1
0
Fork 0

Merge remote-tracking branches 'asoc/topic/ml26124', 'asoc/topic/of', 'asoc/topic/omap', 'asoc/topic/pxa' and 'asoc/topic/rcar' into asoc-next

hifive-unleashed-5.1
Mark Brown 2014-03-12 23:04:35 +00:00
48 changed files with 9848 additions and 978 deletions

View File

@ -0,0 +1,20 @@
TDM slot:
This specifies audio DAI's TDM slot.
TDM slot properties:
dai-tdm-slot-num : Number of slots in use.
dai-tdm-slot-width : Width in bits for each slot.
For instance:
dai-tdm-slot-num = <2>;
dai-tdm-slot-width = <8>;
And for each spcified driver, there could be one .of_xlate_tdm_slot_mask()
to specify a explicit mapping of the channels and the slots. If it's absent
the default snd_soc_of_xlate_tdm_slot_mask() will be used to generating the
tx and rx masks.
For snd_soc_of_xlate_tdm_slot_mask(), the tx and rx masks will use a 1 bit
for an active slot as default, and the default active bits are at the LSB of
the masks.

View File

@ -0,0 +1,20 @@
Widgets:
This mainly specifies audio off-codec DAPM widgets.
Each entry is a pair of strings in DT:
"template-wname", "user-supplied-wname"
The "template-wname" being the template widget name and currently includes:
"Microphone", "Line", "Headphone" and "Speaker".
The "user-supplied-wname" being the user specified widget name.
For instance:
simple-audio-widgets =
"Microphone", "Microphone Jack",
"Line", "Line In Jack",
"Line", "Line Out Jack",
"Headphone", "Headphone Jack",
"Speaker", "Speaker External";

View File

@ -34,17 +34,17 @@
* B : SSI direction
*/
#define RSND_SSI_CLK_PIN_SHARE (1 << 31)
#define RSND_SSI_SYNC (1 << 29) /* SSI34_sync etc */
#define RSND_SSI_PLAY (1 << 24)
#define RSND_SSI(_dma_id, _pio_irq, _flags) \
{ .dma_id = _dma_id, .pio_irq = _pio_irq, .flags = _flags }
#define RSND_SSI_SET(_dai_id, _dma_id, _pio_irq, _flags) \
{ .dai_id = _dai_id, .dma_id = _dma_id, .pio_irq = _pio_irq, .flags = _flags }
#define RSND_SSI_UNUSED \
{ .dai_id = -1, .dma_id = -1, .pio_irq = -1, .flags = 0 }
struct rsnd_ssi_platform_info {
int dai_id;
int dai_id; /* will be removed */
int dma_id;
int pio_irq;
u32 flags;
@ -55,9 +55,31 @@ struct rsnd_ssi_platform_info {
*/
#define RSND_SCU_USE_HPBIF (1 << 31) /* it needs RSND_SSI_DEPENDENT */
struct rsnd_scu_platform_info {
#define RSND_SRC(rate, _dma_id) \
{ .flags = RSND_SCU_USE_HPBIF, .convert_rate = rate, .dma_id = _dma_id, }
#define RSND_SRC_SET(rate, _dma_id) \
{ .flags = RSND_SCU_USE_HPBIF, .convert_rate = rate, .dma_id = _dma_id, }
#define RSND_SRC_UNUSED \
{ .flags = 0, .convert_rate = 0, .dma_id = 0, }
#define rsnd_scu_platform_info rsnd_src_platform_info
#define src_info scu_info
#define src_info_nr scu_info_nr
struct rsnd_src_platform_info {
u32 flags;
u32 convert_rate; /* sampling rate convert */
int dma_id; /* for Gen2 SCU */
};
struct rsnd_dai_path_info {
struct rsnd_ssi_platform_info *ssi;
struct rsnd_src_platform_info *src;
};
struct rsnd_dai_platform_info {
struct rsnd_dai_path_info playback;
struct rsnd_dai_path_info capture;
};
/*
@ -75,8 +97,10 @@ struct rcar_snd_info {
u32 flags;
struct rsnd_ssi_platform_info *ssi_info;
int ssi_info_nr;
struct rsnd_scu_platform_info *scu_info;
int scu_info_nr;
struct rsnd_src_platform_info *src_info;
int src_info_nr;
struct rsnd_dai_platform_info *dai_info;
int dai_info_nr;
int (*start)(int id);
int (*stop)(int id);
};

View File

@ -142,6 +142,8 @@ struct snd_soc_dai_ops {
* Called by soc_card drivers, normally in their hw_params.
*/
int (*set_fmt)(struct snd_soc_dai *dai, unsigned int fmt);
int (*of_xlate_tdm_slot_mask)(unsigned int slots,
unsigned int *tx_mask, unsigned int *rx_mask);
int (*set_tdm_slot)(struct snd_soc_dai *dai,
unsigned int tx_mask, unsigned int rx_mask,
int slots, int slot_width);

View File

@ -1227,6 +1227,11 @@ void snd_soc_util_exit(void);
int snd_soc_of_parse_card_name(struct snd_soc_card *card,
const char *propname);
int snd_soc_of_parse_audio_simple_widgets(struct snd_soc_card *card,
const char *propname);
int snd_soc_of_parse_tdm_slot(struct device_node *np,
unsigned int *slots,
unsigned int *slot_width);
int snd_soc_of_parse_audio_routing(struct snd_soc_card *card,
const char *propname);
unsigned int snd_soc_of_parse_daifmt(struct device_node *np,

View File

@ -0,0 +1,384 @@
#undef TRACE_SYSTEM
#define TRACE_SYSTEM hswadsp
#if !defined(_TRACE_HSWADSP_H) || defined(TRACE_HEADER_MULTI_READ)
#define _TRACE_HSWADSP_H
#include <linux/types.h>
#include <linux/ktime.h>
#include <linux/tracepoint.h>
struct sst_hsw;
struct sst_hsw_stream;
struct sst_hsw_ipc_stream_free_req;
struct sst_hsw_ipc_volume_req;
struct sst_hsw_ipc_stream_alloc_req;
struct sst_hsw_audio_data_format_ipc;
struct sst_hsw_ipc_stream_info_reply;
struct sst_hsw_ipc_device_config_req;
DECLARE_EVENT_CLASS(sst_irq,
TP_PROTO(uint32_t status, uint32_t mask),
TP_ARGS(status, mask),
TP_STRUCT__entry(
__field( unsigned int, status )
__field( unsigned int, mask )
),
TP_fast_assign(
__entry->status = status;
__entry->mask = mask;
),
TP_printk("status 0x%8.8x mask 0x%8.8x",
(unsigned int)__entry->status, (unsigned int)__entry->mask)
);
DEFINE_EVENT(sst_irq, sst_irq_busy,
TP_PROTO(unsigned int status, unsigned int mask),
TP_ARGS(status, mask)
);
DEFINE_EVENT(sst_irq, sst_irq_done,
TP_PROTO(unsigned int status, unsigned int mask),
TP_ARGS(status, mask)
);
DECLARE_EVENT_CLASS(ipc,
TP_PROTO(const char *name, int val),
TP_ARGS(name, val),
TP_STRUCT__entry(
__string( name, name )
__field( unsigned int, val )
),
TP_fast_assign(
__assign_str(name, name);
__entry->val = val;
),
TP_printk("%s 0x%8.8x", __get_str(name), (unsigned int)__entry->val)
);
DEFINE_EVENT(ipc, ipc_request,
TP_PROTO(const char *name, int val),
TP_ARGS(name, val)
);
DEFINE_EVENT(ipc, ipc_reply,
TP_PROTO(const char *name, int val),
TP_ARGS(name, val)
);
DEFINE_EVENT(ipc, ipc_pending_reply,
TP_PROTO(const char *name, int val),
TP_ARGS(name, val)
);
DEFINE_EVENT(ipc, ipc_notification,
TP_PROTO(const char *name, int val),
TP_ARGS(name, val)
);
DEFINE_EVENT(ipc, ipc_error,
TP_PROTO(const char *name, int val),
TP_ARGS(name, val)
);
DECLARE_EVENT_CLASS(stream_position,
TP_PROTO(unsigned int id, unsigned int pos),
TP_ARGS(id, pos),
TP_STRUCT__entry(
__field( unsigned int, id )
__field( unsigned int, pos )
),
TP_fast_assign(
__entry->id = id;
__entry->pos = pos;
),
TP_printk("id %d position 0x%x",
(unsigned int)__entry->id, (unsigned int)__entry->pos)
);
DEFINE_EVENT(stream_position, stream_read_position,
TP_PROTO(unsigned int id, unsigned int pos),
TP_ARGS(id, pos)
);
DEFINE_EVENT(stream_position, stream_write_position,
TP_PROTO(unsigned int id, unsigned int pos),
TP_ARGS(id, pos)
);
TRACE_EVENT(hsw_stream_buffer,
TP_PROTO(struct sst_hsw_stream *stream),
TP_ARGS(stream),
TP_STRUCT__entry(
__field( int, id )
__field( int, pt_addr )
__field( int, num_pages )
__field( int, ring_size )
__field( int, ring_offset )
__field( int, first_pfn )
),
TP_fast_assign(
__entry->id = stream->host_id;
__entry->pt_addr = stream->request.ringinfo.ring_pt_address;
__entry->num_pages = stream->request.ringinfo.num_pages;
__entry->ring_size = stream->request.ringinfo.ring_size;
__entry->ring_offset = stream->request.ringinfo.ring_offset;
__entry->first_pfn = stream->request.ringinfo.ring_first_pfn;
),
TP_printk("stream %d ring addr 0x%x pages %d size 0x%x offset 0x%x PFN 0x%x",
(int) __entry->id, (int)__entry->pt_addr,
(int)__entry->num_pages, (int)__entry->ring_size,
(int)__entry->ring_offset, (int)__entry->first_pfn)
);
TRACE_EVENT(hsw_stream_alloc_reply,
TP_PROTO(struct sst_hsw_stream *stream),
TP_ARGS(stream),
TP_STRUCT__entry(
__field( int, id )
__field( int, stream_id )
__field( int, mixer_id )
__field( int, peak0 )
__field( int, peak1 )
__field( int, vol0 )
__field( int, vol1 )
),
TP_fast_assign(
__entry->id = stream->host_id;
__entry->stream_id = stream->reply.stream_hw_id;
__entry->mixer_id = stream->reply.mixer_hw_id;
__entry->peak0 = stream->reply.peak_meter_register_address[0];
__entry->peak1 = stream->reply.peak_meter_register_address[1];
__entry->vol0 = stream->reply.volume_register_address[0];
__entry->vol1 = stream->reply.volume_register_address[1];
),
TP_printk("stream %d hw id %d mixer %d peak 0x%x:0x%x vol 0x%x,0x%x",
(int) __entry->id, (int) __entry->stream_id, (int)__entry->mixer_id,
(int)__entry->peak0, (int)__entry->peak1,
(int)__entry->vol0, (int)__entry->vol1)
);
TRACE_EVENT(hsw_mixer_info_reply,
TP_PROTO(struct sst_hsw_ipc_stream_info_reply *reply),
TP_ARGS(reply),
TP_STRUCT__entry(
__field( int, mixer_id )
__field( int, peak0 )
__field( int, peak1 )
__field( int, vol0 )
__field( int, vol1 )
),
TP_fast_assign(
__entry->mixer_id = reply->mixer_hw_id;
__entry->peak0 = reply->peak_meter_register_address[0];
__entry->peak1 = reply->peak_meter_register_address[1];
__entry->vol0 = reply->volume_register_address[0];
__entry->vol1 = reply->volume_register_address[1];
),
TP_printk("mixer id %d peak 0x%x:0x%x vol 0x%x,0x%x",
(int)__entry->mixer_id,
(int)__entry->peak0, (int)__entry->peak1,
(int)__entry->vol0, (int)__entry->vol1)
);
TRACE_EVENT(hsw_stream_data_format,
TP_PROTO(struct sst_hsw_stream *stream,
struct sst_hsw_audio_data_format_ipc *req),
TP_ARGS(stream, req),
TP_STRUCT__entry(
__field( uint32_t, id )
__field( uint32_t, frequency )
__field( uint32_t, bitdepth )
__field( uint32_t, map )
__field( uint32_t, config )
__field( uint32_t, style )
__field( uint8_t, ch_num )
__field( uint8_t, valid_bit )
),
TP_fast_assign(
__entry->id = stream->host_id;
__entry->frequency = req->frequency;
__entry->bitdepth = req->bitdepth;
__entry->map = req->map;
__entry->config = req->config;
__entry->style = req->style;
__entry->ch_num = req->ch_num;
__entry->valid_bit = req->valid_bit;
),
TP_printk("stream %d freq %d depth %d map 0x%x config 0x%x style 0x%x ch %d bits %d",
(int) __entry->id, (uint32_t)__entry->frequency,
(uint32_t)__entry->bitdepth, (uint32_t)__entry->map,
(uint32_t)__entry->config, (uint32_t)__entry->style,
(uint8_t)__entry->ch_num, (uint8_t)__entry->valid_bit)
);
TRACE_EVENT(hsw_stream_alloc_request,
TP_PROTO(struct sst_hsw_stream *stream,
struct sst_hsw_ipc_stream_alloc_req *req),
TP_ARGS(stream, req),
TP_STRUCT__entry(
__field( uint32_t, id )
__field( uint8_t, path_id )
__field( uint8_t, stream_type )
__field( uint8_t, format_id )
),
TP_fast_assign(
__entry->id = stream->host_id;
__entry->path_id = req->path_id;
__entry->stream_type = req->stream_type;
__entry->format_id = req->format_id;
),
TP_printk("stream %d path %d type %d format %d",
(int) __entry->id, (uint8_t)__entry->path_id,
(uint8_t)__entry->stream_type, (uint8_t)__entry->format_id)
);
TRACE_EVENT(hsw_stream_free_req,
TP_PROTO(struct sst_hsw_stream *stream,
struct sst_hsw_ipc_stream_free_req *req),
TP_ARGS(stream, req),
TP_STRUCT__entry(
__field( int, id )
__field( int, stream_id )
),
TP_fast_assign(
__entry->id = stream->host_id;
__entry->stream_id = req->stream_id;
),
TP_printk("stream %d hw id %d",
(int) __entry->id, (int) __entry->stream_id)
);
TRACE_EVENT(hsw_volume_req,
TP_PROTO(struct sst_hsw_stream *stream,
struct sst_hsw_ipc_volume_req *req),
TP_ARGS(stream, req),
TP_STRUCT__entry(
__field( int, id )
__field( uint32_t, channel )
__field( uint32_t, target_volume )
__field( uint64_t, curve_duration )
__field( uint32_t, curve_type )
),
TP_fast_assign(
__entry->id = stream->host_id;
__entry->channel = req->channel;
__entry->target_volume = req->target_volume;
__entry->curve_duration = req->curve_duration;
__entry->curve_type = req->curve_type;
),
TP_printk("stream %d chan 0x%x vol %d duration %llu type %d",
(int) __entry->id, (uint32_t) __entry->channel,
(uint32_t)__entry->target_volume,
(uint64_t)__entry->curve_duration,
(uint32_t)__entry->curve_type)
);
TRACE_EVENT(hsw_device_config_req,
TP_PROTO(struct sst_hsw_ipc_device_config_req *req),
TP_ARGS(req),
TP_STRUCT__entry(
__field( uint32_t, ssp )
__field( uint32_t, clock_freq )
__field( uint32_t, mode )
__field( uint16_t, clock_divider )
),
TP_fast_assign(
__entry->ssp = req->ssp_interface;
__entry->clock_freq = req->clock_frequency;
__entry->mode = req->mode;
__entry->clock_divider = req->clock_divider;
),
TP_printk("SSP %d Freq %d mode %d div %d",
(uint32_t)__entry->ssp,
(uint32_t)__entry->clock_freq, (uint32_t)__entry->mode,
(uint32_t)__entry->clock_divider)
);
#endif /* _TRACE_HSWADSP_H */
/* This part must be outside protection */
#include <trace/define_trace.h>

View File

@ -0,0 +1,148 @@
#undef TRACE_SYSTEM
#define TRACE_SYSTEM intel-sst
#if !defined(_TRACE_INTEL_SST_H) || defined(TRACE_HEADER_MULTI_READ)
#define _TRACE_INTEL_SST_H
#include <linux/types.h>
#include <linux/ktime.h>
#include <linux/tracepoint.h>
DECLARE_EVENT_CLASS(sst_ipc_msg,
TP_PROTO(unsigned int val),
TP_ARGS(val),
TP_STRUCT__entry(
__field( unsigned int, val )
),
TP_fast_assign(
__entry->val = val;
),
TP_printk("0x%8.8x", (unsigned int)__entry->val)
);
DEFINE_EVENT(sst_ipc_msg, sst_ipc_msg_tx,
TP_PROTO(unsigned int val),
TP_ARGS(val)
);
DEFINE_EVENT(sst_ipc_msg, sst_ipc_msg_rx,
TP_PROTO(unsigned int val),
TP_ARGS(val)
);
DECLARE_EVENT_CLASS(sst_ipc_mailbox,
TP_PROTO(unsigned int offset, unsigned int val),
TP_ARGS(offset, val),
TP_STRUCT__entry(
__field( unsigned int, offset )
__field( unsigned int, val )
),
TP_fast_assign(
__entry->offset = offset;
__entry->val = val;
),
TP_printk(" 0x%4.4x = 0x%8.8x",
(unsigned int)__entry->offset, (unsigned int)__entry->val)
);
DEFINE_EVENT(sst_ipc_mailbox, sst_ipc_inbox_rdata,
TP_PROTO(unsigned int offset, unsigned int val),
TP_ARGS(offset, val)
);
DEFINE_EVENT(sst_ipc_mailbox, sst_ipc_inbox_wdata,
TP_PROTO(unsigned int offset, unsigned int val),
TP_ARGS(offset, val)
);
DEFINE_EVENT(sst_ipc_mailbox, sst_ipc_outbox_rdata,
TP_PROTO(unsigned int offset, unsigned int val),
TP_ARGS(offset, val)
);
DEFINE_EVENT(sst_ipc_mailbox, sst_ipc_outbox_wdata,
TP_PROTO(unsigned int offset, unsigned int val),
TP_ARGS(offset, val)
);
DECLARE_EVENT_CLASS(sst_ipc_mailbox_info,
TP_PROTO(unsigned int size),
TP_ARGS(size),
TP_STRUCT__entry(
__field( unsigned int, size )
),
TP_fast_assign(
__entry->size = size;
),
TP_printk("Mailbox bytes 0x%8.8x", (unsigned int)__entry->size)
);
DEFINE_EVENT(sst_ipc_mailbox_info, sst_ipc_inbox_read,
TP_PROTO(unsigned int size),
TP_ARGS(size)
);
DEFINE_EVENT(sst_ipc_mailbox_info, sst_ipc_inbox_write,
TP_PROTO(unsigned int size),
TP_ARGS(size)
);
DEFINE_EVENT(sst_ipc_mailbox_info, sst_ipc_outbox_read,
TP_PROTO(unsigned int size),
TP_ARGS(size)
);
DEFINE_EVENT(sst_ipc_mailbox_info, sst_ipc_outbox_write,
TP_PROTO(unsigned int size),
TP_ARGS(size)
);
#endif /* _TRACE_SST_H */
/* This part must be outside protection */
#include <trace/define_trace.h>

View File

@ -73,11 +73,11 @@ static const DECLARE_TLV_DB_SCALE(ngth, -7650, 150, 0);
static const char * const ml26124_companding[] = {"16bit PCM", "u-law",
"A-law"};
static const struct soc_enum ml26124_adc_companding_enum
= SOC_ENUM_SINGLE(ML26124_SAI_TRANS_CTL, 6, 3, ml26124_companding);
static SOC_ENUM_SINGLE_DECL(ml26124_adc_companding_enum,
ML26124_SAI_TRANS_CTL, 6, ml26124_companding);
static const struct soc_enum ml26124_dac_companding_enum
= SOC_ENUM_SINGLE(ML26124_SAI_RCV_CTL, 6, 3, ml26124_companding);
static SOC_ENUM_SINGLE_DECL(ml26124_dac_companding_enum,
ML26124_SAI_RCV_CTL, 6, ml26124_companding);
static const struct snd_kcontrol_new ml26124_snd_controls[] = {
SOC_SINGLE_TLV("Capture Digital Volume", ML26124_RECORD_DIG_VOL, 0,
@ -136,8 +136,8 @@ static const struct snd_kcontrol_new ml26124_output_mixer_controls[] = {
static const char * const ml26124_input_select[] = {"Analog MIC SingleEnded in",
"Digital MIC in", "Analog MIC Differential in"};
static const struct soc_enum ml26124_insel_enum =
SOC_ENUM_SINGLE(ML26124_MIC_IF_CTL, 0, 3, ml26124_input_select);
static SOC_ENUM_SINGLE_DECL(ml26124_insel_enum,
ML26124_MIC_IF_CTL, 0, ml26124_input_select);
static const struct snd_kcontrol_new ml26124_input_mux_controls =
SOC_DAPM_ENUM("Input Select", ml26124_insel_enum);

View File

@ -2,12 +2,50 @@ config SND_MFLD_MACHINE
tristate "SOC Machine Audio driver for Intel Medfield MID platform"
depends on INTEL_SCU_IPC
select SND_SOC_SN95031
select SND_SST_PLATFORM
select SND_SST_MFLD_PLATFORM
help
This adds support for ASoC machine driver for Intel(R) MID Medfield platform
used as alsa device in audio substem in Intel(R) MID devices
Say Y if you have such a device
If unsure select "N".
config SND_SST_PLATFORM
config SND_SST_MFLD_PLATFORM
tristate
config SND_SOC_INTEL_SST
tristate "ASoC support for Intel(R) Smart Sound Technology"
select SND_SOC_INTEL_SST_ACPI if ACPI
depends on (X86 || COMPILE_TEST)
help
This adds support for Intel(R) Smart Sound Technology (SST).
Say Y if you have such a device
If unsure select "N".
config SND_SOC_INTEL_SST_ACPI
tristate
config SND_SOC_INTEL_HASWELL
tristate
config SND_SOC_INTEL_BAYTRAIL
tristate
config SND_SOC_INTEL_HASWELL_MACH
tristate "ASoC Audio DSP support for Intel Haswell Lynxpoint"
depends on SND_SOC_INTEL_SST && X86_INTEL_LPSS
select SND_SOC_INTEL_HASWELL
select SND_SOC_RT5640
help
This adds support for the Lynxpoint Audio DSP on Intel(R) Haswell
Ultrabook platforms.
Say Y if you have such a device
If unsure select "N".
config SND_SOC_INTEL_BYT_RT5640_MACH
tristate "ASoC Audio driver for Intel Baytrail with RT5640 codec"
depends on SND_SOC_INTEL_SST && X86_INTEL_LPSS
select SND_SOC_INTEL_BAYTRAIL
select SND_SOC_RT5640
help
This adds audio driver for Intel Baytrail platform based boards
with the RT5640 audio codec.

View File

@ -1,5 +1,28 @@
snd-soc-sst-platform-objs := sst_platform.o
# Core support
snd-soc-sst-dsp-objs := sst-dsp.o sst-firmware.o
snd-soc-sst-acpi-objs := sst-acpi.o
snd-soc-sst-mfld-platform-objs := sst-mfld-platform.o
snd-soc-mfld-machine-objs := mfld_machine.o
obj-$(CONFIG_SND_SST_PLATFORM) += snd-soc-sst-platform.o
obj-$(CONFIG_SND_SST_MFLD_PLATFORM) += snd-soc-sst-mfld-platform.o
obj-$(CONFIG_SND_MFLD_MACHINE) += snd-soc-mfld-machine.o
obj-$(CONFIG_SND_SOC_INTEL_SST) += snd-soc-sst-dsp.o
obj-$(CONFIG_SND_SOC_INTEL_SST_ACPI) += snd-soc-sst-acpi.o
# Platform Support
snd-soc-sst-haswell-pcm-objs := \
sst-haswell-ipc.o sst-haswell-pcm.o sst-haswell-dsp.o
snd-soc-sst-baytrail-pcm-objs := \
sst-baytrail-ipc.o sst-baytrail-pcm.o sst-baytrail-dsp.o
obj-$(CONFIG_SND_SOC_INTEL_HASWELL) += snd-soc-sst-haswell-pcm.o
obj-$(CONFIG_SND_SOC_INTEL_BAYTRAIL) += snd-soc-sst-baytrail-pcm.o
# Machine support
snd-soc-sst-haswell-objs := haswell.o
snd-soc-sst-byt-rt5640-mach-objs := byt-rt5640.o
obj-$(CONFIG_SND_SOC_INTEL_HASWELL_MACH) += snd-soc-sst-haswell.o
obj-$(CONFIG_SND_SOC_INTEL_BYT_RT5640_MACH) += snd-soc-sst-byt-rt5640-mach.o

View File

@ -0,0 +1,187 @@
/*
* Intel Baytrail SST RT5640 machine driver
* Copyright (c) 2014, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/acpi.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/jack.h>
#include "../codecs/rt5640.h"
#include "sst-dsp.h"
static const struct snd_soc_dapm_widget byt_rt5640_widgets[] = {
SND_SOC_DAPM_HP("Headphone", NULL),
SND_SOC_DAPM_MIC("Headset Mic", NULL),
SND_SOC_DAPM_MIC("Internal Mic", NULL),
SND_SOC_DAPM_SPK("Speaker", NULL),
};
static const struct snd_soc_dapm_route byt_rt5640_audio_map[] = {
{"IN2P", NULL, "Headset Mic"},
{"IN2N", NULL, "Headset Mic"},
{"DMIC1", NULL, "Internal Mic"},
{"Headphone", NULL, "HPOL"},
{"Headphone", NULL, "HPOR"},
{"Speaker", NULL, "SPOLP"},
{"Speaker", NULL, "SPOLN"},
{"Speaker", NULL, "SPORP"},
{"Speaker", NULL, "SPORN"},
};
static const struct snd_kcontrol_new byt_rt5640_controls[] = {
SOC_DAPM_PIN_SWITCH("Headphone"),
SOC_DAPM_PIN_SWITCH("Headset Mic"),
SOC_DAPM_PIN_SWITCH("Internal Mic"),
SOC_DAPM_PIN_SWITCH("Speaker"),
};
static int byt_rt5640_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_dai *codec_dai = rtd->codec_dai;
int ret;
ret = snd_soc_dai_set_sysclk(codec_dai, RT5640_SCLK_S_PLL1,
params_rate(params) * 256,
SND_SOC_CLOCK_IN);
if (ret < 0) {
dev_err(codec_dai->dev, "can't set codec clock %d\n", ret);
return ret;
}
ret = snd_soc_dai_set_pll(codec_dai, 0, RT5640_PLL1_S_BCLK1,
params_rate(params) * 64,
params_rate(params) * 256);
if (ret < 0) {
dev_err(codec_dai->dev, "can't set codec pll: %d\n", ret);
return ret;
}
return 0;
}
static int byt_rt5640_init(struct snd_soc_pcm_runtime *runtime)
{
int ret;
struct snd_soc_codec *codec = runtime->codec;
struct snd_soc_dapm_context *dapm = &codec->dapm;
struct snd_soc_card *card = runtime->card;
card->dapm.idle_bias_off = true;
ret = snd_soc_add_card_controls(card, byt_rt5640_controls,
ARRAY_SIZE(byt_rt5640_controls));
if (ret) {
dev_err(card->dev, "unable to add card controls\n");
return ret;
}
snd_soc_dapm_ignore_suspend(dapm, "HPOL");
snd_soc_dapm_ignore_suspend(dapm, "HPOR");
snd_soc_dapm_ignore_suspend(dapm, "SPOLP");
snd_soc_dapm_ignore_suspend(dapm, "SPOLN");
snd_soc_dapm_ignore_suspend(dapm, "SPORP");
snd_soc_dapm_ignore_suspend(dapm, "SPORN");
snd_soc_dapm_enable_pin(dapm, "Headset Mic");
snd_soc_dapm_enable_pin(dapm, "Headphone");
snd_soc_dapm_enable_pin(dapm, "Speaker");
snd_soc_dapm_enable_pin(dapm, "Internal Mic");
snd_soc_dapm_sync(dapm);
return ret;
}
static struct snd_soc_ops byt_rt5640_ops = {
.hw_params = byt_rt5640_hw_params,
};
static struct snd_soc_dai_link byt_rt5640_dais[] = {
{
.name = "Baytrail Audio",
.stream_name = "Audio",
.cpu_dai_name = "Front-cpu-dai",
.codec_dai_name = "rt5640-aif1",
.codec_name = "i2c-10EC5640:00",
.platform_name = "baytrail-pcm-audio",
.dai_fmt = SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF |
SND_SOC_DAIFMT_CBS_CFS,
.init = byt_rt5640_init,
.ignore_suspend = 1,
.ops = &byt_rt5640_ops,
},
{
.name = "Baytrail Voice",
.stream_name = "Voice",
.cpu_dai_name = "Mic1-cpu-dai",
.codec_dai_name = "rt5640-aif1",
.codec_name = "i2c-10EC5640:00",
.platform_name = "baytrail-pcm-audio",
.dai_fmt = SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF |
SND_SOC_DAIFMT_CBS_CFS,
.init = NULL,
.ignore_suspend = 1,
.ops = &byt_rt5640_ops,
},
};
static struct snd_soc_card byt_rt5640_card = {
.name = "byt-rt5640",
.dai_link = byt_rt5640_dais,
.num_links = ARRAY_SIZE(byt_rt5640_dais),
.dapm_widgets = byt_rt5640_widgets,
.num_dapm_widgets = ARRAY_SIZE(byt_rt5640_widgets),
.dapm_routes = byt_rt5640_audio_map,
.num_dapm_routes = ARRAY_SIZE(byt_rt5640_audio_map),
};
static int byt_rt5640_probe(struct platform_device *pdev)
{
struct snd_soc_card *card = &byt_rt5640_card;
struct device *dev = &pdev->dev;
card->dev = &pdev->dev;
dev_set_drvdata(dev, card);
return snd_soc_register_card(card);
}
static int byt_rt5640_remove(struct platform_device *pdev)
{
struct snd_soc_card *card = platform_get_drvdata(pdev);
snd_soc_unregister_card(card);
return 0;
}
static struct platform_driver byt_rt5640_audio = {
.probe = byt_rt5640_probe,
.remove = byt_rt5640_remove,
.driver = {
.name = "byt-rt5640",
.owner = THIS_MODULE,
},
};
module_platform_driver(byt_rt5640_audio)
MODULE_DESCRIPTION("ASoC Intel(R) Baytrail Machine driver");
MODULE_AUTHOR("Omair Md Abdullah, Jarkko Nikula");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:byt-rt5640");

View File

@ -0,0 +1,235 @@
/*
* Intel Haswell Lynxpoint SST Audio
*
* Copyright (C) 2013, Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/platform_device.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/soc.h>
#include <sound/pcm_params.h>
#include "sst-dsp.h"
#include "sst-haswell-ipc.h"
#include "../codecs/rt5640.h"
/* Haswell ULT platforms have a Headphone and Mic jack */
static const struct snd_soc_dapm_widget haswell_widgets[] = {
SND_SOC_DAPM_HP("Headphones", NULL),
SND_SOC_DAPM_MIC("Mic", NULL),
};
static const struct snd_soc_dapm_route haswell_rt5640_map[] = {
{"Headphones", NULL, "HPOR"},
{"Headphones", NULL, "HPOL"},
{"IN2P", NULL, "Mic"},
/* CODEC BE connections */
{"SSP0 CODEC IN", NULL, "AIF1 Capture"},
{"AIF1 Playback", NULL, "SSP0 CODEC OUT"},
};
static int haswell_ssp0_fixup(struct snd_soc_pcm_runtime *rtd,
struct snd_pcm_hw_params *params)
{
struct snd_interval *rate = hw_param_interval(params,
SNDRV_PCM_HW_PARAM_RATE);
struct snd_interval *channels = hw_param_interval(params,
SNDRV_PCM_HW_PARAM_CHANNELS);
/* The ADSP will covert the FE rate to 48k, stereo */
rate->min = rate->max = 48000;
channels->min = channels->max = 2;
/* set SSP0 to 16 bit */
snd_mask_set(&params->masks[SNDRV_PCM_HW_PARAM_FORMAT -
SNDRV_PCM_HW_PARAM_FIRST_MASK],
SNDRV_PCM_FORMAT_S16_LE);
return 0;
}
static int haswell_rt5640_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_dai *codec_dai = rtd->codec_dai;
int ret;
ret = snd_soc_dai_set_sysclk(codec_dai, RT5640_SCLK_S_MCLK, 12288000,
SND_SOC_CLOCK_IN);
if (ret < 0) {
dev_err(rtd->dev, "can't set codec sysclk configuration\n");
return ret;
}
/* set correct codec filter for DAI format and clock config */
snd_soc_update_bits(rtd->codec, 0x83, 0xffff, 0x8000);
return ret;
}
static struct snd_soc_ops haswell_rt5640_ops = {
.hw_params = haswell_rt5640_hw_params,
};
static int haswell_rtd_init(struct snd_soc_pcm_runtime *rtd)
{
struct snd_soc_codec *codec = rtd->codec;
struct snd_soc_dapm_context *dapm = &codec->dapm;
struct sst_pdata *pdata = dev_get_platdata(rtd->platform->dev);
struct sst_hsw *haswell = pdata->dsp;
int ret;
/* Set ADSP SSP port settings */
ret = sst_hsw_device_set_config(haswell, SST_HSW_DEVICE_SSP_0,
SST_HSW_DEVICE_MCLK_FREQ_24_MHZ,
SST_HSW_DEVICE_CLOCK_MASTER, 9);
if (ret < 0) {
dev_err(rtd->dev, "failed to set device config\n");
return ret;
}
/* always connected */
snd_soc_dapm_enable_pin(dapm, "Headphones");
snd_soc_dapm_enable_pin(dapm, "Mic");
return 0;
}
static struct snd_soc_dai_link haswell_rt5640_dais[] = {
/* Front End DAI links */
{
.name = "System",
.stream_name = "System Playback",
.cpu_dai_name = "System Pin",
.platform_name = "haswell-pcm-audio",
.dynamic = 1,
.codec_name = "snd-soc-dummy",
.codec_dai_name = "snd-soc-dummy-dai",
.init = haswell_rtd_init,
.trigger = {SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST},
.dpcm_playback = 1,
},
{
.name = "Offload0",
.stream_name = "Offload0 Playback",
.cpu_dai_name = "Offload0 Pin",
.platform_name = "haswell-pcm-audio",
.dynamic = 1,
.codec_name = "snd-soc-dummy",
.codec_dai_name = "snd-soc-dummy-dai",
.trigger = {SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST},
.dpcm_playback = 1,
},
{
.name = "Offload1",
.stream_name = "Offload1 Playback",
.cpu_dai_name = "Offload1 Pin",
.platform_name = "haswell-pcm-audio",
.dynamic = 1,
.codec_name = "snd-soc-dummy",
.codec_dai_name = "snd-soc-dummy-dai",
.trigger = {SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST},
.dpcm_playback = 1,
},
{
.name = "Loopback",
.stream_name = "Loopback",
.cpu_dai_name = "Loopback Pin",
.platform_name = "haswell-pcm-audio",
.dynamic = 0,
.codec_name = "snd-soc-dummy",
.codec_dai_name = "snd-soc-dummy-dai",
.trigger = {SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST},
.dpcm_capture = 1,
},
{
.name = "Capture",
.stream_name = "Capture",
.cpu_dai_name = "Capture Pin",
.platform_name = "haswell-pcm-audio",
.dynamic = 1,
.codec_name = "snd-soc-dummy",
.codec_dai_name = "snd-soc-dummy-dai",
.trigger = {SND_SOC_DPCM_TRIGGER_POST, SND_SOC_DPCM_TRIGGER_POST},
.dpcm_capture = 1,
},
/* Back End DAI links */
{
/* SSP0 - Codec */
.name = "Codec",
.be_id = 0,
.cpu_dai_name = "snd-soc-dummy-dai",
.platform_name = "snd-soc-dummy",
.no_pcm = 1,
.codec_name = "i2c-INT33CA:00",
.codec_dai_name = "rt5640-aif1",
.dai_fmt = SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF |
SND_SOC_DAIFMT_CBS_CFS,
.ignore_suspend = 1,
.ignore_pmdown_time = 1,
.be_hw_params_fixup = haswell_ssp0_fixup,
.ops = &haswell_rt5640_ops,
.dpcm_playback = 1,
.dpcm_capture = 1,
},
};
/* audio machine driver for Haswell Lynxpoint DSP + RT5640 */
static struct snd_soc_card haswell_rt5640 = {
.name = "haswell-rt5640",
.owner = THIS_MODULE,
.dai_link = haswell_rt5640_dais,
.num_links = ARRAY_SIZE(haswell_rt5640_dais),
.dapm_widgets = haswell_widgets,
.num_dapm_widgets = ARRAY_SIZE(haswell_widgets),
.dapm_routes = haswell_rt5640_map,
.num_dapm_routes = ARRAY_SIZE(haswell_rt5640_map),
.fully_routed = true,
};
static int haswell_audio_probe(struct platform_device *pdev)
{
haswell_rt5640.dev = &pdev->dev;
return snd_soc_register_card(&haswell_rt5640);
}
static int haswell_audio_remove(struct platform_device *pdev)
{
snd_soc_unregister_card(&haswell_rt5640);
return 0;
}
static struct platform_driver haswell_audio = {
.probe = haswell_audio_probe,
.remove = haswell_audio_remove,
.driver = {
.name = "haswell-audio",
.owner = THIS_MODULE,
},
};
module_platform_driver(haswell_audio)
/* Module information */
MODULE_AUTHOR("Liam Girdwood, Xingchao Wang");
MODULE_DESCRIPTION("Intel SST Audio for Haswell Lynxpoint");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:haswell-audio");

