1
0
Fork 0

Merge branch 'akpm' (patches from Andrew)

Merge misc updates from Andrew Morton:

 - a few misc things

 - the rest of MM

-  remove flex_arrays, replace with new simple radix-tree implementation

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (38 commits)
  Drop flex_arrays
  sctp: convert to genradix
  proc: commit to genradix
  generic radix trees
  selinux: convert to kvmalloc
  md: convert to kvmalloc
  openvswitch: convert to kvmalloc
  of: fix kmemleak crash caused by imbalance in early memory reservation
  mm: memblock: update comments and kernel-doc
  memblock: split checks whether a region should be skipped to a helper function
  memblock: remove memblock_{set,clear}_region_flags
  memblock: drop memblock_alloc_*_nopanic() variants
  memblock: memblock_alloc_try_nid: don't panic
  treewide: add checks for the return value of memblock_alloc*()
  swiotlb: add checks for the return value of memblock_alloc*()
  init/main: add checks for the return value of memblock_alloc*()
  mm/percpu: add checks for the return value of memblock_alloc*()
  sparc: add checks for the return value of memblock_alloc*()
  ia64: add checks for the return value of memblock_alloc*()
  arch: don't memset(0) memory returned by memblock_alloc()
  ...
hifive-unleashed-5.1
Linus Torvalds 2019-03-12 10:39:53 -07:00
commit a667cb7a94
159 changed files with 1654 additions and 1710 deletions

View File

@ -1,130 +0,0 @@
===================================
Using flexible arrays in the kernel
===================================
Large contiguous memory allocations can be unreliable in the Linux kernel.
Kernel programmers will sometimes respond to this problem by allocating
pages with :c:func:`vmalloc()`. This solution not ideal, though. On 32-bit
systems, memory from vmalloc() must be mapped into a relatively small address
space; it's easy to run out. On SMP systems, the page table changes required
by vmalloc() allocations can require expensive cross-processor interrupts on
all CPUs. And, on all systems, use of space in the vmalloc() range increases
pressure on the translation lookaside buffer (TLB), reducing the performance
of the system.
In many cases, the need for memory from vmalloc() can be eliminated by piecing
together an array from smaller parts; the flexible array library exists to make
this task easier.
A flexible array holds an arbitrary (within limits) number of fixed-sized
objects, accessed via an integer index. Sparse arrays are handled
reasonably well. Only single-page allocations are made, so memory
allocation failures should be relatively rare. The down sides are that the
arrays cannot be indexed directly, individual object size cannot exceed the
system page size, and putting data into a flexible array requires a copy
operation. It's also worth noting that flexible arrays do no internal
locking at all; if concurrent access to an array is possible, then the
caller must arrange for appropriate mutual exclusion.
The creation of a flexible array is done with :c:func:`flex_array_alloc()`::
#include <linux/flex_array.h>
struct flex_array *flex_array_alloc(int element_size,
unsigned int total,
gfp_t flags);
The individual object size is provided by ``element_size``, while total is the
maximum number of objects which can be stored in the array. The flags
argument is passed directly to the internal memory allocation calls. With
the current code, using flags to ask for high memory is likely to lead to
notably unpleasant side effects.
It is also possible to define flexible arrays at compile time with::
DEFINE_FLEX_ARRAY(name, element_size, total);
This macro will result in a definition of an array with the given name; the
element size and total will be checked for validity at compile time.
Storing data into a flexible array is accomplished with a call to
:c:func:`flex_array_put()`::
int flex_array_put(struct flex_array *array, unsigned int element_nr,
void *src, gfp_t flags);
This call will copy the data from src into the array, in the position
indicated by ``element_nr`` (which must be less than the maximum specified when
the array was created). If any memory allocations must be performed, flags
will be used. The return value is zero on success, a negative error code
otherwise.
There might possibly be a need to store data into a flexible array while
running in some sort of atomic context; in this situation, sleeping in the
memory allocator would be a bad thing. That can be avoided by using
``GFP_ATOMIC`` for the flags value, but, often, there is a better way. The
trick is to ensure that any needed memory allocations are done before
entering atomic context, using :c:func:`flex_array_prealloc()`::
int flex_array_prealloc(struct flex_array *array, unsigned int start,
unsigned int nr_elements, gfp_t flags);
This function will ensure that memory for the elements indexed in the range
defined by ``start`` and ``nr_elements`` has been allocated. Thereafter, a
``flex_array_put()`` call on an element in that range is guaranteed not to
block.
Getting data back out of the array is done with :c:func:`flex_array_get()`::
void *flex_array_get(struct flex_array *fa, unsigned int element_nr);
The return value is a pointer to the data element, or NULL if that
particular element has never been allocated.
Note that it is possible to get back a valid pointer for an element which
has never been stored in the array. Memory for array elements is allocated
one page at a time; a single allocation could provide memory for several
adjacent elements. Flexible array elements are normally initialized to the
value ``FLEX_ARRAY_FREE`` (defined as 0x6c in <linux/poison.h>), so errors
involving that number probably result from use of unstored array entries.
Note that, if array elements are allocated with ``__GFP_ZERO``, they will be
initialized to zero and this poisoning will not happen.
Individual elements in the array can be cleared with
:c:func:`flex_array_clear()`::
int flex_array_clear(struct flex_array *array, unsigned int element_nr);
This function will set the given element to ``FLEX_ARRAY_FREE`` and return
zero. If storage for the indicated element is not allocated for the array,
``flex_array_clear()`` will return ``-EINVAL`` instead. Note that clearing an
element does not release the storage associated with it; to reduce the
allocated size of an array, call :c:func:`flex_array_shrink()`::
int flex_array_shrink(struct flex_array *array);
The return value will be the number of pages of memory actually freed.
This function works by scanning the array for pages containing nothing but
``FLEX_ARRAY_FREE`` bytes, so (1) it can be expensive, and (2) it will not work
if the array's pages are allocated with ``__GFP_ZERO``.
It is possible to remove all elements of an array with a call to
:c:func:`flex_array_free_parts()`::
void flex_array_free_parts(struct flex_array *array);
This call frees all elements, but leaves the array itself in place.
Freeing the entire array is done with :c:func:`flex_array_free()`::
void flex_array_free(struct flex_array *array);
As of this writing, there are no users of flexible arrays in the mainline
kernel. The functions described here are also not exported to modules;
that will probably be fixed when somebody comes up with a need for it.
Flexible array functions
------------------------
.. kernel-doc:: include/linux/flex_array.h

View File

@ -0,0 +1,12 @@
=================================
Generic radix trees/sparse arrays
=================================
.. kernel-doc:: include/linux/generic-radix-tree.h
:doc: Generic radix trees/sparse arrays
generic radix tree functions
----------------------------
.. kernel-doc:: include/linux/generic-radix-tree.h
:functions:

View File

@ -28,6 +28,7 @@ Core utilities
errseq
printk-formats
circular-buffers
generic-radix-tree
memory-allocation
mm-api
gfp_mask-from-fs-io

View File

@ -1,123 +0,0 @@
===================================
Using flexible arrays in the kernel
===================================
:Updated: Last updated for 2.6.32
:Author: Jonathan Corbet <corbet@lwn.net>
Large contiguous memory allocations can be unreliable in the Linux kernel.
Kernel programmers will sometimes respond to this problem by allocating
pages with vmalloc(). This solution not ideal, though. On 32-bit systems,
memory from vmalloc() must be mapped into a relatively small address space;
it's easy to run out. On SMP systems, the page table changes required by
vmalloc() allocations can require expensive cross-processor interrupts on
all CPUs. And, on all systems, use of space in the vmalloc() range
increases pressure on the translation lookaside buffer (TLB), reducing the
performance of the system.
In many cases, the need for memory from vmalloc() can be eliminated by
piecing together an array from smaller parts; the flexible array library
exists to make this task easier.
A flexible array holds an arbitrary (within limits) number of fixed-sized
objects, accessed via an integer index. Sparse arrays are handled
reasonably well. Only single-page allocations are made, so memory
allocation failures should be relatively rare. The down sides are that the
arrays cannot be indexed directly, individual object size cannot exceed the
system page size, and putting data into a flexible array requires a copy
operation. It's also worth noting that flexible arrays do no internal
locking at all; if concurrent access to an array is possible, then the
caller must arrange for appropriate mutual exclusion.
The creation of a flexible array is done with::
#include <linux/flex_array.h>
struct flex_array *flex_array_alloc(int element_size,
unsigned int total,
gfp_t flags);
The individual object size is provided by element_size, while total is the
maximum number of objects which can be stored in the array. The flags
argument is passed directly to the internal memory allocation calls. With
the current code, using flags to ask for high memory is likely to lead to
notably unpleasant side effects.
It is also possible to define flexible arrays at compile time with::
DEFINE_FLEX_ARRAY(name, element_size, total);
This macro will result in a definition of an array with the given name; the
element size and total will be checked for validity at compile time.
Storing data into a flexible array is accomplished with a call to::
int flex_array_put(struct flex_array *array, unsigned int element_nr,
void *src, gfp_t flags);
This call will copy the data from src into the array, in the position
indicated by element_nr (which must be less than the maximum specified when
the array was created). If any memory allocations must be performed, flags
will be used. The return value is zero on success, a negative error code
otherwise.
There might possibly be a need to store data into a flexible array while
running in some sort of atomic context; in this situation, sleeping in the
memory allocator would be a bad thing. That can be avoided by using
GFP_ATOMIC for the flags value, but, often, there is a better way. The
trick is to ensure that any needed memory allocations are done before
entering atomic context, using::
int flex_array_prealloc(struct flex_array *array, unsigned int start,
unsigned int nr_elements, gfp_t flags);
This function will ensure that memory for the elements indexed in the range
defined by start and nr_elements has been allocated. Thereafter, a
flex_array_put() call on an element in that range is guaranteed not to
block.
Getting data back out of the array is done with::
void *flex_array_get(struct flex_array *fa, unsigned int element_nr);
The return value is a pointer to the data element, or NULL if that
particular element has never been allocated.
Note that it is possible to get back a valid pointer for an element which
has never been stored in the array. Memory for array elements is allocated
one page at a time; a single allocation could provide memory for several
adjacent elements. Flexible array elements are normally initialized to the
value FLEX_ARRAY_FREE (defined as 0x6c in <linux/poison.h>), so errors
involving that number probably result from use of unstored array entries.
Note that, if array elements are allocated with __GFP_ZERO, they will be
initialized to zero and this poisoning will not happen.
Individual elements in the array can be cleared with::
int flex_array_clear(struct flex_array *array, unsigned int element_nr);
This function will set the given element to FLEX_ARRAY_FREE and return
zero. If storage for the indicated element is not allocated for the array,
flex_array_clear() will return -EINVAL instead. Note that clearing an
element does not release the storage associated with it; to reduce the
allocated size of an array, call::
int flex_array_shrink(struct flex_array *array);
The return value will be the number of pages of memory actually freed.
This function works by scanning the array for pages containing nothing but
FLEX_ARRAY_FREE bytes, so (1) it can be expensive, and (2) it will not work
if the array's pages are allocated with __GFP_ZERO.
It is possible to remove all elements of an array with a call to::
void flex_array_free_parts(struct flex_array *array);
This call frees all elements, but leaves the array itself in place.
Freeing the entire array is done with::
void flex_array_free(struct flex_array *array);
As of this writing, there are no users of flexible arrays in the mainline
kernel. The functions described here are also not exported to modules;
that will probably be fixed when somebody comes up with a need for it.

