1
0
Fork 0

[media] m88rs2000: make use ts2020

Tuner part of Montage rs2000 chip is similar to ts2020 tuner.
Patch to use ts2020 code.

[mchehab@redhat.com: a few CodingStyle fixes]
Signed-off-by: Igor M. Liplianin <liplianin@me.by>

Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
hifive-unleashed-5.1
Igor M. Liplianin 2012-12-28 19:40:33 -03:00 committed by Mauro Carvalho Chehab
parent 43385c8a64
commit b858c331cd
10 changed files with 365 additions and 505 deletions

View File

@ -60,15 +60,13 @@ MODULE_PARM_DESC(debug, "set debugging level (1=info (or-able)).");
#define info(format, arg...) \
printk(KERN_INFO "m88rs2000-fe: " format "\n" , ## arg)
static int m88rs2000_writereg(struct m88rs2000_state *state, u8 tuner,
static int m88rs2000_writereg(struct m88rs2000_state *state,
u8 reg, u8 data)
{
int ret;
u8 addr = (tuner == 0) ? state->config->tuner_addr :
state->config->demod_addr;
u8 buf[] = { reg, data };
struct i2c_msg msg = {
.addr = addr,
.addr = state->config->demod_addr,
.flags = 0,
.buf = buf,
.len = 2
@ -83,44 +81,20 @@ static int m88rs2000_writereg(struct m88rs2000_state *state, u8 tuner,
return (ret != 1) ? -EREMOTEIO : 0;
}
static int m88rs2000_demod_write(struct m88rs2000_state *state, u8 reg, u8 data)
{
return m88rs2000_writereg(state, 1, reg, data);
}
static int m88rs2000_tuner_write(struct m88rs2000_state *state, u8 reg, u8 data)
{
m88rs2000_demod_write(state, 0x81, 0x84);
udelay(10);
return m88rs2000_writereg(state, 0, reg, data);
}
static int m88rs2000_write(struct dvb_frontend *fe, const u8 buf[], int len)
{
struct m88rs2000_state *state = fe->demodulator_priv;
if (len != 2)
return -EINVAL;
return m88rs2000_writereg(state, 1, buf[0], buf[1]);
}
static u8 m88rs2000_readreg(struct m88rs2000_state *state, u8 tuner, u8 reg)
static u8 m88rs2000_readreg(struct m88rs2000_state *state, u8 reg)
{
int ret;
u8 b0[] = { reg };
u8 b1[] = { 0 };
u8 addr = (tuner == 0) ? state->config->tuner_addr :
state->config->demod_addr;
struct i2c_msg msg[] = {
{
.addr = addr,
.addr = state->config->demod_addr,
.flags = 0,
.buf = b0,
.len = 1
}, {
.addr = addr,
.addr = state->config->demod_addr,
.flags = I2C_M_RD,
.buf = b1,
.len = 1
@ -136,18 +110,6 @@ static u8 m88rs2000_readreg(struct m88rs2000_state *state, u8 tuner, u8 reg)
return b1[0];
}
static u8 m88rs2000_demod_read(struct m88rs2000_state *state, u8 reg)
{
return m88rs2000_readreg(state, 1, reg);
}
static u8 m88rs2000_tuner_read(struct m88rs2000_state *state, u8 reg)
{
m88rs2000_demod_write(state, 0x81, 0x85);
udelay(10);
return m88rs2000_readreg(state, 0, reg);
}
static int m88rs2000_set_symbolrate(struct dvb_frontend *fe, u32 srate)
{
struct m88rs2000_state *state = fe->demodulator_priv;
@ -166,9 +128,9 @@ static int m88rs2000_set_symbolrate(struct dvb_frontend *fe, u32 srate)
b[0] = (u8) (temp >> 16) & 0xff;
b[1] = (u8) (temp >> 8) & 0xff;
b[2] = (u8) temp & 0xff;
ret = m88rs2000_demod_write(state, 0x93, b[2]);
ret |= m88rs2000_demod_write(state, 0x94, b[1]);
ret |= m88rs2000_demod_write(state, 0x95, b[0]);
ret = m88rs2000_writereg(state, 0x93, b[2]);
ret |= m88rs2000_writereg(state, 0x94, b[1]);
ret |= m88rs2000_writereg(state, 0x95, b[0]);
deb_info("m88rs2000: m88rs2000_set_symbolrate\n");
return ret;
@ -182,37 +144,37 @@ static int m88rs2000_send_diseqc_msg(struct dvb_frontend *fe,
int i;
u8 reg;
deb_info("%s\n", __func__);
m88rs2000_demod_write(state, 0x9a, 0x30);
reg = m88rs2000_demod_read(state, 0xb2);
m88rs2000_writereg(state, 0x9a, 0x30);
reg = m88rs2000_readreg(state, 0xb2);
reg &= 0x3f;
m88rs2000_demod_write(state, 0xb2, reg);
m88rs2000_writereg(state, 0xb2, reg);
for (i = 0; i < m->msg_len; i++)
m88rs2000_demod_write(state, 0xb3 + i, m->msg[i]);
m88rs2000_writereg(state, 0xb3 + i, m->msg[i]);
reg = m88rs2000_demod_read(state, 0xb1);
reg = m88rs2000_readreg(state, 0xb1);
reg &= 0x87;
reg |= ((m->msg_len - 1) << 3) | 0x07;
reg &= 0x7f;
m88rs2000_demod_write(state, 0xb1, reg);
m88rs2000_writereg(state, 0xb1, reg);
for (i = 0; i < 15; i++) {
if ((m88rs2000_demod_read(state, 0xb1) & 0x40) == 0x0)
if ((m88rs2000_readreg(state, 0xb1) & 0x40) == 0x0)
break;
msleep(20);
}
reg = m88rs2000_demod_read(state, 0xb1);
reg = m88rs2000_readreg(state, 0xb1);
if ((reg & 0x40) > 0x0) {
reg &= 0x7f;
reg |= 0x40;
m88rs2000_demod_write(state, 0xb1, reg);
m88rs2000_writereg(state, 0xb1, reg);
}
reg = m88rs2000_demod_read(state, 0xb2);
reg = m88rs2000_readreg(state, 0xb2);
reg &= 0x3f;
reg |= 0x80;
m88rs2000_demod_write(state, 0xb2, reg);
m88rs2000_demod_write(state, 0x9a, 0xb0);
m88rs2000_writereg(state, 0xb2, reg);
m88rs2000_writereg(state, 0x9a, 0xb0);
return 0;
@ -224,14 +186,14 @@ static int m88rs2000_send_diseqc_burst(struct dvb_frontend *fe,
