
err = 1;
break;
}
bStatus = EXTRACT_STATUS_REGISTER(unDword1);
status = EXTRACT_STATUS_REGISTER(dword1);
if (bStatus & LBCIF_STATUS_PHY_QUEUE_AVAIL &&
bStatus & LBCIF_STATUS_I2C_IDLE) {
if (status & LBCIF_STATUS_PHY_QUEUE_AVAIL &&
status & LBCIF_STATUS_I2C_IDLE) {
/* bits 1:0 are equal to 1 */
break;
}
}
if (nError || (nIndex >= MAX_NUM_REGISTER_POLLS))
if (err || (index >= MAX_NUM_REGISTER_POLLS))
return FAILURE;
/* Step 2: */
bControl = 0;
bControl |= LBCIF_CONTROL_LBCIF_ENABLE;
control = 0;
control |= LBCIF_CONTROL_LBCIF_ENABLE;
if (unAddressingMode == DUAL_BYTE)
bControl |= LBCIF_CONTROL_TWO_BYTE_ADDR;
if (addrmode == DUAL_BYTE)
control |= LBCIF_CONTROL_TWO_BYTE_ADDR;
if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER_OFFSET,
bControl)) {
control)) {
return FAILURE;
}
/* Step 3: */
unAddress |= (unAddressingMode == DUAL_BYTE) ?
(unEepromId << 16) : (unEepromId << 8);
addr |= (addrmode == DUAL_BYTE) ?
(eeprom_id << 16) : (eeprom_id << 8);
if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER_OFFSET,
unAddress)) {
addr)) {
return FAILURE;
}
/* Step 4: */
for (nIndex = 0; nIndex < MAX_NUM_REGISTER_POLLS; nIndex++) {
for (index = 0; index < MAX_NUM_REGISTER_POLLS; index++) {
/* Read registers grouped in DWORD1 */
if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP_OFFSET,
&unDword1)) {
nError = 1;
&dword1)) {
err = 1;
break;
}
bStatus = EXTRACT_STATUS_REGISTER(unDword1);
status = EXTRACT_STATUS_REGISTER(dword1);
if (bStatus & LBCIF_STATUS_PHY_QUEUE_AVAIL
&& bStatus & LBCIF_STATUS_I2C_IDLE) {
if (status & LBCIF_STATUS_PHY_QUEUE_AVAIL
&& status & LBCIF_STATUS_I2C_IDLE) {
/* I2C read complete */
break;
}
}
if (nError || (nIndex >= MAX_NUM_REGISTER_POLLS))
if (err || (index >= MAX_NUM_REGISTER_POLLS))
return FAILURE;
/* Step 6: */
*pbData = EXTRACT_DATA_REGISTER(unDword1);
*pdata = EXTRACT_DATA_REGISTER(dword1);
return (bStatus & LBCIF_STATUS_ACK_ERROR) ? FAILURE : SUCCESS;
return (status & LBCIF_STATUS_ACK_ERROR) ? FAILURE : SUCCESS;
}

View file

@ -195,7 +195,7 @@ void ConfigMACRegs2(struct et131x_adapter *etdev)
cfg2.value = readl(&pMac->cfg2.value);
ifctrl.value = readl(&pMac->if_ctrl.value);
if (etdev->uiLinkSpeed == TRUEPHY_SPEED_1000MBPS) {
if (etdev->linkspeed == TRUEPHY_SPEED_1000MBPS) {
cfg2.bits.if_mode = 0x2;
ifctrl.bits.phy_mode = 0x0;
} else {
@ -241,8 +241,8 @@ void ConfigMACRegs2(struct et131x_adapter *etdev)
}
/* 1 - full duplex, 0 - half-duplex */
cfg2.bits.full_duplex = etdev->uiDuplexMode;
ifctrl.bits.ghd_mode = !etdev->uiDuplexMode;
cfg2.bits.full_duplex = etdev->duplex_mode;
ifctrl.bits.ghd_mode = !etdev->duplex_mode;
writel(ifctrl.value, &pMac->if_ctrl.value);
writel(cfg2.value, &pMac->cfg2.value);
@ -262,7 +262,7 @@ void ConfigMACRegs2(struct et131x_adapter *etdev)
DBG_TRACE(et131x_dbginfo,
"Speed %d, Dup %d, CFG1 0x%08x, CFG2 0x%08x, if_ctrl 0x%08x\n",
etdev->uiLinkSpeed, etdev->uiDuplexMode,
etdev->linkspeed, etdev->duplex_mode,
readl(&pMac->cfg1.value), readl(&pMac->cfg2.value),
readl(&pMac->if_ctrl.value));
@ -408,7 +408,7 @@ void ConfigRxMacRegs(struct et131x_adapter *etdev)
* bit 16: Receive frame truncated.
* bit 17: Drop packet enable
*/
if (etdev->uiLinkSpeed == TRUEPHY_SPEED_100MBPS)
if (etdev->linkspeed == TRUEPHY_SPEED_100MBPS)
writel(0x30038, &pRxMac->mif_ctrl.value);
else
writel(0x30030, &pRxMac->mif_ctrl.value);
@ -540,7 +540,7 @@ void ConfigMacStatRegs(struct et131x_adapter *etdev)
void ConfigFlowControl(struct et131x_adapter *etdev)
{
if (etdev->uiDuplexMode == 0) {
if (etdev->duplex_mode == 0) {
etdev->FlowControl = None;
} else {
char RemotePause, RemoteAsyncPause;

View file

@ -477,13 +477,13 @@ static int et131x_xcvr_init(struct et131x_adapter *adapter)
void et131x_Mii_check(struct et131x_adapter *etdev,
MI_BMSR_t bmsr, MI_BMSR_t bmsr_ints)
{
uint8_t ucLinkStatus;
uint32_t uiAutoNegStatus;
uint32_t uiSpeed;
uint32_t uiDuplex;
uint32_t uiMdiMdix;
uint32_t uiMasterSlave;
uint32_t uiPolarity;
uint8_t link_status;
uint32_t autoneg_status;
uint32_t speed;
uint32_t duplex;
uint32_t mdi_mdix;
uint32_t masterslave;
uint32_t polarity;
unsigned long flags;
DBG_ENTER(et131x_dbginfo);
@ -509,7 +509,7 @@ void et131x_Mii_check(struct et131x_adapter *etdev,
DBG_WARNING(et131x_dbginfo,
"Link down cable problem\n");
if (etdev->uiLinkSpeed == TRUEPHY_SPEED_10MBPS) {
if (etdev->linkspeed == TRUEPHY_SPEED_10MBPS) {
/* NOTE - Is there a way to query this without
* TruePHY?