View File

@ -331,7 +331,10 @@ cia_prepare_tbia_workaround(int window)
long i;
/* Use minimal 1K map. */
ppte = memblock_alloc_from(CIA_BROKEN_TBIA_SIZE, 32768, 0);
ppte = memblock_alloc(CIA_BROKEN_TBIA_SIZE, 32768);
if (!ppte)
panic("%s: Failed to allocate %u bytes align=0x%x\n",
__func__, CIA_BROKEN_TBIA_SIZE, 32768);
pte = (virt_to_phys(ppte) >> (PAGE_SHIFT - 1)) | 1;
for (i = 0; i < CIA_BROKEN_TBIA_SIZE / sizeof(unsigned long); ++i)

View File

@ -83,6 +83,9 @@ mk_resource_name(int pe, int port, char *str)
sprintf(tmp, "PCI %s PE %d PORT %d", str, pe, port);
name = memblock_alloc(strlen(tmp) + 1, SMP_CACHE_BYTES);
if (!name)
panic("%s: Failed to allocate %zu bytes\n", __func__,
strlen(tmp) + 1);
strcpy(name, tmp);
return name;
@ -118,6 +121,9 @@ alloc_io7(unsigned int pe)
}
io7 = memblock_alloc(sizeof(*io7), SMP_CACHE_BYTES);
if (!io7)
panic("%s: Failed to allocate %zu bytes\n", __func__,
sizeof(*io7));
io7->pe = pe;
raw_spin_lock_init(&io7->irq_lock);

View File

@ -34,6 +34,9 @@ alloc_pci_controller(void)
struct pci_controller *hose;
hose = memblock_alloc(sizeof(*hose), SMP_CACHE_BYTES);
if (!hose)
panic("%s: Failed to allocate %zu bytes\n", __func__,
sizeof(*hose));
*hose_tail = hose;
hose_tail = &hose->next;
@ -44,7 +47,13 @@ alloc_pci_controller(void)
struct resource * __init
alloc_resource(void)
{
return memblock_alloc(sizeof(struct resource), SMP_CACHE_BYTES);
void *ptr = memblock_alloc(sizeof(struct resource), SMP_CACHE_BYTES);
if (!ptr)
panic("%s: Failed to allocate %zu bytes\n", __func__,
sizeof(struct resource));
return ptr;
}
SYSCALL_DEFINE3(pciconfig_iobase, long, which, unsigned long, bus,
@ -54,7 +63,7 @@ SYSCALL_DEFINE3(pciconfig_iobase, long, which, unsigned long, bus,
/* from hose or from bus.devfn */
if (which & IOBASE_FROM_HOSE) {
for (hose = hose_head; hose; hose = hose->next)
for (hose = hose_head; hose; hose = hose->next)
if (hose->index == bus)
break;
if (!hose)

View File

@ -393,6 +393,9 @@ alloc_pci_controller(void)
struct pci_controller *hose;
hose = memblock_alloc(sizeof(*hose), SMP_CACHE_BYTES);
if (!hose)
panic("%s: Failed to allocate %zu bytes\n", __func__,
sizeof(*hose));
*hose_tail = hose;
hose_tail = &hose->next;
@ -403,7 +406,13 @@ alloc_pci_controller(void)
struct resource * __init
alloc_resource(void)
{
return memblock_alloc(sizeof(struct resource), SMP_CACHE_BYTES);
void *ptr = memblock_alloc(sizeof(struct resource), SMP_CACHE_BYTES);
if (!ptr)
panic("%s: Failed to allocate %zu bytes\n", __func__,
sizeof(struct resource));
return ptr;
}

View File

@ -80,6 +80,9 @@ iommu_arena_new_node(int nid, struct pci_controller *hose, dma_addr_t base,
" falling back to system-wide allocation\n",
__func__, nid);
arena = memblock_alloc(sizeof(*arena), SMP_CACHE_BYTES);
if (!arena)
panic("%s: Failed to allocate %zu bytes\n", __func__,
sizeof(*arena));
}
arena->ptes = memblock_alloc_node(sizeof(*arena), align, nid);
@ -87,13 +90,22 @@ iommu_arena_new_node(int nid, struct pci_controller *hose, dma_addr_t base,
printk("%s: couldn't allocate arena ptes from node %d\n"
" falling back to system-wide allocation\n",
__func__, nid);
arena->ptes = memblock_alloc_from(mem_size, align, 0);
arena->ptes = memblock_alloc(mem_size, align);
if (!arena->ptes)
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
__func__, mem_size, align);
}
#else /* CONFIG_DISCONTIGMEM */
arena = memblock_alloc(sizeof(*arena), SMP_CACHE_BYTES);
arena->ptes = memblock_alloc_from(mem_size, align, 0);
if (!arena)
panic("%s: Failed to allocate %zu bytes\n", __func__,
sizeof(*arena));
arena->ptes = memblock_alloc(mem_size, align);
if (!arena->ptes)
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
__func__, mem_size, align);
#endif /* CONFIG_DISCONTIGMEM */

View File

@ -293,7 +293,7 @@ move_initrd(unsigned long mem_limit)
unsigned long size;
size = initrd_end - initrd_start;
start = memblock_alloc_from(PAGE_ALIGN(size), PAGE_SIZE, 0);
start = memblock_alloc(PAGE_ALIGN(size), PAGE_SIZE);
if (!start || __pa(start) + size > mem_limit) {
initrd_start = initrd_end = 0;
return NULL;

View File

@ -181,8 +181,7 @@ static void init_unwind_hdr(struct unwind_table *table,
*/
static void *__init unw_hdr_alloc_early(unsigned long sz)
{
return memblock_alloc_from_nopanic(sz, sizeof(unsigned int),
MAX_DMA_ADDRESS);
return memblock_alloc_from(sz, sizeof(unsigned int), MAX_DMA_ADDRESS);
}
static void *unw_hdr_alloc(unsigned long sz)

View File

@ -124,6 +124,10 @@ static noinline pte_t * __init alloc_kmap_pgtable(unsigned long kvaddr)
pmd_k = pmd_offset(pud_k, kvaddr);
pte_k = (pte_t *)memblock_alloc_low(PAGE_SIZE, PAGE_SIZE);
if (!pte_k)
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
__func__, PAGE_SIZE, PAGE_SIZE);
pmd_populate_kernel(&init_mm, pmd_k, pte_k);
return pte_k;
}

View File

@ -867,6 +867,9 @@ static void __init request_standard_resources(const struct machine_desc *mdesc)
boot_alias_start = phys_to_idmap(start);
if (arm_has_idmap_alias() && boot_alias_start != IDMAP_INVALID_ADDR) {
res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES);
if (!res)
panic("%s: Failed to allocate %zu bytes\n",
__func__, sizeof(*res));
res->name = "System RAM (boot alias)";
res->start = boot_alias_start;
res->end = phys_to_idmap(end);
@ -875,6 +878,9 @@ static void __init request_standard_resources(const struct machine_desc *mdesc)
}
res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES);
if (!res)
panic("%s: Failed to allocate %zu bytes\n", __func__,
sizeof(*res));
res->name = "System RAM";
res->start = start;
res->end = end;

View File

@ -205,7 +205,11 @@ phys_addr_t __init arm_memblock_steal(phys_addr_t size, phys_addr_t align)
BUG_ON(!arm_memblock_steal_permitted);
phys = memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ANYWHERE);
phys = memblock_phys_alloc(size, align);
if (!phys)
panic("Failed to steal %pa bytes at %pS\n",
&size, (void *)_RET_IP_);
memblock_free(phys, size);
memblock_remove(phys, size);

View File

@ -721,7 +721,13 @@ EXPORT_SYMBOL(phys_mem_access_prot);
static void __init *early_alloc(unsigned long sz)
{
return memblock_alloc(sz, sz);
void *ptr = memblock_alloc(sz, sz);
if (!ptr)
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
__func__, sz, sz);
return ptr;
}
static void *__init late_alloc(unsigned long sz)
@ -994,6 +1000,9 @@ void __init iotable_init(struct map_desc *io_desc, int nr)
return;
svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm));
if (!svm)
panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
__func__, sizeof(*svm) * nr, __alignof__(*svm));
for (md = io_desc; nr; md++, nr--) {
create_mapping(md);
@ -1016,6 +1025,9 @@ void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
struct static_vm *svm;
svm = memblock_alloc(sizeof(*svm), __alignof__(*svm));
if (!svm)
panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
__func__, sizeof(*svm), __alignof__(*svm));
vm = &svm->vm;
vm->addr = (void *)addr;