View File

@ -0,0 +1,284 @@
/*
* Intel SST loader on ACPI systems
*
* Copyright (C) 2013, Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/acpi.h>
#include <linux/device.h>
#include <linux/firmware.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include "sst-dsp.h"
#define SST_LPT_DSP_DMA_ADDR_OFFSET 0x0F0000
#define SST_WPT_DSP_DMA_ADDR_OFFSET 0x0FE000
#define SST_LPT_DSP_DMA_SIZE (1024 - 1)
/* Descriptor for SST ASoC machine driver */
struct sst_acpi_mach {
/* ACPI ID for the matching machine driver. Audio codec for instance */
const u8 id[ACPI_ID_LEN];
/* machine driver name */
const char *drv_name;
/* firmware file name */
const char *fw_filename;
};
/* Descriptor for setting up SST platform data */
struct sst_acpi_desc {
const char *drv_name;
struct sst_acpi_mach *machines;
/* Platform resource indexes. Must set to -1 if not used */
int resindex_lpe_base;
int resindex_pcicfg_base;
int resindex_fw_base;
int irqindex_host_ipc;
int resindex_dma_base;
/* Unique number identifying the SST core on platform */
int sst_id;
/* DMA only valid when resindex_dma_base != -1*/
int dma_engine;
int dma_size;
};
struct sst_acpi_priv {
struct platform_device *pdev_mach;
struct platform_device *pdev_pcm;
struct sst_pdata sst_pdata;
struct sst_acpi_desc *desc;
struct sst_acpi_mach *mach;
};
static void sst_acpi_fw_cb(const struct firmware *fw, void *context)
{
struct platform_device *pdev = context;
struct device *dev = &pdev->dev;
struct sst_acpi_priv *sst_acpi = platform_get_drvdata(pdev);
struct sst_pdata *sst_pdata = &sst_acpi->sst_pdata;
struct sst_acpi_desc *desc = sst_acpi->desc;
struct sst_acpi_mach *mach = sst_acpi->mach;
sst_pdata->fw = fw;
if (!fw) {
dev_err(dev, "Cannot load firmware %s\n", mach->fw_filename);
return;
}
/* register PCM and DAI driver */
sst_acpi->pdev_pcm =
platform_device_register_data(dev, desc->drv_name, -1,
sst_pdata, sizeof(*sst_pdata));
if (IS_ERR(sst_acpi->pdev_pcm)) {
dev_err(dev, "Cannot register device %s. Error %d\n",
desc->drv_name, (int)PTR_ERR(sst_acpi->pdev_pcm));
}
return;
}
static acpi_status sst_acpi_mach_match(acpi_handle handle, u32 level,
void *context, void **ret)
{
*(bool *)context = true;
return AE_OK;
}
static struct sst_acpi_mach *sst_acpi_find_machine(
struct sst_acpi_mach *machines)
{
struct sst_acpi_mach *mach;
bool found = false;
for (mach = machines; mach->id[0]; mach++)
if (ACPI_SUCCESS(acpi_get_devices(mach->id,
sst_acpi_mach_match,
&found, NULL)) && found)
return mach;
return NULL;
}
static int sst_acpi_probe(struct platform_device *pdev)
{
const struct acpi_device_id *id;
struct device *dev = &pdev->dev;
struct sst_acpi_priv *sst_acpi;
struct sst_pdata *sst_pdata;
struct sst_acpi_mach *mach;
struct sst_acpi_desc *desc;
struct resource *mmio;
int ret = 0;
sst_acpi = devm_kzalloc(dev, sizeof(*sst_acpi), GFP_KERNEL);
if (sst_acpi == NULL)
return -ENOMEM;
id = acpi_match_device(dev->driver->acpi_match_table, dev);
if (!id)
return -ENODEV;
desc = (struct sst_acpi_desc *)id->driver_data;
mach = sst_acpi_find_machine(desc->machines);
if (mach == NULL) {
dev_err(dev, "No matching ASoC machine driver found\n");
return -ENODEV;
}
sst_pdata = &sst_acpi->sst_pdata;
sst_pdata->id = desc->sst_id;
sst_acpi->desc = desc;
sst_acpi->mach = mach;
if (desc->resindex_dma_base >= 0) {
sst_pdata->dma_engine = desc->dma_engine;
sst_pdata->dma_base = desc->resindex_dma_base;
sst_pdata->dma_size = desc->dma_size;
}
if (desc->irqindex_host_ipc >= 0)
sst_pdata->irq = platform_get_irq(pdev, desc->irqindex_host_ipc);
if (desc->resindex_lpe_base >= 0) {
mmio = platform_get_resource(pdev, IORESOURCE_MEM,
desc->resindex_lpe_base);
if (mmio) {
sst_pdata->lpe_base = mmio->start;
sst_pdata->lpe_size = resource_size(mmio);
}
}
if (desc->resindex_pcicfg_base >= 0) {
mmio = platform_get_resource(pdev, IORESOURCE_MEM,
desc->resindex_pcicfg_base);
if (mmio) {
sst_pdata->pcicfg_base = mmio->start;
sst_pdata->pcicfg_size = resource_size(mmio);
}
}
if (desc->resindex_fw_base >= 0) {
mmio = platform_get_resource(pdev, IORESOURCE_MEM,
desc->resindex_fw_base);
if (mmio) {
sst_pdata->fw_base = mmio->start;
sst_pdata->fw_size = resource_size(mmio);
}
}
platform_set_drvdata(pdev, sst_acpi);
/* register machine driver */
sst_acpi->pdev_mach =
platform_device_register_data(dev, mach->drv_name, -1,
sst_pdata, sizeof(*sst_pdata));
if (IS_ERR(sst_acpi->pdev_mach))
return PTR_ERR(sst_acpi->pdev_mach);
/* continue SST probing after firmware is loaded */
ret = request_firmware_nowait(THIS_MODULE, true, mach->fw_filename,
dev, GFP_KERNEL, pdev, sst_acpi_fw_cb);
if (ret)
platform_device_unregister(sst_acpi->pdev_mach);
return ret;
}
static int sst_acpi_remove(struct platform_device *pdev)
{
struct sst_acpi_priv *sst_acpi = platform_get_drvdata(pdev);
struct sst_pdata *sst_pdata = &sst_acpi->sst_pdata;
platform_device_unregister(sst_acpi->pdev_mach);
if (!IS_ERR_OR_NULL(sst_acpi->pdev_pcm))
platform_device_unregister(sst_acpi->pdev_pcm);
release_firmware(sst_pdata->fw);
return 0;
}
static struct sst_acpi_mach haswell_machines[] = {
{ "INT33CA", "haswell-audio", "intel/IntcSST1.bin" },
{}
};
static struct sst_acpi_desc sst_acpi_haswell_desc = {
.drv_name = "haswell-pcm-audio",
.machines = haswell_machines,
.resindex_lpe_base = 0,
.resindex_pcicfg_base = 1,
.resindex_fw_base = -1,
.irqindex_host_ipc = 0,
.sst_id = SST_DEV_ID_LYNX_POINT,
.dma_engine = SST_DMA_TYPE_DW,
.resindex_dma_base = SST_LPT_DSP_DMA_ADDR_OFFSET,
.dma_size = SST_LPT_DSP_DMA_SIZE,
};
static struct sst_acpi_mach broadwell_machines[] = {
{ "INT343A", "broadwell-audio", "intel/IntcSST2.bin" },
{}
};
static struct sst_acpi_desc sst_acpi_broadwell_desc = {
.drv_name = "haswell-pcm-audio",
.machines = broadwell_machines,
.resindex_lpe_base = 0,
.resindex_pcicfg_base = 1,
.resindex_fw_base = -1,
.irqindex_host_ipc = 0,
.sst_id = SST_DEV_ID_WILDCAT_POINT,
.dma_engine = SST_DMA_TYPE_DW,
.resindex_dma_base = SST_WPT_DSP_DMA_ADDR_OFFSET,
.dma_size = SST_LPT_DSP_DMA_SIZE,
};
static struct sst_acpi_mach baytrail_machines[] = {
{ "10EC5640", "byt-rt5640", "intel/fw_sst_0f28.bin-i2s_master" },
{}
};
static struct sst_acpi_desc sst_acpi_baytrail_desc = {
.drv_name = "baytrail-pcm-audio",
.machines = baytrail_machines,
.resindex_lpe_base = 0,
.resindex_pcicfg_base = 1,
.resindex_fw_base = 2,
.irqindex_host_ipc = 5,
.sst_id = SST_DEV_ID_BYT,
.resindex_dma_base = -1,
};
static struct acpi_device_id sst_acpi_match[] = {
{ "INT33C8", (unsigned long)&sst_acpi_haswell_desc },
{ "INT3438", (unsigned long)&sst_acpi_broadwell_desc },
{ "80860F28", (unsigned long)&sst_acpi_baytrail_desc },
{ }
};
MODULE_DEVICE_TABLE(acpi, sst_acpi_match);
static struct platform_driver sst_acpi_driver = {
.probe = sst_acpi_probe,
.remove = sst_acpi_remove,
.driver = {
.name = "sst-acpi",
.owner = THIS_MODULE,
.acpi_match_table = ACPI_PTR(sst_acpi_match),
},
};
module_platform_driver(sst_acpi_driver);
MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@linux.intel.com>");
MODULE_DESCRIPTION("Intel SST loader on ACPI systems");
MODULE_LICENSE("GPL v2");

View File

@ -0,0 +1,372 @@
/*
* Intel Baytrail SST DSP driver
* Copyright (c) 2014, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
#include <linux/firmware.h>
#include "sst-dsp.h"
#include "sst-dsp-priv.h"
#include "sst-baytrail-ipc.h"
#define SST_BYT_FW_SIGNATURE_SIZE 4
#define SST_BYT_FW_SIGN "$SST"
#define SST_BYT_IRAM_OFFSET 0xC0000
#define SST_BYT_DRAM_OFFSET 0x100000
#define SST_BYT_SHIM_OFFSET 0x140000
enum sst_ram_type {
SST_BYT_IRAM = 1,
SST_BYT_DRAM = 2,
SST_BYT_CACHE = 3,
};
struct dma_block_info {
enum sst_ram_type type; /* IRAM/DRAM */
u32 size; /* Bytes */
u32 ram_offset; /* Offset in I/DRAM */
u32 rsvd; /* Reserved field */
};
struct fw_header {
unsigned char signature[SST_BYT_FW_SIGNATURE_SIZE];
u32 file_size; /* size of fw minus this header */
u32 modules; /* # of modules */
u32 file_format; /* version of header format */
u32 reserved[4];
};
struct sst_byt_fw_module_header {
unsigned char signature[SST_BYT_FW_SIGNATURE_SIZE];
u32 mod_size; /* size of module */
u32 blocks; /* # of blocks */
u32 type; /* codec type, pp lib */
u32 entry_point;
};
static int sst_byt_parse_module(struct sst_dsp *dsp, struct sst_fw *fw,
struct sst_byt_fw_module_header *module)
{
struct dma_block_info *block;
struct sst_module *mod;
struct sst_module_data block_data;
struct sst_module_template template;
int count;
memset(&template, 0, sizeof(template));
template.id = module->type;
template.entry = module->entry_point;
template.p.type = SST_MEM_DRAM;
template.p.data_type = SST_DATA_P;
template.s.type = SST_MEM_DRAM;
template.s.data_type = SST_DATA_S;
mod = sst_module_new(fw, &template, NULL);
if (mod == NULL)
return -ENOMEM;
block = (void *)module + sizeof(*module);
for (count = 0; count < module->blocks; count++) {
if (block->size <= 0) {
dev_err(dsp->dev, "block %d size invalid\n", count);
return -EINVAL;
}
switch (block->type) {
case SST_BYT_IRAM:
block_data.offset = block->ram_offset +
dsp->addr.iram_offset;
block_data.type = SST_MEM_IRAM;
break;
case SST_BYT_DRAM:
block_data.offset = block->ram_offset +
dsp->addr.dram_offset;
block_data.type = SST_MEM_DRAM;
break;
case SST_BYT_CACHE:
block_data.offset = block->ram_offset +
(dsp->addr.fw_ext - dsp->addr.lpe);
block_data.type = SST_MEM_CACHE;
break;
default:
dev_err(dsp->dev, "wrong ram type 0x%x in block0x%x\n",
block->type, count);
return -EINVAL;
}
block_data.size = block->size;
block_data.data_type = SST_DATA_M;
block_data.data = (void *)block + sizeof(*block);
sst_module_insert_fixed_block(mod, &block_data);
block = (void *)block + sizeof(*block) + block->size;
}
return 0;
}
static int sst_byt_parse_fw_image(struct sst_fw *sst_fw)
{
struct fw_header *header;
struct sst_byt_fw_module_header *module;
struct sst_dsp *dsp = sst_fw->dsp;
int ret, count;
/* Read the header information from the data pointer */
header = (struct fw_header *)sst_fw->dma_buf;
/* verify FW */
if ((strncmp(header->signature, SST_BYT_FW_SIGN, 4) != 0) ||
(sst_fw->size != header->file_size + sizeof(*header))) {
/* Invalid FW signature */
dev_err(dsp->dev, "Invalid FW sign/filesize mismatch\n");
return -EINVAL;
}
dev_dbg(dsp->dev,
"header sign=%4s size=0x%x modules=0x%x fmt=0x%x size=%zu\n",
header->signature, header->file_size, header->modules,
header->file_format, sizeof(*header));
module = (void *)sst_fw->dma_buf + sizeof(*header);
for (count = 0; count < header->modules; count++) {
/* module */
ret = sst_byt_parse_module(dsp, sst_fw, module);
if (ret < 0) {
dev_err(dsp->dev, "invalid module %d\n", count);
return ret;
}
module = (void *)module + sizeof(*module) + module->mod_size;
}
return 0;
}
static void sst_byt_dump_shim(struct sst_dsp *sst)
{
int i;
u64 reg;
for (i = 0; i <= 0xF0; i += 8) {
reg = sst_dsp_shim_read64_unlocked(sst, i);
if (reg)
dev_dbg(sst->dev, "shim 0x%2.2x value 0x%16.16llx\n",
i, reg);
}
for (i = 0x00; i <= 0xff; i += 4) {
reg = readl(sst->addr.pci_cfg + i);
if (reg)
dev_dbg(sst->dev, "pci 0x%2.2x value 0x%8.8x\n",
i, (u32)reg);
}
}
static irqreturn_t sst_byt_irq(int irq, void *context)
{
struct sst_dsp *sst = (struct sst_dsp *) context;
u64 isrx;
irqreturn_t ret = IRQ_NONE;
spin_lock(&sst->spinlock);
isrx = sst_dsp_shim_read64_unlocked(sst, SST_ISRX);
if (isrx & SST_ISRX_DONE) {
/* ADSP has processed the message request from IA */
sst_dsp_shim_update_bits64_unlocked(sst, SST_IPCX,
SST_BYT_IPCX_DONE, 0);
ret = IRQ_WAKE_THREAD;
}
if (isrx & SST_BYT_ISRX_REQUEST) {
/* mask message request from ADSP and do processing later */
sst_dsp_shim_update_bits64_unlocked(sst, SST_IMRX,
SST_BYT_IMRX_REQUEST,
SST_BYT_IMRX_REQUEST);
ret = IRQ_WAKE_THREAD;
}
spin_unlock(&sst->spinlock);
return ret;
}
static void sst_byt_boot(struct sst_dsp *sst)
{
int tries = 10;
/* release stall and wait to unstall */
sst_dsp_shim_update_bits64(sst, SST_CSR, SST_BYT_CSR_STALL, 0x0);
while (tries--) {
if (!(sst_dsp_shim_read64(sst, SST_CSR) &
SST_BYT_CSR_PWAITMODE))
break;
msleep(100);
}
if (tries < 0) {
dev_err(sst->dev, "unable to start DSP\n");
sst_byt_dump_shim(sst);
}
}
static void sst_byt_reset(struct sst_dsp *sst)
{
/* put DSP into reset, set reset vector and stall */
sst_dsp_shim_update_bits64(sst, SST_CSR,
SST_BYT_CSR_RST | SST_BYT_CSR_VECTOR_SEL | SST_BYT_CSR_STALL,
SST_BYT_CSR_RST | SST_BYT_CSR_VECTOR_SEL | SST_BYT_CSR_STALL);
udelay(10);
/* take DSP out of reset and keep stalled for FW loading */
sst_dsp_shim_update_bits64(sst, SST_CSR, SST_BYT_CSR_RST, 0);
}
struct sst_adsp_memregion {
u32 start;
u32 end;
int blocks;
enum sst_mem_type type;
};
/* BYT test stuff */
static const struct sst_adsp_memregion byt_region[] = {
{0xC0000, 0x100000, 8, SST_MEM_IRAM}, /* I-SRAM - 8 * 32kB */
{0x100000, 0x140000, 8, SST_MEM_DRAM}, /* D-SRAM0 - 8 * 32kB */
};
static int sst_byt_resource_map(struct sst_dsp *sst, struct sst_pdata *pdata)
{
sst->addr.lpe_base = pdata->lpe_base;
sst->addr.lpe = ioremap(pdata->lpe_base, pdata->lpe_size);
if (!sst->addr.lpe)
return -ENODEV;
/* ADSP PCI MMIO config space */
sst->addr.pci_cfg = ioremap(pdata->pcicfg_base, pdata->pcicfg_size);
if (!sst->addr.pci_cfg) {
iounmap(sst->addr.lpe);
return -ENODEV;
}
/* SST Extended FW allocation */
sst->addr.fw_ext = ioremap(pdata->fw_base, pdata->fw_size);
if (!sst->addr.fw_ext) {
iounmap(sst->addr.pci_cfg);
iounmap(sst->addr.lpe);
return -ENODEV;
}
/* SST Shim */
sst->addr.shim = sst->addr.lpe + sst->addr.shim_offset;
sst_dsp_mailbox_init(sst, SST_BYT_MAILBOX_OFFSET + 0x204,
SST_BYT_IPC_MAX_PAYLOAD_SIZE,
SST_BYT_MAILBOX_OFFSET,
SST_BYT_IPC_MAX_PAYLOAD_SIZE);
sst->irq = pdata->irq;
return 0;
}
static int sst_byt_init(struct sst_dsp *sst, struct sst_pdata *pdata)
{
const struct sst_adsp_memregion *region;
struct device *dev;
int ret = -ENODEV, i, j, region_count;
u32 offset, size;
dev = sst->dev;
switch (sst->id) {
case SST_DEV_ID_BYT:
region = byt_region;
region_count = ARRAY_SIZE(byt_region);
sst->addr.iram_offset = SST_BYT_IRAM_OFFSET;
sst->addr.dram_offset = SST_BYT_DRAM_OFFSET;
sst->addr.shim_offset = SST_BYT_SHIM_OFFSET;
break;
default:
dev_err(dev, "failed to get mem resources\n");
return ret;
}
ret = sst_byt_resource_map(sst, pdata);
if (ret < 0) {
dev_err(dev, "failed to map resources\n");
return ret;
}
/*
* save the physical address of extended firmware block in the first
* 4 bytes of the mailbox
*/
memcpy_toio(sst->addr.lpe + SST_BYT_MAILBOX_OFFSET,
&pdata->fw_base, sizeof(u32));
ret = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(32));
if (ret)
return ret;
/* enable Interrupt from both sides */
sst_dsp_shim_update_bits64(sst, SST_IMRX, 0x3, 0x0);
sst_dsp_shim_update_bits64(sst, SST_IMRD, 0x3, 0x0);
/* register DSP memory blocks - ideally we should get this from ACPI */
for (i = 0; i < region_count; i++) {
offset = region[i].start;
size = (region[i].end - region[i].start) / region[i].blocks;
/* register individual memory blocks */
for (j = 0; j < region[i].blocks; j++) {
sst_mem_block_register(sst, offset, size,
region[i].type, NULL, j, sst);
offset += size;
}
}
return 0;
}
static void sst_byt_free(struct sst_dsp *sst)
{
sst_mem_block_unregister_all(sst);
iounmap(sst->addr.lpe);
iounmap(sst->addr.pci_cfg);
iounmap(sst->addr.fw_ext);
}
struct sst_ops sst_byt_ops = {
.reset = sst_byt_reset,
.boot = sst_byt_boot,
.write = sst_shim32_write,
.read = sst_shim32_read,
.write64 = sst_shim32_write64,
.read64 = sst_shim32_read64,
.ram_read = sst_memcpy_fromio_32,
.ram_write = sst_memcpy_toio_32,
.irq_handler = sst_byt_irq,
.init = sst_byt_init,
.free = sst_byt_free,
.parse_fw = sst_byt_parse_fw_image,
};

View File

@ -0,0 +1,867 @@
/*
* Intel Baytrail SST IPC Support
* Copyright (c) 2014, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/device.h>
#include <linux/wait.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
#include <linux/export.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/list.h>
#include <linux/platform_device.h>
#include <linux/kthread.h>
#include <linux/firmware.h>
#include <linux/io.h>
#include <asm/div64.h>
#include "sst-baytrail-ipc.h"
#include "sst-dsp.h"
#include "sst-dsp-priv.h"
/* IPC message timeout */
#define IPC_TIMEOUT_MSECS 300
#define IPC_BOOT_MSECS 200
#define IPC_EMPTY_LIST_SIZE 8
/* IPC header bits */
#define IPC_HEADER_MSG_ID_MASK 0xff
#define IPC_HEADER_MSG_ID(x) ((x) & IPC_HEADER_MSG_ID_MASK)
#define IPC_HEADER_STR_ID_SHIFT 8
#define IPC_HEADER_STR_ID_MASK 0x1f
#define IPC_HEADER_STR_ID(x) (((x) & 0x1f) << IPC_HEADER_STR_ID_SHIFT)
#define IPC_HEADER_LARGE_SHIFT 13
#define IPC_HEADER_LARGE(x) (((x) & 0x1) << IPC_HEADER_LARGE_SHIFT)
#define IPC_HEADER_DATA_SHIFT 16
#define IPC_HEADER_DATA_MASK 0x3fff
#define IPC_HEADER_DATA(x) (((x) & 0x3fff) << IPC_HEADER_DATA_SHIFT)
/* mask for differentiating between notification and reply message */
#define IPC_NOTIFICATION (0x1 << 7)
/* I2L Stream config/control msgs */
#define IPC_IA_ALLOC_STREAM 0x20
#define IPC_IA_FREE_STREAM 0x21
#define IPC_IA_PAUSE_STREAM 0x24
#define IPC_IA_RESUME_STREAM 0x25
#define IPC_IA_DROP_STREAM 0x26
#define IPC_IA_START_STREAM 0x30
/* notification messages */
#define IPC_IA_FW_INIT_CMPLT 0x81
#define IPC_SST_PERIOD_ELAPSED 0x97
/* IPC messages between host and ADSP */
struct sst_byt_address_info {
u32 addr;
u32 size;
} __packed;
struct sst_byt_str_type {
u8 codec_type;
u8 str_type;
u8 operation;
u8 protected_str;
u8 time_slots;
u8 reserved;
u16 result;
} __packed;
struct sst_byt_pcm_params {
u8 num_chan;
u8 pcm_wd_sz;
u8 use_offload_path;
u8 reserved;
u32 sfreq;
u8 channel_map[8];
} __packed;
struct sst_byt_frames_info {
u16 num_entries;
u16 rsrvd;
u32 frag_size;
struct sst_byt_address_info ring_buf_info[8];
} __packed;
struct sst_byt_alloc_params {
struct sst_byt_str_type str_type;
struct sst_byt_pcm_params pcm_params;
struct sst_byt_frames_info frame_info;
} __packed;
struct sst_byt_alloc_response {
struct sst_byt_str_type str_type;
u8 reserved[88];
} __packed;
struct sst_byt_start_stream_params {
u32 byte_offset;
} __packed;
struct sst_byt_tstamp {
u64 ring_buffer_counter;
u64 hardware_counter;
u64 frames_decoded;
u64 bytes_decoded;
u64 bytes_copied;
u32 sampling_frequency;
u32 channel_peak[8];
} __packed;
/* driver internal IPC message structure */
struct ipc_message {
struct list_head list;
u64 header;
/* direction wrt host CPU */
char tx_data[SST_BYT_IPC_MAX_PAYLOAD_SIZE];
size_t tx_size;
char rx_data[SST_BYT_IPC_MAX_PAYLOAD_SIZE];
size_t rx_size;
wait_queue_head_t waitq;
bool complete;
bool wait;
int errno;
};
struct sst_byt_stream;
struct sst_byt;
/* stream infomation */
struct sst_byt_stream {
struct list_head node;
/* configuration */
struct sst_byt_alloc_params request;
struct sst_byt_alloc_response reply;
/* runtime info */
struct sst_byt *byt;
int str_id;
bool commited;
bool running;
/* driver callback */
u32 (*notify_position)(struct sst_byt_stream *stream, void *data);
void *pdata;
};
/* SST Baytrail IPC data */
struct sst_byt {
struct device *dev;
struct sst_dsp *dsp;
/* stream */
struct list_head stream_list;
/* boot */
wait_queue_head_t boot_wait;
bool boot_complete;
/* IPC messaging */
struct list_head tx_list;
struct list_head rx_list;
struct list_head empty_list;
wait_queue_head_t wait_txq;
struct task_struct *tx_thread;
struct kthread_worker kworker;
struct kthread_work kwork;
struct ipc_message *msg;
};
static inline u64 sst_byt_header(int msg_id, int data, bool large, int str_id)
{
u64 header;
header = IPC_HEADER_MSG_ID(msg_id) |
IPC_HEADER_STR_ID(str_id) |
IPC_HEADER_LARGE(large) |
IPC_HEADER_DATA(data) |
SST_BYT_IPCX_BUSY;
return header;
}
static inline u16 sst_byt_header_msg_id(u64 header)
{
return header & IPC_HEADER_MSG_ID_MASK;
}
static inline u8 sst_byt_header_str_id(u64 header)
{
return (header >> IPC_HEADER_STR_ID_SHIFT) & IPC_HEADER_STR_ID_MASK;
}
static inline u16 sst_byt_header_data(u64 header)
{
return (header >> IPC_HEADER_DATA_SHIFT) & IPC_HEADER_DATA_MASK;
}
static struct sst_byt_stream *sst_byt_get_stream(struct sst_byt *byt,
int stream_id)
{
struct sst_byt_stream *stream;
list_for_each_entry(stream, &byt->stream_list, node) {
if (stream->str_id == stream_id)
return stream;
}
return NULL;
}
static void sst_byt_ipc_shim_dbg(struct sst_byt *byt, const char *text)
{
struct sst_dsp *sst = byt->dsp;
u64 isr, ipcd, imrx, ipcx;
ipcx = sst_dsp_shim_read64_unlocked(sst, SST_IPCX);
isr = sst_dsp_shim_read64_unlocked(sst, SST_ISRX);
ipcd = sst_dsp_shim_read64_unlocked(sst, SST_IPCD);
imrx = sst_dsp_shim_read64_unlocked(sst, SST_IMRX);
dev_err(byt->dev,
"ipc: --%s-- ipcx 0x%llx isr 0x%llx ipcd 0x%llx imrx 0x%llx\n",
text, ipcx, isr, ipcd, imrx);
}
/* locks held by caller */
static struct ipc_message *sst_byt_msg_get_empty(struct sst_byt *byt)
{
struct ipc_message *msg = NULL;
if (!list_empty(&byt->empty_list)) {
msg = list_first_entry(&byt->empty_list,
struct ipc_message, list);
list_del(&msg->list);
}
return msg;
}
static void sst_byt_ipc_tx_msgs(struct kthread_work *work)
{
struct sst_byt *byt =
container_of(work, struct sst_byt, kwork);
struct ipc_message *msg;
u64 ipcx;
unsigned long flags;
spin_lock_irqsave(&byt->dsp->spinlock, flags);
if (list_empty(&byt->tx_list)) {
spin_unlock_irqrestore(&byt->dsp->spinlock, flags);
return;
}
/* if the DSP is busy we will TX messages after IRQ */
ipcx = sst_dsp_shim_read64_unlocked(byt->dsp, SST_IPCX);
if (ipcx & SST_BYT_IPCX_BUSY) {
spin_unlock_irqrestore(&byt->dsp->spinlock, flags);
return;
}
msg = list_first_entry(&byt->tx_list, struct ipc_message, list);
list_move(&msg->list, &byt->rx_list);
/* send the message */
if (msg->header & IPC_HEADER_LARGE(true))
sst_dsp_outbox_write(byt->dsp, msg->tx_data, msg->tx_size);
sst_dsp_shim_write64_unlocked(byt->dsp, SST_IPCX, msg->header);
spin_unlock_irqrestore(&byt->dsp->spinlock, flags);
}
static inline void sst_byt_tx_msg_reply_complete(struct sst_byt *byt,
struct ipc_message *msg)
{
msg->complete = true;
if (!msg->wait)
list_add_tail(&msg->list, &byt->empty_list);
else
wake_up(&msg->waitq);
}
static int sst_byt_tx_wait_done(struct sst_byt *byt, struct ipc_message *msg,
void *rx_data)
{
unsigned long flags;
int ret;
/* wait for DSP completion */
ret = wait_event_timeout(msg->waitq, msg->complete,
msecs_to_jiffies(IPC_TIMEOUT_MSECS));
spin_lock_irqsave(&byt->dsp->spinlock, flags);
if (ret == 0) {
list_del(&msg->list);
sst_byt_ipc_shim_dbg(byt, "message timeout");
ret = -ETIMEDOUT;
} else {
/* copy the data returned from DSP */
if (msg->rx_size)
memcpy(rx_data, msg->rx_data, msg->rx_size);
ret = msg->errno;
}
list_add_tail(&msg->list, &byt->empty_list);
spin_unlock_irqrestore(&byt->dsp->spinlock, flags);
return ret;
}
static int sst_byt_ipc_tx_message(struct sst_byt *byt, u64 header,
void *tx_data, size_t tx_bytes,
void *rx_data, size_t rx_bytes, int wait)
{
unsigned long flags;
struct ipc_message *msg;
spin_lock_irqsave(&byt->dsp->spinlock, flags);
msg = sst_byt_msg_get_empty(byt);
if (msg == NULL) {
spin_unlock_irqrestore(&byt->dsp->spinlock, flags);
return -EBUSY;
}
msg->header = header;
msg->tx_size = tx_bytes;
msg->rx_size = rx_bytes;
msg->wait = wait;
msg->errno = 0;
msg->complete = false;
if (tx_bytes) {
/* msg content = lower 32-bit of the header + data */
*(u32 *)msg->tx_data = (u32)(header & (u32)-1);
memcpy(msg->tx_data + sizeof(u32), tx_data, tx_bytes);
msg->tx_size += sizeof(u32);
}
list_add_tail(&msg->list, &byt->tx_list);
spin_unlock_irqrestore(&byt->dsp->spinlock, flags);
queue_kthread_work(&byt->kworker, &byt->kwork);
if (wait)
return sst_byt_tx_wait_done(byt, msg, rx_data);
else
return 0;
}
static inline int sst_byt_ipc_tx_msg_wait(struct sst_byt *byt, u64 header,
void *tx_data, size_t tx_bytes,
void *rx_data, size_t rx_bytes)
{
return sst_byt_ipc_tx_message(byt, header, tx_data, tx_bytes,
rx_data, rx_bytes, 1);
}
static inline int sst_byt_ipc_tx_msg_nowait(struct sst_byt *byt, u64 header,
void *tx_data, size_t tx_bytes)
{
return sst_byt_ipc_tx_message(byt, header, tx_data, tx_bytes,
NULL, 0, 0);
}
static struct ipc_message *sst_byt_reply_find_msg(struct sst_byt *byt,
u64 header)
{
struct ipc_message *msg = NULL, *_msg;
u64 mask;
/* match reply to message sent based on msg and stream IDs */
mask = IPC_HEADER_MSG_ID_MASK |
IPC_HEADER_STR_ID_MASK << IPC_HEADER_STR_ID_SHIFT;
header &= mask;
if (list_empty(&byt->rx_list)) {
dev_err(byt->dev,
"ipc: rx list is empty but received 0x%llx\n", header);
goto out;
}
list_for_each_entry(_msg, &byt->rx_list, list) {
if ((_msg->header & mask) == header) {
msg = _msg;
break;
}
}
out:
return msg;
}
static void sst_byt_stream_update(struct sst_byt *byt, struct ipc_message *msg)
{
struct sst_byt_stream *stream;
u64 header = msg->header;
u8 stream_id = sst_byt_header_str_id(header);
u8 stream_msg = sst_byt_header_msg_id(header);
stream = sst_byt_get_stream(byt, stream_id);
if (stream == NULL)
return;
switch (stream_msg) {
case IPC_IA_DROP_STREAM:
case IPC_IA_PAUSE_STREAM:
case IPC_IA_FREE_STREAM:
stream->running = false;
break;
case IPC_IA_START_STREAM:
case IPC_IA_RESUME_STREAM:
stream->running = true;
break;
}
}
static int sst_byt_process_reply(struct sst_byt *byt, u64 header)
{
struct ipc_message *msg;
msg = sst_byt_reply_find_msg(byt, header);
if (msg == NULL)
return 1;
if (header & IPC_HEADER_LARGE(true)) {
msg->rx_size = sst_byt_header_data(header);
sst_dsp_inbox_read(byt->dsp, msg->rx_data, msg->rx_size);
}
/* update any stream states */
sst_byt_stream_update(byt, msg);
list_del(&msg->list);
/* wake up */
sst_byt_tx_msg_reply_complete(byt, msg);
return 1;
}
static void sst_byt_fw_ready(struct sst_byt *byt, u64 header)
{
dev_dbg(byt->dev, "ipc: DSP is ready 0x%llX\n", header);
byt->boot_complete = true;
wake_up(&byt->boot_wait);
}
static int sst_byt_process_notification(struct sst_byt *byt,
unsigned long *flags)
{
struct sst_dsp *sst = byt->dsp;
struct sst_byt_stream *stream;
u64 header;
u8 msg_id, stream_id;
int handled = 1;
header = sst_dsp_shim_read64_unlocked(sst, SST_IPCD);
msg_id = sst_byt_header_msg_id(header);
switch (msg_id) {
case IPC_SST_PERIOD_ELAPSED:
stream_id = sst_byt_header_str_id(header);
stream = sst_byt_get_stream(byt, stream_id);
if (stream && stream->running && stream->notify_position) {
spin_unlock_irqrestore(&sst->spinlock, *flags);
stream->notify_position(stream, stream->pdata);
spin_lock_irqsave(&sst->spinlock, *flags);
}
break;
case IPC_IA_FW_INIT_CMPLT:
sst_byt_fw_ready(byt, header);
break;
}
return handled;
}
static irqreturn_t sst_byt_irq_thread(int irq, void *context)
{
struct sst_dsp *sst = (struct sst_dsp *) context;
struct sst_byt *byt = sst_dsp_get_thread_context(sst);
u64 header;
unsigned long flags;
spin_lock_irqsave(&sst->spinlock, flags);
header = sst_dsp_shim_read64_unlocked(sst, SST_IPCD);
if (header & SST_BYT_IPCD_BUSY) {
if (header & IPC_NOTIFICATION) {
/* message from ADSP */
sst_byt_process_notification(byt, &flags);
} else {
/* reply from ADSP */
sst_byt_process_reply(byt, header);
}
/*
* clear IPCD BUSY bit and set DONE bit. Tell DSP we have
* processed the message and can accept new. Clear data part
* of the header
*/
sst_dsp_shim_update_bits64_unlocked(sst, SST_IPCD,
SST_BYT_IPCD_DONE | SST_BYT_IPCD_BUSY |
IPC_HEADER_DATA(IPC_HEADER_DATA_MASK),
SST_BYT_IPCD_DONE);
/* unmask message request interrupts */
sst_dsp_shim_update_bits64_unlocked(sst, SST_IMRX,
SST_BYT_IMRX_REQUEST, 0);
}
spin_unlock_irqrestore(&sst->spinlock, flags);
/* continue to send any remaining messages... */
queue_kthread_work(&byt->kworker, &byt->kwork);
return IRQ_HANDLED;
}
/* stream API */
struct sst_byt_stream *sst_byt_stream_new(struct sst_byt *byt, int id,
u32 (*notify_position)(struct sst_byt_stream *stream, void *data),
void *data)
{
struct sst_byt_stream *stream;
stream = kzalloc(sizeof(*stream), GFP_KERNEL);
if (stream == NULL)
return NULL;
list_add(&stream->node, &byt->stream_list);
stream->notify_position = notify_position;
stream->pdata = data;
stream->byt = byt;
stream->str_id = id;
return stream;
}
int sst_byt_stream_set_bits(struct sst_byt *byt, struct sst_byt_stream *stream,
int bits)
{
stream->request.pcm_params.pcm_wd_sz = bits;
return 0;
}
int sst_byt_stream_set_channels(struct sst_byt *byt,
struct sst_byt_stream *stream, u8 channels)
{
stream->request.pcm_params.num_chan = channels;
return 0;
}
int sst_byt_stream_set_rate(struct sst_byt *byt, struct sst_byt_stream *stream,
unsigned int rate)
{
stream->request.pcm_params.sfreq = rate;
return 0;
}
/* stream sonfiguration */
int sst_byt_stream_type(struct sst_byt *byt, struct sst_byt_stream *stream,
int codec_type, int stream_type, int operation)
{
stream->request.str_type.codec_type = codec_type;
stream->request.str_type.str_type = stream_type;
stream->request.str_type.operation = operation;
stream->request.str_type.time_slots = 0xc;
return 0;
}
int sst_byt_stream_buffer(struct sst_byt *byt, struct sst_byt_stream *stream,
uint32_t buffer_addr, uint32_t buffer_size)
{
stream->request.frame_info.num_entries = 1;
stream->request.frame_info.ring_buf_info[0].addr = buffer_addr;
stream->request.frame_info.ring_buf_info[0].size = buffer_size;
/* calculate bytes per 4 ms fragment */
stream->request.frame_info.frag_size =
stream->request.pcm_params.sfreq *
stream->request.pcm_params.num_chan *
stream->request.pcm_params.pcm_wd_sz / 8 *
4 / 1000;
return 0;
}
int sst_byt_stream_commit(struct sst_byt *byt, struct sst_byt_stream *stream)
{
struct sst_byt_alloc_params *str_req = &stream->request;
struct sst_byt_alloc_response *reply = &stream->reply;
u64 header;
int ret;
header = sst_byt_header(IPC_IA_ALLOC_STREAM,
sizeof(*str_req) + sizeof(u32),
true, stream->str_id);
ret = sst_byt_ipc_tx_msg_wait(byt, header, str_req, sizeof(*str_req),
reply, sizeof(*reply));
if (ret < 0) {
dev_err(byt->dev, "ipc: error stream commit failed\n");
return ret;
}
stream->commited = true;
return 0;
}
int sst_byt_stream_free(struct sst_byt *byt, struct sst_byt_stream *stream)
{
u64 header;
int ret = 0;
if (!stream->commited)
goto out;
header = sst_byt_header(IPC_IA_FREE_STREAM, 0, false, stream->str_id);
ret = sst_byt_ipc_tx_msg_wait(byt, header, NULL, 0, NULL, 0);
if (ret < 0) {
dev_err(byt->dev, "ipc: free stream %d failed\n",
stream->str_id);
return -EAGAIN;
}
stream->commited = false;
out:
list_del(&stream->node);
kfree(stream);
return ret;
}
static int sst_byt_stream_operations(struct sst_byt *byt, int type,
int stream_id, int wait)
{
struct sst_byt_start_stream_params start_stream;
u64 header;
void *tx_msg = NULL;
size_t size = 0;
if (type != IPC_IA_START_STREAM) {
header = sst_byt_header(type, 0, false, stream_id);
} else {
start_stream.byte_offset = 0;
header = sst_byt_header(IPC_IA_START_STREAM,
sizeof(start_stream) + sizeof(u32),
true, stream_id);
tx_msg = &start_stream;
size = sizeof(start_stream);
}
if (wait)
return sst_byt_ipc_tx_msg_wait(byt, header,
tx_msg, size, NULL, 0);
else
return sst_byt_ipc_tx_msg_nowait(byt, header, tx_msg, size);
}
/* stream ALSA trigger operations */
int sst_byt_stream_start(struct sst_byt *byt, struct sst_byt_stream *stream)
{
int ret;
ret = sst_byt_stream_operations(byt, IPC_IA_START_STREAM,
stream->str_id, 0);
if (ret < 0)
dev_err(byt->dev, "ipc: error failed to start stream %d\n",
stream->str_id);
return ret;
}
int sst_byt_stream_stop(struct sst_byt *byt, struct sst_byt_stream *stream)
{
int ret;
/* don't stop streams that are not commited */
if (!stream->commited)
return 0;
ret = sst_byt_stream_operations(byt, IPC_IA_DROP_STREAM,
stream->str_id, 0);
if (ret < 0)
dev_err(byt->dev, "ipc: error failed to stop stream %d\n",
stream->str_id);
return ret;
}
int sst_byt_stream_pause(struct sst_byt *byt, struct sst_byt_stream *stream)
{
int ret;
ret = sst_byt_stream_operations(byt, IPC_IA_PAUSE_STREAM,
stream->str_id, 0);
if (ret < 0)
dev_err(byt->dev, "ipc: error failed to pause stream %d\n",
stream->str_id);
return ret;
}
int sst_byt_stream_resume(struct sst_byt *byt, struct sst_byt_stream *stream)
{
int ret;
ret = sst_byt_stream_operations(byt, IPC_IA_RESUME_STREAM,
stream->str_id, 0);
if (ret < 0)
dev_err(byt->dev, "ipc: error failed to resume stream %d\n",
stream->str_id);
return ret;
}
int sst_byt_get_dsp_position(struct sst_byt *byt,
struct sst_byt_stream *stream, int buffer_size)
{
struct sst_dsp *sst = byt->dsp;
struct sst_byt_tstamp fw_tstamp;
u8 str_id = stream->str_id;
u32 tstamp_offset;
tstamp_offset = SST_BYT_TIMESTAMP_OFFSET + str_id * sizeof(fw_tstamp);
memcpy_fromio(&fw_tstamp,
sst->addr.lpe + tstamp_offset, sizeof(fw_tstamp));
return do_div(fw_tstamp.ring_buffer_counter, buffer_size);
}
static int msg_empty_list_init(struct sst_byt *byt)
{
struct ipc_message *msg;
int i;
byt->msg = kzalloc(sizeof(*msg) * IPC_EMPTY_LIST_SIZE, GFP_KERNEL);
if (byt->msg == NULL)
return -ENOMEM;
for (i = 0; i < IPC_EMPTY_LIST_SIZE; i++) {
init_waitqueue_head(&byt->msg[i].waitq);
list_add(&byt->msg[i].list, &byt->empty_list);
}
return 0;
}
struct sst_dsp *sst_byt_get_dsp(struct sst_byt *byt)
{
return byt->dsp;
}
static struct sst_dsp_device byt_dev = {
.thread = sst_byt_irq_thread,
.ops = &sst_byt_ops,
};
int sst_byt_dsp_init(struct device *dev, struct sst_pdata *pdata)
{
struct sst_byt *byt;
struct sst_fw *byt_sst_fw;
int err;
dev_dbg(dev, "initialising Byt DSP IPC\n");
byt = devm_kzalloc(dev, sizeof(*byt), GFP_KERNEL);
if (byt == NULL)
return -ENOMEM;
byt->dev = dev;
INIT_LIST_HEAD(&byt->stream_list);
INIT_LIST_HEAD(&byt->tx_list);
INIT_LIST_HEAD(&byt->rx_list);
INIT_LIST_HEAD(&byt->empty_list);
init_waitqueue_head(&byt->boot_wait);
init_waitqueue_head(&byt->wait_txq);
err = msg_empty_list_init(byt);
if (err < 0)
return -ENOMEM;
/* start the IPC message thread */
init_kthread_worker(&byt->kworker);
byt->tx_thread = kthread_run(kthread_worker_fn,
&byt->kworker,
dev_name(byt->dev));
if (IS_ERR(byt->tx_thread)) {
err = PTR_ERR(byt->tx_thread);
dev_err(byt->dev, "error failed to create message TX task\n");
goto err_free_msg;
}
init_kthread_work(&byt->kwork, sst_byt_ipc_tx_msgs);
byt_dev.thread_context = byt;
/* init SST shim */
byt->dsp = sst_dsp_new(dev, &byt_dev, pdata);
if (byt->dsp == NULL) {
err = -ENODEV;
goto err_free_msg;
}
/* keep the DSP in reset state for base FW loading */
sst_dsp_reset(byt->dsp);
byt_sst_fw = sst_fw_new(byt->dsp, pdata->fw, byt);
if (byt_sst_fw == NULL) {
err = -ENODEV;
dev_err(dev, "error: failed to load firmware\n");
goto fw_err;
}
/* wait for DSP boot completion */
sst_dsp_boot(byt->dsp);
err = wait_event_timeout(byt->boot_wait, byt->boot_complete,
msecs_to_jiffies(IPC_BOOT_MSECS));
if (err == 0) {
err = -EIO;
dev_err(byt->dev, "ipc: error DSP boot timeout\n");
goto boot_err;
}
pdata->dsp = byt;
return 0;
boot_err:
sst_dsp_reset(byt->dsp);
sst_fw_free(byt_sst_fw);
fw_err:
sst_dsp_free(byt->dsp);
err_free_msg:
kfree(byt->msg);
return err;
}
EXPORT_SYMBOL_GPL(sst_byt_dsp_init);
void sst_byt_dsp_free(struct device *dev, struct sst_pdata *pdata)
{
struct sst_byt *byt = pdata->dsp;
sst_dsp_reset(byt->dsp);
sst_fw_free_all(byt->dsp);
sst_dsp_free(byt->dsp);
kfree(byt->msg);
}
EXPORT_SYMBOL_GPL(sst_byt_dsp_free);