struct m88rs2000_state *state = fe->demodulator_priv;
u8 reg0, reg1;
deb_info("%s\n", __func__);
m88rs2000_demod_write(state, 0x9a, 0x30);
m88rs2000_writereg(state, 0x9a, 0x30);
msleep(50);
reg0 = m88rs2000_demod_read(state, 0xb1);
reg1 = m88rs2000_demod_read(state, 0xb2);
reg0 = m88rs2000_readreg(state, 0xb1);
reg1 = m88rs2000_readreg(state, 0xb2);
/* TODO complete this section */
m88rs2000_demod_write(state, 0xb2, reg1);
m88rs2000_demod_write(state, 0xb1, reg0);
m88rs2000_demod_write(state, 0x9a, 0xb0);
m88rs2000_writereg(state, 0xb2, reg1);
m88rs2000_writereg(state, 0xb1, reg0);
m88rs2000_writereg(state, 0x9a, 0xb0);
return 0;
}
@ -240,9 +202,9 @@ static int m88rs2000_set_tone(struct dvb_frontend *fe, fe_sec_tone_mode_t tone)
{
struct m88rs2000_state *state = fe->demodulator_priv;
u8 reg0, reg1;
m88rs2000_demod_write(state, 0x9a, 0x30);
reg0 = m88rs2000_demod_read(state, 0xb1);
reg1 = m88rs2000_demod_read(state, 0xb2);
m88rs2000_writereg(state, 0x9a, 0x30);
reg0 = m88rs2000_readreg(state, 0xb1);
reg1 = m88rs2000_readreg(state, 0xb2);
reg1 &= 0x3f;
@ -257,9 +219,9 @@ static int m88rs2000_set_tone(struct dvb_frontend *fe, fe_sec_tone_mode_t tone)
default:
break;
}
m88rs2000_demod_write(state, 0xb2, reg1);
m88rs2000_demod_write(state, 0xb1, reg0);
m88rs2000_demod_write(state, 0x9a, 0xb0);
m88rs2000_writereg(state, 0xb2, reg1);
m88rs2000_writereg(state, 0xb1, reg0);
m88rs2000_writereg(state, 0x9a, 0xb0);
return 0;
}
@ -276,14 +238,6 @@ struct inittab m88rs2000_setup[] = {
{DEMOD_WRITE, 0x00, 0x00},
{DEMOD_WRITE, 0x9a, 0xb0},
{DEMOD_WRITE, 0x81, 0xc1},
{TUNER_WRITE, 0x42, 0x73},
{TUNER_WRITE, 0x05, 0x07},
{TUNER_WRITE, 0x20, 0x27},
{TUNER_WRITE, 0x07, 0x02},
{TUNER_WRITE, 0x11, 0xff},
{TUNER_WRITE, 0x60, 0xf9},
{TUNER_WRITE, 0x08, 0x01},
{TUNER_WRITE, 0x00, 0x41},
{DEMOD_WRITE, 0x81, 0x81},
{DEMOD_WRITE, 0x86, 0xc6},
{DEMOD_WRITE, 0x9a, 0x30},
@ -301,23 +255,10 @@ struct inittab m88rs2000_shutdown[] = {
{DEMOD_WRITE, 0xf1, 0x89},
{DEMOD_WRITE, 0x00, 0x01},
{DEMOD_WRITE, 0x9a, 0xb0},
{TUNER_WRITE, 0x00, 0x40},
{DEMOD_WRITE, 0x81, 0x81},
{0xff, 0xaa, 0xff}
};
struct inittab tuner_reset[] = {
{TUNER_WRITE, 0x42, 0x73},
{TUNER_WRITE, 0x05, 0x07},
{TUNER_WRITE, 0x20, 0x27},
{TUNER_WRITE, 0x07, 0x02},
{TUNER_WRITE, 0x11, 0xff},
{TUNER_WRITE, 0x60, 0xf9},
{TUNER_WRITE, 0x08, 0x01},
{TUNER_WRITE, 0x00, 0x41},
{0xff, 0xaa, 0xff}
};
struct inittab fe_reset[] = {
{DEMOD_WRITE, 0x00, 0x01},
{DEMOD_WRITE, 0xf1, 0xbf},
@ -389,11 +330,7 @@ static int m88rs2000_tab_set(struct m88rs2000_state *state,
for (i = 0; i < 255; i++) {
switch (tab[i].cmd) {
case 0x01:
ret = m88rs2000_demod_write(state, tab[i].reg,
tab[i].val);
break;
case 0x02:
ret = m88rs2000_tuner_write(state, tab[i].reg,
ret = m88rs2000_writereg(state, tab[i].reg,
tab[i].val);
break;
case 0x10:
@ -419,7 +356,7 @@ static int m88rs2000_set_voltage(struct dvb_frontend *fe, fe_sec_voltage_t volt)
struct m88rs2000_state *state = fe->demodulator_priv;
u8 data;
data = m88rs2000_demod_read(state, 0xb2);
data = m88rs2000_readreg(state, 0xb2);
data |= 0x03; /* bit0 V/H, bit1 off/on */
switch (volt) {
@ -434,23 +371,11 @@ static int m88rs2000_set_voltage(struct dvb_frontend *fe, fe_sec_voltage_t volt)
break;
}
m88rs2000_demod_write(state, 0xb2, data);
m88rs2000_writereg(state, 0xb2, data);
return 0;
}
static int m88rs2000_startup(struct m88rs2000_state *state)
{
int ret = 0;
u8 reg;
reg = m88rs2000_tuner_read(state, 0x00);
if ((reg & 0x40) == 0)
ret = -ENODEV;
return ret;
}
static int m88rs2000_init(struct dvb_frontend *fe)
{
struct m88rs2000_state *state = fe->demodulator_priv;
@ -479,7 +404,7 @@ static int m88rs2000_sleep(struct dvb_frontend *fe)
static int m88rs2000_read_status(struct dvb_frontend *fe, fe_status_t *status)
{
struct m88rs2000_state *state = fe->demodulator_priv;
u8 reg = m88rs2000_demod_read(state, 0x8c);
u8 reg = m88rs2000_readreg(state, 0x8c);
*status = 0;
@ -497,23 +422,23 @@ static int m88rs2000_read_ber(struct dvb_frontend *fe, u32 *ber)
struct m88rs2000_state *state = fe->demodulator_priv;
u8 tmp0, tmp1;
m88rs2000_demod_write(state, 0x9a, 0x30);
tmp0 = m88rs2000_demod_read(state, 0xd8);
m88rs2000_writereg(state, 0x9a, 0x30);
tmp0 = m88rs2000_readreg(state, 0xd8);
if ((tmp0 & 0x10) != 0) {
m88rs2000_demod_write(state, 0x9a, 0xb0);
m88rs2000_writereg(state, 0x9a, 0xb0);
*ber = 0xffffffff;
return 0;
}
*ber = (m88rs2000_demod_read(state, 0xd7) << 8) |
m88rs2000_demod_read(state, 0xd6);
*ber = (m88rs2000_readreg(state, 0xd7) << 8) |
m88rs2000_readreg(state, 0xd6);
tmp1 = m88rs2000_demod_read(state, 0xd9);
m88rs2000_demod_write(state, 0xd9, (tmp1 & ~7) | 4);
tmp1 = m88rs2000_readreg(state, 0xd9);
m88rs2000_writereg(state, 0xd9, (tmp1 & ~7) | 4);
/* needs twice */