View File

@ -208,6 +208,7 @@ static void __init request_standard_resources(void)
struct memblock_region *region;
struct resource *res;
unsigned long i = 0;
size_t res_size;
kernel_code.start = __pa_symbol(_text);
kernel_code.end = __pa_symbol(__init_begin - 1);
@ -215,9 +216,10 @@ static void __init request_standard_resources(void)
kernel_data.end = __pa_symbol(_end - 1);
num_standard_resources = memblock.memory.cnt;
standard_resources = memblock_alloc_low(num_standard_resources *
sizeof(*standard_resources),
SMP_CACHE_BYTES);
res_size = num_standard_resources * sizeof(*standard_resources);
standard_resources = memblock_alloc_low(res_size, SMP_CACHE_BYTES);
if (!standard_resources)
panic("%s: Failed to allocate %zu bytes\n", __func__, res_size);
for_each_memblock(memory, region) {
res = &standard_resources[i++];

View File

@ -40,6 +40,11 @@ static phys_addr_t __init kasan_alloc_zeroed_page(int node)
void *p = memblock_alloc_try_nid(PAGE_SIZE, PAGE_SIZE,
__pa(MAX_DMA_ADDRESS),
MEMBLOCK_ALLOC_KASAN, node);
if (!p)
panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%llx\n",
__func__, PAGE_SIZE, PAGE_SIZE, node,
__pa(MAX_DMA_ADDRESS));
return __pa(p);
}
@ -48,6 +53,11 @@ static phys_addr_t __init kasan_alloc_raw_page(int node)
void *p = memblock_alloc_try_nid_raw(PAGE_SIZE, PAGE_SIZE,
__pa(MAX_DMA_ADDRESS),
MEMBLOCK_ALLOC_KASAN, node);
if (!p)
panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%llx\n",
__func__, PAGE_SIZE, PAGE_SIZE, node,
__pa(MAX_DMA_ADDRESS));
return __pa(p);
}

View File

@ -103,6 +103,8 @@ static phys_addr_t __init early_pgtable_alloc(void)
void *ptr;
phys = memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
if (!phys)
panic("Failed to allocate page table page\n");
/*
* The FIX_{PGD,PUD,PMD} slots may be in active use, but the FIX_PTE

View File

@ -237,6 +237,10 @@ static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
pr_info("Initmem setup node %d [<memory-less node>]\n", nid);
nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
if (!nd_pa)
panic("Cannot allocate %zu bytes for node %d data\n",
nd_size, nid);
nd = __va(nd_pa);
/* report and initialize */

View File

@ -138,6 +138,10 @@ void __init coherent_mem_init(phys_addr_t start, u32 size)
dma_bitmap = memblock_alloc(BITS_TO_LONGS(dma_pages) * sizeof(long),
sizeof(long));
if (!dma_bitmap)
panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
__func__, BITS_TO_LONGS(dma_pages) * sizeof(long),
sizeof(long));
}
static void c6x_dma_sync(struct device *dev, phys_addr_t paddr, size_t size,

View File

@ -40,7 +40,9 @@ void __init paging_init(void)
empty_zero_page = (unsigned long) memblock_alloc(PAGE_SIZE,
PAGE_SIZE);
memset((void *)empty_zero_page, 0, PAGE_SIZE);
if (!empty_zero_page)
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
__func__, PAGE_SIZE, PAGE_SIZE);
/*
* Set up user data space

View File

@ -141,6 +141,11 @@ static void __init fixrange_init(unsigned long start, unsigned long end,
for (; (k < PTRS_PER_PMD) && (vaddr != end); pmd++, k++) {
if (pmd_none(*pmd)) {
pte = (pte_t *) memblock_alloc_low(PAGE_SIZE, PAGE_SIZE);
if (!pte)
panic("%s: Failed to allocate %lu bytes align=%lx\n",
__func__, PAGE_SIZE,
PAGE_SIZE);
set_pmd(pmd, __pmd(__pa(pte)));
BUG_ON(pte != pte_offset_kernel(pmd, 0));
}

View File

@ -68,7 +68,9 @@ void __init paging_init(void)
* to a couple of allocated pages.
*/
empty_zero_page = (unsigned long)memblock_alloc(PAGE_SIZE, PAGE_SIZE);
memset((void *)empty_zero_page, 0, PAGE_SIZE);
if (!empty_zero_page)
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
__func__, PAGE_SIZE, PAGE_SIZE);
/*
* Set up SFC/DFC registers (user data space).

View File

@ -359,11 +359,6 @@ typedef struct ia64_state_log_s
static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
#define IA64_LOG_ALLOCATE(it, size) \
{ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
(ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES); \
ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
(ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES);}
#define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
#define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
#define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
@ -378,6 +373,19 @@ static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
#define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
#define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
static inline void ia64_log_allocate(int it, u64 size)
{
ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] =
(ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES);
if (!ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)])
panic("%s: Failed to allocate %llu bytes\n", __func__, size);
ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] =
(ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES);
if (!ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)])
panic("%s: Failed to allocate %llu bytes\n", __func__, size);
}
/*
* ia64_log_init
* Reset the OS ia64 log buffer
@ -399,9 +407,7 @@ ia64_log_init(int sal_info_type)
return;
// set up OS data structures to hold error info
IA64_LOG_ALLOCATE(sal_info_type, max_size);
memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
ia64_log_allocate(sal_info_type, max_size);
}
/*
@ -1835,8 +1841,7 @@ format_mca_init_stack(void *mca_data, unsigned long offset,
/* Caller prevents this from being called after init */
static void * __ref mca_bootmem(void)
{
return memblock_alloc_from(sizeof(struct ia64_mca_cpu),
KERNEL_STACK_SIZE, 0);
return memblock_alloc(sizeof(struct ia64_mca_cpu), KERNEL_STACK_SIZE);
}
/* Do per-CPU MCA-related initialization. */

View File

@ -84,9 +84,13 @@ skip:
static inline void
alloc_per_cpu_data(void)
{
cpu_data = memblock_alloc_from(PERCPU_PAGE_SIZE * num_possible_cpus(),
PERCPU_PAGE_SIZE,
size_t size = PERCPU_PAGE_SIZE * num_possible_cpus();
cpu_data = memblock_alloc_from(size, PERCPU_PAGE_SIZE,
__pa(MAX_DMA_ADDRESS));
if (!cpu_data)
panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n",
__func__, size, PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
}
/**

View File

@ -454,6 +454,10 @@ static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize)
__pa(MAX_DMA_ADDRESS),
MEMBLOCK_ALLOC_ACCESSIBLE,
bestnode);
if (!ptr)
panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%lx\n",
__func__, pernodesize, PERCPU_PAGE_SIZE, bestnode,
__pa(MAX_DMA_ADDRESS));
return ptr;
}

View File

@ -444,23 +444,45 @@ int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
for (address = start_page; address < end_page; address += PAGE_SIZE) {
pgd = pgd_offset_k(address);
if (pgd_none(*pgd))
pgd_populate(&init_mm, pgd, memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node));
if (pgd_none(*pgd)) {
pud = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node);
if (!pud)
goto err_alloc;
pgd_populate(&init_mm, pgd, pud);
}
pud = pud_offset(pgd, address);
if (pud_none(*pud))
pud_populate(&init_mm, pud, memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node));
if (pud_none(*pud)) {
pmd = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node);
if (!pmd)
goto err_alloc;
pud_populate(&init_mm, pud, pmd);
}
pmd = pmd_offset(pud, address);
if (pmd_none(*pmd))
pmd_populate_kernel(&init_mm, pmd, memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node));
if (pmd_none(*pmd)) {
pte = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node);
if (!pte)
goto err_alloc;
pmd_populate_kernel(&init_mm, pmd, pte);
}
pte = pte_offset_kernel(pmd, address);
if (pte_none(*pte))
set_pte(pte, pfn_pte(__pa(memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node)) >> PAGE_SHIFT,
if (pte_none(*pte)) {
void *page = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE,
node);
if (!page)
goto err_alloc;
set_pte(pte, pfn_pte(__pa(page) >> PAGE_SHIFT,
PAGE_KERNEL));
}
}
return 0;
err_alloc:
panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d\n",
__func__, PAGE_SIZE, PAGE_SIZE, node);
return -ENOMEM;
}
struct memmap_init_callback_data {

View File

@ -61,8 +61,14 @@ mmu_context_init (void)
{
ia64_ctx.bitmap = memblock_alloc((ia64_ctx.max_ctx + 1) >> 3,
SMP_CACHE_BYTES);
if (!ia64_ctx.bitmap)
panic("%s: Failed to allocate %u bytes\n", __func__,
(ia64_ctx.max_ctx + 1) >> 3);
ia64_ctx.flushmap = memblock_alloc((ia64_ctx.max_ctx + 1) >> 3,
SMP_CACHE_BYTES);
if (!ia64_ctx.flushmap)
panic("%s: Failed to allocate %u bytes\n", __func__,
(ia64_ctx.max_ctx + 1) >> 3);
}
/*

View File

@ -394,6 +394,9 @@ void __init hubdev_init_node(nodepda_t * npda, cnodeid_t node)
hubdev_info = (struct hubdev_info *)memblock_alloc_node(size,
SMP_CACHE_BYTES,
node);
if (!hubdev_info)
panic("%s: Failed to allocate %d bytes align=0x%x nid=%d\n",
__func__, size, SMP_CACHE_BYTES, node);
npda->pdinfo = (void *)hubdev_info;
}

View File

@ -513,6 +513,10 @@ static void __init sn_init_pdas(char **cmdline_p)
nodepdaindr[cnode] =
memblock_alloc_node(sizeof(nodepda_t), SMP_CACHE_BYTES,
cnode);
if (!nodepdaindr[cnode])
panic("%s: Failed to allocate %lu bytes align=0x%x nid=%d\n",
__func__, sizeof(nodepda_t), SMP_CACHE_BYTES,
cnode);
memset(nodepdaindr[cnode]->phys_cpuid, -1,
sizeof(nodepdaindr[cnode]->phys_cpuid));
spin_lock_init(&nodepdaindr[cnode]->ptc_lock);
@ -521,9 +525,15 @@ static void __init sn_init_pdas(char **cmdline_p)
/*
* Allocate & initialize nodepda for TIOs. For now, put them on node 0.
*/
for (cnode = num_online_nodes(); cnode < num_cnodes; cnode++)
for (cnode = num_online_nodes(); cnode < num_cnodes; cnode++) {
nodepdaindr[cnode] =
memblock_alloc_node(sizeof(nodepda_t), SMP_CACHE_BYTES, 0);
if (!nodepdaindr[cnode])
panic("%s: Failed to allocate %lu bytes align=0x%x nid=%d\n",
__func__, sizeof(nodepda_t), SMP_CACHE_BYTES,
cnode);
}
/*
* Now copy the array of nodepda pointers to each nodepda.