View File

@ -0,0 +1,69 @@
/*
* Intel Baytrail SST IPC Support
* Copyright (c) 2014, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#ifndef __SST_BYT_IPC_H
#define __SST_BYT_IPC_H
#include <linux/types.h>
struct sst_byt;
struct sst_byt_stream;
struct sst_pdata;
extern struct sst_ops sst_byt_ops;
#define SST_BYT_MAILBOX_OFFSET 0x144000
#define SST_BYT_TIMESTAMP_OFFSET (SST_BYT_MAILBOX_OFFSET + 0x800)
/**
* Upfront defined maximum message size that is
* expected by the in/out communication pipes in FW.
*/
#define SST_BYT_IPC_MAX_PAYLOAD_SIZE 200
/* stream API */
struct sst_byt_stream *sst_byt_stream_new(struct sst_byt *byt, int id,
uint32_t (*get_write_position)(struct sst_byt_stream *stream,
void *data),
void *data);
/* stream configuration */
int sst_byt_stream_set_bits(struct sst_byt *byt, struct sst_byt_stream *stream,
int bits);
int sst_byt_stream_set_channels(struct sst_byt *byt,
struct sst_byt_stream *stream, u8 channels);
int sst_byt_stream_set_rate(struct sst_byt *byt, struct sst_byt_stream *stream,
unsigned int rate);
int sst_byt_stream_type(struct sst_byt *byt, struct sst_byt_stream *stream,
int codec_type, int stream_type, int operation);
int sst_byt_stream_buffer(struct sst_byt *byt, struct sst_byt_stream *stream,
uint32_t buffer_addr, uint32_t buffer_size);
int sst_byt_stream_commit(struct sst_byt *byt, struct sst_byt_stream *stream);
int sst_byt_stream_free(struct sst_byt *byt, struct sst_byt_stream *stream);
/* stream ALSA trigger operations */
int sst_byt_stream_start(struct sst_byt *byt, struct sst_byt_stream *stream);
int sst_byt_stream_stop(struct sst_byt *byt, struct sst_byt_stream *stream);
int sst_byt_stream_pause(struct sst_byt *byt, struct sst_byt_stream *stream);
int sst_byt_stream_resume(struct sst_byt *byt, struct sst_byt_stream *stream);
int sst_byt_get_dsp_position(struct sst_byt *byt,
struct sst_byt_stream *stream, int buffer_size);
/* init */
int sst_byt_dsp_init(struct device *dev, struct sst_pdata *pdata);
void sst_byt_dsp_free(struct device *dev, struct sst_pdata *pdata);
struct sst_dsp *sst_byt_get_dsp(struct sst_byt *byt);
#endif

View File

@ -0,0 +1,422 @@
/*
* Intel Baytrail SST PCM Support
* Copyright (c) 2014, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#include <linux/module.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include "sst-baytrail-ipc.h"
#include "sst-dsp-priv.h"
#include "sst-dsp.h"
#define BYT_PCM_COUNT 2
static const struct snd_pcm_hardware sst_byt_pcm_hardware = {
.info = SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_PAUSE |
SNDRV_PCM_INFO_RESUME,
.formats = SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FORMAT_S24_LE,
.period_bytes_min = 384,
.period_bytes_max = 48000,
.periods_min = 2,
.periods_max = 250,
.buffer_bytes_max = 96000,
};
/* private data for each PCM DSP stream */
struct sst_byt_pcm_data {
struct sst_byt_stream *stream;
struct snd_pcm_substream *substream;
struct mutex mutex;
};
/* private data for the driver */
struct sst_byt_priv_data {
/* runtime DSP */
struct sst_byt *byt;
/* DAI data */
struct sst_byt_pcm_data pcm[BYT_PCM_COUNT];
};
/* this may get called several times by oss emulation */
static int sst_byt_pcm_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct sst_byt_priv_data *pdata =
snd_soc_platform_get_drvdata(rtd->platform);
struct sst_byt_pcm_data *pcm_data = snd_soc_pcm_get_drvdata(rtd);
struct sst_byt *byt = pdata->byt;
u32 rate, bits;
u8 channels;
int ret, playback = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
dev_dbg(rtd->dev, "PCM: hw_params, pcm_data %p\n", pcm_data);
ret = sst_byt_stream_type(byt, pcm_data->stream,
1, 1, !playback);
if (ret < 0) {
dev_err(rtd->dev, "failed to set stream format %d\n", ret);
return ret;
}
rate = params_rate(params);
ret = sst_byt_stream_set_rate(byt, pcm_data->stream, rate);
if (ret < 0) {
dev_err(rtd->dev, "could not set rate %d\n", rate);
return ret;
}
bits = snd_pcm_format_width(params_format(params));
ret = sst_byt_stream_set_bits(byt, pcm_data->stream, bits);
if (ret < 0) {
dev_err(rtd->dev, "could not set formats %d\n",
params_rate(params));
return ret;
}
channels = (u8)(params_channels(params) & 0xF);
ret = sst_byt_stream_set_channels(byt, pcm_data->stream, channels);
if (ret < 0) {
dev_err(rtd->dev, "could not set channels %d\n",
params_rate(params));
return ret;
}
snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params));
ret = sst_byt_stream_buffer(byt, pcm_data->stream,
substream->dma_buffer.addr,
params_buffer_bytes(params));
if (ret < 0) {
dev_err(rtd->dev, "PCM: failed to set DMA buffer %d\n", ret);
return ret;
}
ret = sst_byt_stream_commit(byt, pcm_data->stream);
if (ret < 0) {
dev_err(rtd->dev, "PCM: failed stream commit %d\n", ret);
return ret;
}
return 0;
}
static int sst_byt_pcm_hw_free(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
dev_dbg(rtd->dev, "PCM: hw_free\n");
snd_pcm_lib_free_pages(substream);
return 0;
}
static int sst_byt_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct sst_byt_priv_data *pdata =
snd_soc_platform_get_drvdata(rtd->platform);
struct sst_byt_pcm_data *pcm_data = snd_soc_pcm_get_drvdata(rtd);
struct sst_byt *byt = pdata->byt;
dev_dbg(rtd->dev, "PCM: trigger %d\n", cmd);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
sst_byt_stream_start(byt, pcm_data->stream);
break;
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
sst_byt_stream_resume(byt, pcm_data->stream);
break;
case SNDRV_PCM_TRIGGER_STOP:
sst_byt_stream_stop(byt, pcm_data->stream);
break;
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
sst_byt_stream_pause(byt, pcm_data->stream);
break;
default:
break;
}
return 0;
}
static u32 byt_notify_pointer(struct sst_byt_stream *stream, void *data)
{
struct sst_byt_pcm_data *pcm_data = data;
struct snd_pcm_substream *substream = pcm_data->substream;
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_soc_pcm_runtime *rtd = substream->private_data;
u32 pos;
pos = frames_to_bytes(runtime,
(runtime->control->appl_ptr %
runtime->buffer_size));
dev_dbg(rtd->dev, "PCM: App pointer %d bytes\n", pos);
snd_pcm_period_elapsed(substream);
return pos;
}
static snd_pcm_uframes_t sst_byt_pcm_pointer(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_pcm_runtime *runtime = substream->runtime;
struct sst_byt_priv_data *pdata =
snd_soc_platform_get_drvdata(rtd->platform);
struct sst_byt_pcm_data *pcm_data = snd_soc_pcm_get_drvdata(rtd);
struct sst_byt *byt = pdata->byt;
snd_pcm_uframes_t offset;
int pos;
pos = sst_byt_get_dsp_position(byt, pcm_data->stream,
snd_pcm_lib_buffer_bytes(substream));
offset = bytes_to_frames(runtime, pos);
dev_dbg(rtd->dev, "PCM: DMA pointer %zu bytes\n",
frames_to_bytes(runtime, (u32)offset));
return offset;
}
static int sst_byt_pcm_open(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct sst_byt_priv_data *pdata =
snd_soc_platform_get_drvdata(rtd->platform);
struct sst_byt_pcm_data *pcm_data = snd_soc_pcm_get_drvdata(rtd);
struct sst_byt *byt = pdata->byt;
dev_dbg(rtd->dev, "PCM: open\n");
pcm_data = &pdata->pcm[rtd->cpu_dai->id];
mutex_lock(&pcm_data->mutex);
snd_soc_pcm_set_drvdata(rtd, pcm_data);
pcm_data->substream = substream;
snd_soc_set_runtime_hwparams(substream, &sst_byt_pcm_hardware);
pcm_data->stream = sst_byt_stream_new(byt, rtd->cpu_dai->id + 1,
byt_notify_pointer, pcm_data);
if (pcm_data->stream == NULL) {
dev_err(rtd->dev, "failed to create stream\n");
mutex_unlock(&pcm_data->mutex);
return -EINVAL;
}
mutex_unlock(&pcm_data->mutex);
return 0;
}
static int sst_byt_pcm_close(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct sst_byt_priv_data *pdata =
snd_soc_platform_get_drvdata(rtd->platform);
struct sst_byt_pcm_data *pcm_data = snd_soc_pcm_get_drvdata(rtd);
struct sst_byt *byt = pdata->byt;
int ret;
dev_dbg(rtd->dev, "PCM: close\n");
mutex_lock(&pcm_data->mutex);
ret = sst_byt_stream_free(byt, pcm_data->stream);
if (ret < 0) {
dev_dbg(rtd->dev, "Free stream fail\n");
goto out;
}
pcm_data->stream = NULL;
out:
mutex_unlock(&pcm_data->mutex);
return ret;
}
static int sst_byt_pcm_mmap(struct snd_pcm_substream *substream,
struct vm_area_struct *vma)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
dev_dbg(rtd->dev, "PCM: mmap\n");
return snd_pcm_lib_default_mmap(substream, vma);
}
static struct snd_pcm_ops sst_byt_pcm_ops = {
.open = sst_byt_pcm_open,
.close = sst_byt_pcm_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = sst_byt_pcm_hw_params,
.hw_free = sst_byt_pcm_hw_free,
.trigger = sst_byt_pcm_trigger,
.pointer = sst_byt_pcm_pointer,
.mmap = sst_byt_pcm_mmap,
};
static void sst_byt_pcm_free(struct snd_pcm *pcm)
{
snd_pcm_lib_preallocate_free_for_all(pcm);
}
static int sst_byt_pcm_new(struct snd_soc_pcm_runtime *rtd)
{
struct snd_pcm *pcm = rtd->pcm;
size_t size;
int ret = 0;
ret = dma_coerce_mask_and_coherent(rtd->card->dev, DMA_BIT_MASK(32));
if (ret)
return ret;
if (pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream ||
pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream) {
size = sst_byt_pcm_hardware.buffer_bytes_max;
ret = snd_pcm_lib_preallocate_pages_for_all(pcm,
SNDRV_DMA_TYPE_DEV,
rtd->card->dev,
size, size);
if (ret) {
dev_err(rtd->dev, "dma buffer allocation failed %d\n",
ret);
return ret;
}
}
return ret;
}
static struct snd_soc_dai_driver byt_dais[] = {
{
.name = "Front-cpu-dai",
.playback = {
.stream_name = "System Playback",
.channels_min = 2,
.channels_max = 2,
.rates = SNDRV_PCM_RATE_48000,
.formats = SNDRV_PCM_FMTBIT_S24_3LE |
SNDRV_PCM_FMTBIT_S16_LE,
},
},
{
.name = "Mic1-cpu-dai",
.capture = {
.stream_name = "Analog Capture",
.channels_min = 2,
.channels_max = 2,
.rates = SNDRV_PCM_RATE_48000,
.formats = SNDRV_PCM_FMTBIT_S16_LE,
},
},
};
static int sst_byt_pcm_probe(struct snd_soc_platform *platform)
{
struct sst_pdata *plat_data = dev_get_platdata(platform->dev);
struct sst_byt_priv_data *priv_data;
int i;
if (!plat_data)
return -ENODEV;
priv_data = devm_kzalloc(platform->dev, sizeof(*priv_data),
GFP_KERNEL);
priv_data->byt = plat_data->dsp;
snd_soc_platform_set_drvdata(platform, priv_data);
for (i = 0; i < ARRAY_SIZE(byt_dais); i++)
mutex_init(&priv_data->pcm[i].mutex);
return 0;
}
static int sst_byt_pcm_remove(struct snd_soc_platform *platform)
{
return 0;
}
static struct snd_soc_platform_driver byt_soc_platform = {
.probe = sst_byt_pcm_probe,
.remove = sst_byt_pcm_remove,
.ops = &sst_byt_pcm_ops,
.pcm_new = sst_byt_pcm_new,
.pcm_free = sst_byt_pcm_free,
};
static const struct snd_soc_component_driver byt_dai_component = {
.name = "byt-dai",
};
static int sst_byt_pcm_dev_probe(struct platform_device *pdev)
{
struct sst_pdata *sst_pdata = dev_get_platdata(&pdev->dev);
int ret;
ret = sst_byt_dsp_init(&pdev->dev, sst_pdata);
if (ret < 0)
return -ENODEV;
ret = snd_soc_register_platform(&pdev->dev, &byt_soc_platform);
if (ret < 0)
goto err_plat;
ret = snd_soc_register_component(&pdev->dev, &byt_dai_component,
byt_dais, ARRAY_SIZE(byt_dais));
if (ret < 0)
goto err_comp;
return 0;
err_comp:
snd_soc_unregister_platform(&pdev->dev);
err_plat:
sst_byt_dsp_free(&pdev->dev, sst_pdata);
return ret;
}
static int sst_byt_pcm_dev_remove(struct platform_device *pdev)
{
struct sst_pdata *sst_pdata = dev_get_platdata(&pdev->dev);
snd_soc_unregister_platform(&pdev->dev);
snd_soc_unregister_component(&pdev->dev);
sst_byt_dsp_free(&pdev->dev, sst_pdata);
return 0;
}
static struct platform_driver sst_byt_pcm_driver = {
.driver = {
.name = "baytrail-pcm-audio",
.owner = THIS_MODULE,
},
.probe = sst_byt_pcm_dev_probe,
.remove = sst_byt_pcm_dev_remove,
};
module_platform_driver(sst_byt_pcm_driver);
MODULE_AUTHOR("Jarkko Nikula");
MODULE_DESCRIPTION("Baytrail PCM");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:baytrail-pcm-audio");

View File

@ -0,0 +1,309 @@
/*
* Intel Smart Sound Technology
*
* Copyright (C) 2013, Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#ifndef __SOUND_SOC_SST_DSP_PRIV_H
#define __SOUND_SOC_SST_DSP_PRIV_H
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/firmware.h>
struct sst_mem_block;
struct sst_module;
struct sst_fw;
/*
* DSP Operations exported by platform Audio DSP driver.
*/
struct sst_ops {
/* DSP core boot / reset */
void (*boot)(struct sst_dsp *);
void (*reset)(struct sst_dsp *);
/* Shim IO */
void (*write)(void __iomem *addr, u32 offset, u32 value);
u32 (*read)(void __iomem *addr, u32 offset);
void (*write64)(void __iomem *addr, u32 offset, u64 value);
u64 (*read64)(void __iomem *addr, u32 offset);
/* DSP I/DRAM IO */
void (*ram_read)(struct sst_dsp *sst, void *dest, void __iomem *src,
size_t bytes);
void (*ram_write)(struct sst_dsp *sst, void __iomem *dest, void *src,
size_t bytes);
void (*dump)(struct sst_dsp *);
/* IRQ handlers */
irqreturn_t (*irq_handler)(int irq, void *context);
/* SST init and free */
int (*init)(struct sst_dsp *sst, struct sst_pdata *pdata);
void (*free)(struct sst_dsp *sst);
/* FW module parser/loader */
int (*parse_fw)(struct sst_fw *sst_fw);
};
/*
* Audio DSP memory offsets and addresses.
*/
struct sst_addr {
u32 lpe_base;
u32 shim_offset;
u32 iram_offset;
u32 dram_offset;
void __iomem *lpe;
void __iomem *shim;
void __iomem *pci_cfg;
void __iomem *fw_ext;
};
/*
* Audio DSP Mailbox configuration.
*/
struct sst_mailbox {
void __iomem *in_base;
void __iomem *out_base;
size_t in_size;
size_t out_size;
};
/*
* Audio DSP Firmware data types.
*/
enum sst_data_type {
SST_DATA_M = 0, /* module block data */
SST_DATA_P = 1, /* peristant data (text, data) */
SST_DATA_S = 2, /* scratch data (usually buffers) */
};
/*
* Audio DSP memory block types.
*/
enum sst_mem_type {
SST_MEM_IRAM = 0,
SST_MEM_DRAM = 1,
SST_MEM_ANY = 2,
SST_MEM_CACHE= 3,
};
/*
* Audio DSP Generic Firmware File.
*
* SST Firmware files can consist of 1..N modules. This generic structure is
* used to manage each firmware file and it's modules regardless of SST firmware
* type. A SST driver may load multiple FW files.
*/
struct sst_fw {
struct sst_dsp *dsp;
/* base addresses of FW file data */
dma_addr_t dmable_fw_paddr; /* physical address of fw data */
void *dma_buf; /* virtual address of fw data */
u32 size; /* size of fw data */
/* lists */
struct list_head list; /* DSP list of FW */
struct list_head module_list; /* FW list of modules */
void *private; /* core doesn't touch this */
};
/*
* Audio DSP Generic Module data.
*
* This is used to dsecribe any sections of persistent (text and data) and
* scratch (buffers) of module data in ADSP memory space.
*/
struct sst_module_data {
enum sst_mem_type type; /* destination memory type */
enum sst_data_type data_type; /* type of module data */
u32 size; /* size in bytes */
u32 offset; /* offset in FW file */
u32 data_offset; /* offset in ADSP memory space */
void *data; /* module data */
};
/*
* Audio DSP Generic Module Template.
*
* Used to define and register a new FW module. This data is extracted from
* FW module header information.
*/
struct sst_module_template {
u32 id;
u32 entry; /* entry point */
struct sst_module_data s; /* scratch data */
struct sst_module_data p; /* peristant data */
};
/*
* Audio DSP Generic Module.
*
* Each Firmware file can consist of 1..N modules. A module can span multiple
* ADSP memory blocks. The simplest FW will be a file with 1 module.
*/
struct sst_module {
struct sst_dsp *dsp;
struct sst_fw *sst_fw; /* parent FW we belong too */
/* module configuration */
u32 id;
u32 entry; /* module entry point */
u32 offset; /* module offset in firmware file */
u32 size; /* module size */
struct sst_module_data s; /* scratch data */
struct sst_module_data p; /* peristant data */
/* runtime */
u32 usage_count; /* can be unloaded if count == 0 */
void *private; /* core doesn't touch this */
/* lists */
struct list_head block_list; /* Module list of blocks in use */
struct list_head list; /* DSP list of modules */
struct list_head list_fw; /* FW list of modules */
};
/*
* SST Memory Block operations.
*/
struct sst_block_ops {
int (*enable)(struct sst_mem_block *block);
int (*disable)(struct sst_mem_block *block);
};
/*
* SST Generic Memory Block.
*
* SST ADP memory has multiple IRAM and DRAM blocks. Some ADSP blocks can be
* power gated.
*/
struct sst_mem_block {
struct sst_dsp *dsp;
struct sst_module *module; /* module that uses this block */
/* block config */
u32 offset; /* offset from base */
u32 size; /* block size */
u32 index; /* block index 0..N */
enum sst_mem_type type; /* block memory type IRAM/DRAM */
struct sst_block_ops *ops; /* block operations, if any */
/* block status */
enum sst_data_type data_type; /* data type held in this block */
u32 bytes_used; /* bytes in use by modules */
void *private; /* generic core does not touch this */
int users; /* number of modules using this block */
/* block lists */
struct list_head module_list; /* Module list of blocks */
struct list_head list; /* Map list of free/used blocks */
};
/*
* Generic SST Shim Interface.
*/
struct sst_dsp {
/* runtime */
struct sst_dsp_device *sst_dev;
spinlock_t spinlock; /* IPC locking */
struct mutex mutex; /* DSP FW lock */
struct device *dev;
void *thread_context;
int irq;
u32 id;
/* list of free and used ADSP memory blocks */
struct list_head used_block_list;
struct list_head free_block_list;
/* operations */
struct sst_ops *ops;
/* debug FS */
struct dentry *debugfs_root;
/* base addresses */
struct sst_addr addr;
/* mailbox */
struct sst_mailbox mailbox;
/* SST FW files loaded and their modules */
struct list_head module_list;
struct list_head fw_list;
/* platform data */
struct sst_pdata *pdata;
/* DMA FW loading */
struct sst_dma *dma;
bool fw_use_dma;
};
/* Size optimised DRAM/IRAM memcpy */
static inline void sst_dsp_write(struct sst_dsp *sst, void *src,
u32 dest_offset, size_t bytes)
{
sst->ops->ram_write(sst, sst->addr.lpe + dest_offset, src, bytes);
}
static inline void sst_dsp_read(struct sst_dsp *sst, void *dest,
u32 src_offset, size_t bytes)
{
sst->ops->ram_read(sst, dest, sst->addr.lpe + src_offset, bytes);
}
static inline void *sst_dsp_get_thread_context(struct sst_dsp *sst)
{
return sst->thread_context;
}
/* Create/Free FW files - can contain multiple modules */
struct sst_fw *sst_fw_new(struct sst_dsp *dsp,
const struct firmware *fw, void *private);
void sst_fw_free(struct sst_fw *sst_fw);
void sst_fw_free_all(struct sst_dsp *dsp);
/* Create/Free firmware modules */
struct sst_module *sst_module_new(struct sst_fw *sst_fw,
struct sst_module_template *template, void *private);
void sst_module_free(struct sst_module *sst_module);
int sst_module_insert(struct sst_module *sst_module);
int sst_module_remove(struct sst_module *sst_module);
int sst_module_insert_fixed_block(struct sst_module *module,
struct sst_module_data *data);
struct sst_module *sst_module_get_from_id(struct sst_dsp *dsp, u32 id);
/* allocate/free pesistent/scratch memory regions managed by drv */
struct sst_module *sst_mem_block_alloc_scratch(struct sst_dsp *dsp);
void sst_mem_block_free_scratch(struct sst_dsp *dsp,
struct sst_module *scratch);
int sst_block_module_remove(struct sst_module *module);
/* Register the DSPs memory blocks - would be nice to read from ACPI */
struct sst_mem_block *sst_mem_block_register(struct sst_dsp *dsp, u32 offset,
u32 size, enum sst_mem_type type, struct sst_block_ops *ops, u32 index,
void *private);
void sst_mem_block_unregister_all(struct sst_dsp *dsp);
#endif

View File

@ -0,0 +1,385 @@
/*
* Intel Smart Sound Technology (SST) DSP Core Driver
*
* Copyright (C) 2013, Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include "sst-dsp.h"
#include "sst-dsp-priv.h"
#define CREATE_TRACE_POINTS
#include <trace/events/intel-sst.h>
/* Internal generic low-level SST IO functions - can be overidden */
void sst_shim32_write(void __iomem *addr, u32 offset, u32 value)
{
writel(value, addr + offset);
}
EXPORT_SYMBOL_GPL(sst_shim32_write);
u32 sst_shim32_read(void __iomem *addr, u32 offset)
{
return readl(addr + offset);
}
EXPORT_SYMBOL_GPL(sst_shim32_read);
void sst_shim32_write64(void __iomem *addr, u32 offset, u64 value)
{
memcpy_toio(addr + offset, &value, sizeof(value));
}
EXPORT_SYMBOL_GPL(sst_shim32_write64);
u64 sst_shim32_read64(void __iomem *addr, u32 offset)
{
u64 val;
memcpy_fromio(&val, addr + offset, sizeof(val));
return val;
}
EXPORT_SYMBOL_GPL(sst_shim32_read64);
static inline void _sst_memcpy_toio_32(volatile u32 __iomem *dest,
u32 *src, size_t bytes)
{
int i, words = bytes >> 2;
for (i = 0; i < words; i++)
writel(src[i], dest + i);
}
static inline void _sst_memcpy_fromio_32(u32 *dest,
const volatile __iomem u32 *src, size_t bytes)
{
int i, words = bytes >> 2;
for (i = 0; i < words; i++)
dest[i] = readl(src + i);
}
void sst_memcpy_toio_32(struct sst_dsp *sst,
void __iomem *dest, void *src, size_t bytes)
{
_sst_memcpy_toio_32(dest, src, bytes);
}
EXPORT_SYMBOL_GPL(sst_memcpy_toio_32);
void sst_memcpy_fromio_32(struct sst_dsp *sst, void *dest,
void __iomem *src, size_t bytes)
{
_sst_memcpy_fromio_32(dest, src, bytes);
}
EXPORT_SYMBOL_GPL(sst_memcpy_fromio_32);
/* Public API */
void sst_dsp_shim_write(struct sst_dsp *sst, u32 offset, u32 value)
{
unsigned long flags;
spin_lock_irqsave(&sst->spinlock, flags);
sst->ops->write(sst->addr.shim, offset, value);
spin_unlock_irqrestore(&sst->spinlock, flags);
}
EXPORT_SYMBOL_GPL(sst_dsp_shim_write);
u32 sst_dsp_shim_read(struct sst_dsp *sst, u32 offset)
{
unsigned long flags;
u32 val;
spin_lock_irqsave(&sst->spinlock, flags);
val = sst->ops->read(sst->addr.shim, offset);
spin_unlock_irqrestore(&sst->spinlock, flags);
return val;
}
EXPORT_SYMBOL_GPL(sst_dsp_shim_read);
void sst_dsp_shim_write64(struct sst_dsp *sst, u32 offset, u64 value)
{
unsigned long flags;
spin_lock_irqsave(&sst->spinlock, flags);
sst->ops->write64(sst->addr.shim, offset, value);
spin_unlock_irqrestore(&sst->spinlock, flags);
}
EXPORT_SYMBOL_GPL(sst_dsp_shim_write64);
u64 sst_dsp_shim_read64(struct sst_dsp *sst, u32 offset)
{
unsigned long flags;
u64 val;
spin_lock_irqsave(&sst->spinlock, flags);
val = sst->ops->read64(sst->addr.shim, offset);
spin_unlock_irqrestore(&sst->spinlock, flags);
return val;
}
EXPORT_SYMBOL_GPL(sst_dsp_shim_read64);
void sst_dsp_shim_write_unlocked(struct sst_dsp *sst, u32 offset, u32 value)
{
sst->ops->write(sst->addr.shim, offset, value);
}
EXPORT_SYMBOL_GPL(sst_dsp_shim_write_unlocked);
u32 sst_dsp_shim_read_unlocked(struct sst_dsp *sst, u32 offset)
{
return sst->ops->read(sst->addr.shim, offset);
}
EXPORT_SYMBOL_GPL(sst_dsp_shim_read_unlocked);
void sst_dsp_shim_write64_unlocked(struct sst_dsp *sst, u32 offset, u64 value)
{
sst->ops->write64(sst->addr.shim, offset, value);
}
EXPORT_SYMBOL_GPL(sst_dsp_shim_write64_unlocked);
u64 sst_dsp_shim_read64_unlocked(struct sst_dsp *sst, u32 offset)
{
return sst->ops->read64(sst->addr.shim, offset);
}
EXPORT_SYMBOL_GPL(sst_dsp_shim_read64_unlocked);
int sst_dsp_shim_update_bits_unlocked(struct sst_dsp *sst, u32 offset,
u32 mask, u32 value)
{
bool change;
unsigned int old, new;
u32 ret;
ret = sst_dsp_shim_read_unlocked(sst, offset);
old = ret;
new = (old & (~mask)) | (value & mask);
change = (old != new);
if (change)
sst_dsp_shim_write_unlocked(sst, offset, new);
return change;
}
EXPORT_SYMBOL_GPL(sst_dsp_shim_update_bits_unlocked);
int sst_dsp_shim_update_bits64_unlocked(struct sst_dsp *sst, u32 offset,
u64 mask, u64 value)
{
bool change;
u64 old, new;
old = sst_dsp_shim_read64_unlocked(sst, offset);
new = (old & (~mask)) | (value & mask);
change = (old != new);
if (change)
sst_dsp_shim_write64_unlocked(sst, offset, new);
return change;
}
EXPORT_SYMBOL_GPL(sst_dsp_shim_update_bits64_unlocked);
int sst_dsp_shim_update_bits(struct sst_dsp *sst, u32 offset,
u32 mask, u32 value)
{
unsigned long flags;
bool change;
spin_lock_irqsave(&sst->spinlock, flags);
change = sst_dsp_shim_update_bits_unlocked(sst, offset, mask, value);
spin_unlock_irqrestore(&sst->spinlock, flags);
return change;
}
EXPORT_SYMBOL_GPL(sst_dsp_shim_update_bits);
int sst_dsp_shim_update_bits64(struct sst_dsp *sst, u32 offset,
u64 mask, u64 value)
{
unsigned long flags;
bool change;
spin_lock_irqsave(&sst->spinlock, flags);
change = sst_dsp_shim_update_bits64_unlocked(sst, offset, mask, value);
spin_unlock_irqrestore(&sst->spinlock, flags);
return change;
}
EXPORT_SYMBOL_GPL(sst_dsp_shim_update_bits64);
void sst_dsp_dump(struct sst_dsp *sst)
{
sst->ops->dump(sst);
}
EXPORT_SYMBOL_GPL(sst_dsp_dump);
void sst_dsp_reset(struct sst_dsp *sst)
{
sst->ops->reset(sst);
}
EXPORT_SYMBOL_GPL(sst_dsp_reset);
int sst_dsp_boot(struct sst_dsp *sst)
{
sst->ops->boot(sst);
return 0;
}
EXPORT_SYMBOL_GPL(sst_dsp_boot);
void sst_dsp_ipc_msg_tx(struct sst_dsp *dsp, u32 msg)
{
sst_dsp_shim_write_unlocked(dsp, SST_IPCX, msg | SST_IPCX_BUSY);
trace_sst_ipc_msg_tx(msg);
}
EXPORT_SYMBOL_GPL(sst_dsp_ipc_msg_tx);
u32 sst_dsp_ipc_msg_rx(struct sst_dsp *dsp)
{
u32 msg;
msg = sst_dsp_shim_read_unlocked(dsp, SST_IPCX);
trace_sst_ipc_msg_rx(msg);
return msg;
}
EXPORT_SYMBOL_GPL(sst_dsp_ipc_msg_rx);
int sst_dsp_mailbox_init(struct sst_dsp *sst, u32 inbox_offset, size_t inbox_size,
u32 outbox_offset, size_t outbox_size)
{
sst->mailbox.in_base = sst->addr.lpe + inbox_offset;
sst->mailbox.out_base = sst->addr.lpe + outbox_offset;
sst->mailbox.in_size = inbox_size;
sst->mailbox.out_size = outbox_size;
return 0;
}
EXPORT_SYMBOL_GPL(sst_dsp_mailbox_init);
void sst_dsp_outbox_write(struct sst_dsp *sst, void *message, size_t bytes)
{
u32 i;
trace_sst_ipc_outbox_write(bytes);
memcpy_toio(sst->mailbox.out_base, message, bytes);
for (i = 0; i < bytes; i += 4)
trace_sst_ipc_outbox_wdata(i, *(u32 *)(message + i));
}
EXPORT_SYMBOL_GPL(sst_dsp_outbox_write);
void sst_dsp_outbox_read(struct sst_dsp *sst, void *message, size_t bytes)
{
u32 i;
trace_sst_ipc_outbox_read(bytes);
memcpy_fromio(message, sst->mailbox.out_base, bytes);
for (i = 0; i < bytes; i += 4)
trace_sst_ipc_outbox_rdata(i, *(u32 *)(message + i));
}
EXPORT_SYMBOL_GPL(sst_dsp_outbox_read);
void sst_dsp_inbox_write(struct sst_dsp *sst, void *message, size_t bytes)
{
u32 i;
trace_sst_ipc_inbox_write(bytes);
memcpy_toio(sst->mailbox.in_base, message, bytes);
for (i = 0; i < bytes; i += 4)
trace_sst_ipc_inbox_wdata(i, *(u32 *)(message + i));
}
EXPORT_SYMBOL_GPL(sst_dsp_inbox_write);
void sst_dsp_inbox_read(struct sst_dsp *sst, void *message, size_t bytes)
{
u32 i;
trace_sst_ipc_inbox_read(bytes);
memcpy_fromio(message, sst->mailbox.in_base, bytes);
for (i = 0; i < bytes; i += 4)
trace_sst_ipc_inbox_rdata(i, *(u32 *)(message + i));
}
EXPORT_SYMBOL_GPL(sst_dsp_inbox_read);
struct sst_dsp *sst_dsp_new(struct device *dev,
struct sst_dsp_device *sst_dev, struct sst_pdata *pdata)
{
struct sst_dsp *sst;
int err;
dev_dbg(dev, "initialising audio DSP id 0x%x\n", pdata->id);
sst = devm_kzalloc(dev, sizeof(*sst), GFP_KERNEL);
if (sst == NULL)
return NULL;
spin_lock_init(&sst->spinlock);
mutex_init(&sst->mutex);
sst->dev = dev;
sst->thread_context = sst_dev->thread_context;
sst->sst_dev = sst_dev;
sst->id = pdata->id;
sst->irq = pdata->irq;
sst->ops = sst_dev->ops;
sst->pdata = pdata;
INIT_LIST_HEAD(&sst->used_block_list);
INIT_LIST_HEAD(&sst->free_block_list);
INIT_LIST_HEAD(&sst->module_list);
INIT_LIST_HEAD(&sst->fw_list);
/* Initialise SST Audio DSP */
if (sst->ops->init) {
err = sst->ops->init(sst, pdata);
if (err < 0)
return NULL;
}
/* Register the ISR */
err = request_threaded_irq(sst->irq, sst->ops->irq_handler,
sst_dev->thread, IRQF_SHARED, "AudioDSP", sst);
if (err)
goto irq_err;
return sst;
irq_err:
if (sst->ops->free)
sst->ops->free(sst);
return NULL;
}
EXPORT_SYMBOL_GPL(sst_dsp_new);
void sst_dsp_free(struct sst_dsp *sst)
{
free_irq(sst->irq, sst);
if (sst->ops->free)
sst->ops->free(sst);
}
EXPORT_SYMBOL_GPL(sst_dsp_free);
/* Module information */
MODULE_AUTHOR("Liam Girdwood");
MODULE_DESCRIPTION("Intel SST Core");
MODULE_LICENSE("GPL v2");