m88rs2000_demod_write(state, 0xd8, (tmp0 & ~8) | 0x30);
m88rs2000_demod_write(state, 0xd8, (tmp0 & ~8) | 0x30);
m88rs2000_demod_write(state, 0x9a, 0xb0);
m88rs2000_writereg(state, 0xd8, (tmp0 & ~8) | 0x30);
m88rs2000_writereg(state, 0xd8, (tmp0 & ~8) | 0x30);
m88rs2000_writereg(state, 0x9a, 0xb0);
return 0;
}
@ -529,7 +454,7 @@ static int m88rs2000_read_snr(struct dvb_frontend *fe, u16 *snr)
{
struct m88rs2000_state *state = fe->demodulator_priv;
*snr = 512 * m88rs2000_demod_read(state, 0x65);
*snr = 512 * m88rs2000_readreg(state, 0x65);
return 0;
}
@ -539,166 +464,17 @@ static int m88rs2000_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
struct m88rs2000_state *state = fe->demodulator_priv;
u8 tmp;
*ucblocks = (m88rs2000_demod_read(state, 0xd5) << 8) |
m88rs2000_demod_read(state, 0xd4);
tmp = m88rs2000_demod_read(state, 0xd8);
m88rs2000_demod_write(state, 0xd8, tmp & ~0x20);
*ucblocks = (m88rs2000_readreg(state, 0xd5) << 8) |
m88rs2000_readreg(state, 0xd4);
tmp = m88rs2000_readreg(state, 0xd8);
m88rs2000_writereg(state, 0xd8, tmp & ~0x20);
/* needs two times */
m88rs2000_demod_write(state, 0xd8, tmp | 0x20);
m88rs2000_demod_write(state, 0xd8, tmp | 0x20);
m88rs2000_writereg(state, 0xd8, tmp | 0x20);
m88rs2000_writereg(state, 0xd8, tmp | 0x20);
return 0;
}
static int m88rs2000_tuner_gate_ctrl(struct m88rs2000_state *state, u8 offset)
{
int ret;
ret = m88rs2000_tuner_write(state, 0x51, 0x1f - offset);
ret |= m88rs2000_tuner_write(state, 0x51, 0x1f);
ret |= m88rs2000_tuner_write(state, 0x50, offset);
ret |= m88rs2000_tuner_write(state, 0x50, 0x00);
msleep(20);
return ret;
}
static int m88rs2000_set_tuner_rf(struct dvb_frontend *fe)
{
struct m88rs2000_state *state = fe->demodulator_priv;
int reg;
reg = m88rs2000_tuner_read(state, 0x3d);
reg &= 0x7f;
if (reg < 0x16)
reg = 0xa1;
else if (reg == 0x16)
reg = 0x99;
else
reg = 0xf9;
m88rs2000_tuner_write(state, 0x60, reg);
reg = m88rs2000_tuner_gate_ctrl(state, 0x08);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
return reg;
}
static int m88rs2000_set_tuner(struct dvb_frontend *fe, u16 *offset)
{
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
struct m88rs2000_state *state = fe->demodulator_priv;
int ret;
u32 frequency = c->frequency;
s32 offset_khz;
s32 tmp;
u32 symbol_rate = (c->symbol_rate / 1000);
u32 f3db, gdiv28;
u16 value, ndiv, lpf_coeff;
u8 lpf_mxdiv, mlpf_max, mlpf_min, nlpf;
u8 lo = 0x01, div4 = 0x0;
/* Reset Tuner */
ret = m88rs2000_tab_set(state, tuner_reset);
/* Calculate frequency divider */
if (frequency < 1060000) {
lo |= 0x10;
div4 = 0x1;
ndiv = (frequency * 14 * 4) / FE_CRYSTAL_KHZ;
} else
ndiv = (frequency * 14 * 2) / FE_CRYSTAL_KHZ;
ndiv = ndiv + ndiv % 2;
ndiv = ndiv - 1024;
ret = m88rs2000_tuner_write(state, 0x10, 0x80 | lo);
/* Set frequency divider */
ret |= m88rs2000_tuner_write(state, 0x01, (ndiv >> 8) & 0xf);
ret |= m88rs2000_tuner_write(state, 0x02, ndiv & 0xff);
ret |= m88rs2000_tuner_write(state, 0x03, 0x06);
ret |= m88rs2000_tuner_gate_ctrl(state, 0x10);
if (ret < 0)
return -ENODEV;
/* Tuner Frequency Range */
ret = m88rs2000_tuner_write(state, 0x10, lo);
ret |= m88rs2000_tuner_gate_ctrl(state, 0x08);
/* Tuner RF */
ret |= m88rs2000_set_tuner_rf(fe);
gdiv28 = (FE_CRYSTAL_KHZ / 1000 * 1694 + 500) / 1000;
ret |= m88rs2000_tuner_write(state, 0x04, gdiv28 & 0xff);
ret |= m88rs2000_tuner_gate_ctrl(state, 0x04);
if (ret < 0)
return -ENODEV;
value = m88rs2000_tuner_read(state, 0x26);
f3db = (symbol_rate * 135) / 200 + 2000;
f3db += FREQ_OFFSET_LOW_SYM_RATE;
if (f3db < 7000)
f3db = 7000;
if (f3db > 40000)
f3db = 40000;
gdiv28 = gdiv28 * 207 / (value * 2 + 151);
mlpf_max = gdiv28 * 135 / 100;
mlpf_min = gdiv28 * 78 / 100;
if (mlpf_max > 63)
mlpf_max = 63;
lpf_coeff = 2766;
nlpf = (f3db * gdiv28 * 2 / lpf_coeff /
(FE_CRYSTAL_KHZ / 1000) + 1) / 2;
if (nlpf > 23)
nlpf = 23;
if (nlpf < 1)
nlpf = 1;
lpf_mxdiv = (nlpf * (FE_CRYSTAL_KHZ / 1000)
* lpf_coeff * 2 / f3db + 1) / 2;
if (lpf_mxdiv < mlpf_min) {
nlpf++;
lpf_mxdiv = (nlpf * (FE_CRYSTAL_KHZ / 1000)
* lpf_coeff * 2 / f3db + 1) / 2;
}
if (lpf_mxdiv > mlpf_max)
lpf_mxdiv = mlpf_max;
ret = m88rs2000_tuner_write(state, 0x04, lpf_mxdiv);
ret |= m88rs2000_tuner_write(state, 0x06, nlpf);
ret |= m88rs2000_tuner_gate_ctrl(state, 0x04);
ret |= m88rs2000_tuner_gate_ctrl(state, 0x01);
msleep(80);
/* calculate offset assuming 96000kHz*/
offset_khz = (ndiv - ndiv % 2 + 1024) * FE_CRYSTAL_KHZ
/ 14 / (div4 + 1) / 2;
offset_khz -= frequency;
tmp = offset_khz;
tmp *= 65536;
tmp = (2 * tmp + 96000) / (2 * 96000);
if (tmp < 0)
tmp += 65536;
*offset = tmp & 0xffff;
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
return (ret < 0) ? -EINVAL : 0;
}
static int m88rs2000_set_fec(struct m88rs2000_state *state,
