1
0
Fork 0

Merge branch 'dma/next' into next

* dma/next: (52 commits)
  LF-301: dmaengine: imx-sdma: Add once more loading firmware
  LF-246: dmaengine: imx-sdma: correct is_ram_script checking
  dma: caam: fix compilation error
  dma: caam: add dma memcpy driver
  dmaengine: fsl-dpaa2-qdma: Add NXP dpaa2 qDMA controller driver for Layerscape SoCs
  ...
5.4-rM2-2.2.x-imx-squashed
Dong Aisheng 2019-12-02 18:02:24 +08:00
commit dbdab14cb0
21 changed files with 3724 additions and 61 deletions

View File

@ -0,0 +1,82 @@
* Freescale enhanced Direct Memory Access(eDMA-v3) Controller
The eDMA-v3 controller is inherited from FSL eDMA, and firstly is intergrated
on Freescale i.MX8QM SOC chip. The eDMA channels have multiplex capability by
programmble memory-mapped registers. Specific DMA request source has fixed channel.
* eDMA Controller
Required properties:
- compatible :
- "fsl,imx8qm-edma" for eDMA used similar to that on i.MX8QM SoC
- "fsl,imx8qm-adma" for audio eDMA used on i.MX8QM
- reg : Specifies base physical address(s) and size of the eDMA channel registers.
Each eDMA channel has separated register's address and size.
- interrupts : A list of interrupt-specifiers, each channel has one interrupt.
- interrupt-names : Should contain below template:
"edmaX-chanX-Xx"
| | |---> receive/transmit, r or t
| |---> channel id, the max number is 32
|---> edma controller instance, 0, 1, 2,..etc
- #dma-cells : Must be <3>.
The 1st cell specifies the channel ID.
The 2nd cell specifies the channel priority.
The 3rd cell specifies the channel attributes which include below:
BIT(0): transmit or receive:
0: transmit, 1: receive.
BIT(1): local or remote access:
0: local, 1: remote.
BIT(2): dualfifo case or not(only in Audio cyclic now):
0: not dual fifo case, 1: dualfifo case.
See the SoC's reference manual for all the supported request sources.
- dma-channels : Number of channels supported by the controller
- power-domains: Power domains for edma channel used.
- power-domain-names: Power domains name for edma channel used.
Examples:
edma0: dma-controller@40018000 {
compatible = "fsl,imx8qm-edma";
reg = <0x0 0x5a2c0000 0x0 0x10000>, /* channel12 UART0 rx */
<0x0 0x5a2d0000 0x0 0x10000>, /* channel13 UART0 tx */
<0x0 0x5a2e0000 0x0 0x10000>, /* channel14 UART1 rx */
<0x0 0x5a2f0000 0x0 0x10000>; /* channel15 UART1 tx */
#dma-cells = <3>;
dma-channels = <4>;
interrupts = <GIC_SPI 434 IRQ_TYPE_LEVEL_HIGH>,
<GIC_SPI 435 IRQ_TYPE_LEVEL_HIGH>,
<GIC_SPI 436 IRQ_TYPE_LEVEL_HIGH>,
<GIC_SPI 437 IRQ_TYPE_LEVEL_HIGH>;
interrupt-names = "edma0-chan12-rx", "edma0-chan13-tx",
"edma0-chan14-rx", "edma0-chan15-tx";
power-domains = <&pd IMX_SC_R_DMA_0_CH12>,
<&pd IMX_SC_R_DMA_0_CH13>,
<&pd IMX_SC_R_DMA_0_CH14>,
<&pd IMX_SC_R_DMA_0_CH15>;
power-domain-names = "edma0-chan12", "edma0-chan13",
"edma0-chan14", "edma0-chan15";
status = "okay";
};
* DMA clients
DMA client drivers that uses the DMA function must use the format described
in the dma.txt file, using a three-cell specifier for each channel: the 1st
specifies the channel number, the 2nd specifies the priority, and the 3rd
specifies the channel type is for transmit or receive: 0: transmit, 1: receive.
Examples:
lpuart1: serial@5a070000 {
compatible = "fsl,imx8qm-lpuart";
reg = <0x0 0x5a070000 0x0 0x1000>;
interrupts = <GIC_SPI 226 IRQ_TYPE_LEVEL_HIGH>;
interrupt-parent = <&gic>;
clocks = <&clk IMX8QM_UART1_CLK>;
clock-names = "ipg";
assigned-clock-names = <&clk IMX8QM_UART1_CLK>;
assigned-clock-rates = <80000000>;
power-domains = <&pd IMX_SC_R_UART_1>,
power-domain-names = "uart";
dma-names = "tx","rx";
dmas = <&edma0 15 0 0>,
<&edma0 14 0 1>;
status = "disabled";
};

View File

@ -16,6 +16,21 @@ Optional properties:
- #dma-channels : Number of DMA channels supported. Should be 16.
- #dma-requests : Number of DMA requests supported.
* DMA capability limitation
Specify the DMA capability limitations.
For example, some SoCs only support up to 32bit DMA capability, although
they are 64bit SoCs.
- only-dma-mask32: 1 means that the SoCs only suppot up to 32bit DMA
capability.
Example:
dma_cap: dma_cap {
compatible = "dma-capability";
only-dma-mask32 = <1>;
};
Example:
dma: dma@10001000 {

View File

@ -9,6 +9,8 @@ Required properties:
"fsl,imx53-sdma"
"fsl,imx6q-sdma"
"fsl,imx7d-sdma"
"fsl,imx6sx-sdma"
"fsl,imx6ul-sdma"
"fsl,imx8mq-sdma"
The -to variants should be preferred since they allow to determine the
correct ROM script addresses needed for the driver to work without additional
@ -51,8 +53,14 @@ The full ID of peripheral types can be found below.
22 SSI Dual FIFO (needs firmware ver >= 2)
23 Shared ASRC
24 SAI
25 HDMI Audio
The third cell specifies the transfer priority as below.
The third cell specifies the transfer priority and software done
as below.
Bit31: sw_done
Bit15~Bit8: selector
Bit7~Bit0: priority level
ID transfer priority
-------------------------
@ -60,6 +68,9 @@ The third cell specifies the transfer priority as below.
1 Medium
2 Low
For example: 0x80000000 means sw_done enabled for done0 sector and
High priority for PDM on i.mx8mm.
Optional properties:
- gpr : The phandle to the General Purpose Register (GPR) node.

View File

@ -131,6 +131,24 @@ config COH901318
help
Enable support for ST-Ericsson COH 901 318 DMA.
config CRYPTO_DEV_FSL_CAAM_DMA
tristate "CAAM DMA engine support"
depends on CRYPTO_DEV_FSL_CAAM_JR
default n
select DMA_ENGINE
select ASYNC_CORE
select ASYNC_TX_ENABLE_CHANNEL_SWITCH
help
Selecting this will offload the DMA operations for users of
the scatter gather memcopy API to the CAAM via job rings. The
CAAM is a hardware module that provides hardware acceleration to
cryptographic operations. It has a built-in DMA controller that can
be programmed to read/write cryptographic data. This module defines
a DMA driver that uses the DMA capabilities of the CAAM.
To compile this as a module, choose M here: the module
will be called caam_dma.
config DMA_BCM2835
tristate "BCM2835 DMA engine support"
depends on ARCH_BCM2835
@ -227,6 +245,17 @@ config FSL_QDMA
or dequeuing DMA jobs from, different work queues.
This module can be found on NXP Layerscape SoCs.
The qdma driver only work on SoCs with a DPAA hardware block.
config FSL_EDMA_V3
tristate "Freescale eDMA v3 engine support"
depends on OF
select DMA_ENGINE
select DMA_VIRTUAL_CHANNELS
help
Support the Freescale eDMA v3 engine with programmable channel.
This driver is based on FSL_EDMA but big changes come such as
different interrupt for different channel, different register
scope for different channel.
This module can be found on Freescale i.MX8QM.
config FSL_RAID
tristate "Freescale RAID engine Support"
@ -651,7 +680,6 @@ config ZX_DMA
help
Support the DMA engine for ZTE ZX family platform devices.
# driver files
source "drivers/dma/bestcomm/Kconfig"
@ -669,6 +697,8 @@ source "drivers/dma/sh/Kconfig"
source "drivers/dma/ti/Kconfig"
source "drivers/dma/fsl-dpaa2-qdma/Kconfig"
# clients
comment "DMA Clients"
depends on DMA_ENGINE

View File

@ -32,6 +32,7 @@ obj-$(CONFIG_DW_EDMA) += dw-edma/
obj-$(CONFIG_EP93XX_DMA) += ep93xx_dma.o
obj-$(CONFIG_FSL_DMA) += fsldma.o
obj-$(CONFIG_FSL_EDMA) += fsl-edma.o fsl-edma-common.o
obj-$(CONFIG_FSL_EDMA_V3) += fsl-edma-v3.o
obj-$(CONFIG_MCF_EDMA) += mcf-edma.o fsl-edma-common.o
obj-$(CONFIG_FSL_QDMA) += fsl-qdma.o
obj-$(CONFIG_FSL_RAID) += fsl_raid.o
@ -75,6 +76,8 @@ obj-$(CONFIG_UNIPHIER_MDMAC) += uniphier-mdmac.o
obj-$(CONFIG_XGENE_DMA) += xgene-dma.o
obj-$(CONFIG_ZX_DMA) += zx_dma.o
obj-$(CONFIG_ST_FDMA) += st_fdma.o
obj-$(CONFIG_CRYPTO_DEV_FSL_CAAM_DMA) += caam_dma.o
obj-$(CONFIG_FSL_DPAA2_QDMA) += fsl-dpaa2-qdma/
obj-y += mediatek/
obj-y += qcom/