* && TRU_QueryCoreType(etdev->hTruePhy, 0) == EMI_TRUEPHY_A13O) {
@ -546,8 +546,8 @@ void et131x_Mii_check(struct et131x_adapter *etdev,
netif_carrier_off(etdev->netdev);
}
etdev->uiLinkSpeed = 0;
etdev->uiDuplexMode = 0;
etdev->linkspeed = 0;
etdev->duplexMode = 0;
/* Free the packets being actively sent & stopped */
et131x_free_busy_send_packets(etdev);
@ -581,21 +581,21 @@ void et131x_Mii_check(struct et131x_adapter *etdev,
(etdev->AiForceDpx == 3 && bmsr_ints.bits.link_status)) {
if (bmsr.bits.auto_neg_complete || etdev->AiForceDpx == 3) {
ET1310_PhyLinkStatus(etdev,
&ucLinkStatus, &uiAutoNegStatus,
&uiSpeed, &uiDuplex, &uiMdiMdix,
&uiMasterSlave, &uiPolarity);
&link_status, &autoneg_status,
&speed, &duplex, &mdi_mdix,
&masterslave, &polarity);
etdev->uiLinkSpeed = uiSpeed;
etdev->uiDuplexMode = uiDuplex;
etdev->linkspeed = speed;
etdev->duplex_mode = duplex;
DBG_TRACE(et131x_dbginfo,
"etdev->uiLinkSpeed 0x%04x, etdev->uiDuplex 0x%08x\n",
etdev->uiLinkSpeed,
etdev->uiDuplexMode);
"etdev->linkspeed 0x%04x, etdev->duplex_mode 0x%08x\n",
etdev->linkspeed,
etdev->duplex_mode);
etdev->PoMgmt.TransPhyComaModeOnBoot = 20;
if (etdev->uiLinkSpeed == TRUEPHY_SPEED_10MBPS) {
if (etdev->linkspeed == TRUEPHY_SPEED_10MBPS) {
/*
* NOTE - Is there a way to query this without
* TruePHY?
@ -612,7 +612,7 @@ void et131x_Mii_check(struct et131x_adapter *etdev,
ConfigFlowControl(etdev);
if (etdev->uiLinkSpeed == TRUEPHY_SPEED_1000MBPS &&
if (etdev->linkspeed == TRUEPHY_SPEED_1000MBPS &&
etdev->RegistryJumboPacket > 2048)
ET1310_PhyAndOrReg(etdev, 0x16, 0xcfff,
0x2000);
@ -905,67 +905,67 @@ static const uint16_t ConfigPhy[25][2] = {
/* condensed version of the phy initialization routine */
void ET1310_PhyInit(struct et131x_adapter *etdev)
{
uint16_t usData, usIndex;
uint16_t data, index;
if (etdev == NULL)
return;
/* get the identity (again ?) */
MiRead(etdev, PHY_ID_1, &usData);
MiRead(etdev, PHY_ID_2, &usData);
MiRead(etdev, PHY_ID_1, &data);
MiRead(etdev, PHY_ID_2, &data);
/* what does this do/achieve ? */
MiRead(etdev, PHY_MPHY_CONTROL_REG, &usData); /* should read 0002 */
MiRead(etdev, PHY_MPHY_CONTROL_REG, &data); /* should read 0002 */
MiWrite(etdev, PHY_MPHY_CONTROL_REG, 0x0006);
/* read modem register 0402, should I do something with the return
data ? */
MiWrite(etdev, PHY_INDEX_REG, 0x0402);
MiRead(etdev, PHY_DATA_REG, &usData);
MiRead(etdev, PHY_DATA_REG, &data);
/* what does this do/achieve ? */
MiWrite(etdev, PHY_MPHY_CONTROL_REG, 0x0002);
/* get the identity (again ?) */
MiRead(etdev, PHY_ID_1, &usData);
MiRead(etdev, PHY_ID_2, &usData);
MiRead(etdev, PHY_ID_1, &data);
MiRead(etdev, PHY_ID_2, &data);
/* what does this achieve ? */
MiRead(etdev, PHY_MPHY_CONTROL_REG, &usData); /* should read 0002 */
MiRead(etdev, PHY_MPHY_CONTROL_REG, &data); /* should read 0002 */
MiWrite(etdev, PHY_MPHY_CONTROL_REG, 0x0006);
/* read modem register 0402, should I do something with
the return data? */
MiWrite(etdev, PHY_INDEX_REG, 0x0402);
MiRead(etdev, PHY_DATA_REG, &usData);
MiRead(etdev, PHY_DATA_REG, &data);
MiWrite(etdev, PHY_MPHY_CONTROL_REG, 0x0002);
/* what does this achieve (should return 0x1040) */
MiRead(etdev, PHY_CONTROL, &usData);
MiRead(etdev, PHY_MPHY_CONTROL_REG, &usData); /* should read 0002 */
MiRead(etdev, PHY_CONTROL, &data);
MiRead(etdev, PHY_MPHY_CONTROL_REG, &data); /* should read 0002 */
MiWrite(etdev, PHY_CONTROL, 0x1840);
MiWrite(etdev, PHY_MPHY_CONTROL_REG, 0x0007);
/* here the writing of the array starts.... */
usIndex = 0;
while (ConfigPhy[usIndex][0] != 0x0000) {
index = 0;
while (ConfigPhy[index][0] != 0x0000) {
/* write value */
MiWrite(etdev, PHY_INDEX_REG, ConfigPhy[usIndex][0]);
MiWrite(etdev, PHY_DATA_REG, ConfigPhy[usIndex][1]);
MiWrite(etdev, PHY_INDEX_REG, ConfigPhy[index][0]);
MiWrite(etdev, PHY_DATA_REG, ConfigPhy[index][1]);
/* read it back */
MiWrite(etdev, PHY_INDEX_REG, ConfigPhy[usIndex][0]);
MiRead(etdev, PHY_DATA_REG, &usData);
MiWrite(etdev, PHY_INDEX_REG, ConfigPhy[index][0]);
MiRead(etdev, PHY_DATA_REG, &data);
/* do a check on the value read back ? */
usIndex++;
index++;
}
/* here the writing of the array ends... */
MiRead(etdev, PHY_CONTROL, &usData); /* 0x1840 */
MiRead(etdev, PHY_MPHY_CONTROL_REG, &usData);/* should read 0007 */
MiRead(etdev, PHY_CONTROL, &data); /* 0x1840 */
MiRead(etdev, PHY_MPHY_CONTROL_REG, &data);/* should read 0007 */
MiWrite(etdev, PHY_CONTROL, 0x1040);
MiWrite(etdev, PHY_MPHY_CONTROL_REG, 0x0002);
}
@ -977,64 +977,64 @@ void ET1310_PhyReset(struct et131x_adapter *etdev)
void ET1310_PhyPowerDown(struct et131x_adapter *etdev, bool down)
{
uint16_t usData;
uint16_t data;
MiRead(etdev, PHY_CONTROL, &usData);
MiRead(etdev, PHY_CONTROL, &data);
if (down == false) {
/* Power UP */
usData &= ~0x0800;
MiWrite(etdev, PHY_CONTROL, usData);
data &= ~0x0800;
MiWrite(etdev, PHY_CONTROL, data);
} else {
/* Power DOWN */
usData |= 0x0800;
MiWrite(etdev, PHY_CONTROL, usData);
data |= 0x0800;
MiWrite(etdev, PHY_CONTROL, data);
}
}
void ET1310_PhyAutoNeg(struct et131x_adapter *etdev, bool enable)
{
uint16_t usData;
uint16_t data;
MiRead(etdev, PHY_CONTROL, &usData);
MiRead(etdev, PHY_CONTROL, &data);
if (enable == true) {
/* Autonegotiation ON */
usData |= 0x1000;