View File

@ -0,0 +1,233 @@
/*
* Intel Smart Sound Technology (SST) Core
*
* Copyright (C) 2013, Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#ifndef __SOUND_SOC_SST_DSP_H
#define __SOUND_SOC_SST_DSP_H
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/interrupt.h>
/* SST Device IDs */
#define SST_DEV_ID_LYNX_POINT 0x33C8
#define SST_DEV_ID_WILDCAT_POINT 0x3438
#define SST_DEV_ID_BYT 0x0F28
/* Supported SST DMA Devices */
#define SST_DMA_TYPE_DW 1
#define SST_DMA_TYPE_MID 2
/* SST Shim register map
* The register naming can differ between products. Some products also
* contain extra functionality.
*/
#define SST_CSR 0x00
#define SST_PISR 0x08
#define SST_PIMR 0x10
#define SST_ISRX 0x18
#define SST_ISRD 0x20
#define SST_IMRX 0x28
#define SST_IMRD 0x30
#define SST_IPCX 0x38 /* IPC IA -> SST */
#define SST_IPCD 0x40 /* IPC SST -> IA */
#define SST_ISRSC 0x48
#define SST_ISRLPESC 0x50
#define SST_IMRSC 0x58
#define SST_IMRLPESC 0x60
#define SST_IPCSC 0x68
#define SST_IPCLPESC 0x70
#define SST_CLKCTL 0x78
#define SST_CSR2 0x80
#define SST_LTRC 0xE0
#define SST_HDMC 0xE8
#define SST_DBGO 0xF0
#define SST_SHIM_SIZE 0x100
#define SST_PWMCTRL 0x1000
/* SST Shim Register bits
* The register bit naming can differ between products. Some products also
* contain extra functionality.
*/
/* CSR / CS */
#define SST_CSR_RST (0x1 << 1)
#define SST_CSR_SBCS0 (0x1 << 2)
#define SST_CSR_SBCS1 (0x1 << 3)
#define SST_CSR_DCS(x) (x << 4)
#define SST_CSR_DCS_MASK (0x7 << 4)
#define SST_CSR_STALL (0x1 << 10)
#define SST_CSR_S0IOCS (0x1 << 21)
#define SST_CSR_S1IOCS (0x1 << 23)
#define SST_CSR_LPCS (0x1 << 31)
#define SST_BYT_CSR_RST (0x1 << 0)
#define SST_BYT_CSR_VECTOR_SEL (0x1 << 1)
#define SST_BYT_CSR_STALL (0x1 << 2)
#define SST_BYT_CSR_PWAITMODE (0x1 << 3)
/* ISRX / ISC */
#define SST_ISRX_BUSY (0x1 << 1)
#define SST_ISRX_DONE (0x1 << 0)
#define SST_BYT_ISRX_REQUEST (0x1 << 1)
/* ISRD / ISD */
#define SST_ISRD_BUSY (0x1 << 1)
#define SST_ISRD_DONE (0x1 << 0)
/* IMRX / IMC */
#define SST_IMRX_BUSY (0x1 << 1)
#define SST_IMRX_DONE (0x1 << 0)
#define SST_BYT_IMRX_REQUEST (0x1 << 1)
/* IPCX / IPCC */
#define SST_IPCX_DONE (0x1 << 30)
#define SST_IPCX_BUSY (0x1 << 31)
#define SST_BYT_IPCX_DONE ((u64)0x1 << 62)
#define SST_BYT_IPCX_BUSY ((u64)0x1 << 63)
/* IPCD */
#define SST_IPCD_DONE (0x1 << 30)
#define SST_IPCD_BUSY (0x1 << 31)
#define SST_BYT_IPCD_DONE ((u64)0x1 << 62)
#define SST_BYT_IPCD_BUSY ((u64)0x1 << 63)
/* CLKCTL */
#define SST_CLKCTL_SMOS(x) (x << 24)
#define SST_CLKCTL_MASK (3 << 24)
#define SST_CLKCTL_DCPLCG (1 << 18)
#define SST_CLKCTL_SCOE1 (1 << 17)
#define SST_CLKCTL_SCOE0 (1 << 16)
/* CSR2 / CS2 */
#define SST_CSR2_SDFD_SSP0 (1 << 1)
#define SST_CSR2_SDFD_SSP1 (1 << 2)
/* LTRC */
#define SST_LTRC_VAL(x) (x << 0)
/* HDMC */
#define SST_HDMC_HDDA0(x) (x << 0)
#define SST_HDMC_HDDA1(x) (x << 7)
/* SST Vendor Defined Registers and bits */
#define SST_VDRTCTL0 0xa0
#define SST_VDRTCTL1 0xa4
#define SST_VDRTCTL2 0xa8
#define SST_VDRTCTL3 0xaC
/* VDRTCTL0 */
#define SST_VDRTCL0_DSRAMPGE_SHIFT 16
#define SST_VDRTCL0_DSRAMPGE_MASK (0xffff << SST_VDRTCL0_DSRAMPGE_SHIFT)
#define SST_VDRTCL0_ISRAMPGE_SHIFT 6
#define SST_VDRTCL0_ISRAMPGE_MASK (0x3ff << SST_VDRTCL0_ISRAMPGE_SHIFT)
struct sst_dsp;
/*
* SST Device.
*
* This structure is populated by the SST core driver.
*/
struct sst_dsp_device {
/* Mandatory fields */
struct sst_ops *ops;
irqreturn_t (*thread)(int irq, void *context);
void *thread_context;
};
/*
* SST Platform Data.
*/
struct sst_pdata {
/* ACPI data */
u32 lpe_base;
u32 lpe_size;
u32 pcicfg_base;
u32 pcicfg_size;
u32 fw_base;
u32 fw_size;
int irq;
/* Firmware */
const struct firmware *fw;
/* DMA */
u32 dma_base;
u32 dma_size;
int dma_engine;
/* DSP */
u32 id;
void *dsp;
};
/* Initialization */
struct sst_dsp *sst_dsp_new(struct device *dev,
struct sst_dsp_device *sst_dev, struct sst_pdata *pdata);
void sst_dsp_free(struct sst_dsp *sst);
/* SHIM Read / Write */
void sst_dsp_shim_write(struct sst_dsp *sst, u32 offset, u32 value);
u32 sst_dsp_shim_read(struct sst_dsp *sst, u32 offset);
int sst_dsp_shim_update_bits(struct sst_dsp *sst, u32 offset,
u32 mask, u32 value);
void sst_dsp_shim_write64(struct sst_dsp *sst, u32 offset, u64 value);
u64 sst_dsp_shim_read64(struct sst_dsp *sst, u32 offset);
int sst_dsp_shim_update_bits64(struct sst_dsp *sst, u32 offset,
u64 mask, u64 value);
/* SHIM Read / Write Unlocked for callers already holding sst lock */
void sst_dsp_shim_write_unlocked(struct sst_dsp *sst, u32 offset, u32 value);
u32 sst_dsp_shim_read_unlocked(struct sst_dsp *sst, u32 offset);
int sst_dsp_shim_update_bits_unlocked(struct sst_dsp *sst, u32 offset,
u32 mask, u32 value);
void sst_dsp_shim_write64_unlocked(struct sst_dsp *sst, u32 offset, u64 value);
u64 sst_dsp_shim_read64_unlocked(struct sst_dsp *sst, u32 offset);
int sst_dsp_shim_update_bits64_unlocked(struct sst_dsp *sst, u32 offset,
u64 mask, u64 value);
/* Internal generic low-level SST IO functions - can be overidden */
void sst_shim32_write(void __iomem *addr, u32 offset, u32 value);
u32 sst_shim32_read(void __iomem *addr, u32 offset);
void sst_shim32_write64(void __iomem *addr, u32 offset, u64 value);
u64 sst_shim32_read64(void __iomem *addr, u32 offset);
void sst_memcpy_toio_32(struct sst_dsp *sst,
void __iomem *dest, void *src, size_t bytes);
void sst_memcpy_fromio_32(struct sst_dsp *sst,
void *dest, void __iomem *src, size_t bytes);
/* DSP reset & boot */
void sst_dsp_reset(struct sst_dsp *sst);
int sst_dsp_boot(struct sst_dsp *sst);
/* Msg IO */
void sst_dsp_ipc_msg_tx(struct sst_dsp *dsp, u32 msg);
u32 sst_dsp_ipc_msg_rx(struct sst_dsp *dsp);
/* Mailbox management */
int sst_dsp_mailbox_init(struct sst_dsp *dsp, u32 inbox_offset,
size_t inbox_size, u32 outbox_offset, size_t outbox_size);
void sst_dsp_inbox_write(struct sst_dsp *dsp, void *message, size_t bytes);
void sst_dsp_inbox_read(struct sst_dsp *dsp, void *message, size_t bytes);
void sst_dsp_outbox_write(struct sst_dsp *dsp, void *message, size_t bytes);
void sst_dsp_outbox_read(struct sst_dsp *dsp, void *message, size_t bytes);
void sst_dsp_mailbox_dump(struct sst_dsp *dsp, size_t bytes);
/* Debug */
void sst_dsp_dump(struct sst_dsp *sst);
#endif

View File

@ -0,0 +1,587 @@
/*
* Intel SST Firmware Loader
*
* Copyright (C) 2013, Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/firmware.h>
#include <linux/export.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/pci.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include "sst-dsp.h"
#include "sst-dsp-priv.h"
static void sst_memcpy32(volatile void __iomem *dest, void *src, u32 bytes)
{
u32 i;
/* copy one 32 bit word at a time as 64 bit access is not supported */
for (i = 0; i < bytes; i += 4)
memcpy_toio(dest + i, src + i, 4);
}
/* create new generic firmware object */
struct sst_fw *sst_fw_new(struct sst_dsp *dsp,
const struct firmware *fw, void *private)
{
struct sst_fw *sst_fw;
int err;
if (!dsp->ops->parse_fw)
return NULL;
sst_fw = kzalloc(sizeof(*sst_fw), GFP_KERNEL);
if (sst_fw == NULL)
return NULL;
sst_fw->dsp = dsp;
sst_fw->private = private;
sst_fw->size = fw->size;
err = dma_coerce_mask_and_coherent(dsp->dev, DMA_BIT_MASK(32));
if (err < 0) {
kfree(sst_fw);
return NULL;
}
/* allocate DMA buffer to store FW data */
sst_fw->dma_buf = dma_alloc_coherent(dsp->dev, sst_fw->size,
&sst_fw->dmable_fw_paddr, GFP_DMA | GFP_KERNEL);
if (!sst_fw->dma_buf) {
dev_err(dsp->dev, "error: DMA alloc failed\n");
kfree(sst_fw);
return NULL;
}
/* copy FW data to DMA-able memory */
memcpy((void *)sst_fw->dma_buf, (void *)fw->data, fw->size);
/* call core specific FW paser to load FW data into DSP */
err = dsp->ops->parse_fw(sst_fw);
if (err < 0) {
dev_err(dsp->dev, "error: parse fw failed %d\n", err);
goto parse_err;
}
mutex_lock(&dsp->mutex);
list_add(&sst_fw->list, &dsp->fw_list);
mutex_unlock(&dsp->mutex);
return sst_fw;
parse_err:
dma_free_coherent(dsp->dev, sst_fw->size,
sst_fw->dma_buf,
sst_fw->dmable_fw_paddr);
kfree(sst_fw);
return NULL;
}
EXPORT_SYMBOL_GPL(sst_fw_new);
/* free single firmware object */
void sst_fw_free(struct sst_fw *sst_fw)
{
struct sst_dsp *dsp = sst_fw->dsp;
mutex_lock(&dsp->mutex);
list_del(&sst_fw->list);
mutex_unlock(&dsp->mutex);
dma_free_coherent(dsp->dev, sst_fw->size, sst_fw->dma_buf,
sst_fw->dmable_fw_paddr);
kfree(sst_fw);
}
EXPORT_SYMBOL_GPL(sst_fw_free);
/* free all firmware objects */
void sst_fw_free_all(struct sst_dsp *dsp)
{
struct sst_fw *sst_fw, *t;
mutex_lock(&dsp->mutex);
list_for_each_entry_safe(sst_fw, t, &dsp->fw_list, list) {
list_del(&sst_fw->list);
dma_free_coherent(dsp->dev, sst_fw->size, sst_fw->dma_buf,
sst_fw->dmable_fw_paddr);
kfree(sst_fw);
}
mutex_unlock(&dsp->mutex);
}
EXPORT_SYMBOL_GPL(sst_fw_free_all);
/* create a new SST generic module from FW template */
struct sst_module *sst_module_new(struct sst_fw *sst_fw,
struct sst_module_template *template, void *private)
{
struct sst_dsp *dsp = sst_fw->dsp;
struct sst_module *sst_module;
sst_module = kzalloc(sizeof(*sst_module), GFP_KERNEL);
if (sst_module == NULL)
return NULL;
sst_module->id = template->id;
sst_module->dsp = dsp;
sst_module->sst_fw = sst_fw;
memcpy(&sst_module->s, &template->s, sizeof(struct sst_module_data));
memcpy(&sst_module->p, &template->p, sizeof(struct sst_module_data));
INIT_LIST_HEAD(&sst_module->block_list);
mutex_lock(&dsp->mutex);
list_add(&sst_module->list, &dsp->module_list);
mutex_unlock(&dsp->mutex);
return sst_module;
}
EXPORT_SYMBOL_GPL(sst_module_new);
/* free firmware module and remove from available list */
void sst_module_free(struct sst_module *sst_module)
{
struct sst_dsp *dsp = sst_module->dsp;
mutex_lock(&dsp->mutex);
list_del(&sst_module->list);
mutex_unlock(&dsp->mutex);
kfree(sst_module);
}
EXPORT_SYMBOL_GPL(sst_module_free);
static struct sst_mem_block *find_block(struct sst_dsp *dsp, int type,
u32 offset)
{
struct sst_mem_block *block;
list_for_each_entry(block, &dsp->free_block_list, list) {
if (block->type == type && block->offset == offset)
return block;
}
return NULL;
}
static int block_alloc_contiguous(struct sst_module *module,
struct sst_module_data *data, u32 offset, int size)
{
struct list_head tmp = LIST_HEAD_INIT(tmp);
struct sst_dsp *dsp = module->dsp;
struct sst_mem_block *block;
while (size > 0) {
block = find_block(dsp, data->type, offset);
if (!block) {
list_splice(&tmp, &dsp->free_block_list);
return -ENOMEM;
}
list_move_tail(&block->list, &tmp);
offset += block->size;
size -= block->size;
}
list_splice(&tmp, &dsp->used_block_list);
return 0;
}
/* allocate free DSP blocks for module data - callers hold locks */
static int block_alloc(struct sst_module *module,
struct sst_module_data *data)
{
struct sst_dsp *dsp = module->dsp;
struct sst_mem_block *block, *tmp;
int ret = 0;
if (data->size == 0)
return 0;
/* find first free whole blocks that can hold module */
list_for_each_entry_safe(block, tmp, &dsp->free_block_list, list) {
/* ignore blocks with wrong type */
if (block->type != data->type)
continue;
if (data->size > block->size)
continue;
data->offset = block->offset;
block->data_type = data->data_type;
block->bytes_used = data->size % block->size;
list_add(&block->module_list, &module->block_list);
list_move(&block->list, &dsp->used_block_list);
dev_dbg(dsp->dev, " *module %d added block %d:%d\n",
module->id, block->type, block->index);
return 0;
}
/* then find free multiple blocks that can hold module */
list_for_each_entry_safe(block, tmp, &dsp->free_block_list, list) {
/* ignore blocks with wrong type */
if (block->type != data->type)
continue;
/* do we span > 1 blocks */
if (data->size > block->size) {
ret = block_alloc_contiguous(module, data,
block->offset + block->size,
data->size - block->size);
if (ret == 0)
return ret;
}
}
/* not enough free block space */
return -ENOMEM;
}
/* remove module from memory - callers hold locks */
static void block_module_remove(struct sst_module *module)
{
struct sst_mem_block *block, *tmp;
struct sst_dsp *dsp = module->dsp;
int err;
/* disable each block */
list_for_each_entry(block, &module->block_list, module_list) {
if (block->ops && block->ops->disable) {
err = block->ops->disable(block);
if (err < 0)
dev_err(dsp->dev,
"error: cant disable block %d:%d\n",
block->type, block->index);
}
}
/* mark each block as free */
list_for_each_entry_safe(block, tmp, &module->block_list, module_list) {
list_del(&block->module_list);
list_move(&block->list, &dsp->free_block_list);
}
}
/* prepare the memory block to receive data from host - callers hold locks */
static int block_module_prepare(struct sst_module *module)
{
struct sst_mem_block *block;
int ret = 0;
/* enable each block so that's it'e ready for module P/S data */
list_for_each_entry(block, &module->block_list, module_list) {
if (block->ops && block->ops->enable) {
ret = block->ops->enable(block);
if (ret < 0) {
dev_err(module->dsp->dev,
"error: cant disable block %d:%d\n",
block->type, block->index);
goto err;
}
}
}
return ret;
err:
list_for_each_entry(block, &module->block_list, module_list) {
if (block->ops && block->ops->disable)
block->ops->disable(block);
}
return ret;
}
/* allocate memory blocks for static module addresses - callers hold locks */
static int block_alloc_fixed(struct sst_module *module,
struct sst_module_data *data)
{
struct sst_dsp *dsp = module->dsp;
struct sst_mem_block *block, *tmp;
u32 end = data->offset + data->size, block_end;
int err;
/* only IRAM/DRAM blocks are managed */
if (data->type != SST_MEM_IRAM && data->type != SST_MEM_DRAM)
return 0;
/* are blocks already attached to this module */
list_for_each_entry_safe(block, tmp, &module->block_list, module_list) {
/* force compacting mem blocks of the same data_type */
if (block->data_type != data->data_type)
continue;
block_end = block->offset + block->size;
/* find block that holds section */
if (data->offset >= block->offset && end < block_end)
return 0;
/* does block span more than 1 section */
if (data->offset >= block->offset && data->offset < block_end) {
err = block_alloc_contiguous(module, data,
block->offset + block->size,
data->size - block->size + data->offset - block->offset);
if (err < 0)
return -ENOMEM;
/* module already owns blocks */
return 0;
}
}
/* find first free blocks that can hold section in free list */
list_for_each_entry_safe(block, tmp, &dsp->free_block_list, list) {
block_end = block->offset + block->size;
/* find block that holds section */
if (data->offset >= block->offset && end < block_end) {
/* add block */
block->data_type = data->data_type;
list_move(&block->list, &dsp->used_block_list);
list_add(&block->module_list, &module->block_list);
return 0;
}
/* does block span more than 1 section */
if (data->offset >= block->offset && data->offset < block_end) {
err = block_alloc_contiguous(module, data,
block->offset + block->size,
data->size - block->size);
if (err < 0)
return -ENOMEM;
/* add block */
block->data_type = data->data_type;
list_move(&block->list, &dsp->used_block_list);
list_add(&block->module_list, &module->block_list);
return 0;
}
}
return -ENOMEM;
}
/* Load fixed module data into DSP memory blocks */
int sst_module_insert_fixed_block(struct sst_module *module,
struct sst_module_data *data)
{
struct sst_dsp *dsp = module->dsp;
int ret;
mutex_lock(&dsp->mutex);
/* alloc blocks that includes this section */
ret = block_alloc_fixed(module, data);
if (ret < 0) {
dev_err(dsp->dev,
"error: no free blocks for section at offset 0x%x size 0x%x\n",
data->offset, data->size);
mutex_unlock(&dsp->mutex);
return -ENOMEM;
}
/* prepare DSP blocks for module copy */
ret = block_module_prepare(module);
if (ret < 0) {
dev_err(dsp->dev, "error: fw module prepare failed\n");
goto err;
}
/* copy partial module data to blocks */
sst_memcpy32(dsp->addr.lpe + data->offset, data->data, data->size);
mutex_unlock(&dsp->mutex);
return ret;
err:
block_module_remove(module);
mutex_unlock(&dsp->mutex);
return ret;
}
EXPORT_SYMBOL_GPL(sst_module_insert_fixed_block);
/* Unload entire module from DSP memory */
int sst_block_module_remove(struct sst_module *module)
{
struct sst_dsp *dsp = module->dsp;
mutex_lock(&dsp->mutex);
block_module_remove(module);
mutex_unlock(&dsp->mutex);
return 0;
}
EXPORT_SYMBOL_GPL(sst_block_module_remove);
/* register a DSP memory block for use with FW based modules */
struct sst_mem_block *sst_mem_block_register(struct sst_dsp *dsp, u32 offset,
u32 size, enum sst_mem_type type, struct sst_block_ops *ops, u32 index,
void *private)
{
struct sst_mem_block *block;
block = kzalloc(sizeof(*block), GFP_KERNEL);
if (block == NULL)
return NULL;
block->offset = offset;
block->size = size;
block->index = index;
block->type = type;
block->dsp = dsp;
block->private = private;
block->ops = ops;
mutex_lock(&dsp->mutex);
list_add(&block->list, &dsp->free_block_list);
mutex_unlock(&dsp->mutex);
return block;
}
EXPORT_SYMBOL_GPL(sst_mem_block_register);
/* unregister all DSP memory blocks */
void sst_mem_block_unregister_all(struct sst_dsp *dsp)
{
struct sst_mem_block *block, *tmp;
mutex_lock(&dsp->mutex);
/* unregister used blocks */
list_for_each_entry_safe(block, tmp, &dsp->used_block_list, list) {
list_del(&block->list);
kfree(block);
}
/* unregister free blocks */
list_for_each_entry_safe(block, tmp, &dsp->free_block_list, list) {
list_del(&block->list);
kfree(block);
}
mutex_unlock(&dsp->mutex);
}
EXPORT_SYMBOL_GPL(sst_mem_block_unregister_all);
/* allocate scratch buffer blocks */
struct sst_module *sst_mem_block_alloc_scratch(struct sst_dsp *dsp)
{
struct sst_module *sst_module, *scratch;
struct sst_mem_block *block, *tmp;
u32 block_size;
int ret = 0;
scratch = kzalloc(sizeof(struct sst_module), GFP_KERNEL);
if (scratch == NULL)
return NULL;
mutex_lock(&dsp->mutex);
/* calculate required scratch size */
list_for_each_entry(sst_module, &dsp->module_list, list) {
if (scratch->s.size > sst_module->s.size)
scratch->s.size = scratch->s.size;
else
scratch->s.size = sst_module->s.size;
}
dev_dbg(dsp->dev, "scratch buffer required is %d bytes\n",
scratch->s.size);
/* init scratch module */
scratch->dsp = dsp;
scratch->s.type = SST_MEM_DRAM;
scratch->s.data_type = SST_DATA_S;
INIT_LIST_HEAD(&scratch->block_list);
/* check free blocks before looking at used blocks for space */
if (!list_empty(&dsp->free_block_list))
block = list_first_entry(&dsp->free_block_list,
struct sst_mem_block, list);
else
block = list_first_entry(&dsp->used_block_list,
struct sst_mem_block, list);
block_size = block->size;
/* allocate blocks for module scratch buffers */
dev_dbg(dsp->dev, "allocating scratch blocks\n");
ret = block_alloc(scratch, &scratch->s);
if (ret < 0) {
dev_err(dsp->dev, "error: can't alloc scratch blocks\n");
goto err;
}
/* assign the same offset of scratch to each module */
list_for_each_entry(sst_module, &dsp->module_list, list)
sst_module->s.offset = scratch->s.offset;
mutex_unlock(&dsp->mutex);
return scratch;
err:
list_for_each_entry_safe(block, tmp, &scratch->block_list, module_list)
list_del(&block->module_list);
mutex_unlock(&dsp->mutex);
return NULL;
}
EXPORT_SYMBOL_GPL(sst_mem_block_alloc_scratch);
/* free all scratch blocks */
void sst_mem_block_free_scratch(struct sst_dsp *dsp,
struct sst_module *scratch)
{
struct sst_mem_block *block, *tmp;
mutex_lock(&dsp->mutex);
list_for_each_entry_safe(block, tmp, &scratch->block_list, module_list)
list_del(&block->module_list);
mutex_unlock(&dsp->mutex);
}
EXPORT_SYMBOL_GPL(sst_mem_block_free_scratch);
/* get a module from it's unique ID */
struct sst_module *sst_module_get_from_id(struct sst_dsp *dsp, u32 id)
{
struct sst_module *module;
mutex_lock(&dsp->mutex);
list_for_each_entry(module, &dsp->module_list, list) {
if (module->id == id) {
mutex_unlock(&dsp->mutex);
return module;
}
}
mutex_unlock(&dsp->mutex);
return NULL;
}
EXPORT_SYMBOL_GPL(sst_module_get_from_id);

View File

@ -0,0 +1,517 @@
/*
* Intel Haswell SST DSP driver
*
* Copyright (C) 2013, Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/device.h>
#include <linux/sched.h>
#include <linux/export.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
#include <linux/pci.h>
#include <linux/firmware.h>
#include <linux/pm_runtime.h>
#include <linux/acpi.h>
#include <acpi/acpi_bus.h>
#include "sst-dsp.h"
#include "sst-dsp-priv.h"
#include "sst-haswell-ipc.h"
#include <trace/events/hswadsp.h>
#define SST_HSW_FW_SIGNATURE_SIZE 4
#define SST_HSW_FW_SIGN "$SST"
#define SST_HSW_FW_LIB_SIGN "$LIB"
#define SST_WPT_SHIM_OFFSET 0xFB000
#define SST_LP_SHIM_OFFSET 0xE7000
#define SST_WPT_IRAM_OFFSET 0xA0000
#define SST_LP_IRAM_OFFSET 0x80000
#define SST_SHIM_PM_REG 0x84
#define SST_HSW_IRAM 1
#define SST_HSW_DRAM 2
#define SST_HSW_REGS 3
struct dma_block_info {
__le32 type; /* IRAM/DRAM */
__le32 size; /* Bytes */
__le32 ram_offset; /* Offset in I/DRAM */
__le32 rsvd; /* Reserved field */
} __attribute__((packed));
struct fw_module_info {
__le32 persistent_size;
__le32 scratch_size;
} __attribute__((packed));
struct fw_header {
unsigned char signature[SST_HSW_FW_SIGNATURE_SIZE]; /* FW signature */
__le32 file_size; /* size of fw minus this header */
__le32 modules; /* # of modules */
__le32 file_format; /* version of header format */
__le32 reserved[4];
} __attribute__((packed));
struct fw_module_header {
unsigned char signature[SST_HSW_FW_SIGNATURE_SIZE]; /* module signature */
__le32 mod_size; /* size of module */
__le32 blocks; /* # of blocks */
__le16 padding;
__le16 type; /* codec type, pp lib */
__le32 entry_point;
struct fw_module_info info;
} __attribute__((packed));
static void hsw_free(struct sst_dsp *sst);
static int hsw_parse_module(struct sst_dsp *dsp, struct sst_fw *fw,
struct fw_module_header *module)
{
struct dma_block_info *block;
struct sst_module *mod;
struct sst_module_data block_data;
struct sst_module_template template;
int count;
void __iomem *ram;
/* TODO: allowed module types need to be configurable */
if (module->type != SST_HSW_MODULE_BASE_FW
&& module->type != SST_HSW_MODULE_PCM_SYSTEM
&& module->type != SST_HSW_MODULE_PCM
&& module->type != SST_HSW_MODULE_PCM_REFERENCE
&& module->type != SST_HSW_MODULE_PCM_CAPTURE
&& module->type != SST_HSW_MODULE_LPAL)
return 0;
dev_dbg(dsp->dev, "new module sign 0x%s size 0x%x blocks 0x%x type 0x%x\n",
module->signature, module->mod_size,
module->blocks, module->type);
dev_dbg(dsp->dev, " entrypoint 0x%x\n", module->entry_point);
dev_dbg(dsp->dev, " persistent 0x%x scratch 0x%x\n",
module->info.persistent_size, module->info.scratch_size);
memset(&template, 0, sizeof(template));
template.id = module->type;
template.entry = module->entry_point;
template.p.size = module->info.persistent_size;
template.p.type = SST_MEM_DRAM;
template.p.data_type = SST_DATA_P;
template.s.size = module->info.scratch_size;
template.s.type = SST_MEM_DRAM;
template.s.data_type = SST_DATA_S;
mod = sst_module_new(fw, &template, NULL);
if (mod == NULL)
return -ENOMEM;
block = (void *)module + sizeof(*module);
for (count = 0; count < module->blocks; count++) {
if (block->size <= 0) {
dev_err(dsp->dev,
"error: block %d size invalid\n", count);
sst_module_free(mod);
return -EINVAL;
}
switch (block->type) {
case SST_HSW_IRAM:
ram = dsp->addr.lpe;
block_data.offset =
block->ram_offset + dsp->addr.iram_offset;
block_data.type = SST_MEM_IRAM;
break;
case SST_HSW_DRAM:
ram = dsp->addr.lpe;
block_data.offset = block->ram_offset;
block_data.type = SST_MEM_DRAM;
break;
default:
dev_err(dsp->dev, "error: bad type 0x%x for block 0x%x\n",
block->type, count);
sst_module_free(mod);
return -EINVAL;
}
block_data.size = block->size;
block_data.data_type = SST_DATA_M;
block_data.data = (void *)block + sizeof(*block);
block_data.data_offset = block_data.data - fw->dma_buf;
dev_dbg(dsp->dev, "copy firmware block %d type 0x%x "
"size 0x%x ==> ram %p offset 0x%x\n",
count, block->type, block->size, ram,
block->ram_offset);
sst_module_insert_fixed_block(mod, &block_data);
block = (void *)block + sizeof(*block) + block->size;
}
return 0;
}
static int hsw_parse_fw_image(struct sst_fw *sst_fw)
{
struct fw_header *header;
struct sst_module *scratch;
struct fw_module_header *module;
struct sst_dsp *dsp = sst_fw->dsp;
struct sst_hsw *hsw = sst_fw->private;
int ret, count;
/* Read the header information from the data pointer */
header = (struct fw_header *)sst_fw->dma_buf;
/* verify FW */
if ((strncmp(header->signature, SST_HSW_FW_SIGN, 4) != 0) ||
(sst_fw->size != header->file_size + sizeof(*header))) {
dev_err(dsp->dev, "error: invalid fw sign/filesize mismatch\n");
return -EINVAL;
}
dev_dbg(dsp->dev, "header size=0x%x modules=0x%x fmt=0x%x size=%zu\n",
header->file_size, header->modules,
header->file_format, sizeof(*header));
/* parse each module */
module = (void *)sst_fw->dma_buf + sizeof(*header);
for (count = 0; count < header->modules; count++) {
/* module */
ret = hsw_parse_module(dsp, sst_fw, module);
if (ret < 0) {
dev_err(dsp->dev, "error: invalid module %d\n", count);
return ret;
}
module = (void *)module + sizeof(*module) + module->mod_size;
}
/* allocate persistent/scratch mem regions */
scratch = sst_mem_block_alloc_scratch(dsp);
if (scratch == NULL)
return -ENOMEM;
sst_hsw_set_scratch_module(hsw, scratch);
return 0;
}
static irqreturn_t hsw_irq(int irq, void *context)
{
struct sst_dsp *sst = (struct sst_dsp *) context;
u32 isr;
int ret = IRQ_NONE;
spin_lock(&sst->spinlock);
/* Interrupt arrived, check src */
isr = sst_dsp_shim_read_unlocked(sst, SST_ISRX);
if (isr & SST_ISRX_DONE) {
trace_sst_irq_done(isr,
sst_dsp_shim_read_unlocked(sst, SST_IMRX));
/* Mask Done interrupt before return */
sst_dsp_shim_update_bits_unlocked(sst, SST_IMRX,
SST_IMRX_DONE, SST_IMRX_DONE);
ret = IRQ_WAKE_THREAD;
}
if (isr & SST_ISRX_BUSY) {
trace_sst_irq_busy(isr,
sst_dsp_shim_read_unlocked(sst, SST_IMRX));
/* Mask Busy interrupt before return */
sst_dsp_shim_update_bits_unlocked(sst, SST_IMRX,
SST_IMRX_BUSY, SST_IMRX_BUSY);
ret = IRQ_WAKE_THREAD;
}
spin_unlock(&sst->spinlock);
return ret;
}
static void hsw_boot(struct sst_dsp *sst)
{
/* select SSP1 19.2MHz base clock, SSP clock 0, turn off Low Power Clock */
sst_dsp_shim_update_bits_unlocked(sst, SST_CSR,
SST_CSR_S1IOCS | SST_CSR_SBCS1 | SST_CSR_LPCS, 0x0);
/* stall DSP core, set clk to 192/96Mhz */
sst_dsp_shim_update_bits_unlocked(sst,
SST_CSR, SST_CSR_STALL | SST_CSR_DCS_MASK,
SST_CSR_STALL | SST_CSR_DCS(4));
/* Set 24MHz MCLK, prevent local clock gating, enable SSP0 clock */
sst_dsp_shim_update_bits_unlocked(sst, SST_CLKCTL,
SST_CLKCTL_MASK | SST_CLKCTL_DCPLCG | SST_CLKCTL_SCOE0,
SST_CLKCTL_MASK | SST_CLKCTL_DCPLCG | SST_CLKCTL_SCOE0);
/* disable DMA finish function for SSP0 & SSP1 */
sst_dsp_shim_update_bits_unlocked(sst, SST_CSR2, SST_CSR2_SDFD_SSP1,
SST_CSR2_SDFD_SSP1);
/* enable DMA engine 0,1 all channels to access host memory */
sst_dsp_shim_update_bits_unlocked(sst, SST_HDMC,
SST_HDMC_HDDA1(0xff) | SST_HDMC_HDDA0(0xff),
SST_HDMC_HDDA1(0xff) | SST_HDMC_HDDA0(0xff));
/* disable all clock gating */
writel(0x0, sst->addr.pci_cfg + SST_VDRTCTL2);
/* set DSP to RUN */
sst_dsp_shim_update_bits_unlocked(sst, SST_CSR, SST_CSR_STALL, 0x0);
}
static void hsw_reset(struct sst_dsp *sst)
{
/* put DSP into reset and stall */
sst_dsp_shim_update_bits_unlocked(sst, SST_CSR,
SST_CSR_RST | SST_CSR_STALL, SST_CSR_RST | SST_CSR_STALL);
/* keep in reset for 10ms */
mdelay(10);
/* take DSP out of reset and keep stalled for FW loading */
sst_dsp_shim_update_bits_unlocked(sst, SST_CSR,
SST_CSR_RST | SST_CSR_STALL, SST_CSR_STALL);
}
struct sst_adsp_memregion {
u32 start;
u32 end;
int blocks;
enum sst_mem_type type;
};
/* lynx point ADSP mem regions */
static const struct sst_adsp_memregion lp_region[] = {
{0x00000, 0x40000, 8, SST_MEM_DRAM}, /* D-SRAM0 - 8 * 32kB */
{0x40000, 0x80000, 8, SST_MEM_DRAM}, /* D-SRAM1 - 8 * 32kB */
{0x80000, 0xE0000, 12, SST_MEM_IRAM}, /* I-SRAM - 12 * 32kB */
};
/* wild cat point ADSP mem regions */
static const struct sst_adsp_memregion wpt_region[] = {
{0x00000, 0x40000, 8, SST_MEM_DRAM}, /* D-SRAM0 - 8 * 32kB */
{0x40000, 0x80000, 8, SST_MEM_DRAM}, /* D-SRAM1 - 8 * 32kB */
{0x80000, 0xA0000, 4, SST_MEM_DRAM}, /* D-SRAM2 - 4 * 32kB */
{0xA0000, 0xF0000, 10, SST_MEM_IRAM}, /* I-SRAM - 10 * 32kB */
};
static int hsw_acpi_resource_map(struct sst_dsp *sst, struct sst_pdata *pdata)
{
/* ADSP DRAM & IRAM */
sst->addr.lpe_base = pdata->lpe_base;
sst->addr.lpe = ioremap(pdata->lpe_base, pdata->lpe_size);
if (!sst->addr.lpe)
return -ENODEV;
/* ADSP PCI MMIO config space */
sst->addr.pci_cfg = ioremap(pdata->pcicfg_base, pdata->pcicfg_size);
if (!sst->addr.pci_cfg) {
iounmap(sst->addr.lpe);
return -ENODEV;
}
/* SST Shim */
sst->addr.shim = sst->addr.lpe + sst->addr.shim_offset;
return 0;
}
static u32 hsw_block_get_bit(struct sst_mem_block *block)
{
u32 bit = 0, shift = 0;
switch (block->type) {
case SST_MEM_DRAM:
shift = 16;
break;
case SST_MEM_IRAM:
shift = 6;
break;
default:
return 0;
}
bit = 1 << (block->index + shift);
return bit;
}
/* enable 32kB memory block - locks held by caller */
static int hsw_block_enable(struct sst_mem_block *block)
{
struct sst_dsp *sst = block->dsp;
u32 bit, val;
if (block->users++ > 0)
return 0;
dev_dbg(block->dsp->dev, " enabled block %d:%d at offset 0x%x\n",
block->type, block->index, block->offset);
val = readl(sst->addr.pci_cfg + SST_VDRTCTL0);
bit = hsw_block_get_bit(block);
writel(val & ~bit, sst->addr.pci_cfg + SST_VDRTCTL0);
/* wait 18 DSP clock ticks */
udelay(10);
return 0;
}
/* disable 32kB memory block - locks held by caller */
static int hsw_block_disable(struct sst_mem_block *block)
{
struct sst_dsp *sst = block->dsp;
u32 bit, val;
if (--block->users > 0)
return 0;
dev_dbg(block->dsp->dev, " disabled block %d:%d at offset 0x%x\n",
block->type, block->index, block->offset);
val = readl(sst->addr.pci_cfg + SST_VDRTCTL0);
bit = hsw_block_get_bit(block);
writel(val | bit, sst->addr.pci_cfg + SST_VDRTCTL0);
return 0;
}
static struct sst_block_ops sst_hsw_ops = {
.enable = hsw_block_enable,
.disable = hsw_block_disable,
};
static int hsw_enable_shim(struct sst_dsp *sst)
{
int tries = 10;
u32 reg;
/* enable shim */
reg = readl(sst->addr.pci_cfg + SST_SHIM_PM_REG);
writel(reg & ~0x3, sst->addr.pci_cfg + SST_SHIM_PM_REG);
/* check that ADSP shim is enabled */
while (tries--) {
reg = sst_dsp_shim_read_unlocked(sst, SST_CSR);
if (reg != 0xffffffff)
return 0;
msleep(1);
}
return -ENODEV;
}
static int hsw_init(struct sst_dsp *sst, struct sst_pdata *pdata)
{
const struct sst_adsp_memregion *region;
struct device *dev;
int ret = -ENODEV, i, j, region_count;
u32 offset, size;
dev = sst->dev;
switch (sst->id) {
case SST_DEV_ID_LYNX_POINT:
region = lp_region;
region_count = ARRAY_SIZE(lp_region);
sst->addr.iram_offset = SST_LP_IRAM_OFFSET;
sst->addr.shim_offset = SST_LP_SHIM_OFFSET;
break;
case SST_DEV_ID_WILDCAT_POINT:
region = wpt_region;
region_count = ARRAY_SIZE(wpt_region);
sst->addr.iram_offset = SST_WPT_IRAM_OFFSET;
sst->addr.shim_offset = SST_WPT_SHIM_OFFSET;
break;
default:
dev_err(dev, "error: failed to get mem resources\n");
return ret;
}
ret = hsw_acpi_resource_map(sst, pdata);
if (ret < 0) {
dev_err(dev, "error: failed to map resources\n");
return ret;
}
/* enable the DSP SHIM */
ret = hsw_enable_shim(sst);
if (ret < 0) {
dev_err(dev, "error: failed to set DSP D0 and reset SHIM\n");
return ret;
}
ret = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(32));
if (ret)
return ret;
/* Enable Interrupt from both sides */
sst_dsp_shim_update_bits_unlocked(sst, SST_IMRX, 0x3, 0x0);
sst_dsp_shim_update_bits_unlocked(sst, SST_IMRD,
(0x3 | 0x1 << 16 | 0x3 << 21), 0x0);
/* register DSP memory blocks - ideally we should get this from ACPI */
for (i = 0; i < region_count; i++) {
offset = region[i].start;
size = (region[i].end - region[i].start) / region[i].blocks;
/* register individual memory blocks */
for (j = 0; j < region[i].blocks; j++) {
sst_mem_block_register(sst, offset, size,
region[i].type, &sst_hsw_ops, j, sst);
offset += size;
}
}
/* set default power gating mask */
writel(0x0, sst->addr.pci_cfg + SST_VDRTCTL0);
return 0;
}
static void hsw_free(struct sst_dsp *sst)
{
sst_mem_block_unregister_all(sst);
iounmap(sst->addr.lpe);
iounmap(sst->addr.pci_cfg);
}
struct sst_ops haswell_ops = {
.reset = hsw_reset,
.boot = hsw_boot,
.write = sst_shim32_write,
.read = sst_shim32_read,
.write64 = sst_shim32_write64,
.read64 = sst_shim32_read64,
.ram_read = sst_memcpy_fromio_32,
.ram_write = sst_memcpy_toio_32,
.irq_handler = hsw_irq,
.init = hsw_init,
.free = hsw_free,
.parse_fw = hsw_parse_fw_image,
};