View File

@ -0,0 +1,462 @@
/*
* caam support for SG DMA
*
* Copyright 2016 Freescale Semiconductor, Inc
* Copyright 2017 NXP
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the names of the above-listed copyright holders nor the
* names of any contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
*
* ALTERNATIVELY, this software may be distributed under the terms of the
* GNU General Public License ("GPL") as published by the Free Software
* Foundation, either version 2 of that License or (at your option) any
* later version.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include "dmaengine.h"
#include "../crypto/caam/regs.h"
#include "../crypto/caam/jr.h"
#include "../crypto/caam/error.h"
#include "../crypto/caam/desc_constr.h"
#define DESC_DMA_MEMCPY_LEN ((CAAM_DESC_BYTES_MAX - DESC_JOB_IO_LEN_MIN) / \
CAAM_CMD_SZ)
/*
* This is max chunk size of a DMA transfer. If a buffer is larger than this
* value it is internally broken into chunks of max CAAM_DMA_CHUNK_SIZE bytes
* and for each chunk a DMA transfer request is issued.
* This value is the largest number on 16 bits that is a multiple of 256 bytes
* (the largest configurable CAAM DMA burst size).
*/
#define CAAM_DMA_CHUNK_SIZE 65280
struct caam_dma_sh_desc {
u32 desc[DESC_DMA_MEMCPY_LEN] ____cacheline_aligned;
dma_addr_t desc_dma;
};
/* caam dma extended descriptor */
struct caam_dma_edesc {
struct dma_async_tx_descriptor async_tx;
struct list_head node;
struct caam_dma_ctx *ctx;
dma_addr_t src_dma;
dma_addr_t dst_dma;
unsigned int src_len;
unsigned int dst_len;
u32 jd[] ____cacheline_aligned;
};
/*
* caam_dma_ctx - per jr/channel context
* @chan: dma channel used by async_tx API
* @node: list_head used to attach to the global dma_ctx_list
* @jrdev: Job Ring device
* @pending_q: queue of pending (submitted, but not enqueued) jobs
* @done_not_acked: jobs that have been completed by jr, but maybe not acked
* @edesc_lock: protects extended descriptor
*/
struct caam_dma_ctx {
struct dma_chan chan;
struct list_head node;
struct device *jrdev;
struct list_head pending_q;
struct list_head done_not_acked;
spinlock_t edesc_lock;
};
static struct dma_device *dma_dev;
static struct caam_dma_sh_desc *dma_sh_desc;
static LIST_HEAD(dma_ctx_list);
static dma_cookie_t caam_dma_tx_submit(struct dma_async_tx_descriptor *tx)
{
struct caam_dma_edesc *edesc = NULL;
struct caam_dma_ctx *ctx = NULL;
dma_cookie_t cookie;
edesc = container_of(tx, struct caam_dma_edesc, async_tx);
ctx = container_of(tx->chan, struct caam_dma_ctx, chan);
spin_lock_bh(&ctx->edesc_lock);
cookie = dma_cookie_assign(tx);
list_add_tail(&edesc->node, &ctx->pending_q);
spin_unlock_bh(&ctx->edesc_lock);
return cookie;
}
static void caam_jr_chan_free_edesc(struct caam_dma_edesc *edesc)
{
struct caam_dma_ctx *ctx = edesc->ctx;
struct caam_dma_edesc *_edesc = NULL;
spin_lock_bh(&ctx->edesc_lock);
list_add_tail(&edesc->node, &ctx->done_not_acked);
list_for_each_entry_safe(edesc, _edesc, &ctx->done_not_acked, node) {
if (async_tx_test_ack(&edesc->async_tx)) {
list_del(&edesc->node);
kfree(edesc);
}
}
spin_unlock_bh(&ctx->edesc_lock);
}
static void caam_dma_done(struct device *dev, u32 *hwdesc, u32 err,
void *context)
{
struct caam_dma_edesc *edesc = context;
struct caam_dma_ctx *ctx = edesc->ctx;
dma_async_tx_callback callback;
void *callback_param;
if (err)
caam_jr_strstatus(ctx->jrdev, err);
dma_run_dependencies(&edesc->async_tx);
spin_lock_bh(&ctx->edesc_lock);
dma_cookie_complete(&edesc->async_tx);
spin_unlock_bh(&ctx->edesc_lock);
callback = edesc->async_tx.callback;
callback_param = edesc->async_tx.callback_param;
dma_descriptor_unmap(&edesc->async_tx);
caam_jr_chan_free_edesc(edesc);
if (callback)
callback(callback_param);
}
static void caam_dma_memcpy_init_job_desc(struct caam_dma_edesc *edesc)
{
u32 *jd = edesc->jd;
u32 *sh_desc = dma_sh_desc->desc;
dma_addr_t desc_dma = dma_sh_desc->desc_dma;
/* init the job descriptor */
init_job_desc_shared(jd, desc_dma, desc_len(sh_desc), HDR_REVERSE);
/* set SEQIN PTR */
append_seq_in_ptr(jd, edesc->src_dma, edesc->src_len, 0);
/* set SEQOUT PTR */
append_seq_out_ptr(jd, edesc->dst_dma, edesc->dst_len, 0);
print_hex_dump_debug("caam dma desc@" __stringify(__LINE__) ": ",
DUMP_PREFIX_ADDRESS, 16, 4, jd, desc_bytes(jd), 1);
}
static struct dma_async_tx_descriptor *
caam_dma_prep_memcpy(struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
size_t len, unsigned long flags)
{
struct caam_dma_edesc *edesc;
struct caam_dma_ctx *ctx = container_of(chan, struct caam_dma_ctx,
chan);
edesc = kzalloc(sizeof(*edesc) + DESC_JOB_IO_LEN, GFP_DMA | GFP_NOWAIT);
if (!edesc)
return ERR_PTR(-ENOMEM);
dma_async_tx_descriptor_init(&edesc->async_tx, chan);
edesc->async_tx.tx_submit = caam_dma_tx_submit;
edesc->async_tx.flags = flags;
edesc->async_tx.cookie = -EBUSY;
edesc->src_dma = src;
edesc->src_len = len;
edesc->dst_dma = dst;
edesc->dst_len = len;
edesc->ctx = ctx;
caam_dma_memcpy_init_job_desc(edesc);
return &edesc->async_tx;
}
/* This function can be called in an interrupt context */
static void caam_dma_issue_pending(struct dma_chan *chan)
{
struct caam_dma_ctx *ctx = container_of(chan, struct caam_dma_ctx,
chan);
struct caam_dma_edesc *edesc, *_edesc;
spin_lock_bh(&ctx->edesc_lock);
list_for_each_entry_safe(edesc, _edesc, &ctx->pending_q, node) {
if (caam_jr_enqueue(ctx->jrdev, edesc->jd,
caam_dma_done, edesc) < 0)
break;
list_del(&edesc->node);
}
spin_unlock_bh(&ctx->edesc_lock);
}
static void caam_dma_free_chan_resources(struct dma_chan *chan)
{
struct caam_dma_ctx *ctx = container_of(chan, struct caam_dma_ctx,
chan);
struct caam_dma_edesc *edesc, *_edesc;
spin_lock_bh(&ctx->edesc_lock);
list_for_each_entry_safe(edesc, _edesc, &ctx->pending_q, node) {
list_del(&edesc->node);
kfree(edesc);
}
list_for_each_entry_safe(edesc, _edesc, &ctx->done_not_acked, node) {
list_del(&edesc->node);
kfree(edesc);
}
spin_unlock_bh(&ctx->edesc_lock);
}
static int caam_dma_jr_chan_bind(void)
{
struct device *jrdev;
struct caam_dma_ctx *ctx;
int bonds = 0;
int i;
for (i = 0; i < caam_jr_driver_probed(); i++) {
jrdev = caam_jridx_alloc(i);
if (IS_ERR(jrdev)) {
pr_err("job ring device %d allocation failed\n", i);
continue;
}
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx) {
caam_jr_free(jrdev);
continue;
}
ctx->chan.device = dma_dev;
ctx->chan.private = ctx;
ctx->jrdev = jrdev;
INIT_LIST_HEAD(&ctx->pending_q);
INIT_LIST_HEAD(&ctx->done_not_acked);
INIT_LIST_HEAD(&ctx->node);
spin_lock_init(&ctx->edesc_lock);
dma_cookie_init(&ctx->chan);
/* add the context of this channel to the context list */
list_add_tail(&ctx->node, &dma_ctx_list);
/* add this channel to the device chan list */
list_add_tail(&ctx->chan.device_node, &dma_dev->channels);
bonds++;
}
return bonds;
}
static inline void caam_jr_dma_free(struct dma_chan *chan)
{
struct caam_dma_ctx *ctx = container_of(chan, struct caam_dma_ctx,
chan);
list_del(&ctx->node);
list_del(&chan->device_node);
caam_jr_free(ctx->jrdev);
kfree(ctx);
}
static void set_caam_dma_desc(u32 *desc)
{
u32 *jmp_cmd;
/* dma shared descriptor */
init_sh_desc(desc, HDR_SHARE_NEVER | (1 << HDR_START_IDX_SHIFT));
/* REG1 = CAAM_DMA_CHUNK_SIZE */
append_math_add_imm_u32(desc, REG1, ZERO, IMM, CAAM_DMA_CHUNK_SIZE);
/* REG0 = SEQINLEN - CAAM_DMA_CHUNK_SIZE */
append_math_sub_imm_u32(desc, REG0, SEQINLEN, IMM, CAAM_DMA_CHUNK_SIZE);
/*
* if (REG0 > 0)
* jmp to LABEL1
*/
jmp_cmd = append_jump(desc, JUMP_TEST_INVALL | JUMP_COND_MATH_N |
JUMP_COND_MATH_Z);
/* REG1 = SEQINLEN */
append_math_sub(desc, REG1, SEQINLEN, ZERO, CAAM_CMD_SZ);
/* LABEL1 */
set_jump_tgt_here(desc, jmp_cmd);
/* VARSEQINLEN = REG1 */
append_math_add(desc, VARSEQINLEN, REG1, ZERO, CAAM_CMD_SZ);
/* VARSEQOUTLEN = REG1 */
append_math_add(desc, VARSEQOUTLEN, REG1, ZERO, CAAM_CMD_SZ);
/* do FIFO STORE */
append_seq_fifo_store(desc, 0, FIFOST_TYPE_METADATA | LDST_VLF);
/* do FIFO LOAD */
append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS1 |
FIFOLD_TYPE_IFIFO | LDST_VLF);
/*
* if (REG0 > 0)
* jmp 0xF8 (after shared desc header)
*/
append_jump(desc, JUMP_TEST_INVALL | JUMP_COND_MATH_N |
JUMP_COND_MATH_Z | 0xF8);
print_hex_dump_debug("caam dma shdesc@" __stringify(__LINE__) ": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc),
1);
}
static int caam_dma_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device *ctrldev = dev->parent;
struct dma_chan *chan, *_chan;
u32 *sh_desc;
int err = -ENOMEM;
int bonds;
if (!caam_jr_driver_probed()) {
dev_info(dev, "Defer probing after JR driver probing\n");
return -EPROBE_DEFER;
}
dma_dev = kzalloc(sizeof(*dma_dev), GFP_KERNEL);
if (!dma_dev)
return -ENOMEM;
dma_sh_desc = kzalloc(sizeof(*dma_sh_desc), GFP_KERNEL | GFP_DMA);
if (!dma_sh_desc)
goto desc_err;
sh_desc = dma_sh_desc->desc;
set_caam_dma_desc(sh_desc);
dma_sh_desc->desc_dma = dma_map_single(ctrldev, sh_desc,
desc_bytes(sh_desc),
DMA_TO_DEVICE);
if (dma_mapping_error(ctrldev, dma_sh_desc->desc_dma)) {
dev_err(dev, "unable to map dma descriptor\n");
goto map_err;
}
INIT_LIST_HEAD(&dma_dev->channels);
bonds = caam_dma_jr_chan_bind();
if (!bonds) {
err = -ENODEV;
goto jr_bind_err;
}
dma_dev->dev = dev;
dma_dev->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
dma_dev->device_tx_status = dma_cookie_status;
dma_dev->device_issue_pending = caam_dma_issue_pending;
dma_dev->device_prep_dma_memcpy = caam_dma_prep_memcpy;
dma_dev->device_free_chan_resources = caam_dma_free_chan_resources;
err = dma_async_device_register(dma_dev);
if (err) {
dev_err(dev, "Failed to register CAAM DMA engine\n");
goto jr_bind_err;
}
dev_info(dev, "caam dma support with %d job rings\n", bonds);
return err;
jr_bind_err:
list_for_each_entry_safe(chan, _chan, &dma_dev->channels, device_node)
caam_jr_dma_free(chan);
dma_unmap_single(ctrldev, dma_sh_desc->desc_dma, desc_bytes(sh_desc),
DMA_TO_DEVICE);
map_err:
kfree(dma_sh_desc);
desc_err:
kfree(dma_dev);
return err;
}
static int caam_dma_remove(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device *ctrldev = dev->parent;
struct caam_dma_ctx *ctx, *_ctx;
dma_async_device_unregister(dma_dev);
list_for_each_entry_safe(ctx, _ctx, &dma_ctx_list, node) {
list_del(&ctx->node);
caam_jr_free(ctx->jrdev);
kfree(ctx);
}
dma_unmap_single(ctrldev, dma_sh_desc->desc_dma,
desc_bytes(dma_sh_desc->desc), DMA_TO_DEVICE);
kfree(dma_sh_desc);
kfree(dma_dev);
dev_info(dev, "caam dma support disabled\n");
return 0;
}
static struct platform_driver caam_dma_driver = {
.driver = {
.name = "caam-dma",
},
.probe = caam_dma_probe,
.remove = caam_dma_remove,
};
module_platform_driver(caam_dma_driver);
MODULE_LICENSE("Dual BSD/GPL");
MODULE_DESCRIPTION("NXP CAAM support for DMA engine");
MODULE_AUTHOR("NXP Semiconductors");
MODULE_ALIAS("platform:caam-dma");

View File

@ -0,0 +1,9 @@
menuconfig FSL_DPAA2_QDMA
tristate "NXP DPAA2 QDMA"
depends on ARM64
depends on FSL_MC_BUS && FSL_MC_DPIO
select DMA_ENGINE
select DMA_VIRTUAL_CHANNELS
help
NXP Data Path Acceleration Architecture 2 QDMA driver,
using the NXP MC bus driver.

View File

@ -0,0 +1,3 @@
# SPDX-License-Identifier: GPL-2.0
# Makefile for the NXP DPAA2 qDMA controllers
obj-$(CONFIG_FSL_DPAA2_QDMA) += dpaa2-qdma.o dpdmai.o