MiWrite(etdev, PHY_CONTROL, usData);
data |= 0x1000;
MiWrite(etdev, PHY_CONTROL, data);
} else {
/* Autonegotiation OFF */
usData &= ~0x1000;
MiWrite(etdev, PHY_CONTROL, usData);
data &= ~0x1000;
MiWrite(etdev, PHY_CONTROL, data);
}
}
void ET1310_PhyDuplexMode(struct et131x_adapter *etdev, uint16_t duplex)
{
uint16_t usData;
uint16_t data;
MiRead(etdev, PHY_CONTROL, &usData);
MiRead(etdev, PHY_CONTROL, &data);
if (duplex == TRUEPHY_DUPLEX_FULL) {
/* Set Full Duplex */
usData |= 0x100;
MiWrite(etdev, PHY_CONTROL, usData);
data |= 0x100;
MiWrite(etdev, PHY_CONTROL, data);
} else {
/* Set Half Duplex */
usData &= ~0x100;
MiWrite(etdev, PHY_CONTROL, usData);
data &= ~0x100;
MiWrite(etdev, PHY_CONTROL, data);
}
}
void ET1310_PhySpeedSelect(struct et131x_adapter *etdev, uint16_t speed)
{
uint16_t usData;
uint16_t data;
/* Read the PHY control register */
MiRead(etdev, PHY_CONTROL, &usData);
MiRead(etdev, PHY_CONTROL, &data);
/* Clear all Speed settings (Bits 6, 13) */
usData &= ~0x2040;
data &= ~0x2040;
/* Reset the speed bits based on user selection */
switch (speed) {
@ -1044,29 +1044,29 @@ void ET1310_PhySpeedSelect(struct et131x_adapter *etdev, uint16_t speed)
case TRUEPHY_SPEED_100MBPS:
/* 100M == Set bit 13 */
usData |= 0x2000;
data |= 0x2000;
break;
case TRUEPHY_SPEED_1000MBPS:
default:
usData |= 0x0040;
data |= 0x0040;
break;
}
/* Write back the new speed */
MiWrite(etdev, PHY_CONTROL, usData);
MiWrite(etdev, PHY_CONTROL, data);
}
void ET1310_PhyAdvertise1000BaseT(struct et131x_adapter *etdev,
uint16_t duplex)
{
uint16_t usData;
uint16_t data;
/* Read the PHY 1000 Base-T Control Register */
MiRead(etdev, PHY_1000_CONTROL, &usData);
MiRead(etdev, PHY_1000_CONTROL, &data);
/* Clear Bits 8,9 */
usData &= ~0x0300;
data &= ~0x0300;
switch (duplex) {
case TRUEPHY_ADV_DUPLEX_NONE:
@ -1075,34 +1075,34 @@ void ET1310_PhyAdvertise1000BaseT(struct et131x_adapter *etdev,
case TRUEPHY_ADV_DUPLEX_FULL:
/* Set Bit 9 */
usData |= 0x0200;
data |= 0x0200;
break;
case TRUEPHY_ADV_DUPLEX_HALF:
/* Set Bit 8 */
usData |= 0x0100;
data |= 0x0100;
break;
case TRUEPHY_ADV_DUPLEX_BOTH:
default:
usData |= 0x0300;
data |= 0x0300;
break;
}
/* Write back advertisement */
MiWrite(etdev, PHY_1000_CONTROL, usData);
MiWrite(etdev, PHY_1000_CONTROL, data);
}
void ET1310_PhyAdvertise100BaseT(struct et131x_adapter *etdev,
uint16_t duplex)
{
uint16_t usData;
uint16_t data;
/* Read the Autonegotiation Register (10/100) */
MiRead(etdev, PHY_AUTO_ADVERTISEMENT, &usData);
MiRead(etdev, PHY_AUTO_ADVERTISEMENT, &data);
/* Clear bits 7,8 */
usData &= ~0x0180;
data &= ~0x0180;
switch (duplex) {
case TRUEPHY_ADV_DUPLEX_NONE:
@ -1111,35 +1111,35 @@ void ET1310_PhyAdvertise100BaseT(struct et131x_adapter *etdev,
case TRUEPHY_ADV_DUPLEX_FULL:
/* Set Bit 8 */
usData |= 0x0100;
data |= 0x0100;
break;
case TRUEPHY_ADV_DUPLEX_HALF:
/* Set Bit 7 */
usData |= 0x0080;
data |= 0x0080;
break;
case TRUEPHY_ADV_DUPLEX_BOTH:
default:
/* Set Bits 7,8 */
usData |= 0x0180;
data |= 0x0180;
break;
}
/* Write back advertisement */
MiWrite(etdev, PHY_AUTO_ADVERTISEMENT, usData);
MiWrite(etdev, PHY_AUTO_ADVERTISEMENT, data);
}
void ET1310_PhyAdvertise10BaseT(struct et131x_adapter *etdev,
uint16_t duplex)
{
uint16_t usData;
uint16_t data;
/* Read the Autonegotiation Register (10/100) */
MiRead(etdev, PHY_AUTO_ADVERTISEMENT, &usData);
MiRead(etdev, PHY_AUTO_ADVERTISEMENT, &data);
/* Clear bits 5,6 */
usData &= ~0x0060;
data &= ~0x0060;
switch (duplex) {
case TRUEPHY_ADV_DUPLEX_NONE:
@ -1148,75 +1148,75 @@ void ET1310_PhyAdvertise10BaseT(struct et131x_adapter *etdev,
case TRUEPHY_ADV_DUPLEX_FULL:
/* Set Bit 6 */
usData |= 0x0040;
data |= 0x0040;
break;
case TRUEPHY_ADV_DUPLEX_HALF:
/* Set Bit 5 */
usData |= 0x0020;
data |= 0x0020;
break;
case TRUEPHY_ADV_DUPLEX_BOTH:
default:
/* Set Bits 5,6 */
usData |= 0x0060;
data |= 0x0060;
break;
}
/* Write back advertisement */
MiWrite(etdev, PHY_AUTO_ADVERTISEMENT, usData);
MiWrite(etdev, PHY_AUTO_ADVERTISEMENT, data);
}
void ET1310_PhyLinkStatus(struct et131x_adapter *etdev,
uint8_t *ucLinkStatus,
uint32_t *uiAutoNeg,
uint32_t *uiLinkSpeed,
uint32_t *uiDuplexMode,
uint32_t *uiMdiMdix,
uint32_t *uiMasterSlave, uint32_t *uiPolarity)
uint8_t *link_status,
uint32_t *autoneg,
uint32_t *linkspeed,
uint32_t *duplex_mode,
uint32_t *mdi_mdix,
uint32_t *masterslave, uint32_t *polarity)
{
uint16_t usMiStatus = 0;
uint16_t us1000BaseT = 0;
uint16_t usVmiPhyStatus = 0;
uint16_t usControl = 0;
uint16_t mistatus = 0;
uint16_t is1000BaseT = 0;
uint16_t vmi_phystatus = 0;
uint16_t control = 0;
MiRead(etdev, PHY_STATUS, &usMiStatus);
MiRead(etdev, PHY_1000_STATUS, &us1000BaseT);
MiRead(etdev, PHY_PHY_STATUS, &usVmiPhyStatus);
MiRead(etdev, PHY_CONTROL, &usControl);
MiRead(etdev, PHY_STATUS, &mistatus);
MiRead(etdev, PHY_1000_STATUS, &is1000BaseT);
MiRead(etdev, PHY_PHY_STATUS, &vmi_phystatus);
MiRead(etdev, PHY_CONTROL, &control);
if (ucLinkStatus) {
*ucLinkStatus =
(unsigned char)((usVmiPhyStatus & 0x0040) ? 1 : 0);
if (link_status) {
*link_status =
(unsigned char)((vmi_phystatus & 0x0040) ? 1 : 0);
}
if (uiAutoNeg) {
*uiAutoNeg =
(usControl & 0x1000) ? ((usVmiPhyStatus & 0x0020) ?
if (autoneg) {
*autoneg =
(control & 0x1000) ? ((vmi_phystatus & 0x0020) ?