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,488 @@
/*
* Intel SST Haswell/Broadwell IPC Support
*
* Copyright (C) 2013, Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#ifndef __SST_HASWELL_IPC_H
#define __SST_HASWELL_IPC_H
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/platform_device.h>
#define SST_HSW_NO_CHANNELS 2
#define SST_HSW_MAX_DX_REGIONS 14
#define SST_HSW_FW_LOG_CONFIG_DWORDS 12
#define SST_HSW_GLOBAL_LOG 15
/**
* Upfront defined maximum message size that is
* expected by the in/out communication pipes in FW.
*/
#define SST_HSW_IPC_MAX_PAYLOAD_SIZE 400
#define SST_HSW_MAX_INFO_SIZE 64
#define SST_HSW_BUILD_HASH_LENGTH 40
struct sst_hsw;
struct sst_hsw_stream;
struct sst_hsw_log_stream;
struct sst_pdata;
struct sst_module;
extern struct sst_ops haswell_ops;
/* Stream Allocate Path ID */
enum sst_hsw_stream_path_id {
SST_HSW_STREAM_PATH_SSP0_OUT = 0,
SST_HSW_STREAM_PATH_SSP0_IN = 1,
SST_HSW_STREAM_PATH_MAX_PATH_ID = 2,
};
/* Stream Allocate Stream Type */
enum sst_hsw_stream_type {
SST_HSW_STREAM_TYPE_RENDER = 0,
SST_HSW_STREAM_TYPE_SYSTEM = 1,
SST_HSW_STREAM_TYPE_CAPTURE = 2,
SST_HSW_STREAM_TYPE_LOOPBACK = 3,
SST_HSW_STREAM_TYPE_MAX_STREAM_TYPE = 4,
};
/* Stream Allocate Stream Format */
enum sst_hsw_stream_format {
SST_HSW_STREAM_FORMAT_PCM_FORMAT = 0,
SST_HSW_STREAM_FORMAT_MP3_FORMAT = 1,
SST_HSW_STREAM_FORMAT_AAC_FORMAT = 2,
SST_HSW_STREAM_FORMAT_MAX_FORMAT_ID = 3,
};
/* Device ID */
enum sst_hsw_device_id {
SST_HSW_DEVICE_SSP_0 = 0,
SST_HSW_DEVICE_SSP_1 = 1,
};
/* Device Master Clock Frequency */
enum sst_hsw_device_mclk {
SST_HSW_DEVICE_MCLK_OFF = 0,
SST_HSW_DEVICE_MCLK_FREQ_6_MHZ = 1,
SST_HSW_DEVICE_MCLK_FREQ_12_MHZ = 2,
SST_HSW_DEVICE_MCLK_FREQ_24_MHZ = 3,
};
/* Device Clock Master */
enum sst_hsw_device_mode {
SST_HSW_DEVICE_CLOCK_SLAVE = 0,
SST_HSW_DEVICE_CLOCK_MASTER = 1,
};
/* DX Power State */
enum sst_hsw_dx_state {
SST_HSW_DX_STATE_D0 = 0,
SST_HSW_DX_STATE_D1 = 1,
SST_HSW_DX_STATE_D3 = 3,
SST_HSW_DX_STATE_MAX = 3,
};
/* Audio stream stage IDs */
enum sst_hsw_fx_stage_id {
SST_HSW_STAGE_ID_WAVES = 0,
SST_HSW_STAGE_ID_DTS = 1,
SST_HSW_STAGE_ID_DOLBY = 2,
SST_HSW_STAGE_ID_BOOST = 3,
SST_HSW_STAGE_ID_MAX_FX_ID
};
/* DX State Type */
enum sst_hsw_dx_type {
SST_HSW_DX_TYPE_FW_IMAGE = 0,
SST_HSW_DX_TYPE_MEMORY_DUMP = 1
};
/* Volume Curve Type*/
enum sst_hsw_volume_curve {
SST_HSW_VOLUME_CURVE_NONE = 0,
SST_HSW_VOLUME_CURVE_FADE = 1
};
/* Sample ordering */
enum sst_hsw_interleaving {
SST_HSW_INTERLEAVING_PER_CHANNEL = 0,
SST_HSW_INTERLEAVING_PER_SAMPLE = 1,
};
/* Channel indices */
enum sst_hsw_channel_index {
SST_HSW_CHANNEL_LEFT = 0,
SST_HSW_CHANNEL_CENTER = 1,
SST_HSW_CHANNEL_RIGHT = 2,
SST_HSW_CHANNEL_LEFT_SURROUND = 3,
SST_HSW_CHANNEL_CENTER_SURROUND = 3,
SST_HSW_CHANNEL_RIGHT_SURROUND = 4,
SST_HSW_CHANNEL_LFE = 7,
SST_HSW_CHANNEL_INVALID = 0xF,
};
/* List of supported channel maps. */
enum sst_hsw_channel_config {
SST_HSW_CHANNEL_CONFIG_MONO = 0, /* mono only. */
SST_HSW_CHANNEL_CONFIG_STEREO = 1, /* L & R. */
SST_HSW_CHANNEL_CONFIG_2_POINT_1 = 2, /* L, R & LFE; PCM only. */
SST_HSW_CHANNEL_CONFIG_3_POINT_0 = 3, /* L, C & R; MP3 & AAC only. */
SST_HSW_CHANNEL_CONFIG_3_POINT_1 = 4, /* L, C, R & LFE; PCM only. */
SST_HSW_CHANNEL_CONFIG_QUATRO = 5, /* L, R, Ls & Rs; PCM only. */
SST_HSW_CHANNEL_CONFIG_4_POINT_0 = 6, /* L, C, R & Cs; MP3 & AAC only. */
SST_HSW_CHANNEL_CONFIG_5_POINT_0 = 7, /* L, C, R, Ls & Rs. */
SST_HSW_CHANNEL_CONFIG_5_POINT_1 = 8, /* L, C, R, Ls, Rs & LFE. */
SST_HSW_CHANNEL_CONFIG_DUAL_MONO = 9, /* One channel replicated in two. */
SST_HSW_CHANNEL_CONFIG_INVALID,
};
/* List of supported bit depths. */
enum sst_hsw_bitdepth {
SST_HSW_DEPTH_8BIT = 8,
SST_HSW_DEPTH_16BIT = 16,
SST_HSW_DEPTH_24BIT = 24, /* Default. */
SST_HSW_DEPTH_32BIT = 32,
SST_HSW_DEPTH_INVALID = 33,
};
enum sst_hsw_module_id {
SST_HSW_MODULE_BASE_FW = 0x0,
SST_HSW_MODULE_MP3 = 0x1,
SST_HSW_MODULE_AAC_5_1 = 0x2,
SST_HSW_MODULE_AAC_2_0 = 0x3,
SST_HSW_MODULE_SRC = 0x4,
SST_HSW_MODULE_WAVES = 0x5,
SST_HSW_MODULE_DOLBY = 0x6,
SST_HSW_MODULE_BOOST = 0x7,
SST_HSW_MODULE_LPAL = 0x8,
SST_HSW_MODULE_DTS = 0x9,
SST_HSW_MODULE_PCM_CAPTURE = 0xA,
SST_HSW_MODULE_PCM_SYSTEM = 0xB,
SST_HSW_MODULE_PCM_REFERENCE = 0xC,
SST_HSW_MODULE_PCM = 0xD,
SST_HSW_MODULE_BLUETOOTH_RENDER_MODULE = 0xE,
SST_HSW_MODULE_BLUETOOTH_CAPTURE_MODULE = 0xF,
SST_HSW_MAX_MODULE_ID,
};
enum sst_hsw_performance_action {
SST_HSW_PERF_START = 0,
SST_HSW_PERF_STOP = 1,
};
/* SST firmware module info */
struct sst_hsw_module_info {
u8 name[SST_HSW_MAX_INFO_SIZE];
u8 version[SST_HSW_MAX_INFO_SIZE];
} __attribute__((packed));
/* Module entry point */
struct sst_hsw_module_entry {
enum sst_hsw_module_id module_id;
u32 entry_point;
} __attribute__((packed));
/* Module map - alignement matches DSP */
struct sst_hsw_module_map {
u8 module_entries_count;
struct sst_hsw_module_entry module_entries[1];
} __attribute__((packed));
struct sst_hsw_memory_info {
u32 offset;
u32 size;
} __attribute__((packed));
struct sst_hsw_fx_enable {
struct sst_hsw_module_map module_map;
struct sst_hsw_memory_info persistent_mem;
} __attribute__((packed));
struct sst_hsw_get_fx_param {
u32 parameter_id;
u32 param_size;
} __attribute__((packed));
struct sst_hsw_perf_action {
u32 action;
} __attribute__((packed));
struct sst_hsw_perf_data {
u64 timestamp;
u64 cycles;
u64 datatime;
} __attribute__((packed));
/* FW version */
struct sst_hsw_ipc_fw_version {
u8 build;
u8 minor;
u8 major;
u8 type;
u8 fw_build_hash[SST_HSW_BUILD_HASH_LENGTH];
u32 fw_log_providers_hash;
} __attribute__((packed));
/* Stream ring info */
struct sst_hsw_ipc_stream_ring {
u32 ring_pt_address;
u32 num_pages;
u32 ring_size;
u32 ring_offset;
u32 ring_first_pfn;
} __attribute__((packed));
/* Debug Dump Log Enable Request */
struct sst_hsw_ipc_debug_log_enable_req {
struct sst_hsw_ipc_stream_ring ringinfo;
u32 config[SST_HSW_FW_LOG_CONFIG_DWORDS];
} __attribute__((packed));
/* Debug Dump Log Reply */
struct sst_hsw_ipc_debug_log_reply {
u32 log_buffer_begining;
u32 log_buffer_size;
} __attribute__((packed));
/* Stream glitch position */
struct sst_hsw_ipc_stream_glitch_position {
u32 glitch_type;
u32 present_pos;
u32 write_pos;
} __attribute__((packed));
/* Stream get position */
struct sst_hsw_ipc_stream_get_position {
u32 position;
u32 fw_cycle_count;
} __attribute__((packed));
/* Stream set position */
struct sst_hsw_ipc_stream_set_position {
u32 position;
u32 end_of_buffer;
} __attribute__((packed));
/* Stream Free Request */
struct sst_hsw_ipc_stream_free_req {
u8 stream_id;
u8 reserved[3];
} __attribute__((packed));
/* Set Volume Request */
struct sst_hsw_ipc_volume_req {
u32 channel;
u32 target_volume;
u64 curve_duration;
u32 curve_type;
} __attribute__((packed));
/* Device Configuration Request */
struct sst_hsw_ipc_device_config_req {
u32 ssp_interface;
u32 clock_frequency;
u32 mode;
u16 clock_divider;
u16 reserved;
} __attribute__((packed));
/* Audio Data formats */
struct sst_hsw_audio_data_format_ipc {
u32 frequency;
u32 bitdepth;
u32 map;
u32 config;
u32 style;
u8 ch_num;
u8 valid_bit;
u8 reserved[2];
} __attribute__((packed));
/* Stream Allocate Request */
struct sst_hsw_ipc_stream_alloc_req {
u8 path_id;
u8 stream_type;
u8 format_id;
u8 reserved;
struct sst_hsw_audio_data_format_ipc format;
struct sst_hsw_ipc_stream_ring ringinfo;
struct sst_hsw_module_map map;
struct sst_hsw_memory_info persistent_mem;
struct sst_hsw_memory_info scratch_mem;
u32 number_of_notifications;
} __attribute__((packed));
/* Stream Allocate Reply */
struct sst_hsw_ipc_stream_alloc_reply {
u32 stream_hw_id;
u32 mixer_hw_id; // returns rate ????
u32 read_position_register_address;
u32 presentation_position_register_address;
u32 peak_meter_register_address[SST_HSW_NO_CHANNELS];
u32 volume_register_address[SST_HSW_NO_CHANNELS];
} __attribute__((packed));
/* Get Mixer Stream Info */
struct sst_hsw_ipc_stream_info_reply {
u32 mixer_hw_id;
u32 peak_meter_register_address[SST_HSW_NO_CHANNELS];
u32 volume_register_address[SST_HSW_NO_CHANNELS];
} __attribute__((packed));
/* DX State Request */
struct sst_hsw_ipc_dx_req {
u8 state;
u8 reserved[3];
} __attribute__((packed));
/* DX State Reply Memory Info Item */
struct sst_hsw_ipc_dx_memory_item {
u32 offset;
u32 size;
u32 source;
} __attribute__((packed));
/* DX State Reply */
struct sst_hsw_ipc_dx_reply {
u32 entries_no;
struct sst_hsw_ipc_dx_memory_item mem_info[SST_HSW_MAX_DX_REGIONS];
} __attribute__((packed));
struct sst_hsw_ipc_fw_version;
/* SST Init & Free */
struct sst_hsw *sst_hsw_new(struct device *dev, const u8 *fw, size_t fw_length,
u32 fw_offset);
void sst_hsw_free(struct sst_hsw *hsw);
int sst_hsw_fw_get_version(struct sst_hsw *hsw,
struct sst_hsw_ipc_fw_version *version);
u32 create_channel_map(enum sst_hsw_channel_config config);
/* Stream Mixer Controls - */
int sst_hsw_stream_mute(struct sst_hsw *hsw, struct sst_hsw_stream *stream,
u32 stage_id, u32 channel);
int sst_hsw_stream_unmute(struct sst_hsw *hsw, struct sst_hsw_stream *stream,
u32 stage_id, u32 channel);
int sst_hsw_stream_set_volume(struct sst_hsw *hsw,
struct sst_hsw_stream *stream, u32 stage_id, u32 channel, u32 volume);
int sst_hsw_stream_get_volume(struct sst_hsw *hsw,
struct sst_hsw_stream *stream, u32 stage_id, u32 channel, u32 *volume);
int sst_hsw_stream_set_volume_curve(struct sst_hsw *hsw,
struct sst_hsw_stream *stream, u64 curve_duration,
enum sst_hsw_volume_curve curve);
/* Global Mixer Controls - */
int sst_hsw_mixer_mute(struct sst_hsw *hsw, u32 stage_id, u32 channel);
int sst_hsw_mixer_unmute(struct sst_hsw *hsw, u32 stage_id, u32 channel);
int sst_hsw_mixer_set_volume(struct sst_hsw *hsw, u32 stage_id, u32 channel,
u32 volume);
int sst_hsw_mixer_get_volume(struct sst_hsw *hsw, u32 stage_id, u32 channel,
u32 *volume);
int sst_hsw_mixer_set_volume_curve(struct sst_hsw *hsw,
u64 curve_duration, enum sst_hsw_volume_curve curve);
/* Stream API */
struct sst_hsw_stream *sst_hsw_stream_new(struct sst_hsw *hsw, int id,
u32 (*get_write_position)(struct sst_hsw_stream *stream, void *data),
void *data);
int sst_hsw_stream_free(struct sst_hsw *hsw, struct sst_hsw_stream *stream);
/* Stream Configuration */
int sst_hsw_stream_format(struct sst_hsw *hsw, struct sst_hsw_stream *stream,
enum sst_hsw_stream_path_id path_id,
enum sst_hsw_stream_type stream_type,
enum sst_hsw_stream_format format_id);
int sst_hsw_stream_buffer(struct sst_hsw *hsw, struct sst_hsw_stream *stream,
u32 ring_pt_address, u32 num_pages,
u32 ring_size, u32 ring_offset, u32 ring_first_pfn);
int sst_hsw_stream_commit(struct sst_hsw *hsw, struct sst_hsw_stream *stream);
int sst_hsw_stream_set_valid(struct sst_hsw *hsw, struct sst_hsw_stream *stream,
u32 bits);
int sst_hsw_stream_set_rate(struct sst_hsw *hsw, struct sst_hsw_stream *stream,
int rate);
int sst_hsw_stream_set_bits(struct sst_hsw *hsw, struct sst_hsw_stream *stream,
enum sst_hsw_bitdepth bits);
int sst_hsw_stream_set_channels(struct sst_hsw *hsw,
struct sst_hsw_stream *stream, int channels);
int sst_hsw_stream_set_map_config(struct sst_hsw *hsw,
struct sst_hsw_stream *stream, u32 map,
enum sst_hsw_channel_config config);
int sst_hsw_stream_set_style(struct sst_hsw *hsw, struct sst_hsw_stream *stream,
enum sst_hsw_interleaving style);
int sst_hsw_stream_set_module_info(struct sst_hsw *hsw,
struct sst_hsw_stream *stream, enum sst_hsw_module_id module_id,
u32 entry_point);
int sst_hsw_stream_set_pmemory_info(struct sst_hsw *hsw,
struct sst_hsw_stream *stream, u32 offset, u32 size);
int sst_hsw_stream_set_smemory_info(struct sst_hsw *hsw,
struct sst_hsw_stream *stream, u32 offset, u32 size);
int sst_hsw_stream_get_hw_id(struct sst_hsw *hsw,
struct sst_hsw_stream *stream);
int sst_hsw_stream_get_mixer_id(struct sst_hsw *hsw,
struct sst_hsw_stream *stream);
u32 sst_hsw_stream_get_read_reg(struct sst_hsw *hsw,
struct sst_hsw_stream *stream);
u32 sst_hsw_stream_get_pointer_reg(struct sst_hsw *hsw,
struct sst_hsw_stream *stream);
u32 sst_hsw_stream_get_peak_reg(struct sst_hsw *hsw,
struct sst_hsw_stream *stream, u32 channel);
u32 sst_hsw_stream_get_vol_reg(struct sst_hsw *hsw,
struct sst_hsw_stream *stream, u32 channel);
int sst_hsw_mixer_get_info(struct sst_hsw *hsw);
/* Stream ALSA trigger operations */
int sst_hsw_stream_pause(struct sst_hsw *hsw, struct sst_hsw_stream *stream,
int wait);
int sst_hsw_stream_resume(struct sst_hsw *hsw, struct sst_hsw_stream *stream,
int wait);
int sst_hsw_stream_reset(struct sst_hsw *hsw, struct sst_hsw_stream *stream);
/* Stream pointer positions */
int sst_hsw_stream_get_read_pos(struct sst_hsw *hsw,
struct sst_hsw_stream *stream, u32 *position);
int sst_hsw_stream_get_write_pos(struct sst_hsw *hsw,
struct sst_hsw_stream *stream, u32 *position);
int sst_hsw_stream_set_write_position(struct sst_hsw *hsw,
struct sst_hsw_stream *stream, u32 stage_id, u32 position);
int sst_hsw_get_dsp_position(struct sst_hsw *hsw,
struct sst_hsw_stream *stream);
/* HW port config */
int sst_hsw_device_set_config(struct sst_hsw *hsw,
enum sst_hsw_device_id dev, enum sst_hsw_device_mclk mclk,
enum sst_hsw_device_mode mode, u32 clock_divider);
/* DX Config */
int sst_hsw_dx_set_state(struct sst_hsw *hsw,
enum sst_hsw_dx_state state, struct sst_hsw_ipc_dx_reply *dx);
int sst_hsw_dx_get_state(struct sst_hsw *hsw, u32 item,
u32 *offset, u32 *size, u32 *source);
/* init */
int sst_hsw_dsp_init(struct device *dev, struct sst_pdata *pdata);
void sst_hsw_dsp_free(struct device *dev, struct sst_pdata *pdata);
struct sst_dsp *sst_hsw_get_dsp(struct sst_hsw *hsw);
void sst_hsw_set_scratch_module(struct sst_hsw *hsw,
struct sst_module *scratch);
#endif

View File

@ -0,0 +1,872 @@
/*
* Intel SST Haswell/Broadwell PCM Support
*
* Copyright (C) 2013, Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/dmaengine_pcm.h>
#include <sound/soc.h>
#include <sound/tlv.h>
#include <sound/compress_driver.h>
#include "sst-haswell-ipc.h"
#include "sst-dsp-priv.h"
#include "sst-dsp.h"
#define HSW_PCM_COUNT 6
#define HSW_VOLUME_MAX 0x7FFFFFFF /* 0dB */
/* simple volume table */
static const u32 volume_map[] = {
HSW_VOLUME_MAX >> 30,
HSW_VOLUME_MAX >> 29,
HSW_VOLUME_MAX >> 28,
HSW_VOLUME_MAX >> 27,
HSW_VOLUME_MAX >> 26,
HSW_VOLUME_MAX >> 25,
HSW_VOLUME_MAX >> 24,
HSW_VOLUME_MAX >> 23,
HSW_VOLUME_MAX >> 22,
HSW_VOLUME_MAX >> 21,
HSW_VOLUME_MAX >> 20,
HSW_VOLUME_MAX >> 19,
HSW_VOLUME_MAX >> 18,
HSW_VOLUME_MAX >> 17,
HSW_VOLUME_MAX >> 16,
HSW_VOLUME_MAX >> 15,
HSW_VOLUME_MAX >> 14,
HSW_VOLUME_MAX >> 13,
HSW_VOLUME_MAX >> 12,
HSW_VOLUME_MAX >> 11,
HSW_VOLUME_MAX >> 10,
HSW_VOLUME_MAX >> 9,
HSW_VOLUME_MAX >> 8,
HSW_VOLUME_MAX >> 7,
HSW_VOLUME_MAX >> 6,
HSW_VOLUME_MAX >> 5,
HSW_VOLUME_MAX >> 4,
HSW_VOLUME_MAX >> 3,
HSW_VOLUME_MAX >> 2,
HSW_VOLUME_MAX >> 1,
HSW_VOLUME_MAX >> 0,
};
#define HSW_PCM_PERIODS_MAX 64
#define HSW_PCM_PERIODS_MIN 2
static const struct snd_pcm_hardware hsw_pcm_hardware = {
.info = SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_PAUSE |
SNDRV_PCM_INFO_RESUME |
SNDRV_PCM_INFO_NO_PERIOD_WAKEUP,
.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FORMAT_S24_LE |
SNDRV_PCM_FMTBIT_S32_LE,
.period_bytes_min = PAGE_SIZE,
.period_bytes_max = (HSW_PCM_PERIODS_MAX / HSW_PCM_PERIODS_MIN) * PAGE_SIZE,
.periods_min = HSW_PCM_PERIODS_MIN,
.periods_max = HSW_PCM_PERIODS_MAX,
.buffer_bytes_max = HSW_PCM_PERIODS_MAX * PAGE_SIZE,
};
/* private data for each PCM DSP stream */
struct hsw_pcm_data {
int dai_id;
struct sst_hsw_stream *stream;
u32 volume[2];
struct snd_pcm_substream *substream;
struct snd_compr_stream *cstream;
unsigned int wpos;
struct mutex mutex;
};
/* private data for the driver */
struct hsw_priv_data {
/* runtime DSP */
struct sst_hsw *hsw;
/* page tables */
unsigned char *pcm_pg[HSW_PCM_COUNT][2];
/* DAI data */
struct hsw_pcm_data pcm[HSW_PCM_COUNT];
};
static inline u32 hsw_mixer_to_ipc(unsigned int value)
{
if (value >= ARRAY_SIZE(volume_map))
return volume_map[0];
else
return volume_map[value];
}
static inline unsigned int hsw_ipc_to_mixer(u32 value)
{
int i;
for (i = 0; i < ARRAY_SIZE(volume_map); i++) {
if (volume_map[i] >= value)
return i;
}
return i - 1;
}
static int hsw_stream_volume_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_platform *platform = snd_kcontrol_chip(kcontrol);
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
struct hsw_priv_data *pdata =
snd_soc_platform_get_drvdata(platform);
struct hsw_pcm_data *pcm_data = &pdata->pcm[mc->reg];
struct sst_hsw *hsw = pdata->hsw;
u32 volume;
mutex_lock(&pcm_data->mutex);
if (!pcm_data->stream) {
pcm_data->volume[0] =
hsw_mixer_to_ipc(ucontrol->value.integer.value[0]);
pcm_data->volume[1] =
hsw_mixer_to_ipc(ucontrol->value.integer.value[1]);
mutex_unlock(&pcm_data->mutex);
return 0;
}
if (ucontrol->value.integer.value[0] ==
ucontrol->value.integer.value[1]) {
volume = hsw_mixer_to_ipc(ucontrol->value.integer.value[0]);
sst_hsw_stream_set_volume(hsw, pcm_data->stream, 0, 2, volume);
} else {
volume = hsw_mixer_to_ipc(ucontrol->value.integer.value[0]);
sst_hsw_stream_set_volume(hsw, pcm_data->stream, 0, 0, volume);
volume = hsw_mixer_to_ipc(ucontrol->value.integer.value[1]);
sst_hsw_stream_set_volume(hsw, pcm_data->stream, 0, 1, volume);
}
mutex_unlock(&pcm_data->mutex);
return 0;
}
static int hsw_stream_volume_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_platform *platform = snd_kcontrol_chip(kcontrol);
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
struct hsw_priv_data *pdata =
snd_soc_platform_get_drvdata(platform);
struct hsw_pcm_data *pcm_data = &pdata->pcm[mc->reg];
struct sst_hsw *hsw = pdata->hsw;
u32 volume;
mutex_lock(&pcm_data->mutex);
if (!pcm_data->stream) {
ucontrol->value.integer.value[0] =
hsw_ipc_to_mixer(pcm_data->volume[0]);
ucontrol->value.integer.value[1] =
hsw_ipc_to_mixer(pcm_data->volume[1]);
mutex_unlock(&pcm_data->mutex);
return 0;
}
sst_hsw_stream_get_volume(hsw, pcm_data->stream, 0, 0, &volume);
ucontrol->value.integer.value[0] = hsw_ipc_to_mixer(volume);
sst_hsw_stream_get_volume(hsw, pcm_data->stream, 0, 1, &volume);
ucontrol->value.integer.value[1] = hsw_ipc_to_mixer(volume);
mutex_unlock(&pcm_data->mutex);
return 0;
}
static int hsw_volume_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_platform *platform = snd_kcontrol_chip(kcontrol);
struct hsw_priv_data *pdata = snd_soc_platform_get_drvdata(platform);
struct sst_hsw *hsw = pdata->hsw;
u32 volume;
if (ucontrol->value.integer.value[0] ==
ucontrol->value.integer.value[1]) {
volume = hsw_mixer_to_ipc(ucontrol->value.integer.value[0]);
sst_hsw_mixer_set_volume(hsw, 0, 2, volume);
} else {
volume = hsw_mixer_to_ipc(ucontrol->value.integer.value[0]);
sst_hsw_mixer_set_volume(hsw, 0, 0, volume);
volume = hsw_mixer_to_ipc(ucontrol->value.integer.value[1]);
sst_hsw_mixer_set_volume(hsw, 0, 1, volume);
}
return 0;
}
static int hsw_volume_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_platform *platform = snd_kcontrol_chip(kcontrol);
struct hsw_priv_data *pdata = snd_soc_platform_get_drvdata(platform);
struct sst_hsw *hsw = pdata->hsw;
unsigned int volume = 0;
sst_hsw_mixer_get_volume(hsw, 0, 0, &volume);
ucontrol->value.integer.value[0] = hsw_ipc_to_mixer(volume);
sst_hsw_mixer_get_volume(hsw, 0, 1, &volume);
ucontrol->value.integer.value[1] = hsw_ipc_to_mixer(volume);
return 0;
}
/* TLV used by both global and stream volumes */
static const DECLARE_TLV_DB_SCALE(hsw_vol_tlv, -9000, 300, 1);
/* System Pin has no volume control */
static const struct snd_kcontrol_new hsw_volume_controls[] = {
/* Global DSP volume */
SOC_DOUBLE_EXT_TLV("Master Playback Volume", 0, 0, 8,
ARRAY_SIZE(volume_map) -1, 0,
hsw_volume_get, hsw_volume_put, hsw_vol_tlv),
/* Offload 0 volume */
SOC_DOUBLE_EXT_TLV("Media0 Playback Volume", 1, 0, 8,
ARRAY_SIZE(volume_map), 0,
hsw_stream_volume_get, hsw_stream_volume_put, hsw_vol_tlv),
/* Offload 1 volume */
SOC_DOUBLE_EXT_TLV("Media1 Playback Volume", 2, 0, 8,
ARRAY_SIZE(volume_map), 0,
hsw_stream_volume_get, hsw_stream_volume_put, hsw_vol_tlv),
/* Loopback volume */
SOC_DOUBLE_EXT_TLV("Loopback Capture Volume", 3, 0, 8,
ARRAY_SIZE(volume_map), 0,
hsw_stream_volume_get, hsw_stream_volume_put, hsw_vol_tlv),
/* Mic Capture volume */
SOC_DOUBLE_EXT_TLV("Mic Capture Volume", 4, 0, 8,
ARRAY_SIZE(volume_map), 0,
hsw_stream_volume_get, hsw_stream_volume_put, hsw_vol_tlv),
};
/* Create DMA buffer page table for DSP */
static int create_adsp_page_table(struct hsw_priv_data *pdata,
struct snd_soc_pcm_runtime *rtd,
unsigned char *dma_area, size_t size, int pcm, int stream)
{
int i, pages;
if (size % PAGE_SIZE)
pages = (size / PAGE_SIZE) + 1;
else
pages = size / PAGE_SIZE;
dev_dbg(rtd->dev, "generating page table for %p size 0x%zu pages %d\n",
dma_area, size, pages);
for (i = 0; i < pages; i++) {
u32 idx = (((i << 2) + i)) >> 1;
u32 pfn = (virt_to_phys(dma_area + i * PAGE_SIZE)) >> PAGE_SHIFT;
u32 *pg_table;
dev_dbg(rtd->dev, "pfn i %i idx %d pfn %x\n", i, idx, pfn);
pg_table = (u32*)(pdata->pcm_pg[pcm][stream] + idx);
if (i & 1)
*pg_table |= (pfn << 4);
else
*pg_table |= pfn;
}
return 0;
}
/* this may get called several times by oss emulation */
static int hsw_pcm_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_pcm_runtime *runtime = substream->runtime;
struct hsw_priv_data *pdata =
snd_soc_platform_get_drvdata(rtd->platform);
struct hsw_pcm_data *pcm_data = snd_soc_pcm_get_drvdata(rtd);
struct sst_hsw *hsw = pdata->hsw;
struct sst_module *module_data;
struct sst_dsp *dsp;
enum sst_hsw_stream_type stream_type;
enum sst_hsw_stream_path_id path_id;
u32 rate, bits, map, pages, module_id;
u8 channels;
int ret;
/* stream direction */
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
path_id = SST_HSW_STREAM_PATH_SSP0_OUT;
else
path_id = SST_HSW_STREAM_PATH_SSP0_IN;
/* DSP stream type depends on DAI ID */
switch (rtd->cpu_dai->id) {
case 0:
stream_type = SST_HSW_STREAM_TYPE_SYSTEM;
module_id = SST_HSW_MODULE_PCM_SYSTEM;
break;
case 1:
case 2:
stream_type = SST_HSW_STREAM_TYPE_RENDER;
module_id = SST_HSW_MODULE_PCM;
break;
case 3:
/* path ID needs to be OUT for loopback */
stream_type = SST_HSW_STREAM_TYPE_LOOPBACK;
path_id = SST_HSW_STREAM_PATH_SSP0_OUT;
module_id = SST_HSW_MODULE_PCM_REFERENCE;
break;
case 4:
stream_type = SST_HSW_STREAM_TYPE_CAPTURE;
module_id = SST_HSW_MODULE_PCM_CAPTURE;
break;
default:
dev_err(rtd->dev, "error: invalid DAI ID %d\n",
rtd->cpu_dai->id);
return -EINVAL;
};
ret = sst_hsw_stream_format(hsw, pcm_data->stream,
path_id, stream_type, SST_HSW_STREAM_FORMAT_PCM_FORMAT);
if (ret < 0) {
dev_err(rtd->dev, "error: failed to set format %d\n", ret);
return ret;
}
rate = params_rate(params);
ret = sst_hsw_stream_set_rate(hsw, pcm_data->stream, rate);
if (ret < 0) {
dev_err(rtd->dev, "error: could not set rate %d\n", rate);
return ret;
}
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_S16_LE:
bits = SST_HSW_DEPTH_16BIT;
sst_hsw_stream_set_valid(hsw, pcm_data->stream, 16);
break;
case SNDRV_PCM_FORMAT_S24_LE:
bits = SST_HSW_DEPTH_24BIT;
sst_hsw_stream_set_valid(hsw, pcm_data->stream, 32);
break;
default:
dev_err(rtd->dev, "error: invalid format %d\n",
params_format(params));
return -EINVAL;
}
ret = sst_hsw_stream_set_bits(hsw, pcm_data->stream, bits);
if (ret < 0) {
dev_err(rtd->dev, "error: could not set bits %d\n", bits);
return ret;
}
/* we only support stereo atm */
channels = params_channels(params);
if (channels != 2) {
dev_err(rtd->dev, "error: invalid channels %d\n", channels);
return -EINVAL;
}
map = create_channel_map(SST_HSW_CHANNEL_CONFIG_STEREO);
sst_hsw_stream_set_map_config(hsw, pcm_data->stream,
map, SST_HSW_CHANNEL_CONFIG_STEREO);
ret = sst_hsw_stream_set_channels(hsw, pcm_data->stream, channels);
if (ret < 0) {
dev_err(rtd->dev, "error: could not set channels %d\n",
channels);
return ret;
}
ret = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params));
if (ret < 0) {
dev_err(rtd->dev, "error: could not allocate %d bytes for PCM %d\n",
params_buffer_bytes(params), ret);
return ret;
}
ret = create_adsp_page_table(pdata, rtd, runtime->dma_area,
runtime->dma_bytes, rtd->cpu_dai->id, substream->stream);
if (ret < 0)
return ret;
sst_hsw_stream_set_style(hsw, pcm_data->stream,
SST_HSW_INTERLEAVING_PER_CHANNEL);
if (runtime->dma_bytes % PAGE_SIZE)
pages = (runtime->dma_bytes / PAGE_SIZE) + 1;
else
pages = runtime->dma_bytes / PAGE_SIZE;
ret = sst_hsw_stream_buffer(hsw, pcm_data->stream,
virt_to_phys(pdata->pcm_pg[rtd->cpu_dai->id][substream->stream]),
pages, runtime->dma_bytes, 0,
(u32)(virt_to_phys(runtime->dma_area) >> PAGE_SHIFT));
if (ret < 0) {
dev_err(rtd->dev, "error: failed to set DMA buffer %d\n", ret);
return ret;
}
dsp = sst_hsw_get_dsp(hsw);
module_data = sst_module_get_from_id(dsp, module_id);
if (module_data == NULL) {
dev_err(rtd->dev, "error: failed to get module config\n");
return -EINVAL;
}
/* we use hardcoded memory offsets atm, will be updated for new FW */
if (stream_type == SST_HSW_STREAM_TYPE_CAPTURE) {
sst_hsw_stream_set_module_info(hsw, pcm_data->stream,
SST_HSW_MODULE_PCM_CAPTURE, module_data->entry);
sst_hsw_stream_set_pmemory_info(hsw, pcm_data->stream,
0x449400, 0x4000);
sst_hsw_stream_set_smemory_info(hsw, pcm_data->stream,
0x400000, 0);
} else { /* stream_type == SST_HSW_STREAM_TYPE_SYSTEM */
sst_hsw_stream_set_module_info(hsw, pcm_data->stream,
SST_HSW_MODULE_PCM_SYSTEM, module_data->entry);
sst_hsw_stream_set_pmemory_info(hsw, pcm_data->stream,
module_data->offset, module_data->size);
sst_hsw_stream_set_pmemory_info(hsw, pcm_data->stream,
0x44d400, 0x3800);
sst_hsw_stream_set_smemory_info(hsw, pcm_data->stream,
module_data->offset, module_data->size);
sst_hsw_stream_set_smemory_info(hsw, pcm_data->stream,
0x400000, 0);
}
ret = sst_hsw_stream_commit(hsw, pcm_data->stream);
if (ret < 0) {
dev_err(rtd->dev, "error: failed to commit stream %d\n", ret);
return ret;
}
ret = sst_hsw_stream_pause(hsw, pcm_data->stream, 1);
if (ret < 0)
dev_err(rtd->dev, "error: failed to pause %d\n", ret);
return 0;
}
static int hsw_pcm_hw_free(struct snd_pcm_substream *substream)
{
snd_pcm_lib_free_pages(substream);
return 0;
}
static int hsw_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct hsw_priv_data *pdata =
snd_soc_platform_get_drvdata(rtd->platform);
struct hsw_pcm_data *pcm_data = snd_soc_pcm_get_drvdata(rtd);
struct sst_hsw *hsw = pdata->hsw;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
sst_hsw_stream_resume(hsw, pcm_data->stream, 0);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
sst_hsw_stream_pause(hsw, pcm_data->stream, 0);
break;
default:
break;
}
return 0;
}
static u32 hsw_notify_pointer(struct sst_hsw_stream *stream, void *data)
{
struct hsw_pcm_data *pcm_data = data;
struct snd_pcm_substream *substream = pcm_data->substream;
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_soc_pcm_runtime *rtd = substream->private_data;
u32 pos;
pos = frames_to_bytes(runtime,
(runtime->control->appl_ptr % runtime->buffer_size));
dev_dbg(rtd->dev, "PCM: App pointer %d bytes\n", pos);
/* let alsa know we have play a period */
snd_pcm_period_elapsed(substream);
return pos;
}
static snd_pcm_uframes_t hsw_pcm_pointer(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_pcm_runtime *runtime = substream->runtime;
struct hsw_priv_data *pdata =
snd_soc_platform_get_drvdata(rtd->platform);
struct hsw_pcm_data *pcm_data = snd_soc_pcm_get_drvdata(rtd);
struct sst_hsw *hsw = pdata->hsw;
snd_pcm_uframes_t offset;
offset = bytes_to_frames(runtime,
sst_hsw_get_dsp_position(hsw, pcm_data->stream));
dev_dbg(rtd->dev, "PCM: DMA pointer %zu bytes\n",
frames_to_bytes(runtime, (u32)offset));
return offset;
}
static int hsw_pcm_open(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct hsw_priv_data *pdata =
snd_soc_platform_get_drvdata(rtd->platform);
struct hsw_pcm_data *pcm_data;
struct sst_hsw *hsw = pdata->hsw;
pcm_data = &pdata->pcm[rtd->cpu_dai->id];
mutex_lock(&pcm_data->mutex);
snd_soc_pcm_set_drvdata(rtd, pcm_data);
pcm_data->substream = substream;
snd_soc_set_runtime_hwparams(substream, &hsw_pcm_hardware);
pcm_data->stream = sst_hsw_stream_new(hsw, rtd->cpu_dai->id,
hsw_notify_pointer, pcm_data);
if (pcm_data->stream == NULL) {
dev_err(rtd->dev, "error: failed to create stream\n");
mutex_unlock(&pcm_data->mutex);
return -EINVAL;
}
/* Set previous saved volume */
sst_hsw_stream_set_volume(hsw, pcm_data->stream, 0,
0, pcm_data->volume[0]);
sst_hsw_stream_set_volume(hsw, pcm_data->stream, 0,
1, pcm_data->volume[1]);
mutex_unlock(&pcm_data->mutex);
return 0;
}
static int hsw_pcm_close(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct hsw_priv_data *pdata =
snd_soc_platform_get_drvdata(rtd->platform);
struct hsw_pcm_data *pcm_data = snd_soc_pcm_get_drvdata(rtd);
struct sst_hsw *hsw = pdata->hsw;
int ret;
mutex_lock(&pcm_data->mutex);
ret = sst_hsw_stream_reset(hsw, pcm_data->stream);
if (ret < 0) {
dev_dbg(rtd->dev, "error: reset stream failed %d\n", ret);
goto out;
}
ret = sst_hsw_stream_free(hsw, pcm_data->stream);
if (ret < 0) {
dev_dbg(rtd->dev, "error: free stream failed %d\n", ret);
goto out;
}
pcm_data->stream = NULL;
out:
mutex_unlock(&pcm_data->mutex);
return ret;
}
static struct snd_pcm_ops hsw_pcm_ops = {
.open = hsw_pcm_open,
.close = hsw_pcm_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = hsw_pcm_hw_params,
.hw_free = hsw_pcm_hw_free,
.trigger = hsw_pcm_trigger,
.pointer = hsw_pcm_pointer,
.mmap = snd_pcm_lib_default_mmap,
};
static void hsw_pcm_free(struct snd_pcm *pcm)
{
snd_pcm_lib_preallocate_free_for_all(pcm);
}
static int hsw_pcm_new(struct snd_soc_pcm_runtime *rtd)
{
struct snd_pcm *pcm = rtd->pcm;
int ret = 0;
ret = dma_coerce_mask_and_coherent(rtd->card->dev, DMA_BIT_MASK(32));
if (ret)
return ret;
if (pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream ||
pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream) {
ret = snd_pcm_lib_preallocate_pages_for_all(pcm,
SNDRV_DMA_TYPE_DEV,
rtd->card->dev,
hsw_pcm_hardware.buffer_bytes_max,
hsw_pcm_hardware.buffer_bytes_max);
if (ret) {
dev_err(rtd->dev, "dma buffer allocation failed %d\n",
ret);
return ret;
}
}
return ret;
}
#define HSW_FORMATS \
(SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S16_LE |\
SNDRV_PCM_FMTBIT_S32_LE)
static struct snd_soc_dai_driver hsw_dais[] = {
{
.name = "System Pin",
.playback = {
.stream_name = "System Playback",
.channels_min = 2,
.channels_max = 2,
.rates = SNDRV_PCM_RATE_48000,
.formats = SNDRV_PCM_FMTBIT_S16_LE,
},
},
{
/* PCM */
.name = "Offload0 Pin",
.playback = {
.stream_name = "Offload0 Playback",
.channels_min = 2,
.channels_max = 2,
.rates = SNDRV_PCM_RATE_8000_192000,
.formats = HSW_FORMATS,
},
},
{
/* PCM */
.name = "Offload1 Pin",
.playback = {
.stream_name = "Offload1 Playback",
.channels_min = 2,
.channels_max = 2,
.rates = SNDRV_PCM_RATE_8000_192000,
.formats = HSW_FORMATS,
},
},
{
.name = "Loopback Pin",
.capture = {
.stream_name = "Loopback Capture",
.channels_min = 2,
.channels_max = 2,
.rates = SNDRV_PCM_RATE_8000_192000,
.formats = HSW_FORMATS,
},
},
{
.name = "Capture Pin",
.capture = {
.stream_name = "Analog Capture",
.channels_min = 2,
.channels_max = 2,
.rates = SNDRV_PCM_RATE_8000_192000,
.formats = HSW_FORMATS,
},
},
};
static const struct snd_soc_dapm_widget widgets[] = {
/* Backend DAIs */
SND_SOC_DAPM_AIF_IN("SSP0 CODEC IN", NULL, 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_OUT("SSP0 CODEC OUT", NULL, 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_IN("SSP1 BT IN", NULL, 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_OUT("SSP1 BT OUT", NULL, 0, SND_SOC_NOPM, 0, 0),
/* Global Playback Mixer */
SND_SOC_DAPM_MIXER("Playback VMixer", SND_SOC_NOPM, 0, 0, NULL, 0),
};
static const struct snd_soc_dapm_route graph[] = {
/* Playback Mixer */
{"Playback VMixer", NULL, "System Playback"},
{"Playback VMixer", NULL, "Offload0 Playback"},
{"Playback VMixer", NULL, "Offload1 Playback"},
{"SSP0 CODEC OUT", NULL, "Playback VMixer"},
{"Analog Capture", NULL, "SSP0 CODEC IN"},
};
static int hsw_pcm_probe(struct snd_soc_platform *platform)
{
struct sst_pdata *pdata = dev_get_platdata(platform->dev);
struct hsw_priv_data *priv_data;
int i;
if (!pdata)
return -ENODEV;
priv_data = devm_kzalloc(platform->dev, sizeof(*priv_data), GFP_KERNEL);
priv_data->hsw = pdata->dsp;
snd_soc_platform_set_drvdata(platform, priv_data);
/* allocate DSP buffer page tables */
for (i = 0; i < ARRAY_SIZE(hsw_dais); i++) {
mutex_init(&priv_data->pcm[i].mutex);
/* playback */
if (hsw_dais[i].playback.channels_min) {
priv_data->pcm_pg[i][0] = kzalloc(PAGE_SIZE, GFP_DMA);
if (priv_data->pcm_pg[i][0] == NULL)
goto err;
}
/* capture */
if (hsw_dais[i].capture.channels_min) {
priv_data->pcm_pg[i][1] = kzalloc(PAGE_SIZE, GFP_DMA);
if (priv_data->pcm_pg[i][1] == NULL)
goto err;
}
}
return 0;
err:
for (;i >= 0; i--) {
if (hsw_dais[i].playback.channels_min)
kfree(priv_data->pcm_pg[i][0]);
if (hsw_dais[i].capture.channels_min)
kfree(priv_data->pcm_pg[i][1]);
}
return -ENOMEM;
}
static int hsw_pcm_remove(struct snd_soc_platform *platform)
{
struct hsw_priv_data *priv_data =
snd_soc_platform_get_drvdata(platform);
int i;
for (i = 0; i < ARRAY_SIZE(hsw_dais); i++) {
if (hsw_dais[i].playback.channels_min)
kfree(priv_data->pcm_pg[i][0]);
if (hsw_dais[i].capture.channels_min)
kfree(priv_data->pcm_pg[i][1]);
}
return 0;
}
static struct snd_soc_platform_driver hsw_soc_platform = {
.probe = hsw_pcm_probe,
.remove = hsw_pcm_remove,
.ops = &hsw_pcm_ops,
.pcm_new = hsw_pcm_new,
.pcm_free = hsw_pcm_free,
.controls = hsw_volume_controls,
.num_controls = ARRAY_SIZE(hsw_volume_controls),
.dapm_widgets = widgets,
.num_dapm_widgets = ARRAY_SIZE(widgets),
.dapm_routes = graph,
.num_dapm_routes = ARRAY_SIZE(graph),
};
static const struct snd_soc_component_driver hsw_dai_component = {
.name = "haswell-dai",
};
static int hsw_pcm_dev_probe(struct platform_device *pdev)
{
struct sst_pdata *sst_pdata = dev_get_platdata(&pdev->dev);
int ret;
ret = sst_hsw_dsp_init(&pdev->dev, sst_pdata);
if (ret < 0)
return -ENODEV;
ret = snd_soc_register_platform(&pdev->dev, &hsw_soc_platform);
if (ret < 0)
goto err_plat;
ret = snd_soc_register_component(&pdev->dev, &hsw_dai_component,
hsw_dais, ARRAY_SIZE(hsw_dais));
if (ret < 0)
goto err_comp;
return 0;
err_comp:
snd_soc_unregister_platform(&pdev->dev);
err_plat:
sst_hsw_dsp_free(&pdev->dev, sst_pdata);
return 0;
}
static int hsw_pcm_dev_remove(struct platform_device *pdev)
{
struct sst_pdata *sst_pdata = dev_get_platdata(&pdev->dev);
snd_soc_unregister_platform(&pdev->dev);
snd_soc_unregister_component(&pdev->dev);
sst_hsw_dsp_free(&pdev->dev, sst_pdata);
return 0;
}
static struct platform_driver hsw_pcm_driver = {
.driver = {
.name = "haswell-pcm-audio",
.owner = THIS_MODULE,
},
.probe = hsw_pcm_dev_probe,
.remove = hsw_pcm_dev_remove,
};
module_platform_driver(hsw_pcm_driver);
MODULE_AUTHOR("Liam Girdwood, Xingchao Wang");
MODULE_DESCRIPTION("Haswell/Lynxpoint + Broadwell/Wildcatpoint PCM");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:haswell-pcm-audio");