View File

@ -0,0 +1,825 @@
// SPDX-License-Identifier: GPL-2.0
// Copyright 2019 NXP
#include <linux/init.h>
#include <linux/module.h>
#include <linux/dmapool.h>
#include <linux/of_irq.h>
#include <linux/iommu.h>
#include <linux/sys_soc.h>
#include <linux/fsl/mc.h>
#include <soc/fsl/dpaa2-io.h>
#include "../virt-dma.h"
#include "dpdmai.h"
#include "dpaa2-qdma.h"
static bool smmu_disable = true;
static struct dpaa2_qdma_chan *to_dpaa2_qdma_chan(struct dma_chan *chan)
{
return container_of(chan, struct dpaa2_qdma_chan, vchan.chan);
}
static struct dpaa2_qdma_comp *to_fsl_qdma_comp(struct virt_dma_desc *vd)
{
return container_of(vd, struct dpaa2_qdma_comp, vdesc);
}
static int dpaa2_qdma_alloc_chan_resources(struct dma_chan *chan)
{
struct dpaa2_qdma_chan *dpaa2_chan = to_dpaa2_qdma_chan(chan);
struct dpaa2_qdma_engine *dpaa2_qdma = dpaa2_chan->qdma;
struct device *dev = &dpaa2_qdma->priv->dpdmai_dev->dev;
dpaa2_chan->fd_pool = dma_pool_create("fd_pool", dev,
sizeof(struct dpaa2_fd),
sizeof(struct dpaa2_fd), 0);
if (!dpaa2_chan->fd_pool)
goto err;
dpaa2_chan->fl_pool = dma_pool_create("fl_pool", dev,
sizeof(struct dpaa2_fl_entry),
sizeof(struct dpaa2_fl_entry), 0);
if (!dpaa2_chan->fl_pool)
goto err_fd;
dpaa2_chan->sdd_pool =
dma_pool_create("sdd_pool", dev,
sizeof(struct dpaa2_qdma_sd_d),
sizeof(struct dpaa2_qdma_sd_d), 0);
if (!dpaa2_chan->sdd_pool)
goto err_fl;
return dpaa2_qdma->desc_allocated++;
err_fl:
dma_pool_destroy(dpaa2_chan->fl_pool);
err_fd:
dma_pool_destroy(dpaa2_chan->fd_pool);
err:
return -ENOMEM;
}
static void dpaa2_qdma_free_chan_resources(struct dma_chan *chan)
{
struct dpaa2_qdma_chan *dpaa2_chan = to_dpaa2_qdma_chan(chan);
struct dpaa2_qdma_engine *dpaa2_qdma = dpaa2_chan->qdma;
unsigned long flags;
LIST_HEAD(head);
spin_lock_irqsave(&dpaa2_chan->vchan.lock, flags);
vchan_get_all_descriptors(&dpaa2_chan->vchan, &head);
spin_unlock_irqrestore(&dpaa2_chan->vchan.lock, flags);
vchan_dma_desc_free_list(&dpaa2_chan->vchan, &head);
dpaa2_dpdmai_free_comp(dpaa2_chan, &dpaa2_chan->comp_used);
dpaa2_dpdmai_free_comp(dpaa2_chan, &dpaa2_chan->comp_free);
dma_pool_destroy(dpaa2_chan->fd_pool);
dma_pool_destroy(dpaa2_chan->fl_pool);
dma_pool_destroy(dpaa2_chan->sdd_pool);
dpaa2_qdma->desc_allocated--;
}
/*
* Request a command descriptor for enqueue.
*/
static struct dpaa2_qdma_comp *
dpaa2_qdma_request_desc(struct dpaa2_qdma_chan *dpaa2_chan)
{
struct dpaa2_qdma_priv *qdma_priv = dpaa2_chan->qdma->priv;
struct device *dev = &qdma_priv->dpdmai_dev->dev;
struct dpaa2_qdma_comp *comp_temp = NULL;
unsigned long flags;
spin_lock_irqsave(&dpaa2_chan->queue_lock, flags);
if (list_empty(&dpaa2_chan->comp_free)) {
spin_unlock_irqrestore(&dpaa2_chan->queue_lock, flags);
comp_temp = kzalloc(sizeof(*comp_temp), GFP_NOWAIT);
if (!comp_temp)
goto err;
comp_temp->fd_virt_addr =
dma_pool_alloc(dpaa2_chan->fd_pool, GFP_NOWAIT,
&comp_temp->fd_bus_addr);
if (!comp_temp->fd_virt_addr)
goto err_comp;
comp_temp->fl_virt_addr =
dma_pool_alloc(dpaa2_chan->fl_pool, GFP_NOWAIT,
&comp_temp->fl_bus_addr);
if (!comp_temp->fl_virt_addr)
goto err_fd_virt;
comp_temp->desc_virt_addr =
dma_pool_alloc(dpaa2_chan->sdd_pool, GFP_NOWAIT,
&comp_temp->desc_bus_addr);
if (!comp_temp->desc_virt_addr)
goto err_fl_virt;
comp_temp->qchan = dpaa2_chan;
return comp_temp;
}
comp_temp = list_first_entry(&dpaa2_chan->comp_free,
struct dpaa2_qdma_comp, list);
list_del(&comp_temp->list);
spin_unlock_irqrestore(&dpaa2_chan->queue_lock, flags);
comp_temp->qchan = dpaa2_chan;
return comp_temp;
err_fl_virt:
dma_pool_free(dpaa2_chan->fl_pool,
comp_temp->fl_virt_addr,
comp_temp->fl_bus_addr);
err_fd_virt:
dma_pool_free(dpaa2_chan->fd_pool,
comp_temp->fd_virt_addr,
comp_temp->fd_bus_addr);
err_comp:
kfree(comp_temp);
err:
dev_err(dev, "Failed to request descriptor\n");
return NULL;
}
static void
dpaa2_qdma_populate_fd(u32 format, struct dpaa2_qdma_comp *dpaa2_comp)
{
struct dpaa2_fd *fd;
fd = dpaa2_comp->fd_virt_addr;
memset(fd, 0, sizeof(struct dpaa2_fd));
/* fd populated */
dpaa2_fd_set_addr(fd, dpaa2_comp->fl_bus_addr);
/*
* Bypass memory translation, Frame list format, short length disable
* we need to disable BMT if fsl-mc use iova addr
*/
if (smmu_disable)
dpaa2_fd_set_bpid(fd, QMAN_FD_BMT_ENABLE);
dpaa2_fd_set_format(fd, QMAN_FD_FMT_ENABLE | QMAN_FD_SL_DISABLE);
dpaa2_fd_set_frc(fd, format | QDMA_SER_CTX);
}
/* first frame list for descriptor buffer */
static void
dpaa2_qdma_populate_first_framel(struct dpaa2_fl_entry *f_list,
struct dpaa2_qdma_comp *dpaa2_comp,
bool wrt_changed)
{
struct dpaa2_qdma_sd_d *sdd;
sdd = dpaa2_comp->desc_virt_addr;
memset(sdd, 0, 2 * (sizeof(*sdd)));
/* source descriptor CMD */
sdd->cmd = cpu_to_le32(QDMA_SD_CMD_RDTTYPE_COHERENT);
sdd++;
/* dest descriptor CMD */
if (wrt_changed)
sdd->cmd = cpu_to_le32(LX2160_QDMA_DD_CMD_WRTTYPE_COHERENT);
else
sdd->cmd = cpu_to_le32(QDMA_DD_CMD_WRTTYPE_COHERENT);
memset(f_list, 0, sizeof(struct dpaa2_fl_entry));
/* first frame list to source descriptor */
dpaa2_fl_set_addr(f_list, dpaa2_comp->desc_bus_addr);
dpaa2_fl_set_len(f_list, 0x20);
dpaa2_fl_set_format(f_list, QDMA_FL_FMT_SBF | QDMA_FL_SL_LONG);
/* bypass memory translation */
if (smmu_disable)
f_list->bpid = cpu_to_le16(QDMA_FL_BMT_ENABLE);
}
/* source and destination frame list */
static void
dpaa2_qdma_populate_frames(struct dpaa2_fl_entry *f_list,
dma_addr_t dst, dma_addr_t src,
size_t len, uint8_t fmt)
{
/* source frame list to source buffer */
memset(f_list, 0, sizeof(struct dpaa2_fl_entry));
dpaa2_fl_set_addr(f_list, src);
dpaa2_fl_set_len(f_list, len);
/* single buffer frame or scatter gather frame */
dpaa2_fl_set_format(f_list, (fmt | QDMA_FL_SL_LONG));
/* bypass memory translation */
if (smmu_disable)
f_list->bpid = cpu_to_le16(QDMA_FL_BMT_ENABLE);
f_list++;
/* destination frame list to destination buffer */
memset(f_list, 0, sizeof(struct dpaa2_fl_entry));
dpaa2_fl_set_addr(f_list, dst);
dpaa2_fl_set_len(f_list, len);
dpaa2_fl_set_format(f_list, (fmt | QDMA_FL_SL_LONG));
/* single buffer frame or scatter gather frame */
dpaa2_fl_set_final(f_list, QDMA_FL_F);
/* bypass memory translation */
if (smmu_disable)
f_list->bpid = cpu_to_le16(QDMA_FL_BMT_ENABLE);
}
static struct dma_async_tx_descriptor
*dpaa2_qdma_prep_memcpy(struct dma_chan *chan, dma_addr_t dst,
dma_addr_t src, size_t len, ulong flags)
{
struct dpaa2_qdma_chan *dpaa2_chan = to_dpaa2_qdma_chan(chan);
struct dpaa2_qdma_engine *dpaa2_qdma;
struct dpaa2_qdma_comp *dpaa2_comp;
struct dpaa2_fl_entry *f_list;
bool wrt_changed;
dpaa2_qdma = dpaa2_chan->qdma;
dpaa2_comp = dpaa2_qdma_request_desc(dpaa2_chan);
if (!dpaa2_comp)
return NULL;
wrt_changed = (bool)dpaa2_qdma->qdma_wrtype_fixup;
/* populate Frame descriptor */
dpaa2_qdma_populate_fd(QDMA_FD_LONG_FORMAT, dpaa2_comp);
f_list = dpaa2_comp->fl_virt_addr;
/* first frame list for descriptor buffer (logn format) */
dpaa2_qdma_populate_first_framel(f_list, dpaa2_comp, wrt_changed);
f_list++;
dpaa2_qdma_populate_frames(f_list, dst, src, len, QDMA_FL_FMT_SBF);
return vchan_tx_prep(&dpaa2_chan->vchan, &dpaa2_comp->vdesc, flags);
}
static void dpaa2_qdma_issue_pending(struct dma_chan *chan)
{
struct dpaa2_qdma_chan *dpaa2_chan = to_dpaa2_qdma_chan(chan);
struct dpaa2_qdma_comp *dpaa2_comp;
struct virt_dma_desc *vdesc;
struct dpaa2_fd *fd;
unsigned long flags;
int err;
spin_lock_irqsave(&dpaa2_chan->queue_lock, flags);
spin_lock(&dpaa2_chan->vchan.lock);
if (vchan_issue_pending(&dpaa2_chan->vchan)) {
vdesc = vchan_next_desc(&dpaa2_chan->vchan);
if (!vdesc)
goto err_enqueue;
dpaa2_comp = to_fsl_qdma_comp(vdesc);
fd = dpaa2_comp->fd_virt_addr;
list_del(&vdesc->node);
list_add_tail(&dpaa2_comp->list, &dpaa2_chan->comp_used);
err = dpaa2_io_service_enqueue_fq(NULL, dpaa2_chan->fqid, fd);
if (err) {
list_del(&dpaa2_comp->list);
list_add_tail(&dpaa2_comp->list,
&dpaa2_chan->comp_free);
}
}
err_enqueue:
spin_unlock(&dpaa2_chan->vchan.lock);
spin_unlock_irqrestore(&dpaa2_chan->queue_lock, flags);
}
static int __cold dpaa2_qdma_setup(struct fsl_mc_device *ls_dev)
{
struct dpaa2_qdma_priv_per_prio *ppriv;
struct device *dev = &ls_dev->dev;
struct dpaa2_qdma_priv *priv;
u8 prio_def = DPDMAI_PRIO_NUM;
int err = -EINVAL;
int i;
priv = dev_get_drvdata(dev);
priv->dev = dev;
priv->dpqdma_id = ls_dev->obj_desc.id;
/* Get the handle for the DPDMAI this interface is associate with */
err = dpdmai_open(priv->mc_io, 0, priv->dpqdma_id, &ls_dev->mc_handle);
if (err) {
dev_err(dev, "dpdmai_open() failed\n");
return err;
}
dev_dbg(dev, "Opened dpdmai object successfully\n");
err = dpdmai_get_attributes(priv->mc_io, 0, ls_dev->mc_handle,
&priv->dpdmai_attr);
if (err) {
dev_err(dev, "dpdmai_get_attributes() failed\n");
goto exit;
}
if (priv->dpdmai_attr.version.major > DPDMAI_VER_MAJOR) {
dev_err(dev, "DPDMAI major version mismatch\n"
"Found %u.%u, supported version is %u.%u\n",
priv->dpdmai_attr.version.major,
priv->dpdmai_attr.version.minor,
DPDMAI_VER_MAJOR, DPDMAI_VER_MINOR);
goto exit;
}
if (priv->dpdmai_attr.version.minor > DPDMAI_VER_MINOR) {
dev_err(dev, "DPDMAI minor version mismatch\n"
"Found %u.%u, supported version is %u.%u\n",
priv->dpdmai_attr.version.major,
priv->dpdmai_attr.version.minor,
DPDMAI_VER_MAJOR, DPDMAI_VER_MINOR);
goto exit;
}
priv->num_pairs = min(priv->dpdmai_attr.num_of_priorities, prio_def);
ppriv = kcalloc(priv->num_pairs, sizeof(*ppriv), GFP_KERNEL);
if (!ppriv) {
err = -ENOMEM;
goto exit;
}
priv->ppriv = ppriv;
for (i = 0; i < priv->num_pairs; i++) {
err = dpdmai_get_rx_queue(priv->mc_io, 0, ls_dev->mc_handle,
i, &priv->rx_queue_attr[i]);
if (err) {
dev_err(dev, "dpdmai_get_rx_queue() failed\n");
goto exit;
}
ppriv->rsp_fqid = priv->rx_queue_attr[i].fqid;
err = dpdmai_get_tx_queue(priv->mc_io, 0, ls_dev->mc_handle,
i, &priv->tx_fqid[i]);
if (err) {
dev_err(dev, "dpdmai_get_tx_queue() failed\n");
goto exit;
}
ppriv->req_fqid = priv->tx_fqid[i];
ppriv->prio = i;
ppriv->priv = priv;
ppriv++;
}
return 0;
exit:
dpdmai_close(priv->mc_io, 0, ls_dev->mc_handle);
return err;
}
static void dpaa2_qdma_fqdan_cb(struct dpaa2_io_notification_ctx *ctx)
{
struct dpaa2_qdma_priv_per_prio *ppriv = container_of(ctx,
struct dpaa2_qdma_priv_per_prio, nctx);
struct dpaa2_qdma_comp *dpaa2_comp, *_comp_tmp;
struct dpaa2_qdma_priv *priv = ppriv->priv;
u32 n_chans = priv->dpaa2_qdma->n_chans;
struct dpaa2_qdma_chan *qchan;
const struct dpaa2_fd *fd_eq;
const struct dpaa2_fd *fd;
struct dpaa2_dq *dq;
int is_last = 0;
int found;
u8 status;
int err;
int i;
do {
err = dpaa2_io_service_pull_fq(NULL, ppriv->rsp_fqid,
ppriv->store);
} while (err);
while (!is_last) {
do {
dq = dpaa2_io_store_next(ppriv->store, &is_last);
} while (!is_last && !dq);
if (!dq) {
dev_err(priv->dev, "FQID returned no valid frames!\n");
continue;
}
/* obtain FD and process the error */
fd = dpaa2_dq_fd(dq);
status = dpaa2_fd_get_ctrl(fd) & 0xff;
if (status)
dev_err(priv->dev, "FD error occurred\n");
found = 0;
for (i = 0; i < n_chans; i++) {
qchan = &priv->dpaa2_qdma->chans[i];
spin_lock(&qchan->queue_lock);
if (list_empty(&qchan->comp_used)) {
spin_unlock(&qchan->queue_lock);
continue;
}
list_for_each_entry_safe(dpaa2_comp, _comp_tmp,
&qchan->comp_used, list) {
fd_eq = dpaa2_comp->fd_virt_addr;
if (le64_to_cpu(fd_eq->simple.addr) ==
le64_to_cpu(fd->simple.addr)) {
spin_lock(&qchan->vchan.lock);
vchan_cookie_complete(&
dpaa2_comp->vdesc);
spin_unlock(&qchan->vchan.lock);
found = 1;
break;
}
}
spin_unlock(&qchan->queue_lock);
if (found)
break;
}
}
dpaa2_io_service_rearm(NULL, ctx);
}
static int __cold dpaa2_qdma_dpio_setup(struct dpaa2_qdma_priv *priv)
{
struct dpaa2_qdma_priv_per_prio *ppriv;
struct device *dev = priv->dev;
int err = -EINVAL;
int i, num;
num = priv->num_pairs;
ppriv = priv->ppriv;
for (i = 0; i < num; i++) {
ppriv->nctx.is_cdan = 0;
ppriv->nctx.desired_cpu = DPAA2_IO_ANY_CPU;
ppriv->nctx.id = ppriv->rsp_fqid;
ppriv->nctx.cb = dpaa2_qdma_fqdan_cb;
err = dpaa2_io_service_register(NULL, &ppriv->nctx, dev);
if (err) {
dev_err(dev, "Notification register failed\n");
goto err_service;
}
ppriv->store =
dpaa2_io_store_create(DPAA2_QDMA_STORE_SIZE, dev);
if (!ppriv->store) {
dev_err(dev, "dpaa2_io_store_create() failed\n");
goto err_store;
}
ppriv++;
}
return 0;
err_store:
dpaa2_io_service_deregister(NULL, &ppriv->nctx, dev);
err_service:
ppriv--;
while (ppriv >= priv->ppriv) {
dpaa2_io_service_deregister(NULL, &ppriv->nctx, dev);
dpaa2_io_store_destroy(ppriv->store);
ppriv--;
}
return err;
}
static void dpaa2_dpmai_store_free(struct dpaa2_qdma_priv *priv)
{
struct dpaa2_qdma_priv_per_prio *ppriv = priv->ppriv;
int i;
for (i = 0; i < priv->num_pairs; i++) {
dpaa2_io_store_destroy(ppriv->store);
ppriv++;
}
}
static void dpaa2_dpdmai_dpio_free(struct dpaa2_qdma_priv *priv)
{
struct dpaa2_qdma_priv_per_prio *ppriv = priv->ppriv;
struct device *dev = priv->dev;
int i;
for (i = 0; i < priv->num_pairs; i++) {
dpaa2_io_service_deregister(NULL, &ppriv->nctx, dev);
ppriv++;
}
}
static int __cold dpaa2_dpdmai_bind(struct dpaa2_qdma_priv *priv)
{
struct dpdmai_rx_queue_cfg rx_queue_cfg;
struct dpaa2_qdma_priv_per_prio *ppriv;
struct device *dev = priv->dev;
struct fsl_mc_device *ls_dev;
int i, num;
int err;
ls_dev = to_fsl_mc_device(dev);
num = priv->num_pairs;
ppriv = priv->ppriv;
for (i = 0; i < num; i++) {
rx_queue_cfg.options = DPDMAI_QUEUE_OPT_USER_CTX |
DPDMAI_QUEUE_OPT_DEST;
rx_queue_cfg.user_ctx = ppriv->nctx.qman64;
rx_queue_cfg.dest_cfg.dest_type = DPDMAI_DEST_DPIO;
rx_queue_cfg.dest_cfg.dest_id = ppriv->nctx.dpio_id;
rx_queue_cfg.dest_cfg.priority = ppriv->prio;
err = dpdmai_set_rx_queue(priv->mc_io, 0, ls_dev->mc_handle,
rx_queue_cfg.dest_cfg.priority,
&rx_queue_cfg);
if (err) {
dev_err(dev, "dpdmai_set_rx_queue() failed\n");
return err;
}
ppriv++;
}
return 0;
}
static int __cold dpaa2_dpdmai_dpio_unbind(struct dpaa2_qdma_priv *priv)
{
struct dpaa2_qdma_priv_per_prio *ppriv = priv->ppriv;
struct device *dev = priv->dev;
struct fsl_mc_device *ls_dev;
int err = 0;
int i;
ls_dev = to_fsl_mc_device(dev);
for (i = 0; i < priv->num_pairs; i++) {
ppriv->nctx.qman64 = 0;
ppriv->nctx.dpio_id = 0;
ppriv++;
}
err = dpdmai_reset(priv->mc_io, 0, ls_dev->mc_handle);
if (err)
dev_err(dev, "dpdmai_reset() failed\n");
return err;
}
static void dpaa2_dpdmai_free_comp(struct dpaa2_qdma_chan *qchan,
struct list_head *head)
{
struct dpaa2_qdma_comp *comp_tmp, *_comp_tmp;
unsigned long flags;
list_for_each_entry_safe(comp_tmp, _comp_tmp,
head, list) {
spin_lock_irqsave(&qchan->queue_lock, flags);
list_del(&comp_tmp->list);
spin_unlock_irqrestore(&qchan->queue_lock, flags);
dma_pool_free(qchan->fd_pool,
comp_tmp->fd_virt_addr,
comp_tmp->fd_bus_addr);
dma_pool_free(qchan->fl_pool,
comp_tmp->fl_virt_addr,
comp_tmp->fl_bus_addr);
dma_pool_free(qchan->sdd_pool,
comp_tmp->desc_virt_addr,
comp_tmp->desc_bus_addr);
kfree(comp_tmp);
}
}
static void dpaa2_dpdmai_free_channels(struct dpaa2_qdma_engine *dpaa2_qdma)
{
struct dpaa2_qdma_chan *qchan;
int num, i;
num = dpaa2_qdma->n_chans;
for (i = 0; i < num; i++) {
qchan = &dpaa2_qdma->chans[i];
dpaa2_dpdmai_free_comp(qchan, &qchan->comp_used);
dpaa2_dpdmai_free_comp(qchan, &qchan->comp_free);
dma_pool_destroy(qchan->fd_pool);
dma_pool_destroy(qchan->fl_pool);
dma_pool_destroy(qchan->sdd_pool);
}
}
static void dpaa2_qdma_free_desc(struct virt_dma_desc *vdesc)
{
struct dpaa2_qdma_comp *dpaa2_comp;
struct dpaa2_qdma_chan *qchan;
unsigned long flags;
dpaa2_comp = to_fsl_qdma_comp(vdesc);
qchan = dpaa2_comp->qchan;
spin_lock_irqsave(&qchan->queue_lock, flags);
list_del(&dpaa2_comp->list);
list_add_tail(&dpaa2_comp->list, &qchan->comp_free);
spin_unlock_irqrestore(&qchan->queue_lock, flags);
}
static int dpaa2_dpdmai_init_channels(struct dpaa2_qdma_engine *dpaa2_qdma)
{
struct dpaa2_qdma_priv *priv = dpaa2_qdma->priv;
struct dpaa2_qdma_chan *dpaa2_chan;
int num = priv->num_pairs;
int i;
INIT_LIST_HEAD(&dpaa2_qdma->dma_dev.channels);
for (i = 0; i < dpaa2_qdma->n_chans; i++) {
dpaa2_chan = &dpaa2_qdma->chans[i];
dpaa2_chan->qdma = dpaa2_qdma;
dpaa2_chan->fqid = priv->tx_fqid[i % num];
dpaa2_chan->vchan.desc_free = dpaa2_qdma_free_desc;
vchan_init(&dpaa2_chan->vchan, &dpaa2_qdma->dma_dev);
spin_lock_init(&dpaa2_chan->queue_lock);
INIT_LIST_HEAD(&dpaa2_chan->comp_used);
INIT_LIST_HEAD(&dpaa2_chan->comp_free);
}
return 0;
}
static int dpaa2_qdma_probe(struct fsl_mc_device *dpdmai_dev)
{
struct device *dev = &dpdmai_dev->dev;
struct dpaa2_qdma_engine *dpaa2_qdma;
struct dpaa2_qdma_priv *priv;
int err;
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
dev_set_drvdata(dev, priv);
priv->dpdmai_dev = dpdmai_dev;
priv->iommu_domain = iommu_get_domain_for_dev(dev);
if (priv->iommu_domain)
smmu_disable = false;
/* obtain a MC portal */
err = fsl_mc_portal_allocate(dpdmai_dev, 0, &priv->mc_io);
if (err) {
if (err == -ENXIO)
err = -EPROBE_DEFER;
else
dev_err(dev, "MC portal allocation failed\n");
goto err_mcportal;
}
/* DPDMAI initialization */
err = dpaa2_qdma_setup(dpdmai_dev);
if (err) {
dev_err(dev, "dpaa2_dpdmai_setup() failed\n");
goto err_dpdmai_setup;
}
/* DPIO */
err = dpaa2_qdma_dpio_setup(priv);
if (err) {
dev_err(dev, "dpaa2_dpdmai_dpio_setup() failed\n");
goto err_dpio_setup;
}
/* DPDMAI binding to DPIO */
err = dpaa2_dpdmai_bind(priv);
if (err) {
dev_err(dev, "dpaa2_dpdmai_bind() failed\n");
goto err_bind;
}
/* DPDMAI enable */
err = dpdmai_enable(priv->mc_io, 0, dpdmai_dev->mc_handle);
if (err) {
dev_err(dev, "dpdmai_enable() faile\n");
goto err_enable;
}
dpaa2_qdma = kzalloc(sizeof(*dpaa2_qdma), GFP_KERNEL);
if (!dpaa2_qdma) {
err = -ENOMEM;
goto err_eng;
}
priv->dpaa2_qdma = dpaa2_qdma;
dpaa2_qdma->priv = priv;
dpaa2_qdma->desc_allocated = 0;
dpaa2_qdma->n_chans = NUM_CH;
dpaa2_dpdmai_init_channels(dpaa2_qdma);
if (soc_device_match(soc_fixup_tuning))
dpaa2_qdma->qdma_wrtype_fixup = true;
else
dpaa2_qdma->qdma_wrtype_fixup = false;
dma_cap_set(DMA_PRIVATE, dpaa2_qdma->dma_dev.cap_mask);
dma_cap_set(DMA_SLAVE, dpaa2_qdma->dma_dev.cap_mask);
dma_cap_set(DMA_MEMCPY, dpaa2_qdma->dma_dev.cap_mask);
dpaa2_qdma->dma_dev.dev = dev;
dpaa2_qdma->dma_dev.device_alloc_chan_resources =
dpaa2_qdma_alloc_chan_resources;
dpaa2_qdma->dma_dev.device_free_chan_resources =
dpaa2_qdma_free_chan_resources;
dpaa2_qdma->dma_dev.device_tx_status = dma_cookie_status;
dpaa2_qdma->dma_dev.device_prep_dma_memcpy = dpaa2_qdma_prep_memcpy;
dpaa2_qdma->dma_dev.device_issue_pending = dpaa2_qdma_issue_pending;
err = dma_async_device_register(&dpaa2_qdma->dma_dev);
if (err) {
dev_err(dev, "Can't register NXP QDMA engine.\n");
goto err_dpaa2_qdma;
}
return 0;
err_dpaa2_qdma:
kfree(dpaa2_qdma);
err_eng:
dpdmai_disable(priv->mc_io, 0, dpdmai_dev->mc_handle);
err_enable:
dpaa2_dpdmai_dpio_unbind(priv);
err_bind:
dpaa2_dpmai_store_free(priv);
dpaa2_dpdmai_dpio_free(priv);
err_dpio_setup:
kfree(priv->ppriv);
dpdmai_close(priv->mc_io, 0, dpdmai_dev->mc_handle);
err_dpdmai_setup:
fsl_mc_portal_free(priv->mc_io);
err_mcportal:
kfree(priv);
dev_set_drvdata(dev, NULL);
return err;
}
static int dpaa2_qdma_remove(struct fsl_mc_device *ls_dev)
{
struct dpaa2_qdma_engine *dpaa2_qdma;
struct dpaa2_qdma_priv *priv;
struct device *dev;
dev = &ls_dev->dev;
priv = dev_get_drvdata(dev);
dpaa2_qdma = priv->dpaa2_qdma;
dpdmai_disable(priv->mc_io, 0, ls_dev->mc_handle);
dpaa2_dpdmai_dpio_unbind(priv);
dpaa2_dpmai_store_free(priv);
dpaa2_dpdmai_dpio_free(priv);
dpdmai_close(priv->mc_io, 0, ls_dev->mc_handle);
fsl_mc_portal_free(priv->mc_io);
dev_set_drvdata(dev, NULL);
dpaa2_dpdmai_free_channels(dpaa2_qdma);
dma_async_device_unregister(&dpaa2_qdma->dma_dev);
kfree(priv);
kfree(dpaa2_qdma);
return 0;
}
static const struct fsl_mc_device_id dpaa2_qdma_id_table[] = {
{
.vendor = FSL_MC_VENDOR_FREESCALE,
.obj_type = "dpdmai",
},
{ .vendor = 0x0 }
};
static struct fsl_mc_driver dpaa2_qdma_driver = {
.driver = {
.name = "dpaa2-qdma",
.owner = THIS_MODULE,
},
.probe = dpaa2_qdma_probe,
.remove = dpaa2_qdma_remove,
.match_id_table = dpaa2_qdma_id_table
};
static int __init dpaa2_qdma_driver_init(void)
{
return fsl_mc_driver_register(&(dpaa2_qdma_driver));
}
late_initcall(dpaa2_qdma_driver_init);
static void __exit fsl_qdma_exit(void)
{
fsl_mc_driver_unregister(&(dpaa2_qdma_driver));
}
module_exit(fsl_qdma_exit);
MODULE_ALIAS("platform:fsl-dpaa2-qdma");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("NXP Layerscape DPAA2 qDMA engine driver");