TRUEPHY_ANEG_COMPLETE :
TRUEPHY_ANEG_NOT_COMPLETE) :
TRUEPHY_ANEG_DISABLED;
}
if (uiLinkSpeed)
*uiLinkSpeed = (usVmiPhyStatus & 0x0300) >> 8;
if (linkspeed)
*linkspeed = (vmi_phystatus & 0x0300) >> 8;
if (uiDuplexMode)
*uiDuplexMode = (usVmiPhyStatus & 0x0080) >> 7;
if (duplex_mode)
*duplex_mode = (vmi_phystatus & 0x0080) >> 7;
if (uiMdiMdix)
if (mdi_mdix)
/* NOTE: Need to complete this */
*uiMdiMdix = 0;
*mdi_mdix = 0;
if (uiMasterSlave) {
*uiMasterSlave =
(us1000BaseT & 0x4000) ? TRUEPHY_CFG_MASTER :
if (masterslave) {
*masterslave =
(is1000BaseT & 0x4000) ? TRUEPHY_CFG_MASTER :
TRUEPHY_CFG_SLAVE;
}
if (uiPolarity) {
*uiPolarity =
(usVmiPhyStatus & 0x0400) ? TRUEPHY_POLARITY_INVERTED :
if (polarity) {
*polarity =
(vmi_phystatus & 0x0400) ? TRUEPHY_POLARITY_INVERTED :
TRUEPHY_POLARITY_NORMAL;
}
}

View file

@ -895,12 +895,12 @@ void ET1310_PhyAdvertise100BaseT(struct et131x_adapter *adapter,
void ET1310_PhyAdvertise10BaseT(struct et131x_adapter *adapter,
u16 duplex);
void ET1310_PhyLinkStatus(struct et131x_adapter *adapter,
u8 *ucLinkStatus,
u32 *uiAutoNeg,
u32 *uiLinkSpeed,
u32 *uiDuplexMode,
u32 *uiMdiMdix,
u32 *uiMasterSlave, u32 *uiPolarity);
u8 *Link_status,
u32 *autoneg,
u32 *linkspeed,
u32 *duplex_mode,
u32 *mdi_mdix,
u32 *masterslave, u32 *polarity);
void ET1310_PhyAndOrReg(struct et131x_adapter *adapter,
u16 regnum, u16 andMask, u16 orMask);
void ET1310_PhyAccessMiBit(struct et131x_adapter *adapter,

View file

@ -680,10 +680,10 @@ void et131x_rfd_resources_free(struct et131x_adapter *adapter, MP_RFD *pMpRfd)
*/
void ConfigRxDmaRegs(struct et131x_adapter *etdev)
{
struct _RXDMA_t __iomem *pRxDma = &etdev->regs->rxdma;
struct _RXDMA_t __iomem *rx_dma = &etdev->regs->rxdma;
struct _rx_ring_t *pRxLocal = &etdev->RxRing;
PFBR_DESC_t pFbrEntry;
uint32_t iEntry;
PFBR_DESC_t fbr_entry;
uint32_t entry;
RXDMA_PSR_NUM_DES_t psr_num_des;
unsigned long flags;
@ -700,8 +700,8 @@ void ConfigRxDmaRegs(struct et131x_adapter *etdev)
* before storing the adjusted address.
*/
writel((uint32_t) (pRxLocal->RxStatusRealPA >> 32),
&pRxDma->dma_wb_base_hi);
writel((uint32_t) pRxLocal->RxStatusRealPA, &pRxDma->dma_wb_base_lo);
&rx_dma->dma_wb_base_hi);
writel((uint32_t) pRxLocal->RxStatusRealPA, &rx_dma->dma_wb_base_lo);
memset(pRxLocal->pRxStatusVa, 0, sizeof(RX_STATUS_BLOCK_t));
@ -709,14 +709,14 @@ void ConfigRxDmaRegs(struct et131x_adapter *etdev)
* 1310's registers
*/
writel((uint32_t) (pRxLocal->pPSRingRealPa >> 32),
&pRxDma->psr_base_hi);
writel((uint32_t) pRxLocal->pPSRingRealPa, &pRxDma->psr_base_lo);
writel(pRxLocal->PsrNumEntries - 1, &pRxDma->psr_num_des.value);
writel(0, &pRxDma->psr_full_offset.value);
&rx_dma->psr_base_hi);
writel((uint32_t) pRxLocal->pPSRingRealPa, &rx_dma->psr_base_lo);
writel(pRxLocal->PsrNumEntries - 1, &rx_dma->psr_num_des.value);
writel(0, &rx_dma->psr_full_offset.value);
psr_num_des.value = readl(&pRxDma->psr_num_des.value);
psr_num_des.value = readl(&rx_dma->psr_num_des.value);
writel((psr_num_des.bits.psr_ndes * LO_MARK_PERCENT_FOR_PSR) / 100,
&pRxDma->psr_min_des.value);
&rx_dma->psr_min_des.value);
spin_lock_irqsave(&etdev->RcvLock, flags);
@ -725,27 +725,27 @@ void ConfigRxDmaRegs(struct et131x_adapter *etdev)
pRxLocal->local_psr_full.bits.psr_full_wrap = 0;
/* Now's the best time to initialize FBR1 contents */
pFbrEntry = (PFBR_DESC_t) pRxLocal->pFbr1RingVa;
for (iEntry = 0; iEntry < pRxLocal->Fbr1NumEntries; iEntry++) {
pFbrEntry->addr_hi = pRxLocal->Fbr[1]->PAHigh[iEntry];
pFbrEntry->addr_lo = pRxLocal->Fbr[1]->PALow[iEntry];
pFbrEntry->word2.bits.bi = iEntry;
pFbrEntry++;
fbr_entry = (PFBR_DESC_t) pRxLocal->pFbr1RingVa;
for (entry = 0; entry < pRxLocal->Fbr1NumEntries; entry++) {
fbr_entry->addr_hi = pRxLocal->Fbr[1]->PAHigh[entry];
fbr_entry->addr_lo = pRxLocal->Fbr[1]->PALow[entry];
fbr_entry->word2.bits.bi = entry;
fbr_entry++;
}
/* Set the address and parameters of Free buffer ring 1 (and 0 if
* required) into the 1310's registers
*/
writel((uint32_t) (pRxLocal->Fbr1Realpa >> 32), &pRxDma->fbr1_base_hi);
writel((uint32_t) pRxLocal->Fbr1Realpa, &pRxDma->fbr1_base_lo);
writel(pRxLocal->Fbr1NumEntries - 1, &pRxDma->fbr1_num_des.value);
writel((uint32_t) (pRxLocal->Fbr1Realpa >> 32), &rx_dma->fbr1_base_hi);
writel((uint32_t) pRxLocal->Fbr1Realpa, &rx_dma->fbr1_base_lo);
writel(pRxLocal->Fbr1NumEntries - 1, &rx_dma->fbr1_num_des.value);
{
DMA10W_t fbr1_full = { 0 };
fbr1_full.bits.val = 0;
fbr1_full.bits.wrap = 1;
writel(fbr1_full.value, &pRxDma->fbr1_full_offset.value);
writel(fbr1_full.value, &rx_dma->fbr1_full_offset.value);
}
/* This variable tracks the free buffer ring 1 full position, so it
@ -754,28 +754,28 @@ void ConfigRxDmaRegs(struct et131x_adapter *etdev)
pRxLocal->local_Fbr1_full.bits.val = 0;
pRxLocal->local_Fbr1_full.bits.wrap = 1;
writel(((pRxLocal->Fbr1NumEntries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
&pRxDma->fbr1_min_des.value);
&rx_dma->fbr1_min_des.value);
#ifdef USE_FBR0
/* Now's the best time to initialize FBR0 contents */
pFbrEntry = (PFBR_DESC_t) pRxLocal->pFbr0RingVa;
for (iEntry = 0; iEntry < pRxLocal->Fbr0NumEntries; iEntry++) {
pFbrEntry->addr_hi = pRxLocal->Fbr[0]->PAHigh[iEntry];
pFbrEntry->addr_lo = pRxLocal->Fbr[0]->PALow[iEntry];
pFbrEntry->word2.bits.bi = iEntry;
pFbrEntry++;
fbr_entry = (PFBR_DESC_t) pRxLocal->pFbr0RingVa;
for (entry = 0; entry < pRxLocal->Fbr0NumEntries; entry++) {
fbr_entry->addr_hi = pRxLocal->Fbr[0]->PAHigh[entry];