fe_code_rate_t fec)
{
@ -724,7 +500,7 @@ static int m88rs2000_set_fec(struct m88rs2000_state *state,
default:
fec_set = 0x08;
}
m88rs2000_demod_write(state, 0x76, fec_set);
m88rs2000_writereg(state, 0x76, fec_set);
return 0;
}
@ -733,9 +509,9 @@ static int m88rs2000_set_fec(struct m88rs2000_state *state,
static fe_code_rate_t m88rs2000_get_fec(struct m88rs2000_state *state)
{
u8 reg;
m88rs2000_demod_write(state, 0x9a, 0x30);
reg = m88rs2000_demod_read(state, 0x76);
m88rs2000_demod_write(state, 0x9a, 0xb0);
m88rs2000_writereg(state, 0x9a, 0x30);
reg = m88rs2000_readreg(state, 0x76);
m88rs2000_writereg(state, 0x9a, 0xb0);
switch (reg) {
case 0x88:
@ -761,7 +537,9 @@ static int m88rs2000_set_frontend(struct dvb_frontend *fe)
struct m88rs2000_state *state = fe->demodulator_priv;
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
fe_status_t status;
int i, ret;
int i, ret = 0;
s32 tmp;
u32 tuner_freq;
u16 offset = 0;
u8 reg;
@ -775,17 +553,37 @@ static int m88rs2000_set_frontend(struct dvb_frontend *fe)
}
/* Set Tuner */
ret = m88rs2000_set_tuner(fe, &offset);
if (fe->ops.tuner_ops.set_params)
ret = fe->ops.tuner_ops.set_params(fe);
if (ret < 0)
return -ENODEV;
ret = m88rs2000_demod_write(state, 0x9a, 0x30);
if (fe->ops.tuner_ops.get_frequency)
ret = fe->ops.tuner_ops.get_frequency(fe, &tuner_freq);
if (ret < 0)
return -ENODEV;
offset = tuner_freq - c->frequency;
/* calculate offset assuming 96000kHz*/
tmp = offset;
tmp *= 65536;
tmp = (2 * tmp + 96000) / (2 * 96000);
if (tmp < 0)
tmp += 65536;
offset = tmp & 0xffff;
ret = m88rs2000_writereg(state, 0x9a, 0x30);
/* Unknown usually 0xc6 sometimes 0xc1 */
reg = m88rs2000_demod_read(state, 0x86);
ret |= m88rs2000_demod_write(state, 0x86, reg);
reg = m88rs2000_readreg(state, 0x86);
ret |= m88rs2000_writereg(state, 0x86, reg);
/* Offset lower nibble always 0 */
ret |= m88rs2000_demod_write(state, 0x9c, (offset >> 8));
ret |= m88rs2000_demod_write(state, 0x9d, offset & 0xf0);
ret |= m88rs2000_writereg(state, 0x9c, (offset >> 8));
ret |= m88rs2000_writereg(state, 0x9d, offset & 0xf0);
/* Reset Demod */
@ -794,16 +592,16 @@ static int m88rs2000_set_frontend(struct dvb_frontend *fe)
return -ENODEV;
/* Unknown */
reg = m88rs2000_demod_read(state, 0x70);
ret = m88rs2000_demod_write(state, 0x70, reg);
reg = m88rs2000_readreg(state, 0x70);
ret = m88rs2000_writereg(state, 0x70, reg);
/* Set FEC */
ret |= m88rs2000_set_fec(state, c->fec_inner);
ret |= m88rs2000_demod_write(state, 0x85, 0x1);
ret |= m88rs2000_demod_write(state, 0x8a, 0xbf);
ret |= m88rs2000_demod_write(state, 0x8d, 0x1e);
ret |= m88rs2000_demod_write(state, 0x90, 0xf1);
ret |= m88rs2000_demod_write(state, 0x91, 0x08);
ret |= m88rs2000_writereg(state, 0x85, 0x1);
ret |= m88rs2000_writereg(state, 0x8a, 0xbf);
ret |= m88rs2000_writereg(state, 0x8d, 0x1e);
ret |= m88rs2000_writereg(state, 0x90, 0xf1);
ret |= m88rs2000_writereg(state, 0x91, 0x08);
if (ret < 0)
return -ENODEV;
@ -819,27 +617,25 @@ static int m88rs2000_set_frontend(struct dvb_frontend *fe)
return -ENODEV;
for (i = 0; i < 25; i++) {
reg = m88rs2000_demod_read(state, 0x8c);
reg = m88rs2000_readreg(state, 0x8c);
if ((reg & 0x7) == 0x7) {
status = FE_HAS_LOCK;
break;
}
state->no_lock_count++;
if (state->no_lock_count == 15) {
reg = m88rs2000_demod_read(state, 0x70);
reg = m88rs2000_readreg(state, 0x70);
reg ^= 0x4;
m88rs2000_demod_write(state, 0x70, reg);
m88rs2000_writereg(state, 0x70, reg);
state->no_lock_count = 0;
}
if (state->no_lock_count == 20)
m88rs2000_set_tuner_rf(fe);
msleep(20);
}
if (status & FE_HAS_LOCK) {
state->fec_inner = m88rs2000_get_fec(state);
/* Uknown suspect SNR level */
reg = m88rs2000_demod_read(state, 0x65);
reg = m88rs2000_readreg(state, 0x65);
}
state->tuner_frequency = c->frequency;
@ -862,9 +658,9 @@ static int m88rs2000_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
struct m88rs2000_state *state = fe->demodulator_priv;
if (enable)
m88rs2000_demod_write(state, 0x81, 0x84);
m88rs2000_writereg(state, 0x81, 0x84);
else
m88rs2000_demod_write(state, 0x81, 0x81);
m88rs2000_writereg(state, 0x81, 0x81);
udelay(10);
return 0;
}
@ -895,7 +691,6 @@ static struct dvb_frontend_ops m88rs2000_ops = {
.release = m88rs2000_release,
.init = m88rs2000_init,
.sleep = m88rs2000_sleep,
.write = m88rs2000_write,
.i2c_gate_ctrl = m88rs2000_i2c_gate_ctrl,
.read_status = m88rs2000_read_status,
.read_ber = m88rs2000_read_ber,
@ -928,9 +723,6 @@ struct dvb_frontend *m88rs2000_attach(const struct m88rs2000_config *config,
state->symbol_rate = 0;
state->fec_inner = 0;
if (m88rs2000_startup(state) < 0)
goto error;
/* create dvb_frontend */
memcpy(&state->frontend.ops, &m88rs2000_ops,
sizeof(struct dvb_frontend_ops));