View File

@ -0,0 +1,153 @@
/* SPDX-License-Identifier: GPL-2.0 */
/* Copyright 2019 NXP */
#ifndef __DPAA2_QDMA_H
#define __DPAA2_QDMA_H
#define DPAA2_QDMA_STORE_SIZE 16
#define NUM_CH 8
struct dpaa2_qdma_sd_d {
u32 rsv:32;
union {
struct {
u32 ssd:12; /* souce stride distance */
u32 sss:12; /* souce stride size */
u32 rsv1:8;
} sdf;
struct {
u32 dsd:12; /* Destination stride distance */
u32 dss:12; /* Destination stride size */
u32 rsv2:8;
} ddf;
} df;
u32 rbpcmd; /* Route-by-port command */
u32 cmd;
} __attribute__((__packed__));
/* Source descriptor command read transaction type for RBP=0: */
/* coherent copy of cacheable memory */
#define QDMA_SD_CMD_RDTTYPE_COHERENT (0xb << 28)
/* Destination descriptor command write transaction type for RBP=0: */
/* coherent copy of cacheable memory */
#define QDMA_DD_CMD_WRTTYPE_COHERENT (0x6 << 28)
#define LX2160_QDMA_DD_CMD_WRTTYPE_COHERENT (0xb << 28)
#define QMAN_FD_FMT_ENABLE BIT(0) /* frame list table enable */
#define QMAN_FD_BMT_ENABLE BIT(15) /* bypass memory translation */
#define QMAN_FD_BMT_DISABLE (0) /* bypass memory translation */
#define QMAN_FD_SL_DISABLE (0) /* short lengthe disabled */
#define QMAN_FD_SL_ENABLE BIT(14) /* short lengthe enabled */
#define QDMA_FINAL_BIT_DISABLE (0) /* final bit disable */
#define QDMA_FINAL_BIT_ENABLE BIT(31) /* final bit enable */
#define QDMA_FD_SHORT_FORMAT BIT(11) /* short format */
#define QDMA_FD_LONG_FORMAT (0) /* long format */
#define QDMA_SER_DISABLE (8) /* no notification */
#define QDMA_SER_CTX BIT(8) /* notification by FQD_CTX[fqid] */
#define QDMA_SER_DEST (2 << 8) /* notification by destination desc */
#define QDMA_SER_BOTH (3 << 8) /* soruce and dest notification */
#define QDMA_FD_SPF_ENALBE BIT(30) /* source prefetch enable */
#define QMAN_FD_VA_ENABLE BIT(14) /* Address used is virtual address */
#define QMAN_FD_VA_DISABLE (0)/* Address used is a real address */
/* Flow Context: 49bit physical address */
#define QMAN_FD_CBMT_ENABLE BIT(15)
#define QMAN_FD_CBMT_DISABLE (0) /* Flow Context: 64bit virtual address */
#define QMAN_FD_SC_DISABLE (0) /* stashing control */
#define QDMA_FL_FMT_SBF (0x0) /* Single buffer frame */
#define QDMA_FL_FMT_SGE (0x2) /* Scatter gather frame */
#define QDMA_FL_BMT_ENABLE BIT(15) /* enable bypass memory translation */
#define QDMA_FL_BMT_DISABLE (0x0) /* enable bypass memory translation */
#define QDMA_FL_SL_LONG (0x0)/* long length */
#define QDMA_FL_SL_SHORT (0x1) /* short length */
#define QDMA_FL_F (0x1)/* last frame list bit */
/*Description of Frame list table structure*/
struct dpaa2_qdma_chan {
struct dpaa2_qdma_engine *qdma;
struct virt_dma_chan vchan;
struct virt_dma_desc vdesc;
enum dma_status status;
u32 fqid;
/* spinlock used by dpaa2 qdma driver */
spinlock_t queue_lock;
struct dma_pool *fd_pool;
struct dma_pool *fl_pool;
struct dma_pool *sdd_pool;
struct list_head comp_used;
struct list_head comp_free;
};
struct dpaa2_qdma_comp {
dma_addr_t fd_bus_addr;
dma_addr_t fl_bus_addr;
dma_addr_t desc_bus_addr;
struct dpaa2_fd *fd_virt_addr;
struct dpaa2_fl_entry *fl_virt_addr;
struct dpaa2_qdma_sd_d *desc_virt_addr;
struct dpaa2_qdma_chan *qchan;
struct virt_dma_desc vdesc;
struct list_head list;
};
struct dpaa2_qdma_engine {
struct dma_device dma_dev;
u32 n_chans;
struct dpaa2_qdma_chan chans[NUM_CH];
int qdma_wrtype_fixup;
int desc_allocated;
struct dpaa2_qdma_priv *priv;
};
/*
* dpaa2_qdma_priv - driver private data
*/
struct dpaa2_qdma_priv {
int dpqdma_id;
struct iommu_domain *iommu_domain;
struct dpdmai_attr dpdmai_attr;
struct device *dev;
struct fsl_mc_io *mc_io;
struct fsl_mc_device *dpdmai_dev;
u8 num_pairs;
struct dpaa2_qdma_engine *dpaa2_qdma;
struct dpaa2_qdma_priv_per_prio *ppriv;
struct dpdmai_rx_queue_attr rx_queue_attr[DPDMAI_PRIO_NUM];
u32 tx_fqid[DPDMAI_PRIO_NUM];
};
struct dpaa2_qdma_priv_per_prio {
int req_fqid;
int rsp_fqid;
int prio;
struct dpaa2_io_store *store;
struct dpaa2_io_notification_ctx nctx;
struct dpaa2_qdma_priv *priv;
};
static struct soc_device_attribute soc_fixup_tuning[] = {
{ .family = "QorIQ LX2160A"},
{ },
};
/* FD pool size: one FD + 3 Frame list + 2 source/destination descriptor */
#define FD_POOL_SIZE (sizeof(struct dpaa2_fd) + \
sizeof(struct dpaa2_fl_entry) * 3 + \
sizeof(struct dpaa2_qdma_sd_d) * 2)
static void dpaa2_dpdmai_free_channels(struct dpaa2_qdma_engine *dpaa2_qdma);
static void dpaa2_dpdmai_free_comp(struct dpaa2_qdma_chan *qchan,
struct list_head *head);
#endif /* __DPAA2_QDMA_H */