fbr_entry->addr_lo = pRxLocal->Fbr[0]->PALow[entry];
fbr_entry->word2.bits.bi = entry;
fbr_entry++;
}
writel((uint32_t) (pRxLocal->Fbr0Realpa >> 32), &pRxDma->fbr0_base_hi);
writel((uint32_t) pRxLocal->Fbr0Realpa, &pRxDma->fbr0_base_lo);
writel(pRxLocal->Fbr0NumEntries - 1, &pRxDma->fbr0_num_des.value);
writel((uint32_t) (pRxLocal->Fbr0Realpa >> 32), &rx_dma->fbr0_base_hi);
writel((uint32_t) pRxLocal->Fbr0Realpa, &rx_dma->fbr0_base_lo);
writel(pRxLocal->Fbr0NumEntries - 1, &rx_dma->fbr0_num_des.value);
{
DMA10W_t fbr0_full = { 0 };
fbr0_full.bits.val = 0;
fbr0_full.bits.wrap = 1;
writel(fbr0_full.value, &pRxDma->fbr0_full_offset.value);
writel(fbr0_full.value, &rx_dma->fbr0_full_offset.value);
}
/* This variable tracks the free buffer ring 0 full position, so it
@ -784,7 +784,7 @@ void ConfigRxDmaRegs(struct et131x_adapter *etdev)
pRxLocal->local_Fbr0_full.bits.val = 0;
pRxLocal->local_Fbr0_full.bits.wrap = 1;
writel(((pRxLocal->Fbr0NumEntries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
&pRxDma->fbr0_min_des.value);
&rx_dma->fbr0_min_des.value);
#endif
/* Program the number of packets we will receive before generating an
@ -792,14 +792,14 @@ void ConfigRxDmaRegs(struct et131x_adapter *etdev)
* For version B silicon, this value gets updated once autoneg is
*complete.
*/
writel(PARM_RX_NUM_BUFS_DEF, &pRxDma->num_pkt_done.value);
writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done.value);
/* The "time_done" is not working correctly to coalesce interrupts
* after a given time period, but rather is giving us an interrupt
* regardless of whether we have received packets.
* This value gets updated once autoneg is complete.
*/
writel(PARM_RX_TIME_INT_DEF, &pRxDma->max_pkt_time.value);
writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time.value);
spin_unlock_irqrestore(&etdev->RcvLock, flags);
@ -815,8 +815,8 @@ void SetRxDmaTimer(struct et131x_adapter *etdev)
/* For version B silicon, we do not use the RxDMA timer for 10 and 100
* Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
*/
if ((etdev->uiLinkSpeed == TRUEPHY_SPEED_100MBPS) ||
(etdev->uiLinkSpeed == TRUEPHY_SPEED_10MBPS)) {
if ((etdev->linkspeed == TRUEPHY_SPEED_100MBPS) ||
(etdev->linkspeed == TRUEPHY_SPEED_10MBPS)) {
writel(0, &etdev->regs->rxdma.max_pkt_time.value);
writel(1, &etdev->regs->rxdma.num_pkt_done.value);
}
@ -1032,8 +1032,8 @@ PMP_RFD nic_rx_pkts(struct et131x_adapter *etdev)
spin_unlock_irqrestore(&etdev->RcvLock, flags);
pMpRfd->iBufferIndex = bufferIndex;
pMpRfd->iRingIndex = ringIndex;
pMpRfd->bufferindex = bufferIndex;
pMpRfd->ringindex = ringIndex;
/* In V1 silicon, there is a bug which screws up filtering of
* runt packets. Therefore runt packet filtering is disabled
@ -1289,10 +1289,10 @@ void et131x_handle_recv_interrupt(struct et131x_adapter *etdev)
*/
void nic_return_rfd(struct et131x_adapter *etdev, PMP_RFD pMpRfd)
{
struct _rx_ring_t *pRxLocal = &etdev->RxRing;
struct _RXDMA_t __iomem *pRxDma = &etdev->regs->rxdma;
uint16_t bi = pMpRfd->iBufferIndex;
uint8_t ri = pMpRfd->iRingIndex;
struct _rx_ring_t *rx_local = &etdev->RxRing;
struct _RXDMA_t __iomem *rx_dma = &etdev->regs->rxdma;
uint16_t bi = pMpRfd->bufferindex;
uint8_t ri = pMpRfd->ringindex;
unsigned long flags;
DBG_RX_ENTER(et131x_dbginfo);
@ -1302,55 +1302,55 @@ void nic_return_rfd(struct et131x_adapter *etdev, PMP_RFD pMpRfd)
*/
if (
#ifdef USE_FBR0
(ri == 0 && bi < pRxLocal->Fbr0NumEntries) ||
(ri == 0 && bi < rx_local->Fbr0NumEntries) ||
#endif
(ri == 1 && bi < pRxLocal->Fbr1NumEntries)) {
(ri == 1 && bi < rx_local->Fbr1NumEntries)) {
spin_lock_irqsave(&etdev->FbrLock, flags);
if (ri == 1) {
PFBR_DESC_t pNextDesc =
(PFBR_DESC_t) (pRxLocal->pFbr1RingVa) +
pRxLocal->local_Fbr1_full.bits.val;
(PFBR_DESC_t) (rx_local->pFbr1RingVa) +
rx_local->local_Fbr1_full.bits.val;
/* Handle the Free Buffer Ring advancement here. Write
* the PA / Buffer Index for the returned buffer into
* the oldest (next to be freed)FBR entry
*/
pNextDesc->addr_hi = pRxLocal->Fbr[1]->PAHigh[bi];
pNextDesc->addr_lo = pRxLocal->Fbr[1]->PALow[bi];
pNextDesc->addr_hi = rx_local->Fbr[1]->PAHigh[bi];
pNextDesc->addr_lo = rx_local->Fbr[1]->PALow[bi];
pNextDesc->word2.value = bi;
if (++pRxLocal->local_Fbr1_full.bits.val >
(pRxLocal->Fbr1NumEntries - 1)) {
pRxLocal->local_Fbr1_full.bits.val = 0;
pRxLocal->local_Fbr1_full.bits.wrap ^= 1;
if (++rx_local->local_Fbr1_full.bits.val >
(rx_local->Fbr1NumEntries - 1)) {
rx_local->local_Fbr1_full.bits.val = 0;
rx_local->local_Fbr1_full.bits.wrap ^= 1;
}
writel(pRxLocal->local_Fbr1_full.value,
&pRxDma->fbr1_full_offset.value);
writel(rx_local->local_Fbr1_full.value,
&rx_dma->fbr1_full_offset.value);
}
#ifdef USE_FBR0
else {
PFBR_DESC_t pNextDesc =
(PFBR_DESC_t) pRxLocal->pFbr0RingVa +
pRxLocal->local_Fbr0_full.bits.val;
(PFBR_DESC_t) rx_local->pFbr0RingVa +
rx_local->local_Fbr0_full.bits.val;
/* Handle the Free Buffer Ring advancement here. Write
* the PA / Buffer Index for the returned buffer into
* the oldest (next to be freed) FBR entry
*/
pNextDesc->addr_hi = pRxLocal->Fbr[0]->PAHigh[bi];
pNextDesc->addr_lo = pRxLocal->Fbr[0]->PALow[bi];
pNextDesc->addr_hi = rx_local->Fbr[0]->PAHigh[bi];
pNextDesc->addr_lo = rx_local->Fbr[0]->PALow[bi];
pNextDesc->word2.value = bi;
if (++pRxLocal->local_Fbr0_full.bits.val >
(pRxLocal->Fbr0NumEntries - 1)) {
pRxLocal->local_Fbr0_full.bits.val = 0;
pRxLocal->local_Fbr0_full.bits.wrap ^= 1;
if (++rx_local->local_Fbr0_full.bits.val >