View File

@ -1,7 +1,7 @@
#ifndef __SST_DSP_H__
#define __SST_DSP_H__
#ifndef __SST_MFLD_DSP_H__
#define __SST_MFLD_DSP_H__
/*
* sst_dsp.h - Intel SST Driver for audio engine
* sst_mfld_dsp.h - Intel SST Driver for audio engine
*
* Copyright (C) 2008-12 Intel Corporation
* Authors: Vinod Koul <vinod.koul@linux.intel.com>
@ -131,4 +131,4 @@ struct snd_sst_params {
struct snd_sst_alloc_params_ext aparams;
};
#endif /* __SST_DSP_H__ */
#endif /* __SST_MFLD_DSP_H__ */

View File

@ -1,5 +1,5 @@
/*
* sst_platform.c - Intel MID Platform driver
* sst_mfld_platform.c - Intel MID Platform driver
*
* Copyright (C) 2010-2013 Intel Corp
* Author: Vinod Koul <vinod.koul@intel.com>
@ -33,7 +33,7 @@
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/compress_driver.h>
#include "sst_platform.h"
#include "sst-mfld-platform.h"
static struct sst_device *sst;
static DEFINE_MUTEX(sst_lock);
@ -709,7 +709,7 @@ static int sst_platform_remove(struct platform_device *pdev)
static struct platform_driver sst_platform_driver = {
.driver = {
.name = "sst-platform",
.name = "sst-mfld-platform",
.owner = THIS_MODULE,
},
.probe = sst_platform_probe,
@ -722,4 +722,4 @@ MODULE_DESCRIPTION("ASoC Intel(R) MID Platform driver");
MODULE_AUTHOR("Vinod Koul <vinod.koul@intel.com>");
MODULE_AUTHOR("Harsha Priya <priya.harsha@intel.com>");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:sst-platform");
MODULE_ALIAS("platform:sst-mfld-platform");

View File

@ -1,5 +1,5 @@
/*
* sst_platform.h - Intel MID Platform driver header file
* sst_mfld_platform.h - Intel MID Platform driver header file
*
* Copyright (C) 2010 Intel Corp
* Author: Vinod Koul <vinod.koul@intel.com>
@ -27,7 +27,7 @@
#ifndef __SST_PLATFORMDRV_H__
#define __SST_PLATFORMDRV_H__
#include "sst_dsp.h"
#include "sst-mfld-dsp.h"
#define SST_MONO 1
#define SST_STEREO 2

View File

@ -196,13 +196,11 @@ static int ams_delta_get_audio_mode(struct snd_kcontrol *kcontrol,
return 0;
}
static const struct soc_enum ams_delta_audio_enum[] = {
SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(ams_delta_audio_mode),
ams_delta_audio_mode),
};
static const SOC_ENUM_SINGLE_EXT_DECL(ams_delta_audio_enum,
ams_delta_audio_mode);
static const struct snd_kcontrol_new ams_delta_audio_controls[] = {
SOC_ENUM_EXT("Audio Mode", ams_delta_audio_enum[0],
SOC_ENUM_EXT("Audio Mode", ams_delta_audio_enum,
ams_delta_get_audio_mode, ams_delta_set_audio_mode),
};

View File

@ -101,14 +101,9 @@ static void corgi_ext_control(struct snd_soc_dapm_context *dapm)
static int corgi_startup(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_codec *codec = rtd->codec;
mutex_lock(&codec->mutex);
/* check the jack status at stream startup */
corgi_ext_control(&codec->dapm);
mutex_unlock(&codec->mutex);
corgi_ext_control(&rtd->card->dapm);
return 0;
}

View File

@ -103,11 +103,6 @@ static int e740_ac97_init(struct snd_soc_pcm_runtime *rtd)
snd_soc_dapm_nc_pin(dapm, "PCBEEP");
snd_soc_dapm_nc_pin(dapm, "MIC2");
snd_soc_dapm_new_controls(dapm, e740_dapm_widgets,
ARRAY_SIZE(e740_dapm_widgets));
snd_soc_dapm_add_routes(dapm, audio_map, ARRAY_SIZE(audio_map));
return 0;
}
@ -136,6 +131,11 @@ static struct snd_soc_card e740 = {
.owner = THIS_MODULE,
.dai_link = e740_dai,
.num_links = ARRAY_SIZE(e740_dai),
.dapm_widgets = e740_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(e740_dapm_widgets),
.dapm_routes = audio_map,
.num_dapm_routes = ARRAY_SIZE(audio_map),
};
static struct gpio e740_audio_gpios[] = {

View File

@ -85,11 +85,6 @@ static int e750_ac97_init(struct snd_soc_pcm_runtime *rtd)
snd_soc_dapm_nc_pin(dapm, "PCBEEP");
snd_soc_dapm_nc_pin(dapm, "MIC2");
snd_soc_dapm_new_controls(dapm, e750_dapm_widgets,
ARRAY_SIZE(e750_dapm_widgets));
snd_soc_dapm_add_routes(dapm, audio_map, ARRAY_SIZE(audio_map));
return 0;
}
@ -119,6 +114,11 @@ static struct snd_soc_card e750 = {
.owner = THIS_MODULE,
.dai_link = e750_dai,
.num_links = ARRAY_SIZE(e750_dai),
.dapm_widgets = e750_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(e750_dapm_widgets),
.dapm_routes = audio_map,
.num_dapm_routes = ARRAY_SIZE(audio_map),
};
static struct gpio e750_audio_gpios[] = {

View File

@ -71,19 +71,6 @@ static const struct snd_soc_dapm_route audio_map[] = {
{"MIC2", NULL, "Mic (Internal2)"},
};
static int e800_ac97_init(struct snd_soc_pcm_runtime *rtd)
{
struct snd_soc_codec *codec = rtd->codec;
struct snd_soc_dapm_context *dapm = &codec->dapm;
snd_soc_dapm_new_controls(dapm, e800_dapm_widgets,
ARRAY_SIZE(e800_dapm_widgets));
snd_soc_dapm_add_routes(dapm, audio_map, ARRAY_SIZE(audio_map));
return 0;
}
static struct snd_soc_dai_link e800_dai[] = {
{
.name = "AC97",
@ -92,7 +79,6 @@ static struct snd_soc_dai_link e800_dai[] = {
.codec_dai_name = "wm9712-hifi",
.platform_name = "pxa-pcm-audio",
.codec_name = "wm9712-codec",
.init = e800_ac97_init,
},
{
.name = "AC97 Aux",
@ -109,6 +95,11 @@ static struct snd_soc_card e800 = {
.owner = THIS_MODULE,
.dai_link = e800_dai,
.num_links = ARRAY_SIZE(e800_dai),
.dapm_widgets = e800_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(e800_dapm_widgets),
.dapm_routes = audio_map,
.num_dapm_routes = ARRAY_SIZE(audio_map),
};
static struct gpio e800_audio_gpios[] = {

View File

@ -77,13 +77,9 @@ static int magician_startup(struct snd_pcm_substream *substream)
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_codec *codec = rtd->codec;
mutex_lock(&codec->mutex);
/* check the jack status at stream startup */
magician_ext_control(codec);
mutex_unlock(&codec->mutex);
return 0;
}

View File

@ -127,16 +127,8 @@ static const struct snd_soc_dapm_route audio_map[] = {
static int mioa701_wm9713_init(struct snd_soc_pcm_runtime *rtd)
{
struct snd_soc_codec *codec = rtd->codec;
struct snd_soc_dapm_context *dapm = &codec->dapm;
unsigned short reg;
/* Add mioa701 specific widgets */
snd_soc_dapm_new_controls(dapm, mioa701_dapm_widgets,
ARRAY_SIZE(mioa701_dapm_widgets));
/* Set up mioa701 specific audio path audio_mapnects */
snd_soc_dapm_add_routes(dapm, audio_map, ARRAY_SIZE(audio_map));
/* Prepare GPIO8 for rear speaker amplifier */
reg = codec->driver->read(codec, AC97_GPIO_CFG);
codec->driver->write(codec, AC97_GPIO_CFG, reg | 0x0100);
@ -145,12 +137,6 @@ static int mioa701_wm9713_init(struct snd_soc_pcm_runtime *rtd)
reg = codec->driver->read(codec, AC97_3D_CONTROL);
codec->driver->write(codec, AC97_3D_CONTROL, reg | 0xc000);
snd_soc_dapm_enable_pin(dapm, "Front Speaker");
snd_soc_dapm_enable_pin(dapm, "Rear Speaker");
snd_soc_dapm_enable_pin(dapm, "Front Mic");
snd_soc_dapm_enable_pin(dapm, "GSM Line In");
snd_soc_dapm_enable_pin(dapm, "GSM Line Out");
return 0;
}
@ -183,6 +169,11 @@ static struct snd_soc_card mioa701 = {
.owner = THIS_MODULE,
.dai_link = mioa701_dai,
.num_links = ARRAY_SIZE(mioa701_dai),
.dapm_widgets = mioa701_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(mioa701_dapm_widgets),
.dapm_routes = audio_map,
.num_dapm_routes = ARRAY_SIZE(audio_map),
};
static int mioa701_wm9713_probe(struct platform_device *pdev)

View File

@ -74,14 +74,9 @@ static void poodle_ext_control(struct snd_soc_dapm_context *dapm)
static int poodle_startup(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_codec *codec = rtd->codec;
mutex_lock(&codec->mutex);
/* check the jack status at stream startup */
poodle_ext_control(&codec->dapm);
mutex_unlock(&codec->mutex);
poodle_ext_control(&rtd->card->dapm);
return 0;
}

View File

@ -111,14 +111,9 @@ static void spitz_ext_control(struct snd_soc_dapm_context *dapm)
static int spitz_startup(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_codec *codec = rtd->codec;
mutex_lock(&codec->mutex);
/* check the jack status at stream startup */
spitz_ext_control(&codec->dapm);
mutex_unlock(&codec->mutex);
spitz_ext_control(&rtd->card->dapm);
return 0;
}

View File

@ -84,13 +84,9 @@ static int tosa_startup(struct snd_pcm_substream *substream)
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_codec *codec = rtd->codec;
mutex_lock(&codec->mutex);
/* check the jack status at stream startup */
tosa_ext_control(codec);
mutex_unlock(&codec->mutex);
return 0;
}

View File

@ -71,22 +71,10 @@ static const struct snd_soc_dapm_route audio_map[] = {
static int zylonite_wm9713_init(struct snd_soc_pcm_runtime *rtd)
{
struct snd_soc_codec *codec = rtd->codec;
struct snd_soc_dapm_context *dapm = &codec->dapm;
if (clk_pout)
snd_soc_dai_set_pll(rtd->codec_dai, 0, 0,
clk_get_rate(pout), 0);
snd_soc_dapm_new_controls(dapm, zylonite_dapm_widgets,
ARRAY_SIZE(zylonite_dapm_widgets));
snd_soc_dapm_add_routes(dapm, audio_map, ARRAY_SIZE(audio_map));
/* Static setup for now */
snd_soc_dapm_enable_pin(dapm, "Headphone");
snd_soc_dapm_enable_pin(dapm, "Headset Earpiece");
return 0;
}
@ -256,6 +244,11 @@ static struct snd_soc_card zylonite = {
.resume_pre = &zylonite_resume_pre,
.dai_link = zylonite_dai,
.num_links = ARRAY_SIZE(zylonite_dai),
.dapm_widgets = zylonite_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(zylonite_dapm_widgets),
.dapm_routes = audio_map,
.num_dapm_routes = ARRAY_SIZE(audio_map),
};
static struct platform_device *zylonite_snd_ac97_device;

View File

@ -1,2 +1,2 @@
snd-soc-rcar-objs := core.o gen.o scu.o adg.o ssi.o
snd-soc-rcar-objs := core.o gen.o src.o adg.o ssi.o
obj-$(CONFIG_SND_SOC_RCAR) += snd-soc-rcar.o

View File

@ -25,15 +25,165 @@ struct rsnd_adg {
};
#define for_each_rsnd_clk(pos, adg, i) \
for (i = 0, (pos) = adg->clk[i]; \
i < CLKMAX; \
i++, (pos) = adg->clk[i])
for (i = 0; \
(i < CLKMAX) && \
((pos) = adg->clk[i]); \
i++)
#define rsnd_priv_to_adg(priv) ((struct rsnd_adg *)(priv)->adg)
static int rsnd_adg_set_convert_clk_gen1(struct rsnd_priv *priv,
struct rsnd_mod *mod,
unsigned int src_rate,
unsigned int dst_rate)
static u32 rsnd_adg_ssi_ws_timing_gen2(struct rsnd_dai_stream *io)
{
struct rsnd_mod *mod = rsnd_io_to_mod_ssi(io);
struct rsnd_priv *priv = rsnd_mod_to_priv(mod);
int id = rsnd_mod_id(mod);
int ws = id;
if (rsnd_ssi_is_pin_sharing(rsnd_ssi_mod_get(priv, id))) {
switch (id) {
case 1:
case 2:
ws = 0;
break;
case 4:
ws = 3;
break;
case 8:
ws = 7;
break;
}
}
return (0x6 + ws) << 8;
}
static int rsnd_adg_set_src_timsel_gen2(struct rsnd_dai *rdai,
struct rsnd_mod *mod,
struct rsnd_dai_stream *io,
u32 timsel)
{
int is_play = rsnd_dai_is_play(rdai, io);
int id = rsnd_mod_id(mod);
int shift = (id % 2) ? 16 : 0;
u32 mask, ws;
u32 in, out;
ws = rsnd_adg_ssi_ws_timing_gen2(io);
in = (is_play) ? timsel : ws;
out = (is_play) ? ws : timsel;
in = in << shift;
out = out << shift;
mask = 0xffff << shift;
switch (id / 2) {
case 0:
rsnd_mod_bset(mod, SRCIN_TIMSEL0, mask, in);
rsnd_mod_bset(mod, SRCOUT_TIMSEL0, mask, out);
break;
case 1:
rsnd_mod_bset(mod, SRCIN_TIMSEL1, mask, in);
rsnd_mod_bset(mod, SRCOUT_TIMSEL1, mask, out);
break;
case 2:
rsnd_mod_bset(mod, SRCIN_TIMSEL2, mask, in);
rsnd_mod_bset(mod, SRCOUT_TIMSEL2, mask, out);
break;
case 3:
rsnd_mod_bset(mod, SRCIN_TIMSEL3, mask, in);
rsnd_mod_bset(mod, SRCOUT_TIMSEL3, mask, out);
break;
case 4:
rsnd_mod_bset(mod, SRCIN_TIMSEL4, mask, in);
rsnd_mod_bset(mod, SRCOUT_TIMSEL4, mask, out);
break;
}
return 0;
}
int rsnd_adg_set_convert_clk_gen2(struct rsnd_mod *mod,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io,
unsigned int src_rate,
unsigned int dst_rate)
{
struct rsnd_priv *priv = rsnd_mod_to_priv(mod);
struct rsnd_adg *adg = rsnd_priv_to_adg(priv);
struct device *dev = rsnd_priv_to_dev(priv);
int idx, sel, div, step, ret;
u32 val, en;
unsigned int min, diff;
unsigned int sel_rate [] = {
clk_get_rate(adg->clk[CLKA]), /* 0000: CLKA */
clk_get_rate(adg->clk[CLKB]), /* 0001: CLKB */
clk_get_rate(adg->clk[CLKC]), /* 0010: CLKC */
adg->rbga_rate_for_441khz_div_6,/* 0011: RBGA */
adg->rbgb_rate_for_48khz_div_6, /* 0100: RBGB */
};
min = ~0;
val = 0;
en = 0;
for (sel = 0; sel < ARRAY_SIZE(sel_rate); sel++) {
idx = 0;
step = 2;
if (!sel_rate[sel])
continue;
for (div = 2; div <= 98304; div += step) {
diff = abs(src_rate - sel_rate[sel] / div);
if (min > diff) {
val = (sel << 8) | idx;
min = diff;
en = 1 << (sel + 1); /* fixme */
}
/*
* step of 0_0000 / 0_0001 / 0_1101
* are out of order
*/
if ((idx > 2) && (idx % 2))
step *= 2;
if (idx == 0x1c) {
div += step;
step *= 2;
}
idx++;
}
}
if (min == ~0) {
dev_err(dev, "no Input clock\n");
return -EIO;
}
ret = rsnd_adg_set_src_timsel_gen2(rdai, mod, io, val);
if (ret < 0) {
dev_err(dev, "timsel error\n");
return ret;
}
rsnd_mod_bset(mod, DIV_EN, en, en);
return 0;
}
int rsnd_adg_set_convert_timing_gen2(struct rsnd_mod *mod,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io)
{
u32 val = rsnd_adg_ssi_ws_timing_gen2(io);
return rsnd_adg_set_src_timsel_gen2(rdai, mod, io, val);
}
int rsnd_adg_set_convert_clk_gen1(struct rsnd_priv *priv,
struct rsnd_mod *mod,
unsigned int src_rate,
unsigned int dst_rate)
{
struct rsnd_adg *adg = rsnd_priv_to_adg(priv);
struct device *dev = rsnd_priv_to_dev(priv);
@ -91,18 +241,6 @@ find_rate:
return 0;
}
int rsnd_adg_set_convert_clk(struct rsnd_priv *priv,
struct rsnd_mod *mod,
unsigned int src_rate,
unsigned int dst_rate)
{
if (rsnd_is_gen1(priv))
return rsnd_adg_set_convert_clk_gen1(priv, mod,
src_rate, dst_rate);
return -EINVAL;
}
static void rsnd_adg_set_ssi_clk(struct rsnd_mod *mod, u32 val)
{
int id = rsnd_mod_id(mod);
@ -254,13 +392,13 @@ static void rsnd_adg_ssi_clk_init(struct rsnd_priv *priv, struct rsnd_adg *adg)
}
int rsnd_adg_probe(struct platform_device *pdev,
struct rcar_snd_info *info,
struct rsnd_priv *priv)
{
struct rsnd_adg *adg;
struct device *dev = rsnd_priv_to_dev(priv);
struct clk *clk;
struct clk *clk, *clk_orig;
int i;
bool use_old_style = false;
adg = devm_kzalloc(dev, sizeof(*adg), GFP_KERNEL);
if (!adg) {
@ -268,10 +406,39 @@ int rsnd_adg_probe(struct platform_device *pdev,
return -ENOMEM;
}
adg->clk[CLKA] = clk_get(NULL, "audio_clk_a");
adg->clk[CLKB] = clk_get(NULL, "audio_clk_b");
adg->clk[CLKC] = clk_get(NULL, "audio_clk_c");
adg->clk[CLKI] = clk_get(NULL, "audio_clk_internal");
clk_orig = devm_clk_get(dev, NULL);
adg->clk[CLKA] = devm_clk_get(dev, "clk_a");
adg->clk[CLKB] = devm_clk_get(dev, "clk_b");
adg->clk[CLKC] = devm_clk_get(dev, "clk_c");
adg->clk[CLKI] = devm_clk_get(dev, "clk_i");
/*
* It request device dependent audio clock.
* But above all clks will indicate rsnd module clock
* if platform doesn't it
*/
for_each_rsnd_clk(clk, adg, i) {
if (clk_orig == clk) {
dev_warn(dev,
"doesn't have device dependent clock, use independent clock\n");
use_old_style = true;
break;
}
}
/*
* note:
* these exist in order to keep compatible with
* platform which has device independent audio clock,
* but will be removed soon
*/
if (use_old_style) {
adg->clk[CLKA] = devm_clk_get(NULL, "audio_clk_a");
adg->clk[CLKB] = devm_clk_get(NULL, "audio_clk_b");
adg->clk[CLKC] = devm_clk_get(NULL, "audio_clk_c");
adg->clk[CLKI] = devm_clk_get(NULL, "audio_clk_internal");
}
for_each_rsnd_clk(clk, adg, i) {
if (IS_ERR(clk)) {
dev_err(dev, "Audio clock failed\n");
@ -287,14 +454,3 @@ int rsnd_adg_probe(struct platform_device *pdev,
return 0;
}
void rsnd_adg_remove(struct platform_device *pdev,
struct rsnd_priv *priv)
{
struct rsnd_adg *adg = priv->adg;
struct clk *clk;
int i;
for_each_rsnd_clk(clk, adg, i)
clk_put(clk);
}

View File

@ -73,13 +73,13 @@
* | +- ssi[2]
* | ...
* |
* | ** these control scu
* | ** these control src
* |
* +- scu
* +- src
* |
* +- scu[0]
* +- scu[1]
* +- scu[2]
* +- src[0]
* +- src[1]
* +- src[2]
* ...
*
*
@ -107,6 +107,11 @@
(!(priv->info->func) ? 0 : \
priv->info->func(param))
#define rsnd_is_enable_path(io, name) \
((io)->info ? (io)->info->name : NULL)
#define rsnd_info_id(priv, io, name) \
((io)->info->name - priv->info->name##_info)
/*
* rsnd_mod functions
*/
@ -121,17 +126,19 @@ char *rsnd_mod_name(struct rsnd_mod *mod)
void rsnd_mod_init(struct rsnd_priv *priv,
struct rsnd_mod *mod,
struct rsnd_mod_ops *ops,
enum rsnd_mod_type type,
int id)
{
mod->priv = priv;
mod->id = id;
mod->ops = ops;
INIT_LIST_HEAD(&mod->list);
mod->type = type;
}
/*
* rsnd_dma functions
*/
static void __rsnd_dma_start(struct rsnd_dma *dma);
static void rsnd_dma_continue(struct rsnd_dma *dma)
{
/* push next A or B plane */
@ -142,8 +149,9 @@ static void rsnd_dma_continue(struct rsnd_dma *dma)
void rsnd_dma_start(struct rsnd_dma *dma)
{
/* push both A and B plane*/
dma->offset = 0;
dma->submit_loop = 2;
schedule_work(&dma->work);
__rsnd_dma_start(dma);
}
void rsnd_dma_stop(struct rsnd_dma *dma)
@ -156,12 +164,26 @@ void rsnd_dma_stop(struct rsnd_dma *dma)
static void rsnd_dma_complete(void *data)
{
struct rsnd_dma *dma = (struct rsnd_dma *)data;
struct rsnd_priv *priv = dma->priv;
struct rsnd_mod *mod = rsnd_dma_to_mod(dma);
struct rsnd_priv *priv = rsnd_mod_to_priv(rsnd_dma_to_mod(dma));
struct rsnd_dai_stream *io = rsnd_mod_to_io(mod);
unsigned long flags;
rsnd_lock(priv, flags);
dma->complete(dma);
/*
* Renesas sound Gen1 needs 1 DMAC,
* Gen2 needs 2 DMAC.
* In Gen2 case, it are Audio-DMAC, and Audio-DMAC-peri-peri.
* But, Audio-DMAC-peri-peri doesn't have interrupt,
* and this driver is assuming that here.
*
* If Audio-DMAC-peri-peri has interrpt,
* rsnd_dai_pointer_update() will be called twice,
* ant it will breaks io->byte_pos
*/
rsnd_dai_pointer_update(io, io->byte_per_period);
if (dma->submit_loop)
rsnd_dma_continue(dma);
@ -169,20 +191,23 @@ static void rsnd_dma_complete(void *data)
rsnd_unlock(priv, flags);
}
static void rsnd_dma_do_work(struct work_struct *work)
static void __rsnd_dma_start(struct rsnd_dma *dma)
{
struct rsnd_dma *dma = container_of(work, struct rsnd_dma, work);
struct rsnd_priv *priv = dma->priv;
struct rsnd_mod *mod = rsnd_dma_to_mod(dma);
struct rsnd_priv *priv = rsnd_mod_to_priv(mod);
struct rsnd_dai_stream *io = rsnd_mod_to_io(mod);
struct snd_pcm_runtime *runtime = rsnd_io_to_runtime(io);
struct device *dev = rsnd_priv_to_dev(priv);
struct dma_async_tx_descriptor *desc;
dma_addr_t buf;
size_t len;
size_t len = io->byte_per_period;
int i;
for (i = 0; i < dma->submit_loop; i++) {
if (dma->inquiry(dma, &buf, &len) < 0)
return;
buf = runtime->dma_addr +
rsnd_dai_pointer_offset(io, dma->offset + len);
dma->offset = len;
desc = dmaengine_prep_slave_single(
dma->chan, buf, len, dma->dir,
@ -204,16 +229,20 @@ static void rsnd_dma_do_work(struct work_struct *work)
}
}
static void rsnd_dma_do_work(struct work_struct *work)
{
struct rsnd_dma *dma = container_of(work, struct rsnd_dma, work);
__rsnd_dma_start(dma);
}
int rsnd_dma_available(struct rsnd_dma *dma)
{
return !!dma->chan;
}
int rsnd_dma_init(struct rsnd_priv *priv, struct rsnd_dma *dma,
int is_play, int id,
int (*inquiry)(struct rsnd_dma *dma,
dma_addr_t *buf, int *len),
int (*complete)(struct rsnd_dma *dma))
int is_play, int id)
{
struct device *dev = rsnd_priv_to_dev(priv);
struct dma_slave_config cfg;
@ -246,9 +275,6 @@ int rsnd_dma_init(struct rsnd_priv *priv, struct rsnd_dma *dma,
goto rsnd_dma_init_err;
dma->dir = is_play ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
dma->priv = priv;
dma->inquiry = inquiry;
dma->complete = complete;
INIT_WORK(&dma->work, rsnd_dma_do_work);
return 0;
@ -271,26 +297,42 @@ void rsnd_dma_quit(struct rsnd_priv *priv,
/*
* rsnd_dai functions
*/
#define rsnd_dai_call(rdai, io, fn) \
({ \
struct rsnd_mod *mod, *n; \
int ret = 0; \
for_each_rsnd_mod(mod, n, io) { \
ret = rsnd_mod_call(mod, fn, rdai, io); \
if (ret < 0) \
break; \
} \
ret; \
#define __rsnd_mod_call(mod, func, rdai, io) \
({ \
struct rsnd_priv *priv = rsnd_mod_to_priv(mod); \
struct device *dev = rsnd_priv_to_dev(priv); \
dev_dbg(dev, "%s [%d] %s\n", \
rsnd_mod_name(mod), rsnd_mod_id(mod), #func); \
(mod)->ops->func(mod, rdai, io); \
})
int rsnd_dai_connect(struct rsnd_dai *rdai,
struct rsnd_mod *mod,
struct rsnd_dai_stream *io)
#define rsnd_mod_call(mod, func, rdai, io) \
(!(mod) ? -ENODEV : \
!((mod)->ops->func) ? 0 : \
__rsnd_mod_call(mod, func, (rdai), (io)))
#define rsnd_dai_call(rdai, io, fn) \
({ \
struct rsnd_mod *mod; \
int ret = 0, i; \
for (i = 0; i < RSND_MOD_MAX; i++) { \
mod = (io)->mod[i]; \
if (!mod) \
continue; \
ret = rsnd_mod_call(mod, fn, (rdai), (io)); \
if (ret < 0) \
break; \
} \
ret; \
})
static int rsnd_dai_connect(struct rsnd_mod *mod,
struct rsnd_dai_stream *io)
{
if (!mod)
return -EIO;
if (!list_empty(&mod->list)) {
if (io->mod[mod->type]) {
struct rsnd_priv *priv = rsnd_mod_to_priv(mod);
struct device *dev = rsnd_priv_to_dev(priv);
@ -300,14 +342,8 @@ int rsnd_dai_connect(struct rsnd_dai *rdai,
return -EIO;
}
list_add_tail(&mod->list, &io->head);
return 0;
}
int rsnd_dai_disconnect(struct rsnd_mod *mod)
{
list_del_init(&mod->list);
io->mod[mod->type] = mod;
mod->io = io;
return 0;
}
@ -316,7 +352,7 @@ int rsnd_dai_id(struct rsnd_priv *priv, struct rsnd_dai *rdai)
{
int id = rdai - priv->rdai;
if ((id < 0) || (id >= rsnd_dai_nr(priv)))
if ((id < 0) || (id >= rsnd_rdai_nr(priv)))
return -EINVAL;
return id;
@ -324,7 +360,7 @@ int rsnd_dai_id(struct rsnd_priv *priv, struct rsnd_dai *rdai)
struct rsnd_dai *rsnd_dai_get(struct rsnd_priv *priv, int id)
{
if ((id < 0) || (id >= rsnd_dai_nr(priv)))
if ((id < 0) || (id >= rsnd_rdai_nr(priv)))
return NULL;
return priv->rdai + id;
@ -382,10 +418,6 @@ static int rsnd_dai_stream_init(struct rsnd_dai_stream *io,
{
struct snd_pcm_runtime *runtime = substream->runtime;
if (!list_empty(&io->head))
return -EIO;
INIT_LIST_HEAD(&io->head);
io->substream = substream;
io->byte_pos = 0;
io->period_pos = 0;
@ -440,10 +472,6 @@ static int rsnd_soc_dai_trigger(struct snd_pcm_substream *substream, int cmd,
if (ret < 0)
goto dai_trigger_end;
ret = rsnd_gen_path_init(priv, rdai, io);
if (ret < 0)
goto dai_trigger_end;
ret = rsnd_dai_call(rdai, io, init);
if (ret < 0)
goto dai_trigger_end;
@ -461,10 +489,6 @@ static int rsnd_soc_dai_trigger(struct snd_pcm_substream *substream, int cmd,
if (ret < 0)
goto dai_trigger_end;
ret = rsnd_gen_path_exit(priv, rdai, io);
if (ret < 0)
goto dai_trigger_end;
ret = rsnd_platform_call(priv, dai, stop, ssi_id);
if (ret < 0)
goto dai_trigger_end;
@ -540,24 +564,86 @@ static const struct snd_soc_dai_ops rsnd_soc_dai_ops = {
.set_fmt = rsnd_soc_dai_set_fmt,
};
static int rsnd_path_init(struct rsnd_priv *priv,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io)
{
struct rsnd_mod *mod;
struct rsnd_dai_platform_info *dai_info = rdai->info;
int ret;
int ssi_id = -1;
int src_id = -1;
/*
* Gen1 is created by SRU/SSI, and this SRU is base module of
* Gen2's SCU/SSIU/SSI. (Gen2 SCU/SSIU came from SRU)
*
* Easy image is..
* Gen1 SRU = Gen2 SCU + SSIU + etc
*
* Gen2 SCU path is very flexible, but, Gen1 SRU (SCU parts) is
* using fixed path.
*/
if (dai_info) {
if (rsnd_is_enable_path(io, ssi))
ssi_id = rsnd_info_id(priv, io, ssi);
if (rsnd_is_enable_path(io, src))
src_id = rsnd_info_id(priv, io, src);
} else {
/* get SSI's ID */
mod = rsnd_ssi_mod_get_frm_dai(priv,
rsnd_dai_id(priv, rdai),
rsnd_dai_is_play(rdai, io));
if (!mod)
return 0;
ssi_id = src_id = rsnd_mod_id(mod);
}
ret = 0;
/* SRC */
if (src_id >= 0) {
mod = rsnd_src_mod_get(priv, src_id);
ret = rsnd_dai_connect(mod, io);
if (ret < 0)
return ret;
}
/* SSI */
if (ssi_id >= 0) {
mod = rsnd_ssi_mod_get(priv, ssi_id);
ret = rsnd_dai_connect(mod, io);
if (ret < 0)
return ret;
}
return ret;
}
static int rsnd_dai_probe(struct platform_device *pdev,
struct rcar_snd_info *info,
struct rsnd_priv *priv)
{
struct snd_soc_dai_driver *drv;
struct rcar_snd_info *info = rsnd_priv_to_info(priv);
struct rsnd_dai *rdai;
struct rsnd_mod *pmod, *cmod;
struct device *dev = rsnd_priv_to_dev(priv);
int dai_nr;
int dai_nr = info->dai_info_nr;
int i;
/* get max dai nr */
for (dai_nr = 0; dai_nr < 32; dai_nr++) {
pmod = rsnd_ssi_mod_get_frm_dai(priv, dai_nr, 1);
cmod = rsnd_ssi_mod_get_frm_dai(priv, dai_nr, 0);
/*
* dai_nr should be set via dai_info_nr,
* but allow it to keeping compatible
*/
if (!dai_nr) {
/* get max dai nr */
for (dai_nr = 0; dai_nr < 32; dai_nr++) {
pmod = rsnd_ssi_mod_get_frm_dai(priv, dai_nr, 1);
cmod = rsnd_ssi_mod_get_frm_dai(priv, dai_nr, 0);
if (!pmod && !cmod)
break;
if (!pmod && !cmod)
break;
}
}
if (!dai_nr) {
@ -572,7 +658,13 @@ static int rsnd_dai_probe(struct platform_device *pdev,
return -ENOMEM;
}
priv->rdai_nr = dai_nr;
priv->daidrv = drv;
priv->rdai = rdai;
for (i = 0; i < dai_nr; i++) {
if (info->dai_info)
rdai[i].info = &info->dai_info[i];
pmod = rsnd_ssi_mod_get_frm_dai(priv, i, 1);
cmod = rsnd_ssi_mod_get_frm_dai(priv, i, 0);
@ -580,9 +672,6 @@ static int rsnd_dai_probe(struct platform_device *pdev,
/*
* init rsnd_dai
*/
INIT_LIST_HEAD(&rdai[i].playback.head);
INIT_LIST_HEAD(&rdai[i].capture.head);
snprintf(rdai[i].name, RSND_DAI_NAME_SIZE, "rsnd-dai.%d", i);
/*
@ -595,12 +684,20 @@ static int rsnd_dai_probe(struct platform_device *pdev,
drv[i].playback.formats = RSND_FMTS;
drv[i].playback.channels_min = 2;
drv[i].playback.channels_max = 2;
if (info->dai_info)
rdai[i].playback.info = &info->dai_info[i].playback;
rsnd_path_init(priv, &rdai[i], &rdai[i].playback);
}
if (cmod) {
drv[i].capture.rates = RSND_RATES;
drv[i].capture.formats = RSND_FMTS;
drv[i].capture.channels_min = 2;
drv[i].capture.channels_max = 2;
if (info->dai_info)
rdai[i].capture.info = &info->dai_info[i].capture;
rsnd_path_init(priv, &rdai[i], &rdai[i].capture);
}
dev_dbg(dev, "%s (%s/%s)\n", rdai[i].name,
@ -608,18 +705,9 @@ static int rsnd_dai_probe(struct platform_device *pdev,
cmod ? "capture" : " -- ");
}
priv->dai_nr = dai_nr;
priv->daidrv = drv;
priv->rdai = rdai;
return 0;
}
static void rsnd_dai_remove(struct platform_device *pdev,
struct rsnd_priv *priv)
{
}
/*
* pcm ops
*/
@ -713,7 +801,16 @@ static int rsnd_probe(struct platform_device *pdev)
struct rcar_snd_info *info;
struct rsnd_priv *priv;
struct device *dev = &pdev->dev;
int ret;
struct rsnd_dai *rdai;
int (*probe_func[])(struct platform_device *pdev,
struct rsnd_priv *priv) = {
rsnd_gen_probe,
rsnd_ssi_probe,
rsnd_src_probe,
rsnd_adg_probe,
rsnd_dai_probe,
};
int ret, i;
info = pdev->dev.platform_data;
if (!info) {
@ -737,25 +834,21 @@ static int rsnd_probe(struct platform_device *pdev)
/*
* init each module
*/
ret = rsnd_gen_probe(pdev, info, priv);
if (ret < 0)
return ret;
for (i = 0; i < ARRAY_SIZE(probe_func); i++) {
ret = probe_func[i](pdev, priv);
if (ret)
return ret;
}
ret = rsnd_scu_probe(pdev, info, priv);
if (ret < 0)
return ret;
for_each_rsnd_dai(rdai, priv, i) {
ret = rsnd_dai_call(rdai, &rdai->playback, probe);
if (ret)
return ret;
ret = rsnd_adg_probe(pdev, info, priv);
if (ret < 0)
return ret;
ret = rsnd_ssi_probe(pdev, info, priv);
if (ret < 0)
return ret;
ret = rsnd_dai_probe(pdev, info, priv);
if (ret < 0)
return ret;
ret = rsnd_dai_call(rdai, &rdai->capture, probe);
if (ret)
return ret;
}
/*
* asoc register
@ -767,7 +860,7 @@ static int rsnd_probe(struct platform_device *pdev)
}
ret = snd_soc_register_component(dev, &rsnd_soc_component,
priv->daidrv, rsnd_dai_nr(priv));
priv->daidrv, rsnd_rdai_nr(priv));
if (ret < 0) {
dev_err(dev, "cannot snd dai register\n");
goto exit_snd_soc;
@ -789,17 +882,20 @@ exit_snd_soc:
static int rsnd_remove(struct platform_device *pdev)
{
struct rsnd_priv *priv = dev_get_drvdata(&pdev->dev);
struct rsnd_dai *rdai;
int ret, i;
pm_runtime_disable(&pdev->dev);
/*
* remove each module
*/
rsnd_ssi_remove(pdev, priv);
rsnd_adg_remove(pdev, priv);
rsnd_scu_remove(pdev, priv);
rsnd_dai_remove(pdev, priv);
rsnd_gen_remove(pdev, priv);
for_each_rsnd_dai(rdai, priv, i) {
ret = rsnd_dai_call(rdai, &rdai->playback, remove);
if (ret)
return ret;
ret = rsnd_dai_call(rdai, &rdai->capture, remove);
if (ret)
return ret;
}
return 0;
}