View File

@ -97,6 +97,10 @@ void __init atari_stram_reserve_pages(void *start_mem)
pr_debug("atari_stram pool: kernel in ST-RAM, using alloc_bootmem!\n");
stram_pool.start = (resource_size_t)memblock_alloc_low(pool_size,
PAGE_SIZE);
if (!stram_pool.start)
panic("%s: Failed to allocate %lu bytes align=%lx\n",
__func__, pool_size, PAGE_SIZE);
stram_pool.end = stram_pool.start + pool_size - 1;
request_resource(&iomem_resource, &stram_pool);
stram_virt_offset = 0;

View File

@ -94,6 +94,9 @@ void __init paging_init(void)
high_memory = (void *) end_mem;
empty_zero_page = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
if (!empty_zero_page)
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
__func__, PAGE_SIZE, PAGE_SIZE);
/*
* Set up SFC/DFC registers (user data space).

View File

@ -44,7 +44,9 @@ void __init paging_init(void)
int i;
empty_zero_page = (void *) memblock_alloc(PAGE_SIZE, PAGE_SIZE);
memset((void *) empty_zero_page, 0, PAGE_SIZE);
if (!empty_zero_page)
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
__func__, PAGE_SIZE, PAGE_SIZE);
pg_dir = swapper_pg_dir;
memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
@ -52,6 +54,9 @@ void __init paging_init(void)
size = num_pages * sizeof(pte_t);
size = (size + PAGE_SIZE) & ~(PAGE_SIZE-1);
next_pgtable = (unsigned long) memblock_alloc(size, PAGE_SIZE);
if (!next_pgtable)
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
__func__, size, PAGE_SIZE);
bootmem_end = (next_pgtable + size + PAGE_SIZE) & PAGE_MASK;
pg_dir += PAGE_OFFSET >> PGDIR_SHIFT;

View File

@ -55,6 +55,9 @@ static pte_t * __init kernel_page_table(void)
pte_t *ptablep;
ptablep = (pte_t *)memblock_alloc_low(PAGE_SIZE, PAGE_SIZE);
if (!ptablep)
panic("%s: Failed to allocate %lu bytes align=%lx\n",
__func__, PAGE_SIZE, PAGE_SIZE);
clear_page(ptablep);
__flush_page_to_ram(ptablep);
@ -96,6 +99,9 @@ static pmd_t * __init kernel_ptr_table(void)
if (((unsigned long)last_pgtable & ~PAGE_MASK) == 0) {
last_pgtable = (pmd_t *)memblock_alloc_low(PAGE_SIZE,
PAGE_SIZE);
if (!last_pgtable)
panic("%s: Failed to allocate %lu bytes align=%lx\n",
__func__, PAGE_SIZE, PAGE_SIZE);
clear_page(last_pgtable);
__flush_page_to_ram(last_pgtable);
@ -278,6 +284,9 @@ void __init paging_init(void)
* to a couple of allocated pages
*/
empty_zero_page = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
if (!empty_zero_page)
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
__func__, PAGE_SIZE, PAGE_SIZE);
/*
* Set up SFC/DFC registers

View File

@ -46,6 +46,9 @@ void __init paging_init(void)
unsigned long size;
empty_zero_page = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
if (!empty_zero_page)
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
__func__, PAGE_SIZE, PAGE_SIZE);
address = PAGE_OFFSET;
pg_dir = swapper_pg_dir;
@ -56,6 +59,9 @@ void __init paging_init(void)
size = (size + PAGE_SIZE) & ~(PAGE_SIZE-1);
next_pgtable = (unsigned long)memblock_alloc(size, PAGE_SIZE);
if (!next_pgtable)
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
__func__, size, PAGE_SIZE);
bootmem_end = (next_pgtable + size + PAGE_SIZE) & PAGE_MASK;
/* Map whole memory from PAGE_OFFSET (0x0E000000) */

View File

@ -269,6 +269,9 @@ void __init dvma_init(void)
iommu_use = memblock_alloc(IOMMU_TOTAL_ENTRIES * sizeof(unsigned long),
SMP_CACHE_BYTES);
if (!iommu_use)
panic("%s: Failed to allocate %zu bytes\n", __func__,
IOMMU_TOTAL_ENTRIES * sizeof(unsigned long));
dvma_unmap_iommu(DVMA_START, DVMA_SIZE);

View File

@ -374,12 +374,14 @@ void * __ref zalloc_maybe_bootmem(size_t size, gfp_t mask)
{
void *p;
if (mem_init_done)
if (mem_init_done) {
p = kzalloc(size, mask);
else {
} else {
p = memblock_alloc(size, SMP_CACHE_BYTES);
if (p)
memset(p, 0, size);
if (!p)
panic("%s: Failed to allocate %zu bytes\n",
__func__, size);
}
return p;
}

View File

@ -245,6 +245,9 @@ void __init plat_swiotlb_setup(void)
swiotlbsize = swiotlb_nslabs << IO_TLB_SHIFT;
octeon_swiotlb = memblock_alloc_low(swiotlbsize, PAGE_SIZE);
if (!octeon_swiotlb)
panic("%s: Failed to allocate %zu bytes align=%lx\n",
__func__, swiotlbsize, PAGE_SIZE);
if (swiotlb_init_with_tbl(octeon_swiotlb, swiotlb_nslabs, 1) == -ENOMEM)
panic("Cannot allocate SWIOTLB buffer");

View File

@ -919,6 +919,9 @@ static void __init resource_init(void)
end = HIGHMEM_START - 1;
res = memblock_alloc(sizeof(struct resource), SMP_CACHE_BYTES);
if (!res)
panic("%s: Failed to allocate %zu bytes\n", __func__,
sizeof(struct resource));
res->start = start;
res->end = end;

View File

@ -2293,7 +2293,10 @@ void __init trap_init(void)
phys_addr_t ebase_pa;
ebase = (unsigned long)
memblock_alloc_from(size, 1 << fls(size), 0);
memblock_alloc(size, 1 << fls(size));
if (!ebase)
panic("%s: Failed to allocate %lu bytes align=0x%x\n",
__func__, size, 1 << fls(size));
/*
* Try to ensure ebase resides in KSeg0 if possible.

View File

@ -252,6 +252,11 @@ void __init fixrange_init(unsigned long start, unsigned long end,
if (pmd_none(*pmd)) {
pte = (pte_t *) memblock_alloc_low(PAGE_SIZE,
PAGE_SIZE);
if (!pte)
panic("%s: Failed to allocate %lu bytes align=%lx\n",
__func__, PAGE_SIZE,
PAGE_SIZE);
set_pmd(pmd, __pmd((unsigned long)pte));
BUG_ON(pte != pte_offset_kernel(pmd, 0));
}

View File

@ -79,6 +79,9 @@ static void __init map_ram(void)
/* Alloc one page for holding PTE's... */
pte = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
if (!pte)
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
__func__, PAGE_SIZE, PAGE_SIZE);
set_pmd(pme, __pmd(__pa(pte) + _PAGE_KERNEL_TABLE));
/* Fill the newly allocated page with PTE'S */
@ -111,6 +114,9 @@ static void __init fixedrange_init(void)
pud = pud_offset(pgd, vaddr);
pmd = pmd_offset(pud, vaddr);
fixmap_pmd_p = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
if (!fixmap_pmd_p)
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
__func__, PAGE_SIZE, PAGE_SIZE);
set_pmd(pmd, __pmd(__pa(fixmap_pmd_p) + _PAGE_KERNEL_TABLE));
#ifdef CONFIG_HIGHMEM
@ -123,6 +129,9 @@ static void __init fixedrange_init(void)
pud = pud_offset(pgd, vaddr);
pmd = pmd_offset(pud, vaddr);
pte = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
if (!pte)
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
__func__, PAGE_SIZE, PAGE_SIZE);
set_pmd(pmd, __pmd(__pa(pte) + _PAGE_KERNEL_TABLE));
pkmap_page_table = pte;
#endif /* CONFIG_HIGHMEM */
@ -148,6 +157,9 @@ void __init paging_init(void)
/* allocate space for empty_zero_page */
zero_page = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
if (!zero_page)
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
__func__, PAGE_SIZE, PAGE_SIZE);
zone_sizes_init();
empty_zero_page = virt_to_page(zero_page);

View File

@ -105,7 +105,10 @@ static void __init map_ram(void)
}
/* Alloc one page for holding PTE's... */
pte = (pte_t *) __va(memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE));
pte = memblock_alloc_raw(PAGE_SIZE, PAGE_SIZE);
if (!pte)
panic("%s: Failed to allocate page for PTEs\n",
__func__);
set_pmd(pme, __pmd(_KERNPG_TABLE + __pa(pte)));
/* Fill the newly allocated page with PTE'S */

View File

@ -122,10 +122,14 @@ pte_t __ref *pte_alloc_one_kernel(struct mm_struct *mm)
{
pte_t *pte;
if (likely(mem_init_done))
if (likely(mem_init_done)) {
pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
else
} else {
pte = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
if (!pte)
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
__func__, PAGE_SIZE, PAGE_SIZE);
}
return pte;
}