(rx_local->Fbr0NumEntries - 1)) {
rx_local->local_Fbr0_full.bits.val = 0;
rx_local->local_Fbr0_full.bits.wrap ^= 1;
}
writel(pRxLocal->local_Fbr0_full.value,
&pRxDma->fbr0_full_offset.value);
writel(rx_local->local_Fbr0_full.value,
&rx_dma->fbr0_full_offset.value);
}
#endif
spin_unlock_irqrestore(&etdev->FbrLock, flags);
@ -1363,10 +1363,10 @@ void nic_return_rfd(struct et131x_adapter *etdev, PMP_RFD pMpRfd)
* our list
*/
spin_lock_irqsave(&etdev->RcvLock, flags);
list_add_tail(&pMpRfd->list_node, &pRxLocal->RecvList);
pRxLocal->nReadyRecv++;
list_add_tail(&pMpRfd->list_node, &rx_local->RecvList);
rx_local->nReadyRecv++;
spin_unlock_irqrestore(&etdev->RcvLock, flags);
DBG_ASSERT(pRxLocal->nReadyRecv <= pRxLocal->NumRfd);
DBG_ASSERT(rx_local->nReadyRecv <= rx_local->NumRfd);
DBG_RX_LEAVE(et131x_dbginfo);
}

View file

@ -246,22 +246,22 @@ void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
/**
* ConfigTxDmaRegs - Set up the tx dma section of the JAGCore.
* @adapter: pointer to our private adapter structure
* @etdev: pointer to our private adapter structure
*/
void ConfigTxDmaRegs(struct et131x_adapter *etdev)
{
struct _TXDMA_t __iomem *pTxDma = &etdev->regs->txdma;
struct _TXDMA_t __iomem *txdma = &etdev->regs->txdma;
DBG_ENTER(et131x_dbginfo);
/* Load the hardware with the start of the transmit descriptor ring. */
writel((uint32_t) (etdev->TxRing.pTxDescRingAdjustedPa >> 32),
&pTxDma->pr_base_hi);
&txdma->pr_base_hi);
writel((uint32_t) etdev->TxRing.pTxDescRingAdjustedPa,
&pTxDma->pr_base_lo);
&txdma->pr_base_lo);
/* Initialise the transmit DMA engine */
writel(NUM_DESC_PER_RING_TX - 1, &pTxDma->pr_num_des.value);
writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des.value);
/* Load the completion writeback physical address
*
@ -270,12 +270,12 @@ void ConfigTxDmaRegs(struct et131x_adapter *etdev)
* are ever returned, make sure the high part is retrieved here before
* storing the adjusted address.
*/
writel(0, &pTxDma->dma_wb_base_hi);
writel(etdev->TxRing.pTxStatusPa, &pTxDma->dma_wb_base_lo);
writel(0, &txdma->dma_wb_base_hi);
writel(etdev->TxRing.pTxStatusPa, &txdma->dma_wb_base_lo);
memset(etdev->TxRing.pTxStatusVa, 0, sizeof(TX_STATUS_BLOCK_t));
writel(0, &pTxDma->service_request.value);
writel(0, &txdma->service_request.value);
etdev->TxRing.txDmaReadyToSend.value = 0;
DBG_LEAVE(et131x_dbginfo);
@ -461,7 +461,7 @@ static int et131x_send_packet(struct sk_buff *skb,
{
int status = 0;
PMP_TCB pMpTcb = NULL;
uint16_t *pShBufVa;
uint16_t *shbufva;
unsigned long flags;
DBG_TX_ENTER(et131x_dbginfo);
@ -506,12 +506,12 @@ static int et131x_send_packet(struct sk_buff *skb,
pMpTcb->Packet = skb;
if ((skb->data != NULL) && ((skb->len - skb->data_len) >= 6)) {
pShBufVa = (uint16_t *) skb->data;
shbufva = (uint16_t *) skb->data;
if ((pShBufVa[0] == 0xffff) &&
(pShBufVa[1] == 0xffff) && (pShBufVa[2] == 0xffff)) {
if ((shbufva[0] == 0xffff) &&
(shbufva[1] == 0xffff) && (shbufva[2] == 0xffff)) {
MP_SET_FLAG(pMpTcb, fMP_DEST_BROAD);
} else if ((pShBufVa[0] & 0x3) == 0x0001) {
} else if ((shbufva[0] & 0x3) == 0x0001) {
MP_SET_FLAG(pMpTcb, fMP_DEST_MULTI);
}
}
@ -558,7 +558,7 @@ static int nic_send_packet(struct et131x_adapter *etdev, PMP_TCB pMpTcb)
uint32_t loopIndex;
TX_DESC_ENTRY_t CurDesc[24];
uint32_t FragmentNumber = 0;
uint32_t iThisCopy, iRemainder;
uint32_t thiscopy, remainder;
struct sk_buff *pPacket = pMpTcb->Packet;
uint32_t FragListCount = skb_shinfo(pPacket)->nr_frags + 1;
struct skb_frag_struct *pFragList = &skb_shinfo(pPacket)->frags[0];
@ -710,7 +710,7 @@ static int nic_send_packet(struct et131x_adapter *etdev, PMP_TCB pMpTcb)
return -EIO;
}
if (etdev->uiLinkSpeed == TRUEPHY_SPEED_1000MBPS) {
if (etdev->linkspeed == TRUEPHY_SPEED_1000MBPS) {
if (++etdev->TxRing.TxPacketsSinceLastinterrupt ==
PARM_TX_NUM_BUFS_DEF) {
CurDesc[FragmentNumber - 1].word3.value = 0x5;
@ -729,21 +729,21 @@ static int nic_send_packet(struct et131x_adapter *etdev, PMP_TCB pMpTcb)
spin_lock_irqsave(&etdev->SendHWLock, flags);
iThisCopy =
thiscopy =
NUM_DESC_PER_RING_TX - etdev->TxRing.txDmaReadyToSend.bits.val;
if (iThisCopy >= FragmentNumber) {
iRemainder = 0;
iThisCopy = FragmentNumber;
if (thiscopy >= FragmentNumber) {
remainder = 0;
thiscopy = FragmentNumber;
} else {
iRemainder = FragmentNumber - iThisCopy;
remainder = FragmentNumber - thiscopy;
}
memcpy(etdev->TxRing.pTxDescRingVa +
etdev->TxRing.txDmaReadyToSend.bits.val, CurDesc,
sizeof(TX_DESC_ENTRY_t) * iThisCopy);
sizeof(TX_DESC_ENTRY_t) * thiscopy);
etdev->TxRing.txDmaReadyToSend.bits.val += iThisCopy;
etdev->TxRing.txDmaReadyToSend.bits.val += thiscopy;
if ((etdev->TxRing.txDmaReadyToSend.bits.val == 0) ||
(etdev->TxRing.txDmaReadyToSend.bits.val ==
@ -754,12 +754,12 @@ static int nic_send_packet(struct et131x_adapter *etdev, PMP_TCB pMpTcb)
etdev->TxRing.txDmaReadyToSend.value = 0x400;
}
if (iRemainder) {
if (remainder) {
memcpy(etdev->TxRing.pTxDescRingVa,
CurDesc + iThisCopy,
sizeof(TX_DESC_ENTRY_t) * iRemainder);
CurDesc + thiscopy,
sizeof(TX_DESC_ENTRY_t) * remainder);
etdev->TxRing.txDmaReadyToSend.bits.val += iRemainder;
etdev->TxRing.txDmaReadyToSend.bits.val += remainder;
}
if (etdev->TxRing.txDmaReadyToSend.bits.val == 0) {
@ -794,7 +794,7 @@ static int nic_send_packet(struct et131x_adapter *etdev, PMP_TCB pMpTcb)
/* For Gig only, we use Tx Interrupt coalescing. Enable the software
* timer to wake us up if this packet isn't followed by N more.