View File

@ -155,62 +155,6 @@ static int rsnd_gen_regmap_init(struct rsnd_priv *priv,
return 0;
}
int rsnd_gen_path_init(struct rsnd_priv *priv,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io)
{
struct rsnd_mod *mod;
int ret;
int id;
/*
* Gen1 is created by SRU/SSI, and this SRU is base module of
* Gen2's SCU/SSIU/SSI. (Gen2 SCU/SSIU came from SRU)
*
* Easy image is..
* Gen1 SRU = Gen2 SCU + SSIU + etc
*
* Gen2 SCU path is very flexible, but, Gen1 SRU (SCU parts) is
* using fixed path.
*
* Then, SSI id = SCU id here
*/
/* get SSI's ID */
mod = rsnd_ssi_mod_get_frm_dai(priv,
rsnd_dai_id(priv, rdai),
rsnd_dai_is_play(rdai, io));
id = rsnd_mod_id(mod);
/* SSI */
mod = rsnd_ssi_mod_get(priv, id);
ret = rsnd_dai_connect(rdai, mod, io);
if (ret < 0)
return ret;
/* SCU */
mod = rsnd_scu_mod_get(priv, id);
ret = rsnd_dai_connect(rdai, mod, io);
return ret;
}
int rsnd_gen_path_exit(struct rsnd_priv *priv,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io)
{
struct rsnd_mod *mod, *n;
int ret = 0;
/*
* remove all mod from rdai
*/
for_each_rsnd_mod(mod, n, io)
ret |= rsnd_dai_disconnect(mod);
return ret;
}
/*
* Gen2
*/
@ -229,14 +173,40 @@ static int rsnd_gen2_regmap_init(struct rsnd_priv *priv, struct rsnd_gen *gen)
RSND_GEN2_S_REG(gen, SSIU, SSI_MODE0, 0x800),
RSND_GEN2_S_REG(gen, SSIU, SSI_MODE1, 0x804),
/* FIXME: it needs SSI_MODE2/3 in the future */
RSND_GEN2_M_REG(gen, SSIU, SSI_BUSIF_MODE, 0x0, 0x80),
RSND_GEN2_M_REG(gen, SSIU, SSI_BUSIF_ADINR,0x4, 0x80),
RSND_GEN2_M_REG(gen, SSIU, SSI_CTRL, 0x10, 0x80),
RSND_GEN2_M_REG(gen, SSIU, INT_ENABLE, 0x18, 0x80),
RSND_GEN2_M_REG(gen, SCU, SRC_BUSIF_MODE, 0x0, 0x20),
RSND_GEN2_M_REG(gen, SCU, SRC_ROUTE_MODE0,0xc, 0x20),
RSND_GEN2_M_REG(gen, SCU, SRC_CTRL, 0x10, 0x20),
RSND_GEN2_M_REG(gen, SCU, SRC_SWRSR, 0x200, 0x40),
RSND_GEN2_M_REG(gen, SCU, SRC_SRCIR, 0x204, 0x40),
RSND_GEN2_M_REG(gen, SCU, SRC_ADINR, 0x214, 0x40),
RSND_GEN2_M_REG(gen, SCU, SRC_IFSCR, 0x21c, 0x40),
RSND_GEN2_M_REG(gen, SCU, SRC_IFSVR, 0x220, 0x40),
RSND_GEN2_M_REG(gen, SCU, SRC_SRCCR, 0x224, 0x40),
RSND_GEN2_M_REG(gen, SCU, SRC_BSDSR, 0x22c, 0x40),
RSND_GEN2_M_REG(gen, SCU, SRC_BSISR, 0x238, 0x40),
RSND_GEN2_S_REG(gen, ADG, BRRA, 0x00),
RSND_GEN2_S_REG(gen, ADG, BRRB, 0x04),
RSND_GEN2_S_REG(gen, ADG, SSICKR, 0x08),
RSND_GEN2_S_REG(gen, ADG, AUDIO_CLK_SEL0, 0x0c),
RSND_GEN2_S_REG(gen, ADG, AUDIO_CLK_SEL1, 0x10),
RSND_GEN2_S_REG(gen, ADG, AUDIO_CLK_SEL2, 0x14),
RSND_GEN2_S_REG(gen, ADG, DIV_EN, 0x30),
RSND_GEN2_S_REG(gen, ADG, SRCIN_TIMSEL0, 0x34),
RSND_GEN2_S_REG(gen, ADG, SRCIN_TIMSEL1, 0x38),
RSND_GEN2_S_REG(gen, ADG, SRCIN_TIMSEL2, 0x3c),
RSND_GEN2_S_REG(gen, ADG, SRCIN_TIMSEL3, 0x40),
RSND_GEN2_S_REG(gen, ADG, SRCIN_TIMSEL4, 0x44),
RSND_GEN2_S_REG(gen, ADG, SRCOUT_TIMSEL0, 0x48),
RSND_GEN2_S_REG(gen, ADG, SRCOUT_TIMSEL1, 0x4c),
RSND_GEN2_S_REG(gen, ADG, SRCOUT_TIMSEL2, 0x50),
RSND_GEN2_S_REG(gen, ADG, SRCOUT_TIMSEL3, 0x54),
RSND_GEN2_S_REG(gen, ADG, SRCOUT_TIMSEL4, 0x58),
RSND_GEN2_M_REG(gen, SSI, SSICR, 0x00, 0x40),
RSND_GEN2_M_REG(gen, SSI, SSISR, 0x04, 0x40),
@ -249,7 +219,6 @@ static int rsnd_gen2_regmap_init(struct rsnd_priv *priv, struct rsnd_gen *gen)
}
static int rsnd_gen2_probe(struct platform_device *pdev,
struct rcar_snd_info *info,
struct rsnd_priv *priv)
{
struct device *dev = rsnd_priv_to_dev(priv);
@ -283,7 +252,7 @@ static int rsnd_gen2_probe(struct platform_device *pdev,
return ret;
dev_dbg(dev, "Gen2 device probed\n");
dev_dbg(dev, "SRU : %08x => %p\n", scu_res->start,
dev_dbg(dev, "SCU : %08x => %p\n", scu_res->start,
gen->base[RSND_GEN2_SCU]);
dev_dbg(dev, "ADG : %08x => %p\n", adg_res->start,
gen->base[RSND_GEN2_ADG]);
@ -317,7 +286,7 @@ static int rsnd_gen1_regmap_init(struct rsnd_priv *priv, struct rsnd_gen *gen)
RSND_GEN1_S_REG(gen, SRU, SRC_ROUTE_CTRL, 0xc0),
RSND_GEN1_S_REG(gen, SRU, SSI_MODE0, 0xD0),
RSND_GEN1_S_REG(gen, SRU, SSI_MODE1, 0xD4),
RSND_GEN1_M_REG(gen, SRU, BUSIF_MODE, 0x20, 0x4),
RSND_GEN1_M_REG(gen, SRU, SRC_BUSIF_MODE, 0x20, 0x4),
RSND_GEN1_M_REG(gen, SRU, SRC_ROUTE_MODE0,0x50, 0x8),
RSND_GEN1_M_REG(gen, SRU, SRC_SWRSR, 0x200, 0x40),
RSND_GEN1_M_REG(gen, SRU, SRC_SRCIR, 0x204, 0x40),
@ -347,7 +316,6 @@ static int rsnd_gen1_regmap_init(struct rsnd_priv *priv, struct rsnd_gen *gen)
}
static int rsnd_gen1_probe(struct platform_device *pdev,
struct rcar_snd_info *info,
struct rsnd_priv *priv)
{
struct device *dev = rsnd_priv_to_dev(priv);
@ -392,7 +360,6 @@ static int rsnd_gen1_probe(struct platform_device *pdev,
* Gen
*/
int rsnd_gen_probe(struct platform_device *pdev,
struct rcar_snd_info *info,
struct rsnd_priv *priv)
{
struct device *dev = rsnd_priv_to_dev(priv);
@ -409,17 +376,12 @@ int rsnd_gen_probe(struct platform_device *pdev,
ret = -ENODEV;
if (rsnd_is_gen1(priv))
ret = rsnd_gen1_probe(pdev, info, priv);
ret = rsnd_gen1_probe(pdev, priv);
else if (rsnd_is_gen2(priv))
ret = rsnd_gen2_probe(pdev, info, priv);
ret = rsnd_gen2_probe(pdev, priv);
if (ret < 0)
dev_err(dev, "unknown generation R-Car sound device\n");
return ret;
}
void rsnd_gen_remove(struct platform_device *pdev,
struct rsnd_priv *priv)
{
}

View File

@ -32,15 +32,9 @@
*/
enum rsnd_reg {
/* SRU/SCU/SSIU */
RSND_REG_SRC_ROUTE_SEL, /* for Gen1 */
RSND_REG_SRC_TMG_SEL0, /* for Gen1 */
RSND_REG_SRC_TMG_SEL1, /* for Gen1 */
RSND_REG_SRC_TMG_SEL2, /* for Gen1 */
RSND_REG_SRC_ROUTE_CTRL, /* for Gen1 */
RSND_REG_SSI_MODE0,
RSND_REG_SSI_MODE1,
RSND_REG_BUSIF_MODE,
RSND_REG_INT_ENABLE, /* for Gen2 */
RSND_REG_SRC_BUSIF_MODE,
RSND_REG_SRC_ROUTE_MODE0,
RSND_REG_SRC_SWRSR,
RSND_REG_SRC_SRCIR,
@ -48,7 +42,6 @@ enum rsnd_reg {
RSND_REG_SRC_IFSCR,
RSND_REG_SRC_IFSVR,
RSND_REG_SRC_SRCCR,
RSND_REG_SRC_MNFSR,
/* ADG */
RSND_REG_BRRA,
@ -56,10 +49,6 @@ enum rsnd_reg {
RSND_REG_SSICKR,
RSND_REG_AUDIO_CLK_SEL0,
RSND_REG_AUDIO_CLK_SEL1,
RSND_REG_AUDIO_CLK_SEL2,
RSND_REG_AUDIO_CLK_SEL3, /* for Gen1 */
RSND_REG_AUDIO_CLK_SEL4, /* for Gen1 */
RSND_REG_AUDIO_CLK_SEL5, /* for Gen1 */
/* SSI */
RSND_REG_SSICR,
@ -68,9 +57,62 @@ enum rsnd_reg {
RSND_REG_SSIRDR,
RSND_REG_SSIWSR,
/* SHARE see below */
RSND_REG_SHARE01,
RSND_REG_SHARE02,
RSND_REG_SHARE03,
RSND_REG_SHARE04,
RSND_REG_SHARE05,
RSND_REG_SHARE06,
RSND_REG_SHARE07,
RSND_REG_SHARE08,
RSND_REG_SHARE09,
RSND_REG_SHARE10,
RSND_REG_SHARE11,
RSND_REG_SHARE12,
RSND_REG_SHARE13,
RSND_REG_SHARE14,
RSND_REG_SHARE15,
RSND_REG_SHARE16,
RSND_REG_SHARE17,
RSND_REG_SHARE18,
RSND_REG_SHARE19,
RSND_REG_MAX,
};
/* Gen1 only */
#define RSND_REG_SRC_ROUTE_SEL RSND_REG_SHARE01
#define RSND_REG_SRC_TMG_SEL0 RSND_REG_SHARE02
#define RSND_REG_SRC_TMG_SEL1 RSND_REG_SHARE03
#define RSND_REG_SRC_TMG_SEL2 RSND_REG_SHARE04
#define RSND_REG_SRC_ROUTE_CTRL RSND_REG_SHARE05
#define RSND_REG_SRC_MNFSR RSND_REG_SHARE06
#define RSND_REG_AUDIO_CLK_SEL3 RSND_REG_SHARE07
#define RSND_REG_AUDIO_CLK_SEL4 RSND_REG_SHARE08
#define RSND_REG_AUDIO_CLK_SEL5 RSND_REG_SHARE09
/* Gen2 only */
#define RSND_REG_SRC_CTRL RSND_REG_SHARE01
#define RSND_REG_SSI_CTRL RSND_REG_SHARE02
#define RSND_REG_SSI_BUSIF_MODE RSND_REG_SHARE03
#define RSND_REG_SSI_BUSIF_ADINR RSND_REG_SHARE04
#define RSND_REG_INT_ENABLE RSND_REG_SHARE05
#define RSND_REG_SRC_BSDSR RSND_REG_SHARE06
#define RSND_REG_SRC_BSISR RSND_REG_SHARE07
#define RSND_REG_DIV_EN RSND_REG_SHARE08
#define RSND_REG_SRCIN_TIMSEL0 RSND_REG_SHARE09
#define RSND_REG_SRCIN_TIMSEL1 RSND_REG_SHARE10
#define RSND_REG_SRCIN_TIMSEL2 RSND_REG_SHARE11
#define RSND_REG_SRCIN_TIMSEL3 RSND_REG_SHARE12
#define RSND_REG_SRCIN_TIMSEL4 RSND_REG_SHARE13
#define RSND_REG_SRCOUT_TIMSEL0 RSND_REG_SHARE14
#define RSND_REG_SRCOUT_TIMSEL1 RSND_REG_SHARE15
#define RSND_REG_SRCOUT_TIMSEL2 RSND_REG_SHARE16
#define RSND_REG_SRCOUT_TIMSEL3 RSND_REG_SHARE17
#define RSND_REG_SRCOUT_TIMSEL4 RSND_REG_SHARE18
#define RSND_REG_AUDIO_CLK_SEL2 RSND_REG_SHARE19
struct rsnd_priv;
struct rsnd_mod;
struct rsnd_dai;
@ -96,24 +138,20 @@ void rsnd_bset(struct rsnd_priv *priv, struct rsnd_mod *mod, enum rsnd_reg reg,
* R-Car DMA
*/
struct rsnd_dma {
struct rsnd_priv *priv;
struct sh_dmae_slave slave;
struct work_struct work;
struct dma_chan *chan;
enum dma_data_direction dir;
int (*inquiry)(struct rsnd_dma *dma, dma_addr_t *buf, int *len);
int (*complete)(struct rsnd_dma *dma);
int submit_loop;
int offset; /* it cares A/B plane */
};
void rsnd_dma_start(struct rsnd_dma *dma);
void rsnd_dma_stop(struct rsnd_dma *dma);
int rsnd_dma_available(struct rsnd_dma *dma);
int rsnd_dma_init(struct rsnd_priv *priv, struct rsnd_dma *dma,
int is_play, int id,
int (*inquiry)(struct rsnd_dma *dma, dma_addr_t *buf, int *len),
int (*complete)(struct rsnd_dma *dma));
int is_play, int id);
void rsnd_dma_quit(struct rsnd_priv *priv,
struct rsnd_dma *dma);
@ -121,9 +159,20 @@ void rsnd_dma_quit(struct rsnd_priv *priv,
/*
* R-Car sound mod
*/
enum rsnd_mod_type {
RSND_MOD_SRC = 0,
RSND_MOD_SSI,
RSND_MOD_MAX,
};
struct rsnd_mod_ops {
char *name;
int (*probe)(struct rsnd_mod *mod,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io);
int (*remove)(struct rsnd_mod *mod,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io);
int (*init)(struct rsnd_mod *mod,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io);
@ -138,28 +187,26 @@ struct rsnd_mod_ops {
struct rsnd_dai_stream *io);
};
struct rsnd_dai_stream;
struct rsnd_mod {
int id;
enum rsnd_mod_type type;
struct rsnd_priv *priv;
struct rsnd_mod_ops *ops;
struct list_head list; /* connect to rsnd_dai playback/capture */
struct rsnd_dma dma;
struct rsnd_dai_stream *io;
};
#define rsnd_mod_to_priv(mod) ((mod)->priv)
#define rsnd_mod_to_dma(mod) (&(mod)->dma)
#define rsnd_dma_to_mod(_dma) container_of((_dma), struct rsnd_mod, dma)
#define rsnd_mod_to_io(mod) ((mod)->io)
#define rsnd_mod_id(mod) ((mod)->id)
#define for_each_rsnd_mod(pos, n, io) \
list_for_each_entry_safe(pos, n, &(io)->head, list)
#define rsnd_mod_call(mod, func, rdai, io) \
(!(mod) ? -ENODEV : \
!((mod)->ops->func) ? 0 : \
(mod)->ops->func(mod, rdai, io))
void rsnd_mod_init(struct rsnd_priv *priv,
struct rsnd_mod *mod,
struct rsnd_mod_ops *ops,
enum rsnd_mod_type type,
int id);
char *rsnd_mod_name(struct rsnd_mod *mod);
@ -168,13 +215,16 @@ char *rsnd_mod_name(struct rsnd_mod *mod);
*/
#define RSND_DAI_NAME_SIZE 16
struct rsnd_dai_stream {
struct list_head head; /* head of rsnd_mod list */
struct snd_pcm_substream *substream;
struct rsnd_mod *mod[RSND_MOD_MAX];
struct rsnd_dai_path_info *info; /* rcar_snd.h */
int byte_pos;
int period_pos;
int byte_per_period;
int next_period_byte;
};
#define rsnd_io_to_mod_ssi(io) ((io)->mod[RSND_MOD_SSI])
#define rsnd_io_to_mod_src(io) ((io)->mod[RSND_MOD_SRC])
struct rsnd_dai {
char name[RSND_DAI_NAME_SIZE];
@ -189,16 +239,14 @@ struct rsnd_dai {
unsigned int data_alignment:1;
};
#define rsnd_dai_nr(priv) ((priv)->dai_nr)
#define rsnd_rdai_nr(priv) ((priv)->rdai_nr)
#define for_each_rsnd_dai(rdai, priv, i) \
for (i = 0, (rdai) = rsnd_dai_get(priv, i); \
i < rsnd_dai_nr(priv); \
i++, (rdai) = rsnd_dai_get(priv, i))
for (i = 0; \
(i < rsnd_rdai_nr(priv)) && \
((rdai) = rsnd_dai_get(priv, i)); \
i++)
struct rsnd_dai *rsnd_dai_get(struct rsnd_priv *priv, int id);
int rsnd_dai_disconnect(struct rsnd_mod *mod);
int rsnd_dai_connect(struct rsnd_dai *rdai, struct rsnd_mod *mod,
struct rsnd_dai_stream *io);
int rsnd_dai_is_play(struct rsnd_dai *rdai, struct rsnd_dai_stream *io);
int rsnd_dai_id(struct rsnd_priv *priv, struct rsnd_dai *rdai);
#define rsnd_dai_get_platform_info(rdai) ((rdai)->info)
@ -206,21 +254,13 @@ int rsnd_dai_id(struct rsnd_priv *priv, struct rsnd_dai *rdai);
void rsnd_dai_pointer_update(struct rsnd_dai_stream *io, int cnt);
int rsnd_dai_pointer_offset(struct rsnd_dai_stream *io, int additional);
#define rsnd_dai_is_clk_master(rdai) ((rdai)->clk_master)
/*
* R-Car Gen1/Gen2
*/
int rsnd_gen_probe(struct platform_device *pdev,
struct rcar_snd_info *info,
struct rsnd_priv *priv);
void rsnd_gen_remove(struct platform_device *pdev,
struct rsnd_priv *priv);
int rsnd_gen_path_init(struct rsnd_priv *priv,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io);
int rsnd_gen_path_exit(struct rsnd_priv *priv,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io);
void __iomem *rsnd_gen_reg_get(struct rsnd_priv *priv,
struct rsnd_mod *mod,
enum rsnd_reg reg);
@ -233,14 +273,19 @@ void __iomem *rsnd_gen_reg_get(struct rsnd_priv *priv,
int rsnd_adg_ssi_clk_stop(struct rsnd_mod *mod);
int rsnd_adg_ssi_clk_try_start(struct rsnd_mod *mod, unsigned int rate);
int rsnd_adg_probe(struct platform_device *pdev,
struct rcar_snd_info *info,
struct rsnd_priv *priv);
void rsnd_adg_remove(struct platform_device *pdev,
struct rsnd_priv *priv);
int rsnd_adg_set_convert_clk(struct rsnd_priv *priv,
struct rsnd_mod *mod,
unsigned int src_rate,
unsigned int dst_rate);
int rsnd_adg_set_convert_clk_gen1(struct rsnd_priv *priv,
struct rsnd_mod *mod,
unsigned int src_rate,
unsigned int dst_rate);
int rsnd_adg_set_convert_clk_gen2(struct rsnd_mod *mod,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io,
unsigned int src_rate,
unsigned int dst_rate);
int rsnd_adg_set_convert_timing_gen2(struct rsnd_mod *mod,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io);
/*
* R-Car sound priv
@ -257,10 +302,10 @@ struct rsnd_priv {
void *gen;
/*
* below value will be filled on rsnd_scu_probe()
* below value will be filled on rsnd_src_probe()
*/
void *scu;
int scu_nr;
void *src;
int src_nr;
/*
* below value will be filled on rsnd_adg_probe()
@ -270,46 +315,62 @@ struct rsnd_priv {
/*
* below value will be filled on rsnd_ssi_probe()
*/
void *ssiu;
void *ssi;
int ssi_nr;
/*
* below value will be filled on rsnd_dai_probe()
*/
struct snd_soc_dai_driver *daidrv;
struct rsnd_dai *rdai;
int dai_nr;
int rdai_nr;
};
#define rsnd_priv_to_dev(priv) ((priv)->dev)
#define rsnd_priv_to_info(priv) ((priv)->info)
#define rsnd_lock(priv, flags) spin_lock_irqsave(&priv->lock, flags)
#define rsnd_unlock(priv, flags) spin_unlock_irqrestore(&priv->lock, flags)
/*
* R-Car SCU
*/
int rsnd_scu_probe(struct platform_device *pdev,
struct rcar_snd_info *info,
struct rsnd_priv *priv);
void rsnd_scu_remove(struct platform_device *pdev,
struct rsnd_priv *priv);
struct rsnd_mod *rsnd_scu_mod_get(struct rsnd_priv *priv, int id);
bool rsnd_scu_hpbif_is_enable(struct rsnd_mod *mod);
unsigned int rsnd_scu_get_ssi_rate(struct rsnd_priv *priv,
struct rsnd_mod *ssi_mod,
struct snd_pcm_runtime *runtime);
#define rsnd_info_is_playback(priv, type) \
({ \
struct rcar_snd_info *info = rsnd_priv_to_info(priv); \
int i, is_play = 0; \
for (i = 0; i < info->dai_info_nr; i++) { \
if (info->dai_info[i].playback.type == (type)->info) { \
is_play = 1; \
break; \
} \
} \
is_play; \
})
#define rsnd_scu_nr(priv) ((priv)->scu_nr)
/*
* R-Car SRC
*/
int rsnd_src_probe(struct platform_device *pdev,
struct rsnd_priv *priv);
struct rsnd_mod *rsnd_src_mod_get(struct rsnd_priv *priv, int id);
unsigned int rsnd_src_get_ssi_rate(struct rsnd_priv *priv,
struct rsnd_dai_stream *io,
struct snd_pcm_runtime *runtime);
int rsnd_src_ssi_mode_init(struct rsnd_mod *ssi_mod,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io);
int rsnd_src_enable_ssi_irq(struct rsnd_mod *ssi_mod,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io);
#define rsnd_src_nr(priv) ((priv)->src_nr)
/*
* R-Car SSI
*/
int rsnd_ssi_probe(struct platform_device *pdev,
struct rcar_snd_info *info,
struct rsnd_priv *priv);
void rsnd_ssi_remove(struct platform_device *pdev,
struct rsnd_priv *priv);
struct rsnd_mod *rsnd_ssi_mod_get(struct rsnd_priv *priv, int id);
struct rsnd_mod *rsnd_ssi_mod_get_frm_dai(struct rsnd_priv *priv,
int dai_id, int is_play);
int rsnd_ssi_is_pin_sharing(struct rsnd_mod *mod);
int rsnd_ssi_is_play(struct rsnd_mod *mod);
#endif

View File

@ -1,384 +0,0 @@
/*
* Renesas R-Car SCU support
*
* Copyright (C) 2013 Renesas Solutions Corp.
* Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include "rsnd.h"
struct rsnd_scu {
struct rsnd_scu_platform_info *info; /* rcar_snd.h */
struct rsnd_mod mod;
struct clk *clk;
};
#define rsnd_scu_mode_flags(p) ((p)->info->flags)
#define rsnd_scu_convert_rate(p) ((p)->info->convert_rate)
#define RSND_SCU_NAME_SIZE 16
/*
* ADINR
*/
#define OTBL_24 (0 << 16)
#define OTBL_22 (2 << 16)
#define OTBL_20 (4 << 16)
#define OTBL_18 (6 << 16)
#define OTBL_16 (8 << 16)
/*
* image of SRC (Sampling Rate Converter)
*
* 96kHz <-> +-----+ 48kHz +-----+ 48kHz +-------+
* 48kHz <-> | SRC | <------> | SSI | <-----> | codec |
* 44.1kHz <-> +-----+ +-----+ +-------+
* ...
*
*/
#define rsnd_mod_to_scu(_mod) \
container_of((_mod), struct rsnd_scu, mod)
#define for_each_rsnd_scu(pos, priv, i) \
for ((i) = 0; \
((i) < rsnd_scu_nr(priv)) && \
((pos) = (struct rsnd_scu *)(priv)->scu + i); \
i++)
/* Gen1 only */
static int rsnd_src_set_route_if_gen1(struct rsnd_priv *priv,
struct rsnd_mod *mod,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io)
{
struct scu_route_config {
u32 mask;
int shift;
} routes[] = {
{ 0xF, 0, }, /* 0 */
{ 0xF, 4, }, /* 1 */
{ 0xF, 8, }, /* 2 */
{ 0x7, 12, }, /* 3 */
{ 0x7, 16, }, /* 4 */
{ 0x7, 20, }, /* 5 */
{ 0x7, 24, }, /* 6 */
{ 0x3, 28, }, /* 7 */
{ 0x3, 30, }, /* 8 */
};
struct rsnd_scu *scu = rsnd_mod_to_scu(mod);
u32 mask;
u32 val;
int shift;
int id;
/*
* Gen1 only
*/
if (!rsnd_is_gen1(priv))
return 0;
id = rsnd_mod_id(mod);
if (id < 0 || id >= ARRAY_SIZE(routes))
return -EIO;
/*
* SRC_ROUTE_SELECT
*/
val = rsnd_dai_is_play(rdai, io) ? 0x1 : 0x2;
val = val << routes[id].shift;
mask = routes[id].mask << routes[id].shift;
rsnd_mod_bset(mod, SRC_ROUTE_SEL, mask, val);
/*
* SRC_TIMING_SELECT
*/
shift = (id % 4) * 8;
mask = 0x1F << shift;
/*
* ADG is used as source clock if SRC was used,
* then, SSI WS is used as destination clock.
* SSI WS is used as source clock if SRC is not used
* (when playback, source/destination become reverse when capture)
*/
if (rsnd_scu_convert_rate(scu)) /* use ADG */
val = 0;
else if (8 == id) /* use SSI WS, but SRU8 is special */
val = id << shift;
else /* use SSI WS */
val = (id + 1) << shift;
switch (id / 4) {
case 0:
rsnd_mod_bset(mod, SRC_TMG_SEL0, mask, val);
break;
case 1:
rsnd_mod_bset(mod, SRC_TMG_SEL1, mask, val);
break;
case 2:
rsnd_mod_bset(mod, SRC_TMG_SEL2, mask, val);
break;
}
return 0;
}
unsigned int rsnd_scu_get_ssi_rate(struct rsnd_priv *priv,
struct rsnd_mod *ssi_mod,
struct snd_pcm_runtime *runtime)
{
struct rsnd_scu *scu;
unsigned int rate;
/* this function is assuming SSI id = SCU id here */
scu = rsnd_mod_to_scu(rsnd_scu_mod_get(priv, rsnd_mod_id(ssi_mod)));
/*
* return convert rate if SRC is used,
* otherwise, return runtime->rate as usual
*/
rate = rsnd_scu_convert_rate(scu);
if (!rate)
rate = runtime->rate;
return rate;
}
static int rsnd_scu_convert_rate_ctrl(struct rsnd_priv *priv,
struct rsnd_mod *mod,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io)
{
struct snd_pcm_runtime *runtime = rsnd_io_to_runtime(io);
struct rsnd_scu *scu = rsnd_mod_to_scu(mod);
u32 convert_rate = rsnd_scu_convert_rate(scu);
u32 adinr = runtime->channels;
/* set/clear soft reset */
rsnd_mod_write(mod, SRC_SWRSR, 0);
rsnd_mod_write(mod, SRC_SWRSR, 1);
/* Initialize the operation of the SRC internal circuits */
rsnd_mod_write(mod, SRC_SRCIR, 1);
/* Set channel number and output bit length */
switch (runtime->sample_bits) {
case 16:
adinr |= OTBL_16;
break;
case 32:
adinr |= OTBL_24;
break;
default:
return -EIO;
}
rsnd_mod_write(mod, SRC_ADINR, adinr);
if (convert_rate) {
u32 fsrate = 0x0400000 / convert_rate * runtime->rate;
int ret;
/* Enable the initial value of IFS */
rsnd_mod_write(mod, SRC_IFSCR, 1);
/* Set initial value of IFS */
rsnd_mod_write(mod, SRC_IFSVR, fsrate);
/* Select SRC mode (fixed value) */
rsnd_mod_write(mod, SRC_SRCCR, 0x00010110);
/* Set the restriction value of the FS ratio (98%) */
rsnd_mod_write(mod, SRC_MNFSR, fsrate / 100 * 98);
if (rsnd_is_gen1(priv)) {
/* no SRC_BFSSR settings, since SRC_SRCCR::BUFMD is 0 */
}
/* set convert clock */
ret = rsnd_adg_set_convert_clk(priv, mod,
runtime->rate,
convert_rate);
if (ret < 0)
return ret;
}
/* Cancel the initialization and operate the SRC function */
rsnd_mod_write(mod, SRC_SRCIR, 0);
/* use DMA transfer */
rsnd_mod_write(mod, BUSIF_MODE, 1);
return 0;
}
static int rsnd_scu_transfer_start(struct rsnd_priv *priv,
struct rsnd_mod *mod,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io)
{
struct rsnd_scu *scu = rsnd_mod_to_scu(mod);
int id = rsnd_mod_id(mod);
u32 val;
if (rsnd_is_gen1(priv)) {
val = (1 << id);
rsnd_mod_bset(mod, SRC_ROUTE_CTRL, val, val);
}
if (rsnd_scu_convert_rate(scu))
rsnd_mod_write(mod, SRC_ROUTE_MODE0, 1);
return 0;
}
static int rsnd_scu_transfer_stop(struct rsnd_priv *priv,
struct rsnd_mod *mod,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io)
{
struct rsnd_scu *scu = rsnd_mod_to_scu(mod);
int id = rsnd_mod_id(mod);
u32 mask;
if (rsnd_is_gen1(priv)) {
mask = (1 << id);
rsnd_mod_bset(mod, SRC_ROUTE_CTRL, mask, 0);
}
if (rsnd_scu_convert_rate(scu))
rsnd_mod_write(mod, SRC_ROUTE_MODE0, 0);
return 0;
}
bool rsnd_scu_hpbif_is_enable(struct rsnd_mod *mod)
{
struct rsnd_scu *scu = rsnd_mod_to_scu(mod);
u32 flags = rsnd_scu_mode_flags(scu);
return !!(flags & RSND_SCU_USE_HPBIF);
}
static int rsnd_scu_start(struct rsnd_mod *mod,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io)
{
struct rsnd_priv *priv = rsnd_mod_to_priv(mod);
struct rsnd_scu *scu = rsnd_mod_to_scu(mod);
struct device *dev = rsnd_priv_to_dev(priv);
int ret;
/*
* SCU will be used if it has RSND_SCU_USE_HPBIF flags
*/
if (!rsnd_scu_hpbif_is_enable(mod)) {
/* it use PIO transter */
dev_dbg(dev, "%s%d is not used\n",
rsnd_mod_name(mod), rsnd_mod_id(mod));
return 0;
}
clk_enable(scu->clk);
/* it use DMA transter */
ret = rsnd_src_set_route_if_gen1(priv, mod, rdai, io);
if (ret < 0)
return ret;
ret = rsnd_scu_convert_rate_ctrl(priv, mod, rdai, io);
if (ret < 0)
return ret;
ret = rsnd_scu_transfer_start(priv, mod, rdai, io);
if (ret < 0)
return ret;
dev_dbg(dev, "%s%d start\n", rsnd_mod_name(mod), rsnd_mod_id(mod));
return 0;
}
static int rsnd_scu_stop(struct rsnd_mod *mod,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io)
{
struct rsnd_priv *priv = rsnd_mod_to_priv(mod);
struct rsnd_scu *scu = rsnd_mod_to_scu(mod);
if (!rsnd_scu_hpbif_is_enable(mod))
return 0;
rsnd_scu_transfer_stop(priv, mod, rdai, io);
clk_disable(scu->clk);
return 0;
}
static struct rsnd_mod_ops rsnd_scu_ops = {
.name = "scu",
.start = rsnd_scu_start,
.stop = rsnd_scu_stop,
};
struct rsnd_mod *rsnd_scu_mod_get(struct rsnd_priv *priv, int id)
{
if (WARN_ON(id < 0 || id >= rsnd_scu_nr(priv)))
id = 0;
return &((struct rsnd_scu *)(priv->scu) + id)->mod;
}
int rsnd_scu_probe(struct platform_device *pdev,
struct rcar_snd_info *info,
struct rsnd_priv *priv)
{
struct device *dev = rsnd_priv_to_dev(priv);
struct rsnd_scu *scu;
struct clk *clk;
char name[RSND_SCU_NAME_SIZE];
int i, nr;
/*
* init SCU
*/
nr = info->scu_info_nr;
scu = devm_kzalloc(dev, sizeof(*scu) * nr, GFP_KERNEL);
if (!scu) {
dev_err(dev, "SCU allocate failed\n");
return -ENOMEM;
}
priv->scu_nr = nr;
priv->scu = scu;
for_each_rsnd_scu(scu, priv, i) {
snprintf(name, RSND_SCU_NAME_SIZE, "scu.%d", i);
clk = devm_clk_get(dev, name);
if (IS_ERR(clk))
return PTR_ERR(clk);
rsnd_mod_init(priv, &scu->mod,
&rsnd_scu_ops, i);
scu->info = &info->scu_info[i];
scu->clk = clk;
dev_dbg(dev, "SCU%d probed\n", i);
}
dev_dbg(dev, "scu probed\n");
return 0;
}
void rsnd_scu_remove(struct platform_device *pdev,
struct rsnd_priv *priv)
{
}