View File

@ -0,0 +1,366 @@
// SPDX-License-Identifier: GPL-2.0
// Copyright 2019 NXP
#include <linux/types.h>
#include <linux/io.h>
#include <linux/fsl/mc.h>
#include "dpdmai.h"
struct dpdmai_rsp_get_attributes {
__le32 id;
u8 num_of_priorities;
u8 pad0[3];
__le16 major;
__le16 minor;
};
struct dpdmai_cmd_queue {
__le32 dest_id;
u8 priority;
u8 queue;
u8 dest_type;
u8 pad;
__le64 user_ctx;
union {
__le32 options;
__le32 fqid;
};
};
struct dpdmai_rsp_get_tx_queue {
__le64 pad;
__le32 fqid;
};
#define MC_CMD_OP(_cmd, _param, _offset, _width, _type, _arg) \
((_cmd).params[_param] |= mc_enc((_offset), (_width), _arg))
/* cmd, param, offset, width, type, arg_name */
#define DPDMAI_CMD_CREATE(_cmd, _cfg) \
do { \
typeof(_cmd) (cmd) = (_cmd); \
typeof(_cfg) (cfg) = (_cfg); \
MC_CMD_OP(cmd, 0, 8, 8, u8, (cfg)->priorities[0]);\
MC_CMD_OP(cmd, 0, 16, 8, u8, (cfg)->priorities[1]);\
} while (0)
static inline u64 mc_enc(int lsoffset, int width, u64 val)
{
return (val & MAKE_UMASK64(width)) << lsoffset;
}
/**
* dpdmai_open() - Open a control session for the specified object
* @mc_io: Pointer to MC portal's I/O object
* @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_'
* @dpdmai_id: DPDMAI unique ID
* @token: Returned token; use in subsequent API calls
*
* This function can be used to open a control session for an
* already created object; an object may have been declared in
* the DPL or by calling the dpdmai_create() function.
* This function returns a unique authentication token,
* associated with the specific object ID and the specific MC
* portal; this token must be used in all subsequent commands for
* this specific object.
*
* Return: '0' on Success; Error code otherwise.
*/
int dpdmai_open(struct fsl_mc_io *mc_io, u32 cmd_flags,
int dpdmai_id, u16 *token)
{
struct fsl_mc_command cmd = { 0 };
__le64 *cmd_dpdmai_id;
int err;
/* prepare command */
cmd.header = mc_encode_cmd_header(DPDMAI_CMDID_OPEN,
cmd_flags, 0);
cmd_dpdmai_id = cmd.params;
*cmd_dpdmai_id = cpu_to_le32(dpdmai_id);
/* send command to mc*/
err = mc_send_command(mc_io, &cmd);
if (err)
return err;
/* retrieve response parameters */
*token = mc_cmd_hdr_read_token(&cmd);
return 0;
}
/**
* dpdmai_close() - Close the control session of the object
* @mc_io: Pointer to MC portal's I/O object
* @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_'
* @token: Token of DPDMAI object
*
* After this function is called, no further operations are
* allowed on the object without opening a new control session.
*
* Return: '0' on Success; Error code otherwise.
*/
int dpdmai_close(struct fsl_mc_io *mc_io, u32 cmd_flags, u16 token)
{
struct fsl_mc_command cmd = { 0 };
/* prepare command */
cmd.header = mc_encode_cmd_header(DPDMAI_CMDID_CLOSE,
cmd_flags, token);
/* send command to mc*/
return mc_send_command(mc_io, &cmd);
}
/**
* dpdmai_create() - Create the DPDMAI object
* @mc_io: Pointer to MC portal's I/O object
* @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_'
* @cfg: Configuration structure
* @token: Returned token; use in subsequent API calls
*
* Create the DPDMAI object, allocate required resources and
* perform required initialization.
*
* The object can be created either by declaring it in the
* DPL file, or by calling this function.
*
* This function returns a unique authentication token,
* associated with the specific object ID and the specific MC
* portal; this token must be used in all subsequent calls to
* this specific object. For objects that are created using the
* DPL file, call dpdmai_open() function to get an authentication
* token first.
*
* Return: '0' on Success; Error code otherwise.
*/
int dpdmai_create(struct fsl_mc_io *mc_io, u32 cmd_flags,
const struct dpdmai_cfg *cfg, u16 *token)
{
struct fsl_mc_command cmd = { 0 };
int err;
/* prepare command */
cmd.header = mc_encode_cmd_header(DPDMAI_CMDID_CREATE,
cmd_flags, 0);
DPDMAI_CMD_CREATE(cmd, cfg);
/* send command to mc*/
err = mc_send_command(mc_io, &cmd);
if (err)
return err;
/* retrieve response parameters */
*token = mc_cmd_hdr_read_token(&cmd);
return 0;
}
/**
* dpdmai_enable() - Enable the DPDMAI, allow sending and receiving frames.
* @mc_io: Pointer to MC portal's I/O object
* @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_'
* @token: Token of DPDMAI object
*
* Return: '0' on Success; Error code otherwise.
*/
int dpdmai_enable(struct fsl_mc_io *mc_io, u32 cmd_flags, u16 token)
{
struct fsl_mc_command cmd = { 0 };
/* prepare command */
cmd.header = mc_encode_cmd_header(DPDMAI_CMDID_ENABLE,
cmd_flags, token);
/* send command to mc*/
return mc_send_command(mc_io, &cmd);
}
/**
* dpdmai_disable() - Disable the DPDMAI, stop sending and receiving frames.
* @mc_io: Pointer to MC portal's I/O object
* @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_'
* @token: Token of DPDMAI object
*
* Return: '0' on Success; Error code otherwise.
*/
int dpdmai_disable(struct fsl_mc_io *mc_io, u32 cmd_flags, u16 token)
{
struct fsl_mc_command cmd = { 0 };
/* prepare command */
cmd.header = mc_encode_cmd_header(DPDMAI_CMDID_DISABLE,
cmd_flags, token);
/* send command to mc*/
return mc_send_command(mc_io, &cmd);
}
/**
* dpdmai_reset() - Reset the DPDMAI, returns the object to initial state.
* @mc_io: Pointer to MC portal's I/O object
* @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_'
* @token: Token of DPDMAI object
*
* Return: '0' on Success; Error code otherwise.
*/
int dpdmai_reset(struct fsl_mc_io *mc_io, u32 cmd_flags, u16 token)
{
struct fsl_mc_command cmd = { 0 };
/* prepare command */
cmd.header = mc_encode_cmd_header(DPDMAI_CMDID_RESET,
cmd_flags, token);
/* send command to mc*/
return mc_send_command(mc_io, &cmd);
}
/**
* dpdmai_get_attributes() - Retrieve DPDMAI attributes.
* @mc_io: Pointer to MC portal's I/O object
* @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_'
* @token: Token of DPDMAI object
* @attr: Returned object's attributes
*
* Return: '0' on Success; Error code otherwise.
*/
int dpdmai_get_attributes(struct fsl_mc_io *mc_io, u32 cmd_flags,
u16 token, struct dpdmai_attr *attr)
{
struct dpdmai_rsp_get_attributes *rsp_params;
struct fsl_mc_command cmd = { 0 };
int err;
/* prepare command */
cmd.header = mc_encode_cmd_header(DPDMAI_CMDID_GET_ATTR,
cmd_flags, token);
/* send command to mc*/
err = mc_send_command(mc_io, &cmd);
if (err)
return err;
/* retrieve response parameters */
rsp_params = (struct dpdmai_rsp_get_attributes *)cmd.params;
attr->id = le32_to_cpu(rsp_params->id);
attr->version.major = le16_to_cpu(rsp_params->major);
attr->version.minor = le16_to_cpu(rsp_params->minor);
attr->num_of_priorities = rsp_params->num_of_priorities;
return 0;
}
/**
* dpdmai_set_rx_queue() - Set Rx queue configuration
* @mc_io: Pointer to MC portal's I/O object
* @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_'
* @token: Token of DPDMAI object
* @priority: Select the queue relative to number of
* priorities configured at DPDMAI creation
* @cfg: Rx queue configuration
*
* Return: '0' on Success; Error code otherwise.
*/
int dpdmai_set_rx_queue(struct fsl_mc_io *mc_io, u32 cmd_flags, u16 token,
u8 priority, const struct dpdmai_rx_queue_cfg *cfg)
{
struct dpdmai_cmd_queue *cmd_params;
struct fsl_mc_command cmd = { 0 };
/* prepare command */
cmd.header = mc_encode_cmd_header(DPDMAI_CMDID_SET_RX_QUEUE,
cmd_flags, token);
cmd_params = (struct dpdmai_cmd_queue *)cmd.params;
cmd_params->dest_id = cpu_to_le32(cfg->dest_cfg.dest_id);
cmd_params->priority = cfg->dest_cfg.priority;
cmd_params->queue = priority;
cmd_params->dest_type = cfg->dest_cfg.dest_type;
cmd_params->user_ctx = cpu_to_le64(cfg->user_ctx);
cmd_params->options = cpu_to_le32(cfg->options);
/* send command to mc*/
return mc_send_command(mc_io, &cmd);
}
/**
* dpdmai_get_rx_queue() - Retrieve Rx queue attributes.
* @mc_io: Pointer to MC portal's I/O object
* @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_'
* @token: Token of DPDMAI object
* @priority: Select the queue relative to number of
* priorities configured at DPDMAI creation
* @attr: Returned Rx queue attributes
*
* Return: '0' on Success; Error code otherwise.
*/
int dpdmai_get_rx_queue(struct fsl_mc_io *mc_io, u32 cmd_flags, u16 token,
u8 priority, struct dpdmai_rx_queue_attr *attr)
{
struct dpdmai_cmd_queue *cmd_params;
struct fsl_mc_command cmd = { 0 };
int err;
/* prepare command */
cmd.header = mc_encode_cmd_header(DPDMAI_CMDID_GET_RX_QUEUE,
cmd_flags, token);
cmd_params = (struct dpdmai_cmd_queue *)cmd.params;
cmd_params->queue = priority;
/* send command to mc*/
err = mc_send_command(mc_io, &cmd);
if (err)
return err;
/* retrieve response parameters */
attr->dest_cfg.dest_id = le32_to_cpu(cmd_params->dest_id);
attr->dest_cfg.priority = cmd_params->priority;
attr->dest_cfg.dest_type = cmd_params->dest_type;
attr->user_ctx = le64_to_cpu(cmd_params->user_ctx);
attr->fqid = le32_to_cpu(cmd_params->fqid);
return 0;
}
/**
* dpdmai_get_tx_queue() - Retrieve Tx queue attributes.
* @mc_io: Pointer to MC portal's I/O object
* @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_'
* @token: Token of DPDMAI object
* @priority: Select the queue relative to number of
* priorities configured at DPDMAI creation
* @fqid: Returned Tx queue
*
* Return: '0' on Success; Error code otherwise.
*/
int dpdmai_get_tx_queue(struct fsl_mc_io *mc_io, u32 cmd_flags,
u16 token, u8 priority, u32 *fqid)
{
struct dpdmai_rsp_get_tx_queue *rsp_params;
struct dpdmai_cmd_queue *cmd_params;
struct fsl_mc_command cmd = { 0 };
int err;
/* prepare command */
cmd.header = mc_encode_cmd_header(DPDMAI_CMDID_GET_TX_QUEUE,
cmd_flags, token);
cmd_params = (struct dpdmai_cmd_queue *)cmd.params;
cmd_params->queue = priority;
/* send command to mc*/
err = mc_send_command(mc_io, &cmd);
if (err)
return err;
/* retrieve response parameters */
rsp_params = (struct dpdmai_rsp_get_tx_queue *)cmd.params;
*fqid = le32_to_cpu(rsp_params->fqid);
return 0;
}