*/
if (etdev->uiLinkSpeed == TRUEPHY_SPEED_1000MBPS) {
if (etdev->linkspeed == TRUEPHY_SPEED_1000MBPS) {
writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
&etdev->regs->global.watchdog_timer);
}
@ -824,7 +824,7 @@ static int nic_send_packet(struct et131x_adapter *etdev, PMP_TCB pMpTcb)
static int nic_send_packet(struct et131x_adapter *etdev, PMP_TCB pMpTcb)
{
uint32_t loopIndex, fragIndex, loopEnd;
uint32_t iSplitFirstElement = 0;
uint32_t splitfirstelem = 0;
uint32_t SegmentSize = 0;
TX_DESC_ENTRY_t CurDesc;
TX_DESC_ENTRY_t *CurDescPostCopy = NULL;
@ -857,21 +857,21 @@ static int nic_send_packet(struct et131x_adapter *etdev, PMP_TCB pMpTcb)
DBG_TX(et131x_dbginfo,
"pMpTcb->PacketLength: %d\n", pMpTcb->PacketLength);
if ((etdev->uiDuplexMode == 0)
if ((etdev->duplex_mode == 0)
&& (pMpTcb->PacketLength < NIC_MIN_PACKET_SIZE)) {
DBG_TX(et131x_dbginfo,
"HALF DUPLEX mode AND len < MIN_PKT_SIZE\n");
if ((FragListCount & 0x1) == 0) {
DBG_TX(et131x_dbginfo,
"Even number of descs, split 1st elem\n");
iSplitFirstElement = 1;
splitfirstelem = 1;
/* SegmentSize = pFragList[0].size / 2; */
SegmentSize = (pPacket->len - pPacket->data_len) / 2;
}
} else if (FragListCount & 0x1) {
DBG_TX(et131x_dbginfo, "Odd number of descs, split 1st elem\n");
iSplitFirstElement = 1;
splitfirstelem = 1;
/* SegmentSize = pFragList[0].size / 2; */
SegmentSize = (pPacket->len - pPacket->data_len) / 2;
}
@ -894,26 +894,26 @@ static int nic_send_packet(struct et131x_adapter *etdev, PMP_TCB pMpTcb)
etdev->TxRing.txDmaReadyToSend.bits.serv_req;
}
if ((FragListCount + iSplitFirstElement) > SlotsAvailable) {
if ((FragListCount + splitfirstelem) > SlotsAvailable) {
DBG_WARNING(et131x_dbginfo,
"Not Enough Space in Tx Desc Ring\n");
spin_unlock_irqrestore(&etdev->SendHWLock, flags);
return -ENOMEM;
}
loopEnd = (FragListCount) + iSplitFirstElement;
loopEnd = (FragListCount) + splitfirstelem;
fragIndex = 0;
DBG_TX(et131x_dbginfo,
"TCB : 0x%p\n"
"Packet (SKB) : 0x%p\t Packet->len: %d\t Packet->data_len: %d\n"
"FragListCount : %d\t iSplitFirstElement: %d\t loopEnd:%d\n",
"FragListCount : %d\t splitfirstelem: %d\t loopEnd:%d\n",
pMpTcb,
pPacket, pPacket->len, pPacket->data_len,
FragListCount, iSplitFirstElement, loopEnd);
FragListCount, splitfirstelem, loopEnd);
for (loopIndex = 0; loopIndex < loopEnd; loopIndex++) {
if (loopIndex > iSplitFirstElement)
if (loopIndex > splitfirstelem)
fragIndex++;
DBG_TX(et131x_dbginfo,
@ -945,7 +945,7 @@ static int nic_send_packet(struct et131x_adapter *etdev, PMP_TCB pMpTcb)
CurDesc.word3.value = 0;
if (fragIndex == 0) {
if (iSplitFirstElement) {
if (splitfirstelem) {
DBG_TX(et131x_dbginfo,
"Split first element: YES\n");
@ -1055,13 +1055,13 @@ static int nic_send_packet(struct et131x_adapter *etdev, PMP_TCB pMpTcb)
}
if ((loopIndex == (loopEnd - 1)) &&
(etdev->uiDuplexMode ||
(etdev->duplex_mode ||
(pMpTcb->PacketLength >= NIC_MIN_PACKET_SIZE))) {
/* This is the Last descriptor of the packet */
DBG_TX(et131x_dbginfo,
"THIS is our LAST descriptor\n");
if (etdev->uiLinkSpeed ==
if (etdev->linkspeed ==
TRUEPHY_SPEED_1000MBPS) {
if (++etdev->TxRing.
TxPacketsSinceLastinterrupt >=
@ -1124,14 +1124,14 @@ static int nic_send_packet(struct et131x_adapter *etdev, PMP_TCB pMpTcb)
}
}
if (etdev->uiDuplexMode == 0 &&
if (etdev->duplex_mode == 0 &&
pMpTcb->PacketLength < NIC_MIN_PACKET_SIZE) {
/* NOTE - Same 32/64-bit issue as above... */
CurDesc.DataBufferPtrHigh = 0x0;
CurDesc.DataBufferPtrLow = etdev->TxRing.pTxDummyBlkPa;
CurDesc.word2.value = 0;
if (etdev->uiLinkSpeed == TRUEPHY_SPEED_1000MBPS) {
if (etdev->linkspeed == TRUEPHY_SPEED_1000MBPS) {
if (++etdev->TxRing.TxPacketsSinceLastinterrupt >=
PARM_TX_NUM_BUFS_DEF) {
CurDesc.word3.value = 0x5;
@ -1212,7 +1212,7 @@ static int nic_send_packet(struct et131x_adapter *etdev, PMP_TCB pMpTcb)
/* For Gig only, we use Tx Interrupt coalescing. Enable the software
* timer to wake us up if this packet isn't followed by N more.