View File

@ -26,8 +26,6 @@
struct m88rs2000_config {
/* Demodulator i2c address */
u8 demod_addr;
/* Tuner address */
u8 tuner_addr;
u8 *inittab;
@ -55,12 +53,8 @@ static inline struct dvb_frontend *m88rs2000_attach(
}
#endif /* CONFIG_DVB_M88RS2000 */
#define FE_CRYSTAL_KHZ 27000
#define FREQ_OFFSET_LOW_SYM_RATE 3000
enum {
DEMOD_WRITE = 0x1,
TUNER_WRITE,
WRITE_DELAY = 0x10,
};
#endif /* M88RS2000_H */

View File

@ -23,27 +23,68 @@
#include "ts2020.h"
#define TS2020_XTAL_FREQ 27000 /* in kHz */
#define FREQ_OFFSET_LOW_SYM_RATE 3000
struct ts2020_state {
u8 tuner_address;
struct ts2020_priv {
/* i2c details */
int i2c_address;
struct i2c_adapter *i2c;
u8 clk_out_div;
u32 frequency;
};
static int ts2020_release(struct dvb_frontend *fe)
{
kfree(fe->tuner_priv);
fe->tuner_priv = NULL;
return 0;
}
static int ts2020_writereg(struct dvb_frontend *fe, int reg, int data)
{
struct ts2020_priv *priv = fe->tuner_priv;
u8 buf[] = { reg, data };
struct i2c_msg msg[] = {
{
.addr = priv->i2c_address,
.flags = 0,
.buf = buf,
.len = 2
}
};
int err;
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
err = i2c_transfer(priv->i2c, msg, 1);
if (err != 1) {
printk(KERN_ERR
"%s: writereg error(err == %i, reg == 0x%02x, value == 0x%02x)\n",
__func__, err, reg, data);
return -EREMOTEIO;
}
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
return 0;
}
static int ts2020_readreg(struct dvb_frontend *fe, u8 reg)
{
struct ts2020_state *state = fe->tuner_priv;
struct ts2020_priv *priv = fe->tuner_priv;
int ret;
u8 b0[] = { reg };
u8 b1[] = { 0 };
struct i2c_msg msg[] = {
{
.addr = state->tuner_address,
.addr = priv->i2c_address,
.flags = 0,
.buf = b0,
.len = 1
}, {
.addr = state->tuner_address,
.addr = priv->i2c_address,
.flags = I2C_M_RD,
.buf = b1,
.len = 1
@ -53,212 +94,202 @@ static int ts2020_readreg(struct dvb_frontend *fe, u8 reg)
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
ret = i2c_transfer(state->i2c, msg, 2);
ret = i2c_transfer(priv->i2c, msg, 2);
if (ret != 2) {
printk(KERN_ERR "%s: reg=0x%x(error=%d)\n",
__func__, reg, ret);
return ret;
}
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
if (ret != 2) {
printk(KERN_ERR "%s: reg=0x%x(error=%d)\n", __func__, reg, ret);
return ret;
}
return b1[0];
}
static int ts2020_writereg(struct dvb_frontend *fe, int reg, int data)
static int ts2020_sleep(struct dvb_frontend *fe)
{
struct ts2020_state *state = fe->tuner_priv;
u8 buf[] = { reg, data };
struct i2c_msg msg = { .addr = state->tuner_address,
.flags = 0, .buf = buf, .len = 2 };
int err;
struct ts2020_priv *priv = fe->tuner_priv;
int ret;
u8 buf[] = { 10, 0 };
struct i2c_msg msg = {
.addr = priv->i2c_address,
.flags = 0,
.buf = buf,
.len = 2
};
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
err = i2c_transfer(state->i2c, &msg, 1);
ret = i2c_transfer(priv->i2c, &msg, 1);
if (ret != 1)
printk(KERN_ERR "%s: i2c error\n", __func__);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
if (err != 1) {
printk(KERN_ERR "%s: writereg error(err == %i, reg == 0x%02x,"
" value == 0x%02x)\n", __func__, err, reg, data);
return -EREMOTEIO;
}
return 0;
return (ret == 1) ? 0 : ret;
}
static int ts2020_init(struct dvb_frontend *fe)
{
struct ts2020_priv *priv = fe->tuner_priv;
ts2020_writereg(fe, 0x42, 0x73);
ts2020_writereg(fe, 0x05, 0x01);
ts2020_writereg(fe, 0x62, 0xf5);
ts2020_writereg(fe, 0x05, priv->clk_out_div);
ts2020_writereg(fe, 0x20, 0x27);
ts2020_writereg(fe, 0x07, 0x02);
ts2020_writereg(fe, 0x11, 0xff);
ts2020_writereg(fe, 0x60, 0xf9);
ts2020_writereg(fe, 0x08, 0x01);
ts2020_writereg(fe, 0x00, 0x41);
return 0;
}
static int ts2020_get_frequency(struct dvb_frontend *fe, u32 *frequency)
static int ts2020_tuner_gate_ctrl(struct dvb_frontend *fe, u8 offset)
{
u16 ndiv, div4;
int ret;
ret = ts2020_writereg(fe, 0x51, 0x1f - offset);
ret |= ts2020_writereg(fe, 0x51, 0x1f);
ret |= ts2020_writereg(fe, 0x50, offset);
ret |= ts2020_writereg(fe, 0x50, 0x00);
msleep(20);
return ret;
}
div4 = (ts2020_readreg(fe, 0x10) & 0x10) >> 4;
static int ts2020_set_tuner_rf(struct dvb_frontend *fe)
{
int reg;
ndiv = ts2020_readreg(fe, 0x01);
ndiv &= 0x0f;
ndiv <<= 8;
ndiv |= ts2020_readreg(fe, 0x02);
reg = ts2020_readreg(fe, 0x3d);
reg &= 0x7f;
if (reg < 0x16)
reg = 0xa1;
else if (reg == 0x16)
reg = 0x99;
else
reg = 0xf9;
/* actual tuned frequency, i.e. including the offset */
*frequency = (ndiv - ndiv % 2 + 1024) * TS2020_XTAL_FREQ
/ (6 + 8) / (div4 + 1) / 2;
ts2020_writereg(fe, 0x60, reg);
reg = ts2020_tuner_gate_ctrl(fe, 0x08);
return 0;
return reg;
}
static int ts2020_set_params(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
struct ts2020_priv *priv = fe->demodulator_priv;
int ret;
u32 frequency = c->frequency;
s32 offset_khz;
u32 symbol_rate = (c->symbol_rate / 1000);
u32 f3db, gdiv28;
u16 value, ndiv, lpf_coeff;
u8 lpf_mxdiv, mlpf_max, mlpf_min, nlpf;
u8 lo = 0x01, div4 = 0x0;
u8 mlpf, mlpf_new, mlpf_max, mlpf_min, nlpf;
u16 value, ndiv;
u32 srate = 0, f3db;
/* Calculate frequency divider */
if (frequency < 1060000) {
lo |= 0x10;
div4 = 0x1;
ndiv = (frequency * 14 * 4) / TS2020_XTAL_FREQ;
} else
ndiv = (frequency * 14 * 2) / TS2020_XTAL_FREQ;
ndiv = ndiv + ndiv % 2;
ndiv = ndiv - 1024;
ts2020_init(fe);
ret = ts2020_writereg(fe, 0x10, 0x80 | lo);
/* unknown */
ts2020_writereg(fe, 0x07, 0x02);
ts2020_writereg(fe, 0x10, 0x00);
ts2020_writereg(fe, 0x60, 0x79);
ts2020_writereg(fe, 0x08, 0x01);
ts2020_writereg(fe, 0x00, 0x01);
/* Set frequency divider */
ret |= ts2020_writereg(fe, 0x01, (ndiv >> 8) & 0xf);
ret |= ts2020_writereg(fe, 0x02, ndiv & 0xff);
/* calculate and set freq divider */
if (c->frequency < 1146000) {
ts2020_writereg(fe, 0x10, 0x11);
ndiv = ((c->frequency * (6 + 8) * 4) +
(TS2020_XTAL_FREQ / 2)) /
TS2020_XTAL_FREQ - 1024;
} else {
ts2020_writereg(fe, 0x10, 0x01);
ndiv = ((c->frequency * (6 + 8) * 2) +
(TS2020_XTAL_FREQ / 2)) /
TS2020_XTAL_FREQ - 1024;
}
ret |= ts2020_writereg(fe, 0x03, 0x06);