View File

@ -810,7 +810,6 @@ static int __init process_cpufeatures_node(unsigned long node,
int len;
f = &dt_cpu_features[i];
memset(f, 0, sizeof(struct dt_cpu_feature));
f->node = node;
@ -1005,7 +1004,12 @@ static int __init dt_cpu_ftrs_scan_callback(unsigned long node, const char
/* Count and allocate space for cpu features */
of_scan_flat_dt_subnodes(node, count_cpufeatures_subnodes,
&nr_dt_cpu_features);
dt_cpu_features = __va(memblock_phys_alloc(sizeof(struct dt_cpu_feature) * nr_dt_cpu_features, PAGE_SIZE));
dt_cpu_features = memblock_alloc(sizeof(struct dt_cpu_feature) * nr_dt_cpu_features, PAGE_SIZE);
if (!dt_cpu_features)
panic("%s: Failed to allocate %zu bytes align=0x%lx\n",
__func__,
sizeof(struct dt_cpu_feature) * nr_dt_cpu_features,
PAGE_SIZE);
cpufeatures_setup_start(isa);

View File

@ -196,7 +196,11 @@ void __init allocate_paca_ptrs(void)
paca_nr_cpu_ids = nr_cpu_ids;
paca_ptrs_size = sizeof(struct paca_struct *) * nr_cpu_ids;
paca_ptrs = __va(memblock_phys_alloc(paca_ptrs_size, SMP_CACHE_BYTES));
paca_ptrs = memblock_alloc_raw(paca_ptrs_size, SMP_CACHE_BYTES);
if (!paca_ptrs)
panic("Failed to allocate %d bytes for paca pointers\n",
paca_ptrs_size);
memset(paca_ptrs, 0x88, paca_ptrs_size);
}

View File

@ -205,6 +205,9 @@ pci_create_OF_bus_map(void)
of_prop = memblock_alloc(sizeof(struct property) + 256,
SMP_CACHE_BYTES);
if (!of_prop)
panic("%s: Failed to allocate %zu bytes\n", __func__,
sizeof(struct property) + 256);
dn = of_find_node_by_path("/");
if (dn) {
memset(of_prop, -1, sizeof(struct property) + 256);

View File

@ -126,7 +126,10 @@ static void __init move_device_tree(void)
if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) ||
!memblock_is_memory(start + size - 1) ||
overlaps_crashkernel(start, size) || overlaps_initrd(start, size)) {
p = __va(memblock_phys_alloc(size, PAGE_SIZE));
p = memblock_alloc_raw(size, PAGE_SIZE);
if (!p)
panic("Failed to allocate %lu bytes to move device tree\n",
size);
memcpy(p, initial_boot_params, size);
initial_boot_params = p;
DBG("Moved device tree to 0x%px\n", p);

View File

@ -1187,7 +1187,11 @@ void __init rtas_initialize(void)
ibm_suspend_me_token = rtas_token("ibm,suspend-me");
}
#endif
rtas_rmo_buf = memblock_alloc_base(RTAS_RMOBUF_MAX, PAGE_SIZE, rtas_region);
rtas_rmo_buf = memblock_phys_alloc_range(RTAS_RMOBUF_MAX, PAGE_SIZE,
0, rtas_region);
if (!rtas_rmo_buf)
panic("ERROR: RTAS: Failed to allocate %lx bytes below %pa\n",
PAGE_SIZE, &rtas_region);
#ifdef CONFIG_RTAS_ERROR_LOGGING
rtas_last_error_token = rtas_token("rtas-last-error");

View File

@ -461,6 +461,9 @@ void __init smp_setup_cpu_maps(void)
cpu_to_phys_id = memblock_alloc(nr_cpu_ids * sizeof(u32),
__alignof__(u32));
if (!cpu_to_phys_id)
panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
__func__, nr_cpu_ids * sizeof(u32), __alignof__(u32));
for_each_node_by_type(dn, "cpu") {
const __be32 *intserv;

View File

@ -905,6 +905,10 @@ static void __ref init_fallback_flush(void)
l1d_flush_fallback_area = memblock_alloc_try_nid(l1d_size * 2,
l1d_size, MEMBLOCK_LOW_LIMIT,
limit, NUMA_NO_NODE);
if (!l1d_flush_fallback_area)
panic("%s: Failed to allocate %llu bytes align=0x%llx max_addr=%pa\n",
__func__, l1d_size * 2, l1d_size, &limit);
for_each_possible_cpu(cpu) {
struct paca_struct *paca = paca_ptrs[cpu];

View File

@ -15,6 +15,9 @@ void * __ref zalloc_maybe_bootmem(size_t size, gfp_t mask)
p = kzalloc(size, mask);
else {
p = memblock_alloc(size, SMP_CACHE_BYTES);
if (!p)
panic("%s: Failed to allocate %zu bytes\n", __func__,
size);
}
return p;
}

View File

@ -882,8 +882,12 @@ static void __init htab_initialize(void)
}
#endif /* CONFIG_PPC_CELL */
table = memblock_alloc_base(htab_size_bytes, htab_size_bytes,
limit);
table = memblock_phys_alloc_range(htab_size_bytes,
htab_size_bytes,
0, limit);
if (!table)
panic("ERROR: Failed to allocate %pa bytes below %pa\n",
&htab_size_bytes, &limit);
DBG("Hash table allocated at %lx, size: %lx\n", table,
htab_size_bytes);
@ -911,6 +915,9 @@ static void __init htab_initialize(void)
linear_map_hash_slots = memblock_alloc_try_nid(
linear_map_hash_count, 1, MEMBLOCK_LOW_LIMIT,
ppc64_rma_size, NUMA_NO_NODE);
if (!linear_map_hash_slots)
panic("%s: Failed to allocate %lu bytes max_addr=%pa\n",
__func__, linear_map_hash_count, &ppc64_rma_size);
}
#endif /* CONFIG_DEBUG_PAGEALLOC */

View File

@ -461,10 +461,19 @@ void __init mmu_context_init(void)
* Allocate the maps used by context management
*/
context_map = memblock_alloc(CTX_MAP_SIZE, SMP_CACHE_BYTES);
if (!context_map)
panic("%s: Failed to allocate %zu bytes\n", __func__,
CTX_MAP_SIZE);
context_mm = memblock_alloc(sizeof(void *) * (LAST_CONTEXT + 1),
SMP_CACHE_BYTES);
if (!context_mm)
panic("%s: Failed to allocate %zu bytes\n", __func__,
sizeof(void *) * (LAST_CONTEXT + 1));
#ifdef CONFIG_SMP
stale_map[boot_cpuid] = memblock_alloc(CTX_MAP_SIZE, SMP_CACHE_BYTES);
if (!stale_map[boot_cpuid])
panic("%s: Failed to allocate %zu bytes\n", __func__,
CTX_MAP_SIZE);
cpuhp_setup_state_nocalls(CPUHP_POWERPC_MMU_CTX_PREPARE,
"powerpc/mmu/ctx:prepare",

View File

@ -788,6 +788,10 @@ static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
int tnid;
nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
if (!nd_pa)
panic("Cannot allocate %zu bytes for node %d data\n",
nd_size, nid);
nd = __va(nd_pa);
/* report and initialize */

View File

@ -57,8 +57,16 @@ void vmemmap_remove_mapping(unsigned long start,
static __ref void *early_alloc_pgtable(unsigned long size)
{
return memblock_alloc_try_nid(size, size, MEMBLOCK_LOW_LIMIT,
__pa(MAX_DMA_ADDRESS), NUMA_NO_NODE);
void *ptr;
ptr = memblock_alloc_try_nid(size, size, MEMBLOCK_LOW_LIMIT,
__pa(MAX_DMA_ADDRESS), NUMA_NO_NODE);
if (!ptr)
panic("%s: Failed to allocate %lu bytes align=0x%lx max_addr=%lx\n",
__func__, size, size, __pa(MAX_DMA_ADDRESS));
return ptr;
}
/*

View File

@ -197,6 +197,9 @@ void __init mmu_partition_table_init(void)
BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 36), "Partition table size too large.");
/* Initialize the Partition Table with no entries */
partition_tb = memblock_alloc(patb_size, patb_size);
if (!partition_tb)
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
__func__, patb_size, patb_size);
/*
* update partition table control register,

View File

@ -53,13 +53,20 @@ static __ref void *early_alloc_pgtable(unsigned long size, int nid,
{
phys_addr_t min_addr = MEMBLOCK_LOW_LIMIT;
phys_addr_t max_addr = MEMBLOCK_ALLOC_ANYWHERE;
void *ptr;
if (region_start)
min_addr = region_start;
if (region_end)
max_addr = region_end;
return memblock_alloc_try_nid(size, size, min_addr, max_addr, nid);
ptr = memblock_alloc_try_nid(size, size, min_addr, max_addr, nid);
if (!ptr)
panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa max_addr=%pa\n",
__func__, size, size, nid, &min_addr, &max_addr);
return ptr;
}
static int early_map_kernel_page(unsigned long ea, unsigned long pa,

View File

@ -340,6 +340,9 @@ void __init MMU_init_hw(void)
*/
if ( ppc_md.progress ) ppc_md.progress("hash:find piece", 0x322);
Hash = memblock_alloc(Hash_size, Hash_size);
if (!Hash)
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
__func__, Hash_size, Hash_size);
_SDR1 = __pa(Hash) | SDR1_LOW_BITS;
Hash_end = (struct hash_pte *) ((unsigned long)Hash + Hash_size);

View File

@ -211,6 +211,9 @@ static int __init iob_init(struct device_node *dn)
iob_l2_base = memblock_alloc_try_nid_raw(1UL << 21, 1UL << 21,
MEMBLOCK_LOW_LIMIT, 0x80000000,
NUMA_NO_NODE);
if (!iob_l2_base)
panic("%s: Failed to allocate %lu bytes align=0x%lx max_addr=%x\n",
__func__, 1UL << 21, 1UL << 21, 0x80000000);
pr_info("IOBMAP L2 allocated at: %p\n", iob_l2_base);

View File

@ -519,6 +519,9 @@ static int __init core99_nvram_setup(struct device_node *dp, unsigned long addr)
return -EINVAL;
}
nvram_image = memblock_alloc(NVRAM_SIZE, SMP_CACHE_BYTES);
if (!nvram_image)
panic("%s: Failed to allocate %u bytes\n", __func__,
NVRAM_SIZE);
nvram_data = ioremap(addr, NVRAM_SIZE*2);
nvram_naddrs = 1; /* Make sure we get the correct case */