*/
if (etdev->uiLinkSpeed == TRUEPHY_SPEED_1000MBPS) {
if (etdev->linkspeed == TRUEPHY_SPEED_1000MBPS) {
writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
&etdev->regs->global.watchdog_timer);
}
@ -1339,7 +1339,7 @@ inline void et131x_free_send_packet(struct et131x_adapter *etdev,
void et131x_free_busy_send_packets(struct et131x_adapter *etdev)
{
PMP_TCB pMpTcb;
struct list_head *pEntry;
struct list_head *entry;
unsigned long flags;
uint32_t FreeCounter = 0;
@ -1351,7 +1351,7 @@ void et131x_free_busy_send_packets(struct et131x_adapter *etdev)
etdev->TxRing.nWaitSend--;
spin_unlock_irqrestore(&etdev->SendWaitLock, flags);
pEntry = etdev->TxRing.SendWaitQueue.next;
entry = etdev->TxRing.SendWaitQueue.next;
}
etdev->TxRing.nWaitSend = 0;
@ -1496,11 +1496,11 @@ static void et131x_check_send_wait_list(struct et131x_adapter *etdev)
while (!list_empty(&etdev->TxRing.SendWaitQueue) &&
MP_TCB_RESOURCES_AVAILABLE(etdev)) {
struct list_head *pEntry;
struct list_head *entry;
DBG_VERBOSE(et131x_dbginfo, "Tx packets on the wait queue\n");
pEntry = etdev->TxRing.SendWaitQueue.next;
entry = etdev->TxRing.SendWaitQueue.next;
etdev->TxRing.nWaitSend--;

View file

@ -133,8 +133,8 @@ typedef struct _MP_RFD {
struct list_head list_node;
struct sk_buff *Packet;
u32 PacketSize; /* total size of receive frame */
u16 iBufferIndex;
u8 iRingIndex;
u16 bufferindex;
u8 ringindex;
} MP_RFD, *PMP_RFD;
/* Enum for Flow Control */
@ -214,8 +214,7 @@ struct et131x_adapter {
/* Configuration */
u8 PermanentAddress[ETH_ALEN];
u8 CurrentAddress[ETH_ALEN];
bool bOverrideAddress;
bool bEepromPresent;
bool has_eeprom;
u8 eepromData[2];
/* Spinlocks */
@ -234,11 +233,8 @@ struct et131x_adapter {
/* Packet Filter and look ahead size */
u32 PacketFilter;
u32 ulLookAhead;
u32 uiLinkSpeed;
u32 uiDuplexMode;
u32 uiAutoNegStatus;
u8 ucLinkStatus;
u32 linkspeed;
u32 duplex_mode;
/* multicast list */
u32 MCAddressCount;
@ -275,11 +271,7 @@ struct et131x_adapter {
u8 DriverNoPhyAccess;
/* Minimize init-time */
bool bQueryPending;
bool bSetPending;
bool bResetPending;
struct timer_list ErrorTimer;
bool bLinkTimerActive;
MP_POWER_MGMT PoMgmt;
INTERRUPT_t CachedMaskValue;

View file

@ -330,14 +330,14 @@ int et131x_find_adapter(struct et131x_adapter *adapter, struct pci_dev *pdev)
return -EIO;
} else if (rev == 0x01) {
int32_t nLoop;
uint8_t ucTemp[4] = { 0xFE, 0x13, 0x10, 0xFF };
uint8_t temp[4] = { 0xFE, 0x13, 0x10, 0xFF };
/* Re-write the first 4 bytes if we have an eeprom
* present and the revision id is 1, this fixes the
* corruption seen with 1310 B Silicon
*/
for (nLoop = 0; nLoop < 3; nLoop++) {
EepromWriteByte(adapter, nLoop, ucTemp[nLoop],
EepromWriteByte(adapter, nLoop, temp[nLoop],
0, SINGLE_BYTE);
}
}
@ -351,14 +351,14 @@ int et131x_find_adapter(struct et131x_adapter *adapter, struct pci_dev *pdev)
* information that normally would come from the eeprom, like
* MAC Address
*/
adapter->bEepromPresent = false;
adapter->has_eeprom = 0;
DBG_LEAVE(et131x_dbginfo);
return -EIO;
} else {
DBG_TRACE(et131x_dbginfo, "EEPROM Status Code - 0x%04x\n",
eepromStat);
adapter->bEepromPresent = true;
adapter->has_eeprom = 1;
}
/* Read the EEPROM for information regarding LED behavior. Refer to
@ -445,7 +445,7 @@ int et131x_find_adapter(struct et131x_adapter *adapter, struct pci_dev *pdev)
/* Get MAC address from config space if an eeprom exists, otherwise
* the MAC address there will not be valid
*/
if (adapter->bEepromPresent) {
if (adapter->has_eeprom) {
int i;
for (i = 0; i < ETH_ALEN; i++) {
@ -520,9 +520,6 @@ void et131x_link_detection_handler(unsigned long data)
struct et131x_adapter *etdev = (struct et131x_adapter *) data;
unsigned long flags;
/* Let everyone know that we have run */
etdev->bLinkTimerActive = false;
if (etdev->MediaState == 0) {
spin_lock_irqsave(&etdev->Lock, flags);
@ -532,8 +529,6 @@ void et131x_link_detection_handler(unsigned long data)
spin_unlock_irqrestore(&etdev->Lock, flags);
netif_carrier_off(etdev->netdev);
etdev->bSetPending = false;
}
}
@ -608,35 +603,32 @@ void et131x_setup_hardware_properties(struct et131x_adapter *adapter)
* EEPROM then we need to generate the last octet and set it on the
* device
*/
if (!adapter->bOverrideAddress) {
if (adapter->PermanentAddress[0] == 0x00 &&
adapter->PermanentAddress[1] == 0x00 &&
adapter->PermanentAddress[2] == 0x00 &&
adapter->PermanentAddress[3] == 0x00 &&
adapter->PermanentAddress[4] == 0x00 &&
adapter->PermanentAddress[5] == 0x00) {
/*
* We need to randomly generate the last octet so we
* decrease our chances of setting the mac address to
* same as another one of our cards in the system
*/
get_random_bytes(&adapter->CurrentAddress[5], 1);
/*
* We have the default value in the register we are
* working with so we need to copy the current
* address into the permanent address
*/
memcpy(adapter->PermanentAddress,
adapter->CurrentAddress, ETH_ALEN);
} else {
/* We do not have an override address, so set the
* current address to the permanent address and add
* it to the device
*/
memcpy(adapter->CurrentAddress,
adapter->PermanentAddress, ETH_ALEN);
}
if (adapter->PermanentAddress[0] == 0x00 &&
adapter->PermanentAddress[1] == 0x00 &&
adapter->PermanentAddress[2] == 0x00 &&
adapter->PermanentAddress[3] == 0x00 &&
adapter->PermanentAddress[4] == 0x00 &&
adapter->PermanentAddress[5] == 0x00) {
/*
* We need to randomly generate the last octet so we
* decrease our chances of setting the mac address to
* same as another one of our cards in the system
*/
get_random_bytes(&adapter->CurrentAddress[5], 1);
/*
* We have the default value in the register we are
* working with so we need to copy the current
* address into the permanent address
*/
memcpy(adapter->PermanentAddress,
adapter->CurrentAddress, ETH_ALEN);
} else {
/* We do not have an override address, so set the
* current address to the permanent address and add
* it to the device
*/
memcpy(adapter->CurrentAddress,
adapter->PermanentAddress, ETH_ALEN);
}
DBG_LEAVE(et131x_dbginfo);