ret |= ts2020_tuner_gate_ctrl(fe, 0x10);
if (ret < 0)
return -ENODEV;
ts2020_writereg(fe, 0x01, (ndiv & 0x0f00) >> 8);
ts2020_writereg(fe, 0x02, ndiv & 0x00ff);
/* Tuner Frequency Range */
ret = ts2020_writereg(fe, 0x10, lo);
/* set pll */
ts2020_writereg(fe, 0x03, 0x06);
ts2020_writereg(fe, 0x51, 0x0f);
ts2020_writereg(fe, 0x51, 0x1f);
ts2020_writereg(fe, 0x50, 0x10);
ts2020_writereg(fe, 0x50, 0x00);
msleep(5);
ret |= ts2020_tuner_gate_ctrl(fe, 0x08);
/* unknown */
ts2020_writereg(fe, 0x51, 0x17);
ts2020_writereg(fe, 0x51, 0x1f);
ts2020_writereg(fe, 0x50, 0x08);
ts2020_writereg(fe, 0x50, 0x00);
msleep(5);
/* Tuner RF */
ret |= ts2020_set_tuner_rf(fe);
value = ts2020_readreg(fe, 0x3d);
value &= 0x0f;
if ((value > 4) && (value < 15)) {
value -= 3;
if (value < 4)
value = 4;
value = ((value << 3) | 0x01) & 0x79;
}
gdiv28 = (TS2020_XTAL_FREQ / 1000 * 1694 + 500) / 1000;
ret |= ts2020_writereg(fe, 0x04, gdiv28 & 0xff);
ret |= ts2020_tuner_gate_ctrl(fe, 0x04);
if (ret < 0)
return -ENODEV;
ts2020_writereg(fe, 0x60, value);
ts2020_writereg(fe, 0x51, 0x17);
ts2020_writereg(fe, 0x51, 0x1f);
ts2020_writereg(fe, 0x50, 0x08);
ts2020_writereg(fe, 0x50, 0x00);
value = ts2020_readreg(fe, 0x26);
/* set low-pass filter period */
ts2020_writereg(fe, 0x04, 0x2e);
ts2020_writereg(fe, 0x51, 0x1b);
ts2020_writereg(fe, 0x51, 0x1f);
ts2020_writereg(fe, 0x50, 0x04);
ts2020_writereg(fe, 0x50, 0x00);
msleep(5);
srate = c->symbol_rate / 1000;
f3db = (srate << 2) / 5 + 2000;
if (srate < 5000)
f3db += 3000;
f3db = (symbol_rate * 135) / 200 + 2000;
f3db += FREQ_OFFSET_LOW_SYM_RATE;
if (f3db < 7000)
f3db = 7000;
if (f3db > 40000)
f3db = 40000;
/* set low-pass filter baseband */
value = ts2020_readreg(fe, 0x26);
mlpf = 0x2e * 207 / ((value << 1) + 151);
mlpf_max = mlpf * 135 / 100;
mlpf_min = mlpf * 78 / 100;
gdiv28 = gdiv28 * 207 / (value * 2 + 151);
mlpf_max = gdiv28 * 135 / 100;
mlpf_min = gdiv28 * 78 / 100;
if (mlpf_max > 63)
mlpf_max = 63;
/* rounded to the closest integer */
nlpf = ((mlpf * f3db * 1000) + (2766 * TS2020_XTAL_FREQ / 2))
/ (2766 * TS2020_XTAL_FREQ);
lpf_coeff = 2766;
nlpf = (f3db * gdiv28 * 2 / lpf_coeff /
(TS2020_XTAL_FREQ / 1000) + 1) / 2;
if (nlpf > 23)
nlpf = 23;
if (nlpf < 1)
nlpf = 1;
/* rounded to the closest integer */
mlpf_new = ((TS2020_XTAL_FREQ * nlpf * 2766) +
(1000 * f3db / 2)) / (1000 * f3db);
lpf_mxdiv = (nlpf * (TS2020_XTAL_FREQ / 1000)
* lpf_coeff * 2 / f3db + 1) / 2;
if (mlpf_new < mlpf_min) {
if (lpf_mxdiv < mlpf_min) {
nlpf++;
mlpf_new = ((TS2020_XTAL_FREQ * nlpf * 2766) +
(1000 * f3db / 2)) / (1000 * f3db);
lpf_mxdiv = (nlpf * (TS2020_XTAL_FREQ / 1000)
* lpf_coeff * 2 / f3db + 1) / 2;
}
if (mlpf_new > mlpf_max)
mlpf_new = mlpf_max;
if (lpf_mxdiv > mlpf_max)
lpf_mxdiv = mlpf_max;
ts2020_writereg(fe, 0x04, mlpf_new);
ts2020_writereg(fe, 0x06, nlpf);
ts2020_writereg(fe, 0x51, 0x1b);
ts2020_writereg(fe, 0x51, 0x1f);
ts2020_writereg(fe, 0x50, 0x04);
ts2020_writereg(fe, 0x50, 0x00);
msleep(5);
ret = ts2020_writereg(fe, 0x04, lpf_mxdiv);
ret |= ts2020_writereg(fe, 0x06, nlpf);
/* unknown */
ts2020_writereg(fe, 0x51, 0x1e);
ts2020_writereg(fe, 0x51, 0x1f);
ts2020_writereg(fe, 0x50, 0x01);
ts2020_writereg(fe, 0x50, 0x00);
msleep(60);
ret |= ts2020_tuner_gate_ctrl(fe, 0x04);
return 0;
ret |= ts2020_tuner_gate_ctrl(fe, 0x01);
msleep(80);
/* calculate offset assuming 96000kHz*/
offset_khz = (ndiv - ndiv % 2 + 1024) * TS2020_XTAL_FREQ
/ (6 + 8) / (div4 + 1) / 2;
priv->frequency = offset_khz;
return (ret < 0) ? -EINVAL : 0;
}
static int ts2020_release(struct dvb_frontend *fe)
static int ts2020_get_frequency(struct dvb_frontend *fe, u32 *frequency)
{
struct ts2020_state *state = fe->tuner_priv;
fe->tuner_priv = NULL;
kfree(state);
struct ts2020_priv *priv = fe->tuner_priv;
*frequency = priv->frequency;
return 0;
}
static int ts2020_get_signal_strength(struct dvb_frontend *fe,
u16 *signal_strength)
/* read TS2020 signal strength */
static int ts2020_read_signal_strength(struct dvb_frontend *fe,
u16 *signal_strength)
{
u16 sig_reading, sig_strength;
u8 rfgain, bbgain;
@ -281,35 +312,57 @@ static int ts2020_get_signal_strength(struct dvb_frontend *fe,
return 0;
}
static struct dvb_tuner_ops ts2020_ops = {
static struct dvb_tuner_ops ts2020_tuner_ops = {
.info = {
.name = "Montage Technology TS2020 Silicon Tuner",
.name = "TS2020",
.frequency_min = 950000,
.frequency_max = 2150000,
.frequency_max = 2150000
},
.init = ts2020_init,
.release = ts2020_release,
.sleep = ts2020_sleep,
.set_params = ts2020_set_params,
.get_frequency = ts2020_get_frequency,
.get_rf_strength = ts2020_get_signal_strength
.get_rf_strength = ts2020_read_signal_strength,
};
struct dvb_frontend *ts2020_attach(struct dvb_frontend *fe,
const struct ts2020_config *config, struct i2c_adapter *i2c)
const struct ts2020_config *config,
struct i2c_adapter *i2c)
{
struct ts2020_state *state = NULL;
struct ts2020_priv *priv = NULL;
u8 buf;
/* allocate memory for the internal state */
state = kzalloc(sizeof(struct ts2020_state), GFP_KERNEL);
if (!state)
priv = kzalloc(sizeof(struct ts2020_priv), GFP_KERNEL);
if (priv == NULL)
return NULL;
/* setup the state */
state->tuner_address = config->tuner_address;
state->i2c = i2c;
fe->tuner_priv = state;
fe->ops.tuner_ops = ts2020_ops;
priv->i2c_address = config->tuner_address;
priv->i2c = i2c;
priv->clk_out_div = config->clk_out_div;
fe->tuner_priv = priv;
/* Wake Up the tuner */
if ((0x03 & ts2020_readreg(fe, 0x00)) == 0x00) {
ts2020_writereg(fe, 0x00, 0x01);
msleep(2);
}
ts2020_writereg(fe, 0x00, 0x03);
msleep(2);
/* Check the tuner version */
buf = ts2020_readreg(fe, 0x00);
if ((buf == 0x01) || (buf == 0x41) || (buf == 0x81))
printk(KERN_INFO "%s: Find tuner TS2020!\n", __func__);
else {
printk(KERN_ERR "%s: Read tuner reg[0] = %d\n", __func__, buf);
kfree(priv);
return NULL;
}
memcpy(&fe->ops.tuner_ops, &ts2020_tuner_ops,
sizeof(struct dvb_tuner_ops));
fe->ops.read_signal_strength = fe->ops.tuner_ops.get_rf_strength;
return fe;