View File

@ -0,0 +1,177 @@
/* SPDX-License-Identifier: GPL-2.0 */
/* Copyright 2019 NXP */
#ifndef __FSL_DPDMAI_H
#define __FSL_DPDMAI_H
/* DPDMAI Version */
#define DPDMAI_VER_MAJOR 2
#define DPDMAI_VER_MINOR 2
#define DPDMAI_CMD_BASE_VERSION 0
#define DPDMAI_CMD_ID_OFFSET 4
#define DPDMAI_CMDID_FORMAT(x) (((x) << DPDMAI_CMD_ID_OFFSET) | \
DPDMAI_CMD_BASE_VERSION)
/* Command IDs */
#define DPDMAI_CMDID_CLOSE DPDMAI_CMDID_FORMAT(0x800)
#define DPDMAI_CMDID_OPEN DPDMAI_CMDID_FORMAT(0x80E)
#define DPDMAI_CMDID_CREATE DPDMAI_CMDID_FORMAT(0x90E)
#define DPDMAI_CMDID_ENABLE DPDMAI_CMDID_FORMAT(0x002)
#define DPDMAI_CMDID_DISABLE DPDMAI_CMDID_FORMAT(0x003)
#define DPDMAI_CMDID_GET_ATTR DPDMAI_CMDID_FORMAT(0x004)
#define DPDMAI_CMDID_RESET DPDMAI_CMDID_FORMAT(0x005)
#define DPDMAI_CMDID_IS_ENABLED DPDMAI_CMDID_FORMAT(0x006)
#define DPDMAI_CMDID_SET_IRQ DPDMAI_CMDID_FORMAT(0x010)
#define DPDMAI_CMDID_GET_IRQ DPDMAI_CMDID_FORMAT(0x011)
#define DPDMAI_CMDID_SET_IRQ_ENABLE DPDMAI_CMDID_FORMAT(0x012)
#define DPDMAI_CMDID_GET_IRQ_ENABLE DPDMAI_CMDID_FORMAT(0x013)
#define DPDMAI_CMDID_SET_IRQ_MASK DPDMAI_CMDID_FORMAT(0x014)
#define DPDMAI_CMDID_GET_IRQ_MASK DPDMAI_CMDID_FORMAT(0x015)
#define DPDMAI_CMDID_GET_IRQ_STATUS DPDMAI_CMDID_FORMAT(0x016)
#define DPDMAI_CMDID_CLEAR_IRQ_STATUS DPDMAI_CMDID_FORMAT(0x017)
#define DPDMAI_CMDID_SET_RX_QUEUE DPDMAI_CMDID_FORMAT(0x1A0)
#define DPDMAI_CMDID_GET_RX_QUEUE DPDMAI_CMDID_FORMAT(0x1A1)
#define DPDMAI_CMDID_GET_TX_QUEUE DPDMAI_CMDID_FORMAT(0x1A2)
#define MC_CMD_HDR_TOKEN_O 32 /* Token field offset */
#define MC_CMD_HDR_TOKEN_S 16 /* Token field size */
#define MAKE_UMASK64(_width) \
((u64)((_width) < 64 ? ((u64)1 << (_width)) - 1 : (u64)-1))
/* Data Path DMA Interface API
* Contains initialization APIs and runtime control APIs for DPDMAI
*/
/**
* Maximum number of Tx/Rx priorities per DPDMAI object
*/
#define DPDMAI_PRIO_NUM 2
/* DPDMAI queue modification options */
/**
* Select to modify the user's context associated with the queue
*/
#define DPDMAI_QUEUE_OPT_USER_CTX 0x1
/**
* Select to modify the queue's destination
*/
#define DPDMAI_QUEUE_OPT_DEST 0x2
/**
* struct dpdmai_cfg - Structure representing DPDMAI configuration
* @priorities: Priorities for the DMA hardware processing; valid priorities are
* configured with values 1-8; the entry following last valid entry
* should be configured with 0
*/
struct dpdmai_cfg {
u8 priorities[DPDMAI_PRIO_NUM];
};
/**
* struct dpdmai_attr - Structure representing DPDMAI attributes
* @id: DPDMAI object ID
* @version: DPDMAI version
* @num_of_priorities: number of priorities
*/
struct dpdmai_attr {
int id;
/**
* struct version - DPDMAI version
* @major: DPDMAI major version
* @minor: DPDMAI minor version
*/
struct {
u16 major;
u16 minor;
} version;
u8 num_of_priorities;
};
/**
* enum dpdmai_dest - DPDMAI destination types
* @DPDMAI_DEST_NONE: Unassigned destination; The queue is set in parked mode
* and does not generate FQDAN notifications; user is expected to dequeue
* from the queue based on polling or other user-defined method
* @DPDMAI_DEST_DPIO: The queue is set in schedule mode and generates FQDAN
* notifications to the specified DPIO; user is expected to dequeue
* from the queue only after notification is received
* @DPDMAI_DEST_DPCON: The queue is set in schedule mode and does not generate
* FQDAN notifications, but is connected to the specified DPCON object;
* user is expected to dequeue from the DPCON channel
*/
enum dpdmai_dest {
DPDMAI_DEST_NONE = 0,
DPDMAI_DEST_DPIO = 1,
DPDMAI_DEST_DPCON = 2
};
/**
* struct dpdmai_dest_cfg - Structure representing DPDMAI destination parameters
* @dest_type: Destination type
* @dest_id: Either DPIO ID or DPCON ID, depending on the destination type
* @priority: Priority selection within the DPIO or DPCON channel; valid values
* are 0-1 or 0-7, depending on the number of priorities in that
* channel; not relevant for 'DPDMAI_DEST_NONE' option
*/
struct dpdmai_dest_cfg {
enum dpdmai_dest dest_type;
int dest_id;
u8 priority;
};
/**
* struct dpdmai_rx_queue_cfg - DPDMAI RX queue configuration
* @options: Flags representing the suggested modifications to the queue;
* Use any combination of 'DPDMAI_QUEUE_OPT_<X>' flags
* @user_ctx: User context value provided in the frame descriptor of each
* dequeued frame;
* valid only if 'DPDMAI_QUEUE_OPT_USER_CTX' is contained in 'options'
* @dest_cfg: Queue destination parameters;
* valid only if 'DPDMAI_QUEUE_OPT_DEST' is contained in 'options'
*/
struct dpdmai_rx_queue_cfg {
struct dpdmai_dest_cfg dest_cfg;
u32 options;
u64 user_ctx;
};
/**
* struct dpdmai_rx_queue_attr - Structure representing attributes of Rx queues
* @user_ctx: User context value provided in the frame descriptor of each
* dequeued frame
* @dest_cfg: Queue destination configuration
* @fqid: Virtual FQID value to be used for dequeue operations
*/
struct dpdmai_rx_queue_attr {
struct dpdmai_dest_cfg dest_cfg;
u64 user_ctx;
u32 fqid;
};
int dpdmai_open(struct fsl_mc_io *mc_io, u32 cmd_flags,
int dpdmai_id, u16 *token);
int dpdmai_close(struct fsl_mc_io *mc_io, u32 cmd_flags, u16 token);
int dpdmai_create(struct fsl_mc_io *mc_io, u32 cmd_flags,
const struct dpdmai_cfg *cfg, u16 *token);
int dpdmai_enable(struct fsl_mc_io *mc_io, u32 cmd_flags, u16 token);
int dpdmai_disable(struct fsl_mc_io *mc_io, u32 cmd_flags, u16 token);
int dpdmai_reset(struct fsl_mc_io *mc_io, u32 cmd_flags, u16 token);
int dpdmai_get_attributes(struct fsl_mc_io *mc_io, u32 cmd_flags,
u16 token, struct dpdmai_attr *attr);
int dpdmai_set_rx_queue(struct fsl_mc_io *mc_io, u32 cmd_flags, u16 token,
u8 priority, const struct dpdmai_rx_queue_cfg *cfg);
int dpdmai_get_rx_queue(struct fsl_mc_io *mc_io, u32 cmd_flags, u16 token,
u8 priority, struct dpdmai_rx_queue_attr *attr);
int dpdmai_get_tx_queue(struct fsl_mc_io *mc_io, u32 cmd_flags,
u16 token, u8 priority, u32 *fqid);
#endif /* __FSL_DPDMAI_H */

View File

@ -305,6 +305,11 @@ static size_t fsl_edma_desc_residue(struct fsl_edma_chan *fsl_chan,
return len;
}
void fsl_edma_get_realcnt(struct fsl_edma_chan *fsl_chan)
{
fsl_chan->chn_real_count = fsl_edma_desc_residue(fsl_chan, NULL, true);
}
enum dma_status fsl_edma_tx_status(struct dma_chan *chan,
dma_cookie_t cookie, struct dma_tx_state *txstate)
{
@ -314,8 +319,12 @@ enum dma_status fsl_edma_tx_status(struct dma_chan *chan,
unsigned long flags;
status = dma_cookie_status(chan, cookie, txstate);
if (status == DMA_COMPLETE)
if (status == DMA_COMPLETE) {
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
txstate->residue = fsl_chan->chn_real_count;
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
return status;
}
if (!txstate)
return fsl_chan->status;

View File

@ -126,6 +126,7 @@ struct fsl_edma_chan {
u32 dma_dev_size;
enum dma_data_direction dma_dir;
char chan_name[16];
u32 chn_real_count;
};
struct fsl_edma_desc {
@ -229,6 +230,7 @@ int fsl_edma_pause(struct dma_chan *chan);
int fsl_edma_resume(struct dma_chan *chan);
int fsl_edma_slave_config(struct dma_chan *chan,
struct dma_slave_config *cfg);
void fsl_edma_get_realcnt(struct fsl_edma_chan *fsl_chan);
enum dma_status fsl_edma_tx_status(struct dma_chan *chan,
dma_cookie_t cookie, struct dma_tx_state *txstate);
struct dma_async_tx_descriptor *fsl_edma_prep_dma_cyclic(

File diff suppressed because it is too large Load Diff

View File

@ -46,6 +46,7 @@ static irqreturn_t fsl_edma_tx_handler(int irq, void *dev_id)
spin_lock(&fsl_chan->vchan.lock);
if (!fsl_chan->edesc->iscyclic) {
fsl_edma_get_realcnt(fsl_chan);
list_del(&fsl_chan->edesc->vdesc.node);
vchan_cookie_complete(&fsl_chan->edesc->vdesc);
fsl_chan->edesc = NULL;