View File

@ -0,0 +1,687 @@
/*
* Renesas R-Car SRC support
*
* Copyright (C) 2013 Renesas Solutions Corp.
* Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include "rsnd.h"
struct rsnd_src {
struct rsnd_src_platform_info *info; /* rcar_snd.h */
struct rsnd_mod mod;
struct clk *clk;
};
#define RSND_SRC_NAME_SIZE 16
/*
* ADINR
*/
#define OTBL_24 (0 << 16)
#define OTBL_22 (2 << 16)
#define OTBL_20 (4 << 16)
#define OTBL_18 (6 << 16)
#define OTBL_16 (8 << 16)
#define rsnd_src_mode_flags(p) ((p)->info->flags)
#define rsnd_src_convert_rate(p) ((p)->info->convert_rate)
#define rsnd_mod_to_src(_mod) \
container_of((_mod), struct rsnd_src, mod)
#define rsnd_src_hpbif_is_enable(src) \
(rsnd_src_mode_flags(src) & RSND_SCU_USE_HPBIF)
#define rsnd_src_dma_available(src) \
rsnd_dma_available(rsnd_mod_to_dma(&(src)->mod))
#define for_each_rsnd_src(pos, priv, i) \
for ((i) = 0; \
((i) < rsnd_src_nr(priv)) && \
((pos) = (struct rsnd_src *)(priv)->src + i); \
i++)
/*
* image of SRC (Sampling Rate Converter)
*
* 96kHz <-> +-----+ 48kHz +-----+ 48kHz +-------+
* 48kHz <-> | SRC | <------> | SSI | <-----> | codec |
* 44.1kHz <-> +-----+ +-----+ +-------+
* ...
*
*/
/*
* src.c is caring...
*
* Gen1
*
* [mem] -> [SRU] -> [SSI]
* |--------|
*
* Gen2
*
* [mem] -> [SRC] -> [SSIU] -> [SSI]
* |-----------------|
*/
/*
* How to use SRC bypass mode for debugging
*
* SRC has bypass mode, and it is useful for debugging.
* In Gen2 case,
* SRCm_MODE controls whether SRC is used or not
* SSI_MODE0 controls whether SSIU which receives SRC data
* is used or not.
* Both SRCm_MODE/SSI_MODE0 settings are needed if you use SRC,
* but SRC bypass mode needs SSI_MODE0 only.
*
* This driver request
* struct rsnd_src_platform_info {
* u32 flags;
* u32 convert_rate;
* }
*
* rsnd_src_hpbif_is_enable() will be true
* if flags had RSND_SRC_USE_HPBIF,
* and it controls whether SSIU is used or not.
*
* rsnd_src_convert_rate() indicates
* above convert_rate, and it controls
* whether SRC is used or not.
*
* ex) doesn't use SRC
* struct rsnd_src_platform_info info = {
* .flags = 0,
* .convert_rate = 0,
* };
*
* ex) uses SRC
* struct rsnd_src_platform_info info = {
* .flags = RSND_SRC_USE_HPBIF,
* .convert_rate = 48000,
* };
*
* ex) uses SRC bypass mode
* struct rsnd_src_platform_info info = {
* .flags = RSND_SRC_USE_HPBIF,
* .convert_rate = 0,
* };
*
*/
/*
* Gen1/Gen2 common functions
*/
int rsnd_src_ssi_mode_init(struct rsnd_mod *ssi_mod,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io)
{
struct rsnd_priv *priv = rsnd_mod_to_priv(ssi_mod);
struct rsnd_mod *src_mod = rsnd_io_to_mod_src(io);
struct rcar_snd_info *info = rsnd_priv_to_info(priv);
int ssi_id = rsnd_mod_id(ssi_mod);
int has_src = 0;
/*
* SSI_MODE0
*/
if (info->dai_info) {
has_src = !!src_mod;
} else {
struct rsnd_src *src = rsnd_mod_to_src(src_mod);
has_src = rsnd_src_hpbif_is_enable(src);
}
rsnd_mod_bset(ssi_mod, SSI_MODE0, (1 << ssi_id),
has_src ? 0 : (1 << ssi_id));
/*
* SSI_MODE1
*/
if (rsnd_ssi_is_pin_sharing(ssi_mod)) {
int shift = -1;
switch (ssi_id) {
case 1:
shift = 0;
break;
case 2:
shift = 2;
break;
case 4:
shift = 16;
break;
}
if (shift >= 0)
rsnd_mod_bset(ssi_mod, SSI_MODE1,
0x3 << shift,
rsnd_dai_is_clk_master(rdai) ?
0x2 << shift : 0x1 << shift);
}
return 0;
}
int rsnd_src_enable_ssi_irq(struct rsnd_mod *ssi_mod,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io)
{
struct rsnd_priv *priv = rsnd_mod_to_priv(ssi_mod);
/* enable PIO interrupt if Gen2 */
if (rsnd_is_gen2(priv))
rsnd_mod_write(ssi_mod, INT_ENABLE, 0x0f000000);
return 0;
}
unsigned int rsnd_src_get_ssi_rate(struct rsnd_priv *priv,
struct rsnd_dai_stream *io,
struct snd_pcm_runtime *runtime)
{
struct rsnd_src *src;
unsigned int rate;
src = rsnd_mod_to_src(rsnd_io_to_mod_src(io));
/*
* return convert rate if SRC is used,
* otherwise, return runtime->rate as usual
*/
rate = rsnd_src_convert_rate(src);
if (!rate)
rate = runtime->rate;
return rate;
}
static int rsnd_src_set_convert_rate(struct rsnd_mod *mod,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io)
{
struct snd_pcm_runtime *runtime = rsnd_io_to_runtime(io);
struct rsnd_src *src = rsnd_mod_to_src(mod);
u32 convert_rate = rsnd_src_convert_rate(src);
u32 adinr = runtime->channels;
u32 fsrate = 0;
if (convert_rate)
fsrate = 0x0400000 / convert_rate * runtime->rate;
/* set/clear soft reset */
rsnd_mod_write(mod, SRC_SWRSR, 0);
rsnd_mod_write(mod, SRC_SWRSR, 1);
/*
* Initialize the operation of the SRC internal circuits
* see rsnd_src_start()
*/
rsnd_mod_write(mod, SRC_SRCIR, 1);
/* Set channel number and output bit length */
switch (runtime->sample_bits) {
case 16:
adinr |= OTBL_16;
break;
case 32:
adinr |= OTBL_24;
break;
default:
return -EIO;
}
rsnd_mod_write(mod, SRC_ADINR, adinr);
/* Enable the initial value of IFS */
if (fsrate) {
rsnd_mod_write(mod, SRC_IFSCR, 1);
/* Set initial value of IFS */
rsnd_mod_write(mod, SRC_IFSVR, fsrate);
}
/* use DMA transfer */
rsnd_mod_write(mod, SRC_BUSIF_MODE, 1);
return 0;
}
static int rsnd_src_init(struct rsnd_mod *mod,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io)
{
struct rsnd_src *src = rsnd_mod_to_src(mod);
clk_enable(src->clk);
return 0;
}
static int rsnd_src_quit(struct rsnd_mod *mod,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io)
{
struct rsnd_src *src = rsnd_mod_to_src(mod);
clk_disable(src->clk);
return 0;
}
static int rsnd_src_start(struct rsnd_mod *mod,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io)
{
struct rsnd_src *src = rsnd_mod_to_src(mod);
/*
* Cancel the initialization and operate the SRC function
* see rsnd_src_set_convert_rate()
*/
rsnd_mod_write(mod, SRC_SRCIR, 0);
if (rsnd_src_convert_rate(src))
rsnd_mod_write(mod, SRC_ROUTE_MODE0, 1);
return 0;
}
static int rsnd_src_stop(struct rsnd_mod *mod,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io)
{
struct rsnd_src *src = rsnd_mod_to_src(mod);
if (rsnd_src_convert_rate(src))
rsnd_mod_write(mod, SRC_ROUTE_MODE0, 0);
return 0;
}
static struct rsnd_mod_ops rsnd_src_non_ops = {
.name = "src (non)",
};
/*
* Gen1 functions
*/
static int rsnd_src_set_route_gen1(struct rsnd_mod *mod,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io)
{
struct src_route_config {
u32 mask;
int shift;
} routes[] = {
{ 0xF, 0, }, /* 0 */
{ 0xF, 4, }, /* 1 */
{ 0xF, 8, }, /* 2 */
{ 0x7, 12, }, /* 3 */
{ 0x7, 16, }, /* 4 */
{ 0x7, 20, }, /* 5 */
{ 0x7, 24, }, /* 6 */
{ 0x3, 28, }, /* 7 */
{ 0x3, 30, }, /* 8 */
};
u32 mask;
u32 val;
int id;
id = rsnd_mod_id(mod);
if (id < 0 || id >= ARRAY_SIZE(routes))
return -EIO;
/*
* SRC_ROUTE_SELECT
*/
val = rsnd_dai_is_play(rdai, io) ? 0x1 : 0x2;
val = val << routes[id].shift;
mask = routes[id].mask << routes[id].shift;
rsnd_mod_bset(mod, SRC_ROUTE_SEL, mask, val);
return 0;
}
static int rsnd_src_set_convert_timing_gen1(struct rsnd_mod *mod,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io)
{
struct rsnd_priv *priv = rsnd_mod_to_priv(mod);
struct rsnd_src *src = rsnd_mod_to_src(mod);
struct snd_pcm_runtime *runtime = rsnd_io_to_runtime(io);
u32 convert_rate = rsnd_src_convert_rate(src);
u32 mask;
u32 val;
int shift;
int id = rsnd_mod_id(mod);
int ret;
/*
* SRC_TIMING_SELECT
*/
shift = (id % 4) * 8;
mask = 0x1F << shift;
/*
* ADG is used as source clock if SRC was used,
* then, SSI WS is used as destination clock.
* SSI WS is used as source clock if SRC is not used
* (when playback, source/destination become reverse when capture)
*/
ret = 0;
if (convert_rate) {
/* use ADG */
val = 0;
ret = rsnd_adg_set_convert_clk_gen1(priv, mod,
runtime->rate,
convert_rate);
} else if (8 == id) {
/* use SSI WS, but SRU8 is special */
val = id << shift;
} else {
/* use SSI WS */
val = (id + 1) << shift;
}
if (ret < 0)
return ret;
switch (id / 4) {
case 0:
rsnd_mod_bset(mod, SRC_TMG_SEL0, mask, val);
break;
case 1:
rsnd_mod_bset(mod, SRC_TMG_SEL1, mask, val);
break;
case 2:
rsnd_mod_bset(mod, SRC_TMG_SEL2, mask, val);
break;
}
return 0;
}
static int rsnd_src_set_convert_rate_gen1(struct rsnd_mod *mod,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io)
{
int ret;
ret = rsnd_src_set_convert_rate(mod, rdai, io);
if (ret < 0)
return ret;
/* Select SRC mode (fixed value) */
rsnd_mod_write(mod, SRC_SRCCR, 0x00010110);
/* Set the restriction value of the FS ratio (98%) */
rsnd_mod_write(mod, SRC_MNFSR,
rsnd_mod_read(mod, SRC_IFSVR) / 100 * 98);
/* no SRC_BFSSR settings, since SRC_SRCCR::BUFMD is 0 */
return 0;
}
static int rsnd_src_init_gen1(struct rsnd_mod *mod,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io)
{
int ret;
ret = rsnd_src_init(mod, rdai, io);
if (ret < 0)
return ret;
ret = rsnd_src_set_route_gen1(mod, rdai, io);
if (ret < 0)
return ret;
ret = rsnd_src_set_convert_rate_gen1(mod, rdai, io);
if (ret < 0)
return ret;
ret = rsnd_src_set_convert_timing_gen1(mod, rdai, io);
if (ret < 0)
return ret;
return 0;
}
static int rsnd_src_start_gen1(struct rsnd_mod *mod,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io)
{
int id = rsnd_mod_id(mod);
rsnd_mod_bset(mod, SRC_ROUTE_CTRL, (1 << id), (1 << id));
return rsnd_src_start(mod, rdai, io);
}
static int rsnd_src_stop_gen1(struct rsnd_mod *mod,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io)
{
int id = rsnd_mod_id(mod);
rsnd_mod_bset(mod, SRC_ROUTE_CTRL, (1 << id), 0);
return rsnd_src_stop(mod, rdai, io);
}
static struct rsnd_mod_ops rsnd_src_gen1_ops = {
.name = "sru (gen1)",
.init = rsnd_src_init_gen1,
.quit = rsnd_src_quit,
.start = rsnd_src_start_gen1,
.stop = rsnd_src_stop_gen1,
};
/*
* Gen2 functions
*/
static int rsnd_src_set_convert_rate_gen2(struct rsnd_mod *mod,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io)
{
int ret;
ret = rsnd_src_set_convert_rate(mod, rdai, io);
if (ret < 0)
return ret;
rsnd_mod_write(mod, SSI_BUSIF_ADINR, rsnd_mod_read(mod, SRC_ADINR));
rsnd_mod_write(mod, SSI_BUSIF_MODE, rsnd_mod_read(mod, SRC_BUSIF_MODE));
rsnd_mod_write(mod, SRC_SRCCR, 0x00011110);
rsnd_mod_write(mod, SRC_BSDSR, 0x01800000);
rsnd_mod_write(mod, SRC_BSISR, 0x00100060);
return 0;
}
static int rsnd_src_set_convert_timing_gen2(struct rsnd_mod *mod,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io)
{
struct snd_pcm_runtime *runtime = rsnd_io_to_runtime(io);
struct rsnd_src *src = rsnd_mod_to_src(mod);
u32 convert_rate = rsnd_src_convert_rate(src);
int ret;
if (convert_rate)
ret = rsnd_adg_set_convert_clk_gen2(mod, rdai, io,
runtime->rate,
convert_rate);
else
ret = rsnd_adg_set_convert_timing_gen2(mod, rdai, io);
return ret;
}
static int rsnd_src_probe_gen2(struct rsnd_mod *mod,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io)
{
struct rsnd_priv *priv = rsnd_mod_to_priv(mod);
struct rcar_snd_info *info = rsnd_priv_to_info(priv);
struct rsnd_src *src = rsnd_mod_to_src(mod);
struct rsnd_mod *ssi = rsnd_ssi_mod_get(priv, rsnd_mod_id(mod));
struct device *dev = rsnd_priv_to_dev(priv);
int ret;
int is_play;
if (info->dai_info)
is_play = rsnd_info_is_playback(priv, src);
else
is_play = rsnd_ssi_is_play(ssi);
ret = rsnd_dma_init(priv,
rsnd_mod_to_dma(mod),
is_play,
src->info->dma_id);
if (ret < 0)
dev_err(dev, "SRC DMA failed\n");
return ret;
}
static int rsnd_src_remove_gen2(struct rsnd_mod *mod,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io)
{
rsnd_dma_quit(rsnd_mod_to_priv(mod), rsnd_mod_to_dma(mod));
return 0;
}
static int rsnd_src_init_gen2(struct rsnd_mod *mod,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io)
{
int ret;
ret = rsnd_src_init(mod, rdai, io);
if (ret < 0)
return ret;
ret = rsnd_src_set_convert_rate_gen2(mod, rdai, io);
if (ret < 0)
return ret;
ret = rsnd_src_set_convert_timing_gen2(mod, rdai, io);
if (ret < 0)
return ret;
return 0;
}
static int rsnd_src_start_gen2(struct rsnd_mod *mod,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io)
{
struct rsnd_src *src = rsnd_mod_to_src(mod);
rsnd_dma_start(rsnd_mod_to_dma(&src->mod));
rsnd_mod_write(mod, SSI_CTRL, 0x1);
rsnd_mod_write(mod, SRC_CTRL, 0x11);
return rsnd_src_start(mod, rdai, io);
}
static int rsnd_src_stop_gen2(struct rsnd_mod *mod,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io)
{
struct rsnd_src *src = rsnd_mod_to_src(mod);
rsnd_mod_write(mod, SSI_CTRL, 0);
rsnd_mod_write(mod, SRC_CTRL, 0);
rsnd_dma_stop(rsnd_mod_to_dma(&src->mod));
return rsnd_src_stop(mod, rdai, io);
}
static struct rsnd_mod_ops rsnd_src_gen2_ops = {
.name = "src (gen2)",
.probe = rsnd_src_probe_gen2,
.remove = rsnd_src_remove_gen2,
.init = rsnd_src_init_gen2,
.quit = rsnd_src_quit,
.start = rsnd_src_start_gen2,
.stop = rsnd_src_stop_gen2,
};
struct rsnd_mod *rsnd_src_mod_get(struct rsnd_priv *priv, int id)
{
if (WARN_ON(id < 0 || id >= rsnd_src_nr(priv)))
id = 0;
return &((struct rsnd_src *)(priv->src) + id)->mod;
}
int rsnd_src_probe(struct platform_device *pdev,
struct rsnd_priv *priv)
{
struct rcar_snd_info *info = rsnd_priv_to_info(priv);
struct device *dev = rsnd_priv_to_dev(priv);
struct rsnd_src *src;
struct rsnd_mod_ops *ops;
struct clk *clk;
char name[RSND_SRC_NAME_SIZE];
int i, nr;
/*
* init SRC
*/
nr = info->src_info_nr;
if (!nr)
return 0;
src = devm_kzalloc(dev, sizeof(*src) * nr, GFP_KERNEL);
if (!src) {
dev_err(dev, "SRC allocate failed\n");
return -ENOMEM;
}
priv->src_nr = nr;
priv->src = src;
for_each_rsnd_src(src, priv, i) {
snprintf(name, RSND_SRC_NAME_SIZE, "src.%d", i);
clk = devm_clk_get(dev, name);
if (IS_ERR(clk)) {
snprintf(name, RSND_SRC_NAME_SIZE, "scu.%d", i);
clk = devm_clk_get(dev, name);
}
if (IS_ERR(clk))
return PTR_ERR(clk);
src->info = &info->src_info[i];
src->clk = clk;
ops = &rsnd_src_non_ops;
if (rsnd_src_hpbif_is_enable(src)) {
if (rsnd_is_gen1(priv))
ops = &rsnd_src_gen1_ops;
if (rsnd_is_gen2(priv))
ops = &rsnd_src_gen2_ops;
}
rsnd_mod_init(priv, &src->mod, ops, RSND_MOD_SRC, i);
dev_dbg(dev, "SRC%d probed\n", i);
}
return 0;
}

View File

@ -64,108 +64,29 @@ struct rsnd_ssi {
struct rsnd_mod mod;
struct rsnd_dai *rdai;
struct rsnd_dai_stream *io;
u32 cr_own;
u32 cr_clk;
u32 cr_etc;
int err;
int dma_offset;
unsigned int usrcnt;
unsigned int rate;
};
struct rsnd_ssiu {
u32 ssi_mode0;
u32 ssi_mode1;
int ssi_nr;
struct rsnd_ssi *ssi;
};
#define for_each_rsnd_ssi(pos, priv, i) \
for (i = 0; \
(i < rsnd_ssi_nr(priv)) && \
((pos) = ((struct rsnd_ssiu *)((priv)->ssiu))->ssi + i); \
((pos) = ((struct rsnd_ssi *)(priv)->ssi + i)); \
i++)
#define rsnd_ssi_nr(priv) (((struct rsnd_ssiu *)((priv)->ssiu))->ssi_nr)
#define rsnd_ssi_nr(priv) ((priv)->ssi_nr)
#define rsnd_mod_to_ssi(_mod) container_of((_mod), struct rsnd_ssi, mod)
#define rsnd_dma_to_ssi(dma) rsnd_mod_to_ssi(rsnd_dma_to_mod(dma))
#define rsnd_ssi_pio_available(ssi) ((ssi)->info->pio_irq > 0)
#define rsnd_ssi_dma_available(ssi) \
rsnd_dma_available(rsnd_mod_to_dma(&(ssi)->mod))
#define rsnd_ssi_clk_from_parent(ssi) ((ssi)->parent)
#define rsnd_rdai_is_clk_master(rdai) ((rdai)->clk_master)
#define rsnd_ssi_mode_flags(p) ((p)->info->flags)
#define rsnd_ssi_dai_id(ssi) ((ssi)->info->dai_id)
#define rsnd_ssi_to_ssiu(ssi)\
(((struct rsnd_ssiu *)((ssi) - rsnd_mod_id(&(ssi)->mod))) - 1)
static void rsnd_ssi_mode_set(struct rsnd_priv *priv,
struct rsnd_dai *rdai,
struct rsnd_ssi *ssi)
{
struct device *dev = rsnd_priv_to_dev(priv);
struct rsnd_mod *scu;
struct rsnd_ssiu *ssiu = rsnd_ssi_to_ssiu(ssi);
int id = rsnd_mod_id(&ssi->mod);
u32 flags;
u32 val;
scu = rsnd_scu_mod_get(priv, rsnd_mod_id(&ssi->mod));
/*
* SSI_MODE0
*/
/* see also BUSIF_MODE */
if (rsnd_scu_hpbif_is_enable(scu)) {
ssiu->ssi_mode0 &= ~(1 << id);
dev_dbg(dev, "SSI%d uses DEPENDENT mode\n", id);
} else {
ssiu->ssi_mode0 |= (1 << id);
dev_dbg(dev, "SSI%d uses INDEPENDENT mode\n", id);
}
/*
* SSI_MODE1
*/
#define ssi_parent_set(p, sync, adg, ext) \
do { \
ssi->parent = ssiu->ssi + p; \
if (rsnd_rdai_is_clk_master(rdai)) \
val = adg; \
else \
val = ext; \
if (flags & RSND_SSI_SYNC) \
val |= sync; \
} while (0)
flags = rsnd_ssi_mode_flags(ssi);
if (flags & RSND_SSI_CLK_PIN_SHARE) {
val = 0;
switch (id) {
case 1:
ssi_parent_set(0, (1 << 4), (0x2 << 0), (0x1 << 0));
break;
case 2:
ssi_parent_set(0, (1 << 4), (0x2 << 2), (0x1 << 2));
break;
case 4:
ssi_parent_set(3, (1 << 20), (0x2 << 16), (0x1 << 16));
break;
case 8:
ssi_parent_set(7, 0, 0, 0);
break;
}
ssiu->ssi_mode1 |= val;
}
rsnd_mod_write(&ssi->mod, SSI_MODE0, ssiu->ssi_mode0);
rsnd_mod_write(&ssi->mod, SSI_MODE1, ssiu->ssi_mode1);
}
static void rsnd_ssi_status_check(struct rsnd_mod *mod,
u32 bit)
@ -200,7 +121,7 @@ static int rsnd_ssi_master_clk_start(struct rsnd_ssi *ssi,
1, 2, 4, 8, 16, 6, 12,
};
unsigned int main_rate;
unsigned int rate = rsnd_scu_get_ssi_rate(priv, &ssi->mod, runtime);
unsigned int rate = rsnd_src_get_ssi_rate(priv, io, runtime);
/*
* Find best clock, and try to start ADG
@ -252,7 +173,7 @@ static void rsnd_ssi_hw_start(struct rsnd_ssi *ssi,
if (0 == ssi->usrcnt) {
clk_enable(ssi->clk);
if (rsnd_rdai_is_clk_master(rdai)) {
if (rsnd_dai_is_clk_master(rdai)) {
if (rsnd_ssi_clk_from_parent(ssi))
rsnd_ssi_hw_start(ssi->parent, rdai, io);
else
@ -302,7 +223,7 @@ static void rsnd_ssi_hw_stop(struct rsnd_ssi *ssi,
rsnd_mod_write(&ssi->mod, SSICR, cr); /* disabled all */
rsnd_ssi_status_check(&ssi->mod, IIRQ);
if (rsnd_rdai_is_clk_master(rdai)) {
if (rsnd_dai_is_clk_master(rdai)) {
if (rsnd_ssi_clk_from_parent(ssi))
rsnd_ssi_hw_stop(ssi->parent, rdai);
else
@ -323,8 +244,6 @@ static int rsnd_ssi_init(struct rsnd_mod *mod,
struct rsnd_dai_stream *io)
{
struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
struct rsnd_priv *priv = rsnd_mod_to_priv(mod);
struct device *dev = rsnd_priv_to_dev(priv);
struct snd_pcm_runtime *runtime = rsnd_io_to_runtime(io);
u32 cr;
@ -365,13 +284,10 @@ static int rsnd_ssi_init(struct rsnd_mod *mod,
* set ssi parameter
*/
ssi->rdai = rdai;
ssi->io = io;
ssi->cr_own = cr;
ssi->err = -1; /* ignore 1st error */
rsnd_ssi_mode_set(priv, rdai, ssi);
dev_dbg(dev, "%s.%d init\n", rsnd_mod_name(mod), rsnd_mod_id(mod));
rsnd_src_ssi_mode_init(mod, rdai, io);
return 0;
}
@ -384,13 +300,10 @@ static int rsnd_ssi_quit(struct rsnd_mod *mod,
struct rsnd_priv *priv = rsnd_mod_to_priv(mod);
struct device *dev = rsnd_priv_to_dev(priv);
dev_dbg(dev, "%s.%d quit\n", rsnd_mod_name(mod), rsnd_mod_id(mod));
if (ssi->err > 0)
dev_warn(dev, "ssi under/over flow err = %d\n", ssi->err);
ssi->rdai = NULL;
ssi->io = NULL;
ssi->cr_own = 0;
ssi->err = 0;
@ -414,8 +327,9 @@ static void rsnd_ssi_record_error(struct rsnd_ssi *ssi, u32 status)
static irqreturn_t rsnd_ssi_pio_interrupt(int irq, void *data)
{
struct rsnd_ssi *ssi = data;
struct rsnd_dai_stream *io = ssi->io;
u32 status = rsnd_mod_read(&ssi->mod, SSISR);
struct rsnd_mod *mod = &ssi->mod;
struct rsnd_dai_stream *io = rsnd_mod_to_io(mod);
u32 status = rsnd_mod_read(mod, SSISR);
irqreturn_t ret = IRQ_NONE;
if (io && (status & DIRQ)) {
@ -432,9 +346,9 @@ static irqreturn_t rsnd_ssi_pio_interrupt(int irq, void *data)
* see rsnd_ssi_init()
*/
if (rsnd_dai_is_play(rdai, io))
rsnd_mod_write(&ssi->mod, SSITDR, *buf);
rsnd_mod_write(mod, SSITDR, *buf);
else
*buf = rsnd_mod_read(&ssi->mod, SSIRDR);
*buf = rsnd_mod_read(mod, SSIRDR);
rsnd_dai_pointer_update(io, sizeof(*buf));
@ -444,25 +358,39 @@ static irqreturn_t rsnd_ssi_pio_interrupt(int irq, void *data)
return ret;
}
static int rsnd_ssi_pio_start(struct rsnd_mod *mod,
static int rsnd_ssi_pio_probe(struct rsnd_mod *mod,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io)
{
struct rsnd_priv *priv = rsnd_mod_to_priv(mod);
struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
struct device *dev = rsnd_priv_to_dev(priv);
struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
int irq = ssi->info->pio_irq;
int ret;
ret = devm_request_irq(dev, irq,
rsnd_ssi_pio_interrupt,
IRQF_SHARED,
dev_name(dev), ssi);
if (ret)
dev_err(dev, "SSI request interrupt failed\n");
return ret;
}
static int rsnd_ssi_pio_start(struct rsnd_mod *mod,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io)
{
struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
/* enable PIO IRQ */
ssi->cr_etc = UIEN | OIEN | DIEN;
/* enable PIO interrupt if gen2 */
if (rsnd_is_gen2(priv))
rsnd_mod_write(&ssi->mod, INT_ENABLE, 0x0f000000);
rsnd_src_enable_ssi_irq(mod, rdai, io);
rsnd_ssi_hw_start(ssi, rdai, io);
dev_dbg(dev, "%s.%d start\n", rsnd_mod_name(mod), rsnd_mod_id(mod));
return 0;
}
@ -470,12 +398,8 @@ static int rsnd_ssi_pio_stop(struct rsnd_mod *mod,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io)
{
struct rsnd_priv *priv = rsnd_mod_to_priv(mod);
struct device *dev = rsnd_priv_to_dev(priv);
struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
dev_dbg(dev, "%s.%d stop\n", rsnd_mod_name(mod), rsnd_mod_id(mod));
ssi->cr_etc = 0;
rsnd_ssi_hw_stop(ssi, rdai);
@ -485,35 +409,46 @@ static int rsnd_ssi_pio_stop(struct rsnd_mod *mod,
static struct rsnd_mod_ops rsnd_ssi_pio_ops = {
.name = "ssi (pio)",
.probe = rsnd_ssi_pio_probe,
.init = rsnd_ssi_init,
.quit = rsnd_ssi_quit,
.start = rsnd_ssi_pio_start,
.stop = rsnd_ssi_pio_stop,
};
static int rsnd_ssi_dma_inquiry(struct rsnd_dma *dma, dma_addr_t *buf, int *len)
static int rsnd_ssi_dma_probe(struct rsnd_mod *mod,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io)
{
struct rsnd_ssi *ssi = rsnd_dma_to_ssi(dma);
struct rsnd_dai_stream *io = ssi->io;
struct snd_pcm_runtime *runtime = rsnd_io_to_runtime(io);
struct rsnd_priv *priv = rsnd_mod_to_priv(mod);
struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
struct rcar_snd_info *info = rsnd_priv_to_info(priv);
struct device *dev = rsnd_priv_to_dev(priv);
int dma_id = ssi->info->dma_id;
int is_play;
int ret;
*len = io->byte_per_period;
*buf = runtime->dma_addr +
rsnd_dai_pointer_offset(io, ssi->dma_offset + *len);
ssi->dma_offset = *len; /* it cares A/B plane */
if (info->dai_info)
is_play = rsnd_info_is_playback(priv, ssi);
else
is_play = rsnd_ssi_is_play(&ssi->mod);
return 0;
ret = rsnd_dma_init(
priv, rsnd_mod_to_dma(mod),
is_play,
dma_id);
if (ret < 0)
dev_err(dev, "SSI DMA failed\n");
return ret;
}
static int rsnd_ssi_dma_complete(struct rsnd_dma *dma)
static int rsnd_ssi_dma_remove(struct rsnd_mod *mod,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io)
{
struct rsnd_ssi *ssi = rsnd_dma_to_ssi(dma);
struct rsnd_dai_stream *io = ssi->io;
u32 status = rsnd_mod_read(&ssi->mod, SSISR);
rsnd_ssi_record_error(ssi, status);
rsnd_dai_pointer_update(ssi->io, io->byte_per_period);
rsnd_dma_quit(rsnd_mod_to_priv(mod), rsnd_mod_to_dma(mod));
return 0;
}
@ -527,14 +462,13 @@ static int rsnd_ssi_dma_start(struct rsnd_mod *mod,
/* enable DMA transfer */
ssi->cr_etc = DMEN;
ssi->dma_offset = 0;
rsnd_dma_start(dma);
rsnd_ssi_hw_start(ssi, ssi->rdai, io);
/* enable WS continue */
if (rsnd_rdai_is_clk_master(rdai))
if (rsnd_dai_is_clk_master(rdai))
rsnd_mod_write(&ssi->mod, SSIWSR, CONT);
return 0;
@ -549,6 +483,8 @@ static int rsnd_ssi_dma_stop(struct rsnd_mod *mod,
ssi->cr_etc = 0;
rsnd_ssi_record_error(ssi, rsnd_mod_read(mod, SSISR));
rsnd_ssi_hw_stop(ssi, rdai);
rsnd_dma_stop(dma);
@ -558,6 +494,8 @@ static int rsnd_ssi_dma_stop(struct rsnd_mod *mod,
static struct rsnd_mod_ops rsnd_ssi_dma_ops = {
.name = "ssi (dma)",
.probe = rsnd_ssi_dma_probe,
.remove = rsnd_ssi_dma_remove,
.init = rsnd_ssi_init,
.quit = rsnd_ssi_quit,
.start = rsnd_ssi_dma_start,
@ -567,24 +505,8 @@ static struct rsnd_mod_ops rsnd_ssi_dma_ops = {
/*
* Non SSI
*/
static int rsnd_ssi_non(struct rsnd_mod *mod,
struct rsnd_dai *rdai,
struct rsnd_dai_stream *io)
{
struct rsnd_priv *priv = rsnd_mod_to_priv(mod);
struct device *dev = rsnd_priv_to_dev(priv);
dev_dbg(dev, "%s\n", __func__);
return 0;
}
static struct rsnd_mod_ops rsnd_ssi_non_ops = {
.name = "ssi (non)",
.init = rsnd_ssi_non,
.quit = rsnd_ssi_non,
.start = rsnd_ssi_non,
.stop = rsnd_ssi_non,
};
/*
@ -593,16 +515,30 @@ static struct rsnd_mod_ops rsnd_ssi_non_ops = {
struct rsnd_mod *rsnd_ssi_mod_get_frm_dai(struct rsnd_priv *priv,
int dai_id, int is_play)
{
struct rsnd_dai_platform_info *dai_info = NULL;
struct rsnd_dai_path_info *path_info = NULL;
struct rsnd_ssi_platform_info *target_info = NULL;
struct rsnd_ssi *ssi;
int i, has_play;
if (priv->rdai)
dai_info = priv->rdai[dai_id].info;
if (dai_info)
path_info = (is_play) ? &dai_info->playback : &dai_info->capture;
if (path_info)
target_info = path_info->ssi;
is_play = !!is_play;
for_each_rsnd_ssi(ssi, priv, i) {
if (target_info == ssi->info)
return &ssi->mod;
/* for compatible */
if (rsnd_ssi_dai_id(ssi) != dai_id)
continue;
has_play = !!(rsnd_ssi_mode_flags(ssi) & RSND_SSI_PLAY);
has_play = rsnd_ssi_is_play(&ssi->mod);
if (is_play == has_play)
return &ssi->mod;
@ -616,36 +552,66 @@ struct rsnd_mod *rsnd_ssi_mod_get(struct rsnd_priv *priv, int id)
if (WARN_ON(id < 0 || id >= rsnd_ssi_nr(priv)))
id = 0;
return &(((struct rsnd_ssiu *)(priv->ssiu))->ssi + id)->mod;
return &((struct rsnd_ssi *)(priv->ssi) + id)->mod;
}
int rsnd_ssi_is_pin_sharing(struct rsnd_mod *mod)
{
struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
return !!(rsnd_ssi_mode_flags(ssi) & RSND_SSI_CLK_PIN_SHARE);
}
int rsnd_ssi_is_play(struct rsnd_mod *mod)
{
struct rsnd_ssi *ssi = rsnd_mod_to_ssi(mod);
return !!(rsnd_ssi_mode_flags(ssi) & RSND_SSI_PLAY);
}
static void rsnd_ssi_parent_clk_setup(struct rsnd_priv *priv, struct rsnd_ssi *ssi)
{
if (!rsnd_ssi_is_pin_sharing(&ssi->mod))
return;
switch (rsnd_mod_id(&ssi->mod)) {
case 1:
case 2:
ssi->parent = rsnd_mod_to_ssi(rsnd_ssi_mod_get(priv, 0));
break;
case 4:
ssi->parent = rsnd_mod_to_ssi(rsnd_ssi_mod_get(priv, 3));
break;
case 8:
ssi->parent = rsnd_mod_to_ssi(rsnd_ssi_mod_get(priv, 7));
break;
}
}
int rsnd_ssi_probe(struct platform_device *pdev,
struct rcar_snd_info *info,
struct rsnd_priv *priv)
{
struct rcar_snd_info *info = rsnd_priv_to_info(priv);
struct rsnd_ssi_platform_info *pinfo;
struct device *dev = rsnd_priv_to_dev(priv);
struct rsnd_mod_ops *ops;
struct clk *clk;
struct rsnd_ssiu *ssiu;
struct rsnd_ssi *ssi;
char name[RSND_SSI_NAME_SIZE];
int i, nr, ret;
int i, nr;
/*
* init SSI
*/
nr = info->ssi_info_nr;
ssiu = devm_kzalloc(dev, sizeof(*ssiu) + (sizeof(*ssi) * nr),
GFP_KERNEL);
if (!ssiu) {
ssi = devm_kzalloc(dev, sizeof(*ssi) * nr, GFP_KERNEL);
if (!ssi) {
dev_err(dev, "SSI allocate failed\n");
return -ENOMEM;
}
priv->ssiu = ssiu;
ssiu->ssi = (struct rsnd_ssi *)(ssiu + 1);
ssiu->ssi_nr = nr;
priv->ssi = ssi;
priv->ssi_nr = nr;
for_each_rsnd_ssi(ssi, priv, i) {
pinfo = &info->ssi_info[i];
@ -660,61 +626,15 @@ int rsnd_ssi_probe(struct platform_device *pdev,
ssi->clk = clk;
ops = &rsnd_ssi_non_ops;
if (pinfo->dma_id > 0)
ops = &rsnd_ssi_dma_ops;
else if (rsnd_ssi_pio_available(ssi))
ops = &rsnd_ssi_pio_ops;
/*
* SSI DMA case
*/
if (pinfo->dma_id > 0) {
ret = rsnd_dma_init(
priv, rsnd_mod_to_dma(&ssi->mod),
(rsnd_ssi_mode_flags(ssi) & RSND_SSI_PLAY),
pinfo->dma_id,
rsnd_ssi_dma_inquiry,
rsnd_ssi_dma_complete);
if (ret < 0)
dev_info(dev, "SSI DMA failed. try PIO transter\n");
else
ops = &rsnd_ssi_dma_ops;
rsnd_mod_init(priv, &ssi->mod, ops, RSND_MOD_SSI, i);
dev_dbg(dev, "SSI%d use DMA transfer\n", i);
}
/*
* SSI PIO case
*/
if (!rsnd_ssi_dma_available(ssi) &&
rsnd_ssi_pio_available(ssi)) {
ret = devm_request_irq(dev, pinfo->pio_irq,
&rsnd_ssi_pio_interrupt,
IRQF_SHARED,
dev_name(dev), ssi);
if (ret) {
dev_err(dev, "SSI request interrupt failed\n");
return ret;
}
ops = &rsnd_ssi_pio_ops;
dev_dbg(dev, "SSI%d use PIO transfer\n", i);
}
rsnd_mod_init(priv, &ssi->mod, ops, i);
rsnd_ssi_parent_clk_setup(priv, ssi);
}
dev_dbg(dev, "ssi probed\n");
return 0;
}
void rsnd_ssi_remove(struct platform_device *pdev,
struct rsnd_priv *priv)
{
struct rsnd_ssi *ssi;
int i;
for_each_rsnd_ssi(ssi, priv, i) {
if (rsnd_ssi_dma_available(ssi))
rsnd_dma_quit(priv, rsnd_mod_to_dma(&ssi->mod));
}
}

View File

@ -3618,6 +3618,30 @@ int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
}
EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
/**
* snd_soc_of_xlate_tdm_slot - generate tx/rx slot mask.
* @slots: Number of slots in use.
* @tx_mask: bitmask representing active TX slots.
* @rx_mask: bitmask representing active RX slots.
*
* Generates the TDM tx and rx slot default masks for DAI.
*/
static int snd_soc_of_xlate_tdm_slot_mask(unsigned int slots,
unsigned int *tx_mask,
unsigned int *rx_mask)
{
if (*tx_mask || *rx_mask)
return 0;
if (!slots)
return -EINVAL;
*tx_mask = (1 << slots) - 1;
*rx_mask = (1 << slots) - 1;
return 0;
}
/**
* snd_soc_dai_set_tdm_slot - configure DAI TDM.
* @dai: DAI
@ -3632,6 +3656,12 @@ EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
{
if (dai->driver && dai->driver->ops->of_xlate_tdm_slot_mask)
dai->driver->ops->of_xlate_tdm_slot_mask(slots,
&tx_mask, &rx_mask);
else
snd_soc_of_xlate_tdm_slot_mask(slots, &tx_mask, &rx_mask);
if (dai->driver && dai->driver->ops->set_tdm_slot)
return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask,
slots, slot_width);
@ -4351,6 +4381,122 @@ int snd_soc_of_parse_card_name(struct snd_soc_card *card,
}
EXPORT_SYMBOL_GPL(snd_soc_of_parse_card_name);
static const struct snd_soc_dapm_widget simple_widgets[] = {
SND_SOC_DAPM_MIC("Microphone", NULL),
SND_SOC_DAPM_LINE("Line", NULL),
SND_SOC_DAPM_HP("Headphone", NULL),
SND_SOC_DAPM_SPK("Speaker", NULL),
};
int snd_soc_of_parse_audio_simple_widgets(struct snd_soc_card *card,
const char *propname)
{
struct device_node *np = card->dev->of_node;
struct snd_soc_dapm_widget *widgets;
const char *template, *wname;
int i, j, num_widgets, ret;
num_widgets = of_property_count_strings(np, propname);
if (num_widgets < 0) {
dev_err(card->dev,
"ASoC: Property '%s' does not exist\n", propname);
return -EINVAL;
}
if (num_widgets & 1) {
dev_err(card->dev,
"ASoC: Property '%s' length is not even\n", propname);
return -EINVAL;
}
num_widgets /= 2;
if (!num_widgets) {
dev_err(card->dev, "ASoC: Property '%s's length is zero\n",
propname);
return -EINVAL;
}
widgets = devm_kcalloc(card->dev, num_widgets, sizeof(*widgets),
GFP_KERNEL);
if (!widgets) {
dev_err(card->dev,
"ASoC: Could not allocate memory for widgets\n");
return -ENOMEM;
}
for (i = 0; i < num_widgets; i++) {
ret = of_property_read_string_index(np, propname,
2 * i, &template);
if (ret) {
dev_err(card->dev,
"ASoC: Property '%s' index %d read error:%d\n",
propname, 2 * i, ret);
return -EINVAL;
}
for (j = 0; j < ARRAY_SIZE(simple_widgets); j++) {
if (!strncmp(template, simple_widgets[j].name,
strlen(simple_widgets[j].name))) {
widgets[i] = simple_widgets[j];
break;
}
}
if (j >= ARRAY_SIZE(simple_widgets)) {
dev_err(card->dev,
"ASoC: DAPM widget '%s' is not supported\n",
template);
return -EINVAL;
}
ret = of_property_read_string_index(np, propname,
(2 * i) + 1,
&wname);
if (ret) {
dev_err(card->dev,
"ASoC: Property '%s' index %d read error:%d\n",
propname, (2 * i) + 1, ret);
return -EINVAL;
}
widgets[i].name = wname;
}
card->dapm_widgets = widgets;
card->num_dapm_widgets = num_widgets;
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_of_parse_audio_simple_widgets);
int snd_soc_of_parse_tdm_slot(struct device_node *np,
unsigned int *slots,
unsigned int *slot_width)
{
u32 val;
int ret;
if (of_property_read_bool(np, "dai-tdm-slot-num")) {
ret = of_property_read_u32(np, "dai-tdm-slot-num", &val);
if (ret)
return ret;
if (slots)
*slots = val;
}
if (of_property_read_bool(np, "dai-tdm-slot-width")) {
ret = of_property_read_u32(np, "dai-tdm-slot-width", &val);
if (ret)
return ret;
if (slot_width)
*slot_width = val;
}
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_of_parse_tdm_slot);
int snd_soc_of_parse_audio_routing(struct snd_soc_card *card,
const char *propname)
{