View File

@ -171,6 +171,9 @@ int __init early_init_dt_scan_recoverable_ranges(unsigned long node,
* Allocate a buffer to hold the MC recoverable ranges.
*/
mc_recoverable_range = memblock_alloc(size, __alignof__(u64));
if (!mc_recoverable_range)
panic("%s: Failed to allocate %u bytes align=0x%lx\n",
__func__, size, __alignof__(u64));
for (i = 0; i < mc_recoverable_range_len; i++) {
mc_recoverable_range[i].start_addr =

View File

@ -3657,6 +3657,9 @@ static void __init pnv_pci_init_ioda_phb(struct device_node *np,
pr_debug(" PHB-ID : 0x%016llx\n", phb_id);
phb = memblock_alloc(sizeof(*phb), SMP_CACHE_BYTES);
if (!phb)
panic("%s: Failed to allocate %zu bytes\n", __func__,
sizeof(*phb));
/* Allocate PCI controller */
phb->hose = hose = pcibios_alloc_controller(np);
@ -3703,6 +3706,9 @@ static void __init pnv_pci_init_ioda_phb(struct device_node *np,
phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
phb->diag_data = memblock_alloc(phb->diag_data_size, SMP_CACHE_BYTES);
if (!phb->diag_data)
panic("%s: Failed to allocate %u bytes\n", __func__,
phb->diag_data_size);
/* Parse 32-bit and IO ranges (if any) */
pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
@ -3762,6 +3768,8 @@ static void __init pnv_pci_init_ioda_phb(struct device_node *np,
pemap_off = size;
size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
aux = memblock_alloc(size, SMP_CACHE_BYTES);
if (!aux)
panic("%s: Failed to allocate %lu bytes\n", __func__, size);
phb->ioda.pe_alloc = aux;
phb->ioda.m64_segmap = aux + m64map_off;
phb->ioda.m32_segmap = aux + m32map_off;

View File

@ -127,6 +127,9 @@ static void __init prealloc(struct ps3_prealloc *p)
return;
p->address = memblock_alloc(p->size, p->align);
if (!p->address)
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
__func__, p->size, p->align);
printk(KERN_INFO "%s: %lu bytes at %p\n", p->name, p->size,
p->address);

View File

@ -265,6 +265,9 @@ static void allocate_dart(void)
* prefetching into invalid pages and corrupting data
*/
tmp = memblock_phys_alloc(DART_PAGE_SIZE, DART_PAGE_SIZE);
if (!tmp)
panic("DART: table allocation failed\n");
dart_emptyval = DARTMAP_VALID | ((tmp >> DART_PAGE_SHIFT) &
DARTMAP_RPNMASK);

View File

@ -129,6 +129,9 @@ int __ref msi_bitmap_alloc(struct msi_bitmap *bmp, unsigned int irq_count,
bmp->bitmap = kzalloc(size, GFP_KERNEL);
else {
bmp->bitmap = memblock_alloc(size, SMP_CACHE_BYTES);
if (!bmp->bitmap)
panic("%s: Failed to allocate %u bytes\n", __func__,
size);
/* the bitmap won't be freed from memblock allocator */
kmemleak_not_leak(bmp->bitmap);
}

View File

@ -61,6 +61,9 @@ struct save_area * __init save_area_alloc(bool is_boot_cpu)
struct save_area *sa;
sa = (void *) memblock_phys_alloc(sizeof(*sa), 8);
if (!sa)
panic("Failed to allocate save area\n");
if (is_boot_cpu)
list_add(&sa->list, &dump_save_areas);
else

View File

@ -378,6 +378,10 @@ static void __init setup_lowcore_dat_off(void)
*/
BUILD_BUG_ON(sizeof(struct lowcore) != LC_PAGES * PAGE_SIZE);
lc = memblock_alloc_low(sizeof(*lc), sizeof(*lc));
if (!lc)
panic("%s: Failed to allocate %zu bytes align=%zx\n",
__func__, sizeof(*lc), sizeof(*lc));
lc->restart_psw.mask = PSW_KERNEL_BITS;
lc->restart_psw.addr = (unsigned long) restart_int_handler;
lc->external_new_psw.mask = PSW_KERNEL_BITS | PSW_MASK_MCHECK;
@ -419,6 +423,9 @@ static void __init setup_lowcore_dat_off(void)
* all CPUs in cast *one* of them does a PSW restart.
*/
restart_stack = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
if (!restart_stack)
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
__func__, THREAD_SIZE, THREAD_SIZE);
restart_stack += STACK_INIT_OFFSET;
/*
@ -495,6 +502,9 @@ static void __init setup_resources(void)
for_each_memblock(memory, reg) {
res = memblock_alloc(sizeof(*res), 8);
if (!res)
panic("%s: Failed to allocate %zu bytes align=0x%x\n",
__func__, sizeof(*res), 8);
res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
res->name = "System RAM";
@ -509,6 +519,9 @@ static void __init setup_resources(void)
continue;
if (std_res->end > res->end) {
sub_res = memblock_alloc(sizeof(*sub_res), 8);
if (!sub_res)
panic("%s: Failed to allocate %zu bytes align=0x%x\n",
__func__, sizeof(*sub_res), 8);
*sub_res = *std_res;
sub_res->end = res->end;
std_res->start = res->end + 1;
@ -966,6 +979,9 @@ static void __init setup_randomness(void)
vmms = (struct sysinfo_3_2_2 *) memblock_phys_alloc(PAGE_SIZE,
PAGE_SIZE);
if (!vmms)
panic("Failed to allocate memory for sysinfo structure\n");
if (stsi(vmms, 3, 2, 2) == 0 && vmms->count)
add_device_randomness(&vmms->vm, sizeof(vmms->vm[0]) * vmms->count);
memblock_free((unsigned long) vmms, PAGE_SIZE);

View File

@ -656,7 +656,11 @@ void __init smp_save_dump_cpus(void)
/* No previous system present, normal boot. */
return;
/* Allocate a page as dumping area for the store status sigps */
page = memblock_alloc_base(PAGE_SIZE, PAGE_SIZE, 1UL << 31);
page = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0, 1UL << 31);
if (!page)
panic("ERROR: Failed to allocate %lx bytes below %lx\n",
PAGE_SIZE, 1UL << 31);
/* Set multi-threading state to the previous system. */
pcpu_set_smt(sclp.mtid_prev);
boot_cpu_addr = stap();
@ -766,6 +770,9 @@ void __init smp_detect_cpus(void)
/* Get CPU information */
info = memblock_alloc(sizeof(*info), 8);
if (!info)
panic("%s: Failed to allocate %zu bytes align=0x%x\n",
__func__, sizeof(*info), 8);
smp_get_core_info(info, 1);
/* Find boot CPU type */
if (sclp.has_core_type) {

View File

@ -520,6 +520,9 @@ static void __init alloc_masks(struct sysinfo_15_1_x *info,
nr_masks = max(nr_masks, 1);
for (i = 0; i < nr_masks; i++) {
mask->next = memblock_alloc(sizeof(*mask->next), 8);
if (!mask->next)
panic("%s: Failed to allocate %zu bytes align=0x%x\n",
__func__, sizeof(*mask->next), 8);
mask = mask->next;
}
}
@ -538,6 +541,9 @@ void __init topology_init_early(void)
if (!MACHINE_HAS_TOPOLOGY)
goto out;
tl_info = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
if (!tl_info)
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
__func__, PAGE_SIZE, PAGE_SIZE);
info = tl_info;
store_topology(info);
pr_info("The CPU configuration topology of the machine is: %d %d %d %d %d %d / %d\n",

View File

@ -313,6 +313,9 @@ static void __ref create_core_to_node_map(void)
int i;
emu_cores = memblock_alloc(sizeof(*emu_cores), 8);
if (!emu_cores)
panic("%s: Failed to allocate %zu bytes align=0x%x\n",
__func__, sizeof(*emu_cores), 8);
for (i = 0; i < ARRAY_SIZE(emu_cores->to_node_id); i++)
emu_cores->to_node_id[i] = NODE_ID_FREE;
}

View File

@ -92,8 +92,12 @@ static void __init numa_setup_memory(void)
} while (cur_base < end_of_dram);
/* Allocate and fill out node_data */
for (nid = 0; nid < MAX_NUMNODES; nid++)
for (nid = 0; nid < MAX_NUMNODES; nid++) {
NODE_DATA(nid) = memblock_alloc(sizeof(pg_data_t), 8);
if (!NODE_DATA(nid))
panic("%s: Failed to allocate %zu bytes align=0x%x\n",
__func__, sizeof(pg_data_t), 8);
}
for_each_online_node(nid) {
unsigned long start_pfn, end_pfn;

View File

@ -556,7 +556,10 @@ static void __init ap325rxa_mv_mem_reserve(void)
phys_addr_t phys;
phys_addr_t size = CEU_BUFFER_MEMORY_SIZE;
phys = memblock_alloc_base(size, PAGE_SIZE, MEMBLOCK_ALLOC_ANYWHERE);
phys = memblock_phys_alloc(size, PAGE_SIZE);
if (!phys)
panic("Failed to allocate CEU memory\n");
memblock_free(phys, size);
memblock_remove(phys, size);

View File

@ -1476,12 +1476,18 @@ static void __init ecovec_mv_mem_reserve(void)
phys_addr_t phys;
phys_addr_t size = CEU_BUFFER_MEMORY_SIZE;
phys = memblock_alloc_base(size, PAGE_SIZE, MEMBLOCK_ALLOC_ANYWHERE);
phys = memblock_phys_alloc(size, PAGE_SIZE);
if (!phys)
panic("Failed to allocate CEU0 memory\n");
memblock_free(phys, size);
memblock_remove(phys, size);
ceu0_dma_membase = phys;
phys = memblock_alloc_base(size, PAGE_SIZE, MEMBLOCK_ALLOC_ANYWHERE);
phys = memblock_phys_alloc(size, PAGE_SIZE);
if (!phys)
panic("Failed to allocate CEU1 memory\n");
memblock_free(phys, size);
memblock_remove(phys, size);
ceu1_dma_membase = phys;