View File

@ -26,6 +26,7 @@
struct ts2020_config {
u8 tuner_address;
u8 clk_out_div;
};
#if defined(CONFIG_DVB_TS2020) || \

View File

@ -474,6 +474,7 @@ static struct ds3000_config tevii_ds3000_config = {
static struct ts2020_config tevii_ts2020_config = {
.tuner_address = 0x60,
.clk_out_div = 1,
};
static struct cx24116_config dvbworld_cx24116_config = {
@ -500,20 +501,20 @@ static struct xc5000_config mygica_x8506_xc5000_config = {
};
static struct stv090x_config prof_8000_stv090x_config = {
.device = STV0903,
.demod_mode = STV090x_SINGLE,
.clk_mode = STV090x_CLK_EXT,
.xtal = 27000000,
.address = 0x6A,
.ts1_mode = STV090x_TSMODE_PARALLEL_PUNCTURED,
.repeater_level = STV090x_RPTLEVEL_64,
.adc1_range = STV090x_ADC_2Vpp,
.diseqc_envelope_mode = false,
.device = STV0903,
.demod_mode = STV090x_SINGLE,
.clk_mode = STV090x_CLK_EXT,
.xtal = 27000000,
.address = 0x6A,
.ts1_mode = STV090x_TSMODE_PARALLEL_PUNCTURED,
.repeater_level = STV090x_RPTLEVEL_64,
.adc1_range = STV090x_ADC_2Vpp,
.diseqc_envelope_mode = false,
.tuner_get_frequency = stb6100_get_frequency,
.tuner_set_frequency = stb6100_set_frequency,
.tuner_set_bandwidth = stb6100_set_bandwidth,
.tuner_get_bandwidth = stb6100_get_bandwidth,
.tuner_get_frequency = stb6100_get_frequency,
.tuner_set_frequency = stb6100_set_frequency,
.tuner_set_bandwidth = stb6100_set_bandwidth,
.tuner_get_bandwidth = stb6100_get_bandwidth,
};
static struct stb6100_config prof_8000_stb6100_config = {