View File

@ -8,7 +8,8 @@
//
// Based on code from Freescale:
//
// Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
// Copyright 2004-2016 Freescale Semiconductor, Inc. All Rights Reserved.
// Copyright 2018 NXP.
#include <linux/init.h>
#include <linux/iopoll.h>
@ -23,6 +24,7 @@
#include <linux/semaphore.h>
#include <linux/spinlock.h>
#include <linux/device.h>
#include <linux/genalloc.h>
#include <linux/dma-mapping.h>
#include <linux/firmware.h>
#include <linux/slab.h>
@ -74,6 +76,9 @@
#define SDMA_CHNENBL0_IMX35 0x200
#define SDMA_CHNENBL0_IMX31 0x080
#define SDMA_CHNPRI_0 0x100
#define SDMA_DONE0_CONFIG 0x1000
#define SDMA_DONE0_CONFIG_DONE_SEL 0x7
#define SDMA_DONE0_CONFIG_DONE_DIS 0x6
/*
* Buffer descriptor status values.
@ -168,6 +173,8 @@
#define SDMA_WATERMARK_LEVEL_SPDIF BIT(10)
#define SDMA_WATERMARK_LEVEL_SP BIT(11)
#define SDMA_WATERMARK_LEVEL_DP BIT(12)
#define SDMA_WATERMARK_LEVEL_SD BIT(13)
#define SDMA_WATERMARK_LEVEL_DD BIT(14)
#define SDMA_WATERMARK_LEVEL_HWML (0xFF << 16)
#define SDMA_WATERMARK_LEVEL_LWE BIT(28)
#define SDMA_WATERMARK_LEVEL_HWE BIT(29)
@ -175,12 +182,17 @@
#define SDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
#define SDMA_DMA_DIRECTIONS (BIT(DMA_DEV_TO_MEM) | \
BIT(DMA_MEM_TO_DEV) | \
BIT(DMA_DEV_TO_DEV))
#define SDMA_WATERMARK_LEVEL_FIFOS_OFF 12
#define SDMA_WATERMARK_LEVEL_SW_DONE BIT(23)
#define SDMA_WATERMARK_LEVEL_SW_DONE_SEL_OFF 24
/*
* Mode/Count of data node descriptors - IPCv2
*/
@ -377,9 +389,14 @@ struct sdma_channel {
unsigned long watermark_level;
u32 shp_addr, per_addr;
enum dma_status status;
bool context_loaded;
struct imx_dma_data data;
struct work_struct terminate_worker;
bool is_ram_script;
bool src_dualfifo;
bool dst_dualfifo;
unsigned int fifo_num;
bool sw_done;
u32 sw_done_sel;
};
#define IMX_DMA_SG_LOOP BIT(0)
@ -389,6 +406,15 @@ struct sdma_channel {
#define MXC_SDMA_MIN_PRIORITY 1
#define MXC_SDMA_MAX_PRIORITY 7
/*
* 0x78(SDMA_XTRIG_CONF2+4)~0x100(SDMA_CHNPRI_O) registers are reserved and
* can't be accessed. Skip these register touch in suspend/resume. Also below
* two macros are only used on i.mx6sx.
*/
#define MXC_SDMA_RESERVED_REG (SDMA_CHNPRI_0 - SDMA_XTRIG_CONF2 - 4)
#define MXC_SDMA_SAVED_REG_NUM (((SDMA_CHNENBL0_IMX35 + 4 * 48) - \
MXC_SDMA_RESERVED_REG) / 4)
#define SDMA_FIRMWARE_MAGIC 0x414d4453
/**
@ -420,6 +446,13 @@ struct sdma_driver_data {
int num_events;
struct sdma_script_start_addrs *script_addrs;
bool check_ratio;
/*
* ecspi ERR009165 fixed should be done in sdma script
* and it be fixed in soc from i.mx6ul.
* please get more information from below link:
* https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf
*/
bool ecspi_fixed;
};
struct sdma_engine {
@ -427,6 +460,8 @@ struct sdma_engine {
struct device_dma_parameters dma_parms;
struct sdma_channel channel[MAX_DMA_CHANNELS];
struct sdma_channel_control *channel_control;
u32 save_regs[MXC_SDMA_SAVED_REG_NUM];
const char *fw_name;
void __iomem *regs;
struct sdma_context_data *context;
dma_addr_t context_phys;
@ -444,6 +479,10 @@ struct sdma_engine {
struct sdma_buffer_descriptor *bd0;
/* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
bool clk_ratio;
struct gen_pool *iram_pool;
bool fw_loaded;
u32 fw_fail;
unsigned short ram_code_start;
};
static int sdma_config_write(struct dma_chan *chan,
@ -540,6 +579,31 @@ static struct sdma_driver_data sdma_imx6q = {
.script_addrs = &sdma_script_imx6q,
};
static struct sdma_script_start_addrs sdma_script_imx6sx = {
.ap_2_ap_addr = 642,
.uart_2_mcu_addr = 817,
.mcu_2_app_addr = 747,
.uartsh_2_mcu_addr = 1032,
.mcu_2_shp_addr = 960,
.app_2_mcu_addr = 683,
.shp_2_mcu_addr = 891,
.spdif_2_mcu_addr = 1100,
.mcu_2_spdif_addr = 1134,
};
static struct sdma_driver_data sdma_imx6sx = {
.chnenbl0 = SDMA_CHNENBL0_IMX35,
.num_events = 48,
.script_addrs = &sdma_script_imx6sx,
};
static struct sdma_driver_data sdma_imx6ul = {
.chnenbl0 = SDMA_CHNENBL0_IMX35,
.num_events = 48,
.script_addrs = &sdma_script_imx6sx,
.ecspi_fixed = true,
};
static struct sdma_script_start_addrs sdma_script_imx7d = {
.ap_2_ap_addr = 644,
.uart_2_mcu_addr = 819,
@ -563,6 +627,7 @@ static struct sdma_driver_data sdma_imx8mq = {
.num_events = 48,
.script_addrs = &sdma_script_imx7d,
.check_ratio = 1,
.ecspi_fixed = true,
};
static const struct platform_device_id sdma_devtypes[] = {
@ -584,9 +649,15 @@ static const struct platform_device_id sdma_devtypes[] = {
}, {
.name = "imx6q-sdma",
.driver_data = (unsigned long)&sdma_imx6q,
}, {
.name = "imx6sx-sdma",
.driver_data = (unsigned long)&sdma_imx6sx,
}, {
.name = "imx7d-sdma",
.driver_data = (unsigned long)&sdma_imx7d,
}, {
.name = "imx6ul-sdma",
.driver_data = (unsigned long)&sdma_imx6ul,
}, {
.name = "imx8mq-sdma",
.driver_data = (unsigned long)&sdma_imx8mq,
@ -603,7 +674,9 @@ static const struct of_device_id sdma_dt_ids[] = {
{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
{ .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
{ .compatible = "fsl,imx6sx-sdma", .data = &sdma_imx6sx, },
{ .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
{ .compatible = "fsl,imx6ul-sdma", .data = &sdma_imx6ul, },
{ .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, },
{ /* sentinel */ }
};
@ -695,10 +768,13 @@ static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
int ret;
unsigned long flags;
buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL);
if (!buf_virt) {
if (sdma->iram_pool)
buf_virt = gen_pool_dma_alloc(sdma->iram_pool, size, &buf_phys);
else
buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys,
GFP_KERNEL);
if (!buf_virt)
return -ENOMEM;
}
spin_lock_irqsave(&sdma->channel_0_lock, flags);
@ -714,7 +790,10 @@ static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
if (sdma->iram_pool)
gen_pool_free(sdma->iram_pool, (unsigned long)buf_virt, size);
else
dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
return ret;
}
@ -729,6 +808,21 @@ static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
val = readl_relaxed(sdma->regs + chnenbl);
__set_bit(channel, &val);
writel_relaxed(val, sdma->regs + chnenbl);
/* Set SDMA_DONEx_CONFIG is sw_done enabled */
if (sdmac->sw_done) {
u32 offset = SDMA_DONE0_CONFIG + sdmac->sw_done_sel / 4;
u32 done_sel = SDMA_DONE0_CONFIG_DONE_SEL +
((sdmac->sw_done_sel % 4) << 3);
u32 sw_done_dis = SDMA_DONE0_CONFIG_DONE_DIS +
((sdmac->sw_done_sel % 4) << 3);
val = readl_relaxed(sdma->regs + offset);
__set_bit(done_sel, &val);
__clear_bit(sw_done_dis, &val);
writel_relaxed(val, sdma->regs + offset);
}
}
static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
@ -866,7 +960,10 @@ static irqreturn_t sdma_int_handler(int irq, void *dev_id)
desc = sdmac->desc;
if (desc) {
if (sdmac->flags & IMX_DMA_SG_LOOP) {
sdma_update_channel_loop(sdmac);
if (sdmac->peripheral_type != IMX_DMATYPE_HDMI)
sdma_update_channel_loop(sdmac);
else
vchan_cyclic_callback(&desc->vd);
} else {
mxc_sdma_handle_channel_normal(sdmac);
vchan_cookie_complete(&desc->vd);
@ -925,6 +1022,10 @@ static void sdma_get_pc(struct sdma_channel *sdmac,
emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
break;
case IMX_DMATYPE_CSPI:
per_2_emi = sdma->script_addrs->app_2_mcu_addr;
emi_2_per = sdma->script_addrs->mcu_2_ecspi_addr;
sdmac->is_ram_script = true;
break;
case IMX_DMATYPE_EXT:
case IMX_DMATYPE_SSI:
case IMX_DMATYPE_SAI:
@ -934,6 +1035,7 @@ static void sdma_get_pc(struct sdma_channel *sdmac,
case IMX_DMATYPE_SSI_DUAL:
per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
sdmac->is_ram_script = true;
break;
case IMX_DMATYPE_SSI_SP:
case IMX_DMATYPE_MMC:
@ -948,11 +1050,13 @@ static void sdma_get_pc(struct sdma_channel *sdmac,
per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
per_2_per = sdma->script_addrs->per_2_per_addr;
sdmac->is_ram_script = true;
break;
case IMX_DMATYPE_ASRC_SP:
per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
per_2_per = sdma->script_addrs->per_2_per_addr;
sdmac->is_ram_script = true;
break;
case IMX_DMATYPE_MSHC:
per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
@ -968,6 +1072,14 @@ static void sdma_get_pc(struct sdma_channel *sdmac,
case IMX_DMATYPE_IPU_MEMORY:
emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
break;
case IMX_DMATYPE_HDMI:
emi_2_per = sdma->script_addrs->hdmi_dma_addr;
sdmac->is_ram_script = true;
break;
case IMX_DMATYPE_MULTI_SAI:
per_2_emi = sdma->script_addrs->sai_2_mcu_addr;
emi_2_per = sdma->script_addrs->mcu_2_sai_addr;
sdmac->is_ram_script = true;
default:
break;
}
@ -988,9 +1100,6 @@ static int sdma_load_context(struct sdma_channel *sdmac)
int ret;
unsigned long flags;
if (sdmac->context_loaded)
return 0;
if (sdmac->direction == DMA_DEV_TO_MEM)
load_address = sdmac->pc_from_device;
else if (sdmac->direction == DMA_DEV_TO_DEV)
@ -1018,11 +1127,16 @@ static int sdma_load_context(struct sdma_channel *sdmac)
/* Send by context the event mask,base address for peripheral
* and watermark level
*/
context->gReg[0] = sdmac->event_mask[1];
context->gReg[1] = sdmac->event_mask[0];
context->gReg[2] = sdmac->per_addr;
context->gReg[6] = sdmac->shp_addr;
context->gReg[7] = sdmac->watermark_level;
if (sdmac->peripheral_type == IMX_DMATYPE_HDMI) {
context->gReg[4] = sdmac->per_addr;
context->gReg[6] = sdmac->shp_addr;
} else {
context->gReg[0] = sdmac->event_mask[1];
context->gReg[1] = sdmac->event_mask[0];
context->gReg[2] = sdmac->per_addr;
context->gReg[6] = sdmac->shp_addr;
context->gReg[7] = sdmac->watermark_level;
}
bd0->mode.command = C0_SETDM;
bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
@ -1033,7 +1147,30 @@ static int sdma_load_context(struct sdma_channel *sdmac)
spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
sdmac->context_loaded = true;
return ret;
}
static int sdma_save_restore_context(struct sdma_engine *sdma, bool save)
{
struct sdma_context_data *context = sdma->context;
struct sdma_buffer_descriptor *bd0 = sdma->bd0;
unsigned long flags;
int ret;
spin_lock_irqsave(&sdma->channel_0_lock, flags);
if (save)
bd0->mode.command = C0_GETDM;
else
bd0->mode.command = C0_SETDM;
bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
bd0->mode.count = MAX_DMA_CHANNELS * sizeof(*context) / 4;
bd0->buffer_addr = sdma->context_phys;
bd0->ext_buffer_addr = 2048;
ret = sdma_run_channel0(sdma);
spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
return ret;
}
@ -1074,7 +1211,6 @@ static void sdma_channel_terminate_work(struct work_struct *work)
sdmac->desc = NULL;
spin_unlock_irqrestore(&sdmac->vc.lock, flags);
vchan_dma_desc_free_list(&sdmac->vc, &head);
sdmac->context_loaded = false;
}
static int sdma_disable_channel_async(struct dma_chan *chan)
@ -1136,12 +1272,36 @@ static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
if (sdmac->src_dualfifo)
sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SD;
if (sdmac->dst_dualfifo)
sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DD;
}
static void sdma_set_watermarklevel_for_sais(struct sdma_channel *sdmac)
{
sdmac->watermark_level &= ~(0xFF << SDMA_WATERMARK_LEVEL_FIFOS_OFF |
SDMA_WATERMARK_LEVEL_SW_DONE |
0xf << SDMA_WATERMARK_LEVEL_SW_DONE_SEL_OFF);
if (sdmac->sw_done)
sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SW_DONE |
sdmac->sw_done_sel <<
SDMA_WATERMARK_LEVEL_SW_DONE_SEL_OFF;
/* For fifo_num
* bit 12-15 is the fifo number;
* bit 16-19 is the fifo offset,
* so here only need to shift left fifo_num 12 bit for watermake_level
*/
sdmac->watermark_level |= sdmac->fifo_num<<
SDMA_WATERMARK_LEVEL_FIFOS_OFF;
}
static int sdma_config_channel(struct dma_chan *chan)
{
struct sdma_channel *sdmac = to_sdma_chan(chan);
int ret;
sdma_disable_channel(chan);
@ -1171,8 +1331,21 @@ static int sdma_config_channel(struct dma_chan *chan)
if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
sdmac->peripheral_type == IMX_DMATYPE_ASRC)
sdma_set_watermarklevel_for_p2p(sdmac);
} else
} else {
/*
* ERR009165 fixed from i.mx6ul, no errata need,
* set bit31 to let sdma script skip the errata.
*/
if (sdmac->peripheral_type == IMX_DMATYPE_CSPI &&
sdmac->direction == DMA_MEM_TO_DEV &&
sdmac->sdma->drvdata->ecspi_fixed)
__set_bit(31, &sdmac->watermark_level);
else if (sdmac->peripheral_type ==
IMX_DMATYPE_MULTI_SAI)
sdma_set_watermarklevel_for_sais(sdmac);
__set_bit(sdmac->event_id0, sdmac->event_mask);
}
/* Address */
sdmac->shp_addr = sdmac->per_address;
@ -1181,9 +1354,7 @@ static int sdma_config_channel(struct dma_chan *chan)
sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
}
ret = sdma_load_context(sdmac);
return ret;
return 0;
}
static int sdma_set_channel_priority(struct sdma_channel *sdmac,
@ -1206,8 +1377,12 @@ static int sdma_request_channel0(struct sdma_engine *sdma)
{
int ret = -EBUSY;
sdma->bd0 = dma_alloc_coherent(sdma->dev, PAGE_SIZE, &sdma->bd0_phys,
GFP_NOWAIT);
if (sdma->iram_pool)
sdma->bd0 = gen_pool_dma_alloc(sdma->iram_pool, PAGE_SIZE,
&sdma->bd0_phys);
else
sdma->bd0 = dma_alloc_coherent(sdma->dev, PAGE_SIZE,
&sdma->bd0_phys, GFP_NOWAIT);
if (!sdma->bd0) {
ret = -ENOMEM;
goto out;
@ -1227,10 +1402,15 @@ out:
static int sdma_alloc_bd(struct sdma_desc *desc)
{
u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
struct sdma_engine *sdma = desc->sdmac->sdma;
int ret = 0;
desc->bd = dma_alloc_coherent(desc->sdmac->sdma->dev, bd_size,
&desc->bd_phys, GFP_NOWAIT);
if (sdma->iram_pool)
desc->bd = gen_pool_dma_alloc(sdma->iram_pool, PAGE_SIZE,
&desc->bd_phys);
else
desc->bd = dma_alloc_coherent(sdma->dev, bd_size,
&desc->bd_phys, GFP_NOWAIT);
if (!desc->bd) {
ret = -ENOMEM;
goto out;
@ -1242,9 +1422,14 @@ out:
static void sdma_free_bd(struct sdma_desc *desc)
{
u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
struct sdma_engine *sdma = desc->sdmac->sdma;
dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd,
desc->bd_phys);
if (sdma->iram_pool)
gen_pool_free(sdma->iram_pool, (unsigned long)desc->bd,
PAGE_SIZE);
else
dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd,
desc->bd_phys);
}
static void sdma_desc_free(struct virt_dma_desc *vd)
@ -1298,6 +1483,13 @@ static int sdma_alloc_chan_resources(struct dma_chan *chan)
sdmac->peripheral_type = data->peripheral_type;
sdmac->event_id0 = data->dma_request;
sdmac->event_id1 = data->dma_request2;
sdmac->src_dualfifo = data->src_dualfifo;
sdmac->dst_dualfifo = data->dst_dualfifo;
/* Get software done selector if sw_done enabled */
if (data->done_sel & BIT(31)) {
sdmac->sw_done = true;
sdmac->sw_done_sel = (data->done_sel >> 8) & 0xff;
}
ret = clk_enable(sdmac->sdma->clk_ipg);
if (ret)
@ -1328,8 +1520,8 @@ static void sdma_free_chan_resources(struct dma_chan *chan)
sdma_channel_synchronize(chan);
if (sdmac->event_id0)
sdma_event_disable(sdmac, sdmac->event_id0);
sdma_event_disable(sdmac, sdmac->event_id0);
if (sdmac->event_id1)
sdma_event_disable(sdmac, sdmac->event_id1);
@ -1347,6 +1539,11 @@ static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
{
struct sdma_desc *desc;
if (!sdmac->sdma->fw_loaded && sdmac->is_ram_script) {
dev_err(sdmac->sdma->dev, "sdma firmware not ready!\n");
goto err_out;
}
desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
if (!desc)
goto err_out;
@ -1362,7 +1559,7 @@ static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
desc->sdmac = sdmac;
desc->num_bd = bds;
if (sdma_alloc_bd(desc))
if (bds && sdma_alloc_bd(desc))
goto err_desc_out;
/* No slave_config called in MEMCPY case, so do here */
@ -1483,6 +1680,9 @@ static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
if (count & 3 || sg->dma_address & 3)
goto err_bd_out;
break;
case DMA_SLAVE_BUSWIDTH_3_BYTES:
bd->mode.command = 3;
break;
case DMA_SLAVE_BUSWIDTH_2_BYTES:
bd->mode.command = 2;
if (count & 1 || sg->dma_address & 1)
@ -1527,13 +1727,16 @@ static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
{
struct sdma_channel *sdmac = to_sdma_chan(chan);
struct sdma_engine *sdma = sdmac->sdma;
int num_periods = buf_len / period_len;
int num_periods = 0;
int channel = sdmac->channel;
int i = 0, buf = 0;
struct sdma_desc *desc;
dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
if (sdmac->peripheral_type != IMX_DMATYPE_HDMI)
num_periods = buf_len / period_len;
sdma_config_write(chan, &sdmac->slave_config, direction);
desc = sdma_transfer_init(sdmac, direction, num_periods);
@ -1550,6 +1753,9 @@ static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
goto err_bd_out;
}
if (sdmac->peripheral_type == IMX_DMATYPE_HDMI)
return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
while (buf < buf_len) {
struct sdma_buffer_descriptor *bd = &desc->bd[i];
int param;
@ -1597,11 +1803,15 @@ static int sdma_config_write(struct dma_chan *chan,
{
struct sdma_channel *sdmac = to_sdma_chan(chan);
sdmac->watermark_level = 0;
sdmac->is_ram_script = false;
if (direction == DMA_DEV_TO_MEM) {
sdmac->per_address = dmaengine_cfg->src_addr;
sdmac->watermark_level = dmaengine_cfg->src_maxburst *
dmaengine_cfg->src_addr_width;
sdmac->word_size = dmaengine_cfg->src_addr_width;
sdmac->fifo_num = dmaengine_cfg->src_fifo_num;
} else if (direction == DMA_DEV_TO_DEV) {
sdmac->per_address2 = dmaengine_cfg->src_addr;
sdmac->per_address = dmaengine_cfg->dst_addr;
@ -1610,11 +1820,16 @@ static int sdma_config_write(struct dma_chan *chan,
sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
SDMA_WATERMARK_LEVEL_HWML;
sdmac->word_size = dmaengine_cfg->dst_addr_width;
} else if (sdmac->peripheral_type == IMX_DMATYPE_HDMI) {
sdmac->per_address = dmaengine_cfg->dst_addr;
sdmac->per_address2 = dmaengine_cfg->src_addr;
sdmac->watermark_level = 0;
} else {
sdmac->per_address = dmaengine_cfg->dst_addr;
sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
dmaengine_cfg->dst_addr_width;
sdmac->word_size = dmaengine_cfg->dst_addr_width;
sdmac->fifo_num = dmaengine_cfg->dst_fifo_num;
}
sdmac->direction = direction;
return sdma_config_channel(chan);
@ -1628,11 +1843,9 @@ static int sdma_config(struct dma_chan *chan,
memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
/* Set ENBLn earlier to make sure dma request triggered after that */
if (sdmac->event_id0) {
if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
return -EINVAL;
sdma_event_enable(sdmac, sdmac->event_id0);
}
if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
return -EINVAL;
sdma_event_enable(sdmac, sdmac->event_id0);
if (sdmac->event_id1) {
if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
@ -1693,8 +1906,8 @@ static void sdma_issue_pending(struct dma_chan *chan)
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 41
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 42
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 45
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 46
static void sdma_add_scripts(struct sdma_engine *sdma,
const struct sdma_script_start_addrs *addr)
@ -1728,12 +1941,21 @@ static void sdma_load_firmware(const struct firmware *fw, void *context)
unsigned short *ram_code;
if (!fw) {
dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
/* In this case we just use the ROM firmware. */
/* Load firmware once more time if timeout */
if (sdma->fw_fail)
dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
else {
request_firmware_nowait(THIS_MODULE,
FW_ACTION_HOTPLUG, sdma->fw_name,
sdma->dev, GFP_KERNEL, sdma,
sdma_load_firmware);
sdma->fw_fail++;
}
return;
}
if (fw->size < sizeof(*header))
if (fw->size < sizeof(*header) || sdma->fw_loaded)
goto err_firmware;
header = (struct sdma_firmware_header *)fw->data;
@ -1762,6 +1984,7 @@ static void sdma_load_firmware(const struct firmware *fw, void *context)
addr = (void *)header + header->script_addrs_start;
ram_code = (void *)header + header->ram_code_start;
sdma->ram_code_start = header->ram_code_start;
clk_enable(sdma->clk_ipg);
clk_enable(sdma->clk_ahb);
@ -1774,6 +1997,8 @@ static void sdma_load_firmware(const struct firmware *fw, void *context)
sdma_add_scripts(sdma, addr);
sdma->fw_loaded = true;
dev_info(sdma->dev, "loaded firmware %d.%d\n",
header->version_major,
header->version_minor);
@ -1862,7 +2087,7 @@ static int sdma_get_firmware(struct sdma_engine *sdma,
static int sdma_init(struct sdma_engine *sdma)
{
int i, ret;
int i, ret, ccbsize;
dma_addr_t ccb_phys;
ret = clk_enable(sdma->clk_ipg);
@ -1879,11 +2104,15 @@ static int sdma_init(struct sdma_engine *sdma)
/* Be sure SDMA has not started yet */
writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
sdma->channel_control = dma_alloc_coherent(sdma->dev,
MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
sizeof(struct sdma_context_data),
&ccb_phys, GFP_KERNEL);
ccbsize = MAX_DMA_CHANNELS * (sizeof(struct sdma_channel_control)
+ sizeof(struct sdma_context_data));
if (sdma->iram_pool)
sdma->channel_control = gen_pool_dma_alloc(sdma->iram_pool,
ccbsize, &ccb_phys);
else
sdma->channel_control = dma_alloc_coherent(sdma->dev, ccbsize,
&ccb_phys, GFP_KERNEL);
if (!sdma->channel_control) {
ret = -ENOMEM;
goto err_dma_alloc;
@ -1959,9 +2188,14 @@ static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
if (dma_spec->args_count != 3)
return NULL;
memset(&data, 0, sizeof(data));
data.dma_request = dma_spec->args[0];
data.peripheral_type = dma_spec->args[1];
data.priority = dma_spec->args[2];
/* Get sw_done setting if sw_done enabled */
if (dma_spec->args[2] & BIT(31))
data.done_sel = dma_spec->args[2];
data.priority = dma_spec->args[2] & 0xff;
/*
* init dma_request2 to zero, which is not used by the dts.
* For P2P, dma_request2 is init from dma_request_channel(),
@ -2137,6 +2371,10 @@ static int sdma_probe(struct platform_device *pdev)
sdma->spba_end_addr = spba_res.end;
}
of_node_put(spba_bus);
sdma->iram_pool = of_gen_pool_get(np, "iram", 0);
if (sdma->iram_pool)
dev_info(&pdev->dev, "alloc bd from iram. \n");
}
/*
@ -2166,6 +2404,8 @@ static int sdma_probe(struct platform_device *pdev)
}
}
sdma->fw_name = fw_name;
return 0;
err_register:
@ -2201,10 +2441,126 @@ static int sdma_remove(struct platform_device *pdev)
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int sdma_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct sdma_engine *sdma = platform_get_drvdata(pdev);
int i, ret = 0;
/* Do nothing if not i.MX6SX or i.MX7D*/
if (sdma->drvdata != &sdma_imx6sx && sdma->drvdata != &sdma_imx7d
&& sdma->drvdata != &sdma_imx6ul)
return 0;
clk_enable(sdma->clk_ipg);
clk_enable(sdma->clk_ahb);
ret = sdma_save_restore_context(sdma, true);
if (ret) {
dev_err(sdma->dev, "save context error!\n");
return ret;
}
/* save regs */
for (i = 0; i < MXC_SDMA_SAVED_REG_NUM; i++) {
/*
* 0x78(SDMA_XTRIG_CONF2+4)~0x100(SDMA_CHNPRI_O) registers are
* reserved and can't be touched. Skip these regs.
*/
if (i > SDMA_XTRIG_CONF2 / 4)
sdma->save_regs[i] = readl_relaxed(sdma->regs +
MXC_SDMA_RESERVED_REG
+ 4 * i);
else
sdma->save_regs[i] = readl_relaxed(sdma->regs + 4 * i);
}
clk_disable(sdma->clk_ipg);
clk_disable(sdma->clk_ahb);
return 0;
}
static int sdma_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct sdma_engine *sdma = platform_get_drvdata(pdev);
unsigned long timeout = jiffies + msecs_to_jiffies(2);
int i, ret;
/* Do nothing if not i.MX6SX or i.MX7D*/
if (sdma->drvdata != &sdma_imx6sx && sdma->drvdata != &sdma_imx7d
&& sdma->drvdata != &sdma_imx6ul)
return 0;
clk_enable(sdma->clk_ipg);
clk_enable(sdma->clk_ahb);
/* Do nothing if mega/fast mix not turned off */
if (readl_relaxed(sdma->regs + SDMA_H_C0PTR)) {
clk_disable(sdma->clk_ipg);
clk_disable(sdma->clk_ahb);
return 0;
}
/* Firmware was lost, mark as "not ready" */
sdma->fw_loaded = false;
/* restore regs and load firmware */
for (i = 0; i < MXC_SDMA_SAVED_REG_NUM; i++) {
/*
* 0x78(SDMA_XTRIG_CONF2+4)~0x100(SDMA_CHNPRI_O) registers are
* reserved and can't be touched. Skip these regs.
*/
if (i > SDMA_XTRIG_CONF2 / 4)
writel_relaxed(sdma->save_regs[i], sdma->regs +
MXC_SDMA_RESERVED_REG + 4 * i);
/* set static context switch mode before channel0 running */
else if (i == SDMA_H_CONFIG / 4)
writel_relaxed(sdma->save_regs[i] & ~SDMA_H_CONFIG_CSM,
sdma->regs + SDMA_H_CONFIG);
else
writel_relaxed(sdma->save_regs[i], sdma->regs + 4 * i);
}
/* prepare priority for channel0 to start */
sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
ret = sdma_get_firmware(sdma, sdma->fw_name);
if (ret) {
dev_warn(&pdev->dev, "failed to get firmware\n");
goto out;
}
/* wait firmware loaded */
do {
if (time_after(jiffies, timeout)) {
dev_warn(&pdev->dev, "failed to load firmware\n");
break;
}
usleep_range(50, 500);
} while (!sdma->fw_loaded);
ret = sdma_save_restore_context(sdma, false);
if (ret) {
dev_err(sdma->dev, "restore context error!\n");
goto out;
}
out:
clk_disable(sdma->clk_ipg);
clk_disable(sdma->clk_ahb);
return ret;
}
#endif
static const struct dev_pm_ops sdma_pm_ops = {
SET_LATE_SYSTEM_SLEEP_PM_OPS(sdma_suspend, sdma_resume)
};
static struct platform_driver sdma_driver = {
.driver = {
.name = "imx-sdma",
.of_match_table = sdma_dt_ids,
.pm = &sdma_pm_ops,
},
.id_table = sdma_devtypes,
.remove = sdma_remove,