View File

@ -630,7 +630,10 @@ static void __init kfr2r09_mv_mem_reserve(void)
phys_addr_t phys;
phys_addr_t size = CEU_BUFFER_MEMORY_SIZE;
phys = memblock_alloc_base(size, PAGE_SIZE, MEMBLOCK_ALLOC_ANYWHERE);
phys = memblock_phys_alloc(size, PAGE_SIZE);
if (!phys)
panic("Failed to allocate CEU memory\n");
memblock_free(phys, size);
memblock_remove(phys, size);

View File

@ -630,7 +630,10 @@ static void __init migor_mv_mem_reserve(void)
phys_addr_t phys;
phys_addr_t size = CEU_BUFFER_MEMORY_SIZE;
phys = memblock_alloc_base(size, PAGE_SIZE, MEMBLOCK_ALLOC_ANYWHERE);
phys = memblock_phys_alloc(size, PAGE_SIZE);
if (!phys)
panic("Failed to allocate CEU memory\n");
memblock_free(phys, size);
memblock_remove(phys, size);

View File

@ -963,12 +963,18 @@ static void __init ms7724se_mv_mem_reserve(void)
phys_addr_t phys;
phys_addr_t size = CEU_BUFFER_MEMORY_SIZE;
phys = memblock_alloc_base(size, PAGE_SIZE, MEMBLOCK_ALLOC_ANYWHERE);
phys = memblock_phys_alloc(size, PAGE_SIZE);
if (!phys)
panic("Failed to allocate CEU0 memory\n");
memblock_free(phys, size);
memblock_remove(phys, size);
ceu0_dma_membase = phys;
phys = memblock_alloc_base(size, PAGE_SIZE, MEMBLOCK_ALLOC_ANYWHERE);
phys = memblock_phys_alloc(size, PAGE_SIZE);
if (!phys)
panic("Failed to allocate CEU1 memory\n");
memblock_free(phys, size);
memblock_remove(phys, size);
ceu1_dma_membase = phys;

View File

@ -168,7 +168,8 @@ void __init reserve_crashkernel(void)
crash_size = PAGE_ALIGN(resource_size(&crashk_res));
if (!crashk_res.start) {
unsigned long max = memblock_end_of_DRAM() - memory_limit;
crashk_res.start = __memblock_alloc_base(crash_size, PAGE_SIZE, max);
crashk_res.start = memblock_phys_alloc_range(crash_size,
PAGE_SIZE, 0, max);
if (!crashk_res.start) {
pr_err("crashkernel allocation failed\n");
goto disable;

View File

@ -128,6 +128,9 @@ static pmd_t * __init one_md_table_init(pud_t *pud)
pmd_t *pmd;
pmd = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
if (!pmd)
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
__func__, PAGE_SIZE, PAGE_SIZE);
pud_populate(&init_mm, pud, pmd);
BUG_ON(pmd != pmd_offset(pud, 0));
}
@ -141,6 +144,9 @@ static pte_t * __init one_page_table_init(pmd_t *pmd)
pte_t *pte;
pte = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
if (!pte)
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
__func__, PAGE_SIZE, PAGE_SIZE);
pmd_populate_kernel(&init_mm, pmd, pte);
BUG_ON(pte != pte_offset_kernel(pmd, 0));
}
@ -196,7 +202,7 @@ void __init allocate_pgdat(unsigned int nid)
get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
#ifdef CONFIG_NEED_MULTIPLE_NODES
NODE_DATA(nid) = memblock_alloc_try_nid_nopanic(
NODE_DATA(nid) = memblock_alloc_try_nid(
sizeof(struct pglist_data),
SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
MEMBLOCK_ALLOC_ACCESSIBLE, nid);

View File

@ -43,6 +43,10 @@ void __init setup_bootmem_node(int nid, unsigned long start, unsigned long end)
/* Node-local pgdat */
NODE_DATA(nid) = memblock_alloc_node(sizeof(struct pglist_data),
SMP_CACHE_BYTES, nid);
if (!NODE_DATA(nid))
panic("%s: Failed to allocate %zu bytes align=0x%x nid=%d\n",
__func__, sizeof(struct pglist_data), SMP_CACHE_BYTES,
nid);
NODE_DATA(nid)->node_start_pfn = start_pfn;
NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;

View File

@ -32,9 +32,9 @@ void * __init prom_early_alloc(unsigned long size)
{
void *ret;
ret = memblock_alloc_from(size, SMP_CACHE_BYTES, 0UL);
if (ret != NULL)
memset(ret, 0, size);
ret = memblock_alloc(size, SMP_CACHE_BYTES);
if (!ret)
panic("%s: Failed to allocate %lu bytes\n", __func__, size);
prom_early_allocated += size;

View File

@ -624,8 +624,14 @@ void __init alloc_irqstack_bootmem(void)
softirq_stack[i] = memblock_alloc_node(THREAD_SIZE,
THREAD_SIZE, node);
if (!softirq_stack[i])
panic("%s: Failed to allocate %lu bytes align=%lx nid=%d\n",
__func__, THREAD_SIZE, THREAD_SIZE, node);
hardirq_stack[i] = memblock_alloc_node(THREAD_SIZE,
THREAD_SIZE, node);
if (!hardirq_stack[i])
panic("%s: Failed to allocate %lu bytes align=%lx nid=%d\n",
__func__, THREAD_SIZE, THREAD_SIZE, node);
}
}

View File

@ -1628,6 +1628,8 @@ static void __init pcpu_populate_pte(unsigned long addr)
pud_t *new;
new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
if (!new)
goto err_alloc;
pgd_populate(&init_mm, pgd, new);
}
@ -1636,6 +1638,8 @@ static void __init pcpu_populate_pte(unsigned long addr)
pmd_t *new;
new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
if (!new)
goto err_alloc;
pud_populate(&init_mm, pud, new);
}
@ -1644,8 +1648,16 @@ static void __init pcpu_populate_pte(unsigned long addr)
pte_t *new;
new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
if (!new)
goto err_alloc;
pmd_populate_kernel(&init_mm, pmd, new);
}
return;
err_alloc:
panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n",
__func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
}
void __init setup_per_cpu_areas(void)

View File

@ -264,7 +264,7 @@ void __init mem_init(void)
i = last_valid_pfn >> ((20 - PAGE_SHIFT) + 5);
i += 1;
sparc_valid_addr_bitmap = (unsigned long *)
memblock_alloc_from(i << 2, SMP_CACHE_BYTES, 0UL);
memblock_alloc(i << 2, SMP_CACHE_BYTES);
if (sparc_valid_addr_bitmap == NULL) {
prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");

View File

@ -1809,6 +1809,8 @@ static unsigned long __ref kernel_map_range(unsigned long pstart,
new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
PAGE_SIZE);
if (!new)
goto err_alloc;
alloc_bytes += PAGE_SIZE;
pgd_populate(&init_mm, pgd, new);
}
@ -1822,6 +1824,8 @@ static unsigned long __ref kernel_map_range(unsigned long pstart,
}
new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
PAGE_SIZE);
if (!new)
goto err_alloc;
alloc_bytes += PAGE_SIZE;
pud_populate(&init_mm, pud, new);
}
@ -1836,6 +1840,8 @@ static unsigned long __ref kernel_map_range(unsigned long pstart,
}
new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
PAGE_SIZE);
if (!new)
goto err_alloc;
alloc_bytes += PAGE_SIZE;
pmd_populate_kernel(&init_mm, pmd, new);
}
@ -1855,6 +1861,11 @@ static unsigned long __ref kernel_map_range(unsigned long pstart,
}
return alloc_bytes;
err_alloc:
panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n",
__func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
return -ENOMEM;
}
static void __init flush_all_kernel_tsbs(void)

View File

@ -303,13 +303,19 @@ static void __init srmmu_nocache_init(void)
bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
srmmu_nocache_pool = memblock_alloc_from(srmmu_nocache_size,
SRMMU_NOCACHE_ALIGN_MAX, 0UL);
srmmu_nocache_pool = memblock_alloc(srmmu_nocache_size,
SRMMU_NOCACHE_ALIGN_MAX);
if (!srmmu_nocache_pool)
panic("%s: Failed to allocate %lu bytes align=0x%x\n",
__func__, srmmu_nocache_size, SRMMU_NOCACHE_ALIGN_MAX);
memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
srmmu_nocache_bitmap =
memblock_alloc_from(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
SMP_CACHE_BYTES, 0UL);
memblock_alloc(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
SMP_CACHE_BYTES);
if (!srmmu_nocache_bitmap)
panic("%s: Failed to allocate %zu bytes\n", __func__,
BITS_TO_LONGS(bitmap_bits) * sizeof(long));
bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
@ -467,7 +473,9 @@ static void __init sparc_context_init(int numctx)
unsigned long size;
size = numctx * sizeof(struct ctx_list);
ctx_list_pool = memblock_alloc_from(size, SMP_CACHE_BYTES, 0UL);
ctx_list_pool = memblock_alloc(size, SMP_CACHE_BYTES);
if (!ctx_list_pool)
panic("%s: Failed to allocate %lu bytes\n", __func__, size);
for (ctx = 0; ctx < numctx; ctx++) {
struct ctx_list *clist;

View File

@ -649,6 +649,9 @@ static int __init eth_setup(char *str)
}
new = memblock_alloc(sizeof(*new), SMP_CACHE_BYTES);
if (!new)
panic("%s: Failed to allocate %zu bytes\n", __func__,
sizeof(*new));
INIT_LIST_HEAD(&new->list);
new->index = n;

View File

@ -1576,6 +1576,9 @@ static int __init vector_setup(char *str)
return 1;
}
new = memblock_alloc(sizeof(*new), SMP_CACHE_BYTES);
if (!new)
panic("%s: Failed to allocate %zu bytes\n", __func__,
sizeof(*new));
INIT_LIST_HEAD(&new->list);
new->unit = n;
new->arguments = str;