View File

@ -703,6 +703,7 @@ static struct ds3000_config tevii_ds3000_config = {
static struct ts2020_config tevii_ts2020_config = {
.tuner_address = 0x60,
.clk_out_div = 1,
};
static const struct stv0900_config prof_7301_stv0900_config = {

View File

@ -852,6 +852,7 @@ static struct ds3000_config dvbworld_ds3000_config = {
static struct ts2020_config dvbworld_ts2020_config = {
.tuner_address = 0x60,
.clk_out_div = 1,
};
static int __devinit frontend_init(struct dm1105_dev *dev)

View File

@ -120,6 +120,7 @@ config DVB_USB_LME2510
select DVB_STV0299 if MEDIA_SUBDRV_AUTOSELECT
select DVB_PLL if MEDIA_SUBDRV_AUTOSELECT
select DVB_M88RS2000 if MEDIA_SUBDRV_AUTOSELECT
select DVB_TS2020 if MEDIA_SUBDRV_AUTOSELECT
help
Say Y here to support the LME DM04/QQBOX DVB-S USB2.0

View File

@ -81,6 +81,7 @@
#include "dvb-pll.h"
#include "z0194a.h"
#include "m88rs2000.h"
#include "ts2020.h"
#define LME2510_C_S7395 "dvb-usb-lme2510c-s7395.fw";
@ -944,10 +945,14 @@ static int dm04_rs2000_set_ts_param(struct dvb_frontend *fe,
static struct m88rs2000_config m88rs2000_config = {
.demod_addr = 0xd0,
.tuner_addr = 0xc0,
.set_ts_params = dm04_rs2000_set_ts_param,
};
static struct ts2020_config ts2020_config = {
.tuner_address = 0x60,
.clk_out_div = 7,
};
static int dm04_lme2510_set_voltage(struct dvb_frontend *fe,
fe_sec_voltage_t voltage)
{
@ -1097,6 +1102,8 @@ static int dm04_lme2510_frontend_attach(struct dvb_usb_adapter *adap)
if (adap->fe[0]) {
info("FE Found M88RS2000");
dvb_attach(ts2020_attach, adap->fe[0], &ts2020_config,
&d->i2c_adap);
st->i2c_tuner_gate_w = 5;
st->i2c_tuner_gate_r = 5;
st->i2c_tuner_addr = 0xc0;

View File

@ -29,6 +29,7 @@
#include "stb6100.h"
#include "stb6100_proc.h"
#include "m88rs2000.h"
#include "ts2020.h"
#ifndef USB_PID_DW2102
#define USB_PID_DW2102 0x2102
@ -953,10 +954,12 @@ static struct ds3000_config dw2104_ds3000_config = {
static struct ts2020_config dw2104_ts2020_config = {
.tuner_address = 0x60,
.clk_out_div = 1,
};
static struct ds3000_config s660_ds3000_config = {
.demod_address = 0x68,
.ci_mode = 1,
.set_lock_led = dw210x_led_ctrl,
};
@ -1009,10 +1012,7 @@ static struct stv0900_config prof_7500_stv0900_config = {
static struct ds3000_config su3000_ds3000_config = {
.demod_address = 0x68,
.ci_mode = 1,
};
static struct ts2020_config su3000_ts2020_config = {
.tuner_address = 0x60,
.set_lock_led = dw210x_led_ctrl,
};
static u8 m88rs2000_inittab[] = {
@ -1022,14 +1022,6 @@ static u8 m88rs2000_inittab[] = {
DEMOD_WRITE, 0x00, 0x00,
DEMOD_WRITE, 0x9a, 0xb0,
DEMOD_WRITE, 0x81, 0xc1,
TUNER_WRITE, 0x42, 0x73,
TUNER_WRITE, 0x05, 0x07,
TUNER_WRITE, 0x20, 0x27,
TUNER_WRITE, 0x07, 0x02,
TUNER_WRITE, 0x11, 0xff,
TUNER_WRITE, 0x60, 0xf9,
TUNER_WRITE, 0x08, 0x01,
TUNER_WRITE, 0x00, 0x41,
DEMOD_WRITE, 0x81, 0x81,
DEMOD_WRITE, 0x86, 0xc6,
DEMOD_WRITE, 0x9a, 0x30,
@ -1043,7 +1035,6 @@ static u8 m88rs2000_inittab[] = {
static struct m88rs2000_config s421_m88rs2000_config = {
.demod_addr = 0x68,
.tuner_addr = 0x60,
.inittab = m88rs2000_inittab,
};
@ -1250,6 +1241,14 @@ static int su3000_frontend_attach(struct dvb_usb_adapter *d)
if (dvb_usb_generic_rw(d->dev, obuf, 3, ibuf, 1, 0) < 0)
err("command 0x0e transfer failed.");
obuf[0] = 0xe;
obuf[1] = 0x02;
obuf[2] = 1;
if (dvb_usb_generic_rw(d->dev, obuf, 3, ibuf, 1, 0) < 0)
err("command 0x0e transfer failed.");
msleep(300);
obuf[0] = 0xe;
obuf[1] = 0x83;
obuf[2] = 0;
@ -1274,12 +1273,15 @@ static int su3000_frontend_attach(struct dvb_usb_adapter *d)
if (d->fe_adap[0].fe == NULL)
return -EIO;
dvb_attach(ts2020_attach, d->fe_adap[0].fe, &su3000_ts2020_config,
&d->dev->i2c_adap);
if (dvb_attach(ts2020_attach, d->fe_adap[0].fe,
&dw2104_ts2020_config,
&d->dev->i2c_adap)) {
info("Attached DS3000/TS2020!\n");
return 0;
}
info("Attached DS3000!\n");
return 0;
info("Failed to attach DS3000/TS2020!\n");
return -EIO;
}
static int m88rs2000_frontend_attach(struct dvb_usb_adapter *d)
@ -1292,12 +1294,19 @@ static int m88rs2000_frontend_attach(struct dvb_usb_adapter *d)
d->fe_adap[0].fe = dvb_attach(m88rs2000_attach, &s421_m88rs2000_config,
&d->dev->i2c_adap);
if (d->fe_adap[0].fe == NULL)
return -EIO;
info("Attached m88rs2000!\n");
if (dvb_attach(ts2020_attach, d->fe_adap[0].fe,
&dw2104_ts2020_config,
&d->dev->i2c_adap)) {
info("Attached RS2000/TS2020!\n");
return 0;
}
return 0;
info("Failed to attach RS2000/TS2020!\n");
return -EIO;
}
static int dw2102_tuner_attach(struct dvb_usb_adapter *adap)