View File

@ -729,6 +729,12 @@ static bool mxs_dma_filter_fn(struct dma_chan *chan, void *fn_param)
struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
int chan_irq;
if (strcmp(chan->device->dev->driver->name, "mxs-dma"))
return false;
if (!mxs_dma)
return false;
if (chan->chan_id != param->chan_id)
return false;
@ -760,7 +766,7 @@ static struct dma_chan *mxs_dma_xlate(struct of_phandle_args *dma_spec,
ofdma->of_node);
}
static int __init mxs_dma_probe(struct platform_device *pdev)
static int mxs_dma_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
const struct platform_device_id *id_entry;
@ -869,10 +875,6 @@ static struct platform_driver mxs_dma_driver = {
.of_match_table = mxs_dma_dt_ids,
},
.id_table = mxs_dma_ids,
.probe = mxs_dma_probe,
};
static int __init mxs_dma_module_init(void)
{
return platform_driver_probe(&mxs_dma_driver, mxs_dma_probe);
}
subsys_initcall(mxs_dma_module_init);
module_platform_driver(mxs_dma_driver);

View File

@ -333,6 +333,8 @@ enum dma_slave_buswidth {
* loops in this area in order to transfer the data.
* @dst_port_window_size: same as src_port_window_size but for the destination
* port.
* @src_fifo_num: bit 0-7 is the fifo number, bit:8-11 is the fifo offset;
* @dst_fifo_num: same as src_fifo_num
* @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
* with 'true' if peripheral should be flow controller. Direction will be
* selected at Runtime.
@ -362,6 +364,8 @@ struct dma_slave_config {
u32 dst_maxburst;
u32 src_port_window_size;
u32 dst_port_window_size;
u32 src_fifo_num;
u32 dst_fifo_num;
bool device_fc;
unsigned int slave_id;
};

View File

@ -20,12 +20,12 @@ struct sdma_script_start_addrs {
s32 per_2_firi_addr;
s32 mcu_2_firi_addr;
s32 uart_2_per_addr;
s32 uart_2_mcu_addr;
s32 uart_2_mcu_ram_addr;
s32 per_2_app_addr;
s32 mcu_2_app_addr;
s32 per_2_per_addr;
s32 uartsh_2_per_addr;
s32 uartsh_2_mcu_addr;
s32 uartsh_2_mcu_ram_addr;
s32 per_2_shp_addr;
s32 mcu_2_shp_addr;
s32 ata_2_mcu_addr;
@ -52,6 +52,10 @@ struct sdma_script_start_addrs {
s32 zcanfd_2_mcu_addr;
s32 zqspi_2_mcu_addr;
s32 mcu_2_ecspi_addr;
s32 mcu_2_sai_addr;
s32 sai_2_mcu_addr;
s32 uart_2_mcu_addr;
s32 uartsh_2_mcu_addr;
/* End of v3 array */
s32 mcu_2_zqspi_addr;
/* End of v4 array */

View File

@ -1,6 +1,7 @@
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
* Copyright 2004-2015 Freescale Semiconductor, Inc. All Rights Reserved.
* Copyright 2018 NXP.
*/
#ifndef __ASM_ARCH_MXC_DMA_H__
@ -39,6 +40,8 @@ enum sdma_peripheral_type {
IMX_DMATYPE_SSI_DUAL, /* SSI Dual FIFO */
IMX_DMATYPE_ASRC_SP, /* Shared ASRC */
IMX_DMATYPE_SAI, /* SAI */
IMX_DMATYPE_MULTI_SAI, /* MULTI FIFOs For Audio */
IMX_DMATYPE_HDMI, /* HDMI Audio */
};
enum imx_dma_prio {
@ -52,6 +55,9 @@ struct imx_dma_data {
int dma_request2; /* secondary DMA request line */
enum sdma_peripheral_type peripheral_type;
int priority;
bool src_dualfifo;
bool dst_dualfifo;
int done_sel;
};
static inline int imx_dma_is_ipu(struct dma_chan *chan)