View File

@ -37,6 +37,8 @@ int __init read_initrd(void)
}
area = memblock_alloc(size, SMP_CACHE_BYTES);
if (!area)
panic("%s: Failed to allocate %llu bytes\n", __func__, size);
if (load_initrd(initrd, area, size) == -1)
return 0;

View File

@ -66,6 +66,10 @@ static void __init one_page_table_init(pmd_t *pmd)
if (pmd_none(*pmd)) {
pte_t *pte = (pte_t *) memblock_alloc_low(PAGE_SIZE,
PAGE_SIZE);
if (!pte)
panic("%s: Failed to allocate %lu bytes align=%lx\n",
__func__, PAGE_SIZE, PAGE_SIZE);
set_pmd(pmd, __pmd(_KERNPG_TABLE +
(unsigned long) __pa(pte)));
if (pte != pte_offset_kernel(pmd, 0))
@ -77,6 +81,10 @@ static void __init one_md_table_init(pud_t *pud)
{
#ifdef CONFIG_3_LEVEL_PGTABLES
pmd_t *pmd_table = (pmd_t *) memblock_alloc_low(PAGE_SIZE, PAGE_SIZE);
if (!pmd_table)
panic("%s: Failed to allocate %lu bytes align=%lx\n",
__func__, PAGE_SIZE, PAGE_SIZE);
set_pud(pud, __pud(_KERNPG_TABLE + (unsigned long) __pa(pmd_table)));
if (pmd_table != pmd_offset(pud, 0))
BUG();
@ -126,6 +134,10 @@ static void __init fixaddr_user_init( void)
fixrange_init( FIXADDR_USER_START, FIXADDR_USER_END, swapper_pg_dir);
v = (unsigned long) memblock_alloc_low(size, PAGE_SIZE);
if (!v)
panic("%s: Failed to allocate %lu bytes align=%lx\n",
__func__, size, PAGE_SIZE);
memcpy((void *) v , (void *) FIXADDR_USER_START, size);
p = __pa(v);
for ( ; size > 0; size -= PAGE_SIZE, vaddr += PAGE_SIZE,
@ -146,6 +158,10 @@ void __init paging_init(void)
empty_zero_page = (unsigned long *) memblock_alloc_low(PAGE_SIZE,
PAGE_SIZE);
if (!empty_zero_page)
panic("%s: Failed to allocate %lu bytes align=%lx\n",
__func__, PAGE_SIZE, PAGE_SIZE);
for (i = 0; i < ARRAY_SIZE(zones_size); i++)
zones_size[i] = 0;

View File

@ -207,6 +207,10 @@ request_standard_resources(struct meminfo *mi)
continue;
res = memblock_alloc_low(sizeof(*res), SMP_CACHE_BYTES);
if (!res)
panic("%s: Failed to allocate %zu bytes align=%x\n",
__func__, sizeof(*res), SMP_CACHE_BYTES);
res->name = "System RAM";
res->start = mi->bank[i].start;
res->end = mi->bank[i].start + mi->bank[i].size - 1;

View File

@ -145,8 +145,13 @@ static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
unsigned long prot)
{
if (pmd_none(*pmd)) {
pte_t *pte = memblock_alloc(PTRS_PER_PTE * sizeof(pte_t),
PTRS_PER_PTE * sizeof(pte_t));
size_t size = PTRS_PER_PTE * sizeof(pte_t);
pte_t *pte = memblock_alloc(size, size);
if (!pte)
panic("%s: Failed to allocate %zu bytes align=%zx\n",
__func__, size, size);
__pmd_populate(pmd, __pa(pte) | prot);
}
BUG_ON(pmd_bad(*pmd));
@ -349,6 +354,9 @@ static void __init devicemaps_init(void)
* Allocate the vector page early.
*/
vectors = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
if (!vectors)
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
__func__, PAGE_SIZE, PAGE_SIZE);
for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
pmd_clear(pmd_off_k(addr));
@ -426,6 +434,9 @@ void __init paging_init(void)
/* allocate the zero page. */
zero_page = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
if (!zero_page)
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
__func__, PAGE_SIZE, PAGE_SIZE);
bootmem_init();

View File

@ -935,6 +935,9 @@ static int __init acpi_parse_hpet(struct acpi_table_header *table)
#define HPET_RESOURCE_NAME_SIZE 9
hpet_res = memblock_alloc(sizeof(*hpet_res) + HPET_RESOURCE_NAME_SIZE,
SMP_CACHE_BYTES);
if (!hpet_res)
panic("%s: Failed to allocate %zu bytes\n", __func__,
sizeof(*hpet_res) + HPET_RESOURCE_NAME_SIZE);
hpet_res->name = (void *)&hpet_res[1];
hpet_res->flags = IORESOURCE_MEM;

View File

@ -2581,6 +2581,8 @@ static struct resource * __init ioapic_setup_resources(void)
n *= nr_ioapics;
mem = memblock_alloc(n, SMP_CACHE_BYTES);
if (!mem)
panic("%s: Failed to allocate %lu bytes\n", __func__, n);
res = (void *)mem;
mem += sizeof(struct resource) * nr_ioapics;
@ -2625,6 +2627,9 @@ fake_ioapic_page:
#endif
ioapic_phys = (unsigned long)memblock_alloc(PAGE_SIZE,
PAGE_SIZE);
if (!ioapic_phys)
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
__func__, PAGE_SIZE, PAGE_SIZE);
ioapic_phys = __pa(ioapic_phys);
}
set_fixmap_nocache(idx, ioapic_phys);

View File

@ -776,7 +776,7 @@ u64 __init e820__memblock_alloc_reserved(u64 size, u64 align)
{
u64 addr;
addr = __memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
addr = memblock_phys_alloc(size, align);
if (addr) {
e820__range_update_kexec(addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED);
pr_info("update e820_table_kexec for e820__memblock_alloc_reserved()\n");
@ -1097,6 +1097,9 @@ void __init e820__reserve_resources(void)
res = memblock_alloc(sizeof(*res) * e820_table->nr_entries,
SMP_CACHE_BYTES);
if (!res)
panic("%s: Failed to allocate %zu bytes\n", __func__,
sizeof(*res) * e820_table->nr_entries);
e820_res = res;
for (i = 0; i < e820_table->nr_entries; i++) {

View File

@ -106,22 +106,22 @@ static void * __init pcpu_alloc_bootmem(unsigned int cpu, unsigned long size,
void *ptr;
if (!node_online(node) || !NODE_DATA(node)) {
ptr = memblock_alloc_from_nopanic(size, align, goal);
ptr = memblock_alloc_from(size, align, goal);
pr_info("cpu %d has no node %d or node-local memory\n",
cpu, node);
pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
cpu, size, __pa(ptr));
} else {
ptr = memblock_alloc_try_nid_nopanic(size, align, goal,
MEMBLOCK_ALLOC_ACCESSIBLE,
node);
ptr = memblock_alloc_try_nid(size, align, goal,
MEMBLOCK_ALLOC_ACCESSIBLE,
node);
pr_debug("per cpu data for cpu%d %lu bytes on node%d at %016lx\n",
cpu, size, node, __pa(ptr));
}
return ptr;
#else
return memblock_alloc_from_nopanic(size, align, goal);
return memblock_alloc_from(size, align, goal);
#endif
}

View File

@ -24,14 +24,16 @@ extern struct range pfn_mapped[E820_MAX_ENTRIES];
static p4d_t tmp_p4d_table[MAX_PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE);
static __init void *early_alloc(size_t size, int nid, bool panic)
static __init void *early_alloc(size_t size, int nid, bool should_panic)
{
if (panic)
return memblock_alloc_try_nid(size, size,
__pa(MAX_DMA_ADDRESS), MEMBLOCK_ALLOC_ACCESSIBLE, nid);
else
return memblock_alloc_try_nid_nopanic(size, size,
void *ptr = memblock_alloc_try_nid(size, size,
__pa(MAX_DMA_ADDRESS), MEMBLOCK_ALLOC_ACCESSIBLE, nid);
if (!ptr && should_panic)
panic("%pS: Failed to allocate page, nid=%d from=%lx\n",
(void *)_RET_IP_, nid, __pa(MAX_DMA_ADDRESS));
return ptr;
}
static void __init kasan_populate_pmd(pmd_t *pmd, unsigned long addr,

View File

@ -195,15 +195,11 @@ static void __init alloc_node_data(int nid)
* Allocate node data. Try node-local memory and then any node.
* Never allocate in DMA zone.
*/
nd_pa = memblock_phys_alloc_nid(nd_size, SMP_CACHE_BYTES, nid);
nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
if (!nd_pa) {
nd_pa = __memblock_alloc_base(nd_size, SMP_CACHE_BYTES,
MEMBLOCK_ALLOC_ACCESSIBLE);
if (!nd_pa) {
pr_err("Cannot find %zu bytes in any node (initial node: %d)\n",
nd_size, nid);
return;
}
pr_err("Cannot find %zu bytes in any node (initial node: %d)\n",
nd_size, nid);
return;
}
nd = __va(nd_pa);

View File

@ -141,6 +141,9 @@ void * __init prom_early_alloc(unsigned long size)
* wasted bootmem) and hand off chunks of it to callers.
*/
res = memblock_alloc(chunk_size, SMP_CACHE_BYTES);
if (!res)
panic("%s: Failed to allocate %zu bytes\n", __func__,
chunk_size);
BUG_ON(!res);
prom_early_allocated += chunk_size;
memset(res, 0, chunk_size);

View File

@ -181,8 +181,15 @@ static void p2m_init_identity(unsigned long *p2m, unsigned long pfn)
static void * __ref alloc_p2m_page(void)
{
if (unlikely(!slab_is_available()))
return memblock_alloc(PAGE_SIZE, PAGE_SIZE);
if (unlikely(!slab_is_available())) {
void *ptr = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
if (!ptr)
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
__func__, PAGE_SIZE, PAGE_SIZE);
return ptr;
}
return (void *)__get_free_page(GFP_KERNEL);
}

Some files were not shown because too many files have changed in this diff Show More